WorldWideScience

Sample records for revealing feasible mechanisms

  1. Bell trajectories for revealing quantum control mechanisms

    International Nuclear Information System (INIS)

    Dennis, Eric; Rabitz, Herschel

    2003-01-01

    The dynamics induced while controlling quantum systems by optimally shaped laser pulses have often been difficult to understand in detail. A method is presented for quantifying the importance of specific sequences of quantum transitions involved in the control process. The method is based on a ''beable'' formulation of quantum mechanics due to John Bell that rigorously maps the quantum evolution onto an ensemble of stochastic trajectories over a classical state space. Detailed mechanism identification is illustrated with a model seven-level system. A general procedure is presented to extract mechanism information directly from closed-loop control experiments. Application to simulated experimental data for the model system proves robust with up to 25% noise

  2. Recombination rate plasticity: revealing mechanisms by design

    Science.gov (United States)

    Sefick, Stephen; Rushton, Chase

    2017-01-01

    For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222

  3. Discriminative topological features reveal biological network mechanisms

    Directory of Open Access Journals (Sweden)

    Levovitz Chaya

    2004-11-01

    Full Text Available Abstract Background Recent genomic and bioinformatic advances have motivated the development of numerous network models intending to describe graphs of biological, technological, and sociological origin. In most cases the success of a model has been evaluated by how well it reproduces a few key features of the real-world data, such as degree distributions, mean geodesic lengths, and clustering coefficients. Often pairs of models can reproduce these features with indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these few target features are insufficient to distinguish which of the different models best describes real world networks of interest; moreover, it is not clear a priori that any of the presently-existing algorithms for network generation offers a predictive description of the networks inspiring them. Results We present a method to assess systematically which of a set of proposed network generation algorithms gives the most accurate description of a given biological network. To derive discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional (in principle infinite-dimensional "word space". This map defines an input space for classification schemes which allow us to state unambiguously which models are most descriptive of a given network of interest. Our training sets include networks generated from 17 models either drawn from the literature or introduced in this work. We show that different duplication-mutation schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and the C. elegans neuronal network, out of a set of network models including a linear preferential attachment model and a small-world model. Conclusions Our method is a first step towards systematizing network models and assessing their predictability, and we anticipate its usefulness for a number of communities.

  4. Geometric Mechanics Reveals Optimal Complex Terrestrial Undulation Patterns

    Science.gov (United States)

    Gong, Chaohui; Astley, Henry; Schiebel, Perrin; Dai, Jin; Travers, Matthew; Goldman, Daniel; Choset, Howie; CMU Team; GT Team

    Geometric mechanics offers useful tools for intuitively analyzing biological and robotic locomotion. However, utility of these tools were previously restricted to systems that have only two internal degrees of freedom and in uniform media. We show kinematics of complex locomotors that make intermittent contacts with substrates can be approximated as a linear combination of two shape bases, and can be represented using two variables. Therefore, the tools of geometric mechanics can be used to analyze motions of locomotors with many degrees of freedom. To demonstrate the proposed technique, we present studies on two different types of snake gaits which utilize combinations of waves in the horizontal and vertical planes: sidewinding (in the sidewinder rattlesnake C. cerastes) and lateral undulation (in the desert specialist snake C. occipitalis). C. cerastes moves by generating posteriorly traveling body waves in the horizontal and vertical directions, with a relative phase offset equal to +/-π/2 while C. occipitalismaintains a π/2 offset of a frequency doubled vertical wave. Geometric analysis reveals these coordination patterns enable optimal movement in the two different styles of undulatory terrestrial locomotion. More broadly, these examples demonstrate the utility of geometric mechanics in analyzing realistic biological and robotic locomotion.

  5. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  6. Integrative modelling reveals mechanisms linking productivity and plant species richness.

    Science.gov (United States)

    Grace, James B; Anderson, T Michael; Seabloom, Eric W; Borer, Elizabeth T; Adler, Peter B; Harpole, W Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M; Pärtel, Meelis; Bakker, Jonathan D; Buckley, Yvonne M; Crawley, Michael J; Damschen, Ellen I; Davies, Kendi F; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hector, Andy; Knops, Johannes M H; MacDougall, Andrew S; Melbourne, Brett A; Morgan, John W; Orrock, John L; Prober, Suzanne M; Smith, Melinda D

    2016-01-21

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.

  7. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    Science.gov (United States)

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    Science.gov (United States)

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  9. Opto-acoustic microscopy reveals adhesion mechanics of single cells.

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  10. The Physical Mechanism of Frictional Aging Revealed by Nanoindentation Creep

    Science.gov (United States)

    Thom, C.; Carpick, R. W.; Goldsby, D. L.

    2017-12-01

    A classical observation from rock friction experiments is that friction increases linearly with the logarithm of the time of stationary contact, a phenomenon sometimes referred to as aging. Aging is most often attributed to an increase in the real area of contact due to asperity creep. However, recent atomic force microscopy (AFM) experiments and molecular dynamics simulations suggest that time-dependent siloxane (Si—O—Si) bonding gives rise to aging in silica-silica contacts in the absence of plastic deformation. Determining whether an increase in contact `quantity' (due to creep), contact `quality' (due to chemical bonding), or another unknown mechanism causes aging is a challenging experimental task, despite its importance for developing a physical basis for rate and state friction laws. An intriguing observation is that aging is absent in friction experiments on quartz rocks and gouge at humidities water on asperity creep (via hydrolytic weakening) or on the adhesive strength of contacts. To discern between these possibilities, we have conducted nanoindentation experiments on single crystals of quartz to measure their indentation hardness and creep behavior at humidities of 2% to 50%, and in vacuum. Samples were loaded at 1000 mN/s to a peak load of 15, 40, or 400 mN, which was then held constant for 10 s. After the peak load is reached, the tip sinks into the material with time due to creep of the indentation contact. Our experiments reveal that there is no effect of varying humidity on either indentation hardness or indentation creep behavior over the full range of humidities investigated. If asperity creep were the dominant mechanism of frictional aging for quartz in the experiments cited above, then significant increases in hardness and decreases in the growth rate of indentation contacts at low humidities is expected, in stark contrast with our nanoindentation data. Our experiments indicate that asperity creep cannot be the cause of aging in quartz

  11. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2016-02-01

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Feasibility of motion laws for planar one degree of freedom linkage mechanisms at dead point configurations

    Science.gov (United States)

    Lores García, E.; Veciana Fontanet, J. M.; Jordi Nebot, L.

    2018-01-01

    This paper proposes an analytical solution of the Inverse Kinematics (IK) problem at dead point configurations for any planar one degree of freedom linkage mechanism, with regard to the continuity Cn of the motion law. The systems analyzed are those whose elements are linked with lower pairs and do not present redundancies. The study aims to provide the user with some rules to facilitate the design of feasible motion profiles to be reproduced by conventional electrical actuators at these configurations. During the last decades, several methods and techniques have been developed to study this specific configuration. However, these techniques are mainly focused on solving numerically the IK indeterminacy, rather than analyzing the motion laws that the mechanisms are able to perform at these particular configurations. The analysis presented in this paper has been carried out differentiating and applying l'Hôpital's rule to the system of constraint equations ϕ (q) of the mechanism. The study also considers the feasibility of the time-domain profiles to be reproduced with conventional electrical actuators (i.e. AC/DC motors, linear actuators, etc.). To show the usefulness and effectiveness of the method, the development includes the analytical application and numerical simulations for two common one degree of freedom systems: a slider-crank and a four linkage mechanisms. Finally, experimental results are presented on a four linkage mechanism test bed.

  13. Feasibility and repeatability of cold and mechanical quantitative sensory testing in normal dogs

    Science.gov (United States)

    Briley, Jessica D.; Williams, Morika D.; Freire, Mila; Griffith, Emily H.; Lascelles, B. Duncan X.

    2015-01-01

    Feasibility and inter-session repeatability of cold and mechanical quantitative sensory testing (QST) were assessed in 24 normal dogs. Cold thermal latencies were evaluated using a thermal probe (0 °C) applied to three pelvic limb sites. Mechanical thresholds were measured using an electronic von Frey anesthesiometer (EVF) and a blunt-probed pressure algometer (PA) applied to the dorsal aspect of the metatarsus. All QST trials were performed with dogs in lateral recumbency. Collection of cold QST data was easy (feasible) in 19/24 (79%) dogs. However, only 18.4%, 18.9% and 13.2% of cold QST trials elicited a response at the medial tibia, third digital pad and plantar metatarsal regions, respectively. Collection of mechanical QST data was easy (feasible) in 20/24 (83%) dogs for both EVF and PA. At consecutive sampling times, approximately 2 weeks apart, the average EVF sensory thresholds were 414 ± 186 g and 379 ± 166 g, respectively, and the average PA sensory thresholds were 1089 ± 414 g and 1028 ± 331 g, respectively. There was no significant difference in inter-session or inter-limb threshold values for either mechanical QST device. The cold QST protocol in this study was achievable, but did not provide consistently quantifiable results. Both mechanical QST devices tested provided repeatable, reliable sensory threshold measurements in normal, client-owned dogs. These findings contribute to the validation of the EVF and PA as tools to obtain repeated QST data over time in dogs to assess somatosensory processing changes. PMID:24268475

  14. Attention: Reaction Time and Accuracy Reveal Different Mechanisms

    Science.gov (United States)

    Prinzmetal, William; McCool, Christin; Park, Samuel

    2005-01-01

    The authors propose that there are 2 different mechanisms whereby spatial cues capture attention. The voluntary mechanism is the strategic allocation of perceptual resources to the location most likely to contain the target. The involuntary mechanism is a reflexive orienting response that occurs even when the spatial cue does not indicate the…

  15. Neural Mechanisms of Qigong Sensory Training Massage for Children With Autism Spectrum Disorder: A Feasibility Study.

    Science.gov (United States)

    Jerger, Kristin K; Lundegard, Laura; Piepmeier, Aaron; Faurot, Keturah; Ruffino, Amanda; Jerger, Margaret A; Belger, Aysenil

    2018-01-01

    Despite the enormous prevalence of autism spectrum disorder (ASD), its global impact has yet to be realized. Millions of families worldwide need effective treatments to help them get through everyday challenges like eating, sleeping, digestion, and social interaction. Qigong Sensory Training (QST) is a nonverbal, parent-delivered intervention recently shown to be effective at reducing these everyday challenges in children with ASD. This study tested the feasibility of a protocol for investigating QST's neural mechanism. During a single visit, 20 children, 4- to 7-year-old, with ASD viewed images of emotional faces before and after receiving QST or watching a video (controls). Heart rate variability was recorded throughout the visit, and power in the high frequency band (0.15-0.4 Hz) was calculated to estimate parasympathetic tone in 5-s nonoverlapping windows. Cerebral oximetry of prefrontal cortex was recorded during rest and while viewing emotional faces. 95% completion rate and 7.6% missing data met a priori standards confirming protocol feasibility for future studies. Preliminary data suggest: (1) during the intervention, parasympathetic tone increased more in children receiving massage (M = 2.9, SD = 0.3) versus controls (M = 2.5, SD = 0.5); (2) while viewing emotional faces post-intervention, parasympathetic tone was more affected (reduced) in the massage group ( p  = 0.036); and (3) prefrontal cortex response to emotional faces was greater after massage compared to controls. These results did not reach statistical significance in this small study powered to test feasibility. This study demonstrates solid protocol feasibility. If replicated in a larger sample, these findings would provide important clues to the neural mechanism of action underlying QST's efficacy for improving sensory, social, and communication difficulties in children with autism.

  16. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations.

    Science.gov (United States)

    Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra

    2015-09-24

    Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.

  17. "Gear mechanism" of bariatric interventions revealed by untargeted metabolomics.

    Science.gov (United States)

    Samczuk, Paulina; Luba, Magdalena; Godzien, Joanna; Mastrangelo, Annalaura; Hady, Hady Razak; Dadan, Jacek; Barbas, Coral; Gorska, Maria; Kretowski, Adam; Ciborowski, Michal

    2018-03-20

    Mechanisms responsible for metabolic gains after bariatric surgery are not entirely clear. The purpose of this study was evaluation of metabolic changes after laparoscopic Roux-en-Y gastric bypass or laparoscopic sleeve gastrectomy in semi-annual follow up. The study participants were selected from obese patients with T2DM who underwent one of the mentioned bariatric procedures. Serum metabolic fingerprinting by use of liquid and gas chromatography with mass spectrometry detection was performed on samples obtained from studied patients before, one, and six months post-surgery. Performed analyses resulted in 49 significant and identified metabolites. Comparison of the two described procedures has allowed to detect metabolites linked with numerous pathways, processes and diseases. Based on the metabolites detected and pathways affected, we propose a "gear mechanism" showing molecular changes evoked by both bariatric procedures. Critical evaluation of clinical data and obtained metabolomics results enables us to conclude that both procedures are very similar in terms of general clinical outcome, but they strongly differ from each other in molecular mechanisms leading to the final effect. For the first time general metabolic effect of bariatric procedures is described. New hypotheses concerning molecular mechanisms induced by bariatric surgeries and new gut microbiota modulations are presented. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    Science.gov (United States)

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  19. Calcium transport mechanism in molting crayfish revealed by microanalysis

    International Nuclear Information System (INIS)

    Mizuhira, V.; Ueno, M.

    1983-01-01

    Crayfish provide a good model in which to study the transport mechanism of Ca ions. During the molting stage, decalcified Ca ions are transferred into the blood and accumulate in the gastrolith epithelium, after which a gastrolith is formed on the surface of the epithelium. The gastrolith is dissolved in the stomach after molting, and the Ca is reabsorbed and redistributed throughout the newly formed exoskeleton. We studied the mechanism of Ca transport by cytochemical precipitation of Ca ions and by electron microanalysis, including X-ray microanalysis (EDX) and electron energy-loss spectroscopy (EELS), with a computer. In EDX analysis, the fine precipitates of K-antimonate in the gastrolith mitochondria clearly defined Ca with antimony; we also observed a large amount of Ca-oxalate in the mitochondria, and Ca-K X-ray pulses were clearly defined. Ca-K X-rays were also detected from fresh freeze-substituted mitochondria. Finally, we succeeded in taking a Ca-L EELS image from the mitochondria of fresh freeze-substituted thin sections. Only a very small amount of Ca was detected from the cell membrane and other organelles. Ca-adenosine triphosphatase (ATPase) and Mg-ATPase activity was also very clearly demonstrated in the mitochondria. These enzymes may play an important role in Ca metabolism

  20. Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism.

    Science.gov (United States)

    Schuijers, Jurian; Manteiga, John Colonnese; Weintraub, Abraham Selby; Day, Daniel Sindt; Zamudio, Alicia Viridiana; Hnisz, Denes; Lee, Tong Ihn; Young, Richard Allen

    2018-04-10

    Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism

    Directory of Open Access Journals (Sweden)

    Jurian Schuijers

    2018-04-01

    Full Text Available Summary: Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types. : Schuijers et al. show that a conserved CTCF site at the promoter of the MYC oncogene plays an important role in enhancer-promoter looping with tumor-specific super-enhancers. Perturbation of this site provides a potential therapeutic vulnerability. Keywords: gene regulation, super-enhancers, chromosome structure, enhancer docking

  2. Neural Network Models of Simple Mechanical Systems Illustrating the Feasibility of Accelerated Life Testing

    Science.gov (United States)

    Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph

    1996-01-01

    A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.

  3. Knowing beans: Human mirror mechanisms revealed through motor adaptation

    Directory of Open Access Journals (Sweden)

    Arthur M Glenberg

    2010-11-01

    Full Text Available Human mirror mechanisms (MMs respond during both performed and observed action and appear to underlie action goal recognition. We introduce a behavioral procedure for discovering and clarifying functional MM properties: Blindfolded participants repeatedly move beans either toward or away from themselves to induce motor adaptation. Then, the bias for perceiving direction of ambiguous visual movement in depth is measured. Bias is affected by a number of beans moved, b movement direction, and c similarity of the visual stimulus to the hand used to move beans. This cross-modal adaptation pattern supports both the validity of human MMs and functionality of our testing instrument. We also discuss related work that extends the motor adaptation paradigm to investigate contributions of MMs to speech perception and language comprehension.

