WorldWideScience

Sample records for reveals differential responses

  1. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

    Directory of Open Access Journals (Sweden)

    Ferrari Francesco

    2009-06-01

    Full Text Available Abstract Background Water stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS, a Chinese Spring terminal deletion line (CS_5AL-10 and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions. Results The transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed in Creso (which lacks the D genome or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region. Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10. Conclusion Bread and durum wheat genotypes were characterized by a different physiological reaction to water

  2. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot.

    Science.gov (United States)

    Wang, Ronghua; Mei, Yi; Xu, Liang; Zhu, Xianwen; Wang, Yan; Guo, Jun; Liu, Liwang

    2018-05-01

    Differential abundance protein species (DAPS) involved in reducing damage and enhancing thermotolerance in radish were firstly identified. Proteomic analysis and omics association analysis revealed a HS-responsive regulatory network in radish. Heat stress (HS) is a major destructive factor influencing radish production and supply in summer, for radish is a cool season vegetable crop being susceptible to high temperature. In this study, the proteome changes of radish taproots under 40 °C treatment at 0 h (Control), 12 h (Heat12) and 24 h (Heat24) were analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) approach. In total, 2258 DAPS representing 1542 differentially accumulated uniprotein species which respond to HS were identified. A total of 604, 910 and 744 DAPS was detected in comparison of Control vs. Heat12, Control vs. Heat24, and Heat12 vs. Heat24, respectively. Gene ontology and pathway analysis showed that annexin, ubiquitin-conjugating enzyme, ATP synthase, heat shock protein (HSP) and other stress-related proteins were predominately enriched in signal transduction, stress and defense pathways, photosynthesis and energy metabolic pathways, working cooperatively to reduce stress-induced damage in radish. Based on iTRAQ combined with the transcriptomics analysis, a schematic model of a sequential HS-responsive regulatory network was proposed. The initial sensing of HS occurred at the plasma membrane, and then key components of stress signal transduction triggered heat-responsive genes in the plant protective metabolism to re-establish homeostasis and enhance thermotolerance. These results provide new insights into characteristics of HS-responsive DAPS and facilitate dissecting the molecular mechanisms underlying heat tolerance in radish and other root crops.

  3. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    Science.gov (United States)

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events. © 2016 John Wiley & Sons Ltd.

  4. Epigenetic landscapes reveal transcription factors regulating CD8+ T cell differentiation

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J. Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P.; Pereira, Renata M.; Crotty, Shane; Chang, John T.; Pipkin, Matthew E.; Wang, Wei; Goldrath, Ananda W.

    2017-01-01

    Dynamic changes in the expression of transcription factors (TFs) can influence specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TF among differentially-fated precursor cells suggests additional underlying mechanisms. Here, we profiled genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that TF expression and binding contributed to establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal novel TFs influencing the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector and memory-precursor cell-fates, respectively. Our data define the epigenetic landscape of differentiation intermediates, facilitating identification of TFs with previously unappreciated roles in CD8+ T cell differentiation. PMID:28288100

  5. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar, E-mail: aptesk@barc.gov.in

    2017-01-15

    Highlights: • Response of two native cyanobacterial strains to uranium exposure was studied. • Anabaena L-31 exhibited higher tolerance to uranium as compared to Anabaena 7120. • Uranium exposure differentially affected the proteome profiles of the two strains. • Anabaena L-31 showed better sustenance of photosynthesis and carbon metabolism. • Anabaena L-31 displayed superior oxidative stress defense than Anabaena 7120. - Abstract: Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD{sub 50} dose), following 3 h exposure to 75 μM and 200 μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. Significance: Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120.

  6. Comprehensive transcriptome analyses correlated with untargeted metabolome reveal differentially expressed pathways in response to cell wall alterations.

    Science.gov (United States)

    Reem, Nathan T; Chen, Han-Yi; Hur, Manhoi; Zhao, Xuefeng; Wurtele, Eve Syrkin; Li, Xu; Li, Ling; Zabotina, Olga

    2018-03-01

    This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.

  7. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation.

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P; Pereira, Renata M; Crotty, Shane; Chang, John T; Pipkin, Matthew E; Wang, Wei; Goldrath, Ananda W

    2017-05-01

    Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8 + T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8 + T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8 + T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8 + T cell differentiation.

  8. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  9. Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection.

    Directory of Open Access Journals (Sweden)

    Yongsheng Huang

    2011-08-01

    Full Text Available Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza.

  10. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    Science.gov (United States)

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  11. Differential network analysis reveals evolutionary complexity in secondary metabolism of Rauvolfia serpentina over Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Shivalika Pathania

    2016-08-01

    Full Text Available Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Towards these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These mechanisms may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of Rauvolfia serpentina, and key genes that contribute towards diversification of specific metabolites.

  12. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus.

    Science.gov (United States)

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.

  13. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj

    2008-11-01

    Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.

  14. Differential Cellular Responses to Hedgehog Signalling in Vertebrates—What is the Role of Competence?

    Science.gov (United States)

    Kiecker, Clemens; Graham, Anthony; Logan, Malcolm

    2016-01-01

    A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal—a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH) signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases—including several types of cancer—are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic. PMID:29615599

  15. Differential Cellular Responses to Hedgehog Signalling in Vertebrates—What is the Role of Competence?

    Directory of Open Access Journals (Sweden)

    Clemens Kiecker

    2016-12-01

    Full Text Available A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal—a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases—including several types of cancer—are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic.

  16. Host and Non-Host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi.

    Directory of Open Access Journals (Sweden)

    Valentina eFiorilli

    2015-08-01

    Full Text Available Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM symbiosis, has both host and non-host roots. Large lateral (LLR and fine lateral (FLR roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR.We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant.

  17. Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation.

    Science.gov (United States)

    Kempf, Claudia; Lengeler, Klaus; Wendland, Jürgen

    2017-07-01

    Proteotoxic stress may occur upon exposure of yeast cells to different stress conditions. The induction of stress response mechanisms is important for cells to adapt to changes in the environment and ensure survival. For example, during exposure to elevated temperatures the expression of heat shock proteins such as Hsp104 is induced in yeast. Hsp104 extracts misfolded proteins from aggregates to promote their refolding. We used an Hsp104-GFP reporter to analyze the stress profiles of Saccharomyces species hybrids. To this end a haploid S. cerevisiae strain, harboring a chromosomal HSP104-GFP under control of its endogenous promoter, was mated with stable haploids of S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. uvarum. Stress response behaviors in these hybrids were followed over time by monitoring the appearance and dissolution of Hsp104-GFP foci upon heat shock. General stress tolerance of these hybrids was related to the growth rate detected during exposure to e.g. ethanol and oxidizing agents. We observed that hybrids were generally more resistant to high temperature and ethanol stress compared to their parental strains. Amongst the hybrids differential responses regarding the appearance of Hsp104-foci and the time required for dissolving these aggregates were observed. The S. cerevisiae/S. paradoxus hybrid, combining the two most closely related strains, performed best under these conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Differentiating neural reward responsiveness in autism versus ADHD

    Directory of Open Access Journals (Sweden)

    Gregor Kohls

    2014-10-01

    Full Text Available Although attention deficit hyperactivity disorders (ADHD and autism spectrum disorders (ASD share certain neurocognitive characteristics, it has been hypothesized to differentiate the two disorders based on their brain's reward responsiveness to either social or monetary reward. Thus, the present fMRI study investigated neural activation in response to both reward types in age and IQ-matched boys with ADHD versus ASD relative to typically controls (TDC. A significant group by reward type interaction effect emerged in the ventral striatum with greater activation to monetary versus social reward only in TDC, whereas subjects with ADHD responded equally strong to both reward types, and subjects with ASD showed low striatal reactivity across both reward conditions. Moreover, disorder-specific neural abnormalities were revealed, including medial prefrontal hyperactivation in response to social reward in ADHD versus ventral striatal hypoactivation in response to monetary reward in ASD. Shared dysfunction was characterized by fronto-striato-parietal hypoactivation in both clinical groups when money was at stake. Interestingly, lower neural activation within parietal circuitry was associated with higher autistic traits across the entire study sample. In sum, the present findings concur with the assumption that both ASD and ADHD display distinct and shared neural dysfunction in response to reward.

  19. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  20. Dementias show differential physiological responses to salient sounds.

    Science.gov (United States)

    Fletcher, Phillip D; Nicholas, Jennifer M; Shakespeare, Timothy J; Downey, Laura E; Golden, Hannah L; Agustus, Jennifer L; Clark, Camilla N; Mummery, Catherine J; Schott, Jonathan M; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching ("looming") or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases.

  1. Dementias show differential physiological responses to salient sounds

    Directory of Open Access Journals (Sweden)

    Phillip David Fletcher

    2015-03-01

    Full Text Available Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching (‘looming’ or less salient withdrawing sounds. Pupil dilatation responses and behavioural rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n=10; behavioural variant frontotemporal dementia, n=16, progressive non-fluent aphasia, n=12; amnestic Alzheimer’s disease, n=10 and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioural response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer’s disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases.

  2. Dementias show differential physiological responses to salient sounds

    Science.gov (United States)

    Fletcher, Phillip D.; Nicholas, Jennifer M.; Shakespeare, Timothy J.; Downey, Laura E.; Golden, Hannah L.; Agustus, Jennifer L.; Clark, Camilla N.; Mummery, Catherine J.; Schott, Jonathan M.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching (“looming”) or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases. PMID:25859194

  3. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    Directory of Open Access Journals (Sweden)

    Henry D Priest

    Full Text Available Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  4. Comparative proteomics and codon substitution analysis reveal mechanisms of differential resistance to hypoxia in congeneric snails

    KAUST Repository

    Mu, Huawei; Sun, Jin; Cheung, Siu Gin; Fang, Ling; Zhou, Haiyun; Luan, Tiangang; Zhang, Huoming; Wong, Chris K.C.; Qiu, Jian-Wen

    2017-01-01

    Although high-throughput proteomics has been widely applied to study mechanisms of environmental adaptation, the conclusions from studies that are based on one species can be confounded by phylogeny. We compare the freshwater snail Pomacea canaliculata (a notorious invasive species) and its congener Pomacea diffusa (a non-invasive species) to understand the molecular mechanisms of their differential resistance to hypoxia. A 72-h acute exposure experiment showed that P. canaliculata is more tolerant to hypoxia than P. diffusa. The two species were then exposed to three levels of dissolved oxygen (6.7, 2.0 and 1.0mgL−1) for 8h, and their gill proteins were analyzed using iTRAQ-coupled LC-MS/MS. The two species showed striking differences in protein expression profiles, with the more hypoxia tolerant P. canaliculata having more up-regulated proteins in signal transduction and down-regulated proteins in glycolysis and the tricarboxylic acid cycle. Evolutionary analysis revealed five orthologous genes encoding differentially expressed proteins having clear signal of positive selection, indicating selection has acted on some of the hypoxia responsive genes. Our case study has highlighted the potential of integrated proteomics and comparative evolutionary analysis for understanding the genetic basis of adaptation to global environmental change in non-model species. SignificanceRapid globalization in recent decades has greatly facilitated species introduction around the world. Successfully established introduced species, so-called invasive species, have threatened the invaded ecosystems. There has been substantial interest in studying how invasive species respond to extreme environmental conditions because the results can help not only predict their range of expansion and manage their impact, but also may reveal the adaptive mechanisms underlying their invasiveness. Our study has adopted a comparative approach to study the differential physiological and proteomic

  5. Comparative proteomics and codon substitution analysis reveal mechanisms of differential resistance to hypoxia in congeneric snails

    KAUST Repository

    Mu, Huawei

    2017-11-06

    Although high-throughput proteomics has been widely applied to study mechanisms of environmental adaptation, the conclusions from studies that are based on one species can be confounded by phylogeny. We compare the freshwater snail Pomacea canaliculata (a notorious invasive species) and its congener Pomacea diffusa (a non-invasive species) to understand the molecular mechanisms of their differential resistance to hypoxia. A 72-h acute exposure experiment showed that P. canaliculata is more tolerant to hypoxia than P. diffusa. The two species were then exposed to three levels of dissolved oxygen (6.7, 2.0 and 1.0mgL−1) for 8h, and their gill proteins were analyzed using iTRAQ-coupled LC-MS/MS. The two species showed striking differences in protein expression profiles, with the more hypoxia tolerant P. canaliculata having more up-regulated proteins in signal transduction and down-regulated proteins in glycolysis and the tricarboxylic acid cycle. Evolutionary analysis revealed five orthologous genes encoding differentially expressed proteins having clear signal of positive selection, indicating selection has acted on some of the hypoxia responsive genes. Our case study has highlighted the potential of integrated proteomics and comparative evolutionary analysis for understanding the genetic basis of adaptation to global environmental change in non-model species. SignificanceRapid globalization in recent decades has greatly facilitated species introduction around the world. Successfully established introduced species, so-called invasive species, have threatened the invaded ecosystems. There has been substantial interest in studying how invasive species respond to extreme environmental conditions because the results can help not only predict their range of expansion and manage their impact, but also may reveal the adaptive mechanisms underlying their invasiveness. Our study has adopted a comparative approach to study the differential physiological and proteomic

  6. Differential Response to Heat Stress in Outer and Inner Onion Bulb Scales.

    Science.gov (United States)

    Galsurker, Ortal; Doron-Faigenboim, Adi; Teper-Bamnolker, Paula; Daus, Avinoam; Lers, Amnon; Eshel, Dani

    2018-05-18

    Brown protective skin formation in onion bulbs can be induced by rapid postharvest heat treatment. Onions that were peeled to different depths and were exposed to heat stress showed that only the outer scale formed dry brown skin, whereas the inner scales maintained high water content and did not change color. Our results reveal that browning of the outer scale during heat treatment is due to an enzymatic process that is associated with high levels of oxidation components, such as peroxidase and quercetin glucoside. De-novo transcriptome analysis revealed differential molecular responses of the outer and inner scales to the heat stress. Genes involved in lipid metabolism, oxidation pathways and cell-wall modification were highly expressed in the outer scale during heating. Defense-response-related genes such as those encoding heat-shock proteins, antioxidative stress defense or production of osmoprotectant metabolites were mostly induced in the inner scale in response to the heat exposure. These transcriptomic data led to a conceptual model that suggests sequential processes for browning development and desiccation of the outer scales versus processes associated with defense response and heat tolerance in the inner scale. Thus, the observed physiological differences between the outer and inner scales is supported by the identified molecular differences.

  7. Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli

    Science.gov (United States)

    Malone, Kerri M.; Rue-Albrecht, Kévin; Magee, David A.; Conlon, Kevin; Schubert, Olga T.; Nalpas, Nicolas C.; Browne, John A.; Smyth, Alicia; Gormley, Eamonn; Aebersold, Ruedi; MacHugh, David E.; Gordon, Stephen V.

    2018-01-01

    Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection. PMID:29557774

  8. Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina

    DEFF Research Database (Denmark)

    Gallo, G.; Renzone, G.; Alduina, R.

    2010-01-01

    A differential proteomic analysis, based on 2-DE and MS procedures, was performed on Amycolatopsis balhimycina DSM5908, the actinomycete producing the vancomycin-like antibiotic balhimycin. A comparison of proteomic profiles before and during balhimycin production characterized differentially...... available over the World Wide Web as interactive web pages (http://www.unipa.it/ampuglia/Abal-proteome-maps). Functional clustering analysis revealed that differentially expressed proteins belong to functional groups involved in central carbon metabolism, amino acid metabolism and protein biosynthesis...... intermediates, were upregulated during antibiotic production. qRT-PCR analysis revealed that 8 out of 14 upregulated genes showed a positive correlation between changes at translational and transcriptional expression level. Furthermore, proteomic analysis of two nonproducing mutants, restricted to a sub...

  9. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  10. Integrated analysis of hematopoietic differentiation outcomes and molecular characterization reveals unbiased differentiation capacity and minor transcriptional memory in HPC/HSC-iPSCs.

    Science.gov (United States)

    Gao, Shuai; Hou, Xinfeng; Jiang, Yonghua; Xu, Zijian; Cai, Tao; Chen, Jiajie; Chang, Gang

    2017-01-23

    Transcription factor-mediated reprogramming can reset the epigenetics of somatic cells into a pluripotency compatible state. Recent studies show that induced pluripotent stem cells (iPSCs) always inherit starting cell-specific characteristics, called epigenetic memory, which may be advantageous, as directed differentiation into specific cell types is still challenging; however, it also may be unpredictable when uncontrollable differentiation occurs. In consideration of biosafety in disease modeling and personalized medicine, the availability of high-quality iPSCs which lack a biased differentiation capacity and somatic memory could be indispensable. Herein, we evaluate the hematopoietic differentiation capacity and somatic memory state of hematopoietic progenitor and stem cell (HPC/HSC)-derived-iPSCs (HPC/HSC-iPSCs) using a previously established sequential reprogramming system. We found that HPC/HSCs are amenable to being reprogrammed into iPSCs with unbiased differentiation capacity to hematopoietic progenitors and mature hematopoietic cells. Genome-wide analyses revealed that no global epigenetic memory was detectable in HPC/HSC-iPSCs, but only a minor transcriptional memory of HPC/HSCs existed in a specific tetraploid complementation (4 N)-incompetent HPC/HSC-iPSC line. However, the observed minor transcriptional memory had no influence on the hematopoietic differentiation capacity, indicating the reprogramming of the HPC/HSCs was nearly complete. Further analysis revealed the correlation of minor transcriptional memory with the aberrant distribution of H3K27me3. This work provides a comprehensive framework for obtaining high-quality iPSCs from HPC/HSCs with unbiased hematopoietic differentiation capacity and minor transcriptional memory.

  11. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    Directory of Open Access Journals (Sweden)

    Kaplan David L

    2011-01-01

    Full Text Available Abstract Background Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. Methods The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP and collagen type 1 (col1, and stress response markers, such as heat shock protein 27 (hsp27 and heat shock protein 70 (hsp70. Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG imaging. Results Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p Conclusions Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes.

  12. Differential proteomics reveals novel insights into Nosema-honey bee interactions.

    Science.gov (United States)

    Kurze, Christoph; Dosselli, Ryan; Grassl, Julia; Le Conte, Yves; Kryger, Per; Baer, Boris; Moritz, Robin F A

    2016-12-01

    Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis).

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-08-22

    Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.

  14. Egg introduction: differential allergic responses

    OpenAIRE

    Dosanjh, Amrita

    2017-01-01

    Amrita Dosanjh Medical Center, Rady Childrens Hospital, San Diego, CA, USA Abstract: The use of egg protein preparations in clinical trials to reduce the incidence of egg allergy among infants includes a number of preparations of egg. These include whole egg, egg white protein, and egg yolk preparations. The study of the differential immune responses to these allergenic proteins in comparison is suggested as a future research area of investigation. Keywords: food allergy, egg allergy, clinica...

  15. Differential neural responses to food images in women with bulimia versus anorexia nervosa.

    Science.gov (United States)

    Brooks, Samantha J; O'Daly, Owen G; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C R; Schiöth, Helgi B; Treasure, Janet; Campbell, Iain C

    2011-01-01

    Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.

  16. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    Science.gov (United States)

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Megan R.; Liu, Gai; Mire, Chad E.; Sureshchandra, Suhas; Luthra, Priya; Yen, Benjamin; Shabman, Reed S.; Leung, Daisy W.; Messaoudi, Ilhem; Geisbert, Thomas W.; Amarasinghe, Gaya K.; Basler, Christopher F.

    2016-02-11

    Suppression of innate immune responses during filoviral infection contributes to disease severity. Ebola (EBOV) and Marburg (MARV) viruses each encode a VP35 protein that suppresses RIG-I-like receptor signaling and interferon-α/β (IFN-α/β) production by several mechanisms, including direct binding to double stranded RNA (dsRNA). Here, we demonstrate that in cell culture, MARV infection results in a greater upregulation of IFN responses as compared to EBOV infection. This correlates with differences in the efficiencies by which EBOV and MARV VP35s antagonize RIG-I signaling. Furthermore, structural and biochemical studies suggest that differential recognition of RNA elements by the respective VP35 C-terminal IFN inhibitory domain (IID) rather than affinity for RNA by the respective VP35s is critical for this observation. Our studies reveal functional differences in EBOV versus MARV VP35 RNA binding that result in unexpected differences in the host response to deadly viral pathogens.

  18. Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum.

    Science.gov (United States)

    Kenyon, Amy; Gavriouchkina, Daria; Zorman, Jernej; Napolitani, Giorgio; Cerundolo, Vincenzo; Sauka-Spengler, Tatjana

    2017-07-26

    The mechanisms governing neutrophil response to Mycobacterium tuberculosis remain poorly understood. In this study we utilise biotagging, a novel genome-wide profiling approach based on cell type-specific in vivo biotinylation in zebrafish to analyse the initial response of neutrophils to Mycobacterium marinum, a close genetic relative of M. tuberculosis used to model tuberculosis. Differential expression analysis following nuclear RNA-seq of neutrophil active transcriptomes reveals a significant upregulation in both damage-sensing and effector components of the inflammasome, including caspase b, NLRC3 ortholog (wu: fb15h11) and il1β. Crispr/Cas9-mediated knockout of caspase b, which acts by proteolytic processing of il1β, results in increased bacterial burden and less infiltration of macrophages to sites of mycobacterial infection, thus impairing granuloma development. We also show that a number of immediate early response genes (IEGs) are responsible for orchestrating the initial neutrophil response to mycobacterial infection. Further perturbation of the IEGs exposes egr3 as a key transcriptional regulator controlling il1β transcription.

  19. Differential RNA-seq, Multi-Network Analysis and Metabolic Regulation Analysis of Kluyveromyces marxianus Reveals a Compartmentalised Response to Xylose.

    Directory of Open Access Journals (Sweden)

    Du Toit W P Schabort

    Full Text Available We investigated the transcriptomic response of a new strain of the yeast Kluyveromyces marxianus, in glucose and xylose media using RNA-seq. The data were explored in a number of innovative ways using a variety of networks types, pathway maps, enrichment statistics, reporter metabolites and a flux simulation model, revealing different aspects of the genome-scale response in an integrative systems biology manner. The importance of the subcellular localisation in the transcriptomic response is emphasised here, revealing new insights. As was previously reported by others using a rich medium, we show that peroxisomal fatty acid catabolism was dramatically up-regulated in a defined xylose mineral medium without fatty acids, along with mechanisms to activate fatty acids and transfer products of β-oxidation to the mitochondria. Notably, we observed a strong up-regulation of the 2-methylcitrate pathway, supporting capacity for odd-chain fatty acid catabolism. Next we asked which pathways would respond to the additional requirement for NADPH for xylose utilisation, and rationalised the unexpected results using simulations with Flux Balance Analysis. On a fundamental level, we investigated the contribution of the hierarchical and metabolic regulation levels to the regulation of metabolic fluxes. Metabolic regulation analysis suggested that genetic level regulation plays a major role in regulating metabolic fluxes in adaptation to xylose, even for the high capacity reactions, which is unexpected. In addition, isozyme switching may play an important role in re-routing of metabolic fluxes in subcellular compartments in K. marxianus.

  20. Response spectra for differential motion of structures supports during earthquakes in Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed I.S. Elmasry

    2012-12-01

    Full Text Available Differential motions of ground supports of stiff structures with large plan dimensions and separate foundations under earthquakes were studied by researchers during the last few decades. Such a type of structural response was previously underestimated. The importance of studying such a response comes up from the fact that usually the structures affected are of strategic importance such as bridges. During their expected life, structures may experience vibrations excited by ground waves of short wavelengths during near-source earthquakes, or during amplified earthquake signals, during explosions, or during vibrations induced from nearby strong vibration sources. This is the case when the differential motion of supports becomes considerable. This paper aims to review the effects of seismic signal variations along the structures dimensions with emphasis on Egypt as a case study. The paper shows some patterns of the damage imposed by such differential motion. A replication of the differential motion in the longitudinal direction is applied on a frame bridge model. The resulting straining actions show the necessity for considering the differential motion of supports in the design of special structures in Egypt. Finally, response spectra for the differential motion of supports, based on the available data from previous earthquakes in Egypt, is derived and proposed for designers to include in the design procedure when accounting for such type of structural response, and especially in long-span bridges.

  1. Differential Neural Responses to Food Images in Women with Bulimia versus Anorexia Nervosa

    Science.gov (United States)

    Brooks, Samantha J.; O′Daly, Owen G.; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C. R.; Schiöth, Helgi B.; Treasure, Janet; Campbell, Iain C.

    2011-01-01

    Background Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. Methods We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). Results In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Conclusions Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating. PMID:21799807

  2. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes.

    Science.gov (United States)

    Singh, Randeep K; Dagnino, Lina

    2017-01-17

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation.

  3. Multivoxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    DEFF Research Database (Denmark)

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection, and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations...... within a multivoxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was used to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while...... human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during...

  4. The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages

    Directory of Open Access Journals (Sweden)

    Sergeenko Tatiana

    2008-06-01

    Full Text Available Abstract Background Trypanosomatids utilise polycistronic transcription for production of the vast majority of protein-coding mRNAs, which operates in the absence of gene-specific promoters. Resolution of nascent transcripts by polyadenylation and trans-splicing, together with specific rates of mRNA turnover, serve to generate steady state transcript levels that can differ in abundance across several orders of magnitude and can be developmentally regulated. We used a targeted oligonucleotide microarray, representing the strongly developmentally-regulated T. brucei membrane trafficking system and ~10% of the Trypanosoma brucei genome, to investigate both between-stage, or differentiation-dependent, transcriptome changes and within-stage flexibility in response to various challenges. Results 6% of the gene cohort are developmentally regulated, including several small GTPases, SNAREs, vesicle coat factors and protein kinases both consistent with and extending previous data. Therefore substantial differentiation-dependent remodeling of the trypanosome transcriptome is associated with membrane transport. Both the microarray and qRT-PCR were then used to analyse transcriptome changes resulting from specific gene over-expression, knockdown, altered culture conditions and chemical stress. Firstly, manipulation of Rab5 expression results in co-ordinate changes to clathrin protein expression levels and endocytotic activity, but no detectable changes to steady-state mRNA levels, which indicates that the effect is mediated post-transcriptionally. Secondly, knockdown of clathrin or the variant surface glycoprotein failed to perturb transcription. Thirdly, exposure to dithiothreitol or tunicamycin revealed no evidence for a classical unfolded protein response, mediated in higher eukaryotes by transcriptional changes. Finally, altered serum levels invoked little transcriptome alteration beyond changes to expression of ESAG6/7, the transferrin receptor

  5. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response.

    Science.gov (United States)

    Subba, Pratigya; Barua, Pragya; Kumar, Rajiv; Datta, Asis; Soni, Kamlesh Kumar; Chakraborty, Subhra; Chakraborty, Niranjan

    2013-11-01

    Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of CaDREPP1 were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants.

  6. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  7. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves

    Science.gov (United States)

    Lu, Yi-Bin; Qi, Yi-Ping; Yang, Lin-Tong; Lee, Jinwook; Guo, Peng; Ye, Xin; Jia, Meng-Yang; Li, Mei-Li; Chen, Li-Song

    2015-01-01

    Seedlings of Citrus sinensis (L.) Osbeck were supplied with boron (B)-deficient (without H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. We identified 54 (38) and 38 (45) up (down)-regulated cDNA-AFLP bands (transcript-derived fragments, TDFs) from B-deficient leaves and roots, respectively. These TDFs were mainly involved in protein and amino acid metabolism, carbohydrate and energy metabolism, nucleic acid metabolism, cell transport, signal transduction, and stress response and defense. The majority of the differentially expressed TDFs were isolated only from B-deficient roots or leaves, only seven TDFs with the same GenBank ID were isolated from the both. In addition, ATP biosynthesis-related TDFs were induced in B-deficient roots, but unaffected in B-deficient leaves. Most of the differentially expressed TDFs associated with signal transduction and stress defense were down-regulated in roots, but up-regulated in leaves. TDFs related to protein ubiquitination and proteolysis were induced in B-deficient leaves except for one TDF, while only two down-regulated TDFs associated with ubiquitination were detected in B-deficient roots. Thus, many differences existed in long-term B-deficiency-responsive genes between roots and leaves. In conclusion, our findings provided a global picture of the differential responses occurring in B-deficient roots and leaves and revealed new insight into the different adaptive mechanisms of C. sinensis roots and leaves to B-deficiency at the transcriptional level. PMID:26284101

  8. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo.

    Directory of Open Access Journals (Sweden)

    Gwenn-Aël Carré

    Full Text Available BACKGROUND: In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s involved in gonad differentiation is still incomplete. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of improving characterization of the molecular pathway(s involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. CONCLUSION/SIGNIFICANCE: This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors

  9. Gene Expression Profiling Reveals New Potential Players of Gonad Differentiation in the Chicken Embryo

    Science.gov (United States)

    Carré, Gwenn-Aël; Couty, Isabelle; Hennequet-Antier, Christelle; Govoroun, Marina S.

    2011-01-01

    Background In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s) involved in gonad differentiation is still incomplete. Methodology/Principal Findings With the aim of improving characterization of the molecular pathway(s) involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein) and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. Conclusion/Significance This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors of chicken gonad

  10. Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics.

    Directory of Open Access Journals (Sweden)

    Andreas Sagner

    2018-02-01

    Full Text Available During tissue development, multipotent progenitors differentiate into specific cell types in characteristic spatial and temporal patterns. We addressed the mechanism linking progenitor identity and differentiation rate in the neural tube, where motor neuron (MN progenitors differentiate more rapidly than other progenitors. Using single cell transcriptomics, we defined the transcriptional changes associated with the transition of neural progenitors into MNs. Reconstruction of gene expression dynamics from these data indicate a pivotal role for the MN determinant Olig2 just prior to MN differentiation. Olig2 represses expression of the Notch signaling pathway effectors Hes1 and Hes5. Olig2 repression of Hes5 appears to be direct, via a conserved regulatory element within the Hes5 locus that restricts expression from MN progenitors. These findings reveal a tight coupling between the regulatory networks that control patterning and neuronal differentiation and demonstrate how Olig2 acts as the developmental pacemaker coordinating the spatial and temporal pattern of MN generation.

  11. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    Science.gov (United States)

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Revealing Pathway Dynamics in Heart Diseases by Analyzing Multiple Differential Networks.

    Directory of Open Access Journals (Sweden)

    Xiaoke Ma

    2015-06-01

    Full Text Available Development of heart diseases is driven by dynamic changes in both the activity and connectivity of gene pathways. Understanding these dynamic events is critical for understanding pathogenic mechanisms and development of effective treatment. Currently, there is a lack of computational methods that enable analysis of multiple gene networks, each of which exhibits differential activity compared to the network of the baseline/healthy condition. We describe the iMDM algorithm to identify both unique and shared gene modules across multiple differential co-expression networks, termed M-DMs (multiple differential modules. We applied iMDM to a time-course RNA-Seq dataset generated using a murine heart failure model generated on two genotypes. We showed that iMDM achieves higher accuracy in inferring gene modules compared to using single or multiple co-expression networks. We found that condition-specific M-DMs exhibit differential activities, mediate different biological processes, and are enriched for genes with known cardiovascular phenotypes. By analyzing M-DMs that are present in multiple conditions, we revealed dynamic changes in pathway activity and connectivity across heart failure conditions. We further showed that module dynamics were correlated with the dynamics of disease phenotypes during the development of heart failure. Thus, pathway dynamics is a powerful measure for understanding pathogenesis. iMDM provides a principled way to dissect the dynamics of gene pathways and its relationship to the dynamics of disease phenotype. With the exponential growth of omics data, our method can aid in generating systems-level insights into disease progression.

  13. De novo transcriptome assembly and analysis of differential gene expression in response to drought in European beech.

    Directory of Open Access Journals (Sweden)

    Markus Müller

    Full Text Available Despite the ecological and economic importance of European beech (Fagus sylvatica L. genomic resources of this species are still limited. This hampers an understanding of the molecular basis of adaptation to stress. Since beech will most likely be threatened by the consequences of climate change, an understanding of adaptive processes to climate change-related drought stress is of major importance. Here, we used RNA-seq to provide the first drought stress-related transcriptome of beech. In a drought stress trial with beech saplings, 50 samples were taken for RNA extraction at five points in time during a soil desiccation experiment. De novo transcriptome assembly and analysis of differential gene expression revealed 44,335 contigs, and 662 differentially expressed genes between the stress and normally watered control group. Gene expression was specific to the different time points, and only five genes were significantly differentially expressed between the stress and control group on all five sampling days. GO term enrichment showed that mostly genes involved in lipid- and homeostasis-related processes were upregulated, whereas genes involved in oxidative stress response were downregulated in the stressed seedlings. This study gives first insights into the genomic drought stress response of European beech, and provides new genetic resources for adaptation research in this species.

  14. Effects of Angular Variation on Split D Differential Eddy Current Probe Response (Postprint)

    Science.gov (United States)

    2016-02-10

    AFRL-RX-WP-JA-2016-0327 EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT) Ryan D...March 2014 – 22 September 2015 4. TITLE AND SUBTITLE EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT... Current Probe Response Ryan D. Mooers1, a) and John C. Aldrin2 1United States Air Force Research Labs, Materials and Manufacturing Directorate, Structural

  15. Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis.

    Science.gov (United States)

    Lin, Yu-Mei; Chou, I-Chun; Wang, Jaw-Fen; Ho, Fang-I; Chu, Yu-Ju; Huang, Pei-Cheng; Lu, Der-Kang; Shen, Hwei-Ling; Elbaz, Mounira; Huang, Shu-Mei; Cheng, Chiu-Ping

    2008-09-01

    Ralstonia solanacearum causes a deadly wilting disease on a wide range of crops. To elucidate pathogenesis of this bacterium in different host plants, we set out to identify R. solanacearum genes involved in pathogenesis by screening random transposon insertion mutants of a highly virulent strain, Pss190, on tomato and Arabidopsis thaliana. Mutants exhibiting various decreased virulence levels on these two hosts were identified. Sequence analysis showed that most, but not all, of the identified pathogenesis genes are conserved among distinct R. solanacearum strains. A few of the disrupted loci were not reported previously as being involved in R. solanacearum pathogenesis. Notably, a group of mutants exhibited differential pathogenesis on tomato and Arabidopsis. These results were confirmed by characterizing allelic mutants in one other R. solanacearum strain of the same phylotype. The significantly decreased mutants' colonization in Arabidopsis was found to be correlated with differential pathogenesis on these two plants. Differential requirement of virulence genes suggests adaptation of this bacterium in different host environments. Together, this study reveals commonalities and differences of R. solanacearum pathogenesis on single solanaceous and nonsolanaceous hosts, and provides important new insights into interactions between R. solanacearum and different host plants.

  16. Differential metabolic responses of perennial grass Cynodon transvaalensis×Cynodon dactylon (C₄) and Poa Pratensis (C₃) to heat stress.

    Science.gov (United States)

    Du, Hongmei; Wang, Zhaolong; Yu, Wenjuan; Liu, Yimin; Huang, Bingru

    2011-03-01

    Differential metabolic responses to heat stress may be associated with variations in heat tolerance between cool-season (C₃) and warm-season (C₄) perennial grass species. The main objective of this study was to identify metabolites associated with differential heat tolerance between C₄ bermudagrass and C₃ Kentucky bluegrass by performing metabolite profile analysis using gas chromatography-mass spectrometry. Plants of Kentucky bluegrass (Poa Pratensis'Midnight') and hybrid bermudagrass (Cynodon transvaalensis x Cynodon dactylon'Tifdwarf') were grown under optimum temperature conditions (20/15 °C for Kentucky bluegrass and 30/25 °C for bermudagrass) or heat stress (35/30 °C for Kentucky bluegrass and 45/40 °C for bermudagrass). Physiological responses to heat stress were evaluated by visual rating of grass quality, measuring photochemical efficiency (variable fluorescence to maximal fluorescence) and electrolyte leakage. All of these parameters indicated that bermudagrass exhibited better heat tolerance than Kentucky bluegrass. The metabolite analysis of leaf polar extracts revealed 36 heat-responsive metabolites identified in both grass species, mainly consisting of organic acids, amino acids, sugars and sugar alcohols. Most metabolites showed higher accumulation in bermudagrass compared with Kentucky bluegrass, especially following long-term (18 days) heat stress. The differentially accumulated metabolites included seven sugars (sucrose, fructose, galactose, floridoside, melibiose, maltose and xylose), a sugar alcohol (inositol), six organic acids (malic acid, citric acid, threonic acid, galacturonic acid, isocitric acid and methyl malonic acid) and nine amino acids (Asn, Ala, Val, Thr, γ-aminobutyric acid, IIe, Gly, Lys and Met). The differential accumulation of those metabolites could be associated with the differential heat tolerance between C₃ Kentucky bluegrass and C₄ bermudagrass. Copyright © Physiologia Plantarum 2010.

  17. Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L.

    Science.gov (United States)

    Melnikova, Nataliya V; Dmitriev, Alexey A; Belenikin, Maxim S; Speranskaya, Anna S; Krinitsina, Anastasia A; Rachinskaia, Olga A; Lakunina, Valentina A; Krasnov, George S; Snezhkina, Anastasiya V; Sadritdinova, Asiya F; Uroshlev, Leonid A; Koroban, Nadezda V; Samatadze, Tatiana E; Amosova, Alexandra V; Zelenin, Alexander V; Muravenko, Olga V; Bolsheva, Nadezhda L; Kudryavtseva, Anna V

    2015-02-01

    Effective fertilizer application is necessary to increase crop yields and reduce risk of plant overdosing. It is known that expression level of microRNAs (miRNAs) alters in plants under different nutrient concentrations in soil. The aim of our study was to identify and characterize miRNAs with expression alterations under excessive fertilizer in agriculturally important crop - flax (Linum usitatissimum L.). We have sequenced small RNAs in flax grown under normal and excessive fertilizer using Illumina GAIIx. Over 14 million raw reads was obtained for two small RNA libraries. 84 conserved miRNAs from 20 families were identified. Differential expression was revealed for several flax miRNAs under excessive fertilizer according to high-throughput sequencing data. For 6 miRNA families (miR395, miR169, miR408, miR399, miR398 and miR168) expression level alterations were evaluated on the extended sampling using qPCR. Statistically significant up-regulation was revealed for miR395 under excessive fertilizer. It is known that target genes of miR395 are involved in sulfate uptake and assimilation. However, according to our data alterations of the expression level of miR395 could be associated not only with excess sulfur application, but also with redundancy of other macro- and micronutrients. Furthermore expression level was evaluated for miRNAs and their predicted targets. The negative correlation between miR399 expression and expression of its predicted target ubiquitin-conjugating enzyme E2 gene was shown in flax for the first time. So we suggested miR399 involvement in phosphate regulation in L. usitatissimum. Revealed in our study expression alterations contribute to miRNA role in flax response to excessive fertilizer. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  18. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish

    International Nuclear Information System (INIS)

    Goodale, Britton C.; Tilton, Susan C.; Corvi, Margaret M.; Wilson, Glenn R.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert L.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC–MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. - Highlights: • Defined global mRNA expression

  19. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response.

    Directory of Open Access Journals (Sweden)

    Sonya T Dyhrman

    Full Text Available Phosphorus (P is a critical driver of phytoplankton growth and ecosystem function in the ocean. Diatoms are an abundant class of marine phytoplankton that are responsible for significant amounts of primary production. With the control they exert on the oceanic carbon cycle, there have been a number of studies focused on how diatoms respond to limiting macro and micronutrients such as iron and nitrogen. However, diatom physiological responses to P deficiency are poorly understood. Here, we couple deep sequencing of transcript tags and quantitative proteomics to analyze the diatom Thalassiosira pseudonana grown under P-replete and P-deficient conditions. A total of 318 transcripts were differentially regulated with a false discovery rate of <0.05, and a total of 136 proteins were differentially abundant (p<0.05. Significant changes in the abundance of transcripts and proteins were observed and coordinated for multiple biochemical pathways, including glycolysis and translation. Patterns in transcript and protein abundance were also linked to physiological changes in cellular P distributions, and enzyme activities. These data demonstrate that diatom P deficiency results in changes in cellular P allocation through polyphosphate production, increased P transport, a switch to utilization of dissolved organic P through increased production of metalloenzymes, and a remodeling of the cell surface through production of sulfolipids. Together, these findings reveal that T. pseudonana has evolved a sophisticated response to P deficiency involving multiple biochemical strategies that are likely critical to its ability to respond to variations in environmental P availability.

  20. Diversity of sharp-wave–ripple LFP signatures reveals differentiated brain-wide dynamical events

    Science.gov (United States)

    Ramirez-Villegas, Juan F.; Logothetis, Nikos K.; Besserve, Michel

    2015-01-01

    Sharp-wave–ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R–triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions. PMID:26540729

  1. Diversity of sharp-wave-ripple LFP signatures reveals differentiated brain-wide dynamical events.

    Science.gov (United States)

    Ramirez-Villegas, Juan F; Logothetis, Nikos K; Besserve, Michel

    2015-11-17

    Sharp-wave-ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R-triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions.

  2. Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.

    Directory of Open Access Journals (Sweden)

    Marie-Noëlle Delyfer

    Full Text Available BACKGROUND: Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome. METHODOLOGY/PRINCIPAL FINDINGS: Statistical analysis reveals major involvement of the immune response in the disease. Interestingly, using a novel approach relying on coordinated expression, the interindividual variation was monitored to unravel a second crucial aspect of the pathological process: the death of photoreceptor cells. Within the genes identified, the expression of the major histocompatibility complex I gene HLA-C enables diagnosis of the disease, while PKD2L1 and SLCO4A1 -which are both down-regulated- act synergistically to provide an estimate of the duration of the retinal detachment process. Our analysis thus reveals the two complementary cellular and molecular aspects linked to retinal detachment: an immune response and the degeneration of photoreceptor cells. We also reveal that the human specimens have a higher clinical value as compared to artificial models that point to IL6 and oxidative stress, not implicated in the surgical specimens studied here. CONCLUSIONS/SIGNIFICANCE: This systematic analysis confirmed the occurrence of both neurodegeneration and inflammation during retinal detachment, and further identifies precisely the modification of expression of the different genes implicated in these two phenomena. Our data henceforth give a new insight into the disease process and provide a rationale for therapeutic strategies aimed at limiting inflammation and photoreceptor damage associated with retinal detachment and, in turn, improving visual prognosis after retinal surgery.

  3. Distinct cellular responses differentiating alcohol- and hepatitis C virus-induced liver cirrhosis

    Directory of Open Access Journals (Sweden)

    Boix Loreto

    2006-11-01

    Full Text Available Abstract Background Little is known at the molecular level concerning the differences and/or similarities between alcohol and hepatitis C virus induced liver disease. Global transcriptional profiling using oligonucleotide microarrays was therefore performed on liver biopsies from patients with cirrhosis caused by either chronic alcohol consumption or chronic hepatitis C virus (HCV. Results Global gene expression patterns varied significantly depending upon etiology of liver disease, with a greater number of differentially regulated genes seen in HCV-infected patients. Many of the gene expression changes specifically observed in HCV-infected cirrhotic livers were expectedly associated with activation of the innate antiviral immune response. We also compared severity (CTP class of cirrhosis for each etiology and identified gene expression patterns that differentiated ethanol-induced cirrhosis by class. CTP class A ethanol-cirrhotic livers showed unique expression patterns for genes implicated in the inflammatory response, including those related to macrophage activation and migration, as well as lipid metabolism and oxidative stress genes. Conclusion Stages of liver cirrhosis could be differentiated based on gene expression patterns in ethanol-induced, but not HCV-induced, disease. In addition to genes specifically regulating the innate antiviral immune response, mechanisms responsible for differentiating chronic liver damage due to HCV or ethanol may be closely related to regulation of lipid metabolism and to effects of macrophage activation on deposition of extracellular matrix components.

  4. Differential Cellular Responses to Hedgehog Signalling in Vertebrates—What is the Role of Competence?

    OpenAIRE

    Clemens Kiecker; Anthony Graham; Malcolm Logan

    2016-01-01

    A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal—a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in compete...

  5. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk.

    Science.gov (United States)

    LeBouder, Emmanuel; Rey-Nores, Julia E; Raby, Anne-Catherine; Affolter, Michael; Vidal, Karine; Thornton, Catherine A; Labéta, Mario O

    2006-03-15

    The mechanisms controlling innate microbial recognition in the neonatal gut are still to be fully understood. We have sought specific regulatory mechanisms operating in human breast milk relating to TLR-mediated microbial recognition. In this study, we report a specific and differential modulatory effect of early samples (days 1-5) of breast milk on ligand-induced cell stimulation via TLRs. Although a negative modulation was exerted on TLR2 and TLR3-mediated responses, those via TLR4 and TLR5 were enhanced. This effect was observed in human adult and fetal intestinal epithelial cell lines, monocytes, dendritic cells, and PBMC as well as neonatal blood. In the latter case, milk compensated for the low capacity of neonatal plasma to support responses to LPS. Cell stimulation via the IL-1R or TNFR was not modulated by milk. This, together with the differential effect on TLR activation, suggested that the primary effect of milk is exerted upstream of signaling proximal to TLR ligand recognition. The analysis of TLR4-mediated gene expression, used as a model system, showed that milk modulated TLR-related genes differently, including those coding for signal intermediates and regulators. A proteinaceous milk component of > or =80 kDa was found to be responsible for the effect on TLR4. Notably, infant milk formulations did not reproduce the modulatory activity of breast milk. Together, these findings reveal an unrecognized function of human milk, namely, its capacity to influence neonatal microbial recognition by modulating TLR-mediated responses specifically and differentially. This in turn suggests the existence of novel mechanisms regulating TLR activation.

  6. Genome Wide Transcriptome Analysis reveals ABA mediated response in Arabidopsis during Gold (AuCl4- treatment

    Directory of Open Access Journals (Sweden)

    Devesh eShukla

    2014-11-01

    Full Text Available The unique physico-chemical properties of gold nanoparticles (AuNPs find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl4- In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- hours in presence of gold solution (HAuCl4 using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit, ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4- treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE, suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE points to the operation of a predominant signaling mechanism in response to AuCl4- exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of

  7. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated

    Directory of Open Access Journals (Sweden)

    Mengmeng Xu

    2017-01-01

    Full Text Available Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90. The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1, reticulocalbin-3 (RCN3], cell differentiation (actin, and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP] and stress response [heat shock-related 70 kDa protein 2 (HSPA2]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s involved in the regulation of the ovarian follicle development.

  8. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells

    Science.gov (United States)

    Kameneva, T.; Maturana, M. I.; Hadjinicolaou, A. E.; Cloherty, S. L.; Ibbotson, M. R.; Grayden, D. B.; Burkitt, A. N.; Meffin, H.

    2016-02-01

    Objective. ON and OFF retinal ganglion cells (RGCs) are known to have non-monotonic responses to increasing amplitudes of high frequency (2 kHz) biphasic electrical stimulation. That is, an increase in stimulation amplitude causes an increase in the cell’s spike rate up to a peak value above which further increases in stimulation amplitude cause the cell to decrease its activity. The peak response for ON and OFF cells occurs at different stimulation amplitudes, which allows differential stimulation of these functional cell types. In this study, we investigate the mechanisms underlying the non-monotonic responses of ON and OFF brisk-transient RGCs and the mechanisms underlying their differential responses. Approach. Using in vitro patch-clamp recordings from rat RGCs, together with simulations of single and multiple compartment Hodgkin-Huxley models, we show that the non-monotonic response to increasing amplitudes of stimulation is due to depolarization block, a change in the membrane potential that prevents the cell from generating action potentials. Main results. We show that the onset for depolarization block depends on the amplitude and frequency of stimulation and reveal the biophysical mechanisms that lead to depolarization block during high frequency stimulation. Our results indicate that differences in transmembrane potassium conductance lead to shifts of the stimulus currents that generate peak spike rates, suggesting that the differential responses of ON and OFF cells may be due to differences in the expression of this current type. We also show that the length of the axon’s high sodium channel band (SOCB) affects non-monotonic responses and the stimulation amplitude that leads to the peak spike rate, suggesting that the length of the SOCB is shorter in ON cells. Significance. This may have important implications for stimulation strategies in visual prostheses.

  9. Transcriptional profiling reveals gland-specific differential expression in the three major salivary glands of the adult mouse.

    Science.gov (United States)

    Gao, Xin; Oei, Maria S; Ovitt, Catherine E; Sincan, Murat; Melvin, James E

    2018-04-01

    RNA-Seq was used to better understand the molecular nature of the biological differences among the three major exocrine salivary glands in mammals. Transcriptional profiling found that the adult murine parotid, submandibular, and sublingual salivary glands express greater than 14,300 protein-coding genes, and nearly 2,000 of these genes were differentially expressed. Principle component analysis of the differentially expressed genes revealed three distinct clusters according to gland type. The three salivary gland transcriptomes were dominated by a relatively few number of highly expressed genes (6.3%) that accounted for more than 90% of transcriptional output. Of the 912 transcription factors expressed in the major salivary glands, greater than 90% of them were detected in all three glands, while expression for ~2% of them was enriched in an individual gland. Expression of these unique transcription factors correlated with sublingual and parotid specific subsets of both highly expressed and differentially expressed genes. Gene ontology analyses revealed that the highly expressed genes common to all glands were associated with global functions, while many of the genes expressed in a single gland play a major role in the function of that gland. In summary, transcriptional profiling of the three murine major salivary glands identified a limited number of highly expressed genes, differentially expressed genes, and unique transcription factors that represent the transcriptional signatures underlying gland-specific biological properties.

  10. Differential metabolism of Mycoplasma species as revealed by their genomes

    Directory of Open Access Journals (Sweden)

    Fabricio B.M. Arraes

    2007-01-01

    Full Text Available The annotation and comparative analyses of the genomes of Mycoplasma synoviae and Mycoplasma hyopneumonie, as well as of other Mollicutes (a group of bacteria devoid of a rigid cell wall, has set the grounds for a global understanding of their metabolism and infection mechanisms. According to the annotation data, M. synoviae and M. hyopneumoniae are able to perform glycolytic metabolism, but do not possess the enzymatic machinery for citrate and glyoxylate cycles, gluconeogenesis and the pentose phosphate pathway. Both can synthesize ATP by lactic fermentation, but only M. synoviae can convert acetaldehyde to acetate. Also, our genome analysis revealed that M. synoviae and M. hyopneumoniae are not expected to synthesize polysaccharides, but they can take up a variety of carbohydrates via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS. Our data showed that these two organisms are unable to synthesize purine and pyrimidine de novo, since they only possess the sequences which encode salvage pathway enzymes. Comparative analyses of M. synoviae and M. hyopneumoniae with other Mollicutes have revealed differential genes in the former two genomes coding for enzymes that participate in carbohydrate, amino acid and nucleotide metabolism and host-pathogen interaction. The identification of these metabolic pathways will provide a better understanding of the biology and pathogenicity of these organisms.

  11. Identification of differentially expressed proteins in response to Pb ...

    African Journals Online (AJOL)

    In response to Pb, a total of 76 proteins, out of the 95 differentially expressed proteins, were subjected to MALDI-TOF-MS Of these, 46 identities were identified by PMF and 19 identities were identified by microsequencing. Basic metabolisms such as photosynthesis, photorespiration and protein biosynthesis in C. roseus ...

  12. "Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses".

    Science.gov (United States)

    Eveno, Emmanuelle; Collada, Carmen; Guevara, M Angeles; Léger, Valérie; Soto, Alvaro; Díaz, Luis; Léger, Patrick; González-Martínez, Santiago C; Cervera, M Teresa; Plomion, Christophe; Garnier-Géré, Pauline H

    2008-02-01

    The importance of natural selection for shaping adaptive trait differentiation among natural populations of allogamous tree species has long been recognized. Determining the molecular basis of local adaptation remains largely unresolved, and the respective roles of selection and demography in shaping population structure are actively debated. Using a multilocus scan that aims to detect outliers from simulated neutral expectations, we analyzed patterns of nucleotide diversity and genetic differentiation at 11 polymorphic candidate genes for drought stress tolerance in phenotypically contrasted Pinus pinaster Ait. populations across its geographical range. We compared 3 coalescent-based methods: 2 frequentist-like, including 1 approach specifically developed for biallelic single nucleotide polymorphisms (SNPs) here and 1 Bayesian. Five genes showed outlier patterns that were robust across methods at the haplotype level for 2 of them. Two genes presented higher F(ST) values than expected (PR-AGP4 and erd3), suggesting that they could have been affected by the action of diversifying selection among populations. In contrast, 3 genes presented lower F(ST) values than expected (dhn-1, dhn2, and lp3-1), which could represent signatures of homogenizing selection among populations. A smaller proportion of outliers were detected at the SNP level suggesting the potential functional significance of particular combinations of sites in drought-response candidate genes. The Bayesian method appeared robust to low sample sizes, flexible to assumptions regarding migration rates, and powerful for detecting selection at the haplotype level, but the frequentist-like method adapted to SNPs was more efficient for the identification of outlier SNPs showing low differentiation. Population-specific effects estimated in the Bayesian method also revealed populations with lower immigration rates, which could have led to favorable situations for local adaptation. Outlier patterns are discussed

  13. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.

    Directory of Open Access Journals (Sweden)

    Catarina Barbosa

    Full Text Available Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23, under low (67 mg/L and high nitrogen (670 mg/L regimes, at three time points during fermentation (12 h, 24 h and 96 h. Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this

  14. Comparative Transcriptomic Analysis Reveals Similarities and Dissimilarities in Saccharomyces cerevisiae Wine Strains Response to Nitrogen Availability

    Science.gov (United States)

    Barbosa, Catarina; García-Martínez, José; Pérez-Ortín, José E.; Mendes-Ferreira, Ana

    2015-01-01

    Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12h, 24h and 96h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape

  15. Whole Genome Analyses of a Well-Differentiated Liposarcoma Reveals Novel SYT1 and DDR2 Rearrangements

    Science.gov (United States)

    Egan, Jan B.; Barrett, Michael T.; Champion, Mia D.; Middha, Sumit; Lenkiewicz, Elizabeth; Evers, Lisa; Francis, Princy; Schmidt, Jessica; Shi, Chang-Xin; Van Wier, Scott; Badar, Sandra; Ahmann, Gregory; Kortuem, K. Martin; Boczek, Nicole J.; Fonseca, Rafael; Craig, David W.; Carpten, John D.; Borad, Mitesh J.; Stewart, A. Keith

    2014-01-01

    Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR) where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2. PMID:24505276

  16. Whole genome analyses of a well-differentiated liposarcoma reveals novel SYT1 and DDR2 rearrangements.

    Directory of Open Access Journals (Sweden)

    Jan B Egan

    Full Text Available Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2.

  17. Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots.

    Science.gov (United States)

    Chen, Ziyan; Zhu, Dong; Wu, Jisu; Cheng, Zhiwei; Yan, Xing; Deng, Xiong; Yan, Yueming

    2018-05-17

    In this study, we aimed to identify differentially accumulated proteins (DAPs) involved in PEG mock osmotic stress, cadmium (Cd 2+ ) stress, and their combined stress responses in Brachypodium distachyon seedling roots. The results showed that combined PEG and Cd 2+ stresses had more significant effects on Brachypodium seedling root growth, physiological traits, and ultrastructures when compared with each individual stress. Totally, 106 DAPs were identified that are responsive to individual and combined stresses in roots. These DAPs were mainly involved in energy metabolism, detoxification and stress defense and protein metabolism. Principal component analysis revealed that DAPs from Cd 2+ and combined stress treatments were grouped closer than those from osmotic stress treatment, indicating that Cd 2+ and combined stresses had more severe influences on the root proteome than osmotic stress alone. Protein-protein interaction analyses highlighted a 14-3-3 centered sub-network that synergistically responded to osmotic and Cd 2+ stresses and their combined stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14 key DAP genes revealed that most genes showed consistency between transcriptional and translational expression patterns. A putative pathway of proteome metabolic changes in Brachypodium seedling roots under different stresses was proposed, which revealed a complicated synergetic responsive network of plant roots to adverse environments.

  18. Individualism, acceptance and differentiation as attitude traits in the public's response to vaccination.

    Science.gov (United States)

    Velan, Baruch; Boyko, Valentina; Lerner-Geva, Liat; Ziv, Arnona; Yagar, Yaakov; Kaplan, Giora

    2012-09-01

    The attitude of the general public to vaccination was evaluated through a survey conducted on a representative sample of the Israeli population (n = 2,018), in which interviewees were requested to express their standpoints regarding five different vaccination programs. These included: pandemic influenza vaccination, seasonal influenza vaccination, travel vaccines, Human Papilloma Virus vaccine and childhood vaccinations. Analysis of the responses reveal three major attitude traits: a) acceptance, characterized by the opinion that targets should be vaccinated; b) individualism, characterized by the opinion that vaccination should be left to personal choice; and c) differentiation, characterized by the tendency to express different attitudes when addressing different vaccination programs. Interestingly, direct opposition to vaccination was found to be a minor attitude trait in this survey. Groups within the population could be defined according to their tendency to assume these different attitudes as Acceptors, Judicious-acceptors, Differentiators, Soft-individualists, and Hard-individualists. These groups expressed different standpoints on all five vaccination programs as well as on other health recommendations, such as screening for early detection of cancer. Attitude traits could be also correlated, to a certain extent, with actual compliance with vaccination programs. Interestingly, attitudes to vaccination were not correlated with social profiles related to income or education, although younger individuals exhibited higher degrees of individualism and differentiation. Taken together, all this is in accordance with the current social settings, underlining the individual's tendency for critical evaluation and self-stirring. This should be taken into consideration by health authorities involved in vaccination programs.

  19. DMPD: Differential responses of human monocytes and macrophages to IL-4 and IL-13. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534111 Differential responses of human monocytes and macrophages to IL-4 and IL-1...):575-8. (.png) (.svg) (.html) (.csml) Show Differential responses of human monocytes and macrophages to IL-...4 and IL-13. PubmedID 10534111 Title Differential responses of human monocytes an

  20. The Antigen Presenting Cells Instruct Plasma Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Wei eXu

    2014-01-01

    Full Text Available The professional antigen presenting cells (APCs, including many subsets of dendritic cells and macrophages, not only mediate prompt but nonspecific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells, which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only signal 1 (the antigen, but also signal 2 to directly instruct the differentiation process of plasma cells in a T cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  1. The antigen presenting cells instruct plasma cell differentiation.

    Science.gov (United States)

    Xu, Wei; Banchereau, Jacques

    2014-01-06

    The professional antigen presenting cells (APCs), including many subsets of dendritic cells and macrophages, not only mediate prompt but non-specific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells (PCs), which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only "signal 1" (the antigen), but also "signal 2" to directly instruct the differentiation process of PCs in a T-cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching, and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  2. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction.

    Science.gov (United States)

    Singh, Upinder; Brewer, Jeremy L; Boothroyd, John C

    2002-05-01

    Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.

  3. Striatal Activation Predicts Differential Therapeutic Responses to Methylphenidate and Atomoxetine.

    Science.gov (United States)

    Schulz, Kurt P; Bédard, Anne-Claude V; Fan, Jin; Hildebrandt, Thomas B; Stein, Mark A; Ivanov, Iliyan; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2017-07-01

    Methylphenidate has prominent effects in the dopamine-rich striatum that are absent for the selective norepinephrine transporter inhibitor atomoxetine. This study tested whether baseline striatal activation would predict differential response to the two medications in youth with attention-deficit/hyperactivity disorder (ADHD). A total of 36 youth with ADHD performed a Go/No-Go test during functional magnetic resonance imaging at baseline and were treated with methylphenidate and atomoxetine using a randomized cross-over design. Whole-brain task-related activation was regressed on clinical response. Task-related activation in right caudate nucleus was predicted by an interaction of clinical responses to methylphenidate and atomoxetine (F 1,30  = 17.00; p atomoxetine. The rate of robust response was higher for methylphenidate than for atomoxetine in youth with high (94.4% vs. 38.8%; p = .003; number needed to treat = 2, 95% CI = 1.31-3.73) but not low (33.3% vs. 50.0%; p = .375) caudate activation. Furthermore, response to atomoxetine predicted motor cortex activation (F 1,30  = 14.99; p atomoxetine in youth with ADHD, purportedly reflecting the dopaminergic effects of methylphenidate but not atomoxetine in the striatum, whereas motor cortex activation may predict response to atomoxetine. These data do not yet translate directly to the clinical setting, but the approach is potentially important for informing future research and illustrates that it may be possible to predict differential treatment response using a biomarker-driven approach. Stimulant Versus Nonstimulant Medication for Attention Deficit Hyperactivity Disorder in Children; https://clinicaltrials.gov/; NCT00183391. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds.

    Science.gov (United States)

    Xie, Shanshan; Yang, Xukai; Wang, Dehe; Zhu, Feng; Yang, Ning; Hou, Zhuocheng; Ning, Zhonghua

    2018-01-01

    Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46-1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold

  5. [Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis].

    Science.gov (United States)

    Rao, J; Liu, D; Zhang, N; He, H; Ge, F; Chen, C

    2014-01-01

    Fusarium wilt, caused by a soilborne pathogen Fusarium oxysporum f. sp. lilii, is the major disease of lily (Lilium L.). In order to isolate the genes differentially expressed in a resistant reaction to F. oxysporum in L. regale Wilson, a cDNA library was constructed with L. regale root during F. oxysporum infection using the suppression subtractive hybridization (SSH), and a total of 585 unique expressed sequence tags (ESTs) were obtained. Furthermore, the gene expression profiles in the incompatible interaction between L. regale and F. oxysporum were revealed by oligonucleotide microarray analysis of 585 unique ESTs comparison to the compatible interaction between a susceptible Lilium Oriental Hybrid 'Siberia' and F. oxysporum. The result of expression profile analysis indicated that the genes encoding pathogenesis-related proteins (PRs), antioxidative stress enzymes, secondary metabolism enzymes, transcription factors, signal transduction proteins as well as a large number of unknown genes were involved in early defense response of L. regale to F. oxysporum infection. Moreover, the following quantitative reverse transcription PCR (QRT-PCR) analysis confirmed reliability of the oligonucleotide microarray data. In the present study, isolation of differentially expressed genes in L. regale during response to F. oxysporum helped to uncover the molecular mechanism associated with the resistance of L. regale against F. oxysporum.

  6. Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates.

    Directory of Open Access Journals (Sweden)

    Yaron E Antebi

    2013-07-01

    Full Text Available Cell differentiation is typically directed by external signals that drive opposing regulatory pathways. Studying differentiation under polarizing conditions, with only one input signal provided, is limited in its ability to resolve the logic of interactions between opposing pathways. Dissection of this logic can be facilitated by mapping the system's response to mixtures of input signals, which are expected to occur in vivo, where cells are simultaneously exposed to various signals with potentially opposing effects. Here, we systematically map the response of naïve T cells to mixtures of signals driving differentiation into the Th1 and Th2 lineages. We characterize cell state at the single cell level by measuring levels of the two lineage-specific transcription factors (T-bet and GATA3 and two lineage characteristic cytokines (IFN-γ and IL-4 that are driven by these transcription regulators. We find a continuum of mixed phenotypes in which individual cells co-express the two lineage-specific master regulators at levels that gradually depend on levels of the two input signals. Using mathematical modeling we show that such tunable mixed phenotype arises if autoregulatory positive feedback loops in the gene network regulating this process are gradual and dominant over cross-pathway inhibition. We also find that expression of the lineage-specific cytokines follows two independent stochastic processes that are biased by expression levels of the master regulators. Thus, cytokine expression is highly heterogeneous under mixed conditions, with subpopulations of cells expressing only IFN-γ, only IL-4, both cytokines, or neither. The fraction of cells in each of these subpopulations changes gradually with input conditions, reproducing the continuous internal state at the cell population level. These results suggest a differentiation scheme in which cells reflect uncertainty through a continuously tuneable mixed phenotype combined with a biased

  7. Too little, too late or too much, too early? Differential hemodynamics of response inhibition in high and low sensation seekers.

    Science.gov (United States)

    Collins, Heather R; Corbly, Christine R; Liu, Xun; Kelly, Thomas H; Lynam, Donald; Joseph, Jane E

    2012-10-24

    High sensation seeking is associated with strong approach behaviors and weak avoidance responses. The present study used functional magnetic resonance imaging (fMRI) to further characterize the neurobiological underpinnings of this behavioral profile using a Go/No-go task. Analysis of brain activation associated with response inhibition (No-go) versus response initiation and execution (Go) revealed the commonly reported right lateral prefrontal, insula, cingulate, and supplementary motor area network. However, right lateral activation was associated with greater No-go than Go responses only in low sensation seekers. High sensation seekers showed no differential activation in these regions but a more pronounced Go compared to No-go response in several other regions that are involved in salience detection (insula), motor initiation (anterior cingulate) and attention (inferior parietal cortex). Temporal analysis of the hemodynamic response for Go and No-go conditions revealed that the stronger response to Go than No-go trials in high sensation seekers occurred in in the earliest time window in the right middle frontal gyrus, right mid-cingulate and right precuneus. In contrast, the greater No-go than Go response in low sensation seekers occurred in the later time window in these same regions. These findings indicate that high sensation seekers more strongly attend to or process Go trials and show delayed or minimal inhibitory responses on No-go trials in regions that low sensation seekers use for response inhibition. Failure to engage such regions for response inhibition may underlie some of the risky and impulsive behaviors observed in high sensation seekers. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    Directory of Open Access Journals (Sweden)

    Hui Xia

    Full Text Available The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP technique. Great alterations (52.9~54.3% of total individual-locus combinations of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187 was detected on the highly divergent epiloci (HDE. The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  9. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    Science.gov (United States)

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  10. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection.

    Science.gov (United States)

    Sun, H; Liu, P; Nolan, L K; Lamont, S J

    2016-12-01

    Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  11. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sheelarani Karunanithi

    Full Text Available Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation. Both responses require the same signal transduction (MAPK pathway and the same cell adhesion molecule (Flo11 but have been studied under different conditions. We found that filamentous growth and mat formation are aspects of a related response that is regulated by the MAPK pathway. Cells in yeast-form mats differentiated into pseudohyphae in response to nutrient limitation. The MAPK pathway regulated mat expansion (in the plane of the XY-axis and substrate invasion (downward in the plane of the Z-axis, which optimized the mat's response to extracellular nutrient levels. The MAPK pathway also regulated an upward growth pattern (in the plane of the Z-axis in response to nutrient limitation and changes in surface rigidity. Upward growth allowed for another level of mat responsiveness and resembled a type of colonial chemorepulsion. Together our results show that signaling pathways play critical roles in regulating social behaviors in which fungal cells participate. Signaling pathways may regulate similar processes in pathogens, whose highly nuanced responses are required for virulence.

  12. Differential proteomics reveals novel insights into Nosema-honey bee interactions

    DEFF Research Database (Denmark)

    Kurze, Christoph; Dosselli, Ryan; Grassl, Julia

    2016-01-01

    . In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative...... stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate...

  13. Differentiated Anti-Predation Responses in a Superorganism.

    Directory of Open Access Journals (Sweden)

    Thomas A O'Shea-Wheller

    Full Text Available Insect societies are complex systems, displaying emergent properties much greater than the sum of their individual parts. As such, the concept of these societies as single 'superorganisms' is widely applied to describe their organisation and biology. Here, we test the applicability of this concept to the response of social insect colonies to predation during a vulnerable period of their life history. We used the model system of house-hunting behaviour in the ant Temnothorax albipennis. We show that removing individuals from directly within the nest causes an evacuation response, while removing ants at the periphery of scouting activity causes the colony to withdraw back into the nest. This suggests that colonies react differentially, but in a coordinated fashion, to these differing types of predation. Our findings lend support to the superorganism concept, as the whole society reacts much like a single organism would in response to attacks on different parts of its body. The implication of this is that a collective reaction to the location of worker loss within insect colonies is key to avoiding further harm, much in the same way that the nervous systems of individuals facilitate the avoidance of localised damage.

  14. Epigenetics of peripheral B cell differentiation and the antibody response

    Directory of Open Access Journals (Sweden)

    Hong eZan

    2015-12-01

    Full Text Available Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs and long non-coding RNAs (lncRNAs, are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin class switch DNA recombination (CSR and somatic hypermutation (SHM, as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase (AID, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens

  15. mRNA-seq analysis of the Gossypium arboreum transcriptome reveals tissue selective signaling in response to water stress during seedling stage.

    Directory of Open Access Journals (Sweden)

    Xueyan Zhang

    Full Text Available The cotton diploid species, Gossypium arboreum, shows important properties of stress tolerance and good genetic stability. In this study, through mRNA-seq, we de novo assembled the unigenes of multiple samples with 3h H(2O, NaCl, or PEG treatments in leaf, stem and root tissues and successfully obtained 123,579 transcripts of G. arboreum, 89,128 of which were with hits through BLAST against known cotton ESTs and draft genome of G. raimondii. About 36,961 transcripts (including 1,958 possible transcription factor members were identified with differential expression under water stresses. Principal component analysis of differential expression levels in multiple samples suggested tissue selective signalling responding to water stresses. Venn diagram analysis showed the specificity and intersection of transcripts' response to NaCl and PEG treatments in different tissues. Self-organized mapping and hierarchical cluster analysis of the data also revealed strong tissue selectivity of transcripts under salt and osmotic stresses. In addition, the enriched gene ontology (GO terms for the selected tissue groups were differed, including some unique enriched GO terms such as photosynthesis and tetrapyrrole binding only in leaf tissues, while the stem-specific genes showed unique GO terms related to plant-type cell wall biogenesis, and root-specific genes showed unique GO terms such as monooxygenase activity. Furthermore, there were multiple hormone cross-talks in response to osmotic and salt stress. In summary, our multidimensional mRNA sequencing revealed tissue selective signalling and hormone crosstalk in response to salt and osmotic stresses in G. arboreum. To our knowledge, this is the first such report of spatial resolution of transcriptome analysis in G. arboreum. Our study will potentially advance understanding of possible transcriptional networks associated with water stress in cotton and other crop species.

  16. Differential expression of genes regulated in response to drought stress in diploid cotton (Gossypium arboreum) (abstract)

    International Nuclear Information System (INIS)

    Hussain, T.; Majeed, A.; Maqbool, A.; Hussain, S.S.; Ali, T.; Riazuddin, S.

    2005-01-01

    Negative effects on the Water status of plants is one of the most common and deleterious stresses experienced by wild and cultivated plants throughout the World. Our project is designed to identify, clone and characterize gene sequences regulated in response to Water stress (e.g., drought). We used the differential-display reverse transcriptase polymerase chain reaction (DD-RT- PCA) methodology to accomplish our Objectives. Structural and functional characterization of environmental stress-induced genes has contributed to a better understanding of how plants respond and adapt to different abiotic stresses. Differential display was used to compare overall difference in gene expression between draught stressed and unstressed (control) plants of diploid Cotton (Gossypium arboreum). DDRT-PCR product from stressed and unstressed samples resolved side by side on 6% PAGE to compare qualitative and quantitative difference in mRNA expression. A total of 81 primer combinations were tested. DDRT -PCR enabled us to identify differentially expressed transcripts between water stressed and non-stressed cotton seedlings. PAGE revealed a total of 347 DNA transcripts in stressed samples (New Transcripts) while 110 down regulated and 209 up regulated DNA transcripts were also recorded. Similarly. 22 DNA transcripts were identified based on the comparative study of PAGE and Agarose gel electrophoresis. These sequences showed various degree homology With draught tolerant genes in the gene bank. (author)

  17. Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice.

    Science.gov (United States)

    Sharma, Niharika; Dang, Trang Minh; Singh, Namrata; Ruzicic, Slobodan; Mueller-Roeber, Bernd; Baumann, Ute; Heuer, Sigrid

    2018-01-08

    Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which

  18. Differentiation-Dependent Motility-Responses of Developing Neural Progenitors to Optogenetic Stimulation

    Directory of Open Access Journals (Sweden)

    Tímea Köhidi

    2017-12-01

    Full Text Available During neural tissue genesis, neural stem/progenitor cells are exposed to bioelectric stimuli well before synaptogenesis and neural circuit formation. Fluctuations in the electrochemical potential in the vicinity of developing cells influence the genesis, migration and maturation of neuronal precursors. The complexity of the in vivo environment and the coexistence of various progenitor populations hinder the understanding of the significance of ionic/bioelectric stimuli in the early phases of neuronal differentiation. Using optogenetic stimulation, we investigated the in vitro motility responses of radial glia-like neural stem/progenitor populations to ionic stimuli. Radial glia-like neural stem cells were isolated from CAGloxpStoploxpChR2(H134-eYFP transgenic mouse embryos. After transfection with Cre-recombinase, ChR2(channelrhodopsin-2-expressing and non-expressing cells were separated by eYFP fluorescence. Expression of light-gated ion channels were checked by patch clamp and fluorescence intensity assays. Neurogenesis by ChR2-expressing and non-expressing cells was induced by withdrawal of EGF from the medium. Cells in different (stem cell, migrating progenitor and maturing precursor stages of development were illuminated with laser light (λ = 488 nm; 1.3 mW/mm2; 300 ms in every 5 min for 12 h. The displacement of the cells was analyzed on images taken at the end of each light pulse. Results demonstrated that the migratory activity decreased with the advancement of neuronal differentiation regardless of stimulation. Light-sensitive cells, however, responded on a differentiation-dependent way. In non-differentiated ChR2-expressing stem cell populations, the motility did not change significantly in response to light-stimulation. The displacement activity of migrating progenitors was enhanced, while the motility of differentiating neuronal precursors was markedly reduced by illumination.

  19. Differential reproductive responses to stress reveal the role of life-history strategies within a species.

    Science.gov (United States)

    Schultner, J; Kitaysky, A S; Gabrielsen, G W; Hatch, S A; Bech, C

    2013-11-22

    Life-history strategies describe that 'slow'- in contrast to 'fast'-living species allocate resources cautiously towards reproduction to enhance survival. Recent evidence suggests that variation in strategies exists not only among species but also among populations of the same species. Here, we examined the effect of experimentally induced stress on resource allocation of breeding seabirds in two populations with contrasting life-history strategies: slow-living Pacific and fast-living Atlantic black-legged kittiwakes. We tested the hypothesis that reproductive responses in kittiwakes under stress reflect their life-history strategies. We predicted that in response to stress, Pacific kittiwakes reduce investment in reproduction compared with Atlantic kittiwakes. We exposed chick-rearing kittiwakes to a short-term (3-day) period of increased exogenous corticosterone (CORT), a hormone that is released during food shortages. We examined changes in baseline CORT levels, parental care and effects on offspring. We found that kittiwakes from the two populations invested differently in offspring when facing stress. In response to elevated CORT, Pacific kittiwakes reduced nest attendance and deserted offspring more readily than Atlantic kittiwakes. We observed lower chick growth, a higher stress response in offspring and lower reproductive success in response to CORT implantation in Pacific kittiwakes, whereas the opposite occurred in the Atlantic. Our findings support the hypothesis that life-history strategies predict short-term responses of individuals to stress within a species. We conclude that behaviour and physiology under stress are consistent with trade-off priorities as predicted by life-history theory. We encourage future studies to consider the pivotal role of life-history strategies when interpreting inter-population differences of animal responses to stressful environmental events.

  20. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Science.gov (United States)

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L.; Huber, Steven C.; Zhao, Youfu

    2015-01-01

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  1. The Brain–to–Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C.; Ali, Almas; Tamarina, Natalia; Philipson, Louis H.; Enquist, Lynn W.; Myers, Martin G.

    2016-01-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. PMID:27207534

  2. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions.

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J

    2016-09-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. © 2016 by the American Diabetes Association.

  3. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis

    International Nuclear Information System (INIS)

    L'Hote, Corine G.M.; Knowles, Margaret A.

    2005-01-01

    FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer

  4. Differential responses of 15 cowpea genotypes to three Striga hot ...

    African Journals Online (AJOL)

    Differential responses of 15 cowpea genotypes to three Striga hot spots in Niger. M. SALIFOU1*, J. B. L. S. TIGNEGRE2, P. TONGOONA3, S. OFFEI3,. K. OFORI3 and E. DANQUAH3. 1National Agricultural Research Institute of Niger, Maradi Regional Research Centre, Niger. 2 The world Vegetable Centre, West and Central ...

  5. Eye movement monitoring reveals differential influences of emotion on memory

    Directory of Open Access Journals (Sweden)

    Lily Riggs

    2010-11-01

    Full Text Available Research shows that memory for emotional aspects of an event may be enhanced at the cost of impaired memory for surrounding peripheral details. However, this has only been assessed directly via verbal reports which reveal the outcome of a long stream of processing but cannot shed light on how/when emotion may affect the retrieval process. In the present experiment, eye movement monitoring was used as an indirect measure of memory as it can reveal aspects of online memory processing. For example, do emotions modulate the nature of memory representations or the speed with which such memories can be accessed? Participants viewed central negative and neutral scenes surrounded by three neutral objects and after a brief delay, memory was assessed indirectly via eye movement monitoring and then directly via verbal reports. Consistent with the previous literature, emotion enhanced central and impaired peripheral memory as indexed by eye movement scanning and verbal reports. This suggests that eye movement scanning may contribute and/or is related to conscious access of memory. However, the central/peripheral tradeoff effect was not observed in an early measure of eye movement behavior, i.e. participants were faster to orient to a critical region of change in the periphery irrespective of whether it was previously studied in a negative or neutral context. These findings demonstrate emotion’s differential influences on different aspects of retrieval. In particular, emotion appears to affect the detail within, and/or the evaluation of, stored memory representations, but it may not affect the initial access to those representations.

  6. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Science.gov (United States)

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  7. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    Science.gov (United States)

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are

  8. Comparison of gene co-networks reveals the molecular mechanisms of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1 IA infection.

    Science.gov (United States)

    Zhang, Jinfeng; Zhao, Wenjuan; Fu, Rong; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping

    2018-05-05

    Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these findings by focusing on an analysis of gene co-expression in response to R. solani AG1 IA and identified gene modules within the networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein. Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.

  9. Serum metabolomics reveals betaine and phosphatidylcholine as potential biomarkers for the toxic responses of processed Aconitum carmichaelii Debx.

    Science.gov (United States)

    Tan, Yong; Ko, Joshua; Liu, Xinru; Lu, Cheng; Li, Jian; Xiao, Cheng; Li, Li; Niu, Xuyan; Jiang, Miao; He, Xiaojuan; Zhao, Hongyan; Zhang, Zhongxiao; Bian, Zhaoxiang; Yang, Zhijun; Zhang, Ge; Zhang, Weidong; Lu, Aiping

    2014-07-29

    We recently reported that processed Aconitum carmichaelii Debx (Bai-Fu-Pian in Chinese, BFP) elicits differential toxic responses in rats under various health conditions. The present study aimed to determine the graded toxicity of BFP so as to derive a safe therapeutic rationale in clinical practice. Sensitive and reliable biomarkers of toxicity were also identified, with the corresponding metabolic pathways being unveiled. Thirty male Sprague-Dawley rats were divided into five groups (n = 6) and received oral administration of BFP extract (0.32, 0.64, 1.28 or 2.56 g kg(-1) per day) or an equal volume of drinking water (control) for 15 days. The metabolomic profiles of rat serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS). Linear regression analysis and Ingenuity Pathway Analysis (IPA) were used to elucidate the differentiated altered metabolites and associated network relationships. Results from biochemical and histopathological examinations revealed that BFP could induce prominent toxicity in the heart, liver and kidneys at a dose of 2.56 g kg(-1) per day. Betaine up-regulation and phosphatidylcholine down-regulation were detected in the serum samples of drug-treated groups in a dose-dependent manner. In summary, betaine and phosphatidylcholine could be regarded as sensitive biomarkers for the toxic responses of BFP. Perturbations of RhoA signaling, choline metabolism and free radical scavenging were found to be partly responsible for the toxic effects of the herbal drug. Based on the metabolomics findings, we could establish a safe therapeutic range in the clinical use of BFP, with promising predictions of possible drug toxicity.

  10. Potential impact of climate-related changes is buffered by differential responses to recruitment and interactions

    KAUST Repository

    Menge, Bruce A.

    2011-08-01

    Detection of ecosystem responsiveness to climatic perturbations can provide insight into climate change consequences. Recent analyses linking phytoplankton abundance and mussel recruitment to the North Pacific Gyre Oscillation (NPGO) revealed a paradox. Despite large increases in mussel recruitment beginning in 2000, adult mussel responses were idiosyncratic by site and intertidal zone, with no response at one long-term site, and increases in the low zone (1.5% per year) and decreases in the mid zone (1.3% per year) at the other. What are the mechanisms underlying these differential changes? Species interactions such as facilitation by barnacles and predation are potential determinants of successful mussel colonization. To evaluate these effects, we analyzed patterns of barnacle recruitment, determined if predation rate covaried with the increase in mussel recruitment, and tested facilitation interactions in a field experiment. Neither magnitude nor season of barnacle recruitment changed meaningfully with site or zone from the 1990s to the 2000s. In contrast to the relationship between NPGO and local-scale mussel recruitment, relationships between local-scale patterns of barnacle recruitment and climate indices were weak. Despite differences in rates of prey recruitment and abundance of sea stars in 1990–1991, 1999–2000, and 2007–2008, predation rates were nearly identical in experiments before, during, and after 1999–2000. The facilitation experiment showed that mussels M. trossulus only became abundant when barnacle recruitment was allowed, when abundance of barnacles reached high abundance of ∼50% cover, and when mussel recruitment was sufficiently high. Thus, in the low zone minimal changes in mussel abundance despite sharply increased recruitment rates are consistent with the hypothesis that change in adult mussel cover was buffered by the relative insensitivity of barnacle recruitment to climatic fluctuations, and a resultant lack of change in

  11. Potential impact of climate-related changes is buffered by differential responses to recruitment and interactions

    KAUST Repository

    Menge, Bruce A.; Hacker, Sally D.; Freidenburg, Tess; Lubchenco, Jane; Craig, Ryan; Rilov, Gil; Noble, Mae Marjore; Richmond, Erin

    2011-01-01

    Detection of ecosystem responsiveness to climatic perturbations can provide insight into climate change consequences. Recent analyses linking phytoplankton abundance and mussel recruitment to the North Pacific Gyre Oscillation (NPGO) revealed a paradox. Despite large increases in mussel recruitment beginning in 2000, adult mussel responses were idiosyncratic by site and intertidal zone, with no response at one long-term site, and increases in the low zone (1.5% per year) and decreases in the mid zone (1.3% per year) at the other. What are the mechanisms underlying these differential changes? Species interactions such as facilitation by barnacles and predation are potential determinants of successful mussel colonization. To evaluate these effects, we analyzed patterns of barnacle recruitment, determined if predation rate covaried with the increase in mussel recruitment, and tested facilitation interactions in a field experiment. Neither magnitude nor season of barnacle recruitment changed meaningfully with site or zone from the 1990s to the 2000s. In contrast to the relationship between NPGO and local-scale mussel recruitment, relationships between local-scale patterns of barnacle recruitment and climate indices were weak. Despite differences in rates of prey recruitment and abundance of sea stars in 1990–1991, 1999–2000, and 2007–2008, predation rates were nearly identical in experiments before, during, and after 1999–2000. The facilitation experiment showed that mussels M. trossulus only became abundant when barnacle recruitment was allowed, when abundance of barnacles reached high abundance of ∼50% cover, and when mussel recruitment was sufficiently high. Thus, in the low zone minimal changes in mussel abundance despite sharply increased recruitment rates are consistent with the hypothesis that change in adult mussel cover was buffered by the relative insensitivity of barnacle recruitment to climatic fluctuations, and a resultant lack of change in

  12. RNA-Seq Reveals Extensive Transcriptional Response to Heat Stress in the Stony Coral Galaxea fascicularis

    Science.gov (United States)

    Hou, Jing; Xu, Tao; Su, Dingjia; Wu, Ying; Cheng, Li; Wang, Jun; Zhou, Zhi; Wang, Yan

    2018-01-01

    Galaxea fascicularis, a stony coral belonging to family Oculinidae, is widely distributed in Red Sea, the Gulf of Aden and large areas of the Indo-Pacific oceans. So far there is a lack of gene expression knowledge concerning this massive coral. In the present study, G. fascicularis was subjected to heat stress at 32.0 ± 0.5°C in the lab, we found that the density of symbiotic zooxanthellae decreased significantly; meanwhile apparent bleaching and tissue lysing were observed at 10 h and 18 h after heat stress. The transcriptome responses were investigated in the stony coral G. fascicularis during heat bleaching using RNA-seq. A total of 42,028 coral genes were assembled from over 439 million reads. Gene expressions were compared at 10 and 18 h after heat stress. The significantly upregulated genes found in the Control_10h vs. Heat_10h comparison, presented mainly in GO terms related with DNA integration and unfolded protein response; and for the Control_18h vs. Heat_18h comparison, the GO terms include DNA integration. In addition, comparison between groups of Control_10h vs. Heat_10h and Control_18h vs. Heat_18h revealed that 125 genes were significantly upregulated in common between the two groups, whereas 21 genes were significantly downregulated in common, all these differentially expressed genes were found to be involved in stress response, DNA integration and unfolded protein response. Taken together, our results suggest that high temperature could activate the stress response at the early stage, and subsequently induce the bleaching and lysing through DNA integration and unfolded protein response, which are able to disrupt the balance of coral-zooxanthella symbiosis in the stony coral G. fascicularis. PMID:29487614

  13. RNA-Seq Reveals Extensive Transcriptional Response to Heat Stress in the Stony Coral Galaxea fascicularis

    Directory of Open Access Journals (Sweden)

    Jing Hou

    2018-02-01

    Full Text Available Galaxea fascicularis, a stony coral belonging to family Oculinidae, is widely distributed in Red Sea, the Gulf of Aden and large areas of the Indo-Pacific oceans. So far there is a lack of gene expression knowledge concerning this massive coral. In the present study, G. fascicularis was subjected to heat stress at 32.0 ± 0.5°C in the lab, we found that the density of symbiotic zooxanthellae decreased significantly; meanwhile apparent bleaching and tissue lysing were observed at 10 h and 18 h after heat stress. The transcriptome responses were investigated in the stony coral G. fascicularis during heat bleaching using RNA-seq. A total of 42,028 coral genes were assembled from over 439 million reads. Gene expressions were compared at 10 and 18 h after heat stress. The significantly upregulated genes found in the Control_10h vs. Heat_10h comparison, presented mainly in GO terms related with DNA integration and unfolded protein response; and for the Control_18h vs. Heat_18h comparison, the GO terms include DNA integration. In addition, comparison between groups of Control_10h vs. Heat_10h and Control_18h vs. Heat_18h revealed that 125 genes were significantly upregulated in common between the two groups, whereas 21 genes were significantly downregulated in common, all these differentially expressed genes were found to be involved in stress response, DNA integration and unfolded protein response. Taken together, our results suggest that high temperature could activate the stress response at the early stage, and subsequently induce the bleaching and lysing through DNA integration and unfolded protein response, which are able to disrupt the balance of coral-zooxanthella symbiosis in the stony coral G. fascicularis.

  14. Identification of differentially expressed genes of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in response to Tetracapsuloides bryosalmonae (Myxozoa).

    Science.gov (United States)

    Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour

    2015-03-01

    Tetracapsuloides bryosalmonae Canning et al., 1999 (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. We have shown previously that the development and distribution of the European strain of T. bryosalmonae differs in the kidney of brown trout (Salmo trutta) Linnaeus, 1758 and rainbow trout (Oncorhynchus mykiss) Walbaum, 1792, and that intra-luminal sporogonic stages were found in brown trout but not in rainbow trout. We have now compared transcriptomes from kidneys of brown trout and rainbow trout infected with T. bryosalmonae using suppressive subtractive hybridization (SSH). The differentially expressed transcripts produced by SSH were cloned, transformed, and tested by colony PCR. Differential expression screening of PCR products was validated using dot blot, and positive clones having different signal intensities were sequenced. Differential screening and a subsequent NCBI-BLAST analysis of expressed sequence tags revealed nine clones expressed differently between both fish species. These differentially expressed genes were validated by quantitative real-time PCR of kidney samples from both fish species at different time points of infection. Expression of anti-inflammatory (TSC22 domain family protein 3) and cell proliferation (Prothymin alpha) genes were upregulated significantly in brown trout but downregulated in rainbow trout. The expression of humoral immune response (immunoglobulin mu) and endocytic pathway (Ras-related protein Rab-11b) genes were significantly upregulated in rainbow trout but downregulated in brown trout. This study suggests that differential expression of host anti-inflammatory, humoral immune and endocytic pathway responses, cell proliferation, and cell growth processes do not inhibit the development of intra-luminal sporogonic stages of the European strain of T. bryosalmonae in brown trout but may suppress it in rainbow trout.

  15. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity.

    Directory of Open Access Journals (Sweden)

    Stephen R Doyle

    2017-07-01

    Full Text Available Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR and sub-optimal responder (SOR parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs, with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic

  16. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Science.gov (United States)

    Nana-Djeunga, Hugues C.; Kengne-Ouafo, Jonas A.; Pion, Sébastien D. S.; Bopda, Jean; Kamgno, Joseph; Wanji, Samuel; Che, Hua; Kuesel, Annette C.; Walker, Martin; Basáñez, Maria-Gloria; Boakye, Daniel A.; Osei-Atweneboana, Mike Y.; Boussinesq, Michel; Prichard, Roger K.; Grant, Warwick N.

    2017-01-01

    Background Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana—exposed to more than a decade of regular ivermectin treatment—have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread. Methodology/Principal findings Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR. Conclusions/Significance This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different

  17. Response of an oscillatory differential delay equation to a single stimulus.

    Science.gov (United States)

    Mackey, Michael C; Tyran-Kamińska, Marta; Walther, Hans-Otto

    2017-04-01

    Here we analytically examine the response of a limit cycle solution to a simple differential delay equation to a single pulse perturbation of the piecewise linear nonlinearity. We construct the unperturbed limit cycle analytically, and are able to completely characterize the perturbed response to a pulse of positive amplitude and duration with onset at different points in the limit cycle. We determine the perturbed minima and maxima and period of the limit cycle and show how the pulse modifies these from the unperturbed case.

  18. Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids

    Science.gov (United States)

    Iijima, Masaya; Kubo, Tai; Kobayashi, Yoshitsugu

    2018-03-01

    Although two major clades of crocodylians (Alligatoroidea and Crocodyloidea) were split during the Cretaceous period, relatively few morphological and functional differences between them have been known. In addition, interaction of multiple morphofunctional systems that differentiated their ecology has barely been assessed. In this study, we examined the limb proportions of crocodylians to infer the differences of locomotor functions between alligatoroids and crocodyloids, and tested the correlation of locomotor and feeding morphofunctions. Our analyses revealed crocodyloids including Gavialis have longer stylopodia (humerus and femur) than alligatoroids, indicating that two groups may differ in locomotor functions. Fossil evidence suggested that alligatoroids have retained short stylopodia since the early stage of their evolution. Furthermore, rostral shape, an indicator of trophic function, is correlated with limb proportions, where slender-snouted piscivorous taxa have relatively long stylopodia and short overall limbs. In combination, trophic and locomotor functions might differently delimit the ecological opportunity of alligatoroids and crocodyloids in the evolution of crocodylians.

  19. Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise

    DEFF Research Database (Denmark)

    Vissing, Kristian; Schjerling, Peter

    2014-01-01

    Few studies have investigated exercise-induced global gene expression responses in human skeletal muscle and these have typically focused at one specific mode of exercise and not implemented non-exercise control models. However, interpretation on effects of differentiated exercise necessitate dir...

  20. A Chinese Herbal Decoction, Danggui Buxue Tang, Stimulates Proliferation, Differentiation and Gene Expression of Cultured Osteosarcoma Cells: Genomic Approach to Reveal Specific Gene Activation

    Directory of Open Access Journals (Sweden)

    Roy C. Y. Choi

    2011-01-01

    Full Text Available Danggui Buxue Tang (DBT, a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA and Radix Angelicae Sinensis (Danggui; RAS. When DBT was applied onto cultured MG-63 cells, an increase of cell proliferation and differentiation of MG-63 cell were revealed: both of these effects were significantly higher in DBT than RA or RAS extract. To search for the biological markers that are specifically regulated by DBT, DNA microarray was used to reveal the gene expression profiling of DBT in MG-63 cells as compared to that of RA- or RAS-treated cells. Amongst 883 DBT-regulated genes, 403 of them are specifically regulated by DBT treatment, including CCL-2, CCL-7, CCL-8, and galectin-9. The signaling cascade of this DBT-regulated gene expression was also elucidated in cultured MG-63 cells. The current results reveal the potential usage of this herbal decoction in treating osteoporosis and suggest the uniqueness of Chinese herbal decoction that requires a well-defined formulation. The DBT-regulated genes in the culture could serve as biological responsive markers for quality assurance of the herbal preparation.

  1. Differential Post-Exercise Blood Pressure Responses between Blacks and Caucasians.

    Science.gov (United States)

    Yan, Huimin; Behun, Michael A; Cook, Marc D; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo

    2016-01-01

    Post-exercise hypotension (PEH) is widely observed in Caucasians (CA) and is associated with histamine receptors 1- and 2- (H1R and H2R) mediated post-exercise vasodilation. However, it appears that blacks (BL) may not exhibit PEH following aerobic exercise. Hence, this study sought to determine the extent to which BL develop PEH, and the contribution of histamine receptors to PEH (or lack thereof) in this population. Forty-nine (22 BL, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either a combined H1R and H2R antagonist (fexofenadine and ranitidine) or a control placebo. Supine blood pressure (BP), cardiac output and peripheral vascular resistance measurements were obtained at baseline, as well as at 30 min, 60 min and 90 min after 45 min of treadmill exercise at 70% heart rate reserve. Exercise increased diastolic BP in young BL but not in CA. Post-exercise diastolic BP was also elevated in BL after exercise with histamine receptor blockade. Moreover, H1R and H2R blockade elicited differential responses in stroke volume between BL and CA at rest, and the difference remained following exercise. Our findings show differential BP responses following exercise in BL and CA, and a potential role of histamine receptors in mediating basal and post-exercise stroke volume in BL. The heightened BP and vascular responses to exercise stimulus is consistent with the greater CVD risk in BL.

  2. Behavioural Inhibition System (BIS) sensitivity differentiates EEG theta responses during goal conflict in a continuous monitoring task.

    Science.gov (United States)

    Moore, Roger A; Mills, Matthew; Marshman, Paul; Corr, Philip J

    2012-08-01

    Previous research has revealed that EEG theta oscillations are affected during goal conflict processing. This is consistent with the behavioural inhibition system (BIS) theory of anxiety (Gray & McNaughton, 2000). However, studies have not attempted to relate these BIS-related theta effects to BIS personality measures. Confirmation of such an association would provide further support for BIS theory, especially as it relates to trait differences. EEG was measured (32 electrodes) from extreme groups (low/high trait BIS) engaged in a target detection task. Goal conflicts were introduced throughout the task. Results show that the two groups did not differ in behavioural performance. The major EEG result was that a stepwise discriminant analysis indicated discrimination by 6 variables derived from coherence and power, with 5 of the 6 in the theta range as predicted by BIS theory and one in the beta range. Also, across the whole sample, EEG theta coherence increased at a variety of regions during primary goal conflict and showed a general increase during response execution; EEG theta power, in contrast, was primarily reactive to response execution. This is the first study to reveal a three-way relationship between the induction of goal conflict, the induction of theta power and coherence, and differentiation by psychometrically-defined low/high BIS status. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Transcriptome profiling reveals the immune response of goose T cells under selenium stimuli.

    Science.gov (United States)

    Cao, Nan; Li, Wanyan; Li, Bingxin; Tian, Yunbo; Xu, Danning

    2017-12-01

    The goose is an economically important poultry species and a principal natural host of avian viruses. This study aimed to determine the effects of selenium on the immune response of geese. Under selenium stimulation, gene expression profiling was investigated using transcriptome sequencing. The selenoproteins were promoted by selenium stimulation, while the heat shock proteins, interleukin and interferons were mainly down-regulated. After comparison, 2228 differentially expressed genes were primarily involved in immune and environmental response, and infectious disease and genetic information processing related pathways were identified. Specifically, the enzymes of the lysosomes which acted as a safeguard in preventing pathogens were mostly up-regulated and six randomly selected differentially expressed genes were validated by quantitative polymerase chain reaction. In addition, the most proportional increased transcription factor family basic helix-loop-helix (bHLH) located in the 5' flank of selenoprotein P-like protein for selenium metabolism was identified by response to the selenium stimulation in this study. These analyses show that selenium can promote immune function by activating selenoproteins, transcript factors and lysosome pathway related genes, while weakening cytokine content genes in geese. © 2017 Japanese Society of Animal Science.

  4. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation.

    Science.gov (United States)

    Strand, D W; Jiang, M; Murphy, T A; Yi, Y; Konvinse, K C; Franco, O E; Wang, Y; Young, J D; Hayward, S W

    2012-08-09

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithelial cells. Expression and activation of either PPARγ 1 or 2 reduced de novo lipogenesis and oxidative stress and mediated a switch from glucose to fatty acid oxidation through regulation of genes including Pdk4, Fabp4, Lpl, Acot1 and Cd36. Differential effects of PPARγ isoforms included decreased basal cell differentiation, Scd1 expression and triglyceride fatty acid desaturation and increased tumorigenicity by PPARγ1. In contrast, PPARγ2 expression significantly increased basal cell differentiation, Scd1 expression and AR expression and responsiveness. Finally, in confirmation of in vitro data, a PPARγ agonist versus high-fat diet (HFD) regimen in vivo confirmed that PPARγ agonization increased prostatic differentiation markers, whereas HFD downregulated PPARγ-regulated genes and decreased prostate differentiation. These data provide a rationale for pursuing a fundamental metabolic understanding of changes to glucose and fatty acid metabolism in benign and malignant prostatic diseases associated with systemic metabolic stress.

  5. Use of a Differential Observing Response to Expand Restricted Stimulus Control

    Science.gov (United States)

    Walpole, Carrie Wallace; Roscoe, Eileen M.; Dube, William V.

    2007-01-01

    This study extends previous work on the use of differential observing responses (DOR) to remediate atypically restricted stimulus control. A participant with autism had high matching-to-sample accuracy scores with printed words that had no letters in common (e.g., "cat," "lid," "bug") but poor accuracy with words that had two letters in common…

  6. Differential network analysis reveals genetic effects on catalepsy modules.

    Directory of Open Access Journals (Sweden)

    Ovidiu D Iancu

    Full Text Available We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS formed by crossing four inbred strains (HS4 and a heterogeneous stock (HS-CC formed from the inbred strain founders of the Collaborative Cross (CC. All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections.

  7. The effect of alcohol on the differential expression of cluster of differentiation 14 gene, associated pathways, and genetic network.

    Directory of Open Access Journals (Sweden)

    Diana X Zhou

    Full Text Available Alcohol consumption affects human health in part by compromising the immune system. In this study, we examined the expression of the Cd14 (cluster of differentiation 14 gene, which is involved in the immune system through a proinflammatory cascade. Expression was evaluated in BXD mice treated with saline or acute 1.8 g/kg i.p. ethanol (12.5% v/v. Hippocampal gene expression data were generated to examine differential expression and to perform systems genetics analyses. The Cd14 gene expression showed significant changes among the BXD strains after ethanol treatment, and eQTL mapping revealed that Cd14 is a cis-regulated gene. We also identified eighteen ethanol-related phenotypes correlated with Cd14 expression related to either ethanol responses or ethanol consumption. Pathway analysis was performed to identify possible biological pathways involved in the response to ethanol and Cd14. We also constructed a genetic network for Cd14 using the top 20 correlated genes and present several genes possibly involved in Cd14 and ethanol responses based on differential gene expression. In conclusion, we found Cd14, along with several other genes and pathways, to be involved in ethanol responses in the hippocampus, such as increased susceptibility to lipopolysaccharides and neuroinflammation.

  8. Single-Cell Gene Expression Analysis of a Human ESC Model of Pancreatic Endocrine Development Reveals Different Paths to β-Cell Differentiation.

    Science.gov (United States)

    Petersen, Maja Borup Kjær; Azad, Ajuna; Ingvorsen, Camilla; Hess, Katja; Hansson, Mattias; Grapin-Botton, Anne; Honoré, Christian

    2017-10-10

    The production of insulin-producing β cells from human embryonic stem cells (hESCs) in vitro represents a promising strategy for a cell-based therapy for type 1 diabetes mellitus. To explore the cellular heterogeneity and temporal progression of endocrine progenitors and their progeny, we performed single-cell qPCR on more than 500 cells across several stages of in vitro differentiation of hESCs and compared them with human islets. We reveal distinct subpopulations along the endocrine differentiation path and an early lineage bifurcation toward either polyhormonal cells or β-like cells. We uncover several similarities and differences with mouse development and reveal that cells can take multiple paths to the same differentiation state, a principle that could be relevant to other systems. Notably, activation of the key β-cell transcription factor NKX6.1 can be initiated before or after endocrine commitment. The single-cell temporal resolution we provide can be used to improve the production of functional β cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal

    OpenAIRE

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transf...

  10. Retrogenic ICOS Expression Increases Differentiation of KLRG-1hiCD127loCD8+ T Cells during Listeria Infection and Diminishes Recall Responses.

    Science.gov (United States)

    Liu, Danya; Burd, Eileen M; Coopersmith, Craig M; Ford, Mandy L

    2016-02-01

    Following T cell encounter with Ag, multiple signals are integrated to collectively induce distinct differentiation programs within Ag-specific CD8(+) T cell populations. Several factors contribute to these cell fate decisions, including the amount and duration of Ag, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The ICOS is not expressed on resting T cells but is rapidly upregulated upon encounter with Ag. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study, we therefore sought to determine the role of ICOS signaling on CD8(+) T cell programmed differentiation. Through the creation of novel ICOS retrogenic Ag-specific TCR-transgenic CD8(+) T cells, we interrogated the phenotype, functionality, and recall potential of CD8(+) T cells that receive early and sustained ICOS signaling during Ag exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of Ag-specific CD8(+) T cells, resulting in increased frequencies of KLRG-1(hi)CD127(lo) cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared with empty vector controls. Interestingly, however, ICOS retrogenic CD8(+) T cells also preferentially homed to nonlymphoid organs and exhibited reduced multicytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes.

    Science.gov (United States)

    Gao, Fan-Xiang; Wang, Yang; Zhang, Qi-Ya; Mou, Cheng-Yan; Li, Zhi; Deng, Yuan-Sheng; Zhou, Li; Gui, Jian-Fang

    2017-07-24

    Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A + , candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A + , F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as "chemokine signaling pathway", "Toll-like receptor signaling pathway" and others, were remarkably much more than those from clone A + and F. Several IFN-related genes, including Mx1, viperin, PKR and others, showed higher increases in the resistant clone H than that in the others. IFNphi3, IFI44-like and Gig2 displayed the highest expression in clone F and IRF1 uniquely increased in susceptible clone A + . In contrast to strong immune defense in resistant clone H, susceptible clone A + showed remarkable up-regulation of genes related to apoptosis or death, indicating that clone A + failed to resist virus offensive and evidently induced apoptosis or death. Our study is the first attempt to screen distinct resistances and

  12. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici.

    Directory of Open Access Journals (Sweden)

    Mohd Aamir

    Full Text Available The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37 were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold followed by SolyWRKY37 (1.93 fold gene was found at 24 hrs which further increased at 48 hrs (5.0 fold. In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs. However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein

  13. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici).

    Science.gov (United States)

    Aamir, Mohd; Singh, Vinay Kumar; Dubey, Manish Kumar; Kashyap, Sarvesh Pratap; Zehra, Andleeb; Upadhyay, Ram Sanmukh; Singh, Surendra

    2018-01-01

    The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues) differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol) in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37) were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR) studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold) followed by SolyWRKY37 (1.93 fold) gene was found at 24 hrs which further increased at 48 hrs (5.0 fold). In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs). However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs) and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys) in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK

  14. Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typimurium in response to infection-like conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Wu, Si; Meng, Da; Liu, Xiaowen; Brewer, Heather M.; Kaiser, Brooke LD; Nakayasu, Ernesto S.; Cort, John R.; Pevzner, Pavel A.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.; Pasa-Tolic, Ljiljana

    2013-06-18

    Characterization of the mature protein complement in cells is crucial for a better understanding of cellular processes on a systems-wide scale. Bottom-up proteomic approaches often lead to loss of critical information about an endogenous protein’s actual state due to post translational modifications (PTMs) and other processes. Top-down approaches that involve analysis of the intact protein can address this concern but present significant analytical challenges related to the separation quality needed, measurement sensitivity, and speed that result in low throughput and limited coverage. Here we used single-dimension ultra high pressure liquid chromatography mass spectrometry to investigate the comprehensive ‘intact’ proteome of the Gram negative bacterial pathogen Salmonella Typhimurium. Top-down proteomics analysis revealed 563 unique proteins including 1665 proteoforms generated by PTMs, representing the largest microbial top-down dataset reported to date. Our analysis not only confirmed several previously recognized aspects of Salmonella biology and bacterial PTMs in general, but also revealed several novel biological insights. Of particular interest was differential utilization of the protein S-thiolation forms S-glutathionylation and S-cysteinylation in response to infection-like conditions versus basal conditions, which was corroborated by changes in corresponding biosynthetic pathways. This differential utilization highlights underlying metabolic mechanisms that modulate changes in cellular signaling, and represents to our knowledge the first report of S-cysteinylation in Gram negative bacteria. The demonstrated utility of our simple proteome-wide intact protein level measurement strategy for gaining biological insight should promote broader adoption and applications of top-down proteomics approaches.

  15. c-Myb Regulates the T-Bet-Dependent Differentiation Program in B Cells to Coordinate Antibody Responses

    Directory of Open Access Journals (Sweden)

    Dana Piovesan

    2017-04-01

    Full Text Available Summary: Humoral immune responses are tailored to the invading pathogen through regulation of key transcription factors and their networks. This is critical to establishing effective antibody-mediated responses, yet it is unknown how B cells integrate pathogen-induced signals to drive or suppress transcriptional programs specialized for each class of pathogen. Here, we detail the key role of the transcription factor c-Myb in regulating the T-bet-mediated anti-viral program. Deletion of c-Myb in mature B cells significantly increased serum IgG2c and CXCR3 expression by upregulating T-bet, normally suppressed during Th2-cell-mediated responses. Enhanced expression of T-bet resulted in aberrant plasma cell differentiation within the germinal center, mediated by CXCR3 expression. These findings identify a dual role for c-Myb in limiting inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Identifying such intrinsic regulators of specialized antibody responses can assist in vaccine design and therapeutic intervention in B-cell-mediated immune disorders. : Piovesan et al. examine how B cells establish transcriptional programs that result in tailored responses to invading pathogens. The authors find that the transcription factor c-Myb represses the T-bet-mediated anti-viral program in B cells. c-Myb limits inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Keywords: B cells, c-Myb, T-bet, immunoglobulin, CXCR3, plasma cell, germinal center

  16. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol.

    Science.gov (United States)

    Tian, Xiaoxu; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun; Zhang, Weiwen

    2013-01-14

    Butanol is a promising biofuel, and recent metabolic engineering efforts have demonstrated the use of photosynthetic cyanobacterial hosts for its production. However, cyanobacteria have very low tolerance to butanol, limiting the economic viability of butanol production from these renewable producing systems. The existing knowledge of molecular mechanism involved in butanol tolerance in cyanobacteria is very limited. To build a foundation necessary to engineer robust butanol-producing cyanobacterial hosts, in this study, the responses of Synechocystis PCC 6803 to butanol were investigated using a quantitative proteomics approach with iTRAQ - LC-MS/MS technologies. The resulting high-quality dataset consisted of 25,347 peptides corresponding to 1452 unique proteins, a coverage of approximately 40% of the predicted proteins in Synechocystis. Comparative quantification of protein abundances led to the identification of 303 differentially regulated proteins by butanol. Annotation and GO term enrichment analysis showed that multiple biological processes were regulated, suggesting that Synechocystis probably employed multiple and synergistic resistance mechanisms in dealing with butanol stress. Notably, the analysis revealed the induction of heat-shock protein and transporters, along with modification of cell membrane and envelope were the major protection mechanisms against butanol. A conceptual cellular model of Synechocystis PCC 6803 responses to butanol stress was constructed to illustrate the putative molecular mechanisms employed to defend against butanol stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line.

    Science.gov (United States)

    Damte, Dereje; Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Suh, Joo-Won; Park, Seung-Chun

    2015-12-28

    Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation - only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections.

  18. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  19. Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite Motif Protein 29 as a survival factor.

    Directory of Open Access Journals (Sweden)

    Véronique Bertrand-Vallery

    Full Text Available BACKGROUND: Repeated exposures to UVB of human keratinocytes lacking functional p16(INK-4a and able to differentiate induce an alternative state of differentiation rather than stress-induced premature senescence. METHODOLOGY/PRINCIPAL FINDINGS: A 2D-DIGE proteomic profiling of this alternative state of differentiation was performed herein at various times after the exposures to UVB. Sixty-nine differentially abundant protein species were identified by mass spectrometry, many of which are involved in keratinocyte differentiation and survival. Among these protein species was TRIpartite Motif Protein 29 (TRIM29. Increased abundance of TRIM29 following UVB exposures was validated by Western blot using specific antibody and was also further analysed by immunochemistry and by RT-PCR. TRIM29 was found very abundant in keratinocytes and reconstructed epidermis. Knocking down the expression of TRIM29 by short-hairpin RNA interference decreased the viability of keratinocytes after UVB exposure. The abundance of involucrin mRNA, a marker of late differentiation, increased concomitantly. In TRIM29-knocked down reconstructed epidermis, the presence of picnotic cells revealed cell injury. Increased abundance of TRIM29 was also observed upon exposure to DNA damaging agents and PKC activation. The UVB-induced increase of TRIM29 abundance was dependent on a PKC signaling pathway, likely PKCdelta. CONCLUSIONS/SIGNIFICANCE: These findings suggest that TRIM29 allows keratinocytes to enter a protective alternative differentiation process rather than die massively after stress.

  20. Myeloma Cell Dynamics in Response to Treatment Supports a Model of Hierarchical Differentiation and Clonal Evolution.

    Science.gov (United States)

    Tang, Min; Zhao, Rui; van de Velde, Helgi; Tross, Jennifer G; Mitsiades, Constantine; Viselli, Suzanne; Neuwirth, Rachel; Esseltine, Dixie-Lee; Anderson, Kenneth; Ghobrial, Irene M; San Miguel, Jesús F; Richardson, Paul G; Tomasson, Michael H; Michor, Franziska

    2016-08-15

    Since the pioneering work of Salmon and Durie, quantitative measures of tumor burden in multiple myeloma have been used to make clinical predictions and model tumor growth. However, such quantitative analyses have not yet been performed on large datasets from trials using modern chemotherapy regimens. We analyzed a large set of tumor response data from three randomized controlled trials of bortezomib-based chemotherapy regimens (total sample size n = 1,469 patients) to establish and validate a novel mathematical model of multiple myeloma cell dynamics. Treatment dynamics in newly diagnosed patients were most consistent with a model postulating two tumor cell subpopulations, "progenitor cells" and "differentiated cells." Differential treatment responses were observed with significant tumoricidal effects on differentiated cells and less clear effects on progenitor cells. We validated this model using a second trial of newly diagnosed patients and a third trial of refractory patients. When applying our model to data of relapsed patients, we found that a hybrid model incorporating both a differentiation hierarchy and clonal evolution best explains the response patterns. The clinical data, together with mathematical modeling, suggest that bortezomib-based therapy exerts a selection pressure on myeloma cells that can shape the disease phenotype, thereby generating further inter-patient variability. This model may be a useful tool for improving our understanding of disease biology and the response to chemotherapy regimens. Clin Cancer Res; 22(16); 4206-14. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Of Hissing Snakes and Angry Voices: Human Infants Are Differentially Responsive to Evolutionary Fear-Relevant Sounds

    Science.gov (United States)

    Erlich, Nicole; Lipp, Ottmar V.; Slaughter, Virginia

    2013-01-01

    Adult humans demonstrate differential processing of stimuli that were recurrent threats to safety and survival throughout evolutionary history. Recent studies suggest that differential processing of evolutionarily ancient threats occurs in human infants, leading to the proposal of an inborn mechanism for rapid identification of, and response to,…

  2. Poorly differentiated neuroendocrine carcinoma of the pancreas responsive to combination therapy with gemcitabine and S-1.

    Science.gov (United States)

    Yamamoto, Mitsuyoshi; Miyagawa, Koichiro; Hiura, Masaaki; Taguchi, Masashi; Kihara, Yasuyuki; Abe, Shintaro; Shimajiri, Shohei; Harada, Masaru

    2012-01-01

    Poorly differentiated neuroendocrine carcinoma is a very rare malignancy, but it is characterized by agressive histological features and a poor clinical prognosis. We report a 42-year-old man who had poorly differentiated neuroendocrine carcinoma of the pancreas with multiple liver metastases. We administrated combined chemotherapy with S-1 and gemcitabine. This treatment was efficacious and well tolerated, and then this patient obtained objective partial response for 7 months and survived for 13 months after the diagnosis. This case suggests that S-1 and gemcitabine combination produce beneficial responses for patients with this disease.

  3. Omics approaches on fresh-cut lettuce reveal global molecular responses to sodium hypochlorite and peracetic acid treatment.

    Science.gov (United States)

    Daddiego, Loretta; Bianco, Linda; Capodicasa, Cristina; Carbone, Fabrizio; Dalmastri, Claudia; Daroda, Lorenza; Del Fiore, Antonella; De Rossi, Patrizia; Di Carli, Mariasole; Donini, Marcello; Lopez, Loredana; Mengoni, Alessio; Paganin, Patrizia; Perrotta, Gaetano; Bevivino, Annamaria

    2018-01-01

    Lettuce is a leafy vegetable that is extensively commercialized as a ready-to-eat product because of its widespread use in human nutrition as salad. It is well known that washing treatments can severely affect the quality and shelf-life of ready-to-eat vegetables. The study presented here evaluated the effect of two washing procedures on fresh-cut lettuce during storage. An omics approach was applied to reveal global changes at molecular level induced by peracetic acid washing in comparison with sodium hypochlorite treatment. Microbiological analyses were also performed to quantify total bacterial abundance and composition. The study revealed wide metabolic alterations induced by the two sanitizers. In particular, transcriptomic and proteomic analyses pointed out a number of transcripts and proteins differentially accumulated in response to peracetic acid washing, mainly occurring on the first day of storage. In parallel, different microbiota composition and significant reduction in total bacterial load following washing were also observed. The results provide useful information for the fresh-cut industry to select an appropriate washing procedure preserving fresh-like attributes as much as possible during storage of the end product. Molecular evidence indicated peracetic acid to be a valid alternative to sodium hypochlorite as sanitizer solution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. A dose-response strategy reveals differences between normal-weight and obese men in their metabolic and inflammatory responses to a high-fat meal.

    Science.gov (United States)

    Schwander, Flurina; Kopf-Bolanz, Katrin A; Buri, Caroline; Portmann, Reto; Egger, Lotti; Chollet, Magali; McTernan, Philip G; Piya, Milan K; Gijs, Martin A M; Vionnet, Nathalie; Pralong, François; Laederach, Kurt; Vergères, Guy

    2014-10-01

    A dose-response strategy may not only allow investigation of the impact of foods and nutrients on human health but may also reveal differences in the response of individuals to food ingestion based on their metabolic health status. In a randomized crossover study, we challenged 19 normal-weight (BMI: 20-25 kg/m(2)) and 18 obese (BMI: >30 kg/m(2)) men with 500, 1000, and 1500 kcal of a high-fat (HF) meal (60.5% energy from fat). Blood was taken at baseline and up to 6 h postprandially and analyzed for a range of metabolic, inflammatory, and hormonal variables, including plasma glucose, lipids, and C-reactive protein and serum insulin, glucagon-like peptide-1, interleukin-6 (IL-6), and endotoxin. Insulin was the only variable that could differentiate the postprandial response of normal-weight and obese participants at each of the 3 caloric doses. A significant response of the inflammatory marker IL-6 was only observed in the obese group after ingestion of the HF meal containing 1500 kcal [net incremental AUC (iAUC) = 22.9 ± 6.8 pg/mL × 6 h, P = 0.002]. Furthermore, the net iAUC for triglycerides significantly increased from the 1000 to the 1500 kcal meal in the obese group (5.0 ± 0.5 mmol/L × 6 h vs. 6.0 ± 0.5 mmol/L × 6 h; P = 0.015) but not in the normal-weight group (4.3 ± 0.5 mmol/L × 6 h vs. 4.8 ± 0.5 mmol/L × 6 h; P = 0.31). We propose that caloric dose-response studies may contribute to a better understanding of the metabolic impact of food on the human organism. This study was registered at clinicaltrials.gov as NCT01446068. © 2014 American Society for Nutrition.

  5. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David  S.; Poulin, Benoit; Ramaprasad, Abhinay; Wall, Richard  J.; Ferguson, David  J.P.; Brady, Declan; Patzewitz, Eva-Maria; Whipple, Sarah; Straschil, Ursula; Wright, Megan  H.; Mohamed, Alyaa  M.A.H.; Radhakrishnan, Anand; Arold, Stefan T.; Tate, Edward  W.; Holder, Anthony  A.; Wickstead, Bill; Pain, Arnab; Tewari, Rita

    2014-01-01

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  6. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David S.

    2014-07-09

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  7. Chronology of Islet Differentiation Revealed By Temporal Cell Labeling

    Science.gov (United States)

    Miyatsuka, Takeshi; Li, Zhongmei; German, Michael S.

    2009-01-01

    OBJECTIVE Neurogenin 3 plays a pivotal role in pancreatic endocrine differentiation. Whereas mouse models expressing reporters such as eGFP or LacZ under the control of the Neurog3 gene enable us to label cells in the pancreatic endocrine lineage, the long half-life of most reporter proteins makes it difficult to distinguish cells actively expressing neurogenin 3 from differentiated cells that have stopped transcribing the gene. RESEARCH DESIGN AND METHODS In order to separate the transient neurogenin 3 –expressing endocrine progenitor cells from the differentiating endocrine cells, we developed a mouse model (Ngn3-Timer) in which DsRed-E5, a fluorescent protein that shifts its emission spectrum from green to red over time, was expressed transgenically from the NEUROG3 locus. RESULTS In the Ngn3-Timer embryos, green-dominant cells could be readily detected by microscopy or flow cytometry and distinguished from green/red double-positive cells. When fluorescent cells were sorted into three different populations by a fluorescence-activated cell sorter, placed in culture, and then reanalyzed by flow cytometry, green-dominant cells converted to green/red double-positive cells within 6 h. The sorted cell populations were then used to determine the temporal patterns of expression for 145 transcriptional regulators in the developing pancreas. CONCLUSIONS The precise temporal resolution of this model defines the narrow window of neurogenin 3 expression in islet progenitor cells and permits sequential analyses of sorted cells as well as the testing of gene regulatory models for the differentiation of pancreatic islet cells. PMID:19478145

  8. Differential Effects of Social and Non-Social Reward on Response Inhibition in Children and Adolescents

    Science.gov (United States)

    Kohls, Gregor; Peltzer, Judith; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2009-01-01

    An important issue in the field of clinical and developmental psychopathology is whether cognitive control processes, such as response inhibition, can be specifically enhanced by motivation. To determine whether non-social (i.e. monetary) and social (i.e. positive facial expressions) rewards are able to differentially improve response inhibition…

  9. Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lenhof Hans-Peter

    2011-05-01

    Full Text Available Abstract Background High-throughput technologies have opened new avenues to study biological processes and pathways. The interpretation of the immense amount of data sets generated nowadays needs to be facilitated in order to enable biologists to identify complex gene networks and functional pathways. To cope with this task multiple computer-based programs have been developed. GeneTrail is a freely available online tool that screens comparative transcriptomic data for differentially regulated functional categories and biological pathways extracted from common data bases like KEGG, Gene Ontology (GO, TRANSPATH and TRANSFAC. Additionally, GeneTrail offers a feature that allows screening of individually defined biological categories that are relevant for the respective research topic. Results We have set up GeneTrail for the use of Arabidopsis thaliana. To test the functionality of this tool for plant analysis, we generated transcriptome data of root and leaf responses to Fe deficiency and the Arabidopsis metal homeostasis mutant nas4x-1. We performed Gene Set Enrichment Analysis (GSEA with eight meaningful pairwise comparisons of transcriptome data sets. We were able to uncover several functional pathways including metal homeostasis that were affected in our experimental situations. Representation of the differentially regulated functional categories in Venn diagrams uncovered regulatory networks at the level of whole functional pathways. Over-Representation Analysis (ORA of differentially regulated genes identified in pairwise comparisons revealed specific functional plant physiological categories as major targets upon Fe deficiency and in nas4x-1. Conclusion Here, we obtained supporting evidence, that the nas4x-1 mutant was defective in metal homeostasis. It was confirmed that nas4x-1 showed Fe deficiency in roots and signs of Fe deficiency and Fe sufficiency in leaves. Besides metal homeostasis, biotic stress, root carbohydrate, leaf

  10. Evidence for universality and cultural variation of differential emotion response patterning.

    Science.gov (United States)

    Scherer, K R; Wallbott, H G

    1994-02-01

    The major controversy concerning psychobiological universality of differential emotion patterning versus cultural relativity of emotional experience is briefly reviewed. Data from a series of cross-cultural questionnaire studies in 37 countries on 5 continents are reported and used to evaluate the respective claims of the proponents in the debate. Results show highly significant main effects and strong effect sizes for the response differences across 7 major emotions (joy, fear, anger, sadness, disgust, shame, and guilt). Profiles of cross-culturally stable differences among the emotions with respect to subjective feeling, physiological symptoms, and expressive behavior are also reported. The empirical evidence is interpreted as supporting theories that postulate both a high degree of universality of differential emotion patterning and important cultural differences in emotion elicitation, regulation, symbolic representation, and social sharing.