  4. Carbon dioxide coronary angiography: A mechanical feasibility study with a cardiovascular simulator

    Directory of Open Access Journals (Sweden)

    Ivan Corazza

    2018-01-01

    Full Text Available The aim of this study was to carry out a bench evaluation of the biomechanical feasibility of carbon dioxide (CO2 coronary arteriography. Many patients among the aging population of individuals requiring cardiac intervention have underlying renal insufficiency making them susceptible to contrast-induced nephropathy. To include those patients, it is imperative to find an alternative and safe technique to perform coronary imaging on cardiac ischemic patients. As CO2 angiography has no renal toxicity, it may be a possible solution offering good imaging with negligible collateral effects. Theoretically, by carefully controlling the gas injection process, new automatic injectors may avoid gas reflux into the aorta and possible cerebral damage. A feasibility study is mandatory. A mechanical mock of the coronary circulation was developed and employed. CO2 was injected into the coronary ostium with 2 catheters (2F and 6F and optical images of bubbles flowing inside the vessels at different injection pressures were recorded. The gas behavior was then carefully studied for quantitative and qualitative analysis. Video recordings showed that CO2 injection at a precise pressure in the interval between the arterial dicrotic notch and the minimum diastolic value does not result in gas reflow into the aorta. Gas reflow was easier to control with the smaller catheter, but the gas bubbles were smaller with different vascular filling. Our simulation demonstrates that carefully selected injection parameters allow CO2 coronary imaging without any risk of gas reflux into the aorta.

  5. Carbon dioxide coronary angiography: A mechanical feasibility study with a cardiovascular simulator

    Science.gov (United States)

    Corazza, Ivan; Taglieri, Nevio; Pirazzini, Edoardo; Rossi, Pier Luca; Lombi, Alessandro; Scalise, Filippo; Caridi, James G.; Zannoli, Romano

    2018-01-01

    The aim of this study was to carry out a bench evaluation of the biomechanical feasibility of carbon dioxide (CO2) coronary arteriography. Many patients among the aging population of individuals requiring cardiac intervention have underlying renal insufficiency making them susceptible to contrast-induced nephropathy. To include those patients, it is imperative to find an alternative and safe technique to perform coronary imaging on cardiac ischemic patients. As CO2 angiography has no renal toxicity, it may be a possible solution offering good imaging with negligible collateral effects. Theoretically, by carefully controlling the gas injection process, new automatic injectors may avoid gas reflux into the aorta and possible cerebral damage. A feasibility study is mandatory. A mechanical mock of the coronary circulation was developed and employed. CO2 was injected into the coronary ostium with 2 catheters (2F and 6F) and optical images of bubbles flowing inside the vessels at different injection pressures were recorded. The gas behavior was then carefully studied for quantitative and qualitative analysis. Video recordings showed that CO2 injection at a precise pressure in the interval between the arterial dicrotic notch and the minimum diastolic value does not result in gas reflow into the aorta. Gas reflow was easier to control with the smaller catheter, but the gas bubbles were smaller with different vascular filling. Our simulation demonstrates that carefully selected injection parameters allow CO2 coronary imaging without any risk of gas reflux into the aorta.

  6. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism

    Science.gov (United States)

    Wang, Zhihao; Chen, Zhengqing; Wang, Jianhui

    2012-09-01

    Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.

  7. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation.

    Science.gov (United States)

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-06-07

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended "beads-on-a-string" conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA-nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt.

  8. Dynamic zebrafish interactome reveals transcriptional mechanisms of dioxin toxicity.

    Directory of Open Access Journals (Sweden)

    Andrey Alexeyenko

    2010-05-01

    Full Text Available In order to generate hypotheses regarding the mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin causes toxicity, we analyzed global gene expression changes in developing zebrafish embryos exposed to this potent toxicant in the context of a dynamic gene network. For this purpose, we also computationally inferred a zebrafish (Danio rerio interactome based on orthologs and interaction data from other eukaryotes.Using novel computational tools to analyze this interactome, we distinguished between dioxin-dependent and dioxin-independent interactions between proteins, and tracked the temporal propagation of dioxin-dependent transcriptional changes from a few genes that were altered initially, to large groups of biologically coherent genes at later times. The most notable processes altered at later developmental stages were calcium and iron metabolism, embryonic morphogenesis including neuronal and retinal development, a variety of mitochondria-related functions, and generalized stress response (not including induction of antioxidant genes. Within the interactome, many of these responses were connected to cytochrome P4501A (cyp1a as well as other genes that were dioxin-regulated one day after exposure. This suggests that cyp1a may play a key role initiating the toxic dysregulation of those processes, rather than serving simply as a passive marker of dioxin exposure, as suggested by earlier research.Thus, a powerful microarray experiment coupled with a flexible interactome and multi-pronged interactome tools (which are now made publicly available for microarray analysis and related work suggest the hypothesis that dioxin, best known in fish as a potent cardioteratogen, has many other targets. Many of these types of toxicity have been observed in mammalian species and are potentially caused by alterations to cyp1a.

  9. Neural mechanisms underlying transcranial direct current stimulation in aphasia: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Lena eUlm

    2015-10-01

    Full Text Available Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI. We employed a single subject, cross-over, sham-tDCS controlled design and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus (IFG and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioural stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS-effects on brain functions in aphasia.

  10. Mechanical characterization of atherosclerotic arteries using finite-element modeling: feasibility study on mock arteries.

    Science.gov (United States)

    Pazos, Valérie; Mongrain, Rosaire; Tardif, Jean-Claude

    2010-06-01

    Clinical studies on lipid-lowering therapy have shown that changing the composition of lipid pools reduced significantly the risk of cardiac events associated with plaque rupture. It has been shown also that changing the composition of the lipid pool affects its mechanical properties. However, knowledge about the mechanical properties of human atherosclerotic lesions remains limited due to the difficulty of the experiments. This paper aims to assess the feasibility of characterizing a lipid pool embedded in the wall of a pressurized vessel using finite-element simulations and an optimization algorithm. Finite-element simulations of inflation experiments were used together with nonlinear least squares algorithm to estimate the material model parameters of the wall and of the inclusion. An optimal fit of the simulated experiment and the real experiment was sought with the parameter estimation algorithm. The method was first tested on a single-layer polyvinyl alcohol (PVA) cryogel stenotic vessel, and then, applied on a double-layered PVA cryogel stenotic vessel with a lipid inclusion.

  11. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2013-01-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano

  12. Using enzyme folding to explore the mechanism of therapeutic touch: a feasibility study.

    Science.gov (United States)

    Strickland, Mallory L; Boylan, Helen M

    2010-07-01

    The goal of this research is to design a novel model using protein folding to study Therapeutic Touch, a noncontact form of energy manipulation healing. Presented is a feasibility study suggesting that the denaturation path of ribonuclease A may be a useful model to study the energy exchange underlying therapeutic touch. The folding of ribonuclease A serves as a controlled energy-requiring system in which energy manipulation can be measured by the degree of folding achieved. A kinetic assay and fluorescence spectroscopy are used to assess the enzyme-folding state. The data suggest that the kinetic assay is a useful means of assessing the degree of refolding, and specifically, the enzyme function. However, fluorescence spectroscopy was not shown to be an effective measurement of enzyme structure for the purposes of this work. More research is needed to assess the underlying mechanism of therapeutic touch to complement the existing studies. An enzyme-folding model may provide a useful means of studying the energy exchange in therapeutic touch.

  13. MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design

    Science.gov (United States)

    Torrents, A.; Azgin, K.; Godfrey, S. W.; Topalli, E. S.; Akin, T.; Valdevit, L.

    2010-12-01

    This paper presents the design, optimization and manufacturing of a novel micro-fabricated load cell based on a double-ended tuning fork. The device geometry and operating voltages are optimized for maximum force resolution and range, subject to a number of manufacturing and electromechanical constraints. All optimizations are enabled by analytical modeling (verified by selected finite elements analyses) coupled with an efficient C++ code based on the particle swarm optimization algorithm. This assessment indicates that force resolutions of ~0.5-10 nN are feasible in vacuum (~1-50 mTorr), with force ranges as large as 1 N. Importantly, the optimal design for vacuum operation is independent of the desired range, ensuring versatility. Experimental verifications on a sub-optimal device fabricated using silicon-on-glass technology demonstrate a resolution of ~23 nN at a vacuum level of ~50 mTorr. The device demonstrated in this article will be integrated in a hybrid micro-mechanical test frame for unprecedented combinations of force resolution and range, displacement resolution and range, optical (or SEM) access to the sample, versatility and cost.

  14. Neurofeedback of slow cortical potentials: neural mechanisms and feasibility of a placebo-controlled design in healthy adults

    Directory of Open Access Journals (Sweden)

    Holger eGevensleben

    2014-12-01

    Full Text Available To elucidate basic mechanisms underlying neurofeedback we investigated neural mechanisms of training of slow cortical potentials by considering EEG- and fMRI. Additionally, we analyzed the feasibility of a double-blind, placebo-controlled design in NF research based on regulation performance during treatment sessions and self-assessment of the participants. Twenty healthy adults participated in 16 sessions of SCP training: 9 participants received regular SCP training, 11 participants received sham feedback. At three time points (pre, intermediate, post fMRI and EEG/ERP-measurements were conducted during a continuous performance test (CPT. Performance-data during the sessions (regulation performance in the treatment group and the placebo group were analyzed. Analysis of EEG-activity revealed in the SCP group a strong enhancement of the CNV (electrode Cz at the intermediate assessment, followed by a decrease back to baseline at the post-treatment assessment. In contrast, in the placebo group a continuous but smaller increase of the CNV could be obtained from pre to post assessment. The increase of the CNV in the SCP group at intermediate testing was superior to the enhancement in the placebo group. The changes of the CNV were accompanied by a continuous improvement in the test performance of the CPT from pre to intermediate to post assessment comparable in both groups. The change of the CNV in the SCP group is interpreted as an indicator of neural plasticity and efficiency while an increase of the CNV in the placebo group might reflect learning and improved timing due to the frequent task repetition.In the fMRI analysis evidence was obtained for neuronal plasticity. After regular SCP neurofeedback activation in the posterior parietal cortex decreased from the pre- to the intermediate measurement and increased again in the post measurement, inversely following the U-shaped increase and decrease of the tCNV EEG amplitude in the SCP-trained group

  15. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  16. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Donohoe, Byron; Ciesielski, Peter; Nill, Jennifer; McKinney, Kellene; Mittal, Ashutosh; Katahira, Rui; Himmel, Michael; Biddy, Mary; Beckham, Gregg; Decker, Steve

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution.

  17. Mechanical unfolding reveals stable 3-helix intermediates in talin and α-catenin.

    Directory of Open Access Journals (Sweden)

    Vasyl V Mykuliak

    2018-04-01

    Full Text Available Mechanical stability is a key feature in the regulation of structural scaffolding proteins and their functions. Despite the abundance of α-helical structures among the human proteome and their undisputed importance in health and disease, the fundamental principles of their behavior under mechanical load are poorly understood. Talin and α-catenin are two key molecules in focal adhesions and adherens junctions, respectively. In this study, we used a combination of atomistic steered molecular dynamics (SMD simulations, polyprotein engineering, and single-molecule atomic force microscopy (smAFM to investigate unfolding of these proteins. SMD simulations revealed that talin rod α-helix bundles as well as α-catenin α-helix domains unfold through stable 3-helix intermediates. While the 5-helix bundles were found to be mechanically stable, a second stable conformation corresponding to the 3-helix state was revealed. Mechanically weaker 4-helix bundles easily unfolded into a stable 3-helix conformation. The results of smAFM experiments were in agreement with the findings of the computational simulations. The disulfide clamp mutants, designed to protect the stable state, support the 3-helix intermediate model in both experimental and computational setups. As a result, multiple discrete unfolding intermediate states in the talin and α-catenin unfolding pathway were discovered. Better understanding of the mechanical unfolding mechanism of α-helix proteins is a key step towards comprehensive models describing the mechanoregulation of proteins.

  18. Mechanical and thermo-mechanical analyses of the tapered plug for plugging of deposition tunnels. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Faelth, Billy (Clay Technology AB, Lund (Sweden)); Gatter, Patrik (Vattenfall Power Consultant AB, Stockholm (Sweden))

    2009-09-15

    This report presents results from a study that was carried out in order to examine the applicability of the tapered plug concept for plugging of deposition tunnels in the deep repository for spent nuclear fuel. The report presents results from mechanical and thermo-mechanical models of the tapered plug. The models were analyzed with 3DEC. The models included a portion of a deposition tunnel and its intersection with a main tunnel. In the deposition tunnel, a tapered concrete plug was installed. The plug was subjected to the combined load from the swelling backfill material and from pore pressure inside the deposition tunnel. The thermo-mechanical effects due to the heat generation in the spent fuel were also included in the analyses. Generic material parameter values for the concrete were used. The following items were studied: - Stresses and displacements in the plug. - Shear stresses and shear displacements in the rock-concrete interface. - Stress additions in the rock due to the loads. The sensitivity of the results to changes of constitutive models, to changes of the plug geometry and to pore water pressure in the rock-concrete interface was examined. The results indicate that the displacements in the plug will be within reasonable ranges but the stresses may locally be high enough that they exceed acceptable levels. However, they can be reduced by choice of advantageous plug geometry and by having a good rock-concrete bond. The results also show that the stress additions in the rock due to the thermal load may yield stresses that locally exceed the spalling strength of the rock. At most locations, however, the rock stresses will amount at lower levels. It was concluded that, with choice of an appropriate design, the tapered plug seems to be an applicable concept for plugging of deposition tunnels. It was also concluded that further studies of the tapered plug concept should use material properties parameter values for low-pH concrete. Further, they should also

  19. Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus.

    Science.gov (United States)

    Brennan, Reid S; Galvez, Fernando; Whitehead, Andrew

    2015-04-15

    The killifish Fundulus heteroclitus is an estuarine species with broad physiological plasticity, enabling acclimation to diverse stressors. Previous work suggests that freshwater populations expanded their physiology to accommodate low salinity environments; however, it is unknown whether this compromises their tolerance to high salinity. We used a comparative approach to investigate the mechanisms of a derived freshwater phenotype and the fate of an ancestral euryhaline phenotype after invasion of a freshwater environment. We compared physiological and transcriptomic responses to high- and low-salinity stress in fresh and brackish water populations and found an enhanced plasticity to low salinity in the freshwater population coupled with a reduced ability to acclimate to high salinity. Transcriptomic data identified genes with a conserved common response, a conserved salinity-dependent response and responses associated with population divergence. Conserved common acclimation responses revealed stress responses and alterations in cell-cycle regulation as important mechanisms in the general osmotic response. Salinity-specific responses included the regulation of genes involved in ion transport, intracellular calcium, energetic processes and cellular remodeling. Genes diverged between populations were primarily those showing salinity-specific expression and included those regulating polyamine homeostasis and the cell cycle. Additionally, when populations were matched with their native salinity, expression patterns were consistent with the concept of 'transcriptomic resilience', suggesting local adaptation. These findings provide insight into the fate of a plastic phenotype after a shift in environmental salinity and help to reveal mechanisms allowing for euryhalinity. © 2015. Published by The Company of Biologists Ltd.

  20. Mechanisms and feasibility of prey capture in ambush-feeding zooplankton

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Andersen, Anders Peter; Langlois, Vincent

    2009-01-01

    Many marine zooplankters, particularly among copepods, are "ambush feeders" that passively wait for their prey and capture them by fast surprise attacks. This strategy must be very demanding in terms of muscle power and sensing capabilities, but the detailed mechanisms of the attacks are unknown...... of the examined species is close to this size limit and, in contrast to the larger species, uses its largest possible jump velocity for such attacks. The special requirements to ambush feeders with such attacks may explain why this strategy has evolved to perfection only a few times among planktonic suspension...... feeders ( few copepod families and chaetognaths)....

  1. Elastoviscous Transitions of Articular Cartilage Reveal a Mechanism of Synergy between Lubricin and Hyaluronic Acid.

    Directory of Open Access Journals (Sweden)

    Edward D Bonnevie

    Full Text Available When lubricated by synovial fluid, articular cartilage provides some of the lowest friction coefficients found in nature. While it is known that macromolecular constituents of synovial fluid provide it with its lubricating ability, it is not fully understood how two of the main molecules, lubricin and hyaluronic acid, lubricate and interact with one another. Here, we develop a novel framework for cartilage lubrication based on the elastoviscous transition to show that lubricin and hyaluronic acid lubricate by distinct mechanisms. Such analysis revealed nonspecific interactions between these molecules in which lubricin acts to concentrate hyaluronic acid near the tissue surface and promotes a transition to a low friction regime consistent with the theory of viscous boundary lubrication. Understanding the mechanics of synovial fluid not only provides insight into the progression of diseases such as arthritis, but also may be applicable to the development of new biomimetic lubricants.