  11. Osteopontin splice variants are differential predictors of breast cancer treatment responses

    OpenAIRE

    Zduniak, Krzysztof; Agrawal, Anil; Agrawal, Siddarth; Hossain, Md Monir; Ziolkowski, Piotr; Weber, Georg F.

    2016-01-01

    Background Osteopontin is a marker for breast cancer progression, which in previous studies has also been associated with resistance to certain anti-cancer therapies. It is not known which splice variants may mediate treatment resistance. Methods Here we analyze the association of osteopontin variant expression before treatment, differentiated according to immunohistochemistry with antibodies to exon 4 and to the osteopontin-c splice junction respectively, with the ensuing therapy responses i...

  12. The differential mice response to cat and snake odor.

    Science.gov (United States)

    de Oliveira Crisanto, Karen; de Andrade, Wylqui Mikael Gomes; de Azevedo Silva, Kayo Diogenes; Lima, Ramón Hypolito; de Oliveira Costa, Miriam Stela Maris; de Souza Cavalcante, Jeferson; de Lima, Ruthnaldo Rodrigues Melo; do Nascimento, Expedito Silva; Cavalcante, Judney Cley

    2015-12-01

    Studies from the last two decades have pointed to multiple mechanisms of fear. For responding to predators, there is a group of highly interconnected hypothalamic nuclei formed by the anterior hypothalamic nucleus, the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus—the predator-responsive hypothalamic circuit. This circuit expresses Fos in response to predator presence or its odor. Lesion of any component of this system blocks or reduces the expression of fear and consequently defensive behavior when faced with a predator or its cue. However, most of the knowledge about that circuit has been obtained using the rat as a model of prey and the cat as a source of predator cues. In the present study, we exposed mice to strong cat or snake odors, two known mice predators, and then we used the rat exposure test (RET) to study their behavior when confronted with the same predator's odor. Our data point to a differential response of mice exposed to these odors. When Swiss mice were exposed to the cat odor, they show defensive behavior and the predator-responsive hypothalamic circuit expressed Fos. The opposite was seen when they faced snake's odor. The acute odor exposure was not sufficient to activate the mouse predator-responsive hypothalamic circuit and the mice acted like they were not in a stressful situation, showing almost no sign of fear or defensive posture. This leads us to the conclusion that not all the predator cues are sufficient to activate the predator-responsive hypothalamic circuit of mice and that their response depends on the danger that these predators represent in the natural history of the prey.

  13. Transcriptomics reveal several gene expression patterns in the piezophile Desulfovibrio hydrothermalis in response to hydrostatic pressure.

    Directory of Open Access Journals (Sweden)

    Amira Amrani

    Full Text Available RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria.

  14. Transcriptomics Reveal Several Gene Expression Patterns in the Piezophile Desulfovibrio hydrothermalis in Response to Hydrostatic Pressure

    Science.gov (United States)

    Amrani, Amira; Bergon, Aurélie; Holota, Hélène; Tamburini, Christian; Garel, Marc; Ollivier, Bernard; Imbert, Jean; Dolla, Alain; Pradel, Nathalie

    2014-01-01

    RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt) that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria. PMID:25215865

  15. A Dose-Response Strategy Reveals Differences between Normal-Weight and Obese Men in Their Metabolic and Inflammatory Responses to a High-Fat Meal123

    Science.gov (United States)

    Schwander, Flurina; Kopf-Bolanz, Katrin A.; Buri, Caroline; Portmann, Reto; Egger, Lotti; Chollet, Magali; McTernan, Philip G.; Piya, Milan K.; Gijs, Martin A. M.; Vionnet, Nathalie; Pralong, François; Laederach, Kurt; Vergères, Guy

    2014-01-01

    A dose-response strategy may not only allow investigation of the impact of foods and nutrients on human health but may also reveal differences in the response of individuals to food ingestion based on their metabolic health status. In a randomized crossover study, we challenged 19 normal-weight (BMI: 20–25 kg/m2) and 18 obese (BMI: >30 kg/m2) men with 500, 1000, and 1500 kcal of a high-fat (HF) meal (60.5% energy from fat). Blood was taken at baseline and up to 6 h postprandially and analyzed for a range of metabolic, inflammatory, and hormonal variables, including plasma glucose, lipids, and C-reactive protein and serum insulin, glucagon-like peptide-1, interleukin-6 (IL-6), and endotoxin. Insulin was the only variable that could differentiate the postprandial response of normal-weight and obese participants at each of the 3 caloric doses. A significant response of the inflammatory marker IL-6 was only observed in the obese group after ingestion of the HF meal containing 1500 kcal [net incremental AUC (iAUC) = 22.9 ± 6.8 pg/mL × 6 h, P = 0.002]. Furthermore, the net iAUC for triglycerides significantly increased from the 1000 to the 1500 kcal meal in the obese group (5.0 ± 0.5 mmol/L × 6 h vs. 6.0 ± 0.5 mmol/L × 6 h; P = 0.015) but not in the normal-weight group (4.3 ± 0.5 mmol/L × 6 h vs. 4.8 ± 0.5 mmol/L × 6 h; P = 0.31). We propose that caloric dose-response studies may contribute to a better understanding of the metabolic impact of food on the human organism. This study was registered at clinicaltrials.gov as NCT01446068. PMID:24812072

  16. Large Scale Immune Profiling of Infected Humans and Goats Reveals Differential Recognition of Brucella melitensis Antigens

    Science.gov (United States)

    Liang, Li; Leng, Diana; Burk, Chad; Nakajima-Sasaki, Rie; Kayala, Matthew A.; Atluri, Vidya L.; Pablo, Jozelyn; Unal, Berkay; Ficht, Thomas A.; Gotuzzo, Eduardo; Saito, Mayuko; Morrow, W. John W.; Liang, Xiaowu; Baldi, Pierre; Gilman, Robert H.; Vinetz, Joseph M.; Tsolis, Renée M.; Felgner, Philip L.

    2010-01-01

    Brucellosis is a widespread zoonotic disease that is also a potential agent of bioterrorism. Current serological assays to diagnose human brucellosis in clinical settings are based on detection of agglutinating anti-LPS antibodies. To better understand the universe of antibody responses that develop after B. melitensis infection, a protein microarray was fabricated containing 1,406 predicted B. melitensis proteins. The array was probed with sera from experimentally infected goats and naturally infected humans from an endemic region in Peru. The assay identified 18 antigens differentially recognized by infected and non-infected goats, and 13 serodiagnostic antigens that differentiate human patients proven to have acute brucellosis from syndromically similar patients. There were 31 cross-reactive antigens in healthy goats and 20 cross-reactive antigens in healthy humans. Only two of the serodiagnostic antigens and eight of the cross-reactive antigens overlap between humans and goats. Based on these results, a nitrocellulose line blot containing the human serodiagnostic antigens was fabricated and applied in a simple assay that validated the accuracy of the protein microarray results in the diagnosis of humans. These data demonstrate that an experimentally infected natural reservoir host produces a fundamentally different immune response than a naturally infected accidental human host. PMID:20454614

  17. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit.

    Science.gov (United States)

    Yang, Tianbao; Peng, Hui; Whitaker, Bruce D; Jurick, Wayne M

    2013-07-01

    Calcium has been shown to enhance stress tolerance, maintain firmness and reduce decay in fruits. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also responsive to ethylene. To study their expressions in response to stresses encountered during postharvest handling, tomato fruit at the mature-green stage was subjected to chilling and wounding injuries, infected with Botrytis cinerea and treated with salicylic acid or methyl jasmonate. Gene expression studies revealed that the seven SlSRs differentially respond to different stress signals. SlSR2 was the only gene upregulated by all the treatments. SlSR4 acted as a late pathogen-induced gene; it was upregulated by salicylic acid and methyl jasmonate, but downregulated by cold treatment. SlSR3L was cold- and wound-responsive and was also induced by salicylic acid. SlSR1 and SlSR1L were repressed by cold, wounding and pathogen infection, but were upregulated by salicylic acid and methyl jasmonate. Overall, results of these expression studies indicate that individual SlSRs have distinct roles in responses to the specific stress signals, and SlSRs may act as a coordinator(s) connecting calcium-mediated signaling with other stress signal transduction pathways during fruit ripening and storage. © 2013 Scandinavian Plant Physiology Society.

  18. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.

    Science.gov (United States)

    Chetouhi, Cherif; Bonhomme, Ludovic; Lasserre-Zuber, Pauline; Cambon, Florence; Pelletier, Sandra; Renou, Jean-Pierre; Langin, Thierry

    2016-03-01

    In many plant/pathogen interactions, host susceptibility factors are key determinants of disease development promoting pathogen growth and spreading in plant tissues. In the Fusarium head blight (FHB) disease, the molecular basis of wheat susceptibility is still poorly understood while it could provide new insights into the understanding of the wheat/Fusarium graminearum (Fg) interaction and guide future breeding programs to produce cultivars with sustainable resistance. To identify the wheat grain candidate genes, a genome-wide gene expression profiling was performed in the French susceptible wheat cultivar, Recital. Gene-specific two-way ANOVA of about 40 K transcripts at five grain developmental stages identified 1309 differentially expressed genes. Out of these, 536 were impacted by the Fg effect alone. Most of these Fg-responsive genes belonged to biological and molecular functions related to biotic and abiotic stresses indicating the activation of common stress pathways during susceptibility response of wheat grain to FHB. This analysis revealed also 773 other genes displaying either specific Fg-responsive profiles along with grain development stages or synergistic adjustments with the grain development effect. These genes were involved in various molecular pathways including primary metabolism, cell death, and gene expression reprogramming. An increasingly complex host response was revealed, as was the impact of both Fg infection and grain ontogeny on the transcription of wheat genes. This analysis provides a wealth of candidate genes and pathways involved in susceptibility responses to FHB and depicts new clues to the understanding of the susceptibility determinism in plant/pathogen interactions.

  19. Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling.

    Science.gov (United States)

    Oloriz, María I; Gil, Víctor; Rojas, Luis; Portal, Orelvis; Izquierdo, Yovanny; Jiménez, Elio; Höfte, Monica

    2012-05-01

    Brown rust caused by the fungus Puccinia melanocephala is a major disease of sugarcane (Saccharum spp.). A sugarcane mutant, obtained by chemical mutagenesis of the susceptible variety B4362, showed a post-haustorial hypersensitive response (HR)-mediated resistance to the pathogen and was used to identify genes differentially expressed in response to P. melanocephala via suppression subtractive hybridization (SSH). Tester cDNA was derived from the brown rust-resistant mutant after inoculation with P. melanocephala, while driver cDNAs were obtained from the non-inoculated resistant mutant and the inoculated susceptible donor variety B4362. Database comparisons of the sequences of the SSH recombinant clones revealed that, of a subset of 89 non-redundant sequences, 88% had similarity to known functional genes, while 12% were of unknown function. Thirteen genes were selected for transcript profiling in the resistant mutant and the susceptible donor variety. Genes involved in glycolysis and C4 carbon fixation were up-regulated in both interactions probably due to disturbance of sugarcane carbon metabolism by the pathogen. Genes related with the nascent polypeptide associated complex, post-translational proteome modulation and autophagy were transcribed at higher levels in the compatible interaction. Up-regulation of a putative L-isoaspartyl O-methyltransferase S-adenosylmethionine gene in the compatible interaction may point to fungal manipulation of the cytoplasmatic methionine cycle. Genes coding for a putative no apical meristem protein, S-adenosylmethionine decarboxylase, non-specific lipid transfer protein, and GDP-L-galactose phosphorylase involved in ascorbic acid biosynthesis were up-regulated in the incompatible interaction at the onset of haustorium formation, and may contribute to the HR-mediated defense response in the rust-resistant mutant.

  20. Magnetic Resonance Imaging Identifies Differential Response to Pro-Oxidant Chemotherapy in a Xenograft Model

    Directory of Open Access Journals (Sweden)

    Terry H. Landowski

    2016-06-01

    Full Text Available Induction of oxidative stress is a key component of cancer therapy. Pro-oxidant drugs have been demonstrated to enhance the efficacy of radiotherapy and chemotherapy. An emerging concept is that therapeutic outcomes are dictated by the differential redox buffering reserve in subpopulations of malignant cells, indicating the need for noninvasive biomarkers of tumor redox that can be used for dose identification and response assessment in a longitudinal setting. Magnetic resonance imaging (MRI enhanced with the thiol-binding contrast agent Gd-LC6-SH, and hemodynamic response imaging (HRI in combination with hypercapnia and hyperoxia were investigated as biomarkers of the pharmacodynamics of the small molecule pro-oxidant imexon (IMX. Human multiple myeloma cell lines 8226/S and an IMX-resistant variant, 8226/IM10, were established as contralateral tumors in SCID mice. T1slope, an MRI measure of the washout rate of Gd-LC6-SH, was significantly lower post-IMX therapy in 8226/S tumors compared with vehicle controls, indicating treatment-related oxidization of the tumor microenvironment, which was confirmed by analysis of tumor tissue for thiols. T1slope and ex vivo assays for thiols both indicated a more reduced microenvironment in 8226/IM10 tumors following IMX therapy. HRI with hypercapnia challenge revealed IMX inhibition of vascular dilation in 8226/S tumors but not 8226/IM10 tumors, consistent with decreased immunohistochemical staining for smooth muscle actin in treated 8226/S tumors. MRI enhanced with Gd-LC6-SH, and HRI coupled with a hypercapnic challenge provide noninvasive biomarkers of tumor response to the redox modulator imexon.

  1. Generalized differential transform method to differential-difference equation

    International Nuclear Information System (INIS)

    Zou Li; Wang Zhen; Zong Zhi

    2009-01-01

    In this Letter, we generalize the differential transform method to solve differential-difference equation for the first time. Two simple but typical examples are applied to illustrate the validity and the great potential of the generalized differential transform method in solving differential-difference equation. A Pade technique is also introduced and combined with GDTM in aim of extending the convergence area of presented series solutions. Comparisons are made between the results of the proposed method and exact solutions. Then we apply the differential transform method to the discrete KdV equation and the discrete mKdV equation, and successfully obtain solitary wave solutions. The results reveal that the proposed method is very effective and simple. We should point out that generalized differential transform method is also easy to be applied to other nonlinear differential-difference equation.

  2. Differential cisplatin responses in human carcinoma cell lines pre-exposed to fractionated X-irradiation

    International Nuclear Information System (INIS)

    Dempke, W.C.M.; Hosking, L.K.; Shellard, S.A.; Hill, B.T.

    1991-01-01

    These results suggest that cells exposed to X-irradiation may respond differently to subsequent cisplatin (CDDP) treatment. Initial studies of possible mechanisms responsible for these differential sensitivities indicate that they may differ according to whether resistance or hypersensitivity is expressed. (author)

  3. Identification of nickel response genes in abnormal early developments of sea urchin by differential display polymerase chain reaction.

    Science.gov (United States)

    Ryu, Tae Kwon; Lee, Gunsup; Rhee, Yong; Park, Heung-Sik; Chang, Man; Lee, Sukchan; Lee, Jaean; Lee, Taek-Kyun

    2012-10-01

    Bioassays and biomarkers have been previously developed to assess the effects of heavy metal contaminants on the early life stages of the sea urchin. In this study, malformation in the early developmental processes was observed in sea urchin (Strongylocentrotus intermedius) larvae exposed to 10 ppm Ni for over 30 h. The most critical stage at which the triggering of nickel effects takes place is thought to be the blastula stage, which occurs after fertilization in larval development. To investigate the molecular-level responses of sea urchin exposed to heavy metal stress and to explore the differentially expressed genes that are induced or repressed by nickel, differential display polymerase chain reaction (DD-PCR) was used with sea urchin mRNAs. The malformation-related genes expressed in the early life stages of the sea urchin were cloned from larvae exposed to 10 ppm of nickel for 15 h, and accessed via DD-PCR. Sequence analysis results revealed that each of the genes evidenced high homology with EGF2, PCSK9, serine/threonine protein kinase, apolipophorin precursor protein, and MGC80921 protein/transcript variant 2. This result may prove useful in the development of novel biomarkers for the assessment of heavy metal stresses on sea urchin embryos. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. RAPID-COMMUNICATION Genetic diversity and differentiation in natural populations of Arapaima gigas from lower Amazon revealed by microsatellites.

    Science.gov (United States)

    Fazzi-Gomes, P F; Melo, N; Palheta, G; Guerreiro, S; Amador, M; Ribeiro-Dos-Santos, A K; Santos, S; Hamoy, I

    2017-02-08

    Genetic variability is one of the important criteria for species conservation decisions. This study aimed to analyze the genetic diversity and the population differentiation of two natural populations of Arapaima gigas, a species with a long history of being commercially exploited. We collected 87 samples of A. gigas from Grande Curuai Lake and Paru Lake, located in the Lower Amazon region of Amazônia, Brazil, and genotyped these samples using a multiplex panel of microsatellite markers. Our results showed that the populations of A. gigas analyzed had high levels of genetic variability, which were similar to those described in previous studies. These two populations had a significant population differentiation supported by the estimates of F ST and R ST (0.06), by Bayesian analysis (K = 2), and by population assignment tests, which revealed a moderate genetic distance.

  5. GLOBAL TRANSCRIPTION PROFILING REVEALS DIFFERENTIAL RESPONSES TO CHRONIC NITROGEN STRESS AND PUTATIVE NITROGEN REGULATORY COMPONENTS IN ARABIDOPSIS

    Science.gov (United States)

    Background: A large quantity of nitrogen (N) fertilizer is used for crop production to achieve high yields at a significant economic and environmental cost. Efforts have been directed to understanding the molecular basis of plant responses to N and to identifying N-responsive gen...

  6. Pupillary responses reveal infants' discrimination of facial emotions independent of conscious perception.

    Science.gov (United States)

    Jessen, Sarah; Altvater-Mackensen, Nicole; Grossmann, Tobias

    2016-05-01

    Sensitive responding to others' emotions is essential during social interactions among humans. There is evidence for the existence of subcortically mediated emotion discrimination processes that occur independent of conscious perception in adults. However, only recently work has begun to examine the development of automatic emotion processing systems during infancy. In particular, it is unclear whether emotional expressions impact infants' autonomic nervous system regardless of conscious perception. We examined this question by measuring pupillary responses while subliminally and supraliminally presenting 7-month-old infants with happy and fearful faces. Our results show greater pupil dilation, indexing enhanced autonomic arousal, in response to happy compared to fearful faces regardless of conscious perception. Our findings suggest that, early in ontogeny, emotion discrimination occurs independent of conscious perception and is associated with differential autonomic responses. This provides evidence for the view that automatic emotion processing systems are an early-developing building block of human social functioning. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    Directory of Open Access Journals (Sweden)

    Cong Wang

    Full Text Available Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta. Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina regardless of DIP condition. Group V (Amphidinium carterae exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine

  8. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    Science.gov (United States)

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  9. A Bifactor Multidimensional Item Response Theory Model for Differential Item Functioning Analysis on Testlet-Based Items

    Science.gov (United States)

    Fukuhara, Hirotaka; Kamata, Akihito

    2011-01-01

    A differential item functioning (DIF) detection method for testlet-based data was proposed and evaluated in this study. The proposed DIF model is an extension of a bifactor multidimensional item response theory (MIRT) model for testlets. Unlike traditional item response theory (IRT) DIF models, the proposed model takes testlet effects into…

  10. Effects of atmospheric hydrogen fluoride upon Drosophila melanogaster. I. Differential genotyptic response

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, R A; Smith, J D; Applegate, H G

    1971-01-01

    Four inbred lines of Drosophila melanogaster were exposed to various concentrations of gaseous hydrogen fluoride for a period of six weeks. The effects upon the viability of these populations were predominantly linear with respect to fluoride concentration over the range tested. Differential responses of the inbred lines were interpreted to mean that tolerance to fluoride contamination is influenced by genotype. 4 references, 1 figure, 1 table.

  11. Design of fractional order differentiator using type-III and type-IV discrete cosine transform

    Directory of Open Access Journals (Sweden)

    Manjeet Kumar

    2017-02-01

    Full Text Available In this paper, an interpolation method based on discrete cosine transform (DCT is employed for digital finite impulse response-fractional order differentiator (FIR-FOD design. Here, a fractional order digital differentiator is modeled as finite impulse response (FIR system to get an optimized frequency response that approximates the ideal response of a fractional order differentiator. Next, DCT-III and DCT-IV are utilized to determine the filter coefficients of FIR filter that compute the Fractional derivative of a given signal. To improve the frequency response of the proposed FIR-FOD, the filter coefficients are further modified using windows. Several design examples are presented to demonstrate the superiority of the proposed method. The simulation results have also been compared with the existing FIR-FOD design methods such as DFT interpolation, radial basis function (RBF interpolation, DCT-II interpolation and DST interpolation methods. The result reveals that the proposed FIR-FOD design technique using DCT-III and DCT-IV outperforms DFT interpolation, RBF interpolation, DCT-II interpolation and DST interpolation methods in terms of magnitude error.

  12. Four CISH paralogues are present in rainbow trout Oncorhynchus mykiss: differential expression and modulation during immune responses and development.

    Science.gov (United States)

    Maehr, Tanja; Vecino, Jose L González; Wadsworth, Simon; Wang, Tiehui; Secombes, Christopher J

    2014-11-01

    Suppressor of cytokine signalling (SOCS) family members are crucial in the control and attenuation of cytokine induced responses via activation of the JAK/STAT, TLR and NF-kB signalling pathways. SOCS proteins orchestrate the termination of many types of immune responses and are often the targets of microbial pathogens exploiting SOCS mechanisms to evade the host's immune response. Through whole and lineage specific genome duplication events, the teleost cytokine/SOCS network is complex. Not only are the orthologues of all mammalian SOCS members present, namely cytokine inducible Src homology 2 (SH2)-containing protein (CISH) and SOCS-1 to -7, but multiple gene copies exist that may potentially become functionally divergent. In this paper we focus on the CISH genes in rainbow trout (Oncorhynchus mykiss), and have cloned two further paralogues, CISHa2 and CISHb2, additional to the known CISHa1 and CISHb1 genes. We present for the first time a comparative expression analysis of these four paralogues, to establish whether subfunctionalisation is apparent. In vivo examination of gene expression revealed a higher constitutive expression level of CISHa paralogues compared to CISHb expression in adult trout tissues. All CISHs were relatively highly abundant in immune tissues but CISHa2 and CISHb2 had highest expression in the heart and muscle. An inverse picture of CISH abundance during trout ontogeny was seen, and further hints at differential roles of the four genes in immune regulation and development. Stimulation of head kidney (HK) leukocytes with trout recombinant interleukin (rIL)-15 and rIL-21 had a major effect on CISHa2 and to a lesser extent CISHa1 expression. In HK macrophages rIL-1β, phytohemagglutinin, and phorbol 12-myristate 13-acetate also had a strong impact on CISHa2 expression. Yersinia ruckeri infection caused a temporally and spatially differential onset of CISH expression that may be viewed in the context of pathogen evasion strategies. These data

  13. Right Fronto-Temporal EEG can Differentiate the Affective Responses to Award-Winning Advertisements.

    Science.gov (United States)

    Wang, Regina W Y; Huarng, Shy-Peih; Chuang, Shang-Wen

    2018-04-01

    Affective engineering aims to improve service/product design by translating the customer's psychological feelings. Award-winning advertisements (AAs) were selected on the basis of the professional standards that consider creativity as a prerequisite. However, it is unknown if AA is related to satisfactory advertising performance among customers or only to the experts' viewpoints towards the advertisements. This issue in the field of affective engineering and design merits in-depth evaluation. We recruited 30 subjects and performed an electroencephalography (EEG) experiment while watching AAs and non-AAs (NAAs). The event-related potential (ERP) data showed that AAs evoked larger positive potentials 250-1400 [Formula: see text]ms after stimulus onset, particularly in the right fronto-temporal regions. The behavioral results were consistent with the professional recognition given to AAs by experts. The perceived levels of creativity and "product-like" quality were higher for the AAs than for the NAAs. Event-related spectral perturbation (ERSP) analysis further revealed statistically significant differences in the theta, alpha, beta, and gamma band activity in the right fronto-temporal regions between the AAs and NAAs. Our results confirm that EEG features from the time/frequency domains can differentiate affective responses to AAs at a neural circuit level, and provide scientific evidence to support the identification of AAs.

  14. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility

    Science.gov (United States)

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-01-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565

  15. Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells.

    Science.gov (United States)

    Seo, Hye In; Cho, Ann-Na; Jang, Jiho; Kim, Dong-Wook; Cho, Seung-Woo; Chung, Bong Geun

    2015-10-01

    We report thermo-responsive retinoic acid (RA)-loaded poly(N-isopropylacrylamide)-co-acrylamide (PNIPAM-co-Am) nanoparticles for directing human induced pluripotent stem cell (hiPSC) fate. Fourier transform infrared spectroscopy and (1)H nuclear magnetic resonance analysis confirmed that RA was efficiently incorporated into PNIAPM-co-Am nanoparticles (PCANs). The size of PCANs dropped with increasing temperatures (300-400 nm at room temperature, 80-90 nm at 37°C) due to its phase transition from hydrophilic to hydrophobic. Due to particle shrinkage caused by this thermo-responsive property of PCANs, RA could be released from nanoparticles in the cells upon cellular uptake. Immunocytochemistry and quantitative real-time polymerase chain reaction analysis demonstrated that neuronal differentiation of hiPSC-derived neuronal precursors was enhanced after treatment with 1-2 μg/ml RA-loaded PCANs. Therefore, we propose that this PCAN could be a potentially powerful carrier for effective RA delivery to direct hiPSC fate to neuronal lineage. The use of induced pluripotent stem cells (iPSCs) has been at the forefront of research in the field of regenerative medicine, as these cells have the potential to differentiate into various terminal cell types. In this article, the authors utilized a thermo-responsive polymer, Poly(N-isopropylacrylamide) (PNIPAM), as a delivery platform for retinoic acid. It was shown that neuronal differentiation could be enhanced in hiPSC-derived neuronal precursor cells. This method may pave a way for future treatment of neuronal diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Individual responsibility, solidarity and differentiation in healthcare

    NARCIS (Netherlands)

    Stegeman, I.; Willems, D. L.; Dekker, E.; Bossuyt, P. M.

    2014-01-01

    Access to healthcare in most western societies is based on equality. Rapidly rising costs have fuelled debates about differentiation in access to healthcare. We assessed the public's perceptions and attitudes about differentiation in healthcare according to lifestyle behaviour. A vignette study was

  17. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Iain C. Macaulay

    2016-02-01

    Full Text Available The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.

  18. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice.

    Science.gov (United States)

    Leal, Fernanda Munhoz Dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer

    2016-07-15

    Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Osteopontin splice variants are differential predictors of breast cancer treatment responses.

    Science.gov (United States)

    Zduniak, Krzysztof; Agrawal, Anil; Agrawal, Siddarth; Hossain, Md Monir; Ziolkowski, Piotr; Weber, Georg F

    2016-07-11

    Osteopontin is a marker for breast cancer progression, which in previous studies has also been associated with resistance to certain anti-cancer therapies. It is not known which splice variants may mediate treatment resistance. Here we analyze the association of osteopontin variant expression before treatment, differentiated according to immunohistochemistry with antibodies to exon 4 and to the osteopontin-c splice junction respectively, with the ensuing therapy responses in 119 Polish breast cancer patients who presented between 1995 and 2008. We found from Cox hazard models, logrank test and Wilcoxon test that osteopontin exon 4 was associated with a favorable response to tamoxifen, but a poor response to chemotherapy with CMF (cyclophosphamide, methotrexate, fluorouracil). Osteopontin-c is prognostic, but falls short of being a significant predictor for sensitivity to treatment. The addition of osteopontin splice variant immunohistochemistry to standard pathology work-ups has the potential to aid decision making in breast cancer treatment.

  20. Osteopontin splice variants are differential predictors of breast cancer treatment responses

    International Nuclear Information System (INIS)

    Zduniak, Krzysztof; Agrawal, Anil; Agrawal, Siddarth; Hossain, Md Monir; Ziolkowski, Piotr; Weber, Georg F.

    2016-01-01

    Osteopontin is a marker for breast cancer progression, which in previous studies has also been associated with resistance to certain anti-cancer therapies. It is not known which splice variants may mediate treatment resistance. Here we analyze the association of osteopontin variant expression before treatment, differentiated according to immunohistochemistry with antibodies to exon 4 and to the osteopontin-c splice junction respectively, with the ensuing therapy responses in 119 Polish breast cancer patients who presented between 1995 and 2008. We found from Cox hazard models, logrank test and Wilcoxon test that osteopontin exon 4 was associated with a favorable response to tamoxifen, but a poor response to chemotherapy with CMF (cyclophosphamide, methotrexate, fluorouracil). Osteopontin-c is prognostic, but falls short of being a significant predictor for sensitivity to treatment. The addition of osteopontin splice variant immunohistochemistry to standard pathology work-ups has the potential to aid decision making in breast cancer treatment

  1. Neurocysticercosis as an important differential of paradoxical response during antituberculosis therapy in HIV-negative patient

    Directory of Open Access Journals (Sweden)

    Rivonirina Andry Rakotoarivelo

    2011-12-01

    Full Text Available Neurocysticercosis can simulate a paradoxical response during antituberculosis therapy with neurological ailments. We report the case of a 31 year-old-man, treated for tuberculous meningitis who developed neurological deficit after nine weeks of early antituberculous therapy. The diagnosis of neurocysticercosis was confirmed by CT scan and cerebrospinal fluid analysis. Neurocysticercosis should be sought as an important differential of paradoxical response during antituberculosis therapy.

  2. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    Science.gov (United States)

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  3. Apical control of xylem formation in the pine stem. II. Responses of differentiating tracheids

    Directory of Open Access Journals (Sweden)

    Jarosław Porandowski

    2014-01-01

    Full Text Available The effect of auxin supplied to the main stem of 5-year-old Pinus silvestris trees during various periods after decapitation upon differentiation of the secondary xylem tracheids was investigated. The results revealed the complexity of auxin involvement in the regulatory system of tracheid differentiation of secondary xylem. It is manifested both as the inductive effect to which the cells respond in the meristematic phase and in the continuous control during the consecutive stages of radial growth and maturation. A lack of auxin during the meristematic phase resulted in smaller cell diameters and reduced the daily rate of cell wall deposition even though these cells progressively grew and matured in the presence of auxin. The intensity of these two processes increased and the cells deposited thicker walls when auxin was supplied during all stages of tracheid differentiation even though the period of maturation decreased. Under these conditions tracheids of compression wood type differentiated. Continuous availability of auxin causes earlier termination of tracheid maturation while lack of auxin results in a delay of autolysis of protoplasts. In this case auxin probably functions in a system specifying information concerning the position of the cells in respect to the cambial layer.

  4. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  5. Severe Malaria Infections Impair Germinal Center Responses by Inhibiting T Follicular Helper Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Victoria Ryg-Cornejo

    2016-01-01

    Full Text Available Naturally acquired immunity to malaria develops only after years of repeated exposure to Plasmodium parasites. Despite the key role antibodies play in protection, the cellular processes underlying the slow acquisition of immunity remain unknown. Using mouse models, we show that severe malaria infection inhibits the establishment of germinal centers (GCs in the spleen. We demonstrate that infection induces high frequencies of T follicular helper (Tfh cell precursors but results in impaired Tfh cell differentiation. Despite high expression of Bcl-6 and IL-21, precursor Tfh cells induced during infection displayed low levels of PD-1 and CXCR5 and co-expressed Th1-associated molecules such as T-bet and CXCR3. Blockade of the inflammatory cytokines TNF and IFN-γ or T-bet deletion restored Tfh cell differentiation and GC responses to infection. Thus, this study demonstrates that the same pro-inflammatory mediators that drive severe malaria pathology have detrimental effects on the induction of protective B cell responses.

  6. The Him gene reveals a balance of inputs controlling muscle differentiation in Drosophila.

    Science.gov (United States)

    Liotta, David; Han, Jun; Elgar, Stuart; Garvey, Clare; Han, Zhe; Taylor, Michael V

    2007-08-21

    Tissue development requires the controlled regulation of cell-differentiation programs. In muscle, the Mef2 transcription factor binds to and activates the expression of many genes and has a major positive role in the orchestration of differentiation. However, little is known about how Mef2 activity is regulated in vivo during development. Here, we characterize a gene, Holes in muscle (Him), which our results indicate is part of this control in Drosophila. Him expression rapidly declines as embryonic muscle differentiates, and consistent with this, Him overexpression inhibits muscle differentiation. This inhibitory effect is suppressed by mef2, implicating Him in the mef2 pathway. We then found that Him downregulates the transcriptional activity of Mef2 in both cell culture and in vivo. Furthermore, Him protein binds Groucho, a conserved, transcriptional corepressor, through a WRPW motif and requires this motif and groucho function to inhibit both muscle differentiation and Mef2 activity during development. Together, our results identify a mechanism that can inhibit muscle differentiation in vivo. We conclude that a balance of positive and negative inputs, including Mef2, Him, and Groucho, controls muscle differentiation during Drosophila development and suggest that one outcome is to hold developing muscle cells in a state with differentiation genes poised to be expressed.

  7. Distinct Gut-Derived Bacteria Differentially Affect Three Types of Antigen-Presenting Cells and Impact on NK- and T-Cell Responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Hansen, Anne Marie Valentin; Frøkiær, Hanne

    Objectives Gut bacteria are assumed essential for development and maintenance of a balanced immune system. Specifically, stimulation of antigen-presenting cells (APCs) by gut bacteria is important for polarisation of the immune response. This experiment was designed to reveal similarities...... and differences between the reaction patterns of three types of human APCs when stimulated with intestinal bacteria. Furthermore, the effect of these APCs on NK-cells and T-cells was examined. Methodology The APCs used in this study were blood monocytes, blood dendritic cells, and dendritic cells differentiated...... from monocytes. Monocyte-derived dendritic cells constitute a commonly used model of dendritic cell function. The APCs were cultured for 18 h with four different gut bacteria: Lactobacillus acidophilus X37, Lactobacillus reuteri DSM 12246, E. coli Nissle 1917 or Bifidobacterium longum Q46. Results...

  8. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Science.gov (United States)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  9. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.

    Science.gov (United States)

    Fu, Ying; Zhang, Hong; Mandal, Siddikun Nabi; Wang, Changyou; Chen, Chunhuan; Ji, Wanquan

    2016-01-01

    Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important crop diseases, causing severe economic losses to wheat production worldwide. However, there are few reports about the proteomic response to Bgt infection in resistant wheat. Hence, quantitative proteomic analysis of N9134, a resistant wheat line, was performed to explore the molecular mechanism of wheat in defense against Bgt. Comparing the leaf proteins of Bgt-inoculated N9134 with that of mock-inoculated controls, a total of 2182 protein-species were quantified by iTRAQ at 24, 48 and 72h postinoculation (hpi) with Bgt, of which 394 showed differential accumulation. These differentially accumulated protein-species (DAPs) mainly included pathogenesis-related (PR) polypeptides, oxidative stress responsive proteins and components involved in primary metabolic pathways. KEGG enrichment analysis showed that phenylpropanoid biosynthesis, phenylalanine metabolism and photosynthesis-antenna proteins were the key pathways in response to Bgt infection. InterProScan 5 and the Gibbs Motif Sampler cluster 394 DAPs into eight conserved motifs, which shared leucine repeats and histidine sites in the sequence motifs. Moreover, eight separate protein-protein interaction (PPI) networks were predicted from STRING database. This study provides a powerful platform for further exploration of the molecular mechanism underlying resistant wheat responding to Bgt. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive pathogenic disease in wheat-producing regions worldwide, resulting in severe yield reductions. Although many resistant wheat varieties have been cultivated, there are few reports about the proteomic response to Bgt infection in resistant wheat. Therefore, an iTRAQ-based quantitative proteomic analysis of a resistant wheat line (N9134) in response to Bgt infection has been performed. This paper provides new insights into the underlying molecular

  10. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    Science.gov (United States)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  11. Live cell imaging reveals marked variability in myoblast proliferation and fate

    Science.gov (United States)

    2013-01-01

    Background During the process of muscle regeneration, activated stem cells termed satellite cells proliferate, and then differentiate to form new myofibers that restore the injured area. Yet not all satellite cells contribute to muscle repair. Some continue to proliferate, others die, and others become quiescent and are available for regeneration following subsequent injury. The mechanisms that regulate the adoption of different cell fates in a muscle cell precursor population remain unclear. Methods We have used live cell imaging and lineage tracing to study cell fate in the C2 myoblast line. Results Analyzing the behavior of individual myoblasts revealed marked variability in both cell cycle duration and viability, but similarities between cells derived from the same parental lineage. As a consequence, lineage sizes and outcomes differed dramatically, and individual lineages made uneven contributions toward the terminally differentiated population. Thus, the cohort of myoblasts undergoing differentiation at the end of an experiment differed dramatically from the lineages present at the beginning. Treatment with IGF-I increased myoblast number by maintaining viability and by stimulating a fraction of cells to complete one additional cell cycle in differentiation medium, and as a consequence reduced the variability of the terminal population compared with controls. Conclusion Our results reveal that heterogeneity of responses to external cues is an intrinsic property of cultured myoblasts that may be explained in part by parental lineage, and demonstrate the power of live cell imaging for understanding how muscle differentiation is regulated. PMID:23638706

  12. Protein Profiles Reveal Diverse Responsive Signaling Pathways in Kernels of Two Maize Inbred Lines with Contrasting Drought Sensitivity

    Directory of Open Access Journals (Sweden)

    Liming Yang

    2014-10-01

    Full Text Available Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964 with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP, and protein profiles were investigated in developing kernels (35 DAP using iTRAQ (isobaric tags for relative and absolute quantitation. Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels.

  13. Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm

    Directory of Open Access Journals (Sweden)

    Junjie Lu

    2018-04-01

    Full Text Available Differentiation of human pluripotent stem cells towards definitive endoderm (DE is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency. Keywords: hPSC, Differentiation, Definitive endoderm, Heterogeneity, Single cell, RNA sequencing

  14. Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed

    Science.gov (United States)

    Giuliani, Alessandro; Tomita, Masaru

    2010-01-01

    Cell fate decision remarkably generates specific cell differentiation path among the multiple possibilities that can arise through the complex interplay of high-dimensional genome activities. The coordinated action of thousands of genes to switch cell fate decision has indicated the existence of stable attractors guiding the process. However, origins of the intracellular mechanisms that create “cellular attractor” still remain unknown. Here, we examined the collective behavior of genome-wide expressions for neutrophil differentiation through two different stimuli, dimethyl sulfoxide (DMSO) and all-trans-retinoic acid (atRA). To overcome the difficulties of dealing with single gene expression noises, we grouped genes into ensembles and analyzed their expression dynamics in correlation space defined by Pearson correlation and mutual information. The standard deviation of correlation distributions of gene ensembles reduces when the ensemble size is increased following the inverse square root law, for both ensembles chosen randomly from whole genome and ranked according to expression variances across time. Choosing the ensemble size of 200 genes, we show the two probability distributions of correlations of randomly selected genes for atRA and DMSO responses overlapped after 48 hours, defining the neutrophil attractor. Next, tracking the ranked ensembles' trajectories, we noticed that only certain, not all, fall into the attractor in a fractal-like manner. The removal of these genome elements from the whole genomes, for both atRA and DMSO responses, destroys the attractor providing evidence for the existence of specific genome elements (named “genome vehicle”) responsible for the neutrophil attractor. Notably, within the genome vehicles, genes with low or moderate expression changes, which are often considered noisy and insignificant, are essential components for the creation of the neutrophil attractor. Further investigations along with our findings might

  15. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  16. Simulation of spatially varying ground motions including incoherence, wave‐passage and differential site‐response effects

    DEFF Research Database (Denmark)

    Konakli, Katerina; Der Kiureghian, Armen

    2012-01-01

    A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed....

  17. Stability of abstract nonlinear nonautonomous differential-delay equations with unbounded history-responsive operators

    Science.gov (United States)

    Gil', M. I.

    2005-08-01

    We consider a class of nonautonomous functional-differential equations in a Banach space with unbounded nonlinear history-responsive operators, which have the local Lipshitz property. Conditions for the boundedness of solutions, Lyapunov stability, absolute stability and input-output one are established. Our approach is based on a combined usage of properties of sectorial operators and spectral properties of commuting operators.

  18. Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Rachael L Gerlach

    Full Text Available Replication, cell tropism and the magnitude of the host's antiviral immune response each contribute to the resulting pathogenicity of influenza A viruses (IAV in humans. In contrast to seasonal IAV in human cases, the 2009 H1N1 pandemic IAV (H1N1pdm shows a greater tropism for infection of the lung similar to H5N1. We hypothesized that host responses during infection of well-differentiated, primary human bronchial epithelial cells (wd-NHBE may differ between seasonal (H1N1 A/BN/59/07 and H1N1pdm isolates from a fatal (A/KY/180/10 and nonfatal (A/KY/136/09 case. For each virus, the level of infectious virus and host response to infection (gene expression and apical/basal cytokine/chemokine profiles were measured in wd-NHBE at 8, 24, 36, 48 and 72 hours post-infection (hpi. At 24 and 36 hpi, KY/180 showed a significant, ten-fold higher titer as compared to the other two isolates. Apical cytokine/chemokine levels of IL-6, IL-8 and GRO were similar in wd-NHBE cells infected by each of these viruses. At 24 and 36 hpi, NHBE cells had greater levels of pro-inflammatory cytokines including IFN-α, CCL2, TNF-α, and CCL5, when infected by pandemic viruses as compared with seasonal. Polarization of IL-6 in wd-NHBE cells was greatest at 36 hpi for all isolates. Differential polarized secretion was suggested for CCL5 across isolates. Despite differences in viral titer across isolates, no significant differences were observed in KY/180 and KY/136 gene expression intensity profiles. Microarray profiles of wd-NHBE cells diverged at 36 hpi with 1647 genes commonly shared by wd-NHBE cells infected by pandemic, but not seasonal isolates. Significant differences were observed in cytokine signaling, apoptosis, and cytoskeletal arrangement pathways. Our studies revealed differences in temporal dynamics and basal levels of cytokine/chemokine responses of wd-NHBE cells infected with each isolate; however, wd-NHBE cell gene intensity profiles were not significantly

  19. Human 45,X fibroblast transcriptome reveals distinct differentially expressed genes including long noncoding RNAs potentially associated with the pathophysiology of Turner syndrome.

    Directory of Open Access Journals (Sweden)

    Shriram N Rajpathak

    Full Text Available Turner syndrome is a chromosomal abnormality characterized by the absence of whole or part of the X chromosome in females. This X aneuploidy condition is associated with a diverse set of clinical phenotypes such as gonadal dysfunction, short stature, osteoporosis and Type II diabetes mellitus, among others. These phenotypes differ in their severity and penetrance among the affected individuals. Haploinsufficiency for a few X linked genes has been associated with some of these disease phenotypes. RNA sequencing can provide valuable insights to understand molecular mechanism of disease process. In the current study, we have analysed the transcriptome profiles of human untransformed 45,X and 46,XX fibroblast cells and identified differential expression of genes in these two karyotypes. Functional analysis revealed that these differentially expressing genes are associated with bone differentiation, glucose metabolism and gonadal development pathways. We also report differential expression of lincRNAs in X monosomic cells. Our observations provide a basis for evaluation of cellular and molecular mechanism(s in the establishment of Turner syndrome phenotypes.

  20. Corporate social responsibility as a competitive differential for the organizations success

    Directory of Open Access Journals (Sweden)

    Luiz Valdeci Primolan

    2007-12-01

    Full Text Available The success of a company isn’t entailed just to the success of its products or ser­vices. It is the result of a small successes series in a complex of articulations chain, people’s relationships and the way they lead their process inside and outside the company. Everyone, indiscriminately – employees, suppliers, customers, commu­nity and environment – they form an interdependence network which is the sup­port basis for a successful organization. In this context, this study aims a discussion concerning the importance of the corporative social responsibility as a competitive differential for the organizations success, taking it as an item of their strategy. The result of this bibliographically based piece of research show that the organizations that develops social responsibility actions differ from their competitors and arevalued by their clients.

  1. Differential growth response of Ulva lactuca to ammonium and nitrate assimilation

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Mikkelsen, Jørn Dalgaard; Meyer, Anne S

    2011-01-01

    and fluctuating levels of nitrogen sources. Our understanding of the influences of this varying condition on the uptake and growth responses of U. lactuca is limited. In this present work, we examined the growth response of U. lactuca exposed to different sources of nitrogen (NH4+; NO3−; and the combination NH4NO...... as the nitrogen source. The NH4Cl and NaNO3 rich media (50 μM of N) accelerated U. lactuca growth to a maximum specific growth rate of 16.4 ± 0.18% day−1 and 9.4 ± 0.72% day−1, respectively. The highest biomass production rate obtained was 22.5 ± 0.24 mg DW m−2·day−1. The presence of ammonium apparently...... discriminated the nitrate uptake by U. lactuca when exposed to NH4NO3. Apart from showing the significant differential growth response of U. lactuca to different nitrogen sources, the work exhibits the applicability of a photo-scanning approach for acquiring precise quantitative growth data for U. lactuca...

  2. Differential housing and novelty response: Protection and risk from locomotor sensitization.

    Science.gov (United States)

    Garcia, Erik J; Haddon, Tara N; Saucier, Donald A; Cain, Mary E

    2017-03-01

    High novelty seeking increases the risk for drug experimentation and locomotor sensitization. Locomotor sensitization to psychostimulants is thought to reflect neurological adaptations that promote the transition to compulsive drug taking. Rats reared in enrichment (EC) show less locomotor sensitization when compared to rats reared in isolation (IC) or standard conditions (SC). The current research study was designed to test if novelty response contributed locomotor sensitization and more importantly, if the different housing environments could change the novelty response to protect against the development of locomotor sensitization in both adolescence and adulthood. Experiment 1: rats were tested for their response to novelty using the inescapable novelty test (IEN) and pseudorandomly assigned to enriched (EC), isolated (IC), or standard (SC) housing conditions for 30days. After housing, they were tested with IEN. Rats were then administered amphetamine (0.5mg/kg) or saline and locomotor activity was measured followed by a sensitization test 14days later. Experiment 2: rats were tested in the IEN test early adulthood and given five administrations of amphetamine (0.3mg/kg) or saline and then either stayed in or switched housing environments for 30days. Rats were then re-tested in the IEN test in late adulthood and administered five more injections of their respective treatments and tested for locomotor sensitization. Results indicate that IC and SC increased the response to novelty. EC housing decreased locomotor response to amphetamine and saline, and SC housing increased the locomotor response to amphetamine. Mediation results indicated that the late adult novelty response fully mediates the locomotor response to amphetamine and saline, while the early adulthood novelty response did not. Differential housing changes novelty and amphetamine locomotor response. Novelty response is altered into adulthood and provides evidence that enrichment can be used to reduce

  3. Differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses to single epicutaneous immunization.

    Science.gov (United States)

    Lee, Chih-Hung; Chen, Jau-Shiuh; Chiu, Hsien-Ching; Hong, Chien-Hui; Liu, Ching-Yi; Ta, Yng-Cun; Wang, Li-Fang

    2016-12-01

    Epicutaneous immunization with allergens is an important sensitization route for atopic dermatitis. We recently showed in addition to the Th2 response following single epicutaneous immunization, a remarkable Th1 response is induced in B6 mice, but not in BALB/c mice, mimicking the immune response to allergens in human non-atopics and atopics. We investigated the underlying mechanisms driving this differential Th1 response between BALB/c and B6 mice. We characterized dermal dendritic cells by flow cytometric analysis. We measured the induced Th1/Th2 responses by measuring the IFN-γ/IL-13 contents of supernatants of antigen reactivation cultures of lymph node cells. We demonstrate that more dermal dendritic cells with higher activation status migrate into draining lymph nodes of B6 mice compared to BALB/c mice. Dermal dendritic cells of B6 mice have a greater ability to capture protein antigen than those of BALB/c mice. Moreover, increasing the activation status or amount of captured antigen in dermal dendritic cells induced a Th1 response in BALB/c mice. Further, differential activation behavior, but not antigen-capturing ability of dermal dendritic cells between BALB/c and B6 mice is dendritic cell-intrinsic. These results show that the differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses following single epicutaneous immunization. Furthermore, our findings highlight the potential differences between human atopics and non-atopics and provide useful information for the prediction and prevention of atopic diseases. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells

    DEFF Research Database (Denmark)

    Hattori, Naoko; Niwa, Tohru; Kimura, Kana

    2013-01-01

    . Bivalent modification was clearly visualized by iChmo in wild-type embryonic stem cells (ESCs) known to have it, whereas rarely in Suz12 knockout ESCs and mouse embryonic fibroblasts known to have little of it. iChmo was applied to analysis of epigenetic and phenotypic changes of heterogeneous cell......Combinations of histone modifications have significant biological roles, such as maintenance of pluripotency and cancer development, but cannot be analyzed at the single cell level. Here, we visualized a combination of histone modifications by applying the in situ proximity ligation assay, which...... population, namely, ESCs at an early stage of differentiation, and this revealed that the bivalent modification disappeared in a highly concerted manner, whereas phenotypic differentiation proceeded with large variations among cells. Also, using this method, we were able to visualize a combination...

  5. Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress.

    Science.gov (United States)

    Gust, Kurt A; Najar, Fares Z; Habib, Tanwir; Lotufo, Guilherme R; Piggot, Alan M; Fouke, Bruce W; Laird, Jennifer G; Wilbanks, Mitchell S; Rawat, Arun; Indest, Karl J; Roe, Bruce A; Perkins, Edward J

    2014-07-12

    Corals represent symbiotic meta-organisms that require harmonization among the coral animal, photosynthetic zooxanthellae and associated microbes to survive environmental stresses. We investigated integrated-responses among coral and zooxanthellae in the scleractinian coral Acropora formosa in response to an emerging marine pollutant, the munitions constituent, 1,3,5-trinitro-1,3,5 triazine (RDX; 5 day exposures to 0 (control), 0.5, 0.9, 1.8, 3.7, and 7.2 mg/L, measured in seawater). RDX accumulated readily in coral soft tissues with bioconcentration factors ranging from 1.1 to 1.5. Next-generation sequencing of a normalized meta-transcriptomic library developed for the eukaryotic components of the A. formosa coral holobiont was leveraged to conduct microarray-based global transcript expression analysis of integrated coral/zooxanthellae responses to the RDX exposure. Total differentially expressed transcripts (DET) increased with increasing RDX exposure concentrations as did the proportion of zooxanthellae DET relative to the coral animal. Transcriptional responses in the coral demonstrated higher sensitivity to RDX compared to zooxanthellae where increased expression of gene transcripts coding xenobiotic detoxification mechanisms (i.e. cytochrome P450 and UDP glucuronosyltransferase 2 family) were initiated at the lowest exposure concentration. Increased expression of these detoxification mechanisms was sustained at higher RDX concentrations as well as production of a physical barrier to exposure through a 40% increase in mucocyte density at the maximum RDX exposure. At and above the 1.8 mg/L exposure concentration, DET coding for genes involved in central energy metabolism, including photosynthesis, glycolysis and electron-transport functions, were decreased in zooxanthellae although preliminary data indicated that zooxanthellae densities were not affected. In contrast, significantly increased transcript expression for genes involved in cellular energy production

  6. Supplementary Material for: Potential impact of climate-related changes is buffered by differential responses to recruitment and interactions

    KAUST Repository

    Menge, Bruce A.; Hacker, Sally D.; Freidenburg, Tess; Lubchenco, Jane; Craig, Ryan; Rilov, Gil; Noble, Mae Marjore; Richmond, Erin

    2016-01-01

    Detection of ecosystem responsiveness to climatic perturbations can provide insight into climate change consequences. Recent analyses linking phytoplankton abundance and mussel recruitment to the North Pacific Gyre Oscillation (NPGO) revealed a paradox. Despite large increases in mussel recruitment beginning in 2000, adult mussel responses were idiosyncratic by site and intertidal zone, with no response at one long-term site, and increases in the low zone (1.5% per year) and decreases in the mid zone (1.3% per year) at the other. What are the mechanisms underlying these differential changes? Species interactions such as facilitation by barnacles and predation are potential determinants of successful mussel colonization. To evaluate these effects, we analyzed patterns of barnacle recruitment, determined if predation rate covaried with the increase in mussel recruitment, and tested facilitation interactions in a field experiment. Neither magnitude nor season of barnacle recruitment changed meaningfully with site or zone from the 1990s to the 2000s. In contrast to the relationship between NPGO and local-scale mussel recruitment, relationships between local-scale patterns of barnacle recruitment and climate indices were weak. Despite differences in rates of prey recruitment and abundance of sea stars in 1990–1991, 1999–2000, and 2007–2008, predation rates were nearly identical in experiments before, during, and after 1999–2000. The facilitation experiment showed that mussels M. trossulus only became abundant when barnacle recruitment was allowed, when abundance of barnacles reached high abundance of ∼50% cover, and when mussel recruitment was sufficiently high. Thus, in the low zone minimal changes in mussel abundance despite sharply increased recruitment rates are consistent with the hypothesis that change in adult mussel cover was buffered by the relative insensitivity of barnacle recruitment to climatic fluctuations, and a resultant lack of

  7. Differential Responsiveness to Cigarette Price by Education and Income among Adult Urban Chinese Smokers

    Science.gov (United States)

    Huang, Jidong; Zheng, Rong; Chaloupka, Frank J.; Fong, Geoffrey T.; Jiang, Yuan

    2015-01-01

    Background There are few studies that examine the impact of tobacco tax and price policies in China. In addition, very little is known about the differential responses to tax and price increases based on socioeconomic status in China. Objective The goal of this study is to estimate the conditional cigarette consumption price elasticity among adult urban smokers in China using individual level longitudinal survey data. We also examine the differential responses to cigarette price increases among groups with different income and/or educational levels. Methods Multivariate analyses using the general estimating equations (GEE) method were conducted to estimate the conditional cigarette demand price elasticity using data from the International Tobacco Control (ITC) China Survey, a longitudinal survey of adult smokers in seven cities in China. The first three waves of the ITC China Survey data were used in this analysis. Analyses based on subsample by education and income were conducted. Findings Our results show that overall conditional cigarette demand price elasticity ranges from −0.12 to −0.14, implying a 10% increase in cigarette price would result in a reduction in cigarette consumption among adult urban Chinese smokers by 1.2% to 1.4%. No differential responses to cigarette price increase were found across education levels. The price elasticity estimates do not differ between high income smokers and medium income smokers. However, cigarette consumption among low income smokers did not seem to decrease after a price increase, at least among those who continued to smoke. Conclusion Relative to many other low- and middle-income countries, cigarette consumption among Chinese adult smokers is not very sensitive to changes in cigarette prices. The total impact of cigarette price increase would be larger if its impact on smoking initiation and cessation, as well as the price-reducing behaviors such as brand switching and trading down, were taken into account. PMID

  8. Nonassociative learning as gated neural integrator and differentiator in stimulus-response pathways

    Directory of Open Access Journals (Sweden)

    Young Daniel L

    2006-08-01

    Full Text Available Abstract Nonassociative learning is a basic neuroadaptive behavior exhibited across animal phyla and sensory modalities but its role in brain intelligence is unclear. Current literature on habituation and sensitization, the classic "dual process" of nonassociative learning, gives highly incongruous accounts between varying experimental paradigms. Here we propose a general theory of nonassociative learning featuring four base modes: habituation/primary sensitization in primary stimulus-response pathways, and desensitization/secondary sensitization in secondary stimulus-response pathways. Primary and secondary modes of nonassociative learning are distinguished by corresponding activity-dependent recall, or nonassociative gating, of neurotransmission memory. From the perspective of brain computation, nonassociative learning is a form of integral-differential calculus whereas nonassociative gating is a form of Boolean logic operator – both dynamically transforming the stimulus-response relationship. From the perspective of sensory integration, nonassociative gating provides temporal filtering whereas nonassociative learning affords low-pass, high-pass or band-pass/band-stop frequency filtering – effectively creating an intelligent sensory firewall that screens all stimuli for attention and resultant internal model adaptation and reaction. This unified framework ties together many salient characteristics of nonassociative learning and nonassociative gating and suggests a common kernel that correlates with a wide variety of sensorimotor integration behaviors such as central resetting and self-organization of sensory inputs, fail-safe sensorimotor compensation, integral-differential and gated modulation of sensorimotor feedbacks, alarm reaction, novelty detection and selective attention, as well as a variety of mental and neurological disorders such as sensorimotor instability, attention deficit hyperactivity, sensory defensiveness, autism

  9. Proteomic and physiological analyses reveal the role of exogenous spermidine on cucumber roots in response to Ca(NO3)2 stress.

    Science.gov (United States)

    Du, Jing; Guo, Shirong; Sun, Jin; Shu, Sheng

    2018-05-01

    The mechanism of exogenous Spd-induced Ca(NO 3 ) 2 stress tolerance in cucumber was studied by proteomics and physiological analyses. Protein-protein interaction network revealed 13 key proteins involved in Spd-induced Ca(NO 3 ) 2 stress resistance. Ca(NO 3 ) 2 stress is one of the major reasons for secondary salinization that limits cucumber plant development in greenhouse. The conferred protective role of exogenous Spd on cucumber in response to Ca(NO 3 ) 2 stress cues involves changes at the cellular and physiological levels. To investigate the molecular foundation of exogenous Spd in Ca(NO 3 ) 2 stress tolerance, a proteomic approach was performed in our work. After a 9 days period of Ca(NO 3 ) 2 stress and/or exogenous Spd, 71 differential protein spots were confidently identified. The resulting proteins were enriched in seven different categories of biological processes, including protein metabolism, carbohydrate and energy metabolism, ROS homeostasis and stress defense, cell wall related, transcription, others and unknown. Protein metabolism (31.2%), carbohydrate and energy metabolism (15.6%), ROS homeostasis and stress defense (32.5%) were the three largest functional categories in cucumber root and most of them were significantly increased by exogenous Spd. The Spd-responsive protein interaction network revealed 13 key proteins, whose accumulation changes could be critical for Spd-induced resistance; all 13 proteins were upregulated by Spd at transcriptional and protein levels in response to Ca(NO 3 ) 2 stress. Furthermore, accumulation of antioxidant enzymes, non-enzymatic antioxidant and polyamines, along with reduction of H 2 O 2 and MDA, were detected after exogenous Spd application during Ca(NO 3 ) 2 stress. The results of these proteomic and physiological analyses in cucumber root may facilitate a better understanding of the underlying mechanism of Ca(NO 3 ) 2 stress tolerance mediated by exogenous Spd.

  10. RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyptus

    Science.gov (United States)

    2011-01-01

    Background In a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus to water shortage remain unclear. In this study, we compared the molecular responses of two commercial eucalyptus hybrids during the dry season. Both hybrids differ in productivity when grown under water deficit. Results Pyrosequencing of RNA extracted from shoot apices provided extensive transcriptome coverage - a catalog of 129,993 unigenes (49,748 contigs and 80,245 singletons) was generated from 398 million base pairs, or 1.14 million reads. The pyrosequencing data enriched considerably existing Eucalyptus EST collections, adding 36,985 unigenes not previously represented. Digital analysis of read abundance in 14,460 contigs identified 1,280 that were differentially expressed between the two genotypes, 155 contigs showing differential expression between treatments (irrigated vs. non irrigated conditions during the dry season), and 274 contigs with significant genotype-by-treatment interaction. The more productive genotype displayed a larger set of genes responding to water stress. Moreover, stress signal transduction seemed to involve different pathways in the two genotypes, suggesting that water shortage induces distinct cellular stress cascades. Similarly, the response of functional proteins also varied widely between genotypes: the most productive genotype decreased expression of genes related to photosystem, transport and secondary metabolism, whereas genes related to primary metabolism and cell organisation were over-expressed. Conclusions For the most productive genotype, the ability to express a broader set of genes in response to water availability appears to be a key characteristic in the maintenance

  11. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

    Science.gov (United States)

    van der Does, Anne M; Beekhuizen, Henry; Ravensbergen, Bep; Vos, Tim; Ottenhoff, Tom H M; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; Nibbering, Peter H

    2010-08-01

    The human cathelicidin LL-37 has broad-spectrum antimicrobial activity. It also participates at the interface of innate and adaptive immunity by chemoattracting immune effector cells, modulating the production of a variety of inflammatory mediators by different cell types, and regulating the differentiation of monocytes into dendritic cells. In this study, we investigated the effects of LL-37 on the differentiation of human monocytes into anti-inflammatory macrophages (MPhi-2; driven by M-CSF) versus proinflammatory macrophages (MPhi-1; driven by GM-CSF) as well as on fully differentiated MPhi-1 and MPhi-2. Results revealed that monocytes cultured with M-CSF in the presence of LL-37 resulted in macrophages displaying a proinflammatory signature, namely, low expression of CD163 and little IL-10 and profound IL-12p40 production on LPS stimulation. The effects of LL-37 on M-CSF-driven macrophage differentiation were dose- and time-dependent with maximal effects observed at 10 microg/ml when the peptide was present from the start of the cultures. The peptide enhanced the GM-CSF-driven macrophage differentiation. Exposure of fully differentiated MPhi-2 to LL-37 for 6 d resulted in macrophages that produced less IL-10 and more IL-12p40 on LPS stimulation than control MPhi-2. In contrast, LL-37 had no effect on fully differentiated MPhi-1. Peptide mapping using a set of 16 overlapping 22-mer peptides covering the complete LL-37 sequence revealed that the C-terminal portion of LL-37 is responsible for directing macrophage differentiation. Our results furthermore indicate that the effects of LL-37 on macrophage differentiation required internalization of the peptide. Together, we conclude that LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

  12. Microglial response to Alzheimer's disease is differentially modulated by voluntary wheel running and enriched environments.

    Science.gov (United States)

    Rodríguez, J J; Noristani, H N; Verkhratsky, A

    2015-03-01

    Alzheimer's disease (AD) is an untreatable neurodegenerative disease that deteriorates memory. Increased physical/cognitive activity reduces dementia risk by promoting neuronal and glial response. Although few studies have investigated microglial response in wild-type rodents following exposure to physical/cognitive stimulation, environmental-induced changes of microglia response to AD have been neglected. We investigated effects of running (RUN) and enriched (ENR) environments on numerical density (N v, #/mm(3)) and morphology of microglia in a triple transgenic (3×Tg-AD) mouse model of AD that closely mimics AD pathology in humans. We used immunohistochemical approach to characterise microglial domain by measuring their overall cell surface, volume and somata volume. 3×Tg-AD mice housed in standard control (STD) environment showed significant increase in microglial N v (11.7 %) in CA1 stratum lacunosum moleculare (S.Mol) of the hippocampus at 12 months compared to non-transgenic (non-Tg) animals. Exposure to combined RUN and ENR environments prevented an increase in microglial N v in 3×Tg-AD and reduced microglial numbers to non-Tg control levels. Interestingly, 3×Tg-AD mice housed solely in ENR environment displayed significant decrease in microglial N v in CA1 subfield (9.3 % decrease), stratum oriens (11.5 % decrease) and S.Mol (7.6 % decrease) of the hippocampus compared to 3×Tg-AD mice housed in STD environment. Morphological analysis revealed microglial hypertrophy due to pronounced increase in microglia surface, volume and somata volume (61, 78 and 41 %) in 3×Tg-AD mice housed in RUN (but not in ENR) compared to STD environment. These results indicate that exposure to RUN and ENR environments have differential effects on microglial density and activation-associated changes in microglial morphology.

  13. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    Science.gov (United States)

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  14. Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant.

    Science.gov (United States)

    Chen, Jingjing; Xie, Jianghui; Duan, Yajie; Hu, Huigang; Hu, Yulin; Li, Weiming

    2016-05-27

    Dwarfism is one of the most valuable traits in banana breeding because semi-dwarf cultivars show good resistance to damage by wind and rain. Moreover, these cultivars present advantages of convenient cultivation, management, and so on. We obtained a dwarf mutant '8818-1' through EMS (ethyl methane sulphonate) mutagenesis of Williams banana 8818 (Musa spp. AAA group). Our research have shown that gibberellins (GAs) content in 8818-1 false stems was significantly lower than that in its parent 8818 and the dwarf type of 8818-1 could be restored by application of exogenous GA3. Although GA exerts important impacts on the 8818-1 dwarf type, our understanding of the regulation of GA metabolism during banana dwarf mutant development remains limited. Genome-wide screening revealed 36 candidate GA metabolism genes were systematically identified for the first time; these genes included 3 MaCPS, 2 MaKS, 1 MaKO, 2 MaKAO, 10 MaGA20ox, 4 MaGA3ox, and 14 MaGA2ox genes. Phylogenetic tree and conserved protein domain analyses showed sequence conservation and divergence. GA metabolism genes exhibited tissue-specific expression patterns. Early GA biosynthesis genes were constitutively expressed but presented differential regulation in different tissues in Williams banana. GA oxidase family genes were mainly transcribed in young fruits, thus suggesting that young fruits were the most active tissue involved in GA metabolism, followed by leaves, bracts, and finally approximately mature fruits. Expression patterns between 8818 and 8818-1 revealed that MaGA20ox4, MaGA20ox5, and MaGA20ox7 of the MaGA20ox gene family and MaGA2ox7, MaGA2ox12, and MaGA2ox14 of the MaGA2ox gene family exhibited significant differential expression and high-expression levels in false stems. These genes are likely to be responsible for the regulation of GAs content in 8818-1 false stems. Overall, phylogenetic evolution, tissue specificity and differential expression analyses of GA metabolism genes can provide a

  15. Genomic Microdiversity of Bifidobacterium pseudocatenulatum Underlying Differential Strain-Level Responses to Dietary Carbohydrate Intervention

    Directory of Open Access Journals (Sweden)

    Guojun Wu

    2017-02-01

    Full Text Available The genomic basis of the response to dietary intervention of human gut beneficial bacteria remains elusive, which hinders precise manipulation of the microbiota for human health. After receiving a dietary intervention enriched with nondigestible carbohydrates for 105 days, a genetically obese child with Prader-Willi syndrome lost 18.4% of his body weight and showed significant improvement in his bioclinical parameters. We obtained five isolates (C1, C15, C55, C62, and C95 of one of the most abundantly promoted beneficial species, Bifidobacterium pseudocatenulatum, from a postintervention fecal sample. Intriguingly, these five B. pseudocatenulatum strains showed differential responses during the dietary intervention. Two strains were largely unaffected, while the other three were promoted to different extents by the changes in dietary carbohydrate resources. The differential responses of these strains were consistent with their functional clustering based on the COGs (Clusters of Orthologous Groups, including those involved with the ABC-type sugar transport systems, suggesting that the strain-specific genomic variations may have contributed to the niche adaption. Particularly, B. pseudocatenulatum C15, which had the most diverse types and highest gene copy numbers of carbohydrate-active enzymes targeting plant polysaccharides, had the highest abundance after the dietary intervention. These studies show the importance of understanding genomic diversity of specific members of the gut microbiota if precise nutrition approaches are to be realized.

  16. Bistable switches control memory and plasticity in cellular differentiation

    Science.gov (United States)

    Wang, Lei; Walker, Brandon L.; Iannaccone, Stephen; Bhatt, Devang; Kennedy, Patrick J.; Tse, William T.

    2009-01-01

    Development of stem and progenitor cells into specialized tissues in multicellular organisms involves a series of cell fate decisions. Cellular differentiation in higher organisms is generally considered irreversible, and the idea of developmental plasticity in postnatal tissues is controversial. Here, we show that inhibition of mitogen-activated protein kinase (MAPK) in a human bone marrow stromal cell-derived myogenic subclone suppresses their myogenic ability and converts them into satellite cell-like precursors that respond to osteogenic stimulation. Clonal analysis of the induced osteogenic response reveals ultrasensitivity and an “all-or-none” behavior, hallmarks of a bistable switch mechanism with stochastic noise. The response demonstrates cellular memory, which is contingent on the accumulation of an intracellular factor and can be erased by factor dilution through cell divisions or inhibition of protein synthesis. The effect of MAPK inhibition also exhibits memory and appears to be controlled by another bistable switch further upstream that determines cell fate. Once the memory associated with osteogenic differentiation is erased, the cells regain their myogenic ability. These results support a model of cell fate decision in which a network of bistable switches controls inducible production of lineage-specific differentiation factors. A competitive balance between these factors determines cell fate. Our work underscores the dynamic nature of cellular differentiation and explains mechanistically the dual properties of stability and plasticity associated with the process. PMID:19366677

  17. Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea.

    Directory of Open Access Journals (Sweden)

    Tom O G Tytgat

    Full Text Available Plants respond to herbivore attack by rapidly inducing defenses that are mainly regulated by jasmonic acid (JA. Due to the systemic nature of induced defenses, attack by root herbivores can also result in a shoot response and vice versa, causing interactions between above- and belowground herbivores. However, little is known about the molecular mechanisms underlying these interactions. We investigated whether plants respond differently when roots or shoots are induced. We mimicked herbivore attack by applying JA to the roots or shoots of Brassica oleracea and analyzed molecular and chemical responses in both organs. In shoots, an immediate and massive change in primary and secondary metabolism was observed. In roots, the JA-induced response was less extensive and qualitatively different from that in the shoots. Strikingly, in both roots and shoots we also observed differential responses in primary metabolism, development as well as defense specific traits depending on whether the JA induction had been below- or aboveground. We conclude that the JA response is not only tissue-specific but also dependent on the organ that was induced. Already very early in the JA signaling pathway the differential response was observed. This indicates that both organs have a different JA signaling cascade, and that the signal eliciting systemic responses contains information about the site of induction, thus providing plants with a mechanism to tailor their responses specifically to the organ that is damaged.

  18. Biophysical characteristics reveal neural stem cell differentiation potential.

    Directory of Open Access Journals (Sweden)

    Fatima H Labeed

    Full Text Available Distinguishing human neural stem/progenitor cell (huNSPC populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers.We used dielectrophoresis (DEP to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates.We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.

  19. Small RNA profiling reveals important roles for miRNAs in Arabidopsis response to Bacillus velezensis FZB42.

    Science.gov (United States)

    Xie, Shanshan; Jiang, Haiyang; Xu, Zhilan; Xu, Qianqian; Cheng, Beijiu

    2017-09-20

    Bacillus velezensis FZB42 (previously classified as Bacillus amyloliquefaciens FZB42) has been confirmed to successfully colonize plant roots and enhance defense response against pathogen infection. This study indicated that FZB42 inoculation enhanced Arabidopsis defense response against Pseudomonas syringae DC3000 through inducing the expression of PR1, PDF1.2 and stomata closure. To further clarify the induced defense response at miRNA level, sRNA libraries from Arabidopsis roots inoculated with FZB42 and control were constructed and sequenced. The reads of 21nt and 24nt in length were the most abundant groups in FZB42-treated library and control library, respectively. 234 known miRNAs and 16 novel miRNAs were identified. Among them, 11 known miRNAs and 4 novel miRNAs were differentially expressed after FZB42 inoculation. Moreover cis-elements (TC-rich repeats, TCA-element and CGTCA-motif) associated with plant defense were also found in the promoters of these miRNAs. Additionally, 141 mRNAs were predicted as potential targets of these differentially expressed miRNAs. GO annotations of the target genes indicated their potential roles in polyamine biosynthetic process and intracellular protein transport biological process, which may contribute to increased defense response. Our findings indicated that Bacillus velezensis FZB42 inoculation altered the expression of Arabidopsis miRNAs and their target genes, which were associated with defense response. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and T-bet.

    Science.gov (United States)

    Xin, Annie; Masson, Frederick; Liao, Yang; Preston, Simon; Guan, Tianxia; Gloury, Renee; Olshansky, Moshe; Lin, Jian-Xin; Li, Peng; Speed, Terence P; Smyth, Gordon K; Ernst, Matthias; Leonard, Warren J; Pellegrini, Marc; Kaech, Susan M; Nutt, Stephen L; Shi, Wei; Belz, Gabrielle T; Kallies, Axel

    2016-04-01

    T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.

  1. A fresh look at linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    Science.gov (United States)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  2. Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease

    Science.gov (United States)

    Bouquet, Jerome; Soloski, Mark J.; Swei, Andrea; Cheadle, Chris; Federman, Scot; Billaud, Jean-Noel; Rebman, Alison W.; Kabre, Beniwende; Halpert, Richard; Boorgula, Meher

    2016-01-01

    ABSTRACT Lyme disease is a tick-borne illness caused by the bacterium Borrelia burgdorferi, and approximately 10 to 20% of patients report persistent symptoms lasting months to years despite appropriate treatment with antibiotics. To gain insights into the molecular basis of acute Lyme disease and the ensuing development of post-treatment symptoms, we conducted a longitudinal transcriptome study of 29 Lyme disease patients (and 13 matched controls) enrolled at the time of diagnosis and followed for up to 6 months. The differential gene expression signature of Lyme disease following the acute phase of infection persisted for at least 3 weeks and had fewer than 44% differentially expressed genes (DEGs) in common with other infectious or noninfectious syndromes. Early Lyme disease prior to antibiotic therapy was characterized by marked upregulation of Toll-like receptor signaling but lack of activation of the inflammatory T-cell apoptotic and B-cell developmental pathways seen in other acute infectious syndromes. Six months after completion of therapy, Lyme disease patients were found to have 31 to 60% of their pathways in common with three different immune-mediated chronic diseases. No differential gene expression signature was observed between Lyme disease patients with resolved illness to those with persistent symptoms at 6 months post-treatment. The identification of a sustained differential gene expression signature in Lyme disease suggests that a panel of selected human host-based biomarkers may address the need for sensitive clinical diagnostics during the “window period” of infection prior to the appearance of a detectable antibody response and may also inform the development of new therapeutic targets. PMID:26873097

  3. Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes

    OpenAIRE

    Palmer, Alan R; Shackleton, Trevor M; Sumner, Christian J; Zobay, Oliver; Rees, Adrian

    2013-01-01

    A differential response to sound frequency is a fundamental property of auditory neurons. Frequency analysis in the cochlea gives rise to V-shaped tuning functions in auditory nerve fibres, but by the level of the inferior colliculus (IC), the midbrain nucleus of the auditory pathway, neuronal receptive fields display diverse shapes that reflect the interplay of excitation and inhibition. The origin and nature of these frequency receptive field types is still open to question. One proposed hy...

  4. Justification of response time testing requirements for pressure and differential pressure sensors

    International Nuclear Information System (INIS)

    Weiss, J.M.; Mayo, C.; Swisher, V.

    1991-01-01

    This paper reports on response time testing (RTT) requirements that were imposed on pressure, differential pressure sensors as a conservative approach to insure that assumptions in the plant safety analyses were met. The purpose of this project has been to identify the need for response time testing using the bases identified in IEEE Standard 338. A combination of plant data analyses, failure modes, and effects analyses (FMEAs) was performed. Eighteen currently qualified sensor models were utilized. The results of these analyses indicate that there are only two failure modes that affect response time, not sensor output concurrently. For these failure modes, appropriate plant actions and testing techniques were identified. Safety system RTT requirements were established by IEEE Standard 338-1975. Criteria for the Periodic Testing of Class IE Power, Protection Systems, presuming the need existed for this testing. This standard established guidelines for periodic testing to verify that loop response times of installed nuclear safety-related equipment were within the limits presumed by the design basis plant transient, accident analyses. The requirements covered all passive, active components in an instrument loop, including sensors. Individual components could be tested either in groups or separately to determine the overall loop response time

  5. Correlation of epiphyllous bud differentiation with foliar senescence in crassulacean succulent Kalanchoe pinnata as revealed by thidiazuron and ethrel application.

    Science.gov (United States)

    Jaiswal, Sarita; Sawhney, Sudhir

    2006-05-01

    Leaves of Kalanchoe pinnata have crenate margins with each notch bearing a dormant bud competent to develop into a healthy plantlet. Leaf detachment is a common signal for inducing two contrastingly different leaf-based processes, i.e. epiphyllous bud development into plantlet and foliar senescence. To investigate differentiation of bud and its correlation, if any, with foliar senescence, thidiazuron (TDZ), having cytokinin activity and ethrel (ETH), an ethylene releasing compound, were employed. The experimental system was comprised of marginal leaf discs, each harbouring an epiphyllous bud. Most of the growth characteristics of plantlet developing from the epiphyllous bud were significantly inhibited by TDZ but promoted by ETH. The two regulators modulated senescence in a manner different for leaf discs and plantlet leaves. Thus, TDZ caused a complete retention whereas ETH a complete loss of chlorophyll in the leaf discs. In contrast, the former resulted in a complete depletion of chlorophyll from the plantlet leaves producing an albino effect, while the latter reduced it by 50% only. In combined dispensation of the two regulators, the effect of TDZ was expressed in majority of responses studied. The results presented in this investigation clearly show that the foliar processes of epiphyllous bud differentiation and senescence are interlinked as TDZ that delayed senescence inhibited epiphyllous bud differentiation and ETH that hastened senescence promoted it. A working hypothesis to interpret responsiveness of the disc-bud composite on lines of a source-sink duo, has been proposed.

  6. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs.

    Science.gov (United States)

    Gálvez, José Héctor; Tai, Helen H; Lagüe, Martin; Zebarth, Bernie J; Strömvik, Martina V

    2016-05-19

    Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency.

  7. Do cognitive measures of response inhibition differentiate between attention deficit/hyperactivity disorder and borderline personality disorder?

    NARCIS (Netherlands)

    Dijk, F.E. van; Schellekens, A.F.A.; Broek, P.J.A. van den; Kan, C.C.; Verkes, R.J.; Buitelaar, J.K.

    2014-01-01

    This study examined whether cognitive measures of response inhibition derived from the AX-CPT are able to differentiate between adult attention deficit/hyperactivity disorder (ADHD), borderline personality disorder (BPD), and healthy controls (HC). Current DSM-IV-TR symptoms of ADHD and BPD were

  8. Differential responsiveness to a parenting intervention for mothers in substance abuse treatment.

    Science.gov (United States)

    Paris, Ruth; Herriott, Anna; Holt, Melissa; Gould, Karen

    2015-12-01

    This study examines the relationship between levels of psychological distress in substance-dependent mothers and their differential response to a dyadic parent-child intervention. A sample of 66 mothers who were receiving treatment for substance abuse, as well as a simultaneous parenting intervention, were interviewed pre and post-treatment on measures of psychological distress, adult and child trauma history, parental reflective functioning, and child social-emotional development. Additionally, clinicians provided assessments of the parent-child relationships. As anticipated, trauma histories for mothers and children, children's social emotional development, and parental reflective functioning were associated with aspects of maternal psychological distress. Kruskal-Wallis and subsequent Wilcoxson signed rank tests revealed that women with highest levels of baseline psychological distress showed significant improvements in psychological functioning post-treatment while women with moderately elevated levels of psychological distress did not. Women who were most distressed at baseline showed increased levels of parental reflective functioning post-treatment while women with moderate and lower levels of baseline psychological distress showed improvements on clinician-rated assessments of parent-child relationships. Chi Square analyses showed that parents who endorsed the highest levels of distress at baseline reported that their children's risk status regarding social-emotional development decreased post-treatment. Despite similarities in substance dependence, mothers in this sample had different needs and outcomes in the context of this parenting intervention due to variation in mental health. Given this variation, parenting interventions for substance-dependent mothers need to account for the individual differences in levels of psychological distress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver.

    Science.gov (United States)

    Mailer, Reiner K W; Gisterå, Anton; Polyzos, Konstantinos A; Ketelhuth, Daniel F J; Hansson, Göran K

    2017-05-26

    The liver is the central organ that responds to dietary cholesterol intake and facilitates the release and clearance of lipoprotein particles. Persistent hypercholesterolemia leads to immune responses against lipoprotein particles that drive atherosclerosis. However, the effect of hypercholesterolemia on hepatic T-cell differentiation remains unknown. To investigate hepatic T-cell subsets upon hypercholesterolemia. We observed that hypercholesterolemia elevated the intrahepatic regulatory T (Treg) cell population and increased the expression of transforming growth factor-β1 in the liver. Adoptive transfer experiments revealed that intrahepatically differentiated Treg cells relocated to the inflamed aorta in atherosclerosis-prone low-density lipoprotein receptor deficient ( Ldlr -/- ) mice. Moreover, hypercholesterolemia induced the differentiation of intrahepatic, but not intrasplenic, Th17 cells in wild-type mice, whereas the disrupted liver homeostasis in hypercholesterolemic Ldlr -/- mice led to intrahepatic Th1 cell differentiation and CD11b + CD11c + leukocyte accumulation. Our results elucidate a new mechanism that controls intrahepatic T-cell differentiation during atherosclerosis development and indicates that intrahepatically differentiated T cells contribute to the CD4 + T-cell pool in the atherosclerotic aorta. © 2017 American Heart Association, Inc.

  10. Differential Effects of Motor Efference Copies and Proprioceptive Information on Response Evaluation Processes

    Science.gov (United States)

    Stock, Ann-Kathrin; Wascher, Edmund; Beste, Christian

    2013-01-01

    It is well-kown that sensory information influences the way we execute motor responses. However, less is known about if and how sensory and motor information are integrated in the subsequent process of response evaluation. We used a modified Simon Task to investigate how these streams of information are integrated in response evaluation processes, applying an in-depth neurophysiological analysis of event-related potentials (ERPs), time-frequency decomposition and sLORETA. The results show that response evaluation processes are differentially modulated by afferent proprioceptive information and efference copies. While the influence of proprioceptive information is mediated via oscillations in different frequency bands, efference copy based information about the motor execution is specifically mediated via oscillations in the theta frequency band. Stages of visual perception and attention were not modulated by the interaction of proprioception and motor efference copies. Brain areas modulated by the interactive effects of proprioceptive and efference copy based information included the middle frontal gyrus and the supplementary motor area (SMA), suggesting that these areas integrate sensory information for the purpose of response evaluation. The results show how motor response evaluation processes are modulated by information about both the execution and the location of a response. PMID:23658624

  11. Identification of Powdery Mildew Responsive Genes in Hevea brasiliensis through mRNA Differential Display

    Science.gov (United States)

    Li, Xiang; Bi, Zhenghong; Di, Rong; Liang, Peng; He, Qiguang; Liu, Wenbo; Miao, Weiguo; Zheng, Fucong

    2016-01-01

    Powdery mildew is an important disease of rubber trees caused by Oidium heveae B. A. Steinmann. As far as we know, none of the resistance genes related to powdery mildew have been isolated from the rubber tree. There is little information available at the molecular level regarding how a rubber tree develops defense mechanisms against this pathogen. We have studied rubber tree mRNA transcripts from the resistant RRIC52 cultivar by differential display analysis. Leaves inoculated with the spores of O. heveae were collected from 0 to 120 hpi in order to identify pathogen-regulated genes at different infection stages. We identified 78 rubber tree genes that were differentially expressed during the plant–pathogen interaction. BLAST analysis for these 78 ESTs classified them into seven functional groups: cell wall and membrane pathways, transcription factor and regulatory proteins, transporters, signal transduction, phytoalexin biosynthesis, other metabolism functions, and unknown functions. The gene expression for eight of these genes was validated by qRT-PCR in both RRIC52 and the partially susceptible Reyan 7-33-97 cultivars, revealing the similar or differential changes of gene expressions between these two cultivars. This study has improved our overall understanding of the molecular mechanisms of rubber tree resistance to powdery mildew. PMID:26840302

  12. Effects of Substrate and Co-Culture on Neural Progenitor Cell Differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Erin Boote [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In recent years the study of stem and progenitor cells has moved to the forefront of research. Since the isolation of human hematopoietic stem cells in 1988 and the subsequent discovery of a self renewing population of multipotent cells in many tissues, many researchers have envisioned a better understanding of development and potential clinical usage in intractable diseases. Both these goals, however, depend on a solid understanding of the intracellular and extracellular forces that cause stem cells to differentiate to a specific cell fate. Many diseases of large scale cell loss have been suggested as candidates for stem cell based treatments. It is proposed that replacing the function of the damaged or defective cells by specific differentiation of stem or progenitor cells could treat the disease. Before cells can be directed to specific lineages, the mechanisms of differentiation must be better understood. Differentiation in vivo is an intensively complex system that is difficult to study. The goal of this research is to develop further understanding of the effects of soluble and extracellular matrix (ECM) cues on the differentiation of neural progenitor cells with the use of a simplified in vitro culture system. Specific research objectives are to study the differentiation of neural progenitor cells in response to astrocyte conditioned medium and protein substrate composition and concentration. In an effort to reveal the mechanism of the conditioned medium interaction, a test for the presence of a feedback loop between progenitor cells and astrocytes is presented along with an examination of conditioned medium storage temperature, which can reveal enzymatic dependencies. An examination of protein substrate composition and concentration will help to reveal the role of any ECM interactions on differentiation. This thesis is organized into a literature review covering recent advances in use of external modulators of differentiation such as surface coatings, co

  13. Comparative analyses reveal different consequences of two oxidative stress inducers, gamma irradiation and potassium tellurite, in the extremophile Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Narasimha, Anaganti; Basu, Bhakti; Apte, Shree Kumar

    2014-01-01

    Proteomic and mass spectrometric analyses revealed differential responses of D. radiodurans to two oxidative stressors. While both elicited oxidative stress alleviation response, major divergence was observed at the level of DNA repair, metabolic pathways and protein homeostasis. Response to gamma irradiation was focused on DNA repair and ROS scavenging but supported metabolism as well as protein homeostasis. Tellurite, induced oxidative stress alleviation but decreased reducing affected and adversely affected metabolism and protein homeostasis

  14. Perturbations in carotenoid and porphyrin status result in differential photooxidative stress signaling and antioxidant responses.

    Science.gov (United States)

    Park, Joon-Heum; Jung, Sunyo

    2018-02-12

    We examined differential photooxidative stress signaling and antioxidant responses in rice plants treated with norflurazon (NF) and oxyfluorfen (OF), which are inhibitors of carotenoid and porphyrin biosynthesis, respectively. Plants treated with OF markedly increased levels of cellular leakage and malondialdehyde, compared with NF-treated plants, showing that OF plants suffered greater oxidative damage with respect to membrane integrity. The enhanced production of H 2 O 2 in response to OF, but not NF, indicates the important role of H 2 O 2 in activation of photooxidative stress signaling in OF plants. In response to NF and OF, the increased levels of free salicylic acid as well as maintenance of the redox ratio of ascorbate and glutathione pools to a certain level are considered to be crucial factors in the protection against photooxidation. Plants treated with OF greatly up-regulated catalase (CAT) activity and Cat transcript levels, compared with NF-treated plants. Interestingly, NF plants showed no noticeable increase in oxidative metabolism, although they did show considerable increases in ascorbate peroxidase (APX) and peroxidase activities and transcript levels of APX, as in OF plants. Our results suggest that perturbations in carotenoid and porphyrin status by NF and OF can be sensed by differential photooxidative stress signaling, such as that involving H 2 O 2 , redox state of ascorbate and glutathione, and salicylic acid, which may be responsible for at least part of the induction of ROS-scavenging enzymes. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. GSK-3 Inhibition Sensitizes Acute Myeloid Leukemia Cells to 1,25D-Mediated Differentiation

    Science.gov (United States)

    Gupta, Kalpana; Stefan, Tammy; Ignatz-Hoover, James; Moreton, Stephen; Parizher, Gary; Saunthararajah, Yogen; Wald, David N.

    2017-01-01

    1,25-dihydroxyvitamin D3 (1,25D), the biologically active form of vitamin D, is widely considered a promising therapy for acute myeloid leukemia (AML) based on its ability to drive differentiation of leukemic cells. However, clinical trials have been disappointing in part to dose-limiting hypercalcemia. Here we show how inhibiting glycogen synthase kinase 3 (GSK3) can improve the differentiation response of AML cells to 1,25D-mediated differentiation. GSK3 inhibition in AML cells enhanced the differentiating effects of low concentrations of 1,25D. In addition, GSK3 inhibition augmented the ability of 1,25D to induce irreversible growth inhibition and slow the progression of AML in mouse models. Mechanistic studies revealed that GSK3 inhibition led to the hyperphosphorylation of the vitamin D receptor (VDR), enabling an interaction between VDR and the coactivator, SRC-3 (NCOA3), thereby increasing transcriptional activity. We also found that activation of JNK-mediated pathways in response to GSK3 inhibition contributed to the potentiation of 1,25D-induced differentiation. Taken together, our findings offer a preclinical rationale to explore the repositioning of GSK3 inhibitors to enhance differentiation-based therapy for AML treatment. PMID:26964622

  16. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal.

    Science.gov (United States)

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-05-18

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transformation. Cbx3 is up-regulated during gonad reversal and is likely to have a role in spermatogenesis. Rab37 is down-regulated during the reversal and is mainly associated with oogenesis. Both Cbx3 and Rab37 are linked up in a protein network. These datasets in gonadal proteomes provide a new resource for further studies in gonadal development.

  17. Differential Kolaviron Attenuated Contractile Responses to Agonists on Isolated Rabbit Aorta in Na+-K+ Pump Blockade.

    Science.gov (United States)

    Uche, O K; Ofeimun, J O

    2017-12-30

    The mechanism of kolaviron-induced vascular smooth muscles (VSMs) responses has not been fullycharacterised. The present study investigated the effect and mode of action of kolaviron a biflavanoid-complex and majorcomponent of Garcinia Kola-fraction on differential contractile responses to agonists-[phenylephrine (PHE) and histamine(HIST)] on VSMs of rabbit isolated aortic rings in K+-free physiological salt solution (KFPSS). Cumulative concentrationresponses to PHE and HIST were examined on 2 mm ring segments of the thoracic aortae which were suspended in 20 mlorgan baths containing physiological salt solution (PSS) for measurement of isometric contractions, at 370C and pH 7.4. Themedium was bubbled with 95% O2, 5% CO2, and rings were given an initial load of 1g. Cumulative contractile responses tothe agonists were studied in normal PSS (control) and following 30 minutes exposure to K+-free PSS and/or 800µg/mLkolaviron. Contractile responses were expressed as percentage of 80 mM K+ contractions in normal PSS. Maximalcontractions (Emax) induced by PHE and HIST compared with high K+ contraction in the various preparations weredifferentially altered following exposure to K+-free or 800µg/mL kolaviron in both intact (+E) and endotheliumdenuded (-E) rings. Based on the efficacy (Emax) and potency (EC50) values for the dose-response curves of the agonists, it isconcluded that enhanced differential contractile responses elicited by agonists in K+-free PSS were significantly attenuatedby kolaviron concentration-dependently. This observation probably suggests the existence of another pathway of kolavironmode of action in vascular smooth muscle reactivity.

  18. Integrated analysis of miRNAs and transcriptomes in Aedes albopictus midgut reveals the differential expression profiles of immune-related genes during dengue virus serotype-2 infection.

    Science.gov (United States)

    Liu, Yan-Xia; Li, Fen-Xiang; Liu, Zhuan-Zhuan; Jia, Zhi-Rong; Zhou, Yan-He; Zhang, Hao; Yan, Hui; Zhou, Xian-Qiang; Chen, Xiao-Guang

    2016-06-01

    Mosquito microRNAs (miRNAs) are involved in host-virus interaction, and have been reported to be altered by dengue virus (DENV) infection in Aedes albopictus (Diptera: Culicidae). However, little is known about the molecular mechanisms of Aedes albopictus midgut-the first organ to interact with DENV-involved in its resistance to DENV. Here we used high-throughput sequencing to characterize miRNA and messenger RNA (mRNA) expression patterns in Aedes albopictus midgut in response to dengue virus serotype 2. A total of three miRNAs and 777 mRNAs were identified to be differentially expressed upon DENV infection. For the mRNAs, we identified 198 immune-related genes and 31 of them were differentially expressed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses also showed that the differentially expressed immune-related genes were involved in immune response. Then the differential expression patterns of six immune-related genes and three miRNAs were confirmed by real-time reverse transcription polymerase chain reaction. Furthermore, seven known miRNA-mRNA interaction pairs were identified by aligning our two datasets. These analyses of miRNA and mRNA transcriptomes provide valuable information for uncovering the DENV response genes and provide a basis for future study of the resistance mechanisms in Aedes albopictus midgut. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  19. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis.

    Science.gov (United States)

    Liu, Fenglong; Vantoai, Tara; Moy, Linda P; Bock, Geoffrey; Linford, Lara D; Quackenbush, John

    2005-03-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic P(SAG12):ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants.

  20. Transcriptional and metabolic insights into the differential physiological responses of arabidopsis to optimal and supraoptimal atmospheric CO2.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    Full Text Available BACKGROUND: In tightly closed human habitats such as space stations, locations near volcano vents and closed culture vessels, atmospheric CO(2 concentration may be 10 to 20 times greater than Earth's current ambient levels. It is known that super-elevated (SE CO(2 (>1,200 µmol mol(-1 induces physiological responses different from that of moderately elevated CO(2 (up to 1,200 µmol mol(-1, but little is known about the molecular responses of plants to supra-optimal [CO(2]. METHODOLOGY/PRINCIPAL FINDINGS: To understand the underlying molecular causes for differential physiological responses, metabolite and transcript profiles were analyzed in aerial tissue of Arabidopsis plants, which were grown under ambient atmospheric CO(2 (400 µmol mol(-1, elevated CO(2 (1,200 µmol mol(-1 and SE CO(2 (4,000 µmol mol(-1, at two developmental stages early and late vegetative stage. Transcript and metabolite profiling revealed very different responses to elevated versus SE [CO(2]. The transcript profiles of SE CO(2 treated plants were closer to that of the control. Development stage had a clear effect on plant molecular response to elevated and SE [CO(2]. Photosynthetic acclimation in terms of down-regulation of photosynthetic gene expression was observed in response to elevated [CO(2], but not that of SE [CO(2] providing the first molecular evidence that there appears to be a fundamental disparity in the way plants respond to elevated and SE [CO(2]. Although starch accumulation was induced by both elevated and SE [CO(2], the increase was less at the late vegetative stage and accompanied by higher soluble sugar content suggesting an increased starch breakdown to meet sink strength resulting from the rapid growth demand. Furthermore, many of the elevated and SE CO(2-responsive genes found in the present study are also regulated by plant hormone and stress. CONCLUSIONS/SIGNIFICANCE: This study provides new insights into plant acclimation to elevated and SE [CO

  1. Comparative proteomic analyses reveal the proteome response to short-term drought in Italian ryegrass (Lolium multiflorum.

    Directory of Open Access Journals (Sweden)

    Ling Pan

    Full Text Available Drought is a major abiotic stress that impairs growth and productivity of Italian ryegrass. Comparative analysis of drought responsive proteins will provide insight into molecular mechanism in Lolium multiflorum drought tolerance. Using the iTRAQ-based approach, proteomic changes in tolerant and susceptible lines were examined in response to drought condition. A total of 950 differentially accumulated proteins was found to be involved in carbohydrate metabolism, amino acid metabolism, biosynthesis of secondary metabolites, and signal transduction pathway, such as β-D-xylosidase, β-D-glucan glucohydrolase, glycerate dehydrogenase, Cobalamin-independent methionine synthase, glutamine synthetase 1a, Farnesyl pyrophosphate synthase, diacylglycerol, and inositol 1, 4, 5-trisphosphate, which might contributed to enhance drought tolerance or adaption in Lolium multiflorum. Interestingly, the two specific metabolic pathways, arachidonic acid and inositol phosphate metabolism including differentially accumulated proteins, were observed only in the tolerant lines. Cysteine protease cathepsin B, Cysteine proteinase, lipid transfer protein and Aquaporin were observed as drought-regulated proteins participating in hydrolysis and transmembrane transport. The activities of phospholipid hydroperoxide glutathione peroxidase, peroxiredoxin, dehydroascorbate reductase, peroxisomal ascorbate peroxidase and monodehydroascorbate reductase associated with alleviating the accumulation of reactive oxygen species in stress inducing environments. Our results showed that drought-responsive proteins were closely related to metabolic processes including signal transduction, antioxidant defenses, hydrolysis, and transmembrane transport.

  2. Differential responses to woodland character and landscape context by cryptic bats in urban environments.

    Directory of Open Access Journals (Sweden)

    Paul R Lintott

    Full Text Available Urbanisation is one of the most dramatic forms of land use change which relatively few species can adapt to. Determining how and why species respond differently to urban habitats is important in predicting future biodiversity loss as urban areas rapidly expand. Understanding how morphological or behavioural traits can influence species adaptability to the built environment may enable us to improve the effectiveness of conservation efforts. Although many bat species are able to exploit human resources, bat species richness generally declines with increasing urbanisation and there is considerable variation in the responses of different bat species to urbanisation. Here, we use acoustic recordings from two cryptic, and largely sympatric European bat species to assess differential responses in their use of fragmented urban woodland and the surrounding urban matrix. There was a high probability of P. pygmaeus activity relative to P. pipistrellus in woodlands with low clutter and understory cover which were surrounded by low levels of built environment. Additionally, the probability of recording P. pygmaeus relative to P. pipistrellus was considerably higher in urban woodland interior or edge habitat in contrast to urban grey or non-wooded green space. These results show differential habitat use occurring between two morphologically similar species; whilst the underlying mechanism for this partitioning is unknown it may be driven by competition avoidance over foraging resources. Their differing response to urbanisation indicates the difficulties involved when attempting to assess how adaptable a species is to urbanisation for conservation purposes.

  3. Differential responses to woodland character and landscape context by cryptic bats in urban environments.

    Science.gov (United States)

    Lintott, Paul R; Bunnefeld, Nils; Minderman, Jeroen; Fuentes-Montemayor, Elisa; Mayhew, Rebekah J; Olley, Lena; Park, Kirsty J

    2015-01-01

    Urbanisation is one of the most dramatic forms of land use change which relatively few species can adapt to. Determining how and why species respond differently to urban habitats is important in predicting future biodiversity loss as urban areas rapidly expand. Understanding how morphological or behavioural traits can influence species adaptability to the built environment may enable us to improve the effectiveness of conservation efforts. Although many bat species are able to exploit human resources, bat species richness generally declines with increasing urbanisation and there is considerable variation in the responses of different bat species to urbanisation. Here, we use acoustic recordings from two cryptic, and largely sympatric European bat species to assess differential responses in their use of fragmented urban woodland and the surrounding urban matrix. There was a high probability of P. pygmaeus activity relative to P. pipistrellus in woodlands with low clutter and understory cover which were surrounded by low levels of built environment. Additionally, the probability of recording P. pygmaeus relative to P. pipistrellus was considerably higher in urban woodland interior or edge habitat in contrast to urban grey or non-wooded green space. These results show differential habitat use occurring between two morphologically similar species; whilst the underlying mechanism for this partitioning is unknown it may be driven by competition avoidance over foraging resources. Their differing response to urbanisation indicates the difficulties involved when attempting to assess how adaptable a species is to urbanisation for conservation purposes.

  4. Successful in vitro expansion and differentiation of cord blood derived CD34+ cells into early endothelial progenitor cells reveals highly differential gene expression.

    Directory of Open Access Journals (Sweden)

    Ingo Ahrens

    Full Text Available Endothelial progenitor cells (EPCs can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP, PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15 or pro-angiogenic (galectin-3 properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP was the most up-regulated gene.

  5. Biphasic regulation of intracellular calcium by gemfibrozil contributes to inhibiting L6 myoblast differentiation: implications for clinical myotoxicity.

    Science.gov (United States)

    Liu, Aiming; Yang, Julin; Gonzalez, Frank J; Cheng, Gary Q; Dai, Renke

    2011-02-18

    Gemfibrozil is the most myotoxic fibrate drug commonly used for dyslipidemia, but the mechanism is poorly understood. The current study revealed that gemfibrozil inhibits myoblast differentiation through the regulation of intracellular calcium ([Ca(2+)]i) as revealed in L6 myoblasts by use of laser scan confocal microscopy and flow cytometry using Fluo-4 AM as a probe. Gemfibrozil at 20-400 μM, could regulate [Ca(2+)]i in L6 cells in a biphasic manner, and sustained reduction was observed when the concentration reached 200 μM. Inhibition of L6 differentiation by gemfibrozil was concentration-dependent with maximal effect noted between 200 and 400 μM, as indicated by creatine kinase activities and the differentiation index, respectively. In differentiating L6 myoblasts, gemfibrozil at concentrations below 400 μM led to no significant signs of apoptosis or cytotoxicity, whereas differentiation, inhibited by 200 μM gemfibrozil, was only partially recovered. A good correlation was noted between gemfibrozil concentrations that regulate [Ca(2+)]i and inhibit L6 myoblasts differentiation, and both are within the range of total serum concentrations found in the clinic. These data suggest a potential pharmacodynamic effect of gemfibrozil on myogenesis as a warning sign, in addition to the complex pharmacokinetic interactions. It is also noteworthy that mobilization of [Ca(2+)]i by gemfibrozil may trigger complex biological responses besides myocyte differentiation. Information revealed in this study explores the mechanism of gemfibrozil-induced myotoxicity through the regulation of intracellular calcium.

  6. The differential optomotor response of the four-eyed fish Anableps anableps.

    Science.gov (United States)

    Albensi, B C; Powell, J H

    1998-01-01

    The perception of motion is important for the survival and reproduction of many animals, including fish. In the laboratory, support for this idea comes from the observation that many fish show a tendency to follow a series of stripes revolving around a circular aquarium. This response, known as the optomotor response (OMR), is recognized as an innate behavior in many species. The 'four-eyed' fishes of the genus Anableps are an unusual fish from Central and South America and actually have only two eyes. Each eye is divided into upper and lower halves internally and externally. This peculiar dual visual system allows Anableps to feed on creatures that swim or land near or on the water surface or to flee from flying predators attacking from above. It was hypothesized that Anableps should also possess the OMR. We used the OMR as a test to investigate potential differential visual processing in Anableps on normal and 'blinded' fish (the eyes are actually covered--not physically blinded). It was found that the OMR does exist in Anableps and that the strength of this response is dependent on the visual field being tested--a stronger OMR was seen as a result of visual stimulation from the aerial environment.

  7. Modification of nucleotide metabolism in relationship with differentiation and in response to irradiation in human tumour cells

    International Nuclear Information System (INIS)

    Wei, Shuang

    1998-01-01

    This research thesis reports the study of the metabolism of nucleotides in human tumour cells. The first part addresses the modifications of nucleotide (more specifically purine) metabolism in relationship with human melanoma cell proliferation and differentiation. The second part addresses the modifications of this metabolism in response to an irradiation in human colon tumour cells. For each part, the author proposes a bibliographic synthesis, and a presentation of studied cells and of methods used to grow cells, and respectively to proliferate and differentiate them or to irradiate them, and then discusses the obtained results [fr

  8. The Transcription Factor c-Maf Promotes the Differentiation of Follicular Helper T Cells

    Directory of Open Access Journals (Sweden)

    Fabienne Andris

    2017-04-01

    Full Text Available Follicular helper T cells (Tfh have been identified as the primary cell subpopulation regulating B cell responses in germinal centers, thus supporting high-affinity antibody production. Among the transcription factors orchestrating Tfh cell differentiation and function, the role played by the proto-oncogene c-Maf remains poorly characterized. We report herein that selective loss of c-Maf expression in the T cell compartment results in defective development of Tfh cells in response to both antigen/adjuvant vaccinations and commensal intestinal bacteria. Accordingly, c-Maf expression in T cells was essential for the development and high-affinity antibody secretion in vaccinated animals. c-Maf was expressed early, concomitantly to BCL6, in Tfh cell precursors and found to regulate Tfh fate in a cell-autonomous fashion. Altogether, our findings reveal a novel, non-redundant, function for c-Maf in the differentiation of Tfh cells and the regulation of humoral immune responses to T-cell-dependent antigens.

  9. Histological chorioamnionitis shapes the neonatal transcriptomic immune response.

    Science.gov (United States)

    Weitkamp, Jörn-Hendrik; Guthrie, Scott O; Wong, Hector R; Moldawer, Lyle L; Baker, Henry V; Wynn, James L

    2016-07-01

    Histologic chorioamnionitis (HCA) is commonly associated with preterm birth and deleterious post-natal outcomes including sepsis and necrotizing enterocolitis. Transcriptomic analysis has been used to uncover gene signatures that permit diagnosis and prognostication, show new therapeutic targets, and reveal mechanisms that underlie differential outcomes with other complex disease states in neonates such as sepsis. To define the transcriptomic and inflammatory protein response in peripheral blood among infants with exposure to histologic chorioamnionitis. Prospective, observational study. Uninfected preterm neonates retrospectively categorized based on placental pathology with no HCA exposure (n=18) or HCA exposure (n=15). We measured the transcriptomic and inflammatory mediator response in prospectively collected whole blood. We found 488 significant (p<0.001), differentially expressed genes in whole blood samples among uninfected neonates with HCA exposure that collectively represented activated innate and adaptive immune cellular pathways and revealed a potential regulatory role for the pleotropic microRNA molecule miR-155. Differentially secreted plasma cytokines in patients with HCA exposure compared to patients without HCA included MCP-1, MPO, and MMP-9 (p<0.05). Exposure to HCA distinctively activates the neonatal immune system in utero with potentially long-term health consequences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens.

    Directory of Open Access Journals (Sweden)

    Guillermo Rodrigo

    Full Text Available Understanding the mechanisms by which plants trigger host defenses in response to viruses has been a challenging problem owing to the multiplicity of factors and complexity of interactions involved. The advent of genomic techniques, however, has opened the possibility to grasp a global picture of the interaction. Here, we used Arabidopsis thaliana to identify and compare genes that are differentially regulated upon infection with seven distinct (+ssRNA and one ssDNA plant viruses. In the first approach, we established lists of genes differentially affected by each virus and compared their involvement in biological functions and metabolic processes. We found that phylogenetically related viruses significantly alter the expression of similar genes and that viruses naturally infecting Brassicaceae display a greater overlap in the plant response. In the second approach, virus-regulated genes were contextualized using models of transcriptional and protein-protein interaction networks of A. thaliana. Our results confirm that host cells undergo significant reprogramming of their transcriptome during infection, which is possibly a central requirement for the mounting of host defenses. We uncovered a general mode of action in which perturbations preferentially affect genes that are highly connected, central and organized in modules.

  11. Differential roles of resistance to proactive interference and suppression of prepotent responses in overgeneral memory.

    Science.gov (United States)

    Comas, Michelle; Valentino, Kristin; Johnson, Anne F; Gibson, Bradley S; Taylor, Courtney

    2018-06-12

    Overgeneral memory (OGM), difficulty in retrieving specific autobiographical memories, is a robust phenomenon related to the onset and course of depressive and posttraumatic stress disorders. Inhibitory mechanisms are theorized to underlie OGM; however, empirical support for this link is equivocal. The current study examines the differential roles of two aspects of inhibitory control in association with OGM: suppression of prepotent responses and resistance to proactive interference (PI). Only resistance to PI was expected to be negatively related to OGM, whereby individuals with greater ability to resist PI would have reduced OGM. Participants (n = 49) completed a self-report measure of depressive symptoms and engaged in two tasks aimed at assessing resistance to PI and suppression of prepotent responses. Participants also completed a task assessing overgeneral autobiographical memory. As hypothesized, resistance to PI, but not suppression of prepotent responses negatively predicted OGM above and beyond the influence of depressive symptoms. Because a double dissociation was not examined, we cannot address the potential independence of the submechanisms of inhibitory control that we assessed. Results exemplify the differential associations of two components of inhibition and OGM, suggesting that resistance to PI, in particular, may contribute to the development and/or maintenance of OGM and associated depressive disorders. Directions for future research are discussed. Copyright © 2018. Published by Elsevier Ltd.

  12. Testing differential susceptibility: Plasticity genes, the social environment, and their interplay in adolescent response inhibition.

    Science.gov (United States)

    Richards, Jennifer S; Arias Vásquez, Alejandro; van Rooij, Daan; van der Meer, Dennis; Franke, Barbara; Hoekstra, Pieter J; Heslenfeld, Dirk J; Oosterlaan, Jaap; Faraone, Stephen V; Hartman, Catharina A; Buitelaar, Jan K

    2017-06-01

    Impaired inhibitory control is a key feature of attention-deficit/hyperactivity disorder (ADHD). We investigated gene-environment interaction (GxE) as a possible contributing factor to response inhibition variation in context of the differential susceptibility theory. This states individuals carrying plasticity gene variants will be more disadvantaged in negative, but more advantaged in positive environments. Behavioural and neural measures of response inhibition were assessed during a Stop-signal task in participants with (N = 197) and without (N = 295) ADHD, from N = 278 families (age M = 17.18, SD =3.65). We examined GxE between candidate plasticity genes (DAT1, 5-HTT, DRD4) and social environments (maternal expressed emotion, peer affiliation). A DRD4 × Positive peer affiliation interaction was found on the right fusiform gyrus (rFG) activation during successful inhibition. Further, 5-HTT short allele carriers showed increased rFG activation during failed inhibitions. Maternal warmth and positive peer affiliation were positively associated with right inferior frontal cortex activation during successful inhibition. Deviant peer affiliation was positively related to the error rate. While a pattern of differential genetic susceptibility was found, more clarity on the role of the FG during response inhibition is warranted before firm conclusions can be made. Positive and negative social environments were related to inhibitory control. This extends previous research emphasizing adverse environments.

  13. Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease.

    Science.gov (United States)

    Bouquet, Jerome; Soloski, Mark J; Swei, Andrea; Cheadle, Chris; Federman, Scot; Billaud, Jean-Noel; Rebman, Alison W; Kabre, Beniwende; Halpert, Richard; Boorgula, Meher; Aucott, John N; Chiu, Charles Y

    2016-02-12

    Lyme disease is a tick-borne illness caused by the bacterium Borrelia burgdorferi, and approximately 10 to 20% of patients report persistent symptoms lasting months to years despite appropriate treatment with antibiotics. To gain insights into the molecular basis of acute Lyme disease and the ensuing development of post-treatment symptoms, we conducted a longitudinal transcriptome study of 29 Lyme disease patients (and 13 matched controls) enrolled at the time of diagnosis and followed for up to 6 months. The differential gene expression signature of Lyme disease following the acute phase of infection persisted for at least 3 weeks and had fewer than 44% differentially expressed genes (DEGs) in common with other infectious or noninfectious syndromes. Early Lyme disease prior to antibiotic therapy was characterized by marked upregulation of Toll-like receptor signaling but lack of activation of the inflammatory T-cell apoptotic and B-cell developmental pathways seen in other acute infectious syndromes. Six months after completion of therapy, Lyme disease patients were found to have 31 to 60% of their pathways in common with three different immune-mediated chronic diseases. No differential gene expression signature was observed between Lyme disease patients with resolved illness to those with persistent symptoms at 6 months post-treatment. The identification of a sustained differential gene expression signature in Lyme disease suggests that a panel of selected human host-based biomarkers may address the need for sensitive clinical diagnostics during the "window period" of infection prior to the appearance of a detectable antibody response and may also inform the development of new therapeutic targets. Lyme disease is the most common tick-borne infection in the United States, and some patients report lingering symptoms lasting months to years despite antibiotic treatment. To better understand the role of the human host response in acute Lyme disease and the

  14. Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering

    KAUST Repository

    Kuo, Dwight

    2010-07-23

    Background: Fungal infections are an emerging health risk, especially those involving yeast that are resistant to antifungal agents. To understand the range of mechanisms by which yeasts can respond to anti-fungals, we compared gene expression patterns across three evolutionarily distant species - Saccharomyces cerevisiae, Candida glabrata and Kluyveromyces lactis - over time following fluconazole exposure. Results: Conserved and diverged expression patterns were identified using a novel soft clustering algorithm that concurrently clusters data from all species while incorporating sequence orthology. The analysis suggests complementary strategies for coping with ergosterol depletion by azoles - Saccharomyces imports exogenous ergosterol, Candida exports fluconazole, while Kluyveromyces does neither, leading to extreme sensitivity. In support of this hypothesis we find that only Saccharomyces becomes more azole resistant in ergosterol-supplemented media; that this depends on sterol importers Aus1 and Pdr11; and that transgenic expression of sterol importers in Kluyveromyces alleviates its drug sensitivity. Conclusions: We have compared the dynamic transcriptional responses of three diverse yeast species to fluconazole treatment using a novel clustering algorithm. This approach revealed significant divergence among regulatory programs associated with fluconazole sensitivity. In future, such approaches might be used to survey a wider range of species, drug concentrations and stimuli to reveal conserved and divergent molecular response pathways.

  15. Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering

    KAUST Repository

    Kuo, Dwight; Tan, Kai; Zinman, Guy; Ravasi, Timothy; Bar-Joseph, Ziv; Ideker, Trey

    2010-01-01

    Background: Fungal infections are an emerging health risk, especially those involving yeast that are resistant to antifungal agents. To understand the range of mechanisms by which yeasts can respond to anti-fungals, we compared gene expression patterns across three evolutionarily distant species - Saccharomyces cerevisiae, Candida glabrata and Kluyveromyces lactis - over time following fluconazole exposure. Results: Conserved and diverged expression patterns were identified using a novel soft clustering algorithm that concurrently clusters data from all species while incorporating sequence orthology. The analysis suggests complementary strategies for coping with ergosterol depletion by azoles - Saccharomyces imports exogenous ergosterol, Candida exports fluconazole, while Kluyveromyces does neither, leading to extreme sensitivity. In support of this hypothesis we find that only Saccharomyces becomes more azole resistant in ergosterol-supplemented media; that this depends on sterol importers Aus1 and Pdr11; and that transgenic expression of sterol importers in Kluyveromyces alleviates its drug sensitivity. Conclusions: We have compared the dynamic transcriptional responses of three diverse yeast species to fluconazole treatment using a novel clustering algorithm. This approach revealed significant divergence among regulatory programs associated with fluconazole sensitivity. In future, such approaches might be used to survey a wider range of species, drug concentrations and stimuli to reveal conserved and divergent molecular response pathways.

  16. Proteomic analysis of cAMP-mediated signaling during differentiation of 3 T3-L1 preadipocytes

    DEFF Research Database (Denmark)

    Borkowski, Kamil; Wrzesinski, Krzysztow; Rogowska-Wrzesinska, Adelina

    2014-01-01

    Initiation of adipocyte differentiation is promoted by the synergistic action of insulin/insulin-like growth factor, glucocorticoids, and agents activating cAMP-dependent signaling. The action of cAMP is mediated via PKA and Epac, where at least part of the PKA function relates to strong repression...... a comprehensive evaluation of Epac-mediated processes and their interplay with PKA during the initiation of 3 T3-L1 preadipocyte differentiation using a combination of proteomics, molecular approaches, and bioinformatics. Proteomic analyses revealed 7 proteins specifically regulated in response to Epac activation......-dependent signaling thereby adding a novel facet to our understanding of cAMP-mediated potentiation of adipocyte differentiation....

  17. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Erica L. McGrath

    2017-03-01

    Full Text Available Zika virus (ZIKV infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7, to infect primary human neural stem cells (hNSCs originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  18. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.

    Science.gov (United States)

    McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping

    2017-03-14

    Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Determination of the parameters of a microscopic object from a complex response of a differential microscope

    International Nuclear Information System (INIS)

    Baranov, D V; Egorov, Alexander A; Zolotov, Evgenii M; Svidzinsky, K K

    1998-01-01

    An analysis of the amplitude and phase of a complex response of a heterodyne differential microscope was used to demonstrate experimentally the feasibility of determination of the parameters of a composite microscopic object representing a combination of a step with a groove. (laser applications and other topics in quantum electronics)

  20. Children's Emotionality Moderates the Association Between Maternal Responsiveness and Allostatic Load: Investigation Into Differential Susceptibility.

    Science.gov (United States)

    Dich, Nadya; Doan, Stacey N; Evans, Gary W

    2015-01-01

    While emotionality is often thought of as a risk factor, differential susceptibility theory argues that emotionality reflects susceptibility to both positive and negative environmental influences. The present study explored whether emotional children might be more susceptible to the effects of both high and low maternal responsiveness on allostatic load, a physiological indicator of chronic stress. Participants were 226 mother and child dyads. Mothers reported on children's emotionality at child age 9. Maternal responsiveness was measured at age 13 using self-reports and behavioral observation. Allostatic load was measured at age 13 and 17 using neuroendocrine, cardiovascular, and metabolic biomarkers. Emotionality was associated with higher allostatic load if self-reported responsiveness was low, but with lower allostatic load, when self-reported responsiveness was high. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.

  1. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  2. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Hironori Waki

    2011-10-01

    Full Text Available Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type-specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq. FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA-mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our

  3. Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum.

    Science.gov (United States)

    Venkataramanan, Keerthi P; Min, Lie; Hou, Shuyu; Jones, Shawn W; Ralston, Matthew T; Lee, Kelvin H; Papoutsakis, E Terry

    2015-01-01

    Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.

  4. Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception.

    Directory of Open Access Journals (Sweden)

    Ma'ayan Semo

    Full Text Available Melanopsin photoreception plays a vital role in irradiance detection for non-image forming responses to light. However, little is known about the involvement of melanopsin in emotional processing of luminance. When confronted with a gradient in light, organisms exhibit spatial movements relative to this stimulus. In rodents, behavioural light aversion (BLA is a well-documented but poorly understood phenomenon during which animals attribute salience to light and remove themselves from it. Here, using genetically modified mice and an open field behavioural paradigm, we investigate the role of melanopsin in BLA. While wildtype (WT, melanopsin knockout (Opn4(-/- and rd/rd cl (melanopsin only (MO mice all exhibit BLA, our novel methodology reveals that isolated melanopsin photoreception produces a slow, potentiating response to light. In order to control for the involvement of pupillary constriction in BLA we eliminated this variable with topical atropine application. This manipulation enhanced BLA in WT and MO mice, but most remarkably, revealed light aversion in triple knockout (TKO mice, lacking three elements deemed essential for conventional photoreception (Opn4(-/- Gnat1(-/- Cnga3(-/-. Using a number of complementary strategies, we determined this response to be generated at the level of the retina. Our findings have significant implications for the understanding of how melanopsin signalling may modulate aversive responses to light in mice and humans. In addition, we also reveal a clear potential for light perception in TKO mice.

  5. Baseline blood immunological profiling differentiates between Her2-breast cancer molecular subtypes: implications for immunomediated mechanisms of treatment response.

    Science.gov (United States)

    Tudoran, Oana; Virtic, Oana; Balacescu, Loredana; Lisencu, Carmen; Fetica, Bogdan; Gherman, Claudia; Balacescu, Ovidiu; Berindan-Neagoe, Ioana

    2015-01-01

    Breast cancer patients' response to treatment is highly dependent on the primary tumor molecular features, with triple-negative breast tumors having the worst prognosis of all subtypes. According to the molecular features, tumors stimulate the microenvironment to induce distinct immune responses, baseline immune activation being associated with higher likelihood of pathologic response. In this study, we investigated the deconvolution of the immunological status of triple-negative tumors in comparison with luminal tumors and the association with patients' clinicopathological characteristics. Gene expression of 84 inflammatory molecules and their receptors were analyzed in 40 peripheral blood samples from patients with Her2- primary breast cancer tumors. We studied the association of triple-negative phenotype with age, clinical stage, tumor size, lymph nodes, and menopausal status. We observed that more patients with estrogen (ER)/progesterone (PR)-negative tumors had grade III, while more patients with ER/PR-positive tumors had grade II tumors. Gene expression analysis revealed a panel of 14 genes to have differential expression between the two groups: several interleukins: IL13, IL16, IL17C and IL17F, IL1A, IL3; interleukin receptors: IL10RB, IL5RA; chemokines: CXCL13 and CCL26; and cytokines: CSF2, IFNA2, OSM, TNSF13. The expression levels of these genes have been previously shown to be associated with reduced immunological status; indeed, the triple-negative breast cancer patients presented with lower counts of lymphocytes and eosinophils than the ER/PR-positive ones. These results contribute to a better understanding of the possible role of antitumor immune responses in mediating the clinical outcome.