  2. Revealing −1 Programmed Ribosomal Frameshifting Mechanisms by Single-Molecule Techniques and Computational Methods

    Directory of Open Access Journals (Sweden)

    Kai-Chun Chang

    2012-01-01

    Full Text Available Programmed ribosomal frameshifting (PRF serves as an intrinsic translational regulation mechanism employed by some viruses to control the ratio between structural and enzymatic proteins. Most viral mRNAs which use PRF adapt an H-type pseudoknot to stimulate −1 PRF. The relationship between the thermodynamic stability and the frameshifting efficiency of pseudoknots has not been fully understood. Recently, single-molecule force spectroscopy has revealed that the frequency of −1 PRF correlates with the unwinding forces required for disrupting pseudoknots, and that some of the unwinding work dissipates irreversibly due to the torsional restraint of pseudoknots. Complementary to single-molecule techniques, computational modeling provides insights into global motions of the ribosome, whose structural transitions during frameshifting have not yet been elucidated in atomic detail. Taken together, recent advances in biophysical tools may help to develop antiviral therapies that target the ubiquitous −1 PRF mechanism among viruses.

  3. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases.

    Science.gov (United States)

    Ruiz, Patricia; Perlina, Ally; Mumtaz, Moiz; Fowler, Bruce A

    2016-07-01

    A number of epidemiological studies have identified statistical associations between persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses regarding underlying molecular mechanisms to explain these linkages have not been published. We assessed the underlying mechanisms of POPs that have been associated with metabolic diseases; three well-known POPs [2,3,7,8-tetrachlorodibenzodioxin (TCDD), 2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB 153), and 4,4´-dichlorodiphenyldichloroethylene (p,p´-DDE)] were studied. We used advanced database search tools to delineate testable hypotheses and to guide laboratory-based research studies into underlying mechanisms by which this POP mixture could produce or exacerbate metabolic diseases. For our searches, we used proprietary systems biology software (MetaCore™/MetaDrug™) to conduct advanced search queries for the underlying interactions database, followed by directional network construction to identify common mechanisms for these POPs within two or fewer interaction steps downstream of their primary targets. These common downstream pathways belong to various cytokine and chemokine families with experimentally well-documented causal associations with type 2 diabetes. Our systems biology approach allowed identification of converging pathways leading to activation of common downstream targets. To our knowledge, this is the first study to propose an integrated global set of step-by-step molecular mechanisms for a combination of three common POPs using a systems biology approach, which may link POP exposure to diseases. Experimental evaluation of the proposed pathways may lead to development of predictive biomarkers of the effects of POPs, which could translate into disease prevention and effective clinical treatment strategies. Ruiz P, Perlina A, Mumtaz M, Fowler BA. 2016. A systems biology approach reveals converging molecular mechanisms that link different POPs to common metabolic diseases. Environ

  4. A knowledge-driven interaction analysis reveals potential neurodegenerative mechanism of multiple sclerosis susceptibility.

    Science.gov (United States)

    Bush, W S; McCauley, J L; DeJager, P L; Dudek, S M; Hafler, D A; Gibson, R A; Matthews, P M; Kappos, L; Naegelin, Y; Polman, C H; Hauser, S L; Oksenberg, J; Haines, J L; Ritchie, M D

    2011-07-01

    Gene-gene interactions are proposed as an important component of the genetic architecture of complex diseases, and are just beginning to be evaluated in the context of genome-wide association studies (GWAS). In addition to detecting epistasis, a benefit to interaction analysis is that it also increases power to detect weak main effects. We conducted a knowledge-driven interaction analysis of a GWAS of 931 multiple sclerosis (MS) trios to discover gene-gene interactions within established biological contexts. We identify heterogeneous signals, including a gene-gene interaction between CHRM3 (muscarinic cholinergic receptor 3) and MYLK (myosin light-chain kinase) (joint P=0.0002), an interaction between two phospholipase C-β isoforms, PLCβ1 and PLCβ4 (joint P=0.0098), and a modest interaction between ACTN1 (actinin alpha 1) and MYH9 (myosin heavy chain 9) (joint P=0.0326), all localized to calcium-signaled cytoskeletal regulation. Furthermore, we discover a main effect (joint P=5.2E-5) previously unidentified by single-locus analysis within another related gene, SCIN (scinderin), a calcium-binding cytoskeleton regulatory protein. This work illustrates that knowledge-driven interaction analysis of GWAS data is a feasible approach to identify new genetic effects. The results of this study are among the first gene-gene interactions and non-immune susceptibility loci for MS. Further, the implicated genes cluster within inter-related biological mechanisms that suggest a neurodegenerative component to MS.

  5. Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Liu Jie

    2012-09-01

    Full Text Available Abstract Background Recent studies have demonstrated that photosynthetic cyanobacteria could be an excellent cell factory to produce renewable biofuels and chemicals due to their capability to utilize solar energy and CO2 as the sole energy and carbon sources. Biosynthesis of carbon-neutral biofuel alkanes with good chemical and physical properties has been proposed. However, to make the process economically feasible, one major hurdle to improve the low cell tolerance to alkanes needed to be overcome. Results Towards the goal to develop robust and high-alkane-tolerant hosts, in this study, the responses of model cyanobacterial Synechocystis PCC 6803 to hexane, a representative of alkane, were investigated using a quantitative proteomics approach with iTRAQ - LC-MS/MS technologies. In total, 1,492 unique proteins were identified, representing about 42% of all predicted protein in the Synechocystis genome. Among all proteins identified, a total of 164 and 77 proteins were found up- and down-regulated, respectively. Functional annotation and KEGG pathway enrichment analyses showed that common stress responses were induced by hexane in Synechocystis. Notably, a large number of transporters and membrane-bound proteins, proteins against oxidative stress and proteins related to sulfur relay system and photosynthesis were induced, suggesting that they are possibly the major protection mechanisms against hexane toxicity. Conclusion The study provided the first comprehensive view of the complicated molecular mechanism employed by cyanobacterial model species, Synechocystis to defend against hexane stress. The study also provided a list of potential targets to engineer Synechocystis against hexane stress.

  6. The feasibility of prefatigued sub size specimens to fracture mechanical studies in inert and in reactor environments

    International Nuclear Information System (INIS)

    Toivonen, A.; Moilanen, P.; Taehtinen, S.; Aaltonen, P.; Wallin, K.

    1998-01-01

    The feasibility of sub size specimens to fracture mechanical tests in inert and in reactor environment is studied in this paper. The need for using sub size specimens has arised from the need to study highly irradiated materials as well as to study localised stress corrosion cracking, i.e. stress corrosion cracking in very narrow heat affected zones for example in welded thin walled pipes. This paper focuses on the effects of high J-integral values on ductile tearing and on environmentally assisted crack growth rate. The main focus is on the stress corrosion tests. The subject is approached first by theoretical discussion. The experimental study consists of J-R tests in air and of slow J-R tests in simulated boiling water reactor (BWR) environment. In most cases the tests were continued until the J-integral level was significantly above the maximum allowable J values for ductile fracture toughness characterisation prescribed in test standards. The results indicate that the measurement capacity of the specimens depends on the specimen dimensions in J-R tests in air, as could be expected. The measurement capacity limitations are not necessarily important in stress corrosion testing as the environmentally assisted crack growth rate can be measured even without exceeding the J-integral limits given in J-R standards. The theoretical and experimental studies indicate that stress corrosion studies are not limited to linear elastic fracture mechanics approach, but elastic plastic fracture mechanics is applicable as well. (author)

  7. FEASIBILITY AND FINANCIAL ISSUES OF CLEAN PROJECT DEVELOPMENT MECHANISM IN ARGENTINA

    Directory of Open Access Journals (Sweden)

    García Fronti, Inés

    2013-01-01

    Full Text Available The objective of the research is to determine the current status and perspectives presented in Argentina in 2011 for different stakeholders regarding the development, execution and implementation of projects of clean development mechanism (CDM under the Kioto Protocol, with emphasis on the analysis of accounting issues.In the Argentinean research there is an analysis of the accounting issues under discussion and -taking as theirtory the Brazilian study mentioned- has surveyed and interviewed stakeholders belonging to government agencies, professional bodies such as councils accounting professionals in economics from different jurisdictions, academics, consultants and companies that deal or CDM projects plan to address issues relating to general and their views on potential regulations from bodies of the accounting profession and/or governmental and motivation of business and accounting issues of CDM projects such as moments of recognition of accounting entries and the different forms of the same recognition. The results showed that knowledge on the subject of stakeholders is initial but is possible an important increase in the future, accompanied by the development in Argentina of such projects.

  8. Cementation feasibility of a uranium-thorium based solution by physical and mechanical characterization

    International Nuclear Information System (INIS)

    Carpentiero, R.; Luce, A.; Troiani, F.

    2002-01-01

    By reprocessing Elk River nuclear fuel, at the ENEA ITREC Plant (South of Italy), about 3 m 3 of Uranium-Thorium based solution were produced. Previously considered an intermediate product to be further treated to recover U and Th, it is now being considered a waste, due to considerable content of fission products and to phasing out of the Italian nuclear industry. Together with other treatment options, a conditioning process in cement matrix is being evaluated, supported by some chemical, physical and mechanical tests on samples prepared with simulated waste. The main components selected to simulate the real solution were thorium nitrate (at two different concentrations), ferrous nitrate and nitric acid. This solution has been neutralized with sodium carbonate (at two different concentration) and cemented by means of a properly defined formulation. Pozzolanic blend cement, at different water to cement ratio, with and without a silica type additive, has been investigated. Cubic samples were subjected to compression tests and repeated freeze-thaw cycles followed by compression tests. Cylindrical samples were subjected to a leach test (according. to the tn ANSI/ANS-16.1 standard). The obtained results are above the minimum acceptance values established by the Italian authority. The evaluated properties are the first important elements to estimate the long term-instability of conditioned radioactive waste. Meanwhile a preliminary theoretical study has been done to evaluate the gas evolution from the matrix due to radiolysis effect. The reached conclusions encourage the development of further analysis to implement a cementation facility. (Author)

  9. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.

    Science.gov (United States)

    De Marchis, Francesca; Bellucci, Michele; Pompa, Andrea

    2016-02-01

    Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Spatiotemporal mechanical variation reveals critical role for rho kinase during primitive streak morphogenesis.

    Science.gov (United States)

    Henkels, Julia; Oh, Jaeho; Xu, Wenwei; Owen, Drew; Sulchek, Todd; Zamir, Evan

    2013-02-01

    Large-scale morphogenetic movements during early embryo development are driven by complex changes in biochemical and biophysical factors. Current models for amniote primitive streak morphogenesis and gastrulation take into account numerous genetic pathways but largely ignore the role of mechanical forces. Here, we used atomic force microscopy (AFM) to obtain for the first time precise biomechanical properties of the early avian embryo. Our data reveal that the primitive streak is significantly stiffer than neighboring regions of the epiblast, and that it is stiffer than the pre-primitive streak epiblast. To test our hypothesis that these changes in mechanical properties are due to a localized increase of actomyosin contractility, we inhibited actomyosin contractility via the Rho kinase (ROCK) pathway using the small-molecule inhibitor Y-27632. Our results using several different assays show the following: (1) primitive streak formation was blocked; (2) the time-dependent increase in primitive streak stiffness was abolished; and (3) convergence of epiblast cells to the midline was inhibited. Taken together, our data suggest that actomyosin contractility is necessary for primitive streak morphogenesis, and specifically, ROCK plays a critical role. To better understand the underlying mechanisms of this fundamental process, future models should account for the findings presented in this study.

  11. Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism.

    Science.gov (United States)

    Sunnåker, Mikael; Zamora-Sillero, Elias; Dechant, Reinhard; Ludwig, Christina; Busetto, Alberto Giovanni; Wagner, Andreas; Stelling, Joerg

    2013-05-28

    Predictive dynamical models are critical for the analysis of complex biological systems. However, methods to systematically develop and discriminate among systems biology models are still lacking. We describe a computational method that incorporates all hypothetical mechanisms about the architecture of a biological system into a single model and automatically generates a set of simpler models compatible with observational data. As a proof of principle, we analyzed the dynamic control of the transcription factor Msn2 in Saccharomyces cerevisiae, specifically the short-term mechanisms mediating the cells' recovery after release from starvation stress. Our method determined that 12 of 192 possible models were compatible with available Msn2 localization data. Iterations between model predictions and rationally designed phosphoproteomics and imaging experiments identified a single-circuit topology with a relative probability of 99% among the 192 models. Model analysis revealed that the coupling of dynamic phenomena in Msn2 phosphorylation and transport could lead to efficient stress response signaling by establishing a rate-of-change sensor. Similar principles could apply to mammalian stress response pathways. Systematic construction of dynamic models may yield detailed insight into nonobvious molecular mechanisms.

  12. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta "Gold Standard" Leaves.

    Science.gov (United States)

    Yu, Juanjuan; Zhang, Jinzheng; Zhao, Qi; Liu, Yuelu; Chen, Sixue; Guo, Hongliang; Shi, Lei; Dai, Shaojun

    2016-03-08

    Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta "Gold Standard" is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta "Gold Standard", as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta "Gold Standard". For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves.

  13. Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer

    Science.gov (United States)

    Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping

    2015-01-01

    Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity. PMID:25962957

  14. Integrative Genomics Reveals Mechanisms of Copy Number Alterations Responsible for Transcriptional Deregulation in Colorectal Cancer

    Science.gov (United States)

    Camps, Jordi; Nguyen, Quang Tri; Padilla-Nash, Hesed M.; Knutsen, Turid; McNeil, Nicole E.; Wangsa, Danny; Hummon, Amanda B.; Grade, Marian; Ried, Thomas; Difilippantonio, Michael J.

    2016-01-01

    To evaluate the mechanisms and consequences of chromosomal aberrations in colorectal cancer (CRC), we used a combination of spectral karyotyping, array comparative genomic hybridization (aCGH), and array-based global gene expression profiling on 31 primary carcinomas and 15 established cell lines. Importantly, aCGH showed that the genomic profiles of primary tumors are recapitulated in the cell lines. We revealed a preponderance of chromosome breakpoints at sites of copy number variants (CNVs) in the CRC cell lines, a novel mechanism of DNA breakage in cancer. The integration of gene expression and aCGH led to the identification of 157 genes localized within high-level copy number changes whose transcriptional deregulation was significantly affected across all of the samples, thereby suggesting that these genes play a functional role in CRC. Genomic amplification at 8q24 was the most recurrent event and led to the overexpression of MYC and FAM84B. Copy number dependent gene expression resulted in deregulation of known cancer genes such as APC, FGFR2, and ERBB2. The identification of only 36 genes whose localization near a breakpoint could account for their observed deregulated expression demonstrates that the major mechanism for transcriptional deregulation in CRC is genomic copy number changes resulting from chromosomal aberrations. PMID:19691111

  15. Species-Specific Mechanisms of Neuron Subtype Specification Reveal Evolutionary Plasticity of Amniote Brain Development

    Directory of Open Access Journals (Sweden)

    Tadashi Nomura

    2018-03-01

    Full Text Available Summary: Highly ordered brain architectures in vertebrates consist of multiple neuron subtypes with specific neuronal connections. However, the origin of and evolutionary changes in neuron specification mechanisms remain unclear. Here, we report that regulatory mechanisms of neuron subtype specification are divergent in developing amniote brains. In the mammalian neocortex, the transcription factors (TFs Ctip2 and Satb2 are differentially expressed in layer-specific neurons. In contrast, these TFs are co-localized in reptilian and avian dorsal pallial neurons. Multi-potential progenitors that produce distinct neuronal subtypes commonly exist in the reptilian and avian dorsal pallium, whereas a cis-regulatory element of avian Ctip2 exhibits attenuated transcription suppressive activity. Furthermore, the neuronal subtypes distinguished by these TFs are not tightly associated with conserved neuronal connections among amniotes. Our findings reveal the evolutionary plasticity of regulatory gene functions that contribute to species differences in neuronal heterogeneity and connectivity in developing amniote brains. : Neuronal heterogeneity is essential for assembling intricate neuronal circuits. Nomura et al. find that species-specific transcriptional mechanisms underlie diversities of excitatory neuron subtypes in mammalian and non-mammalian brains. Species differences in neuronal subtypes and connections suggest functional plasticity of regulatory genes for neuronal specification during amniote brain evolution. Keywords: Ctip2, Satb2, multi-potential progenitors, transcriptional regulation, neuronal connectivity

  16. Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Zhang, Liangchi; Liu, Youwen

    2015-01-01

    stress status. The dislocation nucleation and motion induced plastic deformation during grinding process can better reveal subsurface damage mechanism considering to stress and temperature acting on the dislocations

  17. Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis

    Directory of Open Access Journals (Sweden)

    Ruffing Anne M

    2012-02-01

    Full Text Available Abstract Background The ability to synthesize exopolysaccharides (EPS is widespread among microorganisms, and microbial EPS play important roles in biofilm formation, pathogen persistence, and applications in the food and medical industries. Although it is well established that EPS synthesis is invariably in response to environmental cues, it remains largely unknown how various environmental signals trigger activation of the biochemical synthesis machinery. Results We report here the transcriptome profiling of Agrobacterium sp. ATCC 31749, a microorganism that produces large amounts of a glucose polymer known as curdlan under nitrogen starvation. Transcriptome analysis revealed a nearly 100-fold upregulation of the curdlan synthesis operon upon transition to nitrogen starvation, thus establishing the prominent role that transcriptional regulation plays in the EPS synthesis. In addition to known mechanisms of EPS regulation such as activation by c-di-GMP, we identify novel mechanisms of regulation in ATCC 31749, including RpoN-independent NtrC regulation and intracellular pH regulation by acidocalcisomes. Furthermore, we show evidence that curdlan synthesis is also regulated by conserved cell stress responses, including polyphosphate accumulation and the stringent response. In fact, the stringent response signal, pppGpp, appears to be indispensible for transcriptional activation of curdlan biosynthesis. Conclusions This study identifies several mechanisms regulating the synthesis of curdlan, an EPS with numerous applications. These mechanisms are potential metabolic engineering targets for improving the industrial production of curdlan from Agrobacterium sp. ATCC 31749. Furthermore, many of the genes identified in this study are highly conserved across microbial genomes, and we propose that the molecular elements identified in this study may serve as universal regulators of microbial EPS synthesis.