  6. Differential properties of human ACL and MCL stem cells may be responsible for their differential healing capacity

    Directory of Open Access Journals (Sweden)

    Fu Freddie H

    2011-06-01

    Full Text Available Abstract Background The human anterior cruciate ligament (hACL and medial collateral ligament (hMCL of the knee joint are frequently injured, especially in athletic settings. It has been known that, while injuries to the MCL typically heal with conservative treatment, ACL injuries usually do not heal. As adult stem cells repair injured tissues through proliferation and differentiation, we hypothesized that the hACL and hMCL contain stem cells exhibiting unique properties that could be responsible for the differential healing capacity of the two ligaments. Methods To test the above hypothesis, we derived ligament stem cells from normal hACL and hMCL samples from the same adult donors using tissue culture techniques and characterized their properties using immunocytochemistry, RT-PCR, and flow cytometry. Results We found that both hACL stem cells (hACL-SCs and hMCL stem cells (hMCL-SCs formed colonies in culture and expressed stem cell markers nucleostemin and stage-specific embryonic antigen-4 (SSEA-4. Moreover, both hACL-SCs and hMCL-SCs expressed CD surface markers for mesenchymal stem cells, including CD44 and CD90, but not those markers for vascular cells, CD31, CD34, CD45, and CD146. However, hACL-SCs differed from hMCL-SCs in that the size and number of hACL-SC colonies in culture were much smaller and grew more slowly than hMCL-SC colonies. Moreover, fewer hACL-SCs in cell colonies expressed stem cell markers STRO-1 and octamer-binding transcription factor-4 (Oct-4 than hMCL-SCs. Finally, hACL-SCs had less multi-differentiation potential than hMCL-SCs, evidenced by differing extents of adipogenesis, chondrogenesis, and osteogenesis in the respective induction media. Conclusions This study shows for the first time that hACL-SCs are intrinsically different from hMCL-SCs. We suggest that the differences in their properties contribute to the known disparity in healing capabilities between the two ligaments.

  7. Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation

    Czech Academy of Sciences Publication Activity Database

    Tylečková, Jiřina; Valeková, Ivona; Žižková, Martina; Rákocyová, Michaela; Maršala, S.; Maršala, M.; Gadher, S. J.; Kovářová, Hana

    2016-01-01

    Roč. 132, č. 1 (2016), s. 13-20 ISSN 1874-3919 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell adhesion proteins * cell surface capture * neuronal differentiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.914, year: 2016

  8. Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics.

    Directory of Open Access Journals (Sweden)

    Federico Ferro

    Full Text Available Although the role played by the core transcription factor network, which includes c-Myc, Klf4, Nanog, and Oct4, in the maintenance of embryonic stem cell (ES pluripotency and in the reprogramming of adult cells is well established, its persistence and function in adult stem cells are still debated. To verify its persistence and clarify the role played by these molecules in adult stem cell function, we investigated the expression pattern of embryonic and adult stem cell markers in undifferentiated and fully differentiated dental pulp stem cells (DPSC. A particular attention was devoted to the expression pattern and intracellular localization of the stemness-associated isoform A of Oct4 (Oct4A. Our data demonstrate that: Oct4, Nanog, Klf4 and c-Myc are expressed in adult stem cells and, with the exception of c-Myc, they are significantly down-regulated following differentiation. Cell differentiation was also associated with a significant reduction in the fraction of DPSC expressing the stem cell markers CD10, CD29 and CD117. Moreover, a nuclear to cytoplasm shuttling of Oct4A was identified in differentiated cells, which was associated with Oct4A phosphorylation. The present study would highlight the importance of the post-translational modifications in DPSC stemness maintenance, by which stem cells balance self-renewal versus differentiation. Understanding and controlling these mechanisms may be of great importance for stemness maintenance and stem cells clinical use, as well as for cancer research.

  9. The genetic network controlling plasma cell differentiation.

    Science.gov (United States)

    Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D

    2011-10-01

    Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.

  10. What they bring: baseline psychological distress differentially predicts neural response in social exclusion by children's friends and strangers in best friend dyads.

    Science.gov (United States)

    Baddam, Suman; Laws, Holly; Crawford, Jessica L; Wu, Jia; Bolling, Danielle Z; Mayes, Linda C; Crowley, Michael J

    2016-11-01

    Friendships play a major role in cognitive, emotional and social development in middle childhood. We employed the online Cyberball social exclusion paradigm to understand the neural correlates of dyadic social exclusion among best friends assessed simultaneously. Each child played with their friend and an unfamiliar player. Event-related potentials (ERPs) were assessed via electroencephalogram during exclusion by friend and unfamiliar peer. Data were analyzed with hierarchical linear modeling to account for nesting of children within friendship dyads. Results showed that stranger rejection was associated with larger P2 and positive slow wave ERP responses compared to exclusion by a friend. Psychological distress differentially moderated the effects of friend and stranger exclusion such that children with greater psychological distress were observed to have larger neural responses (larger P2 and slow wave) to exclusion by a stranger compared to exclusion by a friend. Conversely, children with lower levels of psychological distress had larger neural responses for exclusion by a friend than by a stranger. Psychological distress within the dyad differentially predicted the P2 and slow wave response. Findings highlight the prominent, but differential role of individual and dyadic psychological distress levels in moderating responses to social exclusion in middle childhood. © The Author (2016). Published by Oxford University Press.

  11. Chronic schistosomiasis during pregnancy epigenetically reprograms T-cell differentiation in offspring of infected mothers.

    Science.gov (United States)

    Klar, Kathrin; Perchermeier, Sophie; Bhattacharjee, Sonakshi; Harb, Hani; Adler, Thure; Istvanffy, Rouzanna; Loffredo-Verde, Eva; Oostendorp, Robert A; Renz, Harald; Prazeres da Costa, Clarissa

    2017-05-01

    Schistosomiasis is a nontransplacental helminth infection. Chronic infection during pregnancy suppresses allergic airway responses in offspring. We addressed the question whether in utero exposure to chronic schistosome infection (Reg phase) in mice affects B-cell and T-cell development. Therefore, we focused our analyses on T-cell differentiation capacity induced by epigenetic changes in promoter regions of signature cytokines in offspring. Here, we show that naïve T cells from offspring of schistosome infected female mice had a strong capacity to differentiate into T H 1 cells, whereas T H 2 differentiation was impaired. In accordance, reduced levels of histone acetylation of the IL-4 promoter regions were observed in naïve T cells. To conclude, our mouse model revealed distinct epigenetic changes within the naïve T-cell compartment affecting T H 2 and T H 1 cell differentiation in offspring of mothers with chronic helminth infection. These findings could eventually help understand how helminths alter T-cell driven immune responses induced by allergens, bacterial or viral infections, as well as vaccines. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Time-lapse imagery of Adélie penguins reveals differential winter strategies and breeding site occupation.

    Science.gov (United States)

    Black, Caitlin; Southwell, Colin; Emmerson, Louise; Lunn, Daniel; Hart, Tom

    2018-01-01

    Polar seabirds adopt different over-wintering strategies to survive and build condition during the critical winter period. Penguin species either reside at the colony during the winter months or migrate long distances. Tracking studies and survey methods have revealed differences in winter migration routes among penguin species and colonies, dependent on both biotic and abiotic factors present. However, scan sampling methods are rarely used to reveal non-breeding behaviors during winter and little is known about presence at the colony site over this period. Here we show that Adélie penguins on the Yalour Islands in the Western Antarctic Peninsula (WAP) are present year-round at the colony and undergo a mid-winter peak in abundance during winter. We found a negative relationship between daylight hours and penguin abundance when either open water or compact ice conditions were present, suggesting that penguins return to the breeding colony when visibility is lowest for at-sea foraging and when either extreme low or high levels of sea ice exist offshore. In contrast, Adélie penguins breeding in East Antarctica were not observed at the colonies during winter, suggesting that Adélie penguins undergo differential winter strategies in the marginal ice zone on the WAP compared to those in East Antarctica. These results demonstrate that cameras can successfully monitor wildlife year-round in areas that are largely inaccessible during winter.

  13. Dynamics of GATA1 binding and expression response in a GATA1-induced erythroid differentiation system

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    2015-06-01

    Full Text Available During the maturation phase of mammalian erythroid differentiation, highly proliferative cells committed to the erythroid lineage undergo dramatic changes in morphology and function to produce circulating, enucleated erythrocytes. These changes are caused by equally dramatic alterations in gene expression, which in turn are driven by changes in the abundance and binding patterns of transcription factors such as GATA1. We have studied the dynamics of GATA1 binding by ChIP-seq and the global expression responses by RNA-seq in a GATA1-dependent mouse cell line model for erythroid maturation, in both cases examining seven progressive stages during differentiation. Analyses of these data should provide insights both into mechanisms of regulation (early versus late targets and the consequences in cell physiology (e.g., distinctive categories of genes regulated at progressive stages of differentiation. The data are deposited in the Gene Expression Omnibus, series GSE36029, GSE40522, GSE49847, and GSE51338.

  14. Differential Peripheral Proteomic Biosignature of Fluoxetine Response in a Mouse Model of Anxiety/Depression

    Directory of Open Access Journals (Sweden)

    Indira Mendez-David

    2017-08-01

    Full Text Available The incorporation of peripheral biomarkers in the treatment of major depressive disorders (MDD could improve the efficiency of treatments and increase remission rate. Peripheral blood mononuclear cells (PBMCs represent an attractive biological substrate allowing the identification of a drug response signature. Using a proteomic approach with high-resolution mass spectrometry, the present study aimed to identify a biosignature of antidepressant response (fluoxetine, a Selective Serotonin Reuptake Inhibitor in PBMCs in a mouse model of anxiety/depression. Following determination of an emotionality score, using complementary behavioral analysis of anxiety/depression across three different tests (Elevated Plus Maze, Novelty Suppressed Feeding, Splash Test, we showed that a 4-week corticosterone treatment (35 μg/ml, CORT model in C57BL/6NTac male mice induced an anxiety/depressive-like behavior. Then, chronic fluoxetine treatment (18 mg/kg/day for 28 days in the drinking water reduced corticosterone-induced increase in emotional behavior. However, among 46 fluoxetine-treated mice, only 30 of them presented a 50% decrease in emotionality score, defining fluoxetine responders (CORT/Flx-R. To determine a peripheral biological signature of fluoxetine response, proteomic analysis was performed from PBMCs isolated from the “most” affected corticosterone/vehicle (CORT/V, corticosterone/fluoxetine responders and non-responders (CORT/Flx-NR animals. In comparison to CORT/V, a total of 263 proteins were differently expressed after fluoxetine exposure. Expression profile of these proteins showed a strong similarity between CORT/Flx-R and CORT/Flx-NR (R = 0.827, p < 1e-7. Direct comparison of CORT/Flx-R and CORT/Flx-NR groups revealed 100 differently expressed proteins, representing a combination of markers associated either with the maintenance of animals in a refractory state, or associated with behavioral improvement. Finally, 19 proteins showed a

  15. Transiently truncated and differentially regulated expression of midkine during mouse embryogenesis

    International Nuclear Information System (INIS)

    Chen Qin; Yuan Yuanyang; Lin Shuibin; Chang Youde; Zhuo Xinming; Wei Wei; Tao Ping; Ruan Lingjuan; Li Qifu; Li Zhixing

    2005-01-01

    Midkine (MK) is a retinoic acid response cytokine, mostly expressed in embryonic tissues. Aberrant expression of MK was found in numerous cancers. In human, a truncated MK was expressed specifically in tumor/cancer tissues. Here we report the discovery of a novel truncated form of MK transiently expressed during normal mouse embryonic development. In addition, MK is concentrated at the interface between developing epithelium and mesenchyme as well as highly proliferating cells. Its expression, which is closely coordinated with angiogenesis and vasculogenesis, is spatiotemporally regulated with peaks in extensive organogenesis period and undifferentiated cells tailing off in maturing cells, implying its role in nascent blood vessel (endothelial) signaling of tissue differentiation and stem cell renewal/differentiation.. Cloning and sequencing analysis revealed that the embryonic truncated MK, in which the conserved domain is in-frame deleted, presumably producing a novel secreted small peptide, is different from the truncated form in human cancer tissues, whose deletion results in a frame-shift mutation. Our data suggest that MK may play a role in epithelium-mesenchyme interactions, blood vessel signaling, and the decision of proliferation vs differentiation. Detection of the transiently expressed truncated MK reveals its novel function in development and sheds light on its role in carcinogenesis

  16. Comparative Transcriptomics Reveals Differential Gene Expression Related to Colletotrichum gloeosporioides Resistance in the Octoploid Strawberry

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-05-01

    Full Text Available The strawberry is an important fruit worldwide; however, the development of the strawberry industry is limited by fungal disease. Anthracnose is caused by the pathogen Colletotrichum gloeosporioides and leads to large-scale losses in strawberry quality and production. However, the transcriptional response of strawberry to infection with C. gloeosporioides is poorly understood. In the present study, the strawberry leaf transcriptome of the ‘Yanli’ and ‘Benihoppe’ cultivars were deep sequenced via an RNA-seq analysis to study C. gloeosporioides resistance in strawberry. Among the sequences, differentially expressed genes were annotated with Gene Ontology terms and subjected to pathway enrichment analysis. Significant categories included defense, plant–pathogen interactions and flavonoid biosynthesis were identified. The comprehensive transcriptome data set provides molecular insight into C. gloeosporioides resistance genes in resistant and susceptible strawberry cultivars. Our findings can enhance breeding efforts in strawberry.

  17. Small molecule probes finely differentiate between various ds- and ss-DNA and RNA by fluorescence, CD and NMR response

    Energy Technology Data Exchange (ETDEWEB)

    Crnolatac, Ivo; Rogan, Iva; Majić, Boris; Tomić, Sanja [Division of Organic Chemistry and Biochemistry, Division of Physical Chemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb (Croatia); Deligeorgiev, Todor [Faculty of Chemistry and Pharmacy, University of Sofia (Bulgaria); Horvat, Gordan [Department of Physical Chemistry, Faculty of Science/Chemistry, Horvatovac 102A, HR-10000 Zagreb (Croatia); Makuc, Damjan; Plavec, Janez [Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana (Slovenia); EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, Ljubljana (Slovenia); Pescitelli, Gennaro [Department of Chemistry, University of Pisa, Via Moruzzi 13, Pisa (Italy); Piantanida, Ivo, E-mail: pianta@irb.hr [Division of Organic Chemistry and Biochemistry, Division of Physical Chemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb (Croatia)

    2016-10-12

    Two small molecules showed intriguing properties of analytical multipurpose probes, whereby one chromophore gives different signal for many different DNA/RNA by application of several highly sensitive spectroscopic methods. Dyes revealed pronounced fluorescence ratiomeric differentiation between ds-AU-RNA, AT-DNA and GC-DNA in approximate order 10:8:1. Particularly interesting, dyes showed specific fluorimetric response for poly rA even at 10-fold excess of any other ss-RNA, and moreover such emission selectivity is preserved in multicomponent ss-RNA mixtures. The dyes also showed specific chiral recognition of poly rU in respect to the other ss-RNA by induced CD (ICD) pattern in visible range (400–500 nm), which was attributed to the dye-side-chain contribution to binding (confirmed by absence of any ICD band for reference compound lacking side-chain). Most intriguingly, minor difference in the side-chain attached to dye chromophore resulted in opposite sign of dye-ICD pattern, whereby differences in NMR NOESY contacts and proton chemical shifts between two dye/oligo rU complexes combined with MD simulations and CD calculations attributed observed bisignate ICD to the dimeric dye aggregate within oligo rU. - Highlights: • Novel dyes emit fluorescence only for poly rA even at high excess of all other ss-RNA. • Fluorescence response for AT-DNA is 8 times stronger than for GC-DNA. • Florescence induced by ds-RNA is 20% stronger that emission induced by ds-DNA. • Intrinsically non-chiral, dyes show strong and characteristic ICD response for poly rU.

  18. Differential response of hippocampal subregions to stress and learning.

    Directory of Open Access Journals (Sweden)

    Darby F Hawley

    Full Text Available The hippocampus has two functionally distinct subregions-the dorsal portion, primarily associated with spatial navigation, and the ventral portion, primarily associated with anxiety. In a prior study of chronic unpredictable stress (CUS in rodents, we found that it selectively enhanced cellular plasticity in the dorsal hippocampal subregion while negatively impacting it in the ventral. In the present study, we determined whether this adaptive plasticity in the dorsal subregion would confer CUS rats an advantage in a spatial task-the radial arm water maze (RAWM. RAWM exposure is both stressful and requires spatial navigation, and therefore places demands simultaneously upon both hippocampal subregions. Therefore, we used Western blotting to investigate differential expression of plasticity-associated proteins (brain derived neurotrophic factor [BDNF], proBDNF and postsynaptic density-95 [PSD-95] in the dorsal and ventral subregions following RAWM exposure. Lastly, we used unbiased stereology to compare the effects of CUS on proliferation, survival and neuronal differentiation of cells in the dorsal and ventral hippocampal subregions. We found that CUS and exposure to the RAWM both increased corticosterone, indicating that both are stressful; nevertheless, CUS animals had significantly better long-term spatial memory. We also observed a subregion-specific pattern of protein expression following RAWM, with proBDNF increased in the dorsal and decreased in the ventral subregion, while PSD-95 was selectively upregulated in the ventral. Finally, consistent with our previous study, we found that CUS most negatively affected neurogenesis in the ventral (compared to the dorsal subregion. Taken together, our data support a dual role for the hippocampus in stressful experiences, with the more resilient dorsal portion undergoing adaptive plasticity (perhaps to facilitate escape from or neutralization of the stressor, and the ventral portion involved in

  19. Analysis of whitefly transcriptional responses to Beauveria bassiana infection reveals new insights into insect-fungus interactions.

    Science.gov (United States)

    Xia, Jun; Zhang, Chang-Rong; Zhang, Shan; Li, Fang-Fang; Feng, Ming-Guang; Wang, Xiao-Wei; Liu, Shu-Sheng

    2013-01-01

    The fungal pathogen, Beauveria bassiana, is an efficient biocontrol agent against a variety of agricultural pests. A thorough understanding of the basic principles of insect-fungus interactions may enable the genetic modification of Beauveria bassiana to enhance its virulence. However, the molecular mechanism of insect response to Beauveria bassiana infection is poorly understood, let alone the identification of fungal virulent factors involved in pathogenesis. Here, next generation sequencing technology was applied to examine the expression of whitefly (Bemisia tabaci) genes in response to the infection of Beauveria bassiana. Results showed that, compared to control, 654 and 1,681genes were differentially expressed at 48 hours and 72 hours post-infected whiteflies, respectively. Functional and enrichment analyses indicated that the DNA damage stimulus response and drug metabolism were important anti-fungi strategies of the whitefly. Mitogen-activated protein kinase (MAPK) pathway was also likely involved in the whitefly defense responses. Furthermore, the notable suppression of general metabolism and ion transport genes observed in 72 hours post-infected B. tabaci might be manipulated by fungal secreted effectors. By mapping the sequencing tags to B. bassiana genome, we also identified a number of differentially expressed fungal genes between the early and late infection stages. These genes are generally associated with fungal cell wall synthesis and energy metabolism. The expression of fungal cell wall protein genes might play an important role in fungal pathogenesis and the dramatically up-regulated enzymes of carbon metabolism indicate the increasing usage of energy during the fungal infection. To our knowledge, this is the first report on the molecular mechanism of fungus-whitefly interactions. Our results provide a road map for future investigations on insect-pathogen interactions and genetically modifying the fungus to enhance its efficiency in whitefly

  20. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Melvin Anyasi Ambele

    2016-05-01

    Full Text Available We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers.

  1. Variable Levels of Glutathione S-Transferases Are Responsible for the Differential Tolerance to Metolachlor between Maize (Zea mays) Shoots and Roots.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju

    2017-01-11

    Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.

  2. Differential gene expression in response to juvenile hormone analog treatment in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Archotermopsidae).

    Science.gov (United States)

    Cornette, Richard; Hayashi, Yoshinobu; Koshikawa, Shigeyuki; Miura, Toru

    2013-04-01

    Termite societies are characterized by a highly organized division of labor among conspicuous castes, groups of individuals with various morphological specializations. Termite caste differentiation is under control of juvenile hormone (JH), but the molecular mechanism underlying the response to JH and early events triggering caste differentiation are still poorly understood. In order to profile candidate gene expression during early soldier caste differentiation of the damp-wood termite, Hodotermopsis sjostedti, we treated pseudergates (workers) with a juvenile hormone analog (JHA) to induce soldier caste differentiation. We then used Suppressive Subtractive Hybridization to create two cDNA libraries enriched for transcripts that were either up- or downregulated at 24h after treatment. Finally, we used quantitative PCR to confirm temporal expression patterns. Hexamerins represent a large proportion of the genes upregulated following JHA treatment and have an expression pattern that shows roughly an inverse correlation to intrinsic JH titers. This data is consistent with the role of a JH "sink", which was demonstrated for hexamerins in another termite, Reticulitermes flavipes. A putative nuclear protein was also upregulated a few hours after JHA treatment, which suggests a role in the early response to JH and subsequent regulation of transcriptional events associated with soldier caste differentiation. Some digestive enzymes, such as endogenous beta-endoglucanase and chymotrypsin, as well as a protein associated to digestion were identified among genes downregulated after JHA treatment. This suggests that JH may directly influence the pseudergate-specific digestive system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Differential effects of ambient temperature on warm cell responses to infrared radiation in the bloodsucking bug Rhodnius prolixus.

    Science.gov (United States)

    Zopf, Lydia M; Lazzari, Claudio R; Tichy, Harald

    2014-03-01

    Thermoreceptors provide animals with background information about the thermal environment, which is at least indirectly a prerequisite for thermoregulation and assists bloodsucking insects in the search for their host. Recordings from peg-in-pit sensilla and tapered hairs on the antennae of the bug Rhodnius prolixus revealed two physiologically different types of warm cells. Both types responded more strongly to temperature pulses produced by switching between two air streams at different constant temperatures than to infrared radiation pulses employed in still air. In addition, both warm cells were better able to discriminate small changes in air temperature than in infrared radiation. As convective and radiant heat determines the discharge, it is impossible for a single warm cell to signal the nature of the stimulus unequivocally. Individual responses are ambiguous, not with regard to temperature change, but with regard to its source. We argue that the bugs use mechanical flow information to differentiate between pulses of convective and radiant heat. However, if pulses of radiant heat occur together with a constant temperature air stream, the mechanical cues would not allow avoiding ambiguity that convective heat introduces into radiant heat stimulation. In this situation, the warm cell in the tapered hairs produced stronger responses than those in the peg-in-pit sensilla. The reversal in the excitability of the two types of warm cells provides a criterion by which to distinguish the combination of convective and radiant heat from the stimuli presented alone.

  4. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation

    Directory of Open Access Journals (Sweden)

    Benoît eDrogue

    2014-11-01

    Full Text Available Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defence and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyses of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post inoculation with A. lipoferum 4B (isolated from Cigalon or Azospirillum sp. B510 (isolated from Nipponbare and compared to the respective non-inoculated condition. A total of 7,384 genes were significantly regulated, which represent about 16 % of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83 % of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defence, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signalling highlight the complexity of hormone signalling networks in the Azospirillum

  5. Evoked Pressure Pain Sensitivity Is Associated with Differential Analgesic Response to Verum and Sham Acupuncture in Fibromyalgia.

    Science.gov (United States)

    Zucker, Noah A; Tsodikov, Alex; Mist, Scott D; Cina, Stephen; Napadow, Vitaly; Harris, Richard E

    2017-08-01

    Fibromyalgia is a chronic pain condition with few effective treatments. Many fibromyalgia patients seek acupuncture for analgesia; however, its efficacy is limited and not fully understood. This may be due to heterogeneous pathologies among participants in acupuncture clinical trials. We hypothesized that pressure pain tenderness would differentially classify treatment response to verum and sham acupuncture in fibromyalgia patients. Baseline pressure pain sensitivity at the thumbnail at baseline was used in linear mixed models as a modifier of differential treatment response to sham versus verum acupuncture. Similarly, needle-induced sensation was also analyzed to determine its differential effect of treatment on clinical pain. A cohort of 114 fibromyalgia patients received baseline pressure pain testing and were randomized to either verum (N = 59) or sham (N = 55) acupuncture. Participants received treatments from once a week to three times a week, increasing in three-week blocks for a total of 18 treatments. Clinical pain was measured on a 101-point visual analog scale, and needle sensation was measured by questionnaire throughout the trial. Participants who had higher pain pressure thresholds had greater reduction in clinical pain following verum acupuncture while participants who had lower pain pressure thresholds showed better analgesic response to sham acupuncture. Moreover, patients with lower pressure pain thresholds had exacerbated clinical pain following verum acupuncture. Similar relationships were observed for sensitivity to acupuncture needling. These findings suggest that acupuncture efficacy in fibromyalgia may be underestimated and a more personalized treatment for fibromyalgia may also be possible. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  6. Catalog of Differentially Expressed Long Non-Coding RNA following Activation of Human and Mouse Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Benoit T. Roux

    2017-08-01

    Full Text Available Despite increasing evidence to indicate that long non-coding RNAs (lncRNAs are novel regulators of immunity, there has been no systematic attempt to identify and characterize the lncRNAs whose expression is changed following the induction of the innate immune response. To address this issue, we have employed next-generation sequencing data to determine the changes in the lncRNA profile in four human (monocytes, macrophages, epithelium, and chondrocytes and four mouse cell types (RAW 264.7 macrophages, bone marrow-derived macrophages, peritoneal macrophages, and splenic dendritic cells following exposure to the pro-inflammatory mediators, lipopolysaccharides (LPS, or interleukin-1β. We show differential expression of 204 human and 210 mouse lncRNAs, with positional analysis demonstrating correlation with immune-related genes. These lncRNAs are predominantly cell-type specific, composed of large regions of repeat sequences, and show poor evolutionary conservation. Comparison within the human and mouse sequences showed less than 1% sequence conservation, although we identified multiple conserved motifs. Of the 204 human lncRNAs, 21 overlapped with syntenic mouse lncRNAs, of which five were differentially expressed in both species. Among these syntenic lncRNA was IL7-AS (antisense, which was induced in multiple cell types and shown to regulate the production of the pro-inflammatory mediator interleukin-6 in both human and mouse cells. In summary, we have identified and characterized those lncRNAs that are differentially expressed following activation of the human and mouse innate immune responses and believe that these catalogs will provide the foundation for the future analysis of the role of lncRNAs in immune and inflammatory responses.

  7. Comparative Circadian Metabolomics Reveal Differential Effects of Nutritional Challenge in the Serum and Liver.

    Science.gov (United States)

    Abbondante, Serena; Eckel-Mahan, Kristin L; Ceglia, Nicholas J; Baldi, Pierre; Sassone-Corsi, Paolo

    2016-02-05

    Diagnosis and therapeutic interventions in pathological conditions rely upon clinical monitoring of key metabolites in the serum. Recent studies show that a wide range of metabolic pathways are controlled by circadian rhythms whose oscillation is affected by nutritional challenges, underscoring the importance of assessing a temporal window for clinical testing and thereby questioning the accuracy of the reading of critical pathological markers in circulation. We have been interested in studying the communication between peripheral tissues under metabolic homeostasis perturbation. Here we present a comparative circadian metabolomic analysis on serum and liver in mice under high fat diet. Our data reveal that the nutritional challenge induces a loss of serum metabolite rhythmicity compared with liver, indicating a circadian misalignment between the tissues analyzed. Importantly, our results show that the levels of serum metabolites do not reflect the circadian liver metabolic signature or the effect of nutritional challenge. This notion reveals the possibility that misleading reads of metabolites in circulation may result in misdiagnosis and improper treatments. Our findings also demonstrate a tissue-specific and time-dependent disruption of metabolic homeostasis in response to altered nutrition. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Genome-wide population structure and admixture analysis reveals weak differentiation among Ugandan goat breeds.

    Science.gov (United States)

    Onzima, R B; Upadhyay, M R; Mukiibi, R; Kanis, E; Groenen, M A M; Crooijmans, R P M A

    2018-02-01

    Uganda has a large population of goats, predominantly from indigenous breeds reared in diverse production systems, whose existence is threatened by crossbreeding with exotic Boer goats. Knowledge about the genetic characteristics and relationships among these Ugandan goat breeds and the potential admixture with Boer goats is still limited. Using a medium-density single nucleotide polymorphism (SNP) panel, we assessed the genetic diversity, population structure and admixture in six goat breeds in Uganda: Boer, Karamojong, Kigezi, Mubende, Small East African and Sebei. All the animals had genotypes for about 46 105 SNPs after quality control. We found high proportions of polymorphic SNPs ranging from 0.885 (Kigezi) to 0.928 (Sebei). The overall mean observed (H O ) and expected (H E ) heterozygosity across breeds was 0.355 ± 0.147 and 0.384 ± 0.143 respectively. Principal components, genetic distances and admixture analyses revealed weak population sub-structuring among the breeds. Principal components separated Kigezi and weakly Small East African from other indigenous goats. Sebei and Karamojong were tightly entangled together, whereas Mubende occupied a more central position with high admixture from all other local breeds. The Boer breed showed a unique cluster from the Ugandan indigenous goat breeds. The results reflect common ancestry but also some level of geographical differentiation. admixture and f 4 statistics revealed gene flow from Boer and varying levels of genetic admixture among the breeds. Generally, moderate to high levels of genetic variability were observed. Our findings provide useful insights into maintaining genetic diversity and designing appropriate breeding programs to exploit within-breed diversity and heterozygote advantage in crossbreeding schemes. © 2018 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  9. Proteome analysis reveals distinct uranium stress response in two strains of Cyanobacteria native to Indian paddy fields

    International Nuclear Information System (INIS)

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar

    2017-01-01

    Uranium present in phosphate fertilizer contaminates agricultural land. Uranium exerts chemical toxicity to the resident biota as it induces oxidative stress by generating free radicals. Two strains of nitrogen fixing cyanobacteria viz., Anabaena PCC 7120 and L-31 native to Indian paddy, regularly experience oxidative stress induced by different stresses and heavy metals. The present study investigated their response to uranium exposure at proteomic level. LD_5_0 dose for Anabaena 7120 and Anabaena L-31 was determined to be 75 μM and 200 μM uranyl carbonate exposure for 3 h. A total of 79 proteins from Anabaena 7120 and 64 proteins from Anabaena L-31 were identified by MALDI mass spectrometry, of which levels of 45 and 27 proteins respectively were found to be differentially modulated in the two strains in response to uranium exposure. The differentially expressed proteins belonged to the major functional categories of photosynthesis, carbon metabolism and oxidative stress alleviation, commensurate with their uranium tolerance. Better oxidative stress management, and maintenance of metabolic and energy homeostasis lead to superior uranium tolerance in Anabaena L-31 as compared to Anabaena PCC 7120

  10. Prognostic factors of a good response to initial therapy in children and adolescents with differentiated thyroid cancer

    Directory of Open Access Journals (Sweden)

    Fernanda Vaisman

    2011-01-01

    Full Text Available BACKGROUND: Therapeutic approaches in pediatric populations are based on adult data because there is a lack of appropriate data for children. Consequently, there are many controversies regarding the proper treatment of pediatric patients. OBJECTIVE: The present study was designed to evaluate patients with differentiated thyroid carcinoma diagnosed before 20 years of age and to determine the factors associated with the response to the initial therapy. METHODS: Sixty-five patients, treated in two tertiary-care referral centers in Rio de Janeiro between 1980 and 2005 were evaluated. Information about clinical presentation and the response to initial treatment was analyzed and patients had their risk stratified in Tumor-Node- Metastasis; Age-Metastasis-Extracapsular-Size; distant Metastasis-Age-Completeness of primary tumor resection-local Invasion-Size and American-Thyroid-Association classification RESULTS: Patients ages ranged from 4 to 20 years (median 14. The mean follow-up was 12,6 years. Lymph node metastasis was found in 61.5% and indicated a poor response to initial therapy, with a significant impact on time for achieving disease free status (p = 0.014 for response to initial therapy and p<0,0001 for disease-free status in follow-up. Distant metastasis was a predictor of a poor response to initial therapy in these patients (p = 0.014. The risk stratification systems we analyzed were useful for high-risk patients because they had a high sensitivity and negative predictive value in determining the response to initial therapy. CONCLUSIONS: Metastases, both lymph nodal and distant, are important predictors of the persistence of disease after initial therapy in children and adolescents with differentiated thyroid cancer.

  11. Host transcriptomic responses to pneumonic plague reveal that Yersinia pestis inhibits both the initial adaptive and innate immune responses in mice.

    Science.gov (United States)

    Yang, Huiying; Wang, Tong; Tian, Guang; Zhang, Qingwen; Wu, Xiaohong; Xin, Youqian; Yan, Yanfeng; Tan, Yafang; Cao, Shiyang; Liu, Wanbing; Cui, Yujun; Yang, Ruifu; Du, Zongmin

    2017-01-01

    Pneumonic plague is the most deadly form of infection caused by Yersinia pestis and can progress extremely fast. However, our understanding on the host transcriptomic response to pneumonic plague is insufficient. Here, we used RNA-sequencing technology to analyze transcriptomic responses in mice infected with fully virulent strain 201 or EV76, a live attenuated vaccine strain lacking the pigmentation locus. Approximately 600 differentially expressed genes (DEGs) were detected in lungs from both 201- and EV76-infected mice at 12h post-infection (hpi). DEGs in lungs of 201-infected mice exceeded 2000 at 48hpi, accompanied by sustained large numbers of DEGs in the liver and spleen; however, limited numbers of DEGs were detected in those organs of EV-infected mice. Remarkably, DEGs in lungs were significantly enriched in critical immune responses pathways in EV76-infected but not 201-infected mice, including antigen processing and presentation, T cell receptor signaling among others. Pathological and bacterial load analyses confirmed the rapid systemic dissemination of 201-infection and the confined EV76-infection in lungs. Our results suggest that fully virulent Y. pestis inhibits both the innate and adaptive immune responses that are substantially stimulated in a self-limited infection, which update our holistic views on the transcriptomic response to pneumonic plague. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    Directory of Open Access Journals (Sweden)

    Aayudh Das

    2016-01-01

    Full Text Available Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  13. Genetic diversity and substantial population differentiation in Crassostrea hongkongensis revealed by mitochondrial DNA.

    Science.gov (United States)

    Li, Lu; Wu, Xiangyun; Yu, Ziniu

    2013-09-01

    The Hong Kong oyster, Crassostrea hongkongensis, is an important fisheries resource that is cultivated in the coastal waters of the South China Sea. Despite significant advances in understanding biological and taxonomic aspects of this species, no detailed study of its population genetic diversity in regions of extensive cultivation are available. Direct sequencing of the mtDNA cox1 gene region was used to investigate genetic variation within and between eleven C. hongkongensis populations collected from typical habitats. Sixty-two haplotypes were identified; only haplotype 2 (21.74% of total haplotypes) was shared among all the eleven populations, and most of the observed haplotypes were restricted to individual populations. Both AMOVA and FST analyses revealed significant population structure, and the isolation by distance (IBD) was confirmed. The highest local differentiation was observed between the sample pools from Guangxi versus Guangdong and Fujian, which are separated by a geographic barrier, the Leizhou Peninsula. Current knowledge from seed management suggests that seed transfer from Guangxi province has likely reduced the divergence that somewhat naturally exists between these pools. The findings from the present study could be useful for genetic management and may serve as a baseline by which to monitor future changes in genetic diversity, either due to natural or anthropogenic impacts. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Proteomic analysis of acute responses to copper sulfate stress in larvae of the brine shrimp, Artemia sinica

    Science.gov (United States)

    Zhou, Qian; Wu, Changgong; Dong, Bo; Li, Fuhua; Liu, Fengqi; Xiang, Jianhai

    2010-03-01

    Proteomics was used to reveal the differential protein expression profiles of acute responses to copper sulfate exposure in larvae of Artemia sinica. Fourteen differentially displayed protein spots were detected and seven of them were identified. Three spots were up-expressed and identified: actin, heat shock protein 70, and chaperone subunit 1; three down-regulated proteins were identified: arginine kinase, elongation factor-2, and glycine-rich protein; and a newly expressed protein was identified as peroxiredoxin. The study indicates the involvement of all the differentially expressed proteins in the early responses of protein expression, and in the survival of A. sinica in the presence of copper and other heavy metals; the findings improve understanding of the organism’s adaptive responses and resistance.

  15. Variable DAXX gene methylation is a common feature of placental trophoblast differentiation, preeclampsia, and response to hypoxia.

    Science.gov (United States)

    Novakovic, Boris; Evain-Brion, Danièle; Murthi, Padma; Fournier, Thiery; Saffery, Richard

    2017-06-01

    placental development and function.-Novakovic, B., Evain-Brion, D., Murthi, P., Fournier, T., Saffery, R. Variable DAXX gene methylation is a common feature of placental trophoblast differentiation, preeclampsia, and response to hypoxia. © FASEB.

  16. Long Intergenic Noncoding RNAs Mediate the Human Chondrocyte Inflammatory Response and Are Differentially Expressed in Osteoarthritis Cartilage.

    Science.gov (United States)

    Pearson, Mark J; Philp, Ashleigh M; Heward, James A; Roux, Benoit T; Walsh, David A; Davis, Edward T; Lindsay, Mark A; Jones, Simon W

    2016-04-01

    To identify long noncoding RNAs (lncRNAs), including long intergenic noncoding RNAs (lincRNAs), antisense RNAs, and pseudogenes, associated with the inflammatory response in human primary osteoarthritis (OA) chondrocytes and to explore their expression and function in OA. OA cartilage was obtained from patients with hip or knee OA following joint replacement surgery. Non-OA cartilage was obtained from postmortem donors and patients with fracture of the neck of the femur. Primary OA chondrocytes were isolated by collagenase digestion. LncRNA expression analysis was performed by RNA sequencing (RNAseq) and quantitative reverse transcriptase-polymerase chain reaction. Modulation of lncRNA chondrocyte expression was achieved using LNA longRNA GapmeRs (Exiqon). Cytokine production was measured with Luminex. RNAseq identified 983 lncRNAs in primary human hip OA chondrocytes, 183 of which had not previously been identified. Following interleukin-1β (IL-1β) stimulation, we identified 125 lincRNAs that were differentially expressed. The lincRNA p50-associated cyclooxygenase 2-extragenic RNA (PACER) and 2 novel chondrocyte inflammation-associated lincRNAs (CILinc01 and CILinc02) were differentially expressed in both knee and hip OA cartilage compared to non-OA cartilage. In primary OA chondrocytes, these lincRNAs were rapidly and transiently induced in response to multiple proinflammatory cytokines. Knockdown of CILinc01 and CILinc02 expression in human chondrocytes significantly enhanced the IL-1-stimulated secretion of proinflammatory cytokines. The inflammatory response in human OA chondrocytes is associated with widespread changes in the profile of lncRNAs, including PACER, CILinc01, and CILinc02. Differential expression of CILinc01 and CIinc02 in hip and knee OA cartilage, and their role in modulating cytokine production during the chondrocyte inflammatory response, suggest that they may play an important role in mediating inflammation-driven cartilage degeneration in

  17. A data analysis framework for biomedical big data: Application on mesoderm differentiation of human pluripotent stem cells.

    Science.gov (United States)

    Ulfenborg, Benjamin; Karlsson, Alexander; Riveiro, Maria; Améen, Caroline; Åkesson, Karolina; Andersson, Christian X; Sartipy, Peter; Synnergren, Jane

    2017-01-01

    The development of high-throughput biomolecular technologies has resulted in generation of vast omics data at an unprecedented rate. This is transforming biomedical research into a big data discipline, where the main challenges relate to the analysis and interpretation of data into new biological knowledge. The aim of this study was to develop a framework for biomedical big data analytics, and apply it for analyzing transcriptomics time series data from early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. To this end, transcriptome profiling by microarray was performed on differentiating human pluripotent stem cells sampled at eleven consecutive days. The gene expression data was analyzed using the five-stage analysis framework proposed in this study, including data preparation, exploratory data analysis, confirmatory analysis, biological knowledge discovery, and visualization of the results. Clustering analysis revealed several distinct expression profiles during differentiation. Genes with an early transient response were strongly related to embryonic- and mesendoderm development, for example CER1 and NODAL. Pluripotency genes, such as NANOG and SOX2, exhibited substantial downregulation shortly after onset of differentiation. Rapid induction of genes related to metal ion response, cardiac tissue development, and muscle contraction were observed around day five and six. Several transcription factors were identified as potential regulators of these processes, e.g. POU1F1, TCF4 and TBP for muscle contraction genes. Pathway analysis revealed temporal activity of several signaling pathways, for example the inhibition of WNT signaling on day 2 and its reactivation on day 4. This study provides a comprehensive characterization of biological events and key regulators of the early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. The proposed analysis framework can be used to structure

  18. Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes.

    Science.gov (United States)

    Palmer, Alan R; Shackleton, Trevor M; Sumner, Christian J; Zobay, Oliver; Rees, Adrian

    2013-08-15

    A differential response to sound frequency is a fundamental property of auditory neurons. Frequency analysis in the cochlea gives rise to V-shaped tuning functions in auditory nerve fibres, but by the level of the inferior colliculus (IC), the midbrain nucleus of the auditory pathway, neuronal receptive fields display diverse shapes that reflect the interplay of excitation and inhibition. The origin and nature of these frequency receptive field types is still open to question. One proposed hypothesis is that the frequency response class of any given neuron in the IC is predominantly inherited from one of three major afferent pathways projecting to the IC, giving rise to three distinct receptive field classes. Here, we applied subjective classification, principal component analysis, cluster analysis, and other objective statistical measures, to a large population (2826) of frequency response areas from single neurons recorded in the IC of the anaesthetised guinea pig. Subjectively, we recognised seven frequency response classes (V-shaped, non-monotonic Vs, narrow, closed, tilt down, tilt up and double-peaked), that were represented at all frequencies. We could identify similar classes using our objective classification tools. Importantly, however, many neurons exhibited properties intermediate between these classes, and none of the objective methods used here showed evidence of discrete response classes. Thus receptive field shapes in the IC form continua rather than discrete classes, a finding consistent with the integration of afferent inputs in the generation of frequency response areas. The frequency disposition of inhibition in the response areas of some neurons suggests that across-frequency inputs originating at or below the level of the IC are involved in their generation.

  19. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats.

    Science.gov (United States)

    Merrick, B Alex; Phadke, Dhiral P; Auerbach, Scott S; Mav, Deepak; Stiegelmeyer, Suzy M; Shah, Ruchir R; Tice, Raymond R

    2013-01-01

    Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1), a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG) than microarray analysis, including low copy and novel transcripts related to AFB1's carcinogenic activity compared to feed controls (CTRL). Paired-end reads were mapped to the rat genome (Rn4) with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005) compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT's) on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c. We find the

  20. Sustained Low-Dose Treatment with the Histone Deacetylase Inhibitor LBH589 Induces Terminal Differentiation of Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Jason E. Cain

    2013-01-01

    Full Text Available Histone deacetylase inhibitors (HDACi were identified nearly four decades ago based on their ability to induce cellular differentiation. However, the clinical development of these compounds as cancer therapies has focused on their capacity to induce apoptosis in hematologic and lymphoid malignancies, often in combination with conventional cytotoxic agents. In many cases, HDACi doses necessary to induce these effects result in significant toxicity. Since osteosarcoma cells express markers of terminal osteoblast differentiation in response to DNA methyltransferase inhibitors, we reasoned that the epigenetic reprogramming capacity of HDACi might be exploited for therapeutic benefit. Here, we show that continuous exposure of osteosarcoma cells to low concentrations of HDACi LBH589 (Panobinostat over a three-week period induces terminal osteoblast differentiation and irreversible senescence without inducing cell death. Remarkably, transcriptional profiling revealed that HDACi therapy initiated gene signatures characteristic of chondrocyte and adipocyte lineages in addition to marked upregulation of mature osteoblast markers. In a mouse xenograft model, continuous low dose treatment with LBH589 induced a sustained cytostatic response accompanied by induction of mature osteoblast gene expression. These data suggest that the remarkable capacity of osteosarcoma cells to differentiate in response to HDACi therapy could be exploited for therapeutic benefit without inducing systemic toxicity.

  1. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    Directory of Open Access Journals (Sweden)

    David Judah

    Full Text Available Integrin-linked kinase (ILK is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  2. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    Science.gov (United States)

    Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E; Dagnino, Lina

    2012-01-01

    Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  3. GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Marta Moreno

    2017-11-01

    Full Text Available A mesenchymal transition occurs both during the natural evolution of glioblastoma (GBM and in response to therapy. Here, we report that the adhesion G-protein-coupled receptor, GPR56/ADGRG1, inhibits GBM mesenchymal differentiation and radioresistance. GPR56 is enriched in proneural and classical GBMs and is lost during their transition toward a mesenchymal subtype. GPR56 loss of function promotes mesenchymal differentiation and radioresistance of glioma initiating cells both in vitro and in vivo. Accordingly, a low GPR56-associated signature is prognostic of a poor outcome in GBM patients even within non-G-CIMP GBMs. Mechanistically, we reveal GPR56 as an inhibitor of the nuclear factor kappa B (NF-κB signaling pathway, thereby providing the rationale by which this receptor prevents mesenchymal differentiation and radioresistance. A pan-cancer analysis suggests that GPR56 might be an inhibitor of the mesenchymal transition across multiple tumor types beyond GBM.

  4. Time-lapse imagery of Adélie penguins reveals differential winter strategies and breeding site occupation

    Science.gov (United States)

    Southwell, Colin; Emmerson, Louise; Lunn, Daniel

    2018-01-01

    Polar seabirds adopt different over-wintering strategies to survive and build condition during the critical winter period. Penguin species either reside at the colony during the winter months or migrate long distances. Tracking studies and survey methods have revealed differences in winter migration routes among penguin species and colonies, dependent on both biotic and abiotic factors present. However, scan sampling methods are rarely used to reveal non-breeding behaviors during winter and little is known about presence at the colony site over this period. Here we show that Adélie penguins on the Yalour Islands in the Western Antarctic Peninsula (WAP) are present year-round at the colony and undergo a mid-winter peak in abundance during winter. We found a negative relationship between daylight hours and penguin abundance when either open water or compact ice conditions were present, suggesting that penguins return to the breeding colony when visibility is lowest for at-sea foraging and when either extreme low or high levels of sea ice exist offshore. In contrast, Adélie penguins breeding in East Antarctica were not observed at the colonies during winter, suggesting that Adélie penguins undergo differential winter strategies in the marginal ice zone on the WAP compared to those in East Antarctica. These results demonstrate that cameras can successfully monitor wildlife year-round in areas that are largely inaccessible during winter. PMID:29561876

  5. Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy.

    Directory of Open Access Journals (Sweden)

    Mona Meyer

    Full Text Available Acute myeloid leukemia (AML is a clonal disease originating from myeloid progenitor cells with a heterogeneous genetic background. High-dose cytarabine is used as the standard consolidation chemotherapy. Oncogenic RAS mutations are frequently observed in AML, and are associated with beneficial response to cytarabine. Why AML-patients with oncogenic RAS benefit most from high-dose cytarabine post-remission therapy is not well understood. Here we used bone marrow cells expressing a conditional MLL-ENL-ER oncogene to investigate the interaction of oncogenic RAS and chemotherapeutic agents. We show that oncogenic RAS synergizes with cytotoxic agents such as cytarabine in activation of DNA damage checkpoints, resulting in a p53-dependent genetic program that reduces clonogenicity and increases myeloid differentiation. Our data can explain the beneficial effects observed for AML patients with oncogenic RAS treated with higher dosages of cytarabine and suggest that induction of p53-dependent differentiation, e.g. by interfering with Mdm2-mediated degradation, may be a rational approach to increase cure rate in response to chemotherapy. The data also support the notion that the therapeutic success of cytotoxic drugs may depend on their ability to promote the differentiation of tumor-initiating cells.

  6. Differential item functioning magnitude and impact measures from item response theory models.

    Science.gov (United States)

    Kleinman, Marjorie; Teresi, Jeanne A

    2016-01-01

    Measures of magnitude and impact of differential item functioning (DIF) at the item and scale level, respectively are presented and reviewed in this paper. Most measures are based on item response theory models. Magnitude refers to item level effect sizes, whereas impact refers to differences between groups at the scale score level. Reviewed are magnitude measures based on group differences in the expected item scores and impact measures based on differences in the expected scale scores. The similarities among these indices are demonstrated. Various software packages are described that provide magnitude and impact measures, and new software presented that computes all of the available statistics conveniently in one program with explanations of their relationships to one another.

  7. Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Qiao, Jianjun; Wang, Jiangxin; Chen, Lei; Tian, Xiaoxu; Huang, Siqiang; Ren, Xiaoyue; Zhang, Weiwen

    2012-11-02

    Recent progress in metabolic engineering has led to autotrophic production of ethanol in various cyanobacterial hosts. However, cyanobacteria are known to be sensitive to ethanol, which restricts further efforts to increase ethanol production levels in these renewable host systems. To understand the mechanisms of ethanol tolerance so that engineering more robust cyanobacterial hosts can be possible, in this study, the responses of model cyanobacterial Synechocystis sp. PCC 6803 to ethanol were determined using a quantitative proteomics approach with iTRAQ LC-MS/MS technologies. The resulting high-quality proteomic data set consisted of 24,887 unique peptides corresponding to 1509 identified proteins, a coverage of approximately 42% of the predicted proteins in the Synechocystis genome. Using a cutoff of 1.5-fold change and a p-value less than 0.05, 135 and 293 unique proteins with differential abundance levels were identified between control and ethanol-treated samples at 24 and 48 h, respectively. Functional analysis showed that the Synechocystis cells employed a combination of induced common stress response, modifications of cell membrane and envelope, and induction of multiple transporters and cell mobility-related proteins as protection mechanisms against ethanol toxicity. Interestingly, our proteomic analysis revealed that proteins related to multiple aspects of photosynthesis were up-regulated in the ethanol-treated Synechocystis cells, consistent with increased chlorophyll a concentration in the cells upon ethanol exposure. The study provided the first comprehensive view of the complicated molecular mechanisms against ethanol stress and also provided a list of potential gene targets for further engineering ethanol tolerance in Synechocystis PCC 6803.

  8. Development and Optimization of a Fluorescent Differential Display PCR System for Analyzing the Stress Response in Lactobacillus sakei Strains

    Directory of Open Access Journals (Sweden)

    Giovanni Salzano

    2009-11-01

    Full Text Available Lactobacillus sakei is widely used as starter in the production process of Italian fermented sausages and its growth and survival are affected by various factors. We studied the differential expression of genome in response to different stresses by the fluorescent differential display (FDD technique. This study resulted in the development and optimization of an innovative technique, with a high level of reproducibility and quality, which allows the identification of gene expression changes associated with different microbial behaviours under different growth conditions.

  9. Noggin and Wnt3a enable BMP4-dependent differentiation of telencephalic stem cells into GluR-agonist responsive neurons

    DEFF Research Database (Denmark)

    Andersson, Therese; Duckworth, Joshua K; Fritz, Nicolas

    2011-01-01

    levels, that in turn exerted a concentration-dependent inhibition of BMP4-mediated mesenchymal differentiation of NSCs. Instead, BMP4 exposure of NSCs induced neuronal differentiation in mesenchyme-preventing conditions, whereas treatment with recombinant noggin alone did not. Wnt signaling is known...... to be essential for the development of neurons derived from the dorsal telencephalon, and co-stimulation of NSCs with BMP4+Wnt3a resulted in a synergistic effect yielding significantly increased number of mature neurons compared to stimulation with each factor alone. Thus whereas only a subset of BMP4-induced...... neurons derived from telencephalic NSCs, responded to glutamate receptor (GluR) agonists, over 80% of BMP4+Wnt3a-induced neurons responded appropriately to GluR-agonists. Our results increase the understanding of the role for BMP4 in differentiation of telencephalic multipotent progenitors, and reveal...

  10. Differential and enhanced response to climate forcing in diarrheal disease due to rotavirus across a megacity of the developing world.

    Science.gov (United States)

    Martinez, Pamela P; King, Aaron A; Yunus, Mohammad; Faruque, A S G; Pascual, Mercedes

    2016-04-12

    The role of climate forcing in the population dynamics of infectious diseases has typically been revealed via retrospective analyses of incidence records aggregated across space and, in particular, over whole cities. Here, we focus on the transmission dynamics of rotavirus, the main diarrheal disease in infants and young children, within the megacity of Dhaka, Bangladesh. We identify two zones, the densely urbanized core and the more rural periphery, that respond differentially to flooding. Moreover, disease seasonality differs substantially between these regions, spanning variation comparable to the variation from tropical to temperate regions. By combining process-based models with an extensive disease surveillance record, we show that the response to climate forcing is mainly seasonal in the core, where a more endemic transmission resulting from an asymptomatic reservoir facilitates the response to the monsoons. The force of infection in this monsoon peak can be an order of magnitude larger than the force of infection in the more epidemic periphery, which exhibits little or no postmonsoon outbreak in a pattern typical of nearby rural areas. A typically smaller peak during the monsoon season nevertheless shows sensitivity to interannual variability in flooding. High human density in the core is one explanation for enhanced transmission during troughs and an associated seasonal monsoon response in this diarrheal disease, which unlike cholera, has not been widely viewed as climate-sensitive. Spatial demographic, socioeconomic, and environmental heterogeneity can create reservoirs of infection and enhance the sensitivity of disease systems to climate forcing, especially in the populated cities of the developing world.

  11. Empathy, ToM, and self-other differentiation: an fMRI study of internal states.

    Science.gov (United States)

    Reniers, Renate L E P; Völlm, Birgit A; Elliott, Rebecca; Corcoran, Rhiannon

    2014-02-01

    This study used functional magnetic resonance imaging to examine the neural substrates of empathy, Theory of Mind (ToM), and self-other differentiation involved in the adaptive understanding of people's internal states. Three conditions were distinguished in both sad and neutral (no obvious emotion) contexts. The empathy condition involved imagining what another person is feeling while the more cognitively loaded ToM condition involved imagining what would make another person feel better. The self-reference condition required participants to imagine how they would feel in someone else's situation. Areas previously implicated in empathy, ToM, and self-other differentiation were identified within the different conditions, regardless of emotional context. Specifically, the frontal and temporal poles responded more strongly for ToM than for empathy. The self-reference condition was associated with stronger dorsolateral prefrontal response than the empathy condition, while the reverse comparison revealed a stronger role for right frontal pole. Activations in frontal pole and orbitofrontal cortex were shared between the three conditions. Contrasts of parameter estimates demonstrated modulation by emotional context. The findings of common and differential patterns of responding observed in prefrontal and temporal regions suggest that within the social cognition network empathy, ToM and self-other differentiation have distinct roles that are responsive to context.

  12. Differential kinetics of response and toxicity using stereotactic radiation and interventional radiological coiling for pulmonary arterio-venous shunting from metastatic leiomyosarcoma

    International Nuclear Information System (INIS)

    Wong, Annie Ngai Man; Siva, Shankar; Chin, Kwang; Manser, Renee; Antippa, Phillip; Dowling, Richard; Mileshkin, Linda Rose

    2015-01-01

    Case report demonstrating the differential kinetics of response and toxicity using stereotactic radiation and interventional radiological coiling for pulmonary arterio-venous shunting from leiomyosarcoma pulmonary metastases.

  13. Oxidative stress modulates the cytokine response of differentiated Th17 and Th1 cells.

    Science.gov (United States)

    Abimannan, Thiruvaimozhi; Peroumal, Doureradjou; Parida, Jyoti R; Barik, Prakash K; Padhan, Prasanta; Devadas, Satish

    2016-10-01

    Reactive oxygen species (ROS) signaling is critical in T helper (Th) cell differentiation; however its role in differentiated Th cell functions is unclear. In this study, we investigated the role of oxidative stress on the effector functions of in vitro differentiated mouse Th17 and Th1 cells or CD4 + T cells from patients with Rheumatoid Arthritis using pro-oxidants plumbagin (PB) and hydrogen peroxide. We found that in mouse Th cells, non-toxic concentration of pro-oxidants inhibited reactivation induced expression of IL-17A in Th17 and IFN-γ in Th1 cells by reducing the expression of their respective TFs, RORγt and T-bet. Interestingly, in both the subsets, PB increased the expression of IL-4 by enhancing reactivation induced ERK1/2 phosphorylation. We further investigated the cytokine modulatory effect of PB on CD4 + T cells isolated from PBMCs of patients with Rheumatoid Arthritis, a well-known Th17 and or Th1 mediated disease. In human CD4 + T cells from Rheumatoid Arthritis patients, PB reduced the frequencies of IL-17A + (Th17), IFN - γ + (Th1) and IL-17A + /IFN - γ + (Th17/1) cells and also inhibited the production of pro-inflammatory cytokines TNF-α and IL-6. N-Acetyl Cysteine (NAC) an antioxidant completely reversed PB mediated cytokine modulatory effects in both mouse and human cells indicating a direct role for ROS. Together our data suggest that oxidative microenvironment can alter cytokine response of terminally differentiated cells and thus altering intracellular ROS could be a potential way to target Th17 and Th1 cells in autoimmune disorders. Copyright © 2016. Published by Elsevier Inc.

  14. YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression

    Directory of Open Access Journals (Sweden)

    Julien Fitamant

    2015-03-01

    Full Text Available Defective Hippo/YAP signaling in the liver results in tissue overgrowth and development of hepatocellular carcinoma (HCC. Here, we uncover mechanisms of YAP-mediated hepatocyte reprogramming and HCC pathogenesis. YAP functions as a rheostat in maintaining metabolic specialization, differentiation, and quiescence within the hepatocyte compartment. Increased or decreased YAP activity reprograms subsets of hepatocytes to different fates associated with deregulation of the HNF4A, CTNNB1, and E2F transcriptional programs that control hepatocyte quiescence and differentiation. Importantly, treatment with small interfering RNA-lipid nanoparticles (siRNA-LNPs targeting YAP restores hepatocyte differentiation and causes pronounced tumor regression in a genetically engineered mouse HCC model. Furthermore, YAP targets are enriched in an aggressive human HCC subtype characterized by a proliferative signature and absence of CTNNB1 mutations. Thus, our work reveals Hippo signaling as a key regulator of the positional identity of hepatocytes, supports targeting of YAP using siRNA-LNPs as a paradigm of differentiation-based therapy, and identifies an HCC subtype that is potentially responsive to this approach.

  15. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Pathological and immunological responses associated with differential survival of Chinook salmon following Renibacterium salmoninarum challenge

    Science.gov (United States)

    Metzger, David C.; Elliott, Diane G.; Wargo, Andrew; Park, Linda K.; Purcell, Maureen K.

    2010-01-01

    Chinook salmon Oncorhynchus tshawytscha are highly susceptible to Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD). Previously we demonstrated that introduced Chinook salmon from Lake Michigan, Wisconsin (WI), USA, have higher survival following R. salmoninarum challenge relative to the progenitor stock from Green River, Washington, USA. In the present study, we investigated the pathological and immunological responses that are associated with differential survival in the 2 Chinook salmon stocks following intra-peritoneal R. salmoninarum challenge of 2 different cohort years (2003 and 2005). Histological evaluation revealed delayed appearance of severe granulomatous lesions in the kidney and lower overall prevalence of membranous glomerulopathy in the higher surviving WI stock. The higher survival WI stock had a lower bacterial load at 28 d post-infection, as measured by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). However, at all other time points, bacterial load levels were similar despite higher mortality in the more susceptible Green River stock, suggesting the possibility that the stocks may differ in their tolerance to infection by the bacterium. Interferon-γ, inducible nitric oxide synthase (iNOS), Mx-1, and transferrin gene expression were up-regulated in both stocks following challenge. A trend of higher iNOS gene expression at later time points (≥28 d post-infection) was observed in the lower surviving Green River stock, suggesting the possibility that higher iNOS expression may contribute to greater pathology in that stock.

  17. Differential responsiveness to caffeine and perceived effects of caffeine in moderate and high regular caffeine consumers.

    Science.gov (United States)

    Attwood, A S; Higgs, S; Terry, P

    2007-03-01

    Individual differences in responsiveness to caffeine occur even within a caffeine-consuming population, but the factors that mediate differential responsiveness remain unclear. To compare caffeine's effects on performance and mood in a group of high vs moderate consumers of caffeine and to examine the potential role of subjective awareness of the effects of caffeine in mediating any differential responsiveness. Two groups of regular caffeine consumers (200 mg/day) attended two sessions at which mood and cognitive functions were measured before and 30 min after consumption of 400-mg caffeine or placebo in a capsule. Cognitive tests included visual information processing, match-to-sample visual search (MTS) and simple and choice reaction times. Post-session questionnaires asked participants to describe any perceived effect of capsule consumption. High consumers, but not moderate consumers, demonstrated significantly faster simple and choice reaction times after caffeine relative to placebo. These effects were not attributable to obvious group differences in withdrawal or tolerance because there were no group differences in baseline mood or in reports of negative affect after caffeine. Instead, the high consumers were more likely to report experiencing positive effects of caffeine, whereas the moderate consumers were more likely to report no effect. The sensitivity of caffeine consumers to the mood- and performance-enhancing effects of caffeine is related to their levels of habitual intake. High caffeine consumers are more likely than moderate consumers to perceive broadly positive effects of caffeine, and this may contribute to their levels of use.

  18. The differential influence of life stress on individual symptoms of depression.

    Science.gov (United States)

    Fried, E I; Nesse, R M; Guille, C; Sen, S

    2015-06-01

    Life stress consistently increases the incidence of major depression. Recent evidence has shown that individual symptoms of major depressive disorder (MDD) differ in important dimensions such as their genetic and etiological background, but the impact of stress on individual MDD symptoms is not known. Here, we assess whether stress affects depression symptoms differentially. We used the chronic stress of medical internship to examine changes of the nine Diagnostic and Statistical Manual (DSM)-5 criterion symptoms for depression in 3021 interns assessed prior to and throughout internship. All nine depression symptoms increased in response to stress (all P stress (P Stress differentially affects the DSM-5 depressive symptoms. Analyses of individual symptoms reveal important insights obfuscated by sum-scores. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Mixture Item Response Theory-MIMIC Model: Simultaneous Estimation of Differential Item Functioning for Manifest Groups and Latent Classes

    Science.gov (United States)

    Bilir, Mustafa Kuzey

    2009-01-01

    This study uses a new psychometric model (mixture item response theory-MIMIC model) that simultaneously estimates differential item functioning (DIF) across manifest groups and latent classes. Current DIF detection methods investigate DIF from only one side, either across manifest groups (e.g., gender, ethnicity, etc.), or across latent classes…

  20. Comparative proteomics of cerebrospinal fluid reveals a predictive model for differential diagnosis of pneumococcal, meningococcal, and enteroviral meningitis, and novel putative therapeutic targets

    Science.gov (United States)

    2015-01-01

    Background Meningitis is the inflammation of the meninges in response to infection or chemical agents. While aseptic meningitis, most frequently caused by enteroviruses, is usually benign with a self-limiting course, bacterial meningitis remains associated with high morbidity and mortality rates, despite advances in antimicrobial therapy and intensive care. Fast and accurate differential diagnosis is crucial for assertive choice of the appropriate therapeutic approach for each form of meningitis. Methods We used 2D-PAGE and mass spectrometry to identify the cerebrospinal fluid proteome specifically related to the host response to pneumococcal, meningococcal, and enteroviral meningitis. The disease-specific proteome signatures were inspected by pathway analysis. Results Unique cerebrospinal fluid proteome signatures were found to the three aetiological forms of meningitis investigated, and a qualitative predictive model with four protein markers was developed for the differential diagnosis of these diseases. Nevertheless, pathway analysis of the disease-specific proteomes unveiled that Kallikrein-kinin system may play a crucial role in the pathophysiological mechanisms leading to brain damage in bacterial meningitis. Proteins taking part in this cellular process are proposed as putative targets to novel adjunctive therapies. Conclusions Comparative proteomics of cerebrospinal fluid disclosed candidate biomarkers, which were combined in a qualitative and sequential predictive model with potential to improve the differential diagnosis of pneumococcal, meningococcal and enteroviral meningitis. Moreover, we present the first evidence of the possible implication of Kallikrein-kinin system in the pathophysiology of bacterial meningitis. PMID:26040285

  1. Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb.

    Science.gov (United States)

    Domżalska, Lucyna; Kędracka-Krok, Sylwia; Jankowska, Urszula; Grzyb, Małgorzata; Sobczak, Mirosław; Rybczyński, Jan J; Mikuła, Anna

    2017-05-01

    Using cyto-morphological analysis of somatic embryogenesis (SE) in the tree fern Cyathea delgadii as a guide, we performed a comparative proteomic analysis in stipe explants undergoing direct SE. Plant material was cultured on hormone-free medium supplemented with 2% sucrose. Phenol extracted proteins were separated using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed for protein identification. A total number of 114 differentially regulated proteins was identified during early SE, i.e. when the first cell divisions started and several-cell pro-embryos were formed. Proteins were assigned to seven functional categories: carbohydrate metabolism, protein metabolism, cell organization, defense and stress responses, amino acid metabolism, purine metabolism, and fatty acid metabolism. Carbohydrate and protein metabolism were found to be the most sensitive SE functions with the greatest number of alterations in the intensity of spots in gel. Differences, especially in non-enzymatic and structural protein abundance, are indicative for cell organization, including cytoskeleton rearrangement and changes in cell wall components. The highest induced changes concern those enzymes related to fatty acid metabolism. Global analysis of the proteome reveals several proteins that can represent markers for the first 16days of SE induction and expression in fern. The findings of this research improve the understanding of molecular processes involved in direct SE in C. delgadii. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Differential modulation of auditory responses to attended and unattended speech in different listening conditions.

    Science.gov (United States)

    Kong, Ying-Yee; Mullangi, Ala; Ding, Nai

    2014-10-01

    This study investigates how top-down attention modulates neural tracking of the speech envelope in different listening conditions. In the quiet conditions, a single speech stream was presented and the subjects paid attention to the speech stream (active listening) or watched a silent movie instead (passive listening). In the competing speaker (CS) conditions, two speakers of opposite genders were presented diotically. Ongoing electroencephalographic (EEG) responses were measured in each condition and cross-correlated with the speech envelope of each speaker at different time lags. In quiet, active and passive listening resulted in similar neural responses to the speech envelope. In the CS conditions, however, the shape of the cross-correlation function was remarkably different between the attended and unattended speech. The cross-correlation with the attended speech showed stronger N1 and P2 responses but a weaker P1 response compared to the cross-correlation with the unattended speech. Furthermore, the N1 response to the attended speech in the CS condition was enhanced and delayed compared with the active listening condition in quiet, while the P2 response to the unattended speaker in the CS condition was attenuated compared with the passive listening in quiet. Taken together, these results demonstrate that top-down attention differentially modulates envelope-tracking neural activity at different time lags and suggest that top-down attention can both enhance the neural responses to the attended sound stream and suppress the responses to the unattended sound stream. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Characterization of a type-A response regulator differentially expressed during adventitious caulogenesis in Pinus pinaster.

    Science.gov (United States)

    Alvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-12-15

    The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa

    Directory of Open Access Journals (Sweden)

    Lingyu eZheng

    2015-09-01

    Full Text Available Populus tomentosa (Chinese white poplar is well adapted to various extreme environments, and is considered an important species to study the effects of salinity stress on poplar trees. To decipher the mechanism of poplar’s rapid response to short-term salinity stress, we firstly detected the changes in H2O2 and hormone, and then profiled the gene expression pattern of ten-week-old seedling roots treated with 200 mM NaCl for 0, 6, 12 and 24 hours (h by RNA-seq on the Illumina-Solexa platform. Physiological determination showed that the significant increase in H2O2 began at 6 h, while that in hormone ABA was at 24 h, under salt stress. Compared with controls (0 h, 3991, 4603 and 4903 genes were up regulated, and 1408, 2206 and 3461 genes were down regulated (adjusted P-value ≤ 0.05 and |log2Ratio|≥1 at 6, 12, and 24 h time points, respectively. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway annotation revealed that the differentially expressed genes (DEGs were highly enriched in hormone- and reactive oxygen species-related biological processes, including ‘response to oxidative stress or abiotic stimulus’, ‘peroxidase activity’, ‘regulation of transcription’, ‘hormone synthetic and metabolic process’, ‘hormone signal transduction’, ‘antioxidant activity’ and ‘transcription factor activity’. Moreover, K-means clustering demonstrated that DEGs (total RPKM value>12 from four time points could be categorized into four kinds of expression trends: quick up/down over 6 h or 12 h, and slow up/down over 24 h. Of these, DEGs involved in H2O2- and hormone- producing and signal-related genes were further enriched in this analysis, which indicated that the two kinds of small molecules, hormones and H2O2, play pivotal roles in the short-term salt stress response in poplar. This study provides a basis for future studies of the molecular adaptation of poplar and other tree species to salinity

  5. Differential immune responses of Monochamus alternatus against symbiotic and entomopathogenic fungi.

    Science.gov (United States)

    Zhang, Wei; Meng, Jie; Ning, Jing; Qin, Peijun; Zhou, Jiao; Zou, Zhen; Wang, Yanhong; Jiang, Hong; Ahmad, Faheem; Zhao, Lilin; Sun, Jianghua

    2017-08-01

    Monochamus alternatus, the main vector beetles of invasive pinewood nematode, has established a symbiotic relationship with a native ectotrophic fungal symbiont, Sporothrix sp. 1, in China. The immune response of M. alternatus to S. sp. 1 in the coexistence of beetles and fungi is, however, unknown. Here, we report that immune responses of M. alternatus pupae to infection caused by ectotrophic symbiotic fungus S. sp. 1 and entomopathogenic fungus Beauveria bassiana differ significantly. The S. sp. 1 did not kill the beetles while B. bassiana killed all upon injection. The transcriptome results showed that the numbers of differentially expressed genes in M. alternatus infected with S. sp. 1 were 2-fold less than those infected with B. bassiana at 48 hours post infection. It was noticed that Toll and IMD pathways played a leading role in the beetle's immune system when infected by symbiotic fungus, but upon infection by entomopathogenic fungus, only the Toll pathway gets triggered actively. Furthermore, the beetles could tolerate the infection of symbiotic fungi by retracing their Toll and IMD pathways at 48 h. This study provided a comprehensive sequence resource of M. alternatus transcriptome for further study of the immune interactions between host and associated fungi.

  6. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols

    Directory of Open Access Journals (Sweden)

    Dorota Jeziorowska

    2017-06-01

    Full Text Available Human induced pluripotent stem cells (iPSCs represent a powerful human model to study cardiac disease in vitro, notably channelopathies and sarcomeric cardiomyopathies. Different protocols for cardiac differentiation of iPSCs have been proposed either based on embroid body formation (3D or, more recently, on monolayer culture (2D. We performed a direct comparison of the characteristics of the derived cardiomyocytes (iPSC-CMs on day 27 ± 2 of differentiation between 3D and 2D differentiation protocols with two different Wnt-inhibitors were compared: IWR1 (inhibitor of Wnt response or IWP2 (inhibitor of Wnt production. We firstly found that the level of Troponin T (TNNT2 expression measured by FACS was significantly higher for both 2D protocols as compared to the 3D protocol. In the three methods, iPSC-CM show sarcomeric structures. However, iPSC-CM generated in 2D protocols constantly displayed larger sarcomere lengths as compared to the 3D protocol. In addition, mRNA and protein analyses reveal higher cTNi to ssTNi ratios in the 2D protocol using IWP2 as compared to both other protocols, indicating a higher sarcomeric maturation. Differentiation of cardiac myocytes with 2D monolayer-based protocols and the use of IWP2 allows the production of higher yield of cardiac myocytes that have more suitable characteristics to study sarcomeric cardiomyopathies.

  7. Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon.

    Science.gov (United States)

    Skaftnesmo, K O; Edvardsen, R B; Furmanek, T; Crespo, D; Andersson, E; Kleppe, L; Taranger, G L; Bogerd, J; Schulz, R W; Wargelius, A

    2017-10-18

    Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b

  8. Quantitative proteomics reveals divergent responses in Apis mellifera worker and drone pupae to parasitization by Varroa destructor.

    Science.gov (United States)

    Surlis, Carla; Carolan, James C; Coffey, Mary; Kavanagh, Kevin

    Varroa destructor is a haemophagous ectoparasite of honeybees and is considered a major causal agent of colony losses in Europe and North America. Although originating in Eastern Asia where it parasitizes Apis cerana, it has shifted hosts to the western honeybee Apis mellifera on which it has a greater deleterious effect on the individual and colony level. To investigate this important host-parasite interaction and to determine whether Varroa causes different effects on different castes we conducted a label free quantitative proteomic analysis of Varroa-parasitized and non-parasitized drone and worker Apis mellifera pupae. 1195 proteins were identified in total, of which 202 and 250 were differentially abundant in parasitized drone and worker pupae, respectively. Both parasitized drone and worker pupae displayed reduced abundance in proteins associated with the cuticle, lipid transport and innate immunity. Proteins involved in metabolic processes were more abundant in both parasitized castes although the response in workers was more pronounced. A number of caste specific responses were observed including differential abundance of numerous cytoskeletal and muscle proteins, which were of higher abundance in parasitized drones in comparison to parasitized workers. Proteins involved in fatty acid and carbohydrate metabolism were more abundant in parasitized workers as were a large number of ribosomal proteins highlighting either potentially divergent responses to Varroa or a different strategy by the mite when parasitizing the different castes. This data improves our understanding of this interaction and may provide a basis for future studies into improvements to therapy and control of Varroasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Polynomial algebra reveals diverging roles of the unfolded protein response in endothelial cells during ischemia-reperfusion injury.

    Science.gov (United States)

    Le Pape, Sylvain; Dimitrova, Elena; Hannaert, Patrick; Konovalov, Alexander; Volmer, Romain; Ron, David; Thuillier, Raphaël; Hauet, Thierry

    2014-08-25

    The unfolded protein response (UPR)--the endoplasmic reticulum stress response--is found in various pathologies including ischemia-reperfusion injury (IRI). However, its role during IRI is still unclear. Here, by combining two different bioinformatical methods--a method based on ordinary differential equations (Time Series Network Inference) and an algebraic method (probabilistic polynomial dynamical systems)--we identified the IRE1α-XBP1 and the ATF6 pathways as the main UPR effectors involved in cell's adaptation to IRI. We validated these findings experimentally by assessing the impact of their knock-out and knock-down on cell survival during IRI. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Early and late rate of force development: differential adaptive responses to resistance training?

    DEFF Research Database (Denmark)

    Andersen, L L; Andersen, Jesper Løvind; Zebis, M K

    2010-01-01

    The objective of this study is to investigate the potentially opposing influence of qualitative and quantitative muscular adaptations in response to high-intensity resistance training on contractile rate of force development (RFD) in the early (200 ms) of rising muscle force. Fifteen healthy young......-intensity resistance training due to differential influences of qualitative and quantitative muscular adaptations on early and later phases of rising muscle force....... males participated in a 14-week resistance training intervention for the lower body and 10 matched subjects participated as controls. Maximal muscle strength (MVC) and RFD were measured during maximal voluntary isometric contraction of the quadriceps femoris muscle. Muscle biopsies were obtained from...

  11. Identification of Differentially Expressed Proteins in Liver in Response to Subacute Ruminal Acidosis (SARA Induced by High-concentrate Diet

    Directory of Open Access Journals (Sweden)

    X. Y. Jiang

    2014-08-01

    Full Text Available The aim of this study was to evaluate protein expression patterns of liver in response to subacute ruminal acidosis (SARA induced by high-concentrate diet. Sixteen healthy mid-lactating goats were randomly divided into 2 groups and fed either a high-forage (HF diet or a high-concentrate (HC diet. The HC diet was expected to induce SARA. After ensuring the occurrence of SARA, liver samples were collected. Proteome analysis with differential in gel electrophoresis technology revealed that, 15 proteins were significantly modulated in liver in a comparison between HF and HC-fed goats. These proteins were found mainly associated with metabolism and energy transfer after identified by matrix-assisted laser desorption ionization/time of flight. The results indicated that glucose, lipid and protein catabolism could be enhanced when SARA occurred. It prompted that glucose, lipid and amine acid in the liver mainly participated in oxidation and energy supply when SARA occurred, which possibly consumed more precursors involved in milk protein and milk fat synthesis. These results suggest new candidate proteins that may contribute to a better understanding of the mechanisms that mediate liver adaptation to SARA.

  12. Acute hypoxia stress induced abundant differential expression genes and alternative splicing events in heart of tilapia.

    Science.gov (United States)

    Xia, Jun Hong; Li, Hong Lian; Li, Bi Jun; Gu, Xiao Hui; Lin, Hao Ran

    2018-01-10

    Hypoxia is one of the critical environmental stressors for fish in aquatic environments. Although accumulating evidences indicate that gene expression is regulated by hypoxia stress in fish, how genes undergoing differential gene expression and/or alternative splicing (AS) in response to hypoxia stress in heart are not well understood. Using RNA-seq, we surveyed and detected 289 differential expressed genes (DEG) and 103 genes that undergo differential usage of exons and splice junctions events (DUES) in heart of a hypoxia tolerant fish, Nile tilapia, Oreochromis niloticus following 12h hypoxic treatment. The spatio-temporal expression analysis validated the significant association of differential exon usages in two randomly selected DUES genes (fam162a and ndrg2) in 5 tissues (heart, liver, brain, gill and spleen) sampled at three time points (6h, 12h, and 24h) under acute hypoxia treatment. Functional analysis significantly associated the differential expressed genes with the categories related to energy conservation, protein synthesis and immune response. Different enrichment categories were found between the DEG and DUES dataset. The Isomerase activity, Oxidoreductase activity, Glycolysis and Oxidative stress process were significantly enriched for the DEG gene dataset, but the Structural constituent of ribosome and Structural molecule activity, Ribosomal protein and RNA binding protein were significantly enriched only for the DUES genes. Our comparative transcriptomic analysis reveals abundant stress responsive genes and their differential regulation function in the heart tissues of Nile tilapia under acute hypoxia stress. Our findings will facilitate future investigation on transcriptome complexity and AS regulation during hypoxia stress in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Global Transcription Profiling Reveals Comprehensive Insights into Hypoxic Response in Arabidopsis1[w

    Science.gov (United States)

    Liu, Fenglong; VanToai, Tara; Moy, Linda P.; Bock, Geoffrey; Linford, Lara D.; Quackenbush, John

    2005-01-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic PSAG12:ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants. PMID:15734912

  14. Comparison of two methods for customer differentiation

    NARCIS (Netherlands)

    A.F. Gabor (Adriana); Y. Guang (Yang); S. Axsäter (Sven)

    2014-01-01

    textabstractIn response to customer specific time guarantee requirements, service providers can offer differentiated ser- vices. However, conventional customer differentiation methods often lead to high holding costs and may have some practical drawbacks. We compare two customer differentiation

  15. Meta-Analysis of High-Throughput Datasets Reveals Cellular Responses Following Hemorrhagic Fever Virus Infection

    Directory of Open Access Journals (Sweden)

    Gavin C. Bowick

    2011-05-01

    Full Text Available The continuing use of high-throughput assays to investigate cellular responses to infection is providing a large repository of information. Due to the large number of differentially expressed transcripts, often running into the thousands, the majority of these data have not been thoroughly investigated. Advances in techniques for the downstream analysis of high-throughput datasets are providing additional methods for the generation of additional hypotheses for further investigation. The large number of experimental observations, combined with databases that correlate particular genes and proteins with canonical pathways, functions and diseases, allows for the bioinformatic exploration of functional networks that may be implicated in replication or pathogenesis. Herein, we provide an example of how analysis of published high-throughput datasets of cellular responses to hemorrhagic fever virus infection can generate additional functional data. We describe enrichment of genes involved in metabolism, post-translational modification and cardiac damage; potential roles for specific transcription factors and a conserved involvement of a pathway based around cyclooxygenase-2. We believe that these types of analyses can provide virologists with additional hypotheses for continued investigation.

  16. Experimental evolution reveals differences between phenotypic and evolutionary responses to population density.

    Science.gov (United States)

    McNamara, K B; Simmons, L W

    2017-09-01

    Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade-offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade-off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade-offs between pre- and post-copulatory traits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  17. Augmentation of the Differentiation Response to Antitumor Antimalarials

    National Research Council Canada - National Science Library

    Rahim, Rayhana

    2003-01-01

    .... We have shown that the quinoline antimalarials chloroquine (CO) and hydroxychioroquine (HCQ) inhibit proliferation and induce differentiation in breast cancer cell lines without toxicity to normal MCF-10A cells...

  18. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    International Nuclear Information System (INIS)

    Teyssedre, G.; Laurent, C.; Vu, T. T. N.

    2015-01-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10 −14 –10 −13  m 2  V −1  s −1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets

  19. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Science.gov (United States)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  20. Comparative transcriptome and gene co-expression network analysis reveal genes and signaling pathways adaptively responsive to varied adverse stresses in the insect fungal pathogen, Beauveria bassiana.

    Science.gov (United States)

    He, Zhangjiang; Zhao, Xin; Lu, Zhuoyue; Wang, Huifang; Liu, Pengfei; Zeng, Fanqin; Zhang, Yongjun

    2018-01-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. The fungal pathogen unavoidably encounters a variety of adverse environmental stresses and defense response from the host insects during application of the fungal agents. However, few are known about the transcription response of the fungus to respond or adapt varied adverse stresses. Here, we comparatively analyzed the transcriptome of B. bassiana in globe genome under the varied stationary-phase stresses including osmotic agent (0.8 M NaCl), high temperature (32 °C), cell wall-perturbing agent (Congo red), and oxidative agents (H 2 O 2 or menadione). Total of 12,412 reads were obtained, and mapped to the 6767 genes of the B. bassiana. All of these stresses caused transcription responses involved in basal metabolism, cell wall construction, stress response or cell rescue/detoxification, signaling transduction and gene transcription regulation, and likely other cellular processes. An array of genes displayed similar transcription patterns in response to at least two of the five stresses, suggesting a shared transcription response to varied adverse stresses. Gene co-expression network analysis revealed that mTOR signaling pathway, but not HOG1 MAP kinase pathway, played a central role in regulation the varied adverse stress responses, which was verified by RNAi-mediated knockdown of TOR1. Our findings provided an insight of transcription response and gene co-expression network of B. bassiana in adaptation to varied environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Rashid, Asyifah Mohamed; Lu, Kaihui; Yip, Yew Mun; Zhang, Dawei

    2016-02-01

    Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may inhibit adipogenesis and obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress adipocyte differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat obesity and its related diseases. (-)-Epicatechin was identified as a bioactive compound likely responsible for this suppression. As the genetic expression studies revealed that the adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (-)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of adipocyte differentiation.

  2. Listeria arpJ gene modifies T helper type 2 subset differentiation.

    Science.gov (United States)

    Kanoh, Makoto; Maruyama, Saho; Shen, Hua; Matsumoto, Akira; Shinomiya, Hiroto; Przybilla, Karin; Gouin, Edith; Cossart, Pascale; Goebel, Werner; Asano, Yoshihiro

    2015-07-15

    Although the T-cell subset differentiation pathway has been characterized extensively from the view of host gene regulation, the effects of genes of the pathogen on T-cell subset differentiation during infection have yet to be elucidated. Especially, the bacterial genes that are responsible for this shift have not yet been determined. Utilizing a single-gene-mutation Listeria panel, we investigated genes involved in the host-pathogen interaction that are required for the initiation of T-cell subset differentiation in the early phase of pathogen infection. We demonstrate that the induction of T helper types 1 and 2 (Th1 and Th2) subsets are separate phenomena and are mediated by distinct Listeria genes. We identified several candidate Listeria genes that appear to be involved in the host-Listeria interaction. Among them, arpJ is the strongest candidate gene for inhibiting Th2 subset induction. Furthermore, the analysis utilizing arpJ-deficient Listeria monocytogenes (Lm) revealed that the tumor necrosis factor (TNF) superfamily (Tnfsf) 9-TNF receptor superfamily (Tnfrsf) 9 interaction inhibits the Th2 response during Lm infection. arpJ is the candidate gene for inhibiting Th2 T-cell subset induction. The arpJ gene product influences the expression of Tnfsf/Tnfrsf on antigen-presenting cells and inhibits the Th2 T-cell subset differentiation during Listeria infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. CCAAT/Enhancer Binding Protein β Regulates Expression of Indian Hedgehog during Chondrocytes Differentiation

    Science.gov (United States)

    Ushijima, Takahiro; Okazaki, Ken; Tsushima, Hidetoshi; Ishihara, Kohei; Doi, Toshio; Iwamoto, Yukihide

    2014-01-01

    Background CCAAT/enhancer binding protein β (C/EBPβ) is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh) also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2) was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation. Methodology/Results Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between −214 and −210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression. Conclusions C

  4. CCAAT/enhancer binding protein β regulates expression of Indian hedgehog during chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Takahiro Ushijima

    Full Text Available CCAAT/enhancer binding protein β (C/EBPβ is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2 was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation.Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between -214 and -210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA and a chromatin immunoprecipitation (ChIP assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression.C/EBPβ and RUNX2 cooperatively stimulate

  5. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Directory of Open Access Journals (Sweden)

    Anara A Kamaeva

    Full Text Available Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL, were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  6. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Science.gov (United States)

    Kamaeva, Anara A; Vasilchenko, Alexey S; Deryabin, Dmitry G

    2014-01-01

    Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  7. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination

    OpenAIRE

    Li, Xi; Miao, Hongyu; Henn, Alicia; Topham, David J.; Wu, Hulin; Zand, Martin S.; Mosmann, Tim R.

    2012-01-01

    Although previous studies have found minimal changes in CD4 T cell responses after vaccination of adults with trivalent inactivated influenza vaccine, daily sampling and monitoring of the proliferation marker Ki-67 have now been used to reveal that a substantial fraction of influenza-specific CD4 T cells respond to vaccination. At 4–6 days after vaccination, there is a sharp rise in the numbers of Ki-67-expressing PBMC that produce IFNγ, IL-2 and/or TNFα in vitro in response to influenza vacc...

  8. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    Science.gov (United States)

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.

  9. Comprehensive analysis of differential co-expression patterns reveal transcriptional dysregulation mechanism and identify novel prognostic lncRNAs in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Li Z

    2017-06-01

    Full Text Available Zhen Li,1 Qianlan Yao,1 Songjian Zhao,1 Yin Wang,2,3 Yixue Li,1,4 Zhen Wang4 1School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 2Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 3Collaborative Innovation Center for Genetics and Development, Fudan University, 4Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: Esophageal squamous cell carcinoma (ESCC is one of the most common malignancies worldwide and occurs at a relatively high frequency in People’s Republic of China. However, the molecular mechanism underlying ESCC is still unclear. In this study, the mRNA and long non-coding RNA (lncRNA expression profiles of ESCC were downloaded from the Gene Expression Omnibus database, and then differential co-expression analysis was used to reveal the altered co-expression relationship of gene pairs in ESCC tumors. A total of 3,709 mRNAs and 923 lncRNAs were differentially co-expressed between normal and tumor tissues, and we found that most of the gene pairs lost associations in the tumor tissues. The differential regulatory networking approach deciphered that transcriptional dysregulation was ubiquitous in ESCC, and most of the differentially regulated links were modulated by 37 TFs. Our study also found that two novel lncRNAs (ADAMTS9-AS1 and AP000696.2 might be essential in the development of ectoderm and epithelial cells, which could significantly stratify ESCC patients into high-risk and low-risk groups, and were much better than traditional clinical tumor markers. Further inspection of two risk groups showed that the changes in TF-target regulation in the high-risk patients were significantly higher than those in the low-risk patients. In addition, four signal transduction-related DCmRNAs (ERBB3, ENSA, KCNK7, MFSD5

  10. Assembly and Analysis of Differential Transcriptome Responses of Hevea brasiliensis on Interaction with Microcyclus ulei.

    Directory of Open Access Journals (Sweden)

    Uriel Alonso Hurtado Páez

    Full Text Available Natural rubber (Hevea brasiliensis is a tropical tree used commercially for the production of latex, from which 40,000 products are generated. The fungus Microcyclus ulei infects this tree, causing South American leaf blight (SALB disease. This disease causes developmental delays and significant crop losses, thereby decreasing the production of latex. Currently several groups are working on obtaining clones of rubber tree with durable resistance to SALB through the use of extensive molecular biology techniques. In this study, we used a secondary clone that was resistant to M. ulei isolate GCL012. This clone, FX 3864 was obtained by crossing between clones PB 86 and B 38 (H. brasiliensis x H. brasiliensis. RNA-Seq high-throughput sequencing technology was used to analyze the differential expression of the FX 3864 clone transcriptome at 0 and 48 h post infection (hpi with the M. ulei isolate GCL012. A total of 158,134,220 reads were assembled using the de novo assembly strategy to generate 90,775 contigs with an N50 of 1672. Using a reference-based assembly, 76,278 contigs were generated with an N50 of 1324. We identified 86 differentially expressed genes associated with the defense response of FX 3864 to GCL012. Seven putative genes members of the AP2/ERF ethylene (ET-dependent superfamily were found to be down-regulated. An increase in salicylic acid (SA was associated with the up-regulation of three genes involved in cell wall synthesis and remodeling, as well as in the down-regulation of the putative gene CPR5. The defense response of FX 3864 against the GCL012 isolate was associated with the antagonistic SA, ET and jasmonic acid (JA pathways. These responses are characteristic of plant resistance to biotrophic pathogens.

  11. PLZF regulates fibroblast growth factor responsiveness and maintenance of neural progenitors.

    Science.gov (United States)

    Gaber, Zachary B; Butler, Samantha J; Novitch, Bennett G

    2013-10-01

    Distinct classes of neurons and glial cells in the developing spinal cord arise at specific times and in specific quantities from spatially discrete neural progenitor domains. Thus, adjacent domains can exhibit marked differences in their proliferative potential and timing of differentiation. However, remarkably little is known about the mechanisms that account for this regional control. Here, we show that the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF) plays a critical role shaping patterns of neuronal differentiation by gating the expression of Fibroblast Growth Factor (FGF) Receptor 3 and responsiveness of progenitors to FGFs. PLZF elevation increases FGFR3 expression and STAT3 pathway activity, suppresses neurogenesis, and biases progenitors towards glial cell production. In contrast, PLZF loss reduces FGFR3 levels, leading to premature neuronal differentiation. Together, these findings reveal a novel transcriptional strategy for spatially tuning the responsiveness of distinct neural progenitor groups to broadly distributed mitogenic signals in the embryonic environment.

  12. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    Directory of Open Access Journals (Sweden)

    David A Davis

    Full Text Available Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM. In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3 or control filtered ambient air for 10 weeks (3×5 hour exposures per week, encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  13. Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae: proteomic and metabolic responses at early stage

    Directory of Open Access Journals (Sweden)

    Payet Bertrand

    2010-05-01

    Full Text Available Abstract Background Vanilla planifolia is an important Orchid commercially cultivated for the production of natural vanilla flavour. Vanilla plants are conventionally propagated by stem cuttings and thus causing injury to the mother plants. Regeneration and in vitro mass multiplication are proposed as an alternative to minimize damage to mother plants. Because mass production of V. planifolia through indirect shoot differentiation from callus culture is rare and may be a successful use of in vitro techniques for producing somaclonal variants, we have established a novel protocol for the regeneration of vanilla plants and investigated the initial biochemical and molecular mechanisms that trigger shoot organogenesis from embryogenic/organogenic callus. Results For embryogenic callus induction, seeds obtained from 7-month-old green pods of V. planifolia were inoculated on MS basal medium (BM containing TDZ (0.5 mg l-1. Germination of unorganized mass callus such as protocorm -like structure (PLS arising from each seed has been observed. The primary embryogenic calli have been formed after transferring on BM containing IAA (0.5 mg l-1 and TDZ (0.5 mg l-1. These calli were maintained by subculturing on BM containing IAA (0.5 mg l-1 and TDZ (0.3 mg l-1 during 6 months and formed embryogenic/organogenic calli. Histological analysis showed that shoot organogenesis was induced between 15 and 20 days after embryogenic/organogenic calli were transferred onto MS basal medium with NAA (0.5 mg l-1. By associating proteomics and metabolomics analyses, the biochemical and molecular markers responsible for shoot induction have been studied in 15-day-old calli at the stage where no differentiating part was visible on organogenic calli. Two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization time-of-flight-tandem mass spectrometry (MALDI-TOF-TOF-MS analysis revealed that 15 protein spots are significantly expressed (P Conclusion The

  14. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans

    Directory of Open Access Journals (Sweden)

    Tavia Caplan

    2018-05-01

    Full Text Available Summary: Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress. : Caplan et al. screen 3,030 Candida albicans mutants to define circuitry governing cellular responses to echinocandins, the first-line therapy for systemic candidiasis. They reveal that the molecular chaperone Hsp90 is required for stability of Pkc1 and Bck1 and that the CCT chaperonin complex is a key modulator of echinocandin susceptibility. Keywords: fungal pathogen, Candida albicans, echinocandins, Hsp90, Pkc1, CCT complex, client protein, stress response, functional genomic screen, drug resistance

  15. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses.

    Science.gov (United States)

    Yan, Yuanwei; Bejoy, Julie; Xia, Junfei; Guan, Jingjiao; Zhou, Yi; Li, Yan

    2016-09-15

    Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune

  16. Semantisches Differential über Gott

    Directory of Open Access Journals (Sweden)

    Benesch, Thomas

    2017-11-01

    Full Text Available A qualitative research was performed to explore the semantic differential regarding the image of God from young persons. These pairs of contrast were qualified in the field of environment as well as physical and mental characteristics. 27 contrast pairs from a large number of different options had been selected, to reveal through a written survey with adolescents their relationship with God. The semantic differential was evaluated through a factor analysis.

  17. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats.

    Directory of Open Access Journals (Sweden)

    B Alex Merrick

    Full Text Available Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1, a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG than microarray analysis, including low copy and novel transcripts related to AFB1's carcinogenic activity compared to feed controls (CTRL. Paired-end reads were mapped to the rat genome (Rn4 with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005 compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT's on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c

  18. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses

    Directory of Open Access Journals (Sweden)

    Maria Dolores Fernandez-Garcia

    2016-02-01

    Full Text Available The live attenuated yellow fever virus (YFV vaccine 17D stands as a “gold standard” for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation.

  19. Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage.

    Science.gov (United States)

    Palama, Tony L; Menard, Patrice; Fock, Isabelle; Choi, Young H; Bourdon, Emmanuel; Govinden-Soulange, Joyce; Bahut, Muriel; Payet, Bertrand; Verpoorte, Robert; Kodja, Hippolyte

    2010-05-05

    Vanilla planifolia is an important Orchid commercially cultivated for the production of natural vanilla flavour. Vanilla plants are conventionally propagated by stem cuttings and thus causing injury to the mother plants. Regeneration and in vitro mass multiplication are proposed as an alternative to minimize damage to mother plants. Because mass production of V. planifolia through indirect shoot differentiation from callus culture is rare and may be a successful use of in vitro techniques for producing somaclonal variants, we have established a novel protocol for the regeneration of vanilla plants and investigated the initial biochemical and molecular mechanisms that trigger shoot organogenesis from embryogenic/organogenic callus. For embryogenic callus induction, seeds obtained from 7-month-old green pods of V. planifolia were inoculated on MS basal medium (BM) containing TDZ (0.5 mg l(-1)). Germination of unorganized mass callus such as protocorm -like structure (PLS) arising from each seed has been observed. The primary embryogenic calli have been formed after transferring on BM containing IAA (0.5 mg l(-1)) and TDZ (0.5 mg l(-1)). These calli were maintained by subculturing on BM containing IAA (0.5 mg l(-1)) and TDZ (0.3 mg l(-1)) during 6 months and formed embryogenic/organogenic calli. Histological analysis showed that shoot organogenesis was induced between 15 and 20 days after embryogenic/organogenic calli were transferred onto MS basal medium with NAA (0.5 mg l(-1)). By associating proteomics and metabolomics analyses, the biochemical and molecular markers responsible for shoot induction have been studied in 15-day-old calli at the stage where no differentiating part was visible on organogenic calli. Two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization time-of-flight-tandem mass spectrometry (MALDI-TOF-TOF-MS) analysis revealed that 15 protein spots are significantly expressed (P tissue culture, phenolic compounds such

  20. Differential proteomic analysis of Aspergillus fumigatus morphotypes reveals putative drug targets.

    Science.gov (United States)

    Kubitschek-Barreira, Paula H; Curty, Nathalia; Neves, Gabriela W P; Gil, Concha; Lopes-Bezerra, Leila M

    2013-01-14

    Aspergillus fumigatus is the main etiological agent of invasive aspergillosis, an important opportunistic infection for neutropenic patients. The main risk groups are patients with acute leukemia and bone marrow transplantation recipients. The lack of an early diagnostic test together with the limited spectrum of antifungal drugs remains a setback to the successful treatment of this disease. During invasive infection the inhaled fungal conidia enter the morphogenic cycle leading to angioinvasive hyphae. This work aimed to study differentially expressed proteins of A. fumigatus during morphogenesis. To achieve this goal, a 2D-DIGE approach was applied to study surface proteins extractable by reducing agents of two A. fumigatus morphotypes: germlings and hyphae. Sixty-three differentially expressed proteins were identified by MALDI-ToF/MS. We observed that proteins associated with biosynthetic pathways and proteins with multiple functions (miscellaneous) were over-expressed in the early stages of germination, while in hyphae, the most abundant proteins detected were related to metabolic processes or have unknown functions. Among the most interesting proteins regulated during morphogenesis, two putative drug targets were identified, the translational factor, eEF3 and the CipC-like protein. Neither of these proteins are present in mammalian cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang; Zhang, Huoming; Guo, Tiannan; Li, Wenying; Li, Huiyu; Zhu, Yi; Huang, Shiang

    2014-01-01

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang

    2014-06-11

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Differential responsiveness to cigarette price by education and income among adult urban Chinese smokers: findings from the ITC China Survey.

    Science.gov (United States)

    Huang, Jidong; Zheng, Rong; Chaloupka, Frank J; Fong, Geoffrey T; Jiang, Yuan

    2015-07-01

    Few studies have examined the impact of tobacco tax and price policies in China. In addition, very little is known about the differential responses to tax and price increases based on socioeconomic status in China. To estimate the conditional cigarette consumption price elasticity among adult urban smokers in China and to examine the differential responses to cigarette price increases among groups with different income and/or educational levels. Multivariate analyses employing the general estimating equations method were conducted using the first three waves of the International Tobacco Control (ITC) China Survey. Analyses based on subsample by education and income were conducted. Conditional cigarette demand price elasticity ranges from -0.12 to -0.14. No differential responses to cigarette price increase were found across education levels. The price elasticity estimates do not differ between high-income smokers and medium-income smokers. Cigarette consumption among low-income smokers did not decrease after a price increase, at least among those who continued to smoke. Relative to other low-income and middle-income countries, cigarette consumption among Chinese adult smokers is not very sensitive to changes in cigarette prices. The total impact of cigarette price increase would be larger if its impact on smoking initiation and cessation, as well as the price-reducing behaviours such as brand switching and trading down, were taken into account. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Ribosome•RelA structures reveal the mechanism of stringent response activation

    Science.gov (United States)

    Loveland, Anna B; Bah, Eugene; Madireddy, Rohini; Zhang, Ying; Brilot, Axel F; Grigorieff, Nikolaus; Korostelev, Andrei A

    2016-01-01

    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit 'closure', providing insights into the dynamics of high-fidelity tRNA decoding. DOI: http://dx.doi.org/10.7554/eLife.17029.001 PMID:27434674

  5. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Science.gov (United States)

    Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357

  6. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Directory of Open Access Journals (Sweden)

    Andreas Bayer

    2017-01-01

    Full Text Available Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs or their clinically related formulations (e.g., Vivostat PRF® came recently into the physicians’ focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10 and late (transglutaminase-1 and involucrin differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR- dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.

  7. Responses of well-differentiated nasal epithelial cells exposed to particles: Role of the epithelium in airway inflammation

    International Nuclear Information System (INIS)

    Auger, Floriane; Gendron, Marie-Claude; Chamot, Christophe; Marano, Francelyne; Dazy, Anne-Catherine

    2006-01-01

    Numerous epidemiological studies support the contention that ambient air pollution particles can adversely affect human health. To explain the acute inflammatory process in airways exposed to particles, a number of in vitro studies have been performed on cells grown submerged on plastic and poorly differentiated, and on cell lines, the physiology of which is somewhat different from that of well-differentiated cells. In order to obtain results using a model system in which epithelial cells are similar to those of the human airway in vivo, apical membranes of well-differentiated human nasal epithelial (HNE) cells cultured in an air-liquid interface (ALI) were exposed for 24 h to diesel exhaust particles (DEP) and Paris urban air particles (PM 2.5 ). DEP and PM 2.5 (10-80 μg/cm 2 ) stimulated both IL-8 and amphiregulin (ligand of EGFR) secretion exclusively towards the basal compartment. In contrast, there was no IL-1β secretion and only weak non-reproducible secretion of TNF-α. IL-6 and GM-CSF were consistently stimulated towards the apical compartment and only when cells were exposed to PM 2.5 . ICAM-1 protein expression on cell surfaces remained low after particle exposure, although it increased after TNF-α treatment. Internalization of particles, which is believed to initiate oxidative stress and proinflammatory cytokine expression, was restricted to small nanoparticles (≤ 40 nm). Production of reactive oxygen species (ROS) was detected, and DEP were more efficient than PM 2.5 . Collectively, our results suggest that airway epithelial cells exposed to particles augment the local inflammatory response in the lung but cannot alone initiate a systemic inflammatory response

  8. Hadean silicate differentiation revealed by anomalous 142Nd in the Réunion hotspot source

    Science.gov (United States)

    Peters, B. J.; Carlson, R.; Day, J. M.; Horan, M.

    2017-12-01

    Geochemical and geophysical data show that volcanic hotspots can tap ancient domains sequestered in Earth's deep mantle. Evidence from stable and long-lived radiogenic isotope systems has demonstrated that many of these domains result from tectonic and differentiation processes that occurred more than two billion years ago. Recent advances in the analysis of short-lived radiogenic isotopes have further shown that some hotspot sources preserve evidence for metal-silicate differentiation occurring within the first one percent of Earth's history. Despite these discoveries, efforts to detect variability in the lithophile 146Sm-142Nd (t1/2 = 103 Ma) system in Phanerozoic hotspot lavas have not yet detected significant global variation. We report 142Nd/144Nd ratios in Réunion Island basalts that are statistically distinct from the terrestrial Nd standard ranging to both higher and lower 142Nd/144Nd. Variations in 142Nd/144Nd, which total nearly 15 ppm on Réunion, are correlated with 3He/4He among both anomalous and non-anomalous samples. Such behavior implies that there were analogous changes in Sm/Nd and (U+Th)/3He that occurred during a Hadean silicate differentiation event and were not completely overprinted by the depleted mantle. Variations in the 142Nd-143Nd compositions of Réunion basalts can be explained by a single Hadean melting event producing enriched and depleted domains that partially re-mixed after 146Sm was no longer extant. Assuming differentiation occurred at pressures where perovskite is stable, anomalies of the magnitude observed in Réunion basalts require melting of at least 50% across a wide depth range, and up to 90% for melting at pressures near those of the deepest mantle. Models with best fits to Nd isotope data suggest this differentiation occurred around 4.40 Ga and mixing occurred after 4 Ga. This two-stage differentiation process nearly erased the ancient, anomalous 142Nd composition of the Réunion source and produced the relatively

  9. Leadership for Differentiating Schools & Classrooms.

    Science.gov (United States)

    Tomlinson, Carol Ann; Allan, Susan Demirsky

    Differentiation is simply a teacher attending to the learning needs of a particular student or small group of students, rather than teaching a class as though all individuals in it were basically alike. This book explores in 10 chapters how school leaders can develop responsive, personalized, and differentiated classrooms: (1) "Understanding…

  10. DNA methylation differentially regulates cytokine secretion in gingival epithelia in response to bacterial challenges.

    Science.gov (United States)

    Drury, Jeanie L; Chung, Whasun Oh

    2015-03-01

    Epigenetic modifications are changes in gene expression without altering DNA sequence. We previously reported that bacteria-specific innate immune responses are regulated by epigenetic modifications. Our hypothesis is that DNA methylation affects gingival cytokine secretion in response to bacterial stimulation. Gingival epithelial cells (GECs) were treated with DNMT-1 inhibitors prior to Porphyromonas gingivalis (Pg) or Fusobacterium nucleatum (Fn) exposure. Protein secretion was assessed using ELISA. Gene expression was quantified using qRT-PCR. The ability of bacteria to invade inhibitor pretreated GECs was assessed utilizing flow cytometry. Changes were compared to unstimulated GECs. GEC upregulation of IL-6 and CXCL1 by Pg or Fn stimulation was significantly diminished by inhibitor pretreatment. Pg stimulated IL-1α secretion and inhibitor pretreatment significantly enhanced this upregulation, while Fn alone or with inhibitor pretreatment had no effect on IL-1α expression. GEC upregulation of human beta-definsin-2 in response to Pg and Fn exposure was enhanced following the inhibitor pretreatment. GEC susceptibility to bacterial invasion was unaltered. These results suggest that DNA methylation differentially affects gingival cytokine secretion in response to Pg or Fn. Our data provide basis for better understanding of how epigenetic modifications, brought on by exposure to oral bacteria, will subsequently affect host susceptibility to oral diseases. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. A differential spectral responsivity measurement system constructed for determining of the spectral responsivity of a single- and triple-junction photovoltaic cells

    Science.gov (United States)

    Sametoglu, Ferhat; Celikel, Oguz; Witt, Florian

    2017-10-01

    A differential spectral responsivity (DSR) measurement system has been designed and constructed at National Metrology Institute of Turkey (TUBITAK UME) to determine the spectral responsivity (SR) of a single- or a multi-junction photovoltaic device (solar cell). The DSR setup contains a broad band light bias source composed of a constructed Solar Simulator based on a 1000 W Xe-arc lamp owning a AM-1.5 filter and 250 W quartz-tungsten-halogen lamp, a designed and constructed LED-based Bias Light Sources, a DC voltage bias circuit, and a probe beam optical power tracking and correction circuit controlled with an ADuC847 microcontroller card together with an embedded C based software, designed and constructed in TUBITAK UME under this project. By using the constructed DSR measurement system, the SR calibration of solar cells, the monolitic triple-junction solar cell GaInP/GaInAs/Ge and its corresponding component cells have been performed within the EURAMET Joint Research Project SolCell.

  12. Differential immune responses to albumin adducts of reactive intermediates of trichloroethene in MRL+/+ mice

    International Nuclear Information System (INIS)

    Cai Ping; Koenig, Rolf; Khan, M. Firoze; Kaphalia, Bhupendra S.; Ansari, G.A.S.

    2007-01-01

    Trichloroethene (TCE) is an industrial degreasing solvent and widespread environmental contaminant. Exposure to TCE is associated with autoimmunity. The mode of action of TCE is via its oxidative metabolism, and most likely, immunotoxicity is mediated via haptenization of macromolecules and subsequent induction of immune responses. To better understand the role of protein haptenization through TCE metabolism, we immunized MRL+/+ mice with albumin adducts of various TCE reactive intermediates. Serum immunoglobulins and cytokine levels were measured to determine immune responses against haptenized albumin. We found antigen-specific IgG responses of the IgG subtypes IgG 1 , IgG 2a , and IgG 2b , with IgG 1 predominating. Serum levels of G-CSF were increased in immunized mice, suggesting macrophage activation. Liver histology revealed lymphocyte infiltration in the lobules and the portal area following immunization with formyl-albumin. Our findings suggest that proteins haptenized by metabolites of TCE may act as neo-antigens that can induce humoral immune responses and T cell-mediated hepatitis

  13. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses.

    Science.gov (United States)

    Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Jouvenet, Nolwenn; Amara, Ali

    2016-02-09

    The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry

  14. Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation.

    Directory of Open Access Journals (Sweden)

    Renee W Y Chan

    Full Text Available Influenza H5N1 virus continues to be enzootic in poultry and transmits zoonotically to humans. Although a swine-origin H1N1 virus has emerged to become pandemic, its virulence for humans remains modest in comparison to that seen in zoonotic H5N1 disease. As human respiratory epithelium is the primary target cells for influenza viruses, elucidating the viral tropism and host innate immune responses of influenza H5N1 virus in human bronchial epithelium may help to understand the pathogenesis. Here we established primary culture of undifferentiated and well differentiated normal human bronchial epithelial (NHBE cells and infected with highly pathogenic influenza H5N1 virus (A/Vietnam/3046/2004 and a seasonal influenza H1N1 virus (A/Hong Kong/54/1998, the viral replication kinetics and cytokine and chemokine responses were compared by qPCR and ELISA. We found that the in vitro culture of the well differentiated NHBE cells acquired the physiological properties of normal human bronchi tissue which express high level of alpha2-6-linked sialic acid receptors and human airway trypsin-like (HAT protease, in contrast to the low expression in the non-differentiated NHBE cells. When compared to H1N1 virus, the H5N1 virus replicated more efficiently and induced a stronger type I interferon response in the undifferentiated NHBE cells. In contrast, in well differentiated cultures, H5N1 virus replication was less efficient and elicited a lower interferon-beta response in comparison with H1N1 virus. Our data suggest that the differentiation of bronchial epithelial cells has a major influence in cells' permissiveness to human H1N1 and avian H5N1 viruses and the host innate immune responses. The reduced virus replication efficiency partially accounts for the lower interferon-beta responses in influenza H5N1 virus infected well differentiated NHBE cells. Since influenza infection in the bronchial epithelium will lead to tissue damage and associate with the

  15. Changes in chromatin structure during the aging of cell cultures as revealed by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Almagor, M.; Cole, R.D.

    1989-01-01

    Nuclei from cultured human cells were examined by differential scanning calorimetry. Their melting profiles revealed four structural transitions at 60, 76, 88, and 105 degrees C (transitions I-IV, respectively). In immortalized (i.e., tumor) cell cultures and in normal cell cultures of low passage number, melting profiles were dominated by the 105 degrees C transition (transition IV), but in vitro aging of normal and Werner syndrome cells was associated with a marked decrease in transition IV followed by an increase in transition III at the expense of transition IV. At intermediate times in the aging process, much DNA melted at a temperature range (95-102 degrees C) intermediate between transitions III and IV, and this is consistent with the notion that aging of cell cultures is accompanied by an increase in single-strand character of the DNA. Calorimetric changes were observed in the melting profile of nuclei from UV-irradiated tumor cells that resembled the age-induced intermediate melting of chromatin. It is suggested that aging is accompanied by an increase in single-stranded character of the DNA in chromatin, which lowers its melting temperature, followed by strand breaks in the DNA that destroy its supercoiling potential

  16. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France); Vu, T. T. N. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Electric Power University, 235 Hoang Quoc Viet, 10000 Hanoi (Viet Nam)

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  17. A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response.

    Directory of Open Access Journals (Sweden)

    Clara Pons

    Full Text Available Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding

  18. A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response.

    Science.gov (United States)

    Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H; Dandekar, Abhaya M; Granell, Antonio

    2014-01-01

    Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better

  19. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β.

    Science.gov (United States)

    Wang, Shuxin; Li, Zheyi; Shen, Hongyan; Zhang, Zhong; Yin, Yuxin; Wang, Qingsong; Zhao, Xuyang; Ji, Jianguo

    2016-08-01

    Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affected the phosphorylation state of Ctnnb1 and Gsk3β, which regulates the differentiation of NSCs. Our data provides a valuable resource for studying the self-renewal and differentiation of NSCs. Stem Cells 2016;34:2090-2101. © 2016 AlphaMed Press.

  20. Experimental parameters differentially affect the humoral response of the cholera-toxin-based murine model of food allergy

    DEFF Research Database (Denmark)

    Kroghsbo, S.; Christensen, Hanne Risager; Frøkiær, Hanne

    2003-01-01

    Background: Recent studies have developed a murine model of IgE-mediated food allergy based on oral coadministration of antigen and cholera toxin (CT) to establish a maximal response for studying immunopathogenic mechanisms and immunotherapeutic strategies. However, for studying subtle...... interested in characterizing the individual effects of the parameters in the CT-based model: CT dose, antigen type and dose, and number of immunizations. Methods: BALB/c mice were orally sensitized weekly for 3 or 7 weeks with graded doses of CT and various food antigens (soy-trypsin inhibitor, ovalbumin...... of the antibody response depended on the type of antigen and number of immunizations. Conclusions: The critical parameters of the CT-based murine allergy model differentially control the intensity and kinetics of the developing immune response. Adjustment of these parameters could be a key tool for tailoring...

  1. Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent.

    Directory of Open Access Journals (Sweden)

    Roland Fuhrer

    Full Text Available Movement is a key characteristic of higher organisms. During mammalian embryogenesis fetal movements have been found critical to normal tissue development. On the single cell level, however, our current understanding of stem cell differentiation concentrates on inducing factors through cytokine mediated biochemical signaling. In this study, human mesenchymal stem cells and chondrogenesis were investigated as representative examples. We show that pressureless, soft mechanical stimulation precipitated by the cyclic deformation of soft, magnetic hydrogel scaffolds with an external magnetic field, can induce chondrogenesis in mesenchymal stem cells without any additional chondrogenesis transcription factors (TGF-β1 and dexamethasone. A systematic study on the role of movement frequency revealed a classical dose-response relationship for human mesenchymal stem cells differentiation towards cartilage using mere mechanical stimulation. This effect could even be synergistically amplified when exogenous chondrogenic factors and movement were combined.

  2. Linear and non-linear dose-response functions reveal a hormetic relationship between stress and learning.

    Science.gov (United States)

    Zoladz, Phillip R; Diamond, David M

    2008-10-16

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as well as the excitatory effects of several neuromodulators, including corticosteroids, norepinephrine, corticotropin-releasing hormone, acetylcholine and dopamine. We propose that this rapid activation of the amygdala-hippocampus brain memory system results in a linear dose-response relation between emotional strength and memory formation. More prolonged stress, however, leads to an inhibition of hippocampal function, which can be attributed to compensatory cellular responses that protect hippocampal neurons from excitotoxicity. This inhibition of hippocampal functioning in response to prolonged stress is potentially relevant to the well-described curvilinear dose-response relationship between arousal and memory. Our emphasis on the temporal features of stress-brain interactions addresses how stress can activate, as well as impair, hippocampal functioning to produce a hormetic relationship between stress and learning.

  3. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism

    OpenAIRE

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investig...

  4. Transcriptome sequencing from diverse human populations reveals differentiated regulatory architecture.

    Directory of Open Access Journals (Sweden)

    Alicia R Martin

    2014-08-01

    Full Text Available Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse human populations has not been systematically analyzed. To better understand the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines derived from 45 individuals in the Human Genome Diversity Panel (HGDP. The populations sampled span the geographic breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population differences. However, we find few genes that are systematically differentially expressed among populations. Of this population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse populations. Together, these results provide a resource for studies analyzing functional differences across populations by estimating the degree of shared gene expression, alternative splicing, and

  5. Three members of a peptide family are differentially distributed and elicit differential state-dependent responses in a pattern generator-effector system.

    Science.gov (United States)

    Dickinson, Patsy S; Armstrong, Matthew K; Dickinson, Evyn S; Fernandez, Rebecca; Miller, Alexandra; Pong, Sovannarath; Powers, Brian; Pupo Wiss, Alixander; Stanhope, Meredith E; Walsh, Patrick J; Wiwatpanit, Teerawat; Christie, Andrew E

    2018-01-31

    C-type allatostatins (AST-Cs) are pleiotropic neuropeptides that are broadly conserved within arthropods; the presence of three AST-C isoforms, encoded by paralog genes, is common. However, these peptides are hypothesized to act through a single receptor, thereby exerting similar bioactivities within each species. We investigated this hypothesis in the American lobster, Homarus americanus, mapping the distributions of AST-C isoforms within relevant regions of the nervous system and digestive tract, and comparing their modulatory influences on the cardiac neuromuscular system. Immunohistochemistry showed that in the pericardial organ, a neuroendocrine release site, AST-C I and/or III and AST-C II are contained within distinct populations of release terminals. Moreover, AST-C I/III-like immunoreactivity was seen in midgut epithelial endocrine cells and the cardiac ganglion (CG), whereas AST-C II-like immunoreactivity was not seen in these tissues. These data suggest that AST-C I and/or III can modulate the CG both locally and hormonally; AST-C II likely acts on the CG solely as a hormonal modulator. Physiological studies demonstrated that all three AST-C isoforms can exert differential effects, including both increases and decreases, on contraction amplitude and frequency when perfused through the heart. However, in contrast to many state-dependent modulatory changes, the changes in contraction amplitude and frequency elicited by the AST-Cs were not functions of the baseline parameters. The responses to AST-C I and III, neither of which is C-terminally amidated, are more similar to one another than they are to the responses elicited by AST-C II, which is C-terminally amidated. These results suggest that the three AST-C isoforms are differentially distributed in the lobster nervous system/midgut and can elicit distinct behaviors from the cardiac neuromuscular system, with particular structural features, e.g., C-terminal amidation, likely important in determining the

  6. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation.

    Science.gov (United States)

    Papaspyridonos, Marianna; Matei, Irina; Huang, Yujie; do Rosario Andre, Maria; Brazier-Mitouart, Helene; Waite, Janelle C; Chan, April S; Kalter, Julie; Ramos, Ilyssa; Wu, Qi; Williams, Caitlin; Wolchok, Jedd D; Chapman, Paul B; Peinado, Hector; Anandasabapathy, Niroshana; Ocean, Allyson J; Kaplan, Rosandra N; Greenfield, Jeffrey P; Bromberg, Jacqueline; Skokos, Dimitris; Lyden, David

    2015-04-29

    A central mechanism of tumour progression and metastasis involves the generation of an immunosuppressive 'macroenvironment' mediated in part through tumour-secreted factors. Here we demonstrate that upregulation of the Inhibitor of Differentiation 1 (Id1), in response to tumour-derived factors, such as TGFβ, is responsible for the switch from dendritic cell (DC) differentiation to myeloid-derived suppressor cell expansion during tumour progression. Genetic inactivation of Id1 largely corrects the myeloid imbalance, whereas Id1 overexpression in the absence of tumour-derived factors re-creates it. Id1 overexpression leads to systemic immunosuppression by downregulation of key molecules involved in DC differentiation and suppression of CD8 T-cell proliferation, thus promoting primary tumour growth and metastatic progression. Furthermore, advanced melanoma patients have increased plasma TGFβ levels and express higher levels of ID1 in myeloid peripheral blood cells. This study reveals a critical role for Id1 in suppressing the anti-tumour immune response during tumour progression and metastasis.

  7. Differential oxygen dynamics in two diverse Dunning prostate R3327 rat tumor sublines (MAT-Lu and HI) with respect to growth and respiratory challenge

    International Nuclear Information System (INIS)

    Zhao Dawen; Constantinescu, Anca; Hahn, Eric W.; Mason, Ralph P.

    2002-01-01

    Purpose: Since hypoxia may influence tumor response to therapy and prognosis, we have compared oxygenation of tumors known to exhibit differential growth rate and tissue differentiation. Methods and Materials: Regional tumor oxygen tension was measured using 19 F nuclear magnetic resonance echo planar imaging relaxometry of hexafluorobenzene, which provided dynamic maps with respect to respiratory intervention. Investigations used two Dunning prostate R3327 rat tumor sublines: the fast growing, highly metastatic MAT-Lu and the moderately well-differentiated, slower growing HI. Results: Both sublines showed significantly higher oxygen tension in smaller tumors ( 3 ) than in larger tumors (>3.5 cm 3 ). Pooled data showed that MAT-Lu tumors exhibited greater hypoxia compared with the size-matched HI tumors (p 2 for tumors of both sublines (p 2 , while those in the MAT-Lu tumors showed little response to respiratory intervention. Conclusions: These results concur with hypotheses that hypoxia is related to tumor growth rate and degree of differentiation. Under baseline conditions, the differences were subtle. However, response to respiratory intervention revealed highly significant differences, which, if held valid in the clinic, could have prognostic value

  8. Asymmetric positive feedback loops reliably control biological responses.

    Science.gov (United States)

    Ratushny, Alexander V; Saleem, Ramsey A; Sitko, Katherine; Ramsey, Stephen A; Aitchison, John D

    2012-04-24

    Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.