  18. Data integration reveals key homeostatic mechanisms following low dose radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Matzke, Melissa M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J. [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Waters, Katrina M., E-mail: katrina.waters@pnnl.gov [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States)

    2015-05-15

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time — with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24–72 h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation. - Highlights: • Low dose ionizing radiation altered homeostasis in 3D skin tissue model. • Global gene/protein/metabolite data integrated using complementary statistical approaches • Time and location-specific change in matrix regulation

  19. Comparative proteomics and codon substitution analysis reveal mechanisms of differential resistance to hypoxia in congeneric snails

    KAUST Repository

    Mu, Huawei; Sun, Jin; Cheung, Siu Gin; Fang, Ling; Zhou, Haiyun; Luan, Tiangang; Zhang, Huoming; Wong, Chris K.C.; Qiu, Jian-Wen

    2017-01-01

    Although high-throughput proteomics has been widely applied to study mechanisms of environmental adaptation, the conclusions from studies that are based on one species can be confounded by phylogeny. We compare the freshwater snail Pomacea canaliculata (a notorious invasive species) and its congener Pomacea diffusa (a non-invasive species) to understand the molecular mechanisms of their differential resistance to hypoxia. A 72-h acute exposure experiment showed that P. canaliculata is more tolerant to hypoxia than P. diffusa. The two species were then exposed to three levels of dissolved oxygen (6.7, 2.0 and 1.0mgL−1) for 8h, and their gill proteins were analyzed using iTRAQ-coupled LC-MS/MS. The two species showed striking differences in protein expression profiles, with the more hypoxia tolerant P. canaliculata having more up-regulated proteins in signal transduction and down-regulated proteins in glycolysis and the tricarboxylic acid cycle. Evolutionary analysis revealed five orthologous genes encoding differentially expressed proteins having clear signal of positive selection, indicating selection has acted on some of the hypoxia responsive genes. Our case study has highlighted the potential of integrated proteomics and comparative evolutionary analysis for understanding the genetic basis of adaptation to global environmental change in non-model species. SignificanceRapid globalization in recent decades has greatly facilitated species introduction around the world. Successfully established introduced species, so-called invasive species, have threatened the invaded ecosystems. There has been substantial interest in studying how invasive species respond to extreme environmental conditions because the results can help not only predict their range of expansion and manage their impact, but also may reveal the adaptive mechanisms underlying their invasiveness. Our study has adopted a comparative approach to study the differential physiological and proteomic

  20. Comparative proteomics and codon substitution analysis reveal mechanisms of differential resistance to hypoxia in congeneric snails

    KAUST Repository

    Mu, Huawei

    2017-11-06

    Although high-throughput proteomics has been widely applied to study mechanisms of environmental adaptation, the conclusions from studies that are based on one species can be confounded by phylogeny. We compare the freshwater snail Pomacea canaliculata (a notorious invasive species) and its congener Pomacea diffusa (a non-invasive species) to understand the molecular mechanisms of their differential resistance to hypoxia. A 72-h acute exposure experiment showed that P. canaliculata is more tolerant to hypoxia than P. diffusa. The two species were then exposed to three levels of dissolved oxygen (6.7, 2.0 and 1.0mgL−1) for 8h, and their gill proteins were analyzed using iTRAQ-coupled LC-MS/MS. The two species showed striking differences in protein expression profiles, with the more hypoxia tolerant P. canaliculata having more up-regulated proteins in signal transduction and down-regulated proteins in glycolysis and the tricarboxylic acid cycle. Evolutionary analysis revealed five orthologous genes encoding differentially expressed proteins having clear signal of positive selection, indicating selection has acted on some of the hypoxia responsive genes. Our case study has highlighted the potential of integrated proteomics and comparative evolutionary analysis for understanding the genetic basis of adaptation to global environmental change in non-model species. SignificanceRapid globalization in recent decades has greatly facilitated species introduction around the world. Successfully established introduced species, so-called invasive species, have threatened the invaded ecosystems. There has been substantial interest in studying how invasive species respond to extreme environmental conditions because the results can help not only predict their range of expansion and manage their impact, but also may reveal the adaptive mechanisms underlying their invasiveness. Our study has adopted a comparative approach to study the differential physiological and proteomic

  1. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts.

    Science.gov (United States)

    Daskalov, Georgi M; Grishin, Alexander N; Rodionov, Sergei; Mihneva, Vesselina

    2007-06-19

    Large-scale transitions between alternative states in ecosystems are known as regime shifts. Once described as healthy and dominated by various marine predators, the Black Sea ecosystem by the late 20th century had experienced anthropogenic impacts such as heavy fishing, cultural eutrophication, and invasions by alien species. We studied changes related to these "natural experiments" to reveal the mechanisms of regime shifts. Two major shifts were detected, the first related to a depletion of marine predators and the second to an outburst of the alien comb jelly Mnemiopsis leidyi; both shifts were triggered by intense fishing resulting in system-wide trophic cascades. The complex nature of ecosystem responses to human activities calls for more elaborate approaches than currently provided by traditional environmental and fisheries management. This implies challenging existing practices and implementing explanatory models of ecosystem interactions that can better reconcile conservation and ecosystem management ideals.

  2. The mechanics of anaphase B in a basidiomycete as revealed by laser microbeam microsurgery

    International Nuclear Information System (INIS)

    Bayles, C.J.; Aist, J.R.; Berns, M.W.

    1993-01-01

    Bayles, C. J., Aist, J. R., and Berns, M. W. 1993. The mechanics of anaphase B in a basidiomycete as revealed by laser microbeam microsurgery. Experimental Mycology 17, 191-199. Cytoplasmic forces were found to be actively pulling on the spindle pole bodies during anaphase B in the dikaryotic, basidiomycete fungus, Helicobasidium mompa. When the spindle of one nucleus was severed with a laser microbeam at mid anaphase B, its two spindle pole bodies separated at a much faster rate than did those of the intact spindle in the other nucleus of the same cell. Since astral microtubule populations apparently reach their maximum during anaphase B in this fungus, we suggest that these microtubules may be involved in the cytoplasmic pulling forces. The spindle appears to act primarily as a governor, regulating the rate at which the spindle pole bodies are separated

  3. Epitope-dependent mechanisms of CD27 neutralization revealed by X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Obmolova, Galina; Teplyakov, Alexey; Malia, Thomas J.; Wunderler, Nicole; Kwok, Deborah; Barone, Linda; Sweet, Raymond; Ort, Tatiana; Scully, Michael; Gilliland, Gary L. (Janssen)

    2017-03-01

    CD27 is a T and B cell co-stimulatory protein of the TNF receptor superfamily dependent on the availability of the TNF-like ligand CD70. Two anti-CD27 neutralizing monoclonal antibodies were obtained from mouse hybridoma and subsequently humanized and optimized for binding the target. The two antibodies are similar in terms of their CD27-binding affinity and ability to block NF-κB signaling, however their clearance rates in monkeys are very different. The pharmacokinetics profiles could be epitope dependent. To identify the epitopes, we determined the crystal structure of the ternary complex between CD27 and the Fab fragments of these non-competing antibodies. The structure reveals the binding modes of the antibodies suggesting that their mechanisms of action are distinctly different and provides a possible explanation of the in vivo data.

  4. Electrochemistry and capillary condensation theory reveal the mechanism of corrosion in dense porous media.

    Science.gov (United States)

    Stefanoni, Matteo; Angst, Ueli M; Elsener, Bernhard

    2018-05-09

    Corrosion in carbonated concrete is an example of corrosion in dense porous media of tremendous socio-economic and scientific relevance. The widespread research endeavors to develop novel, environmentally friendly cements raise questions regarding their ability to protect the embedded steel from corrosion. Here, we propose a fundamentally new approach to explain the scientific mechanism of corrosion kinetics in dense porous media. The main strength of our model lies in its simplicity and in combining the capillary condensation theory with electrochemistry. This reveals that capillary condensation in the pore structure defines the electrochemically active steel surface, whose variability upon changes in exposure relative humidity is accountable for the wide variability in measured corrosion rates. We performed experiments that quantify this effect and find good agreement with the theory. Our findings are essential to devise predictive models for the corrosion performance, needed to guarantee the safety and sustainability of traditional and future cements.

  5. Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site.

    Science.gov (United States)

    Wang, Xiangxi; Zhu, Ling; Dang, Minghao; Hu, Zhongyu; Gao, Qiang; Yuan, Shuai; Sun, Yao; Zhang, Bo; Ren, Jingshan; Kotecha, Abhay; Walter, Thomas S; Wang, Junzhi; Fry, Elizabeth E; Stuart, David I; Rao, Zihe

    2017-01-24

    Hepatitis A virus (HAV) infects ∼1.4 million people annually and, although there is a vaccine, there are no licensed therapeutic drugs. HAV is unusually stable (making disinfection problematic) and little is known of how it enters cells and releases its RNA. Here we report a potent HAV-specific monoclonal antibody, R10, which neutralizes HAV infection by blocking attachment to the host cell. High-resolution cryo-EM structures of HAV full and empty particles and of the complex of HAV with R10 Fab reveal the atomic details of antibody binding and point to a receptor recognition site at the pentamer interface. These results, together with our observation that the R10 Fab destabilizes the capsid, suggest the use of a receptor mimic mechanism to neutralize virus infection, providing new opportunities for therapeutic intervention.

  6. Electrophysiological potentials reveal cortical mechanisms for mental imagery, mental simulation, and grounded (embodied cognition

    Directory of Open Access Journals (Sweden)

    Haline E. Schendan

    2012-09-01

    Full Text Available Grounded cognition theory proposes that cognition, including meaning, is grounded in sensorimotor processing. The mechanism for grounding cognition is mental simulation, which is a type of mental imagery that re-enacts modal processing. To reveal top-down, cortical mechanisms for mental simulation of shape, event-related potentials were recorded to face and object pictures preceded by mental imagery of a picture. Mental imagery of the identical face or object (congruous condition facilitated not only categorical perception (VPP/N170 but also later visual knowledge (N3[00] complex and linguistic knowledge (N400 for faces more than objects, and strategic semantic analysis (late positive complex between 200 and 700 ms. The later effects resembled semantic congruity effects with pictures. Mental imagery also facilitated category decisions, as a P3(00 peaked earlier for congruous than incongruous (other category pictures, resembling the case when identical pictures repeat immediately. Thus mental imagery mimics semantic congruity and immediate repetition priming processes with pictures. Perception control results showed the opposite for faces and were in the same direction for objects: Perceptual repetition adapts (and so impairs processing of perceived faces from categorical perception onwards, but primes processing of objects during categorical perception, visual knowledge processes, and strategic semantic analysis. For both imagery and perception, differences between faces and objects support domain-specificity and indicate that cognition is grounded in modal processing. Altogether, this direct neural evidence reveals that top-down processes of mental imagery sustain an imagistic representation that mimics perception well enough to prime subsequent perception and cognition. This also suggests that automatic mental simulation of the visual shape of faces and objects operates between 200 and 400 ms, and strategic mental simulation operates between

  7. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

    Directory of Open Access Journals (Sweden)

    Kristina Kirschner

    2015-03-01

    Full Text Available The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage and chronically activated (in senescent or pro-apoptotic conditions p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.

  8. Talaromyces marneffei Genomic, Transcriptomic, Proteomic and Metabolomic Studies Reveal Mechanisms for Environmental Adaptations and Virulence

    Directory of Open Access Journals (Sweden)

    Susanna K. P. Lau

    2017-06-01

    Full Text Available Talaromyces marneffei is a thermally dimorphic fungus causing systemic infections in patients positive for HIV or other immunocompromised statuses. Analysis of its ~28.9 Mb draft genome and additional transcriptomic, proteomic and metabolomic studies revealed mechanisms for environmental adaptations and virulence. Meiotic genes and genes for pheromone receptors, enzymes which process pheromones, and proteins involved in pheromone response pathway are present, indicating its possibility as a heterothallic fungus. Among the 14 Mp1p homologs, only Mp1p is a virulence factor binding a variety of host proteins, fatty acids and lipids. There are 23 polyketide synthase genes, one for melanin and two for mitorubrinic acid/mitorubrinol biosynthesis, which are virulence factors. Another polyketide synthase is for biogenesis of the diffusible red pigment, which consists of amino acid conjugates of monascorubin and rubropunctatin. Novel microRNA-like RNAs (milRNAs and processing proteins are present. The dicer protein, dcl-2, is required for biogenesis of two milRNAs, PM-milR-M1 and PM-milR-M2, which are more highly expressed in hyphal cells. Comparative transcriptomics showed that tandem repeat-containing genes were overexpressed in yeast phase, generating protein polymorphism among cells, evading host’s immunity. Comparative proteomics between yeast and hyphal cells revealed that glyceraldehyde-3-phosphate dehydrogenase, up-regulated in hyphal cells, is an adhesion factor for conidial attachment.

  9. Cartilaginous Metabolomic Study Reveals Potential Mechanisms of Osteophyte Formation in Osteoarthritis.

    Science.gov (United States)

    Xu, Zhongwei; Chen, Tingmei; Luo, Jiao; Ding, Shijia; Gao, Sichuan; Zhang, Jian

    2017-04-07

    Osteophyte is one of the inevitable consequences of progressive osteoarthritis with the main characteristics of cartilage degeneration and endochondral ossification. The pathogenesis of osteophyte formation is not fully understood to date. In this work, metabolomic approaches were employed to explore potential mechanisms of osteophyte formation by detecting metabolic variations between extracts of osteophyte cartilage tissues (n = 32) and uninvolved control cartilage tissues (n = 34), based on the platform of ultraperformance liquid chromatography tandem quadrupole time-of-flight mass spectrometry, as well as the use of multivariate statistic analysis and univariate statistic analysis. The osteophyte group was significantly separated from the control group by the orthogonal partial least-squares discriminant analysis models, indicating that metabolic state of osteophyte cartilage had been changed. In total, 28 metabolic variations further validated by mass spectrum (MS) match, tandom mass spectrum (MS/MS) match, and standards match mainly included amino acids, sulfonic acids, glycerophospholipids, and fatty acyls. These metabolites were related to some specific physiological or pathological processes (collagen dissolution, boundary layers destroyed, self-restoration triggered, etc.) which might be associated with the procedure of osteophyte formation. Pathway analysis showed phenylalanine metabolism (PI = 0.168, p = 0.004) was highly correlative to this degenerative process. Our findings provided a direction for targeted metabolomic study and an insight into further reveal the molecular mechanisms of ostophyte formation.