  9. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    Science.gov (United States)

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation

  10. Mitochondrial DNA markers reveal high genetic diversity but low genetic differentiation in the black fly Simulium tani Takaoka & Davies along an elevational gradient in Malaysia.

    Directory of Open Access Journals (Sweden)

    Van Lun Low

    Full Text Available The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI and II (COII along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.

  11. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas.

    Science.gov (United States)

    Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B

    2014-11-03

    Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different p CO2 levels for four weeks: 400 μatm (pH 8.0), 800 μatm (pH 7.7), 1000 μatm (pH 7.6), or 2800 μatm (pH 7.3). At the end of the four week exposure period, oysters in all four p CO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated p CO2. Elevated p CO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with p CO2, with numerous processes significantly affected by mechanical stimulation at high versus low p CO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Oyster physiology is significantly altered by exposure to elevated p CO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of p CO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

  12. Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Bruno Zeitouni

    2007-10-01

    Full Text Available Drosophila provides a powerful system for defining the complex genetic programs that drive organogenesis. Under control of the steroid hormone ecdysone, the adult heart in Drosophila forms during metamorphosis by a remodelling of the larval cardiac organ. Here, we evaluated the extent to which transcriptional signatures revealed by genomic approaches can provide new insights into the molecular pathways that underlie heart organogenesis. Whole-genome expression profiling at eight successive time-points covering adult heart formation revealed a highly dynamic temporal map of gene expression through 13 transcript clusters with distinct expression kinetics. A functional atlas of the transcriptome profile strikingly points to the genomic transcriptional response of the ecdysone cascade, and a sharp regulation of key components belonging to a few evolutionarily conserved signalling pathways. A reverse genetic analysis provided evidence that these specific signalling pathways are involved in discrete steps of adult heart formation. In particular, the Wnt signalling pathway is shown to participate in inflow tract and cardiomyocyte differentiation, while activation of the PDGF-VEGF pathway is required for cardiac valve formation. Thus, a detailed temporal map of gene expression can reveal signalling pathways responsible for specific developmental programs and provides here substantial grasp into heart formation.

  13. T cell subtypes and reciprocal inflammatory mediator expression differentiate P. falciparum memory recall responses in asymptomatic and symptomatic malaria patients in southeastern Haiti.

    Directory of Open Access Journals (Sweden)

    Jason S Lehmann

    Full Text Available Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-, and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+ and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56- T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that

  14. Genome-wide characterization of pectin methyl esterase genes reveals members differentially expressed in tolerant and susceptible wheats in response to Fusarium graminearum.

    Science.gov (United States)

    Zega, Alessandra; D'Ovidio, Renato

    2016-11-01

    Pectin methyl esterase (PME) genes code for enzymes that are involved in structural modifications of the plant cell wall during plant growth and development. They are also involved in plant-pathogen interaction. PME genes belong to a multigene family and in this study we report the first comprehensive analysis of the PME gene family in bread wheat (Triticum aestivum L.). Like in other species, the members of the TaPME family are dispersed throughout the genome and their encoded products retain the typical structural features of PMEs. qRT-PCR analysis showed variation in the expression pattern of TaPME genes in different tissues and revealed that these genes are mainly expressed in flowering spikes. In our attempt to identify putative TaPME genes involved in wheat defense, we revealed a strong variation in the expression of the TaPME following Fusarium graminearum infection, the causal agent of Fusarium head blight (FHB). Particularly interesting was the finding that the expression profile of some PME genes was markedly different between the FHB-resistant wheat cultivar Sumai3 and the FHB-susceptible cultivar Bobwhite, suggesting a possible involvement of these PME genes in FHB resistance. Moreover, the expression analysis of the TaPME genes during F. graminearum progression within the spike revealed those genes that responded more promptly to pathogen invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Plant response to biotic stress: Is there a common epigenetic response during plant-pathogenic and symbiotic interactions?

    Science.gov (United States)

    Zogli, Prince; Libault, Marc

    2017-10-01

    Plants constantly interact with pathogenic and symbiotic microorganisms. Recent studies have revealed several regulatory mechanisms controlling these interactions. Among them, the plant defense system is activated not only in response to pathogenic, but also in response to symbiotic microbes. Interestingly, shortly after symbiotic microbial recognition, the plant defense system is suppressed to promote plant infection by symbionts. Research studies have demonstrated the influence of the plant epigenome in modulating both pathogenic and symbiotic plant-microbe interactions, thereby influencing plant survival, adaptation and evolution of the plant response to microbial infections. It is however unclear if plant pathogenic and symbiotic responses share similar epigenomic profiles or if epigenomic changes differentially regulate plant-microbe symbiosis and pathogenesis. In this mini-review, we provide an update of the current knowledge of epigenomic control on plant immune responses and symbiosis, with a special attention being paid to knowledge gap and potential strategies to fill-in the missing links. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Redox responses are preserved across muscle fibres with differential susceptibility to aging.

    Science.gov (United States)

    Smith, Neil T; Soriano-Arroquia, Ana; Goljanek-Whysall, Katarzyna; Jackson, Malcolm J; McDonagh, Brian

    2018-04-15

    Age-related loss of muscle mass and function is associated with increased frailty and loss of independence. The mechanisms underlying the susceptibility of different muscle types to age-related atrophy are not fully understood. Reactive oxygen species (ROS) are recognised as important signalling molecules in healthy muscle and redox sensitive proteins can respond to intracellular changes in ROS concentrations modifying reactive thiol groups on Cysteine (Cys) residues. Conserved Cys residues tend to occur in functionally important locations and can have a direct impact on protein function through modifications at the active site or determining protein conformation. The aim of this work was to determine age-related changes in the redox proteome of two metabolically distinct murine skeletal muscles, the quadriceps a predominantly glycolytic muscle and the soleus which contains a higher proportion of mitochondria. To examine the effects of aging on the global proteome and the oxidation state of individual redox sensitive Cys residues, we employed a label free proteomics approach including a differential labelling of reduced and reversibly oxidised Cys residues. Our results indicate the proteomic response to aging is dependent on muscle type but redox changes that occur primarily in metabolic and cytoskeletal proteins are generally preserved between metabolically distinct tissues. Skeletal muscle containing fast twitch glycolytic fibres are more susceptible to age related atrophy compared to muscles with higher proportions of oxidative slow twitch fibres. Contracting skeletal muscle generates reactive oxygen species that are required for correct signalling and adaptation to exercise and it is also known that the intracellular redox environment changes with age. To identify potential mechanisms for the distinct response to age, this article combines a global proteomic approach and a differential labelling of reduced and reversibly oxidised Cysteine residues in two

  17. Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells

    DEFF Research Database (Denmark)

    Pines, Alex; Kelstrup, Christian D; Vrouwe, Mischa G

    2011-01-01

    (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia...... rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view...

  18. Transcriptomic response of the insect vector, Peregrinus maidis, to Maize mosaic rhabdovirus and identification of conserved responses to propagative viruses in hopper vectors.

    Science.gov (United States)

    Martin, Kathleen M; Barandoc-Alviar, Karen; Schneweis, Derek J; Stewart, Catherine L; Rotenberg, Dorith; Whitfield, Anna E

    2017-09-01

    Maize mosaic virus (MMV) is a plant-pathogenic rhabdovirus that is transmitted by the corn planthopper, Peregrinus maidis, in a propagative manner. P. maidis supports long-term MMV infections with no negative effects on insect performance. To elucidate whole-body transcriptome responses to virus infection, RNA-Seq was used to examine differential gene expression of virus-infected adult insects, and libraries were prepared from replicated groups of virus-exposed insects and non-exposed insects. From the 68,003 de novo-assembled transcripts, 144 were differentially-expressed (DE) during viral infection with comparable numbers up- and down-regulated. DE transcripts with similarity to genes associated with transposable elements (i.e., RNA-directed DNA polymerases) were enriched and may represent a mechanisim for modulating virus infection. Comparison of the P. maidis DE transcripts to published propagative virus-responsive transcript databases for two other hopper vectors revealed that 16% of the DE transcripts were shared across the three systems and may represent conserved responses to propagative viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses.

    Science.gov (United States)

    Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter

    2017-01-01

    Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These

  20. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses

    Directory of Open Access Journals (Sweden)

    Widad Dantoft

    2017-09-01

    Full Text Available Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1 and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1 roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity

  1. Genetic differentiation of watermelon landrace types in Mali revealed by microsatellite (SSR) markers

    DEFF Research Database (Denmark)

    Nantoume, Aminata Dolo; Andersen, Sven Bode; Jensen, Brita Dahl

    2013-01-01

    This study describes the genetic differentiation of a collection of 134 watermelon landrace accessions from Mali, representing red fleshed dessert and white fleshed seed and cooking type watermelons from five regions, plus three commercial dessert type cultivars with red flesh. The material...... the accessions into use groups (dessert, cooking, seed processing) explained 25 % of the variation. When categorising the accessions further into 10 landrace types, differentiated on the basis of use groups, local accession name, flesh colour and seed phenotype, these landrace types explained 26......-groups. One group included again the red fleshed dessert types with local and commercial origin, while the remaining seven genetic sub-groups comprised the white fleshed landrace types used for seed processing and cooking, as well as white fleshed types of one dessert type. Some of the seed and cooking types...

  2. Item Response Theory with Covariates (IRT-C): Assessing Item Recovery and Differential Item Functioning for the Three-Parameter Logistic Model

    Science.gov (United States)

    Tay, Louis; Huang, Qiming; Vermunt, Jeroen K.

    2016-01-01

    In large-scale testing, the use of multigroup approaches is limited for assessing differential item functioning (DIF) across multiple variables as DIF is examined for each variable separately. In contrast, the item response theory with covariate (IRT-C) procedure can be used to examine DIF across multiple variables (covariates) simultaneously. To…

  3. Linear and Non-Linear Dose-Response Functions Reveal a Hormetic Relationship Between Stress and Learning

    OpenAIRE

    Zoladz, Phillip R.; Diamond, David M.

    2008-01-01

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as ...

  4. Autoantibody signature differentiates Wilms tumor patients from neuroblastoma patients.

    Directory of Open Access Journals (Sweden)

    Jana Schmitt

    Full Text Available Several studies report autoantibody signatures in cancer. The majority of these studies analyzed adult tumors and compared the seroreactivity pattern of tumor patients with the pattern in healthy controls. Here, we compared the autoimmune response in patients with neuroblastoma and patients with Wilms tumor representing two different childhood tumors. We were able to differentiate untreated neuroblastoma patients from untreated Wilms tumor patients with an accuracy of 86.8%, a sensitivity of 87.0% and a specificity of 86.7%. The separation of treated neuroblastoma patients from treated Wilms tumor patients' yielded comparable results with an accuracy of 83.8%. We furthermore identified the antigens that contribute most to the differentiation between both tumor types. The analysis of these antigens revealed that neuroblastoma was considerably more immunogenic than Wilms tumor. The reported antigens have not been found to be relevant for comparative analyses between other tumors and controls. In summary, neuroblastoma appears as a highly immunogenic tumor as demonstrated by the extended number of antigens that separate this tumor from Wilms tumor.

  5. The Egyptian Red Sea coastal microbiome: A study revealing differential microbial responses to diverse anthropogenic pollutants.

    Science.gov (United States)

    Mustafa, Ghada A; Abd-Elgawad, Amr; Ouf, Amged; Siam, Rania

    2016-07-01

    The Red Sea is considered one of the youngest oceanic systems, with unique physical, geochemical and biological characteristics. Tourism, industrialization, extensive fishing, oil processing and shipping are extensive sources of pollution in the Red Sea. We analyzed the geochemical characteristics and microbial community of sediments along the Egyptian coast of the Red Sea. Our sites mainly included 1) four ports used for shipping aluminum, ilmenite and phosphate; 2) a site previously reported to have suffered extensive oil spills; and 3) a site impacted by tourism. Two major datasets for the sediment of ten Red Sea coastal sites were generated; i) a chemical dataset included measurements of carbon, hydrogen, nitrogen and sulfur, metals and selected semi-volatile oil; and ii) a 16S rRNA Pyrotags bacterial metagenomic dataset. Based on the taxonomic assignments of the 16S rRNA Pyrotags to major bacterial groups, we report 30 taxa constituting an Egyptian Red Sea Coastal Microbiome. Bacteria that degrade hydrocarbons were predominant in the majority of the sites, particularly in two ports where they reached up to 76% of the total identified genera. In contrast, sulfate-reducing and sulfate-oxidizing bacteria dominated two lakes at the expense of other hydrocarbon metabolizers. Despite the reported "Egyptian Red Sea Coastal Microbiome," sites with similar anthropogenic pollutants showed unique microbial community abundances. This suggests that the abundance of a specific bacterial community is an evolutionary mechanism induced in response to selected anthropogenic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Akihiko, E-mail: aki-masuda@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Matsumoto, Tetsuro [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Iwamoto, Yosuke [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Hagiwara, Masayuki [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Satoh, Daiki; Sato, Tatsuhiko [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Iwase, Hiroshi [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yashima, Hiroshi [Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Nakane, Yoshihiro [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Nishiyama, Jun [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan); Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Harano, Hideki [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Nakamura, Takashi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578 (Japan)

    2017-03-21

    Quasi-monoenergetic high-energy neutron fields induced by {sup 7}Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96–387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  7. Selective phosphorylation during early macrophage differentiation

    KAUST Repository

    Zhang, Huoming

    2015-08-26

    The differentiation of macrophages from monocytes is a tightly controlled and complex biological process. Although numerous studies have been conducted using biochemical approaches or global gene/gene profiling, the mechanisms of the early stages of differentiation remain unclear. Here we used SILAC-based quantitative proteomics approach to perform temporal phosphoproteome profiling of early macrophage differentiation. We identified a large set of phosphoproteins and grouped them as PMA-regulated and non-regulated phosphoproteins in the early stages of differentiation. Further analysis of the PMA-regulated phosphoproteins revealed that transcriptional suppression, cytoskeletal reorganization and cell adhesion were among the most significantly activated pathways. Some key involved regulators of these pathways are mTOR, MYB, STAT1 and CTNNB. Moreover, we were able to classify the roles and activities of several transcriptional factors during different differentiation stages and found that E2F is likely to be an important regulator during the relatively late stages of differentiation. This study provides the first comprehensive picture of the dynamic phosphoproteome during myeloid cells differentiation, and identifies potential molecular targets in leukemic cells.

  8. Effect of resveratrol on proliferation and differentiation of embryonic cardiomyoblasts

    International Nuclear Information System (INIS)

    Leong, C.-W.; Wong, C.H.; Lao, S.-C.; Leong, Emilia Conceicao; Lao, Iok Fong; Law, Patrick Tik Wan; Fung, Kwok Pui; Tsang, Kam Sze; Waye, Mary Miu-Yee; Tsui, Stephen Kwok-Wing; Wang Yitao; Lee, Simon Ming-Yuen

    2007-01-01

    Resveratrol (trans-3,5,4'-trihydroxystilbene), a polyphenolic compound found largely in the skins of red grapes, has been used as a nutritional supplement or an investigational new drug for prevention of cardiovascular diseases. Previous reports showed that resveratrol had a protective effect against oxidative agent-induced cell injury. Our studies indicate that resveratrol plays a role in the differentiation of cardiomyoblasts. The cardiomyoblast cell line, H9c2, was exposed to 30-120 μM resveratrol for up to 5 days. Resveratrol inhibits cardiomyoblast proliferation without causing cells injury. Moreover, resveratrol treatment modulated the differentiation of morphological characteristics including elongation and cell fusion in cardiomyoblasts. Proliferation and differentiation of H9c2 cells were further revealed by measurement of the mRNA expression of a cell cycle marker (CDK2), a differentiation marker (myogenin), and a contractile apparatus protein (MLC-2). Gene expression analysis revealed that resveratrol promoted entry into cell cycle arrest but extended the myogenic differentiation progress. These results have implications for the role of resveratrol in modulating cell cycle control and differentiation in cardiomyoblasts

  9. Differential Recruitment of Brain Regions During Response Inhibition in Children Prenatally Exposed to Alcohol.

    Science.gov (United States)

    Kodali, Vikas N; Jacobson, Joseph L; Lindinger, Nadine M; Dodge, Neil C; Molteno, Christopher D; Meintjes, Ernesta M; Jacobson, Sandra W

    2017-02-01

    Response inhibition is a distinct aspect of executive function that is frequently impaired in children with fetal alcohol spectrum disorders (FASD). We used a Go/NoGo (GNG) task in a functional MRI protocol to investigate differential activation of brain regions in the response inhibition network in children diagnosed with full or partial fetal alcohol syndrome (FAS/PFAS), compared with healthy controls. A rapid, event-related task with 120 Go and 60 NoGo trials was used to study children aged 8 to 12 years-8 with FAS/PFAS, 17 controls. Letters were projected sequentially, with Go and NoGo trials randomly interspersed across the task. BOLD signal in the whole brain was contrasted for the correct NoGo minus correct Go trials between the FAS/PFAS and control groups. Compared to the FAS/PFAS group, controls showed greater activation of the inferior frontal and anterior cingulate network linked to response inhibition in typically developing children. By contrast, the FAS/PFAS group showed greater BOLD response in dorsolateral prefrontal cortex and other middle prefrontal regions, suggesting compensation for inefficient function of pathways that normally mediate inhibitory processing. All group differences were significant after control for potential confounding variables. None of the effects of prenatal alcohol exposure on activation of the regions associated with response inhibition were attributable to the effects of this exposure on IQ. This is the first FASD GNG study in which all participants in the exposed group met criteria for a diagnosis of full FAS or PFAS. Although FASD is frequently comorbid with attention deficit hyperactivity disorder, the pattern of brain activation seen in these disorders differs, suggesting that different neural pathways mediate response inhibition in FASD and that different interventions for FASD are, therefore, warranted. Copyright © 2017 by the Research Society on Alcoholism.

  10. Adipose gene expression prior to weight loss can differentiate and weakly predict dietary responders.

    Directory of Open Access Journals (Sweden)

    David M Mutch

    Full Text Available BACKGROUND: The ability to identify obese individuals who will successfully lose weight in response to dietary intervention will revolutionize disease management. Therefore, we asked whether it is possible to identify subjects who will lose weight during dietary intervention using only a single gene expression snapshot. METHODOLOGY/PRINCIPAL FINDINGS: The present study involved 54 female subjects from the Nutrient-Gene Interactions in Human Obesity-Implications for Dietary Guidelines (NUGENOB trial to determine whether subcutaneous adipose tissue gene expression could be used to predict weight loss prior to the 10-week consumption of a low-fat hypocaloric diet. Using several statistical tests revealed that the gene expression profiles of responders (8-12 kgs weight loss could always be differentiated from non-responders (<4 kgs weight loss. We also assessed whether this differentiation was sufficient for prediction. Using a bottom-up (i.e. black-box approach, standard class prediction algorithms were able to predict dietary responders with up to 61.1%+/-8.1% accuracy. Using a top-down approach (i.e. using differentially expressed genes to build a classifier improved prediction accuracy to 80.9%+/-2.2%. CONCLUSION: Adipose gene expression profiling prior to the consumption of a low-fat diet is able to differentiate responders from non-responders as well as serve as a weak predictor of subjects destined to lose weight. While the degree of prediction accuracy currently achieved with a gene expression snapshot is perhaps insufficient for clinical use, this work reveals that the comprehensive molecular signature of adipose tissue paves the way for the future of personalized nutrition.

  11. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  12. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate

    Science.gov (United States)

    Misra, Biswapriya B.; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3 -). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3 - responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3 -. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage. PMID:26641455

  13. Comprehensive analyses of imprinted differentially methylated regions reveal epigenetic and genetic characteristics in hepatoblastoma

    International Nuclear Information System (INIS)

    Rumbajan, Janette Mareska; Aoki, Shigehisa; Kohashi, Kenichi; Oda, Yoshinao; Hata, Kenichiro; Saji, Tsutomu; Taguchi, Tomoaki; Tajiri, Tatsuro; Soejima, Hidenobu; Joh, Keiichiro; Maeda, Toshiyuki; Souzaki, Ryota; Mitsui, Kazumasa; Higashimoto, Ken; Nakabayashi, Kazuhiko; Yatsuki, Hitomi; Nishioka, Kenichi; Harada, Ryoko

    2013-01-01

    Aberrant methylation at imprinted differentially methylated regions (DMRs) in human 11p15.5 has been reported in many tumors including hepatoblastoma. However, the methylation status of imprinted DMRs in imprinted loci scattered through the human genome has not been analyzed yet in any tumors. The methylation statuses of 33 imprinted DMRs were analyzed in 12 hepatoblastomas and adjacent normal liver tissue by MALDI-TOF MS and pyrosequencing. Uniparental disomy (UPD) and copy number abnormalities were investigated with DNA polymorphisms. Among 33 DMRs analyzed, 18 showed aberrant methylation in at least 1 tumor. There was large deviation in the incidence of aberrant methylation among the DMRs. KvDMR1 and IGF2-DMR0 were the most frequently hypomethylated DMRs. INPP5Fv2-DMR and RB1-DMR were hypermethylated with high frequencies. Hypomethylation was observed at certain DMRs not only in tumors but also in a small number of adjacent histologically normal liver tissue, whereas hypermethylation was observed only in tumor samples. The methylation levels of long interspersed nuclear element-1 (LINE-1) did not show large differences between tumor tissue and normal liver controls. Chromosomal abnormalities were also found in some tumors. 11p15.5 and 20q13.3 loci showed the frequent occurrence of both genetic and epigenetic alterations. Our analyses revealed tumor-specific aberrant hypermethylation at some imprinted DMRs in 12 hepatoblastomas with additional suggestion for the possibility of hypomethylation prior to tumor development. Some loci showed both genetic and epigenetic alterations with high frequencies. These findings will aid in understanding the development of hepatoblastoma

  14. Can Autism Spectrum Disorders and Social Anxiety Disorders Be Differentiated by the Social Responsiveness Scale in Children and Adolescents?

    Science.gov (United States)

    Cholemkery, Hannah; Mojica, Laura; Rohrmann, Sonja; Gensthaler, Angelika; Freitag, Christine M.

    2014-01-01

    Autism spectrum disorder (ASD) as well as social phobia (SP), and selective mutism (SM) are characterised by impaired social interaction. We assessed the validity of the Social Responsiveness Scale (SRS) to differentiate between ASD, and SP/SM. Raw scores were compared in 6-18 year old individuals with ASD (N = 60), SP (N = 38), SM (N = 43), and…

  15. Differential responses of cryptic bat species to the urban landscape.

    Science.gov (United States)

    Lintott, Paul R; Barlow, Kate; Bunnefeld, Nils; Briggs, Philip; Gajas Roig, Clara; Park, Kirsty J

    2016-04-01

    Urbanization is a key global driver in the modification of land use and has been linked to population declines even in widespread and relatively common species. Cities comprise a complex assortment of habitat types yet we know relatively little about the effects of their composition and spatial configuration on species distribution. Although many bat species exploit human resources, the majority of species are negatively impacted by urbanization. Here, we use data from the National Bat Monitoring Programme, a long-running citizen science scheme, to assess how two cryptic European bat species respond to the urban landscape. A total of 124 × 1 km(2) sites throughout Britain were surveyed. The landscape surrounding each site was mapped and classified into discrete biotope types (e.g., woodland). Generalized linear models were used to assess differences in the response to the urban environment between the two species, and which landscape factors were associated with the distributions of P. pipistrellus and P. pygmaeus. The relative prevalence of P. pygmaeus compared to P. pipistrellus was greater in urban landscapes with a higher density of rivers and lakes, whereas P. pipistrellus was frequently detected in landscapes comprising a high proportion of green space (e.g., parklands). Although P. pipistrellus is thought to be well adapted to the urban landscape, we found a strong negative response to urbanization at a relatively local scale (1 km), whilst P. pygmaeus was detected more regularly in wooded urban landscapes containing freshwater. These results show differential habitat use at a landscape scale of two morphologically similar species, indicating that cryptic species may respond differently to anthropogenic disturbance. Even species considered relatively common and well adapted to the urban landscape may respond negatively to the built environment highlighting the future challenges involved in maintaining biodiversity within an increasingly urbanized

  16. Personality and Differential Treatment Response in Major Depression: A Randomized Controlled Trial Comparing Cognitive-Behavioural Therapy and Pharmacotherapy

    Science.gov (United States)

    Bagby, R Michael; Quilty, Lena C; Segal, Zindel V; McBride, Carolina C; Kennedy, Sidney H; Costa, Paul T

    2008-01-01

    Objective Effective treatments for major depressive disorder exist, yet some patients fail to respond, or achieve only partial response. One approach to optimizing treatment success is to identify which patients are more likely to respond best to which treatments. The objective of this investigation was to determine if patient personality characteristics are predictive of response to either cognitive-behavioural therapy (CBT) or pharmacotherapy (PHT). Method Depressed patients completed the Revised NEO Personality Inventory, which measures the higher-order domain and lower-order facet traits of the Five-Factor Model of Personality, and were randomized to receive either CBT or PHT. Result Four personality traits—the higher-order domain neuroticism and 3 lower-order facet traits: trust, straightforwardness, and tendermindedness—were able to distinguish a differential response rate to CBT, compared with PHT. Conclusion The assessment of patient dimensional personality traits can assist in the selection and optimization of treatment response for depressed patients. PMID:18616856

  17. Proteomic profiling of Bacillus licheniformis reveals a stress response mechanism in the synthesis of extracellular polymeric flocculants.

    Science.gov (United States)

    Yu, Wencheng; Chen, Zhen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao; Yan, Shan; Zhong, Chuan-Jian; He, Ning

    2016-04-01

    Some bioflocculants composed of extracellular polymeric substances are produced under peculiar conditions. Bacillus licheniformis CGMCC2876 is a microorganism that secretes both extracellular polysaccharides (EPS) and poly-gamma-glutamic acid (γ-PGA) under stress conditions. In this work, SWATH acquisition LC-MS/MS method was adopted for differential proteomic analysis of B. licheniformis, aiming at determining the bacterial stress mechanism. Compared with LB culture, 190 differentially expressed proteins were identified in B. licheniformis CGMCC2876 cultivated in EPS culture, including 117 up-regulated and 73 down-regulated proteins. In γ-PGA culture, 151 differentially expressed proteins, 89 up-regulated and 62 down-regulated, were found in the cells. Up-regulated proteins involved in amino acid biosynthesis were found to account for 43% and 41% of the proteomes in EPS and γ-PGA cultivated cells, respectively. Additionally, a series of proteins associated with amino acid degradation were found to be repressed under EPS and γ-PGA culture conditions. Transcriptional profiling via the qPCR detection of selected genes verified the proteomic analysis. Analysis of free amino acids in the bacterial cells further suggested the presence of amino acid starvation conditions. EPS or γ-PGA was synthesized to alleviate the effect of amino acid limitation in B. licheniformis. This study identified a stress response mechanism in the synthesis of macromolecules in B. licheniformis, providing potential culture strategies to improve the production of two promising bioflocculants. © 2015 Wiley Periodicals, Inc.

  18. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation

    Directory of Open Access Journals (Sweden)

    Treuner-Lange Anke

    2010-04-01

    Full Text Available Abstract Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate

  19. Selective phosphorylation during early macrophage differentiation

    KAUST Repository

    Zhang, Huoming; Qian, Pei-Yuan; Ravasi, Timothy

    2015-01-01

    -regulated phosphoproteins in the early stages of differentiation. Further analysis of the PMA-regulated phosphoproteins revealed that transcriptional suppression, cytoskeletal reorganization and cell adhesion were among the most significantly activated pathways. Some key

  20. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.

    Science.gov (United States)

    Georgii, Elisabeth; Jin, Ming; Zhao, Jin; Kanawati, Basem; Schmitt-Kopplin, Philippe; Albert, Andreas; Winkler, J Barbro; Schäffner, Anton R

    2017-07-10

    Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome

  1. Microsatellite variability reveals high genetic diversity and low genetic differentiation in a critical giant panda population

    Directory of Open Access Journals (Sweden)

    Jiandong YANG, Zhihe ZHANG, Fujun SHEN, Xuyu YANG, Liang ZHANG, Limin CHEN, Wenping ZHANG, Qing ZHU, Rong HOU

    2011-12-01

    Full Text Available Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species. Tangjiahe Nature Reserve (NR is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China. Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation. Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population. The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve. Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations. All individuals from the same subpopulation were assigned to one cluster. This indicates high gene flow between subpopulations. F statistic analyses revealed a low FIS-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR. Additionally, our data show a high level of genetic diversity for the Tangjiahe population. Mean allele number (A, Allelic richness (AR and mean expected heterozygosity (HE for the Tangjiahe population was 5.9, 5.173 and 0.703, respectively. This wild giant panda population can be restored through concerted effort [Current Zoology 57 (6: 717–724, 2011].

  2. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Directory of Open Access Journals (Sweden)

    Lívia Maria Moda

    Full Text Available The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3 through fifth (L5 larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F, two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S. Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot, which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1 and fasciculation (GlcAT-P, fax, and shot. Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and

  3. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Science.gov (United States)

    Moda, Lívia Maria; Vieira, Joseana; Guimarães Freire, Anna Cláudia; Bonatti, Vanessa; Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino

    2013-01-01

    The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3) through fifth (L5) larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F), two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S). Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot), which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1) and fasciculation (GlcAT-P, fax, and shot). Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and differential

  4. Annotation of Differential Gene Expression in Small Yellow Follicles of a Broiler-Type Strain of Taiwan Country Chickens in Response to Acute Heat Stress.

    Science.gov (United States)

    Cheng, Chuen-Yu; Tu, Wei-Lin; Wang, Shih-Han; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Chen, Shuen-Ei; Huang, San-Yuan

    2015-01-01

    This study investigated global gene expression in the small yellow follicles (6-8 mm diameter) of broiler-type B strain Taiwan country chickens (TCCs) in response to acute heat stress. Twelve 30-wk-old TCC hens were divided into four groups: control hens maintained at 25°C and hens subjected to 38°C acute heat stress for 2 h without recovery (H2R0), with 2-h recovery (H2R2), and with 6-h recovery (H2R6). Small yellow follicles were collected for RNA isolation and microarray analysis at the end of each time point. Results showed that 69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or higher. Gene ontology analysis revealed that these differentially expressed genes are associated with the biological processes of cell communication, developmental process, protein metabolic process, immune system process, and response to stimuli. Upregulation of heat shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 suggested that acute heat stress induces proteolytic disintegration of the structural matrix and inflamed damage and adaptive responses of gene expression in the follicle cells. These suggestions were validated through gene expression, using quantitative real-time polymerase chain reaction. Functional annotation clarified that interleukin 6-related pathways play a critical role in regulating acute heat stress responses in the small yellow follicles of TCC hens.

  5. Differential Expression of Immunogenic Proteins on Virulent Mycobacterium tuberculosis Clinical Isolates

    Directory of Open Access Journals (Sweden)

    Pablo Schierloh

    2014-01-01

    Full Text Available Molecular epidemiology has revealed that Mycobacterium tuberculosis (Mtb, formerly regarded as highly conserved species, displays a considerable degree of genetic variability that can influence the outcome of the disease as well as the innate and adaptive immune response. Recent studies have demonstrated that Mtb families found worldwide today differ in pathology, transmissibility, virulence, and development of immune response. By proteomic approaches seven proteins that were differentially expressed between a local clinical isolate from Latin-American-Mediterranean (LAM and from Haarlem (H lineages were identified. In order to analyze the immunogenic ability, recombinant Rv2241, Rv0009, Rv0407, and Rv2624c proteins were produced for testing specific antibody responses. We found that these proteins induced humoral immune responses in patients with drug-sensitive and drug-resistant tuberculosis with substantial cross-reactivity among the four proteins. Moreover, such reactivity was also correlated with anti-Mtb-cell surface IgM, but not with anti-ManLAM, anti-PPD, or anti-Mtb-surface IgG antibodies. Therefore, the present results describe new Mtb antigens with potential application as biomarkers of TB.

  6. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways.

    Science.gov (United States)

    Yun, Yingzi; Liu, Zunyong; Zhang, Jingze; Shim, Won-Bo; Chen, Yun; Ma, Zhonghua

    2014-07-01

    Mitogen-activated protein (MAP) kinases play crucial roles in regulating fungal development, growth and pathogenicity, and in responses to the environment. In this study, we characterized a MAP kinase kinase FgMkk1 in Fusarium graminearum, the causal agent of wheat head blight. Phenotypic analyses of the FgMKK1 mutant (ΔFgMKK1) showed that FgMkk1 is involved in the regulation of hyphal growth, pigmentation, conidiation, deoxynivalenol biosynthesis and virulence of F. graminearum. ΔFgMKK1 also showed increased sensitivity to cell wall-damaging agents, and to osmotic and oxidative stresses, but exhibited decreased sensitivity to the fungicides iprodione and fludioxonil. In addition, the mutant revealed increased sensitivity to a biocontrol agent, Trichoderma atroviride. Western blot assays revealed that FgMkk1 positively regulates phosphorylation of the MAP kinases Mgv1 and FgOs-2, the key component in the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) signalling pathway respectively. Yeast two-hybrid assay indicated that Mgv1 interacts with a transcription factor FgRlm1. The FgRLM1 mutant (ΔFgRLM1) showed increased sensitivity to cell wall-damaging agents and exhibited decreased virulence. Taken together, our data indicated that FgMkk1 is an upstream component of Mgv1, and regulates vegetative differentiation, multiple stress response and virulence via the CWI and HOG signalling pathways. FgRlm1 may be a downstream component of Mgv1 in the CWI pathway in F. graminearum. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. A Distinct Inhibitory Function for miR-18a in Th17 Cell Differentiation.

    Science.gov (United States)

    Montoya, Misty M; Maul, Julia; Singh, Priti B; Pua, Heather H; Dahlström, Frank; Wu, Nanyan; Huang, Xiaozhu; Ansel, K Mark; Baumjohann, Dirk

    2017-07-15

    Th17 cell responses orchestrate immunity against extracellular pathogens but also underlie autoimmune disease pathogenesis. In this study, we uncovered a distinct and critical role for miR-18a in limiting Th17 cell differentiation. miR-18a was the most dynamically upregulated microRNA of the miR-17-92 cluster in activated T cells. miR-18a deficiency enhanced CCR6 + RAR-related orphan receptor (ROR)γt + Th17 cell differentiation in vitro and increased the number of tissue Th17 cells expressing CCR6, RORγt, and IL-17A in airway inflammation models in vivo. Sequence-specific miR-18 inhibitors increased CCR6 and RORγt expression in mouse and human CD4 + T cells, revealing functional conservation. miR-18a directly targeted Smad4 , Hif1a , and Rora , all key transcription factors in the Th17 cell gene-expression program. These findings indicate that activating signals influence the outcome of Th cell differentiation via differential regulation of mature microRNAs within a common cluster. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. Salinity-induced inhibition of growth in the aquatic pteridophyte Azolla microphylla primarily involves inhibition of photosynthetic components and signaling molecules as revealed by proteome analysis.

    Science.gov (United States)

    Thagela, Preeti; Yadav, Ravindra Kumar; Mishra, Vagish; Dahuja, Anil; Ahmad, Altaf; Singh, Pawan Kumar; Tiwari, Budhi Sagar; Abraham, Gerard

    2017-01-01

    Salinity stress causes adverse physiological and biochemical changes in the growth and productivity of a plant. Azolla, a symbiotic pteridophyte and potent candidate for biofertilizer due to its nitrogen fixation ability, shows reduced growth and nitrogen fixation during saline stress. To better understand regulatory components involved in salinity-induced physiological changes, in the present study, Azolla microphylla plants were exposed to NaCl (6.74 and 8.61 ds/m) and growth, photochemical reactions of photosynthesis, ion accumulation, and changes in cellular proteome were studied. Maximum dry weight was accumulated in control and untreated plant while a substantial decrease in dry weight was observed in the plants exposed to salinity. Exposure of the organism to different concentrations of salt in hydroponic conditions resulted in differential level of Na + and K + ion accumulation. Comparative analysis of salinity-induced proteome changes in A. microphylla revealed 58 salt responsive proteins which were differentially expressed during the salt exposure. Moreover, 42 % spots among differentially expressed proteins were involved in different signaling events. The identified proteins are involved in photosynthesis, energy metabolism, amino acid biosynthesis, protein synthesis, and defense. Downregulation of these key metabolic proteins appears to inhibit the growth of A. microphylla in response to salinity. Altogether, the study revealed that in Azolla, increased salinity primarily affected signaling and photosynthesis that in turn leads to reduced biomass.

  9. Perceptual dimensions differentiate emotions.

    Science.gov (United States)

    Cavanaugh, Lisa A; MacInnis, Deborah J; Weiss, Allen M

    2015-08-26

    Individuals often describe objects in their world in terms of perceptual dimensions that span a variety of modalities; the visual (e.g., brightness: dark-bright), the auditory (e.g., loudness: quiet-loud), the gustatory (e.g., taste: sour-sweet), the tactile (e.g., hardness: soft vs. hard) and the kinaesthetic (e.g., speed: slow-fast). We ask whether individuals use perceptual dimensions to differentiate emotions from one another. Participants in two studies (one where respondents reported on abstract emotion concepts and a second where they reported on specific emotion episodes) rated the extent to which features anchoring 29 perceptual dimensions (e.g., temperature, texture and taste) are associated with 8 emotions (anger, fear, sadness, guilt, contentment, gratitude, pride and excitement). Results revealed that in both studies perceptual dimensions differentiate positive from negative emotions and high arousal from low arousal emotions. They also differentiate among emotions that are similar in arousal and valence (e.g., high arousal negative emotions such as anger and fear). Specific features that anchor particular perceptual dimensions (e.g., hot vs. cold) are also differentially associated with emotions.

  10. High-frequency ultrasonography (HFUS as a useful tool in differentiating between plaque morphea and extragenital lichen sclerosus lesions

    Directory of Open Access Journals (Sweden)

    Rafał Białynicki-Birula

    2017-10-01

    Full Text Available Introduction : Morphea and lichen sclerosus (LS are chronic inflammatory diseases that may pose a diagnostic challenge for a physician. High-frequency ultrasonography (HFUS is a versatile diagnostic method utilized in dermatologic practice, allowing monitoring the course of the disease, treatment response and differentiation between certain skin disorders. Aim : To prove the usefulness of HFUS in differentiating between plaque morphea and extragenital LS lesions. Material and methods : We examined 16 patients with plaque morphea and 4 patients with extragenital LS using 20 MHz taberna pro medicum TM (Germany device. Results : Investigations revealed hyperechogenic entrance echo in both morphea and LS lesions, whereas a distinct polycyclic surface of the entrance echo was detected exclusively in LS. Conclusions : High-frequency ultrasonography is a current diagnostic modality that may prove useful in differentiating between morphea and LS lesions.

  11. Eagle's syndrome-A non-perceived differential diagnosis of temporomandibular disorder.

    Science.gov (United States)

    Thoenissen, P; Bittermann, G; Schmelzeisen, R; Oshima, T; Fretwurst, T

    2015-01-01

    This article unveils a case of the classic styloid syndrome and states that panoramic imaging and ultrasound can be an alternative to computed tomography. In addition, the endoscope-assisted extraoral approach using CT-based navigation is useful. Eagle's Syndrome is an aggregate of symptoms described by Eagle in 1937. He described different forms: the classic styloid syndrome consisting of elongation of the styloid process which causes pain. Second, the stylo-carotid-artery syndrome which is responsible for transient ischemic attack or stroke. Using the example of a 66 years old male patient suffering from long term pain, we explain our diagnostic and surgical approach. After dissecting the styloid process of the right side using an extraoral approach, the pain ceased and the patient could be discharged without any recurrence of the pain up to this point. Eagle's syndrome, with its similar symptoms, is rather difficult to differentiate from temporomandibular joint disorders (TMD), but can be easily excluded from possible differential diagnoses of TMD using panoramic radiographs and ultrasound. Making use of low cost and easily accessible diagnostic workup techniques can reveal this particular cause for chronic pain restricting quality of life. Thereby differentiation from the TMD symptomatic complex is possible. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    Science.gov (United States)

    Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  13. Transcriptomics reveal transgenerational effects in purple sea urchin embryos: Adult acclimation to upwelling conditions alters the response of their progeny to differential pCO2 levels.

    Science.gov (United States)

    Wong, Juliet M; Johnson, Kevin M; Kelly, Morgan W; Hofmann, Gretchen E

    2018-03-01

    Understanding the mechanisms with which organisms can respond to a rapidly changing ocean is an important research priority in marine sciences, especially in the light of recent predictions regarding the pace of ocean change in the coming decades. Transgenerational effects, in which the experience of the parental generation can shape the phenotype of their offspring, may serve as such a mechanism. In this study, adult purple sea urchins, Strongylocentrotus purpuratus, were conditioned to regionally and ecologically relevant pCO 2 levels and temperatures representative of upwelling (colder temperature and high pCO 2 ) and nonupwelling (average temperature and low pCO 2 ) conditions typical of coastal upwelling regions in the California Current System. Following 4.5 months of conditioning, adults were spawned and offspring were raised under either high or low pCO 2 levels, to examine the role of maternal effects. Using RNA-seq and comparative transcriptomics, our results indicate that differential conditioning of the adults had an effect on the gene expression patterns of the progeny during the gastrula stage of early development. For example, maternal conditioning under upwelling conditions intensified the transcriptomic response of the progeny when they were raised under high versus low pCO 2 conditions. Additionally, mothers that experienced upwelling conditions produced larger progeny. The overall findings of this study are complex, but do suggest that transgenerational plasticity in situ could act as an important mechanism by which populations might keep pace with rapid environmental change. © 2018 John Wiley & Sons Ltd.

  14. Differential relations between youth internalizing/externalizing problems and cortisol responses to performance vs. interpersonal stress.

    Science.gov (United States)

    Laurent, Heidemarie; Vergara-Lopez, Chrystal; Stroud, Laura R

    2016-09-01

    Efforts to define hypothalamic-pituitary-adrenal (HPA) axis profiles conferring risk for psychopathology have yielded inconclusive results, perhaps in part due to limited assessment of the stress response. In particular, research has typically focused on HPA responses to performance tasks, while neglecting the interpersonal stressors that become salient during adolescence. In this study we investigated links between psychosocial adjustment - youth internalizing and externalizing problems, as well as competence - and HPA responses to both performance and interpersonal stressors in a normative sample of children and adolescents. Participants (n = 59) completed a set of performance (public speaking, mental arithmetic, mirror tracing) and/or interpersonal (peer rejection) tasks and gave nine saliva samples, which were assayed for cortisol. Hierarchical linear models of cortisol response trajectories in relation to child behavior checklist (CBCL) scores revealed stressor- and sex-specific associations. Whereas internalizing problems related to earlier peaking, less dynamic cortisol responses to interpersonal stress (across males and females), externalizing problems related to lower, earlier peaking and less dynamic cortisol responses to performance stress for males only, and competence-related to later peaking cortisol responses to interpersonal stress for females only. Implications for understanding contextual stress profiles underlying different forms of psychopathology are discussed.

  15. Comprehensive transcriptome-based characterization of differentially expressed genes involved in microsporogenesis of radish CMS line and its maintainer.

    Science.gov (United States)

    Xie, Yang; Zhang, Wei; Wang, Yan; Xu, Liang; Zhu, Xianwen; Muleke, Everlyne M; Liu, Liwang

    2016-09-01

    Microsporogenesis is an indispensable period for investigating microspore development and cytoplasmic male sterility (CMS) occurrence. Radish CMS line plays a critical role in elite F1 hybrid seed production and heterosis utilization. However, the molecular mechanisms of microspore development and CMS occurrence have not been thoroughly uncovered in radish. In this study, a comparative analysis of radish floral buds from a CMS line (NAU-WA) and its maintainer (NAU-WB) was conducted using next generation sequencing (NGS) technology. Digital gene expression (DGE) profiling revealed that 3504 genes were significantly differentially expressed between NAU-WA and NAU-WB library, among which 1910 were upregulated and 1594 were downregulated. Gene ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly enriched in extracellular region, catalytic activity, and response to stimulus. KEGG enrichment analysis revealed that the DEGs were predominantly associated with flavonoid biosynthesis, glycolysis, and biosynthesis of secondary metabolites. Real-time quantitative PCR analysis showed that the expression profiles of 13 randomly selected DEGs were in high agreement with results from Illumina sequencing. Several candidate genes encoding ATP synthase, auxin response factor (ARF), transcription factors (TFs), chalcone synthase (CHS), and male sterility (MS) were responsible for microsporogenesis. Furthermore, a schematic diagram for functional interaction of DEGs from NAU-WA vs. NAU-WB library in radish plants was proposed. These results could provide new information on the dissection of the molecular mechanisms underlying microspore development and CMS occurrence in radish.

  16. Using Proteomics to 1) Identify the Bone Marrow Homing Receptors Expressed on Human Hematopoietic Stem Cells and 2) Elucidate Critical Signaling Pathways Responsible for the Blockage of Hematopoietic Differentiation in Leukemia

    KAUST Repository

    Chin, Chee J.

    2011-05-22

    Successful hematopoiesis requires the trafficking of hematopoietic stem/progenitor cells (HSPCs) to their bone marrow (BM) niche, where they can differentiate to produce all blood lineages. Leukemia arises when there is a blockage of differentiation and uncontrolled proliferation in the hematopoietic cells during their development. To refine therapies for leukemia, this study sought to improve the homing of healthy donor HSPCs for better transplantation and to find new candidates for differentiating and blocking proliferation in leukemic cells. Characterizing the molecular effectors mediating cell migration forms the basis for improving clinical transplantation of HSPCs. E-selectin/ligand interactions play a critical role in the homing of HSPCs to the BM, however, the identity of E-selectin ligands remains elusive. We aimed to use mass spectrometry (MS) to fully analyze the E-selectin ligands expressed on HSPCs. Immunoprecipitation studies coupled with MS confirmed the expression of three known E-selectin ligands, the hematopoietic cell E-/L-selectin ligand (HCELL), P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, and revealed the presence of many interesting candidates on HSPCs-like cell line and on primary human BM CD34+ cells. The MS dataset represents a rich resource for further characterization of E-selectin ligands, which will lead to improvement of HSPCs transplantation. 4 Understanding the critical pathways underlying the initiation and maintenance of leukemia plays a key role in treating acute myeloid leukemia (AML). Ligation of the glycoprotein, CD44, using monoclonal antibodies or its natural ligand, hyaluronic acid, drives the differentiation of immature leukemic cells towards mature terminally differentiated cells, inhibits their proliferation and in some case induces their apoptosis. The aim of this study is to characterize the phosphoproteome of AML cells in response to CD44-induced differentiation. This will afford novel insights into the

  17. Clonal expansion under the microscope: studying lymphocyte activation and differentiation using live-cell imaging.

    Science.gov (United States)

    Polonsky, Michal; Chain, Benjamin; Friedman, Nir

    2016-03-01

    Clonal expansion of lymphocytes is a hallmark of vertebrate adaptive immunity. A small number of precursor cells that recognize a specific antigen proliferate into expanded clones, differentiate and acquire various effector and memory phenotypes, which promote effective immune responses. Recent studies establish a large degree of heterogeneity in the level of expansion and in cell state between and within expanding clones. Studying these processes in vivo, while providing insightful information on the level of heterogeneity, is challenging due to the complex microenvironment and the inability to continuously track individual cells over extended periods of time. Live cell imaging of ex vivo cultures within micro fabricated arrays provides an attractive methodology for studying clonal expansion. These experiments facilitate continuous acquisition of a large number of parameters on cell number, proliferation, death and differentiation state, with single-cell resolution on thousands of expanding clones that grow within controlled environments. Such data can reveal stochastic and instructive mechanisms that contribute to observed heterogeneity and elucidate the sequential order of differentiation events. Intercellular interactions can also be studied within these arrays by following responses of a controlled number of interacting cells, all trapped within the same microwell. Here we describe implementations of live-cell imaging within microwell arrays for studies of lymphocyte clonal expansion, portray insights already gained from these experiments and outline directions for future research. These tools, together with in vivo experiments tracking single-cell responses, will expand our understanding of adaptive immunity and the ways by which it can be manipulated.

  18. Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation

    International Nuclear Information System (INIS)

    Zou, Ying; Zhang, Ningzhe; Ellerby, Lisa M.; Davalos, Albert R.; Zeng, Xianmin; Campisi, Judith; Desprez, Pierre-Yves

    2012-01-01

    Highlights: ► hESCs and their progeny, NSCs and neurons, were exposed to ionizing radiation. ► Upon irradiation, most hESCs died within 5–7 h. ► Surviving NSCs underwent senescence and displayed features of astrocytes. ► Surviving NSCs did not display the secretory phenotype expressed by pure astrocytes. ► This study is to better understand the stress-responses of hESCs and their progeny. -- Abstract: Human embryonic stem cells (hESCs) hold promise for the treatment of many human pathologies. For example, hESCs and the neuronal stem cells (NSCs) and neurons derived from them have significant potential as transplantation therapies for a variety of neurodegenerative diseases. Two concerns about the use of hESCs and their differentiated derivatives are their ability to function and their ability to resist neoplastic transformation in response to stresses that inevitably arise during their preparation for transplantation. To begin to understand how these cells handle genotoxic stress, we examined the responses of hESCs and derived NSCs and neurons to ionizing radiation (IR). Undifferentiated hESCs were extremely sensitive to IR, with nearly all the cells undergoing cell death within 5–7 h. NSCs and neurons were substantially more resistant to IR, with neurons showing the most resistant. Of interest, NSCs that survived IR underwent cellular senescence and acquired astrocytic characteristics. Unlike IR-treated astrocytes, however, the NSC-derived astrocytic cells that survived IR did not display the typical pro-inflammatory, pro-carcinogenic senescence-associated secretory phenotype. These findings suggest distinct genotoxic stress-responses of hESCs and derived NSC and neuronal populations, and suggest that damaged NSCs, while failing to function, may not cause local inflammation.

  19. Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ying; Zhang, Ningzhe; Ellerby, Lisa M.; Davalos, Albert R.; Zeng, Xianmin; Campisi, Judith [Buck Institute for Research on Aging, Novato, CA 94945 (United States); Desprez, Pierre-Yves, E-mail: pydesprez@cpmcri.org [Buck Institute for Research on Aging, Novato, CA 94945 (United States); California Pacific Medical Center, Research Institute, San Francisco, CA 94107 (United States)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer hESCs and their progeny, NSCs and neurons, were exposed to ionizing radiation. Black-Right-Pointing-Pointer Upon irradiation, most hESCs died within 5-7 h. Black-Right-Pointing-Pointer Surviving NSCs underwent senescence and displayed features of astrocytes. Black-Right-Pointing-Pointer Surviving NSCs did not display the secretory phenotype expressed by pure astrocytes. Black-Right-Pointing-Pointer This study is to better understand the stress-responses of hESCs and their progeny. -- Abstract: Human embryonic stem cells (hESCs) hold promise for the treatment of many human pathologies. For example, hESCs and the neuronal stem cells (NSCs) and neurons derived from them have significant potential as transplantation therapies for a variety of neurodegenerative diseases. Two concerns about the use of hESCs and their differentiated derivatives are their ability to function and their ability to resist neoplastic transformation in response to stresses that inevitably arise during their preparation for transplantation. To begin to understand how these cells handle genotoxic stress, we examined the responses of hESCs and derived NSCs and neurons to ionizing radiation (IR). Undifferentiated hESCs were extremely sensitive to IR, with nearly all the cells undergoing cell death within 5-7 h. NSCs and neurons were substantially more resistant to IR, with neurons showing the most resistant. Of interest, NSCs that survived IR underwent cellular senescence and acquired astrocytic characteristics. Unlike IR-treated astrocytes, however, the NSC-derived astrocytic cells that survived IR did not display the typical pro-inflammatory, pro-carcinogenic senescence-associated secretory phenotype. These findings suggest distinct genotoxic stress-responses of hESCs and derived NSC and neuronal populations, and suggest that damaged NSCs, while failing to function, may not cause local inflammation.

  20. Activation of the transcription factor carbohydrate-responsive element-binding protein by glucose leads to increased pancreatic beta cell differentiation in rats.

    Science.gov (United States)

    Soggia, A; Flosseau, K; Ravassard, P; Szinnai, G; Scharfmann, R; Guillemain, G

    2012-10-01

    Pancreatic cell development is a tightly controlled process. Although information is available regarding the mesodermal signals that control pancreatic development, little is known about the role of environmental factors such as nutrients, including glucose, on pancreatic development. We previously showed that glucose and its metabolism through the hexosamine biosynthesis pathway (HBP) promote pancreatic endocrine cell differentiation. Here, we analysed the role of the transcription factor carbohydrate-responsive element-binding protein (ChREBP) in this process. This transcription factor is activated by glucose, and has been recently described as a target of the HBP. We used an in vitro bioassay in which pancreatic endocrine and exocrine cells develop from rat embryonic pancreas in a way that mimics in vivo pancreatic development. Using this model, gain-of-function and loss-of-function experiments were undertaken. ChREBP was produced in the endocrine lineage during pancreatic development, its abundance increasing with differentiation. When rat embryonic pancreases were cultured in the presence of glucose or xylitol, the production of ChREBP targets was induced. Concomitantly, beta cell differentiation was enhanced. On the other hand, when embryonic pancreases were cultured with inhibitors decreasing ChREBP activity or an adenovirus producing a dominant-negative ChREBP, beta cell differentiation was reduced, indicating that ChREBP activity was necessary for proper beta cell differentiation. Interestingly, adenovirus producing a dominant-negative ChREBP also reduced the positive effect of N-acetylglucosamine, a substrate of the HBP acting on beta cell differentiation. Our work supports the idea that glucose, through the transcription factor ChREBP, controls beta cell differentiation from pancreatic progenitors.

  1. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus Fruit Peel in Response to Pre-storage Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2018-01-01

    Full Text Available Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs right after PsCA treatment and 23 after the following cold storage (PsCA+CS. These proteins are mainly related to stress response and defense (SRD, energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter

  2. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation.

    Science.gov (United States)

    Wang, Bin; Shen, Fei; Zhu, Shijiang

    2017-01-01

    Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the

  3. Adipose Gene Expression Prior to Weight Loss Can Differentiate and Weakly Predict Dietary Responders

    Science.gov (United States)

    Mutch, David M.; Temanni, M. Ramzi; Henegar, Corneliu; Combes, Florence; Pelloux, Véronique; Holst, Claus; Sørensen, Thorkild I. A.; Astrup, Arne; Martinez, J. Alfredo; Saris, Wim H. M.; Viguerie, Nathalie; Langin, Dominique; Zucker, Jean-Daniel; Clément, Karine

    2007-01-01

    Background The ability to identify obese individuals who will successfully lose weight in response to dietary intervention will revolutionize disease management. Therefore, we asked whether it is possible to identify subjects who will lose weight during dietary intervention using only a single gene expression snapshot. Methodology/Principal Findings The present study involved 54 female subjects from the Nutrient-Gene Interactions in Human Obesity-Implications for Dietary Guidelines (NUGENOB) trial to determine whether subcutaneous adipose tissue gene expression could be used to predict weight loss prior to the 10-week consumption of a low-fat hypocaloric diet. Using several statistical tests revealed that the gene expression profiles of responders (8–12 kgs weight loss) could always be differentiated from non-responders (diet is able to differentiate responders from non-responders as well as serve as a weak predictor of subjects destined to lose weight. While the degree of prediction accuracy currently achieved with a gene expression snapshot is perhaps insufficient for clinical use, this work reveals that the comprehensive molecular signature of adipose tissue paves the way for the future of personalized nutrition. PMID:18094752

  4. Proteomic analysis of MG132-treated germinating pollen reveals expression signatures associated with proteasome inhibition.

    Directory of Open Access Journals (Sweden)

    Candida Vannini

    Full Text Available Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.

  5. Differential responsiveness of obese (fa/fa) and lean (Fa/Fa) Zucker rats to cytokine-induced anorexia.

    Science.gov (United States)

    Plata-Salamán, C R; Vasselli, J R; Sonti, G

    1997-01-01

    Pathophysiological and pharmacological concentrations of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) in the cerebrospinal fluid (CSF) induce anorexia in normal rats. Obesity in humans and rodents is associated with increased TNF-alpha messenger RNA and protein levels in various cell types. This suggests that obese individuals may have differential regulation of cytokine production and dissimilar responsiveness to cytokines. In the present study, we investigated the effects of the intracerebroventricular (ICV) microinfusion of TNF-alpha (50, 100, and 500 ng/rat), IL-1 beta (1.0, 4.0, and 8.0 ng), and TNF-alpha (100 ng) plus IL-1 beta (1.0 ng) on obese (fa/fa) and lean (Fa/Fa) Zucker rats. The results show that: TNF-alpha and IL-1 beta, and the concomitant administration of TNF-alpha and IL-1 beta decreased the short-term (4 hours), nighttime (12 hours), and total daily food intakes in obese and lean rats; IL-1 beta was more potent relative to TNF-alpha; obese rats showed greater responsiveness to IL-1 beta: 8.0 ng IL-1 beta, for example, decreased the 12-hour food intake by 52% in obese and 22% in lean rats. On the other hand, obese and lean rats did not exhibit a significantly different responsiveness to the anorexia induced by 50, 100, or 500 ng TNF-alpha at the 4-hour period; and the concomitant ICV administration of TNF-alpha and IL-1 beta induced anorexia with additive (4-hour period) or synergistic (12-hour and 24-hour periods) effects in obese rats. The effect of TNF-alpha plus IL-1 beta in lean rats was greater than additive for the 12-hour and 24-hour periods. The difference in suppression of total daily food intake by TNF-alpha plus IL-1 beta in obese (-43%) versus lean (-23%) rats was significantly different (p < 0.01). The results show that obese (fa/fa) and lean (Fa/Fa) Zucker rats have differential responsiveness to the ICV microinfusion of two different classes of cytokines.

  6. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination.

    Science.gov (United States)

    Li, Xi; Miao, Hongyu; Henn, Alicia; Topham, David J; Wu, Hulin; Zand, Martin S; Mosmann, Tim R

    2012-06-29

    Although previous studies have found minimal changes in CD4 T cell responses after vaccination of adults with trivalent inactivated influenza vaccine, daily sampling and monitoring of the proliferation marker Ki-67 have now been used to reveal that a substantial fraction of influenza-specific CD4 T cells respond to vaccination. At 4-6 days after vaccination, there is a sharp rise in the numbers of Ki-67-expressing PBMC that produce IFNγ, IL-2 and/or TNFα in vitro in response to influenza vaccine or peptide. Ki-67(+) cell numbers then decline rapidly, and 10 days after vaccination, both Ki-67(+) and overall influenza-specific cell numbers are similar to pre-vaccination levels. These results provide a tool for assessing the quality and quantity of CD4 T cell responses to different influenza vaccines, and raise the possibility that the anti-influenza T cell memory response may be qualitatively altered by vaccination, even if the overall memory cell numbers do not change significantly. Copyright © 2012. Published by Elsevier Ltd.