  10. Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC

    Directory of Open Access Journals (Sweden)

    Jiuping Rao

    2018-03-01

    Full Text Available This paper presents the interfacial optimisation of wood plastic composites (WPC based on recycled wood flour and polyethylene by employing maleated and silane coupling agents. The effect of the incorporation of the coupling agents on the variation of chemical structure of the composites were investigated by Attenuated total reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR and Solid state 13C Nuclear Magnetic Resonance spectroscopy (NMR analyses. The results revealed the chemical reactions that occurred between the coupling agents and raw materials, which thus contributed to the enhancement of compatibility and interfacial adhesion between the constituents of WPC. NMR results also indicated that there existed the transformation of crystalline cellulose to an amorphous state during the coupling agent treatments, reflecting the inferior resonance of crystalline carbohydrates. Fluorescence Microscope (FM and Scanning Electron Microscope (SEM analyses showed the improvements of wood particle dispersion and wettability, compatibility of the constituents, and resin penetration, and impregnation of the composites after the coupling agent treatments. The optimised interface of the composites was attributed to interdiffusion, electrostatic adhesion, chemical reactions, and mechanical interlocking bonding mechanisms.

  11. Comparative genomic analysis of isoproturon-mineralizing sphingomonads reveals the isoproturon catabolic mechanism.

    Science.gov (United States)

    Yan, Xin; Gu, Tao; Yi, Zhongquan; Huang, Junwei; Liu, Xiaowei; Zhang, Ji; Xu, Xihui; Xin, Zhihong; Hong, Qing; He, Jian; Spain, Jim C; Li, Shunpeng; Jiang, Jiandong

    2016-12-01

    The worldwide use of the phenylurea herbicide, isoproturon (IPU), has resulted in considerable concern about its environmental fate. Although many microbial metabolites of IPU are known and IPU-mineralizing bacteria have been isolated, the molecular mechanism of IPU catabolism has not been elucidated yet. In this study, complete genes that encode the conserved IPU catabolic pathway were revealed, based on comparative analysis of the genomes of three IPU-mineralizing sphingomonads and subsequent experimental validation. The complete genes included a novel hydrolase gene ddhA, which is responsible for the cleavage of the urea side chain of the IPU demethylated products; a distinct aniline dioxygenase gene cluster adoQTA1A2BR, which has a broad substrate range; and an inducible catechol meta-cleavage pathway gene cluster adoXEGKLIJC. Furthermore, the initial mono-N-demethylation genes pdmAB were further confirmed to be involved in the successive N-demethylation of the IPU mono-N-demethylated product. These IPU-catabolic genes were organized into four transcription units and distributed on three plasmids. They were flanked by multiple mobile genetic elements and highly conserved among IPU-mineralizing sphingomonads. The elucidation of the molecular mechanism of IPU catabolism will enhance our understanding of the microbial mineralization of IPU and provide insights into the evolutionary scenario of the conserved IPU-catabolic pathway. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Liu, Bin; Song, Shidong; Xu, Wu; Zhang, Ji-Guang; Wang, Chongmin

    2017-03-27

    The capacity, Coulombic efficiency, rate, and cyclability of a Li-O2 battery critically depend on the electrode reaction mechanism and the structure/morphology of the reaction product as well as their spatial and temporal evolution1-8, which are all further complicated by the choice of different electrolyte. For the case of aprotic cell, the discharge product, Li2O2, is formed through solution and surface mechanisms9,10, but little is known on the formation mechanism of the perplexing morphology of the reaction product11-15. For the case of Li-O2 battery using solid electrolyte, neither electrode reaction mechanism nor the nature of the reaction production is known. Herein, we reveal the full cycle reaction pathway for Li-O2 batteries and its correlation with the nature of the reaction product. Using an aberration-corrected environmental TEM under oxygen environment, we captured, for the first time, the morphology and phase evolution on the carbon nanotube (CNT) cathode of a working solid-state Li-O2 nano-battery16 and directly correlated these features with electrochemical reaction. We found that the oxygen reduction reaction on CNTs initially produces LiO2, which subsequently evolves to Li2O2 and O2 through disproportionation reaction. Surprisingly it is just the releasing of O2 that inflates the particles to a hollow structure with a Li2O outer surface layer and Li2O2 inner-shell, demonstrating that, in general, accommodation of the released O2 coupled with the Li+ ion diffusion and electron transport paths across both spatial and temporal scales critically governs the morphology of the discharging/charging product in Li-O2 system. We anticipate that the direct observation of Li-O2 reaction mechanisms and their correlation with the morphology of the reaction product set foundation for quantitative understanding/modeling of the electrochemical processes in the Li-O2 system, enabling rational design of both solid-state and aprotic Li-O2 batteries.

  13. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Ence Yang

    2014-10-01

    Full Text Available Systemic dimorphic fungi cause more than one million new infections each year, ranking them among the significant public health challenges currently encountered. Penicillium marneffei is a systemic dimorphic fungus endemic to Southeast Asia. The temperature-dependent dimorphic phase transition between mycelium and yeast is considered crucial for the pathogenicity and transmission of P. marneffei, but the underlying mechanisms are still poorly understood. Here, we re-sequenced P. marneffei strain PM1 using multiple sequencing platforms and assembled the genome using hybrid genome assembly. We determined gene expression levels using RNA sequencing at the mycelial and yeast phases of P. marneffei, as well as during phase transition. We classified 2,718 genes with variable expression across conditions into 14 distinct groups, each marked by a signature expression pattern implicated at a certain stage in the dimorphic life cycle. Genes with the same expression patterns tend to be clustered together on the genome, suggesting orchestrated regulations of the transcriptional activities of neighboring genes. Using qRT-PCR, we validated expression levels of all genes in one of clusters highly expressed during the yeast-to-mycelium transition. These included madsA, a gene encoding MADS-box transcription factor whose gene family is exclusively expanded in P. marneffei. Over-expression of madsA drove P. marneffei to undergo mycelial growth at 37°C, a condition that restricts the wild-type in the yeast phase. Furthermore, analyses of signature expression patterns suggested diverse roles of secreted proteins at different developmental stages and the potential importance of non-coding RNAs in mycelium-to-yeast transition. We also showed that RNA structural transition in response to temperature changes may be related to the control of thermal dimorphism. Together, our findings have revealed multiple molecular mechanisms that may underlie the dimorphic transition

  14. What Protein Charging (and Supercharging) Reveal about the Mechanism of Electrospray Ionization

    Science.gov (United States)

    Ogorzalek Loo, Rachel R.; Lakshmanan, Rajeswari; Loo, Joseph A.

    2014-10-01

    Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range, and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate with those observed by ESI-MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase, the extent of charging. This region incorporates properties (e.g., basicities) intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging ("supercharging") such as m-NBA, sulfolane, and 3-nitrobenzonitrile increase analyte charge from "denaturing" and "native" solvent systems. It is suggested that additives' Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carrying fewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte).

  15. Comparative proteomic and metabolomic analysis reveal the antiosteoporotic molecular mechanism of icariin from Epimedium brevicornu maxim.

    Science.gov (United States)

    Xue, Liming; Jiang, Yiping; Han, Ting; Zhang, Naidan; Qin, Luping; Xin, Hailiang; Zhang, Qiaoyan

    2016-11-04

    Icariin, a principal flavonoid glycoside of Epimedium brevicornu Maxim, has been widely proved to possess antiosteoporotic activity with promoting bone formation and decreasing bone resorption. However, the involving mechanisms remain unclear. To clear a global insight of signal pathways involved in anti-osteoporotic mechanism of icariin at proteins and metabolites level by integrating the proteomics and NMR metabonomics, in a systems biology approach. Mice were divided into sham, OVX model and icariin-treated OVX group, after 90 days treatment, difference gel electrophoresis combined with MALDI-TOF/TOF proteomics analysis on bone femur and serum metabolomics were carried out for monitor intracellular processes and elucidate anti-osteoporotic mechanism of icariin. Osteoblast and osteoclast were applied to evaluate the potential signal pathways. Twenty three proteins in bone femur, and 8 metabolites in serum, were significantly altered and identified, involving in bone remodeling, energy metabolism, cytoskeleton, lipid metabolism, MAPK signaling, Ca 2+ signaling et, al. Furthermore, animal experiment show icariin could enhance the BMD and BMC, decrease CTX-I level in ovariectomized mice. The mitochondrial membrane potential and the intracellular ATP levels were increased significantly, and the cytoskeleton were improved in icariin-treatment osteoblast and osteoclast. Icariin also increased mRNA expression of Runx2 and osterix of OB, decreased CTR and CAII mRNA expression and protein expression of P38 and JNK. However, icariin did not reveal any inhibition of the collagenolytic activity of cathepsin K, mRNA expression of MMP-9 and protein expression of ERK in osteoclast. we consider icariin as multi-targeting compounds for treating with osteoporosis, involve initiating osteoblastogenesis, inhibiting adipogenesis, and preventing osteoclast differentiation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Feasibility of Applying Clean Development Mechanism and GHGs Emission Reductions in the Gold Mining Industry: A Case of Thailand

    Science.gov (United States)

    Kittipongvises, Suthirat

    2015-12-01

    There is presently overwhelming scientific consensus that global climate change is indeed occurring, and that human activities are the primary driver. An increasingly resource and carbon constrained world will continue to pose formidable challenges to major industries, including mining. Understanding the implications of climate change mitigation for the mining industry, however, remains limited. This paper presents the results of a feasibility study on the implementation of a clean development mechanism and greenhouse gases (GHGs) emission reductions in the gold mining industry. It draws upon and extends the analysis of a case study conducted on gold mining operations in Thailand. The results from the case study indicated that total GHGs emissions by company A were approximately 36,886 tons carbon dioxide equivalents (tCO2e) per annual gold production capacity that meet the eligibility criteria for small-scaled clean development mechanism (CDM) projects. The electrostatic separation process was found to release the lowest amount of GHGs, whereas comminution (i.e. crushing and grinding) generated the highest GHGs emissions. By scope, the emission from purchased electricity (scope 2) is the most significant source. Opportunities for CDM projects implementation in the gold mining sector can be found in employing energy efficiency measures. Through innovation, some technical efficiency and technological development in gold processing (i.e. high pressure grinding rolls (HPGR), vertical roller mills (VRM), gravity pre-concentration and microwave heating technologies) that have the potential to reduce energy use and also lower carbon footprint of the gold mining were further discussed. The evidence reviews found that HPGR and VRM abatement technologies have shown energy and climate benefits as electricity savings and CO2 reduction of about 8-25.93 kWh/ton ore processed and 1.8-26.66 kgCO2/ton ore processed, respectively. Implications for further research and practice were

  17. Feasibility of Applying Clean Development Mechanism and GHGs Emission Reductions in the Gold Mining Industry: A Case of Thailand

    Directory of Open Access Journals (Sweden)

    Kittipongvises Suthirat

    2015-12-01

    Full Text Available There is presently overwhelming scientific consensus that global climate change is indeed occurring, and that human activities are the primary driver. An increasingly resource and carbon constrained world will continue to pose formidable challenges to major industries, including mining. Understanding the implications of climate change mitigation for the mining industry, however, remains limited. This paper presents the results of a feasibility study on the implementation of a clean development mechanism and greenhouse gases (GHGs emission reductions in the gold mining industry. It draws upon and extends the analysis of a case study conducted on gold mining operations in Thailand. The results from the case study indicated that total GHGs emissions by company A were approximately 36,886 tons carbon dioxide equivalents (tCO2e per annual gold production capacity that meet the eligibility criteria for small-scaled clean development mechanism (CDM projects. The electrostatic separation process was found to release the lowest amount of GHGs, whereas comminution (i.e. crushing and grinding generated the highest GHGs emissions. By scope, the emission from purchased electricity (scope 2 is the most significant source. Opportunities for CDM projects implementation in the gold mining sector can be found in employing energy efficiency measures. Through innovation, some technical efficiency and technological development in gold processing (i.e. high pressure grinding rolls (HPGR, vertical roller mills (VRM, gravity pre-concentration and microwave heating technologies that have the potential to reduce energy use and also lower carbon footprint of the gold mining were further discussed. The evidence reviews found that HPGR and VRM abatement technologies have shown energy and climate benefits as electricity savings and CO2 reduction of about 8-25.93 kWh/ton ore processed and 1.8-26.66 kgCO2/ton ore processed, respectively. Implications for further research and

  18. A novel sampling method to detect airborne influenza and other respiratory viruses in mechanically ventilated patients: a feasibility study.

    Science.gov (United States)

    Mitchell, Alicia B; Tang, Benjamin; Shojaei, Maryam; Barnes, Lachlan S; Nalos, Marek; Oliver, Brian G; McLean, Anthony S

    2018-04-17

    Respiratory viruses circulate constantly in the ambient air. The risk of opportunistic infection from these viruses can be increased in mechanically ventilated patients. The present study evaluates the feasibility of detecting airborne respiratory viruses in mechanically ventilated patients using a novel sample collection method involving ventilator filters. We collected inspiratory and expiratory filters from the ventilator circuits of mechanically ventilated patients in an intensive care unit over a 14-month period. To evaluate whether we could detect respiratory viruses collected in these filters, we performed a reverse transcription polymerase chain reaction on the extracted filter membrane with primers specific for rhinovirus, respiratory syncytial virus, influenza virus A and B, parainfluenza virus (type 1, 2 and 3) and human metapneumovirus. For each patient, we also performed a full virology screen (virus particles, antibody titres and virus-induced biomarkers) on respiratory samples (nasopharyngeal swab, tracheal aspirate or bronchoalveolar fluid) and blood samples. Respiratory viruses were detected in the ventilator filters of nearly half the patients in the study cohort (n = 33/70). The most common virus detected was influenza A virus (n = 29). There were more viruses detected in the inspiratory filters (n = 18) than in the expiratory filters (n = 15). A third of the patients with a positive virus detection in the ventilator filters had a hospital laboratory confirmed viral infection. In the remaining cases, the detected viruses were different from viruses already identified in the same patient, suggesting that these additional viruses come from the ambient air or from cross-contamination (staff or visitors). In patients in whom new viruses were detected in the ventilator filters, there was no evidence of clinical signs of an active viral infection. Additionally, the levels of virus-induced biomarker in these patients were not

  19. In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor.

    Directory of Open Access Journals (Sweden)

    Simon M Walker

    2014-03-01

    Full Text Available Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the

  20. In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor.

    Science.gov (United States)

    Walker, Simon M; Schwyn, Daniel A; Mokso, Rajmund; Wicklein, Martina; Müller, Tonya; Doube, Michael; Stampanoni, Marco; Krapp, Holger G; Taylor, Graham K

    2014-03-01

    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor.

  1. Load-adaptive bone remodeling simulations reveal osteoporotic microstructural and mechanical changes in whole human vertebrae.

    Science.gov (United States)

    Badilatti, Sandro D; Christen, Patrik; Parkinson, Ian; Müller, Ralph

    2016-12-08

    Osteoporosis is a major medical burden and its impact is expected to increase in our aging society. It is associated with low bone density and microstructural deterioration. Treatments are available, but the critical factor is to define individuals at risk from osteoporotic fractures. Computational simulations investigating not only changes in net bone tissue volume, but also changes in its microstructure where osteoporotic deterioration occur might help to better predict the risk of fractures. In this study, bone remodeling simulations with a mechanical feedback loop were used to predict microstructural changes due to osteoporosis and their impact on bone fragility from 50 to 80 years of age. Starting from homeostatic bone remodeling of a group of seven, mixed sex whole vertebrae, five mechanostat models mimicking different biological alterations associated with osteoporosis were developed, leading to imbalanced bone formation and resorption with a total net loss of bone tissue. A model with reduced bone formation rate and cell sensitivity led to the best match of morphometric indices compared to literature data and was chosen to predict postmenopausal osteoporotic bone loss in the whole group. Thirty years of osteoporotic bone loss were predicted with changes in morphometric indices in agreement with experimental measurements, and only showing major deviations in trabecular number and trabecular separation. In particular, although being optimized to match to the morphometric indices alone, the predicted bone loss revealed realistic changes on the organ level and on biomechanical competence. While the osteoporotic bone was able to maintain the mechanical stability to a great extent, higher fragility towards error loads was found for the osteoporotic bones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Taiga Miyazaki

    2013-01-01

    Full Text Available Proper protein folding in the endoplasmic reticulum (ER is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR, is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata.

  3. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.

    Science.gov (United States)

    Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng

    2013-09-03

    Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.

  4. Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation

    Science.gov (United States)

    Meng, Guoyu; Spahich, Nicole; Kenjale, Roma; Waksman, Gabriel; St Geme, Joseph W

    2011-01-01

    Bacterial biofilms are complex microbial communities that are common in nature and are being recognized increasingly as an important determinant of bacterial virulence. However, the structural determinants of bacterial aggregation and eventual biofilm formation have been poorly defined. In Gram-negative bacteria, a major subgroup of extracellular proteins called self-associating autotransporters (SAATs) can mediate cell–cell adhesion and facilitate biofilm formation. In this study, we used the Haemophilus influenzae Hap autotransporter as a prototype SAAT to understand how bacteria associate with each other. The crystal structure of the H. influenzae HapS passenger domain (harbouring the SAAT domain) was determined to 2.2 Å by X-ray crystallography, revealing an unprecedented intercellular oligomerization mechanism for cell–cell interaction. The C-terminal SAAT domain folds into a triangular-prism-like structure that can mediate Hap–Hap dimerization and higher degrees of multimerization through its F1–F2 edge and F2 face. The intercellular multimerization can give rise to massive buried surfaces that are required for overcoming the repulsive force between cells, leading to bacterial cell–cell interaction and formation of complex microcolonies. PMID:21841773

  5. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    KAUST Repository

    Bagchi, Samik

    2016-06-20

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment.

  6. mRNA-Seq Reveals Novel Molecular Mechanisms and a Robust Fingerprint in Graves' Disease

    Science.gov (United States)

    Sachidanandam, Ravi; Morshed, Syed; Latif, Rauf; Shi, Ruijin; Davies, Terry F.

    2014-01-01

    Context: The immune response in autoimmune thyroid disease has been shown to occur primarily within the thyroid gland in which the most abundant antigens can be found. A variety of capture molecules are known to be expressed by thyroid epithelial cells and serve to attract and help retain an intrathyroidal immune infiltrate. Objective: To explore the entire repertoire of expressed genes in human thyroid tissue, we have deep sequenced the transcriptome (referred to as mRNA-Seq). Design and Patients: We applied mRNA-Seq to thyroid tissue from nine patients with Graves' disease subjected to total thyroidectomy and compared the data with 12 samples of normal thyroid tissue obtained from patients having a thyroid nodule removed. The expression for each gene was calculated from the sequencing data by taking the median of the coverage across the length of the gene. The expression levels were quantile normalized and a gene signature was derived from these. Results: On comparison of expression levels in tissues derived from Graves' patients and controls, there was clear evidence for overexpression of the antigen presentation pathway consisting of HLA and associated genes. We also found a robust disease signature and discovered active innate and adaptive immune signaling networks. Conclusions: These data reveal an active immune defense system in Graves' disease, which involves novel molecular mechanisms in its pathogenesis and development. PMID:24971664

  7. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  8. The gating mechanism of the human aquaporin 5 revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Lorant Janosi

    Full Text Available Aquaporins are protein channels located across the cell membrane with the role of conducting water or other small sugar alcohol molecules (aquaglyceroporins. The high-resolution X-ray structure of the human aquaporin 5 (HsAQP5 shows that HsAQP5, as all the other known aquaporins, exhibits tetrameric structure. By means of molecular dynamics simulations we analyzed the role of spontaneous fluctuations on the structural behavior of the human AQP5. We found that different conformations within the tetramer lead to a distribution of monomeric channel structures, which can be characterized as open or closed. The switch between the two states of a channel is a tap-like mechanism at the cytoplasmic end which regulates the water passage through the pore. The channel is closed by a translation of the His67 residue inside the pore. Moreover, water permeation rate calculations revealed that the selectivity filter, located at the other end of the channel, regulates the flow rate of water molecules when the channel is open, by locally modifying the orientation of His173. Furthermore, the calculated permeation rates of a fully open channel are in good agreement with the reported experimental value.

  9. Mechanism of crack healing at room temperature revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, J.; Fang, Q.H.; Liu, B.; Liu, Y.; Liu, Y.W.; Wen, P.H.

    2015-01-01

    Three dimensional molecular dynamics (MD) simulations are systematically carried out to reveal the mechanism of the crack healing at room temperature, in terms of the dislocation shielding and the atomic diffusion to control the crack closure, in a copper (Cu) plate suffering from a shear loading. The results show that the process of the crack healing is actualized through the dislocation emission at a crack tip accompanied with intrinsic stacking faults ribbon forming in the crack tip wake, the dislocation slipping in the matrix and the dislocation annihilation in the free surface. Dislocation included stress compressing the crack tip is examined from the MD simulations and the analytical models, and then the crack closes rapidly due to the assistance of the atomic diffusion induced by the thermal activation when the crack opening displacement is less than a threshold value. This phenomenon is very different from the previous results for the crack propagation under the external load applied because of the crack healing (advancing) largely dependent on the crystallographic orientations of crack and the directions of external loading. Furthermore, based on the energy characteristic and considering the crack size effect, a theoretical model is established to predict the relationships between the crack size and the shear stress which qualitatively agree well with that obtained in the MD simulations

  10. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model.

    Science.gov (United States)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-05

    Thrombin-binding aptamer (TBA) with the sequence 5'GGTTGGTGTGGTTGG3' could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  11. Large-scale analysis by SAGE reveals new mechanisms of v-erbA oncogene action

    Directory of Open Access Journals (Sweden)

    Faure Claudine

    2007-10-01

    Full Text Available Abstract Background: The v-erbA oncogene, carried by the Avian Erythroblastosis Virus, derives from the c-erbAα proto-oncogene that encodes the nuclear receptor for triiodothyronine (T3R. v-ErbA transforms erythroid progenitors in vitro by blocking their differentiation, supposedly by interference with T3R and RAR (Retinoic Acid Receptor. However, v-ErbA target genes involved in its transforming activity still remain to be identified. Results: By using Serial Analysis of Gene Expression (SAGE, we identified 110 genes deregulated by v-ErbA and potentially implicated in the transformation process. Bioinformatic analysis of promoter sequence and transcriptional assays point out a potential role of c-Myb in the v-ErbA effect. Furthermore, grouping of newly identified target genes by function revealed both expected (chromatin/transcription and unexpected (protein metabolism functions potentially deregulated by v-ErbA. We then focused our study on 15 of the new v-ErbA target genes and demonstrated by real time PCR that in majority their expression was activated neither by T3, nor RA, nor during differentiation. This was unexpected based upon the previously known role of v-ErbA. Conclusion: This paper suggests the involvement of a wealth of new unanticipated mechanisms of v-ErbA action.

  12. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

    International Nuclear Information System (INIS)

    Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans

    2014-01-01

    Pyrin domains (PYDs) recruit downstream effector molecules in NLR signalling. A specific charge-relay system suggests a the formation of a signalling complex involving a PYD dimer. The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed

  13. Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses.

    Science.gov (United States)

    You, Xiangrong; Wang, Lingxia; Liang, Wenyu; Gai, Yonghong; Wang, Xiaoyan; Chen, Wei

    2012-02-02

    Two-dimensional gel electrophoresis (2-DE) was used to analyze the proteins related to floral reversion in Dimocarpus longan Lour. Proteins were extracted from buds undergoing the normal process of flowering and from those undergoing floral reversion in three developing stages in D. longan. Differentially expressed proteins were identified from the gels after 2-DE analysis, which were confirmed using matrix-assisted laser desorption/ionization-time of flying-mass spectroscopy and protein database search. A total of 39 proteins, including 18 up-regulated and 21 down-regulated proteins, were classified into different categories, such as energy and substance metabolism, protein translation, secondary metabolism, phytohormone, cytoskeleton structure, regulation, and stress tolerance. Among these, the largest functional class was associated with primary metabolism. Down-regulated proteins were involved in photosynthesis, transcription, and translation, whereas up-regulated proteins were involved in respiration. Decreased flavonoid synthesis and up-regulated GA20ox might be involved in the floral reversion process. Up-regulated 14-3-3 proteins played a role in the regulation of floral reversion in D. longan by responding to abiotic stress. Observations via transmission electron microscopy revealed the ultrastructure changes in shedding buds undergoing floral reversion. Overall, the results provided insights into the molecular basis for the floral reversion mechanism in D. longan. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum.

    Science.gov (United States)

    Kenyon, Amy; Gavriouchkina, Daria; Zorman, Jernej; Napolitani, Giorgio; Cerundolo, Vincenzo; Sauka-Spengler, Tatjana

    2017-07-26

    The mechanisms governing neutrophil response to Mycobacterium tuberculosis remain poorly understood. In this study we utilise biotagging, a novel genome-wide profiling approach based on cell type-specific in vivo biotinylation in zebrafish to analyse the initial response of neutrophils to Mycobacterium marinum, a close genetic relative of M. tuberculosis used to model tuberculosis. Differential expression analysis following nuclear RNA-seq of neutrophil active transcriptomes reveals a significant upregulation in both damage-sensing and effector components of the inflammasome, including caspase b, NLRC3 ortholog (wu: fb15h11) and il1β. Crispr/Cas9-mediated knockout of caspase b, which acts by proteolytic processing of il1β, results in increased bacterial burden and less infiltration of macrophages to sites of mycobacterial infection, thus impairing granuloma development. We also show that a number of immediate early response genes (IEGs) are responsible for orchestrating the initial neutrophil response to mycobacterial infection. Further perturbation of the IEGs exposes egr3 as a key transcriptional regulator controlling il1β transcription.

  15. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Samuel Hertig

    2016-06-01

    Full Text Available Molecular dynamics (MD simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.

  16. Quantitative ligand and receptor binding studies reveal the mechanism of interleukin-36 (IL-36) pathway activation.

    Science.gov (United States)

    Zhou, Li; Todorovic, Viktor; Kakavas, Steve; Sielaff, Bernhard; Medina, Limary; Wang, Leyu; Sadhukhan, Ramkrishna; Stockmann, Henning; Richardson, Paul L; DiGiammarino, Enrico; Sun, Chaohong; Scott, Victoria

    2018-01-12

    IL-36 cytokines signal through the IL-36 receptor (IL-36R) and a shared subunit, IL-1RAcP (IL-1 receptor accessory protein). The activation mechanism for the IL-36 pathway is proposed to be similar to that of IL-1 in that an IL-36R agonist (IL-36α, IL-36β, or IL-36γ) forms a binary complex with IL-36R, which then recruits IL-1RAcP. Recent studies have shown that IL-36R interacts with IL-1RAcP even in the absence of an agonist. To elucidate the IL-36 activation mechanism, we considered all possible binding events for IL-36 ligands/receptors and examined these events in direct binding assays. Our results indicated that the agonists bind the IL-36R extracellular domain with micromolar affinity but do not detectably bind IL-1RAcP. Using surface plasmon resonance (SPR), we found that IL-1RAcP also does not bind IL-36R when no agonist is present. In the presence of IL-36α, however, IL-1RAcP bound IL-36R strongly. These results suggested that the main pathway to the IL-36R·IL-36α·IL-1RAcP ternary complex is through the IL-36R·IL-36α binary complex, which recruits IL-1RAcP. We could not measure the binding affinity of IL-36R to IL-1RAcP directly, so we engineered a fragment crystallizable-linked construct to induce IL-36R·IL-1RAcP heterodimerization and predicted the binding affinity during a complete thermodynamic cycle to be 74 μm The SPR analysis also indicated that the IL-36R antagonist IL-36Ra binds IL-36R with higher affinity and a much slower off rate than the IL-36R agonists, shedding light on IL-36 pathway inhibition. Our results reveal the landscape of IL-36 ligand and receptor interactions, improving our understanding of IL-36 pathway activation and inhibition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Informal payments and the quality of health care: Mechanisms revealed by Tanzanian health workers.

    Science.gov (United States)

    Mæstad, Ottar; Mwisongo, Aziza

    2011-02-01

    Informal payments for health services are common in many transitional and developing countries. The aim of this paper is to investigate the nature of informal payments in the health sector of Tanzania and to identify mechanisms through which informal payments may affect the quality of health care. Our focus is on the effect of informal payments on health worker behaviours, in particular the interpersonal dynamics among health workers at their workplaces. We organised eight focus groups with 58 health workers representing different cadres and levels of care in one rural and one urban district in Tanzania. We found that health workers at all levels receive informal payments in a number of different contexts. Health workers sometimes share the payments received, but only partially, and more rarely within the cadre than across cadres. Our findings indicate that health workers are involved in 'rent-seeking' activities, such as creating artificial shortages and deliberately lowering the quality of service, in order to extract extra payments from patients or to bargain for a higher share of the payments received by their colleagues. The discussions revealed that many health workers think that the distribution of informal payments is grossly unfair. The findings suggest that informal payments can impact negatively on the quality of health care through rent-seeking behaviours and through frustrations created by the unfair allocation of payments. Interestingly, the presence of corruption may also induce non-corrupt workers to reduce the quality of care. Positive impacts can occur because informal payments may induce health workers to increase their efforts, and maybe more so if there is competition among health workers about receiving the payments. Moreover, informal payments add to health workers' incomes and might thus contribute to retention of health workers within the health sector. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Epitope mapping for monoclonal antibody reveals the activation mechanism for αVβ3 integrin.

    Directory of Open Access Journals (Sweden)

    Tetsuji Kamata

    Full Text Available Epitopes for a panel of anti-αVβ3 monoclonal antibodies (mAbs were investigated to explore the activation mechanism of αVβ3 integrin. Experiments utilizing αV/αIIb domain-swapping chimeras revealed that among the nine mAbs tested, five recognized the ligand-binding β-propeller domain and four recognized the thigh domain, which is the upper leg of the αV chain. Interestingly, the four mAbs included function-blocking as well as non-functional mAbs, although they bound at a distance from the ligand-binding site. The epitopes for these four mAbs were further determined using human-to-mouse αV chimeras. Among the four, P3G8 recognized an amino acid residue, Ser-528, located on the side of the thigh domain, while AMF-7, M9, and P2W7 all recognized a common epitope, Ser-462, that was located close to the α-genu, where integrin makes a sharp bend in the crystal structure. Fibrinogen binding studies for cells expressing wild-type αVβ3 confirmed that AMF-7, M9, and P2W7 were inhibitory, while P3G8 was non-functional. However, these mAbs were all unable to block binding when αVβ3 was constrained in its extended conformation. These results suggest that AMF-7, M9, and P2W7 block ligand binding allosterically by stabilizing the angle of the bend in the bent conformation. Thus, a switchblade-like movement of the integrin leg is indispensable for the affinity regulation of αVβ3 integrin.

  19. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs.

    Directory of Open Access Journals (Sweden)

    Dimitar V Pachov

    2015-07-01

    Full Text Available Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key

  20. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms.