  7. Infant differential behavioral responding to discrete emotions.

    Science.gov (United States)

    Walle, Eric A; Reschke, Peter J; Camras, Linda A; Campos, Joseph J

    2017-10-01

    Emotional communication regulates the behaviors of social partners. Research on individuals' responding to others' emotions typically compares responses to a single negative emotion compared with responses to a neutral or positive emotion. Furthermore, coding of such responses routinely measure surface level features of the behavior (e.g., approach vs. avoidance) rather than its underlying function (e.g., the goal of the approach or avoidant behavior). This investigation examined infants' responding to others' emotional displays across 5 discrete emotions: joy, sadness, fear, anger, and disgust. Specifically, 16-, 19-, and 24-month-old infants observed an adult communicate a discrete emotion toward a stimulus during a naturalistic interaction. Infants' responses were coded to capture the function of their behaviors (e.g., exploration, prosocial behavior, and security seeking). The results revealed a number of instances indicating that infants use different functional behaviors in response to discrete emotions. Differences in behaviors across emotions were clearest in the 24-month-old infants, though younger infants also demonstrated some differential use of behaviors in response to discrete emotions. This is the first comprehensive study to identify differences in how infants respond with goal-directed behaviors to discrete emotions. Additionally, the inclusion of a function-based coding scheme and interpersonal paradigms may be informative for future emotion research with children and adults. Possible developmental accounts for the observed behaviors and the benefits of coding techniques emphasizing the function of social behavior over their form are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Strain-induced tunable negative differential resistance in triangle graphene spirals

    Science.gov (United States)

    Tan, Jie; Zhang, Xiaoming; Liu, Wenguan; He, Xiujie; Zhao, Mingwen

    2018-05-01

    Using non-equilibrium Green’s function formalism combined with density functional theory calculations, we investigate the significant changes in electronic and transport properties of triangle graphene spirals (TGSs) in response to external strain. Tunable negative differential resistance (NDR) behavior is predicted. The NDR bias region, NDR width, and peak-to-valley ratio can be well tuned by external strain. Further analysis shows that these peculiar properties can be attributed to the dispersion widths of the p z orbitals. Moreover, the conductance of TGSs is very sensitive to the applied stress, which is promising for applications in nanosensor devices. Our findings reveal a novel approach to produce tunable electronic devices based on graphene spirals.

  9. Genome-wide patterns of differentiation and spatially varying selection between postglacial recolonization lineages of Populus alba (Salicaceae), a widespread forest tree.

    Science.gov (United States)

    Stölting, Kai N; Paris, Margot; Meier, Cécile; Heinze, Berthold; Castiglione, Stefano; Bartha, Denes; Lexer, Christian

    2015-08-01

    Studying the divergence continuum in plants is relevant to fundamental and applied biology because of the potential to reveal functionally important genetic variation. In this context, whole-genome sequencing (WGS) provides the necessary rigour for uncovering footprints of selection. We resequenced populations of two divergent phylogeographic lineages of Populus alba (n = 48), thoroughly characterized by microsatellites (n = 317), and scanned their genomes for regions of unusually high allelic differentiation and reduced diversity using > 1.7 million single nucleotide polymorphisms (SNPs) from WGS. Results were confirmed by Sanger sequencing. On average, 9134 high-differentiation (≥ 4 standard deviations) outlier SNPs were uncovered between populations, 848 of which were shared by ≥ three replicate comparisons. Annotation revealed that 545 of these were located in 437 predicted genes. Twelve percent of differentiation outlier genome regions exhibited significantly reduced genetic diversity. Gene ontology (GO) searches were successful for 327 high-differentiation genes, and these were enriched for 63 GO terms. Our results provide a snapshot of the roles of 'hard selective sweeps' vs divergent selection of standing genetic variation in distinct postglacial recolonization lineages of P. alba. Thus, this study adds to our understanding of the mechanisms responsible for the origin of functionally relevant variation in temperate trees. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile.

    Science.gov (United States)

    Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao

    2012-03-01

    High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...... and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...

  12. Transcriptome Analysis of Beta macrocarpa and Identification of Differentially Expressed Transcripts in Response to Beet Necrotic Yellow Vein Virus Infection.

    Directory of Open Access Journals (Sweden)

    Huiyan Fan

    Full Text Available Rhizomania is one of the most devastating diseases of sugar beet. It is caused by Beet necrotic yellow vein virus (BNYVV transmitted by the obligate root-infecting parasite Polymyxa betae. Beta macrocarpa, a wild beet species widely used as a systemic host in the laboratory, can be rub-inoculated with BNYVV to avoid variation associated with the presence of the vector P. betae. To better understand disease and resistance between beets and BNYVV, we characterized the transcriptome of B. macrocarpa and analyzed global gene expression of B. macrocarpa in response to BNYVV infection using the Illumina sequencing platform.The overall de novo assembly of cDNA sequence data generated 75,917 unigenes, with an average length of 1054 bp. Based on a BLASTX search (E-value ≤ 10-5 against the non-redundant (NR, NCBI protein, Swiss-Prot, the Gene Ontology (GO, Clusters of Orthologous Groups of proteins (COG and Kyoto Encyclopedia of Genes and Genomes (KEGG databases, there were 39,372 unigenes annotated. In addition, 4,834 simple sequence repeats (SSRs were also predicted, which could serve as a foundation for various applications in beet breeding. Furthermore, comparative analysis of the two transcriptomes revealed that 261 genes were differentially expressed in infected compared to control plants, including 128 up- and 133 down-regulated genes. GO analysis showed that the changes in the differently expressed genes were mainly enrichment in response to biotic stimulus and primary metabolic process.Our results not only provide a rich genomic resource for beets, but also benefit research into the molecular mechanisms of beet- BNYV Vinteraction.

  13. Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia

    Directory of Open Access Journals (Sweden)

    Sateesh Krishnamurthy

    2012-01-01

    Full Text Available The application of RNA interference-based gene silencing to the airway surface epithelium holds great promise to manipulate host and pathogen gene expression for therapeutic purposes. However, well-differentiated airway epithelia display significant barriers to double-stranded small-interfering RNA (siRNA delivery despite testing varied classes of nonviral reagents. In well-differentiated primary pig airway epithelia (PAE or human airway epithelia (HAE grown at the air–liquid interface (ALI, the delivery of a Dicer-substrate small-interfering RNA (DsiRNA duplex against hypoxanthine–guanine phosphoribosyltransferase (HPRT with several nonviral reagents showed minimal uptake and no knockdown of the target. In contrast, poorly differentiated cells (2–5-day post-seeding exhibited significant oligonucleotide internalization and target knockdown. This finding suggested that during differentiation, the barrier properties of the epithelium are modified to an extent that impedes oligonucleotide uptake. We used two methods to overcome this inefficiency. First, we tested the impact of epidermal growth factor (EGF, a known enhancer of macropinocytosis. Treatment of the cells with EGF improved oligonucleotide uptake resulting in significant but modest levels of target knockdown. Secondly, we used the connectivity map (Cmap database to correlate gene expression changes during small molecule treatments on various cells types with genes that change upon mucociliary differentiation. Several different drug classes were identified from this correlative assessment. Well-differentiated epithelia treated with DsiRNAs and LY294002, a PI3K inhibitor, significantly improved gene silencing and concomitantly reduced target protein levels. These novel findings reveal that well-differentiated airway epithelia, normally resistant to siRNA delivery, can be pretreated with small molecules to improve uptake of synthetic oligonucleotide and RNA interference (RNAi responses.

  14. School Leadership Actions to Support Differentiated Instruction

    Science.gov (United States)

    Byars, Jennifer Pallon

    2011-01-01

    Schools are required to meet a range of students' learning needs and effective school leadership is needed for the implementation of pedagogical practices responsive to the challenges of increasing student diversity and academic accountability. Literature on differentiated instruction and its constituent elements suggests differentiation results…

  15. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes

    Science.gov (United States)

    Hingston, Patricia; Chen, Jessica; Allen, Kevin; Truelstrup Hansen, Lisbeth

    2017-01-01

    The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium’s cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, pmonocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response. PMID:28662112

  16. The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties.

    Science.gov (United States)

    Grasso, Filomena; Coppola, Mariangela; Carbone, Fabrizio; Baldoni, Luciana; Alagna, Fiammetta; Perrotta, Gaetano; Pérez-Pulido, Antonio J; Garonna, Antonio; Facella, Paolo; Daddiego, Loretta; Lopez, Loredana; Vitiello, Alessia; Rao, Rosa; Corrado, Giandomenico

    2017-01-01

    The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae.

  17. A Comprehensive Analysis of Chromoplast Differentiation Reveals Complex Protein Changes Associated with Plastoglobule Biogenesis and Remodeling of Protein Systems in Sweet Orange Flesh1[OPEN

    Science.gov (United States)

    Wang, Lun; Deng, Xiuxin

    2015-01-01

    Globular and crystalloid chromoplasts were observed to be region specifically formed in sweet orange (Citrus sinensis) flesh and converted from amyloplasts during fruit maturation, which was associated with the composition of specific carotenoids and the expression of carotenogenic genes. Subsequent isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analyses of purified plastids from the flesh during chromoplast differentiation and senescence identified 1,386 putative plastid-localized proteins, 1,016 of which were quantified by spectral counting. The iTRAQ values reflecting the expression abundance of three identified proteins were validated by immunoblotting. Based on iTRAQ data, chromoplastogenesis appeared to be associated with three major protein expression patterns: (1) marked decrease in abundance of the proteins participating in the translation machinery through ribosome assembly; (2) increase in abundance of the proteins involved in terpenoid biosynthesis (including carotenoids), stress responses (redox, ascorbate, and glutathione), and development; and (3) maintenance of the proteins for signaling and DNA and RNA. Interestingly, a strong increase in abundance of several plastoglobule-localized proteins coincided with the formation of plastoglobules in the chromoplast. The proteomic data also showed that stable functioning of protein import, suppression of ribosome assembly, and accumulation of chromoplast proteases are correlated with the amyloplast-to-chromoplast transition; thus, these processes may play a collective role in chromoplast biogenesis and differentiation. By contrast, the chromoplast senescence process was inferred to be associated with significant increases in stress response and energy supply. In conclusion, this comprehensive proteomic study identified many potentially new plastid-localized proteins and provides insights into the potential developmental and molecular mechanisms underlying chromoplast

  18. A Systems Vaccinology Approach Reveals Temporal Transcriptomic Changes of Immune Responses to the Yellow Fever 17D Vaccine.

    Science.gov (United States)

    Hou, Jue; Wang, Shuhui; Jia, Manxue; Li, Dan; Liu, Ying; Li, Zhengpeng; Zhu, Hong; Xu, Huifang; Sun, Meiping; Lu, Li; Zhou, Zhinan; Peng, Hong; Zhang, Qichen; Fu, Shihong; Liang, Guodong; Yao, Lena; Yu, Xuesong; Carpp, Lindsay N; Huang, Yunda; McElrath, Julie; Self, Steve; Shao, Yiming

    2017-08-15

    In this study, we used a systems vaccinology approach to identify temporal changes in immune response signatures to the yellow fever (YF)-17D vaccine, with the aim of comprehensively characterizing immune responses associated with protective immunity. We conducted a cohort study in which 21 healthy subjects in China were administered one dose of the YF-17D vaccine; PBMCs were collected at 0 h and then at 4 h and days 1, 2, 3, 5, 7, 14, 28, 84, and 168 postvaccination, and analyzed by transcriptional profiling and immunological assays. At 4 h postvaccination, genes associated with innate cell differentiation and cytokine pathways were dramatically downregulated, whereas receptor genes were upregulated, compared with their baseline levels at 0 h. Immune response pathways were primarily upregulated on days 5 and 7, accompanied by the upregulation of the transcriptional factors JUP, STAT1, and EIF2AK2. We also observed robust activation of innate immunity within 2 d postvaccination and a durable adaptive response, as assessed by transcriptional profiling. Coexpression network analysis indicated that lysosome activity and lymphocyte proliferation were associated with dendritic cell (DC) and CD4 + T cell responses; FGL2, NFAM1, CCR1, and TNFSF13B were involved in these associations. Moreover, individuals who were baseline-seropositive for Abs against another flavivirus exhibited significantly impaired DC, NK cell, and T cell function in response to YF-17D vaccination. Overall, our findings indicate that YF-17D vaccination induces a prompt innate immune response and DC activation, a robust Ag-specific T cell response, and a persistent B cell/memory B cell response. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. White-throated sparrows alter songs differentially in response to chorusing anurans and other background noise.

    Science.gov (United States)

    Lenske, Ariel K; La, Van T

    2014-06-01

    Animals can use acoustic signals to attract mates and defend territories. As a consequence, background noise that interferes with signal transmission has the potential to reduce fitness, especially in birds that rely on song. While much research on bird song has investigated vocal flexibility in response to urban noise, weather and other birds, the possibility of inter-class acoustic competition from anurans has not been previously studied. Using sound recordings from central Ontario wetlands, we tested if white-throated sparrows (Zonotrichia albicolis) make short-term changes to their singing behaviour in response to chorusing spring peepers (Pseudacris crucifer), as well as to car noise, wind and other bird vocalizations. White-throated sparrow songs that were sung during the spring peeper chorus were shorter with higher minimum frequencies and narrower bandwidths resulting in reduced frequency overlap. Additionally, sparrows were less likely to sing when car noise and the vocalizations of other birds were present. These patterns suggest that birds use multiple adjustment strategies. This is the first report to demonstrate that birds may alter their songs differentially in response to different sources of noise. This article is part of a Special Issue entitled: insert SI title. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.).

    Science.gov (United States)

    Luo, Cong; He, Xin-Hua; Hu, Ying; Yu, Hai-xia; Ou, Shi-Jin; Fang, Zhong-Bin

    2014-09-15

    Differential display is a powerful technique for analyzing differences in gene expression. Oligo-dT cDNAstart codon targeted marker (cDNA-SCoT) technique is a novel, simple, cheap, rapid, and efficient method for differential gene expression research. In the present study, the oligo-dT anchored cDNA-SCoT technique was exploited to identify differentially expressed genes during several stress treatments in mango. A total of 37 primers combined with oligo-dT anchor primers 3side amplified approximately 150 fragments of 150 bp to 1500 bp in length. Up to 100 fragments were differentially expressed among the stress treatments and control samples, among which 92 were obtained and sequenced. Out of the 92 transcript derived fragments (TDFs), 70% were highly homologous to known genes, and 30% encoded unclassified proteins with unknown functions. The expression pattern of nine genes with known functions involved in several abiotic stresses in other species was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) under cold (4 °C), salinity (NaCl), polyethylene glycol (PEG, MW 6000), and heavy metal treatments in leaves and stems at different time points (0, 24, 48, and 72 h). The expression patterns of the genes (TDF4, TDF7, TDF23, TDF45, TDF49, TDF50, TDF57, TDF91 and TDF92) that had direct or indirect relationships with cold, salinity, drought and heavy metal stress response were analyzed through qRT-PCR. The possible roles of these genes are discussed. This study suggests that the oligo-dT anchored cDNA-SCoT differential display method is a useful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic stresses and provide gene information for further study and application in genetic improvement and breeding in mango. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Differential metamorphosis alters the endocrine response in anuran larvae exposed to T3 and atrazine

    International Nuclear Information System (INIS)

    Freeman, Jennifer L.; Beccue, Nathan; Rayburn, A. Lane

    2005-01-01

    Pesticide chemical contamination is one of the suspected contributors of the amphibian population decline. The herbicide atrazine is one of the major surface water contaminants in the U.S. A previous study has shown that atrazine at concentrations as low as 100 parts per billion (ppb) increased the time to metamorphosis in Xenopus laevis tadpoles. However, questions remain as to the applicability of a study of a non-native species to a native organism. The possible effects of atrazine on developing Bufo americanus were explored. Atrazine at potentially (albeit high) environmental concentrations was found not to delay the metamorphosis of developing B. americanus tadpoles as observed in X. laevis. Several studies have indicated that atrazine affects thyroid hormones. Since thyroid hormones are critical in amphibian metamorphosis, B. americanus and X. laevis tadpoles were exposed to exogenous 3,5,3'-triiodothyronine (T 3 ). X. laevis were found to be more responsive to the effects of exogenous T 3 compared to B. americanus, indicating that X. laevis may be more sensitive to endocrine active chemicals than B. americanus. In X. laevis, nuclear heterogeneity has been associated with metamorphosis. Flow cytometric analysis of the nuclei of normal metamorphing B. americanus indicates a decrease in the amount of thyroid mediated chromatin alterations relative to the nuclei of metamorphing X. laevis. Indications are that the differential response to endocrine disruption is due to the differential role of chromatin associated gene expression during metamorphosis of B. americanus versus X. laevis. A second native species, Hyla versicolor, was observed to have the X. laevis nuclear pattern with respect to metamorphosis. As such, sensitivity to endocrine disruption is hypothesized not to be limited to laboratory non-native species

  2. Brief Report: High and Low Level Initiations of Joint Attention, and Response to Joint Attention--Differential Relationships with Language and Imitation

    Science.gov (United States)

    Pickard, Katherine E.; Ingersoll, Brooke R.

    2015-01-01

    Frequency of high-level (showing/pointing) and low-level (coordinated gaze shifts) behaviors on the Early Social Communication Scales are often used as a measure of joint attention initiations (IJA). This study examined the degree to which these skills and response to joint attention (RJA; e.g. gaze following) were differentially related to…

  3. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Hooz A Mendivelso

    Full Text Available A seasonal period of water deficit characterizes tropical dry forests (TDFs. There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  4. Differential Growth Responses to Water Balance of Coexisting Deciduous Tree Species Are Linked to Wood Density in a Bolivian Tropical Dry Forest

    Science.gov (United States)

    Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001

  5. A novel Atoh1 "self-terminating" mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability.

    Directory of Open Access Journals (Sweden)

    Ning Pan

    Full Text Available Atonal homolog1 (Atoh1 is a bHLH transcription factor essential for inner ear hair cell differentiation. Targeted expression of Atoh1 at various stages in development can result in hair cell differentiation in the ear. However, the level and duration of Atoh1 expression required for proper hair cell differentiation and maintenance remain unknown. We generated an Atoh1 conditional knockout (CKO mouse line using Tg(Atoh1-cre, in which the cre expression is driven by an Atoh1 enhancer element that is regulated by Atoh1 protein to "self-terminate" its expression. The mutant mice show transient, limited expression of Atoh1 in all hair cells in the ear. In the organ of Corti, reduction and delayed deletion of Atoh1 result in progressive loss of almost all the inner hair cells and the majority of the outer hair cells within three weeks after birth. The remaining cells express hair cell marker Myo7a and attract nerve fibers, but do not differentiate normal stereocilia bundles. Some Myo7a-positive cells persist in the cochlea into adult stages in the position of outer hair cells, flanked by a single row of pillar cells and two to three rows of disorganized Deiters cells. Gene expression analyses of Atoh1, Barhl1 and Pou4f3, genes required for survival and maturation of hair cells, reveal earlier and higher expression levels in the inner compared to the outer hair cells. Our data show that Atoh1 is crucial for hair cell mechanotransduction development, viability, and maintenance and also suggest that Atoh1 expression level and duration may play a role in inner vs. outer hair cell development. These genetically engineered Atoh1 CKO mice provide a novel model for establishing critical conditions needed to regenerate viable and functional hair cells with Atoh1 therapy.

  6. Regionally-specified second trimester fetal neural stem cells reveals differential neurogenic programming.

    Directory of Open Access Journals (Sweden)

    Yiping Fan

    Full Text Available Neural stem/progenitor cells (NSC have the potential for treatment of a wide range of neurological diseases such as Parkinson Disease and multiple sclerosis. Currently, NSC have been isolated only from hippocampus and subventricular zone (SVZ of the adult brain. It is not known whether NSC can be found in all parts of the developing mid-trimester central nervous system (CNS when the brain undergoes massive transformation and growth. Multipotent NSC from the mid-trimester cerebra, thalamus, SVZ, hippocampus, thalamus, cerebellum, brain stem and spinal cord can be derived and propagated as clonal neurospheres with increasing frequencies with increasing gestations. These NSC can undergo multi-lineage differentiation both in vitro and in vivo, and engraft in a developmental murine model. Regionally-derived NSC are phenotypically distinct, with hippocampal NSC having a significantly higher neurogenic potential (53.6% over other sources (range of 0%-27.5%, p<0.004. Whole genome expression analysis showed differential gene expression between these regionally-derived NSC, which involved the Notch, epidermal growth factor as well as interleukin pathways. We have shown the presence of phenotypically-distinct regionally-derived NSC from the mid-trimester CNS, which may reflect the ontological differences occurring within the CNS. Aside from informing on the role of such cells during fetal growth, they may be useful for different cellular therapy applications.

  7. Differential die-away analysis system response modeling and detector design

    International Nuclear Information System (INIS)

    Jordan, K.A.; Gozani, T.; Vujic, J.

    2008-01-01

    Differential die-away-analysis (DDAA) is a sensitive technique to detect presence of fissile materials such as 235 U and 239 Pu. DDAA uses a high-energy (14 MeV) pulsed neutron generator to interrogate a shipping container. The signature is a fast neutron signal hundreds of microseconds after the cessation of the neutron pulse. This fast neutron signal has decay time identical to the thermal neutron diffusion decay time of the inspected cargo. The theoretical aspects of a cargo inspection system based on the differential die-away technique are explored. A detailed mathematical model of the system is developed, and experimental results validating this model are presented

  8. Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures

    International Nuclear Information System (INIS)

    Dartel, Dorien A.M. van; Pennings, Jeroen L.A.; Fonteyne, Liset J.J. de la; Brauers, Karen J.J.; Claessen, Sandra; Delft, Joost H. van; Kleinjans, Jos C.S.; Piersma, Aldert H.

    2011-01-01

    The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 μM) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.

  9. Glial tumors with neuronal differentiation.

    Science.gov (United States)

    Park, Chul-Kee; Phi, Ji Hoon; Park, Sung-Hye

    2015-01-01

    Immunohistochemical studies for neuronal differentiation in glial tumors revealed subsets of tumors having both characteristics of glial and neuronal lineages. Glial tumors with neuronal differentiation can be observed with diverse phenotypes and histologic grades. The rosette-forming glioneuronal tumor of the fourth ventricle and papillary glioneuronal tumor have been newly classified as distinct disease entities. There are other candidates for classification, such as the glioneuronal tumor without pseudopapillary architecture, glioneuronal tumor with neuropil-like islands, and the malignant glioneuronal tumor. The clinical significance of these previously unclassified tumors should be confirmed. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Diego Rubiales

    2009-07-01

    Full Text Available Abstract Background Parasitic angiosperm Orobanche crenata infection represents a major constraint for the cultivation of legumes worldwide. The level of protection achieved to date is either incomplete or ephemeral. Hence, an efficient control of the parasite requires a better understanding of its interaction and associated resistance mechanisms at molecular levels. Results In order to study the plant response to this parasitic plant and the molecular basis of the resistance we have used a proteomic approach. The root proteome of two accessions of the model legume Medicago truncatula displaying differences in their resistance phenotype, in control as well as in inoculated plants, over two time points (21 and 25 days post infection, has been compared. We report quantitative as well as qualitative differences in the 2-DE maps between early- (SA 27774 and late-resistant (SA 4087 genotypes after Coomassie and silver-staining: 69 differential spots were observed between non-inoculated genotypes, and 42 and 25 spots for SA 4087 and SA 27774 non-inoculated and inoculated plants, respectively. In all, 49 differential spots were identified by peptide mass fingerprinting (PMF following MALDI-TOF/TOF mass spectrometry. Many of the proteins showing significant differences between genotypes and after parasitic infection belong to the functional category of defense and stress-related proteins. A number of spots correspond to proteins with the same function, and might represent members of a multigenic family or post-transcriptional forms of the same protein. Conclusion The results obtained suggest the existence of a generic defense mechanism operating during the early stages of infection and differing in both genotypes. The faster response to the infection observed in the SA 27774 genotype might be due to the action of proteins targeted against key elements needed for the parasite's successful infection, such as protease inhibitors. Our data are discussed and

  11. Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula.

    Science.gov (United States)

    Castillejo, Ma Angeles; Maldonado, Ana M; Dumas-Gaudot, Eliane; Fernández-Aparicio, Mónica; Susín, Rafael; Diego, Rubiales; Jorrín, Jesús V

    2009-07-03

    Parasitic angiosperm Orobanche crenata infection represents a major constraint for the cultivation of legumes worldwide. The level of protection achieved to date is either incomplete or ephemeral. Hence, an efficient control of the parasite requires a better understanding of its interaction and associated resistance mechanisms at molecular levels. In order to study the plant response to this parasitic plant and the molecular basis of the resistance we have used a proteomic approach. The root proteome of two accessions of the model legume Medicago truncatula displaying differences in their resistance phenotype, in control as well as in inoculated plants, over two time points (21 and 25 days post infection), has been compared. We report quantitative as well as qualitative differences in the 2-DE maps between early- (SA 27774) and late-resistant (SA 4087) genotypes after Coomassie and silver-staining: 69 differential spots were observed between non-inoculated genotypes, and 42 and 25 spots for SA 4087 and SA 27774 non-inoculated and inoculated plants, respectively. In all, 49 differential spots were identified by peptide mass fingerprinting (PMF) following MALDI-TOF/TOF mass spectrometry. Many of the proteins showing significant differences between genotypes and after parasitic infection belong to the functional category of defense and stress-related proteins. A number of spots correspond to proteins with the same function, and might represent members of a multigenic family or post-transcriptional forms of the same protein. The results obtained suggest the existence of a generic defense mechanism operating during the early stages of infection and differing in both genotypes. The faster response to the infection observed in the SA 27774 genotype might be due to the action of proteins targeted against key elements needed for the parasite's successful infection, such as protease inhibitors. Our data are discussed and compared with those previously obtained with pea 1 and

  12. Early Differential Responses of Co-dominant Canopy Species to Sudden and Severe Drought in a Mediterranean-climate Type Forest

    Directory of Open Access Journals (Sweden)

    Katinka X. Ruthrof

    2015-06-01

    Full Text Available Globally, drought and heat-induced forest disturbance is garnering increasing concern. Species from Mediterranean forests have resistance and resilience mechanisms to cope with drought and differences in these ecological strategies will profoundly influence vegetation composition in response to drought. Our aim was to contrast the early response of two co-occurring forest species, Eucalyptus marginata and Corymbia calophylla, in the Northern Jarrah Forest of southwestern Australia, following a sudden and severe drought event. Forest plots were monitored for health and response, three and 16 months following the drought. Eucalyptus marginata was more susceptible to partial and complete crown dieback compared to C. calophylla, three months after the drought. However, resprouting among trees exhibiting complete crown dieback was similar between species. Overall, E. marginata trees were more likely to die from the impacts of drought, assessed at 16 months. These short-term differential responses to drought may lead to compositional shifts with increases in frequency of drought events in the future.

  13. CD4+ T cell-derived novel peptide Thp5 induces interleukin-4 production in CD4+ T cells to direct T helper 2 cell differentiation.

    Science.gov (United States)

    Khan, Mohd Moin; Chatterjee, Samit; Dwivedi, Ved Prakash; Pandey, Nishant Kumar; Singh, Yogesh; Tousif, Sultan; Bhavesh, Neel Sarovar; Van Kaer, Luc; Das, Jyoti; Das, Gobardhan

    2012-01-20

    The differentiation of naïve CD4(+) T cells into T helper 2 (Th2) cells requires production of the cytokine IL-4 in the local microenvironment. It is evident that naïve/quiescently activated CD4(+) T cells produce the IL-4 that drives Th2 cell differentiation. Because early production of IL-4 in naïve T cells leads to preferential Th2 cell differentiation, this process needs to be tightly regulated so as to avoid catastrophic and misdirected Th2 cell differentiation. Here, we show that Thp5, a novel peptide with structural similarity to vasoactive intestinal peptide, regulates production of early IL-4 in newly activated CD4(+) T cells. Induction of IL-4 in CD4(+) T cells by Thp5 is independent of the transcription factor STAT6 but dependent on ERK1/2 signaling. Furthermore, cytokines (IL-12 and TGF-β) that promote the differentiation of Th1 or Th17 cells inhibit Thp5 induction, thus suppressing Th2 cell differentiation. We further showed that Thp5 enhances Th2 responses and exacerbates allergic airway inflammation in mice. Taken together, our findings reveal that early activated CD4(+) T cells produce Thp5, which plays a critical role as a molecular switch in the differentiation of Th cells, biasing the response toward the Th2 cell phenotype.

  14. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6

    Directory of Open Access Journals (Sweden)

    An Chung-Il

    2011-10-01

    Full Text Available Abstract Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development

  15. Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses.

    Directory of Open Access Journals (Sweden)

    Oumaya Bouchabke

    Full Text Available To test whether natural variation in Arabidopsis could be used to dissect out the genetic basis of responses to drought stress, we characterised a number of accessions. Most of the accessions belong to a core collection that was shown to maximise the genetic diversity captured for a given number of individual accessions in Arabidopsis thaliana. We measured total leaf area (TLA, Electrolyte Leakage (EL, Relative Water Content (RWC, and Cut Rosette Water Loss (CRWL in control and mild water deficit conditions. A Principal Component Analysis revealed which traits explain most of the variation and showed that some accessions behave differently compared to the others in drought conditions, these included Ita-0, Cvi-0 and Shahdara. This study relied on genetic variation found naturally within the species, in which populations are assumed to be adapted to their environment. Overall, Arabidopsis thaliana showed interesting phenotypic variations in response to mild water deficit that can be exploited to identify genes and alleles important for this complex trait.

  16. MAINTENANCE OF ECOLOGICALLY SIGNIFICANT GENETIC VARIATION IN THE TIGER SWALLOWTAIL BUTTERFLY THROUGH DIFFERENTIAL SELECTION AND GENE FLOW.

    Science.gov (United States)

    Bossart, J L; Scriber, J M

    1995-12-01

    Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. F ST -values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits. © 1995 The Society for the Study of Evolution.

  17. Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis

    Directory of Open Access Journals (Sweden)

    Takahiro Tsujikawa

    2017-04-01

    Full Text Available Here, we describe a multiplexed immunohistochemical platform with computational image processing workflows, including image cytometry, enabling simultaneous evaluation of 12 biomarkers in one formalin-fixed paraffin-embedded tissue section. To validate this platform, we used tissue microarrays containing 38 archival head and neck squamous cell carcinomas and revealed differential immune profiles based on lymphoid and myeloid cell densities, correlating with human papilloma virus status and prognosis. Based on these results, we investigated 24 pancreatic ductal adenocarcinomas from patients who received neoadjuvant GVAX vaccination and revealed that response to therapy correlated with degree of mono-myelocytic cell density and percentages of CD8+ T cells expressing T cell exhaustion markers. These data highlight the utility of in situ immune monitoring for patient stratification and provide digital image processing pipelines to the community for examining immune complexity in precious tissue sections, where phenotype and tissue architecture are preserved to improve biomarker discovery and assessment.

  18. Electrical brain responses in language-impaired children reveal grammar-specific deficits.

    Directory of Open Access Journals (Sweden)

    Elisabeth Fonteneau

    2008-03-01

    Full Text Available Scientific and public fascination with human language have included intensive scrutiny of language disorders as a new window onto the biological foundations of language and its evolutionary origins. Specific language impairment (SLI, which affects over 7% of children, is one such disorder. SLI has received robust scientific attention, in part because of its recent linkage to a specific gene and loci on chromosomes and in part because of the prevailing question regarding the scope of its language impairment: Does the disorder impact the general ability to segment and process language or a specific ability to compute grammar? Here we provide novel electrophysiological data showing a domain-specific deficit within the grammar of language that has been hitherto undetectable through behavioural data alone.We presented participants with Grammatical(G-SLI, age-matched controls, and younger child and adult controls, with questions containing syntactic violations and sentences containing semantic violations. Electrophysiological brain responses revealed a selective impairment to only neural circuitry that is specific to grammatical processing in G-SLI. Furthermore, the participants with G-SLI appeared to be partially compensating for their syntactic deficit by using neural circuitry associated with semantic processing and all non-grammar-specific and low-level auditory neural responses were normal.The findings indicate that grammatical neural circuitry underlying language is a developmentally unique system in the functional architecture of the brain, and this complex higher cognitive system can be selectively impaired. The findings advance fundamental understanding about how cognitive systems develop and all human language is represented and processed in the brain.

  19. Stress Alters the Discriminative Stimulus and Response Rate Effects of Cocaine Differentially in Lewis and Fischer Inbred Rats

    Directory of Open Access Journals (Sweden)

    Therese A. Kosten

    2012-03-01

    Full Text Available Stress enhances the behavioral effects of cocaine, perhaps via hypothalamic-pituitary-adrenal (HPA axis activity. Yet, compared to Fischer 344 (F344 rats, Lewis rats have hyporesponsive HPA axis function and more readily acquire cocaine self-administration. We hypothesized that stress would differentially affect cocaine behaviors in these strains. The effects of three stressors on the discriminative stimulus and response rate effects of cocaine were investigated. Rats of both strains were trained to discriminate cocaine (10 mg/kg from saline using a two-lever, food-reinforced (FR10 procedure. Immediately prior to cumulative dose (1, 3, 10 mg/kg cocaine test sessions, rats were restrained for 15-min, had 15-min of footshock in a distinct context, or were placed in the shock-paired context. Another set of F344 and Lewis rats were tested similarly except they received vehicle injections to test if stress substituted for cocaine. Most vehicle-tested rats failed to respond after stressor exposures. Among cocaine-tested rats, restraint stress enhanced cocaine’s discriminative stimulus effects in F344 rats. Shock and shock-context increased response rates in Lewis rats. Stress-induced increases in corticosterone levels showed strain differences but did not correlate with behavior. These data suggest that the behavioral effects of cocaine can be differentially affected by stress in a strain-selective manner.

  20. Effect of coumarins on HL-60 cell differentiation.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    2000-01-01

    Twenty-eight coumarins, including 7 furocoumarins, were examined for their activity of induction of terminal differentiation of human promyelocytic leukemia cells (HL-60) by nitro blue tetrazolium (NBT) reducing, nonspecific esterase, specific esterase and phagocytic activities. Esculetin, nordalbergin, 6,7-dihydroxy-4-methylcoumarin and imperatorin had strong activity among the coumarins examined. HL-60 cells treated with these coumarins differentiated into mature monocyte/macrophage. The structure-activity relationship established from the results revealed that 6,7-dihydroxy moiety had an important role in the induction of differentiation of HL-60.

  1. Identification of differentially expressed sequences in bud ...

    African Journals Online (AJOL)

    The developmental process of lily flower bud differentiation has been studied in morphology thoroughly, but the mechanism in molecular biology is still ambiguous and few studies on genetic expression have been carried out. Little is known about the physiological responses of flower bud differentiation in Oriental hybrid lily ...

  2. Differential response of two somatolactin genes to zinc or estrogen in pituitary of Cyprinus carpio.

    Science.gov (United States)

    Valenzuela, G E; Perez, A; Navarro, M; Romero, A; Figueroa, J; Kausel, G

    2015-05-01

    Environmental changes affect gene expression that we addressed in the pituitary, a central regulatory organ at the interface between the central nervous system and the endocrine system. With the aim to reveal effects of changes in the aquatic environment on the expression of hypothalamo-hypophyseal factors, we characterized somatolactin (SL) in Cyprinus carpio. SL, a fish specific pituitary hormone belonging to the prolactin (PRL) superfamily, is involved in background adaptation, osmoregulation, reproduction and fatty acid metabolism. Two sl genes, α and β, were discovered in carp and transcripts of both were detected in pituitaries. Clearly, expression of slα and slβ was modulated significantly in pituitary of male adult carp in response to treatment with ZnCl2 (Zn), but only slβ responded to 17β-estrogen (E2), relative to control carp as shown by RT-qPCR analyses. Furthermore, the amount of mRNA of related factors was assessed revealing variable effects on prl, growth hormone (gh), and factors involved in sl regulation: the pituitary transcription factor pit1 and hypothalamic pituitary adenylase cyclase activating peptide (pacap). In parallel, the physiological response of the experimental animals to Zn or E2 was confirmed by showing a significant increase of metallothionein (mt) or vitellogenin (vg) gene expression in liver, classical sentinels for exposure to heavy metal or estrogens. These data suggest that the sl genes seem to be involved in the response to Zn, as well as to estrogen, and could contribute to evaluate biological relevant changes in the aquatic environment. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Lack of a differential radiation response for proliferative and non-proliferative rat thyroid cells (FRTL-5) in vitro

    International Nuclear Information System (INIS)

    Brosing, J.W.; Giese, W.L.; Mulcahy, R.T.

    1989-01-01

    FRTL-5 rat thyroid epithelial cells maintain normal thyroid function and morphology in vitro, exhibit an absolute requirement for thyroid stimulating hormone (TSH) for proliferation and display radiation dose response characteristics indistinguishable from those of rat thyroid epithelial cells in vivo. In TSH-free medium cells remain in a non-proliferative, yet viable, state for prolonged periods of time and respond to TSH re-stimulation by a return to exponential growth. Flow cytometric analysis using two-step acridine orange (AO) staining revealed an accumulation of cells in the G1 phase of the cell cycle accompanied by a pronounced reduction in red fluorescence (indicative of RNA content) in FRTL-5 cells cultured in the absence of TSH. The response of proliferative and non-proliferative FRTL-5 cells to single dose, split dose and fractionated radiation was compared to determine whether proliferative status was an important response determinant. The response of FRTL-5 cells was not influenced by proliferative status at the time of irradiation. Additionally, dose response was not altered by variable (12 hr-8 days) non-proliferative intervals before or after irradiation. As revealed by split dose experiments, the rate and extent of sublethal damage repair was likewise similar for proliferative and non-proliferative cells. Multifraction experiments employing three fractions separated by 6 hr intervals indicate that non-proliferative FRTL-5 cells completely repair sublethal damage between fractions. These results indicate that the radiation response of FRTL-5 cells is not influenced by the proliferative status of the cells prior to or post-irradiation

  4. Differential expression of miRNAs and their relation to active tuberculosis.

    Science.gov (United States)

    Xu, Zhihong; Zhou, Aiping; Ni, Jinjing; Zhang, Qiufen; Wang, Ying; Lu, Jie; Wu, Wenjuan; Karakousis, Petros C; Lu, Shuihua; Yao, Yufeng

    2015-07-01

    The aim of this work was to screen miRNA signatures dysregulated in tuberculosis to improve our understanding of the biological role of miRNAs involved in the disease. Datasets deposited in publically available databases from microarray studies on infectious diseases and malignancies were retrieved, screened, and subjected to further analysis. Effect sizes were combined using the inverse-variance model and between-study heterogeneity was evaluated by the random effects model. 35 miRNAs were differentially expressed (12 up-regulated, 23 down-regulated; p tuberculosis and other infectious diseases. 15 miRNAs were found to be significantly differentially regulated (7 up-regulated, 8 down-regulated; p tuberculosis and malignancies. Most of the miRNA signatures identified in this study were found to be involved in immune responses and metabolism. Expression of these miRNA signatures in serum samples from TB subjects (n = 11) as well as healthy controls (n = 10) was examined by TaqMan miRNA array. Taken together, the results revealed differential expression of miRNAs in TB, but available datasets are limited and these miRNA signatures should be validated in future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Differential roles of Sirt1 in HIF-1α and HIF-2α mediated hypoxic responses

    International Nuclear Information System (INIS)

    Yoon, Haejin; Shin, Seung-Hyun; Shin, Dong Hoon; Chun, Yang-Sook; Park, Jong-Wan

    2014-01-01

    Highlights: • Roles of SIRT1 in HIF-1α and HIF-2α regulations are reevaluated using specific antibodies and Gal4 reporters. • SIRT1 represses the HIF-1α-driven transcription constantly in ten cancer cell-lines. • SIRT1 regulates the HIF-2α-driven transcription cell context-dependently. • SIRT1 determines cell growth under hypoxia by regulating HIF-1α and HIF-2α activities. - Abstract: Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) determine cancer cell fate under hypoxia. Despite the similarities of their structures, HIF-1α and HIF-2α have distinct roles in cancer growth under hypoxia, that is, HIF-1α induces growth arrest whereas HIF-2α promotes cell growth. Recently, sirtuin 1 (Sirt1) was reported to fine-tune cellular responses to hypoxia by deacetylating HIF-1α and HIF-2α. Yet, the roles of Sirt1 in HIF-1α and HIF-2α functions have been controversial. We here investigated the precise roles of Sirt1 in HIF-1α and HIF-2α regulations. Immunological analyses revealed that HIF-1α K674 and HIF-2α K741 are acetylated by PCAF and CBP, respectively, but are deacetylated commonly by Sirt1. In the Gal4 reporter systems, Sirt1 was found to repress HIF-1α activity constantly in ten cancer cell-lines but to regulate HIF-2α activity cell type-dependently. Moreover, Sirt1 determined cell growth under hypoxia depending on HIF-1α and HIF-2α. Under hypoxia, Sirt1 promoted cell proliferation of HepG2, in which Sirt1 differentially regulates HIF-1α and HIF-2α. In contrast, such an effect of Sirt1 was not shown in HCT116, in which Sirt1 inactivates both HIF-1α and HIF-2α because conflicting actions of HIF-1α and HIF-2α on cell growth may be offset. Our results provide a better understanding of the roles of Sirt1 in HIF-mediated hypoxic responses and also a basic concept for developing anticancer strategy targeting Sirt1

  6. Increasing Sex Mortality Differentials among Black Americans, 1950-1978.

    Science.gov (United States)

    Gee, Ellen M.; Veevers, Jean E.

    1985-01-01

    In regard to sex differentials in mortality among Blacks, explores (1) age groups responsible for increasing the differential, (2) causes of death that have contributed to the increased differential, and (3) whether the phenomenon derives from decreased female mortality, increased male mortality, or both rates moving in the same direction at…

  7. Differential response of inbred and F1 hybrid embryos of Hibiscus sabdariffa L. to x-irradiation

    International Nuclear Information System (INIS)

    Shome, A.; Hazra, S.

    1988-01-01

    Radio-response of HS 4288, HS 7910 and two F 1 hybrid embryos of H. sabdariffa to X-ray doses (2-8 kR) was assessed. Reduction in shoot and root length and incidence of root injuries increased always with the increase of X-ray doses. LD 50 values of HS 4288, HS 7910, F 1 HS 4288 x HS 7910 and F 1 HS 7910 x HS 428 were in between 5 and 6 kR, 2 and 4 kR, 6 and 8 kR, and 5 and 6 kR respectively. Judging by LD 50 values and 100 per cent seedling abnormality, relatively HS 4288 and F 1 HS 4288 x HS 7910 were resistant and HS 7910 and F 1 HS 7910 x HS 4288 were susceptible. Induction of macro-mutations was different in two inbreds and also in two F 1 hybrids. Role of cytoplasmic factors for the differential response are discussed. (author). 14 refs., 5 tabs

  8. Differentially expressed genes distributed over chromosomes and implicated in certain biological processes for site insertion genetically modified rice Kemingdao.

    Science.gov (United States)

    Liu, Zhi; Li, Yunhe; Zhao, Jie; Chen, Xiuping; Jian, Guiliang; Peng, Yufa; Qi, Fangjun

    2012-01-01

    Release of genetically modified (GM) plants has sparked off intensive debates worldwide partly because of concerns about potential adverse unintended effects of GM plants to the agro system and the safety of foods. In this study, with the aim of revealing the molecular basis for unintended effects of a single site insertion GM Kemingdao (KMD) rice transformed with a synthetic cry1Ab gene, and bridging unintended effects of KMD rice through clues of differentially expressed genes, comparative transcriptome analyses were performed for GM KMD rice and its parent rice of Xiushui11 (XS11). The results showed that 680 differentially expressed transcripts were identified from 30-day old seedlings of GM KMD rice. The absolute majority of these changed expression transcripts dispersed and located over all rice chromosomes, and existed physical distance on chromosome from the insertion site, while only two transcripts were found to be differentially expressed within the 21 genes located within 100 kb up and down-stream of the insertion site. Pathway and biology function analyses further revealed that differentially expressed transcripts of KMD rice were involved in certain biological processes, and mainly implicated in two types of pathways. One type was pathways implicated in plant stress/defense responses, which were considerably in coordination with the reported unintended effects of KMD rice, which were more susceptible to rice diseases compared to its parent rice XS11; the other type was pathways associated with amino acids metabolism. With this clue, new unintended effects for changes in amino acids synthesis of KMD rice leaves were successfully revealed. Such that an actual case was firstly provided for identification of unintended effects in GM plants by comparative transciptome analysis.

  9. Transcriptome analysis reveals the host response to Schmallenberg virus in bovine cells and antagonistic effects of the NSs protein.

    Science.gov (United States)

    Blomström, Anne-Lie; Gu, Quan; Barry, Gerald; Wilkie, Gavin; Skelton, Jessica K; Baird, Margaret; McFarlane, Melanie; Schnettler, Esther; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain

    2015-04-19

    Schmallenberg virus (SBV) is a member of the Orthobunyavirus genus (Bunyaviridae family) causing malformations and abortions in ruminants. Although, as for other members of this family/genus, the non-structural protein NSs has been shown to be an interferon antagonist, very little is known regarding the overall inhibitory effects and targets of orthobunyavirus NSs proteins on host gene expression during infection. Therefore, using RNA-seq this study describes changes to the transcriptome of primary bovine cells following infection with Schmallenberg virus (SBV) or with a mutant lacking the non-structural protein NSs (SBVdelNSs) providing a detailed comparison of the effect of NSs expression on the host cell. The sequence reads from all samples (uninfected cells, SBV and SBVdelNSs) assembled well to the bovine host reference genome (on average 87.43% of the reads). During infection with SBVdelNSs, 649 genes were differentially expressed compared to uninfected cells (78.7% upregulated) and many of these were known antiviral and IFN-stimulated genes. On the other hand, only nine genes were differentially expressed in SBV infected cells compared to uninfected control cells, demonstrating the strong inhibitory effect of NSs on cellular gene expression. However, the majority of the genes that were expressed during SBV infection are involved in restriction of viral replication and spread indicating that SBV does not completely manage to shutdown the host antiviral response. In this study we show the effects of SBV NSs on the transcriptome of infected cells as well as the cellular response to wild type SBV. Although NSs is very efficient in shutting down genes of the host innate response, a number of possible antiviral factors were identified. Thus the data from this study can serve as a base for more detailed mechanistic studies of SBV and other orthobunyaviruses.

  10. Phosphoinositide 3-kinase/Akt signalling is responsible for the differential susceptibility of myoblasts and myotubes to menadione-induced oxidative stress.

    Science.gov (United States)

    Lim, Jeong A; Woo, Joo Hong; Kim, Hye Sun

    2008-09-01

    In this study, it was found that undifferentiated myoblasts were more vulnerable to menadione-induced oxidative stress than differentiated myotubes. Cell death occurred with a relatively low concentration of menadione in myoblasts compared to myotubes. With the same concentration of menadione, the Bcl-2/Bax ratio decreased and nuclei containing condensed chromatin were observed in myoblasts to a greater extent than in myotubes. However, myotubes became increasingly susceptible to menadione when phosphoinositide 3-kinase (PI3-K) was blocked by pre-incubation with LY294002, a PI3-K inhibitor. Actually, PI3-K activity was reduced by menadione in myoblasts but not in myotubes. In addition, the phosphorylation of Akt, a downstream effector of PI3-K, was inhibited in myoblasts by menadione but increased in myotubes. Both LY294002 and API-2, an Akt inhibitor, decreased the Bcl-2/Bax ratio in menadione-exposed myotubes. These results suggest that the differential activity of PI3-K/Akt signalling is responsible for the differential susceptibility of myoblasts and myotubes to menadione-induced oxidative stress.

  11. Primary Synovial Sarcoma of Kidney: A Rare Differential Diagnosis of Renomegaly

    Directory of Open Access Journals (Sweden)

    Gaurang Modi

    2014-01-01

    Full Text Available Synovial sarcomas (SS are classified as subgroup of soft tissue sarcomas affecting mainly extremities of young adults. Primary SS of kidney are very rare tumours with poor prognosis. Though they have characteristic histology and immunohistochemistry (IHC due to rarity of incidence it is difficult to diagnose them. Sometimes chromosomal rearrangement studies are required to confirm the diagnosis. We are presenting a case of 41-year-old male who was referred to our cancer centre for evaluation of left renal mass. CT scan of abdomen revealed a large left renal mass encasing the aorta. Biopsy of renal mass revealed poorly differentiated sarcoma and IHC was positive for vimentin, CD99, and BCL2 and negative for AE1, epithelial membrane antigen, and leukocyte common antigen. The patient was clinically inoperable as renal mass was encasing the aorta. So he was subsequently offered palliative chemotherapy in form of ifosfamide and adriamycin. CT abdomen shows partial response after 3 cycles of chemotherapy according to RECIST criteria.

  12. Novel Design of Recursive Differentiator Based on Lattice Wave Digital Filter

    Directory of Open Access Journals (Sweden)

    R. Barsainya

    2017-04-01

    Full Text Available In this paper, a novel design of third and fifth order differentiator based on lattice wave digital filter (LWDF, established on optimizing L_1-error approximation function using cuckoo search algorithm (CSA is proposed. We present a novel realization of minimum multiplier differentiator using LWD structure leading to requirement of optimizing only N coefficients for Nth order differentiator. The gamma coefficients of lattice wave digital differentiator (LWDD are computed by minimizing the L_1-norm fitness function leading to a flat response. The superiority of the proposed LWDD is evident by comparing it with other differentiators mentioned in the literature. The magnitude response of the designed LWDD is found to be of high accuracy with flat response in a wide frequency range. The simulation and statistical results validates that the designed minimum multiplier LWDD circumvents the existing one in terms of minimum absolute magnitude error, mean relative error (dB and efficient structural realization, thereby making the proposed LWDD a promising approach to digital differentiator design.

  13. Comparative metatranscriptomics reveals decline of a neustonic planktonic population

    KAUST Repository

    Mojib, Nazia; Thimma, Manjula; Kumaran, M.; Sougrat, Rachid; Irigoien, Xabier

    2016-01-01

    The neuston layer in tropical seas provides a good model to study the effects of increased levels of different stressors (e.g., temperature, ultraviolet radiation and Trichodesmium blooms). Here, we use a comparative in situ metatranscriptomics approach to reveal the functional genomic composition of metabolically active neustonic mesozooplankton community in response to the summer conditions in the Red Sea. The neustonic population exhibited changes in composition and abundance with a significant decline in copepods and appendicularia in July, when Trichodesmium cells were more abundant along with high temperatures and UV-B radiation. Nearly 23,000 genes were differentially expressed at the community level when the metatranscriptomes of the neustonic zooplankton were compared in April, July, and October. On a wider Phylum level, the genes related to oxidative phosphorylation, carbon, nucleotides, amino acids, and lipids were significantly overrepresented in both arthropods and chordates in April and October. On organism level for copepods, expression of genes responsive to oxidative stress, defense against bacteria, immune response, and virus reproduction were increased along with the observed increased appearance of copepod carcasses in the samples collected during July. The differences in expression correspond either to secondary effects of the Trichodesmium bloom or more likely to the increased UV-B radiation in July. Given the dearth of information on the zooplankton gene expression in response to environmental stimuli, our study provides the first transcriptome landscape of the mesozooplankton community during a period of increased mortality of the copepod and appendicularia population.

  14. Comparative metatranscriptomics reveals decline of a neustonic planktonic population

    KAUST Repository

    Mojib, Nazia

    2016-10-20

    The neuston layer in tropical seas provides a good model to study the effects of increased levels of different stressors (e.g., temperature, ultraviolet radiation and Trichodesmium blooms). Here, we use a comparative in situ metatranscriptomics approach to reveal the functional genomic composition of metabolically active neustonic mesozooplankton community in response to the summer conditions in the Red Sea. The neustonic population exhibited changes in composition and abundance with a significant decline in copepods and appendicularia in July, when Trichodesmium cells were more abundant along with high temperatures and UV-B radiation. Nearly 23,000 genes were differentially expressed at the community level when the metatranscriptomes of the neustonic zooplankton were compared in April, July, and October. On a wider Phylum level, the genes related to oxidative phosphorylation, carbon, nucleotides, amino acids, and lipids were significantly overrepresented in both arthropods and chordates in April and October. On organism level for copepods, expression of genes responsive to oxidative stress, defense against bacteria, immune response, and virus reproduction were increased along with the observed increased appearance of copepod carcasses in the samples collected during July. The differences in expression correspond either to secondary effects of the Trichodesmium bloom or more likely to the increased UV-B radiation in July. Given the dearth of information on the zooplankton gene expression in response to environmental stimuli, our study provides the first transcriptome landscape of the mesozooplankton community during a period of increased mortality of the copepod and appendicularia population.

  15. Proteomic analysis of the phytopathogenic soilborne fungus Verticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness.

    Science.gov (United States)

    El-Bebany, Ahmed F; Rampitsch, Christof; Daayf, Fouad

    2010-01-01

    Verticillium dahliae is a soilborne fungus that causes a vascular wilt disease of plants and losses in a broad range of economically important crops worldwide. In this study, we compared the proteomes of highly (Vd1396-9) and weakly (Vs06-14) aggressive isolates of V. dahliae to identify protein factors that may contribute to pathogenicity. Twenty-five protein spots were consistently observed as differential in the proteome profiles of the two isolates. The protein sequences in the spots were identified by LC-ESI-MS/MS and MASCOT database searches. Some of the identified sequences shared homology with fungal proteins that have roles in stress response, colonization, melanin biosynthesis, microsclerotia formation, antibiotic resistance, and fungal penetration. These are important functions for infection of the host and survival of the pathogen in soil. One protein found only in the highly aggressive isolate was identified as isochorismatase hydrolase, a potential plant-defense suppressor. This enzyme may inhibit the production of salicylic acid, which is important for plant defense response signaling. Other sequences corresponding to potential pathogenicity factors were identified in the highly aggressive isolate. This work indicates that, in combination with functional genomics, proteomics-based analyses can provide additional insights into pathogenesis and potential management strategies for this disease.

  16. Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico

    Science.gov (United States)

    Kristina J. Anderson-Teixeira; John P. Delong; Andrew M. Fox; Daniel A. Brese; Marcy E. Litvak

    2011-01-01

    Southwestern North America faces an imminent transition to a warmer, more arid climate, and it is critical to understand how these changes will affect the carbon balance of southwest ecosystems. In order to test our hypothesis that differential responses of production and respiration to temperature and moisture shape the carbon balance across a range of spatio-temporal...

  17. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection.

    Science.gov (United States)

    Tomosada, Yohsuke; Chiba, Eriko; Zelaya, Hortensia; Takahashi, Takuya; Tsukida, Kohichiro; Kitazawa, Haruki; Alvarez, Susana; Villena, Julio

    2013-08-15

    Some studies have shown that nasally administered immunobiotics had the potential to improve the outcome of influenza virus infection. However, the capacity of immunobiotics to improve protection against respiratory syncytial virus (RSV) infection was not investigated before. The aims of this study were: a) to evaluate whether the nasal administration of Lactobacillus rhamnosus CRL1505 (Lr05) and L. rhamnosus CRL1506 (Lr06) are able to improve respiratory antiviral defenses and beneficially modulate the immune response triggered by TLR3/RIG-I activation; b) to investigate whether viability of Lr05 or Lr06 is indispensable to modulate respiratory immunity and; c) to evaluate the capacity of Lr05 and Lr06 to improve the resistance of infant mice against RSV infection. Nasally administered Lr05 and Lr06 differentially modulated the TLR3/RIG-I-triggered antiviral respiratory immune response. Lr06 administration significantly modulated the production of IFN-α, IFN-β and IL-6 in the response to poly(I:C) challenge, while nasal priming with Lr05 was more effective to improve levels of IFN-γ and IL-10. Both viable Lr05 and Lr06 strains increased the resistance of infant mice to RSV infection while only heat-killed Lr05 showed a protective effect similar to those observed with viable strains. The present work demonstrated that nasal administration of immunobiotics is able to beneficially modulate the immune response triggered by TLR3/RIG-I activation in the respiratory tract and to increase the resistance of mice to the challenge with RSV. Comparative studies using two Lactobacillus rhamnosus strains of the same origin and with similar technological properties showed that each strain has an specific immunoregulatory effect in the respiratory tract and that they differentially modulate the immune response after poly(I:C) or RSV challenges, conferring different degree of protection and using distinct immune mechanisms. We also demonstrated in this work that it is possible

  18. Response of Differentiated Human Airway Epithelia to Alcohol Exposure and Klebsiella pneumoniae Challenge

    Directory of Open Access Journals (Sweden)

    Sammeta V. Raju

    2013-07-01

    Full Text Available Alcohol abuse has been associated with increased susceptibility to pulmonary infection. It is not fully defined how alcohol contributes to the host defense compromise. Here primary human airway epithelial cells were cultured at an air-liquid interface to form a differentiated and polarized epithelium. This unique culture model allowed us to closely mimic lung infection in the context of alcohol abuse by basolateral alcohol exposure and apical live bacterial challenge. Application of clinically relevant concentrations of alcohol for 24 h did not significantly alter epithelial integrity or barrier function. When apically challenged with viable Klebsiella pneumoniae, the cultured epithelia had an enhanced tightness which was unaffected by alcohol. Further, alcohol enhanced apical bacterial growth, but not bacterial binding to the cells. The cultured epithelium in the absence of any treatment or stimulation had a base-level IL-6 and IL-8 secretion. Apical bacterial challenge significantly elevated the basolateral secretion of inflammatory cytokines including IL-2, IL-4, IL-6, IL-8, IFN-γ, GM-CSF, and TNF-α. However, alcohol suppressed the observed cytokine burst in response to infection. Addition of adenosine receptor agonists negated the suppression of IL-6 and TNF-α. Thus, acute alcohol alters the epithelial cytokine response to infection, which can be partially mitigated by adenosine receptor agonists.

  19. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Li, Da-Wei; Lei, Xiaohua; He, Feng-Li; He, Jin; Liu, Ya-Li; Ye, Ya-Jing; Deng, Xudong; Duan, Enkui; Yin, Da-Chuan

    2017-12-01

    The physical and chemical properties of the scaffold are known to play important roles in three-dimensional (3D) cell culture, which always determine the cellular fate or the results of implantation. To control these properties becomes necessary for meeting the requirements of a variety of tissue engineering applications. In this study, a series of silk fibroin/chitosan (SF/CS) scaffolds with tunable properties were prepared using freeze-drying method, and the rat bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded in these scaffolds to evaluate their availability of use in tissue engineering. The 3D structure, mechanical properties and degradation ability of SF/CS scaffold can be tuned by changing the total concentration of the precursor solution and the blending ratio between SF and CS. BM-MSCs cultured in the SF/CS scaffold exhibited excellent proliferation and multiple morphologies. The induction of osteogenic and adipogenic differentiation of BM-MSCs were successful in this scaffold when cultured in vitro. Subcutaneous implantation of the SF/CS scaffolds did not cause any inflammatory response within four weeks, which revealed good compatibility. Moreover, the implanted scaffold allowed host cells to invade, adhere, grow and form new blood vessels. With these excellent performance, SF/CS scaffold has great potential in preparing implants for tissue engineering applications. Copyright © 2017. Published by Elsevier B.V.

  20. Effect of β-hydroxy-β-methylbutyrate on miRNA expression in differentiating equine satellite cells exposed to hydrogen peroxide.

    Science.gov (United States)

    Chodkowska, Karolina A; Ciecierska, Anna; Majchrzak, Kinga; Ostaszewski, Piotr; Sadkowski, Tomasz

    2018-01-01

    Skeletal muscle injury activates satellite cells to initiate processes of proliferation, differentiation, and hypertrophy in order to regenerate muscle fibers. The number of microRNAs and their target genes are engaged in satellite cell activation. β-Hydroxy-β-methylbutyrate (HMB) is known to prevent exercise-induced muscle damage. The purpose of this study was to evaluate the effect of HMB on miRNA and relevant target gene expression in differentiating equine satellite cells exposed to H 2 O 2 . We hypothesized that HMB may regulate satellite cell activity, proliferation, and differentiation, hence attenuate the pathological processes induced during an in vitro model of H 2 O 2 -related injury by changing the expression of miRNAs. Equine satellite cells (ESC) were isolated from the samples of skeletal muscle collected from young horses. ESC were treated with HMB (24 h) and then exposed to H 2 O 2 (1 h). For the microRNA and gene expression assessment microarrays, technique was used. Identified miRNAs and genes were validated using real-time qPCR. Cell viability, oxidative stress, and cell damage were measured using colorimetric method and flow cytometry. Analysis of miRNA and gene profile in differentiating ESC pre-incubated with HMB and then exposed to H 2 O 2 revealed difference in the expression of 27 miRNAs and 4740 genes, of which 344 were potential target genes for identified miRNAs. Special attention was focused on differentially expressed miRNAs and their target genes involved in processes related to skeletal muscle injury. Western blot analysis showed protein protection in HMB-pre-treated group compared to control. The viability test confirmed that HMB enhanced cell survival after the hydrogen peroxide exposition. Our results suggest that ESC pre-incubated with HMB and exposed to H 2 O 2 could affect expression on miRNA levels responsible for skeletal muscle development, cell proliferation and differentiation, and activation of tissue repair after