    Science.gov (United States)

    Lei, Yunting; Xu, Yuxing; Hettenhausen, Christian; Lu, Chengkai; Shen, Guojing; Zhang, Cuiping; Li, Jing; Song, Juan; Lin, Honghui; Wu, Jianqiang

    2018-02-15

    Soil salinity is an important factor affecting growth, development, and productivity of almost all land plants, including the forage crop alfalfa (Medicago sativa). However, little is known about how alfalfa responds and adapts to salt stress, particularly among different salt-tolerant cultivars. Among seven alfalfa cultivars, we found that Zhongmu-1 (ZM) is relatively salt-tolerant and Xingjiang Daye (XJ) is salt-sensitive. Compared to XJ, ZM showed slower growth under low-salt conditions, but exhibited stronger tolerance to salt stress. RNA-seq analysis revealed 2237 and 1125 differentially expressed genes (DEGs) between ZM and XJ in the presence and absence of salt stress, among which many genes are involved in stress-related pathways. After salt treatment, compared with the controls, the number of DEGs in XJ (19373) was about four times of that in ZM (4833). We also detected specific differential gene expression patterns: In response to salt stress, compared with XJ, ZM maintained relatively more stable expression levels of genes related to the ROS and Ca 2+ pathways, phytohormone biosynthesis, and Na + /K + transport. Notably, several salt resistance-associated genes always showed greater levels of expression in ZM than in XJ, including a transcription factor. Consistent with the suppression of plant growth resulting from salt stress, the expression of numerous photosynthesis- and growth hormone-related genes decreased more dramatically in XJ than in ZM. By contrast, the expression levels of photosynthetic genes were lower in ZM under low-salt conditions. Compared with XJ, ZM is a salt-tolerant alfalfa cultivar possessing specific regulatory mechanisms conferring exceptional salt tolerance, likely by maintaining high transcript levels of abiotic and biotic stress resistance-related genes. Our results suggest that maintaining this specific physiological status and/or plant adaptation to salt stress most likely arises by inhibition of plant growth in ZM through

  1. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    KAUST Repository

    Bagchi, Samik; Lamendella, Regina; Strutt, Steven; Van Loosdrecht, Mark C. M.; Saikaly, Pascal

    2016-01-01

    to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all

  2. Dual transcriptomics reveals co-evolutionary mechanisms of intestinal parasite infections in blue mussels Mytilus edulis

    NARCIS (Netherlands)

    Feis, M.E.; John, U.; Lokmer, A.; Luttikhuizen, P.C.; Wegner, K.M.

    2018-01-01

    On theoretical grounds, antagonistic co-evolution between hosts and their parasitesshould be a widespread phenomenon but only received little empirical support sofar. Consequently, the underlying molecular mechanisms and evolutionary stepsremain elusive, especially in nonmodel systems. Here, we

  3. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition

    Directory of Open Access Journals (Sweden)

    Huynh Truc

    2007-12-01

    Full Text Available Abstract Mechanical hyperalgesia is a clinically-relevant form of pain sensitization that develops through largely unknown mechanisms. TRPA1, a Transient Receptor Potential ion channel, is a sensor of pungent chemicals that may play a role in acute noxious mechanosensation and cold thermosensation. We have developed a specific small molecule TRPA1 inhibitor (AP18 that can reduce cinnameldehyde-induced nociception in vivo. Interestingly, AP18 is capable of reversing CFA-induced mechanical hyperalgesia in mice. Although TRPA1-deficient mice develop normal CFA-induced hyperalgeisa, AP18 is ineffective in the knockout mice, consistent with an on-target mechanism. Therefore, TRPA1 plays a role in sensitization of nociception, and that compensation in TRPA1-deficient mice masks this requirement.

  4. Quantum mechanics. An epistemological revolution that is revealed in the description of micro-states

    International Nuclear Information System (INIS)

    Mugur-Schachter, M.

    2009-01-01

    The author deals with the issue of why quantum mechanics is so difficult to understand. The answer is identified here: the quantum formalism includes the principles of a radical revolution in epistemology. The development of these principles has led to an entire re-shaping of how to generate knowledge in sciences. It is a description of what lays behind quantum mechanics in terms of conceptualization. (A.C.)

  5. Active Tension Network model reveals an exotic mechanical state realized in epithelial tissues

    Science.gov (United States)

    Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streicha, Sebastian; Shraiman, Boris

    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that mechanical balance of cells is dominated by cortical tension and introduces tension dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties: i) ATN behaves as a fluid at short times, but at long times it supports external tension, like a solid; ii) its mechanical equilibrium state has extensive degeneracy associated with a discrete conformal - ''isogonal'' - deformation of cells. ATN model predicts a constraint on equilibrium cell geometry, which we demonstrate to hold in certain epithelial tissues. We further show that isogonal modes are observed in a fruit fly embryo, accounting for the striking variability of apical area of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, understanding which helps understand biological phenomena.

  6. Mechanical properties of ultra thin metallic films revealed by synchrotron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Patric Alfons

    2007-07-20

    A prerequisite for the study of the scaling behavior of mechanical properties of ultra thin films is a suitable testing technique. Therefore synchrotron-based in situ testing techniques were developed and optimized in order to characterize the stress evolution in ultra thin metallic films on compliant polymer substrates during isothermal tensile tests. Experimental procedures for polycrystalline as well as single crystalline films were established. These techniques were used to systematically investigate the influence of microstructure, film thickness (20 to 1000 nm) and temperature (-150 to 200 C) on the mechanical properties. Passivated and unpassivated Au and Cu films as well as single crystalline Au films on polyimide substrates were tested. Special care was also dedicated to the microstructural characterization of the samples which was very important for the correct interpretation of the results of the mechanical tests. Down to a film thickness of about 100 to 200 nm the yield strength increased for all film systems (passivated and unpassivated) and microstructures (polycrystalline and singlecrystalline). The influence of different interfaces was smaller than expected. This could be explained by a dislocation source model based on the nucleation of perfect dislocations. For polycrystalline films the film thickness as well as the grain size distribution had to be considered. For smaller film thicknesses the increase in flow stress was weaker and the deformation behavior changed because the nucleation of perfect dislocations became unfavorable. Instead, the film materials used alternative mechanisms to relieve the high stresses. For regular and homogeneous deformation the total strain was accommodated by the nucleation and motion of partial dislocations. If the deformation was localized due to initial cracks in a brittle interlayer or local delamination, dislocation plasticity was not effective enough to relieve the stress concentration and the films showed

  7. Bite of the cats: relationships between functional integration and mechanical performance as revealed by mandible geometry.

    Science.gov (United States)

    Piras, Paolo; Maiorino, Leonardo; Teresi, Luciano; Meloro, Carlo; Lucci, Federico; Kotsakis, Tassos; Raia, Pasquale

    2013-11-01

    Cat-like carnivorous mammals represent a relatively homogeneous group of species whose morphology appears constrained by exclusive adaptations for meat eating. We present the most comprehensive data set of extant and extinct cat-like species to test for evolutionary transformations in size, shape and mechanical performance, that is, von Mises stress and surface traction, of the mandible. Size and shape were both quantified by means of geometric morphometrics, whereas mechanical performance was assessed applying finite element models to 2D geometry of the mandible. Additionally, we present the first almost complete composite phylogeny of cat-like carnivorans for which well-preserved mandibles are known, including representatives of 35 extant and 59 extinct species of Felidae, Nimravidae, and Barbourofelidae. This phylogeny was used to test morphological differentiation, allometry, and covariation of mandible parts within and among clades. After taking phylogeny into account, we found that both allometry and mechanical variables exhibit a significant impact on mandible shape. We also tested whether mechanical performance was linked to morphological integration. Mechanical stress at the coronoid process is higher in sabertoothed cats than in any other clade. This is strongly related to the high degree of covariation within modules of sabertooths mandibles. We found significant correlation between integration at the clade level and per-clade averaged stress values, on both original data and by partialling out interclade allometry from shapes when calculating integration. This suggests a strong interaction between natural selection and the evolution of developmental and functional modules at the clade level.

  8. The mechanics of bacterial cluster formation on plant leaf surfaces as revealed by bioreporter technology

    NARCIS (Netherlands)

    Tecon, R.; Leveau, J.H.J.

    2012-01-01

    Bacteria that colonize the leaves of terrestrial plants often occur in clusters whose size varies from a few to thousands of cells. For the formation of such bacterial clusters, two non-mutually exclusive but very different mechanisms may be proposed: aggregation of multiple cells or clonal

  9. Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging

    NARCIS (Netherlands)

    Ordonez Alvarez, Soledad; Amarullah, Ilham H; Wubbolts, Richard W; Veldhuizen, Edwin J A; Haagsman, Henk P

    2014-01-01

    Antifungal mechanisms of action of two cathelicidins, chicken CATH-2 and human LL-37, were studied and compared with the mode of action of the salivary peptide histatin 5 (Hst5). Candida albicans was used as a model organism for fungal pathogens. Analysis by live-cell imaging showed that the

  10. Ex vivo stretch reveals altered mechanical properties of isolated dystrophin-deficient hearts.

    Directory of Open Access Journals (Sweden)

    Matthew S Barnabei

    Full Text Available Duchenne muscular dystrophy (DMD is a progressive and fatal disease of muscle wasting caused by loss of the cytoskeletal protein dystrophin. In the heart, DMD results in progressive cardiomyopathy and dilation of the left ventricle through mechanisms that are not fully understood. Previous reports have shown that loss of dystrophin causes sarcolemmal instability and reduced mechanical compliance of isolated cardiac myocytes. To expand upon these findings, here we have subjected the left ventricles of dystrophin-deficient mdx hearts to mechanical stretch. Unexpectedly, isolated mdx hearts showed increased left ventricular (LV compliance compared to controls during stretch as LV volume was increased above normal end diastolic volume. During LV chamber distention, sarcomere lengths increased similarly in mdx and WT hearts despite greater excursions in volume of mdx hearts. This suggests that the mechanical properties of the intact heart cannot be modeled as a simple extrapolation of findings in single cardiac myocytes. To explain these findings, a model is proposed in which disruption of the dystrophin-glycoprotein complex perturbs cell-extracellular matrix contacts and promotes the apparent slippage of myocytes past each other during LV distension. In comparison, similar increases in LV compliance were obtained in isolated hearts from β-sarcoglycan-null and laminin-α(2 mutant mice, but not in dysferlin-null mice, suggesting that increased whole-organ compliance in mdx mice is a specific effect of disrupted cell-extracellular matrix contacts and not a general consequence of cardiomyopathy via membrane defect processes. Collectively, these findings suggest a novel and cell-death independent mechanism for the progressive pathological LV dilation that occurs in DMD.

  11. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  12. Selective spider toxins reveal a role for Nav1.1 channel in mechanical pain

    OpenAIRE

    Osteen, Jeremiah D.; Herzig, Volker; Gilchrist, John; Emrick, Joshua J.; Zhang, Chuchu; Wang, Xidao; Castro, Joel; Garcia-Caraballo, Sonia; Grundy, Luke; Rychkov, Grigori Y.; Weyer, Andy D.; Dekan, Zoltan; Undheim, Eivind A. B.; Alewood, Paul; Stucky, Cheryl L.

    2016-01-01

    Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibers of the pain pathway. Local anesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes and their contributions to chemical, mechanical, or thermal pain. Here, we identify and characterize spider toxins that selectively activate the Nav1.1 subtype, whose role in nocicep...

  13. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies.

    Directory of Open Access Journals (Sweden)

    Hongwei Chu

    Full Text Available Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE. Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., "presynaptic nicotinic acetylcholine receptors", "signaling by insulin receptor". Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1 located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy.

  14. Selective spider toxins reveal a role for Nav1.1 channel in mechanical pain

    Science.gov (United States)

    Osteen, Jeremiah D.; Herzig, Volker; Gilchrist, John; Emrick, Joshua J.; Zhang, Chuchu; Wang, Xidao; Castro, Joel; Garcia-Caraballo, Sonia; Grundy, Luke; Rychkov, Grigori Y.; Weyer, Andy D.; Dekan, Zoltan; Undheim, Eivind A. B.; Alewood, Paul; Stucky, Cheryl L.; Brierley, Stuart M.; Basbaum, Allan I.; Bosmans, Frank; King, Glenn F.; Julius, David

    2016-01-01

    Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibers of the pain pathway. Local anesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes and their contributions to chemical, mechanical, or thermal pain. Here, we identify and characterize spider toxins that selectively activate the Nav1.1 subtype, whose role in nociception and pain has not been explored. We exploit these probes to demonstrate that Nav1.1-expressing fibers are modality-specific nociceptors: their activation elicits robust pain behaviors without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibers also express Nav1.1 and show enhanced toxin sensitivity in a model of irritable bowel syndrome. Altogether, these findings establish an unexpected role for Nav1.1 in regulating the excitability of sensory nerve fibers that underlie mechanical pain. PMID:27281198

  15. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation.

    Science.gov (United States)

    Tanimura, Nobuyuki; Miller, Eli; Igarashi, Kazuhiko; Yang, David; Burstyn, Judith N; Dewey, Colin N; Bresnick, Emery H

    2016-02-01

    Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation. © 2015 The Authors.

  16. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    Science.gov (United States)

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  17. From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms.

    Science.gov (United States)

    Buckholtz, Joshua W; Martin, Justin W; Treadway, Michael T; Jan, Katherine; Zald, David H; Jones, Owen; Marois, René

    2015-09-23

    The social welfare provided by cooperation depends on the enforcement of social norms. Determining blameworthiness and assigning a deserved punishment are two cognitive cornerstones of norm enforcement. Although prior work has implicated the dorsolateral prefrontal cortex (DLPFC) in norm-based judgments, the relative contribution of this region to blameworthiness and punishment decisions remains poorly understood. Here, we used repetitive transcranial magnetic stimulation (rTMS) and fMRI to determine the specific role of DLPFC function in norm-enforcement behavior. DLPFC rTMS reduced punishment for wrongful acts without affecting blameworthiness ratings, and fMRI revealed punishment-selective DLPFC recruitment, suggesting that these two facets of norm-based decision making are neurobiologically dissociable. Finally, we show that DLPFC rTMS affects punishment decision making by altering the integration of information about culpability and harm. Together, these findings reveal a selective, causal role for DLPFC in norm enforcement: representational integration of the distinct information streams used to make punishment decisions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease.

    Science.gov (United States)

    Modena, Brian D; Bleecker, Eugene R; Busse, William W; Erzurum, Serpil C; Gaston, Benjamin M; Jarjour, Nizar N; Meyers, Deborah A; Milosevic, Jadranka; Tedrow, John R; Wu, Wei; Kaminski, Naftali; Wenzel, Sally E

    2017-06-01

    Severe asthma (SA) is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of bronchial epithelial cells in individuals with asthma have provided biological insight and underscored possible mechanistic differences between individuals. Identify networks of genes reflective of underlying biological processes that define SA. Airway epithelial cell gene expression from 155 subjects with asthma and healthy control subjects in the Severe Asthma Research Program was analyzed by weighted gene coexpression network analysis to identify gene networks and profiles associated with SA and its specific characteristics (i.e., pulmonary function tests, quality of life scores, urgent healthcare use, and steroid use), which potentially identified underlying biological processes. A linear model analysis confirmed these findings while adjusting for potential confounders. Weighted gene coexpression network analysis constructed 64 gene network modules, including modules corresponding to T1 and T2 inflammation, neuronal function, cilia, epithelial growth, and repair mechanisms. Although no network selectively identified SA, genes in modules linked to epithelial growth and repair and neuronal function were markedly decreased in SA. Several hub genes of the epithelial growth and repair module were found located at the 17q12-21 locus, near a well-known asthma susceptibility locus. T2 genes increased with severity in those treated with corticosteroids but were also elevated in untreated, mild-to-moderate disease compared with healthy control subjects. T1 inflammation, especially when associated with increased T2 gene expression, was elevated in a subgroup of younger patients with SA. In this hypothesis-generating analysis, gene expression networks in relation to asthma severity provided potentially new insight into biological mechanisms associated with the development of SA and its phenotypes.

  19. The Panitumumab EGFR Complex Reveals a Binding Mechanism That Overcomes Cetuximab Induced Resistance.

    Directory of Open Access Journals (Sweden)

    E Allen Sickmier

    Full Text Available Panitumumab and cetuximab target the epidermal growth factor receptor for the treatment of metastatic colorectal cancer. These therapies provide a significant survival benefit to patients with metastatic colorectal cancer with wild-type RAS. A single point mutation in the ectodomain of EGFR (S468R confers acquired or secondary resistance in cetuximab treated patients, which is not observed in panitumumab-treated patients. Structural and biophysical studies presented here show this mutation directly blocks cetuximab binding to EGFR domain III and describes a unique mechanism by which panitumumab uses a central cavity to accommodate this mutation.

  20. In silico assessment of genetic variation in KCNA5 reveals multiple mechanisms of human atrial arrhythmogenesis

    DEFF Research Database (Denmark)

    Colman, Michael A; Ni, Haibo; Liang, Bo

    2017-01-01

    and quantify the functional impact of these KCNA5 mutations on atrial electrical activity. A multi-scale model of the human atria was updated to incorporate detailed experimental data on IKur from both wild-type and mutants. The effects of the mutations on human atrial action potential and rate dependence were...... provides new insights into understanding the mechanisms by which mutant IKur contributes to atrial arrhythmias. In addition, as IKur is an atrial-specific channel and a number of IKur-selective blockers have been developed as anti-AF agents, this study also helps to understand some contradictory results...

  1. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  2. Structural view of the helicase reveals that Zika virus uses a conserved mechanism for unwinding RNA.

    Science.gov (United States)

    Li, Lei; Wang, Jin; Jia, Zhihui; Shaw, Neil

    2018-04-01

    Recent studies suggest a link between infection by Zika virus (ZIKV) and the development of neurological complications. The lack of ZIKV-specific therapeutics has alarmed healthcare professionals worldwide. Here, crystal structures of apo and AMPPNP- and Mn 2+ -bound forms of the essential helicase of ZIKV refined to 1.78 and 1.3 Å resolution, respectively, are reported. The structures reveal a conserved trimodular topology of the helicase. ATP and Mn 2+ are tethered between two RecA-like domains by conserved hydrogen-bonding interactions. The binding of ligands induces the movement of backbone Cα and side-chain atoms. Numerous solvent molecules are observed in the vicinity of the AMPPNP, suggesting a role in catalysis. These high-resolution structures could be useful for the design of inhibitors targeting the helicase of ZIKV for the treatment of infections caused by ZIKV.

  3. Molecular interaction of 2-mercaptobenzimidazole with catalase reveals a potentially toxic mechanism of the inhibitor.

    Science.gov (United States)

    Teng, Yue; Zou, Luyi; Huang, Ming; Zong, Wansong

    2014-12-01

    2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment possesses a potential risk to human health. In this work, the toxic interaction of MBI with the important antioxidant enzyme catalase (CAT) was investigated using spectroscopic and molecular docking methods under physiological conditions. MBI can spontaneously bind with CAT with one binding site through hydrogen bonds and van der Waals forces to form MBI-CAT complex. The molecular docking study revealed that MBI bound into the CAT interface of chains B and C, which led to some conformational and microenvironmental changes of CAT and further resulted in the inhibition of CAT activity. This present study provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme CAT. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Active mechanics in living oocytes reveal molecular-scale force kinetics

    Science.gov (United States)

    Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo

    Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.

  5. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.

    Science.gov (United States)

    Raper, Austin T; Stephenson, Anthony A; Suo, Zucai

    2018-02-28

    The discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release. Association of DNA to the binary complex of Cas9 and guide-RNA is rate-limiting during the first catalytic turnover, while DNA cleavage from a pre-formed ternary complex of Cas9, guide-RNA, and DNA is rapid. Moreover, an extremely slow release of DNA products essentially restricts Cas9 to be a single-turnover enzyme. By simultaneously measuring the contributions of the HNH and RuvC nuclease activities of Cas9 to DNA cleavage, we also uncovered the kinetic basis by which HNH conformationally regulates the RuvC cleavage activity. Together, our results provide crucial kinetic and functional details regarding Cas9 which will inform gene-editing experiments, guide future research to understand off-target DNA cleavage by Cas9, and aid in the continued development of Cas9 as a biotechnological tool.

  6. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy.

    Science.gov (United States)

    Blasco, Teresa

    2010-12-01

    This tutorial review intends to show the possibilities of in situ solid state NMR spectroscopy in the elucidation of reaction mechanisms and the nature of the active sites in heterogeneous catalysis. After a brief overview of the more usual experimental devices used for in situ solid state NMR spectroscopy measurements, some examples of applications taken from the recent literature will be presented. It will be shown that in situ NMR spectroscopy allows: (i) the identification of stable intermediates and transient species using indirect methods, (ii) to prove shape selectivity in zeolites, (iii) the study of reaction kinetics, and (iv) the determination of the nature and the role played by the active sites in a catalytic reaction. The approaches and methodology used to get this information will be illustrated here summarizing the most relevant contributions on the investigation of the mechanisms of a series of reactions of industrial interest: aromatization of alkanes on bifunctional catalysts, carbonylation reaction of methanol with carbon monoxide, ethylbenzene disproportionation, and the Beckmann rearrangement reaction. Special attention is paid to the research carried out on the role played by carbenium ions and alkoxy as intermediate species in the transformation of hydrocarbon molecules on solid acid catalysts.

  7. Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling

    Science.gov (United States)

    Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat

    2016-01-01

    The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937

  8. Computational models reveal a passive mechanism for cell migration in the crypt.

    Directory of Open Access Journals (Sweden)

    Sara-Jane Dunn

    Full Text Available Cell migration in the intestinal crypt is essential for the regular renewal of the epithelium, and the continued upward movement of cells is a key characteristic of healthy crypt dynamics. However, the driving force behind this migration is unknown. Possibilities include mitotic pressure, active movement driven by motility cues, or negative pressure arising from cell loss at the crypt collar. It is possible that a combination of factors together coordinate migration. Here, three different computational models are used to provide insight into the mechanisms that underpin cell movement in the crypt, by examining the consequence of eliminating cell division on cell movement. Computational simulations agree with existing experimental results, confirming that migration can continue in the absence of mitosis. Importantly, however, simulations allow us to infer mechanisms that are sufficient to generate cell movement, which is not possible through experimental observation alone. The results produced by the three models agree and suggest that cell loss due to apoptosis and extrusion at the crypt collar relieves cell compression below, allowing cells to expand and move upwards. This finding suggests that future experiments should focus on the role of apoptosis and cell extrusion in controlling cell migration in the crypt.

  9. Transcriptomic analysis reveals the metabolic mechanism of L-ascorbic acid in Ziziphus jujuba Mill.

    Directory of Open Access Journals (Sweden)

    Chunmei eZhang

    2016-02-01

    Full Text Available Chinese jujube (Ziziphus jujuba Mill. is the most economically important member of the Rhamnaceae family and contains a high concentration of ascorbic acid (AsA. To explore the metabolic mechanism of AsA accumulation, we investigated the abundance of AsA in the fruit development stages, the leaf and flower of Z. jujuba cv Junzao, and the mature fruit of one type of wild jujube (Z. jujuba var. spinosa Hu, Yanchuan sour jujube. And the expression patterns of genes involved in AsA biosynthesis, degradation and recycling were analyzed. The result showed that AsA biosynthesis during early fruit development (the enlargement stage is the main reason for jujube high accumulation. The L-galactose pathway plays a predominant role in the biosynthesis of AsA during jujube fruit development, and the genes GMP1, GME1, GGP, and GaLDH involved in the determination of AsA concentration during fruit development and in different genotypes; the myo-inositol pathway along with the genes GME2 and GMP2 in the L-galactose pathway play a compensatory role in maintaining AsA accumulation during the ripening stage. These findings enhance our understanding of the molecular mechanism in regulating AsA accumulation for jujube.

  10. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    Directory of Open Access Journals (Sweden)

    Aayudh Das

    2016-01-01

    Full Text Available Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  11. Transcriptional Network Analysis Reveals Drought Resistance Mechanisms of AP2/ERF Transgenic Rice

    Directory of Open Access Journals (Sweden)

    Hongryul Ahn

    2017-06-01

    Full Text Available This study was designed to investigate at the molecular level how a transgenic version of rice “Nipponbare” obtained a drought-resistant phenotype. Using multi-omics sequencing data, we compared wild-type rice (WT and a transgenic version (erf71 that had obtained a drought-resistant phenotype by overexpressing OsERF71, a member of the AP2/ERF transcription factor (TF family. A comprehensive bioinformatics analysis pipeline, including TF networks and a cascade tree, was developed for the analysis of multi-omics data. The results of the analysis showed that the presence of OsERF71 at the source of the network controlled global gene expression levels in a specific manner to make erf71 survive longer than WT. Our analysis of the time-series transcriptome data suggests that erf71 diverted more energy to survival-critical mechanisms related to translation, oxidative response, and DNA replication, while further suppressing energy-consuming mechanisms, such as photosynthesis. To support this hypothesis further, we measured the net photosynthesis level under physiological conditions, which confirmed the further suppression of photosynthesis in erf71. In summary, our work presents a comprehensive snapshot of transcriptional modification in transgenic rice and shows how this induced the plants to acquire a drought-resistant phenotype.

  12. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation

    Science.gov (United States)

    Georgescu, Roxana E; Schauer, Grant D; Yao, Nina Y; Langston, Lance D; Yurieva, Olga; Zhang, Dan; Finkelstein, Jeff; O'Donnell, Mike E

    2015-01-01

    We have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands. Hence, Pol ε is active with CMG on the leading strand, but it is unable to function on the lagging strand, even when Pol δ is not present. Conversely, Pol δ-PCNA is the only enzyme capable of extending Okazaki fragments in the presence of Pols ε and α. We have shown earlier that Pol δ-PCNA is suppressed on the leading strand with CMG (Georgescu et al., 2014). We propose that CMG, the 11-subunit helicase, is responsible for one or both of these suppression mechanisms that spatially control polymerase occupancy at the fork. DOI: http://dx.doi.org/10.7554/eLife.04988.001 PMID:25871847

  13. Cell metabolomics reveals the neurotoxicity mechanism of cadmium in PC12 cells.

    Science.gov (United States)

    Zong, Li; Xing, Junpeng; Liu, Shu; Liu, Zhiqiang; Song, Fengrui

    2018-01-01

    The heavy metals such as cadmium (Cd) can induce neurotoxicity. Extensive studies about the effects of Cd on human health have been reported, however, a systematic investigation on the molecular mechanisms of the effects of Cd on central nervous system is still needed. In this paper, the neuronal PC-12 cells were treated with a series of concentrations of CdCl 2 for 48h. Then the cytotoxicity was evaluated by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. The IC 15 value (15% inhibiting concentration) was selected for further mechanism studies. After PC-12 cells incubated with CdCl 2 at a dose of IC 15 for 48h, the intracellular and extracellular metabolites were profiled using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS)-based cell metabolomics approach. As found, the effects of the heavy metal Cd produced on the PC-12 cell viability were dose-dependent. The metabolic changes were involved in the glycolysis and gluconeogenesis, biopterin metabolism, tryptophan metabolism, tyrosine metabolism, glycerophospholipid metabolism, and fatty acids beta-oxidation. These could cause the perturbation of cell membrane, redox balance, energy supply, cellular detoxification, further affecting the cellular proliferation and apoptosis and other cellular activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    Energy Technology Data Exchange (ETDEWEB)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Roszak, Aleksander W. [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel, E-mail: daniel.walker@glasgow.ac.uk [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom)

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  15. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    International Nuclear Information System (INIS)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group

  16. Revealing microstructural and mechanical characteristics of cold-drawn pearlitic steel wires undergoing simulated galvanization treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fang Feng, E-mail: fangfeng@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Hu Xianjun [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Sha-Steel Group, Zhangjiagang City, Jiangsu Province 215625 (China); Chen Shaohui [Jiangsu Sha-Steel Group, Zhangjiagang City, Jiangsu Province 215625 (China); Xie Zonghan [School of Engineering, Edith Cowen University, Joondalup, WA 6027 (Australia); Jiang Jianqing [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Annealing time on microstructure and mechanical properties of cold-drawn steel wires were studied. Black-Right-Pointing-Pointer Exothermic peak in cold-drawn wire was resulting from the spheroidization of lamellar cementite. Black-Right-Pointing-Pointer Spheroidization of lamellar cementite is the main effect for torsion property of wires after annealing. - Abstract: Spheroidization of lamellar cementite often occurs in cold-drawn pearlitic steel wires during galvanizing treatment, leading to the degradation of mechanical properties. Therefore, it is important to understand effects of galvanization process on microstructure and mechanical properties of cold-drawn wires. In this paper, cold-drawn steel wires were fabricated by cold drawing pearlitic steel rods from 13 mm to 6.9 mm in diameter. Thermal annealing at 450 Degree-Sign C was used to simulate galvanizing treatment of steel wires. Tensile strength, elongation and torsion laps of steel rods and wires with, and without, annealing treatment were determined. Microstructure was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, differential scanning calorimetry (DSC) was used to probe the spheroidization temperature of cementite. Experimental results showed that tensile strength of wires increased from 1780 MPa to 1940 MPa for annealing <5 min, and then decreased. Tensile strength became constant for annealing >10 min. Elongation of wires decreased for annealing <2.5 min, and then recovered slightly. It approached a constant value for annealing >5 min. Tensile strength and elongation of wires were both influenced by the strain age hardening and static recovery processes. Notably, torsion laps of wires hardly changed when annealing time was less than 2.5 min, and then decreased rapidly. Its value became constant when the hold time is greater than 10 min. Lamellar cementite began to spheroidize at annealing >2.5 min

  17. Deformation Mechanism of the Northern Tibetan Plateau as Revealed by Magnetotelluric Data

    Science.gov (United States)

    Zhang, Letian; Wei, Wenbo; Jin, Sheng; Ye, Gaofeng; Xie, Chengliang

    2017-04-01

    As a unique geologic unit on the northern margin of the Tibetan Plateau, the Qaidam Basin plays a significant role in constraining the vertical uplift and horizontal expansion of the northern and northeastern Tibetan Plateau. However, due to its complex evolution history and difficult logistic condition, deformation mechanism of the lithosphere beneath the Qaidam Basin is still highly debated. To better understand the lithospheric electrical structure and deformation mechanism of the Qaidam Basin, A 250 km long, NE-SW directed Magnetotelluric (MT) profile was finished in the northern portion of the Basin, which is roughly perpendicular to the thrust fault systems on the western and eastern margins of the Basin, as well as anticlinorium systems within the Basin. The profile consists of 20 broad-band MT stations and 5 long-period MT stations. Original time series data is processed with regular robust routines. Dimensionality and regional strike direction are determined for the dataset through data analysis. Based on the analysis results, 2D inversions were performed to produce a preferred model of the lithospheric electrical structure beneath the northern Qaidam Basin. Uncertainty analysis of the 2D inversion model was also conducted based on a data resampling approach. The outcome 2D electrical model was further used to estimate the distribution of temperature and melt fraction in the upper mantle based on laboratory-determined relationships between the electrical conductivity and temperature of nominally anhydrous minerals and basaltic melt by using the mixing law of Hashin-Shtrikman's bounds. All these results suggest that: (1) the crust-mantle boundary is imaged as a conductive layer beneath the western Qaidam Basin, with its temperature estimated to be 1200-1300 °C and melt fraction 5-8%, indicating decoupling deformation of the crust and upper mantle. (2) A large-scale east-dipping conductor is imaged beneath the eastern Qaidam Basin. This conductor extends

  18. Fibrillation mechanism of a model intrinsically disordered protein revealed by 2D correlation deep UV resonance Raman spectroscopy.

    Science.gov (United States)

    Sikirzhytski, Vitali; Topilina, Natalya I; Takor, Gaius A; Higashiya, Seiichiro; Welch, John T; Uversky, Vladimir N; Lednev, Igor K

    2012-05-14

    Understanding of numerous biological functions of intrinsically disordered proteins (IDPs) is of significant interest to modern life science research. A large variety of serious debilitating diseases are associated with the malfunction of IDPs including neurodegenerative disorders and systemic amyloidosis. Here we report on the molecular mechanism of amyloid fibrillation of a model IDP (YE8) using 2D correlation deep UV resonance Raman spectroscopy. YE8 is a genetically engineered polypeptide, which is completely unordered at neutral pH yet exhibits all properties of a fibrillogenic protein at low pH. The very first step of the fibrillation process involves structural rearrangements of YE8 at the global structure level without the detectable appearance of secondary structural elements. The formation of β-sheet species follows the global structural changes and proceeds via the simultaneous formation of turns and β-strands. The kinetic mechanism revealed is an important new contribution to understanding of the general fibrillation mechanism proposed for IDP.

  19. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation.

    Science.gov (United States)

    Faustin, Benjamin; Lartigue, Lydia; Bruey, Jean-Marie; Luciano, Frederic; Sergienko, Eduard; Bailly-Maitre, Beatrice; Volkmann, Niels; Hanein, Dorit; Rouiller, Isabelle; Reed, John C

    2007-03-09

    Interleukin (IL)-1beta maturation is accomplished by caspase-1-mediated proteolysis, an essential element of innate immunity. NLRs constitute a recently recognized family of caspase-1-activating proteins, which contain a nucleotide-binding oligomerization domain and leucine-rich repeat (LRR) domains and which assemble into multiprotein complexes to create caspase-1-activating platforms called "inflammasomes." Using purified recombinant proteins, we have reconstituted the NALP1 inflammasome and have characterized the requirements for inflammasome assembly and caspase-1 activation. Oligomerization of NALP1 and activation of caspase-1 occur via a two-step mechanism, requiring microbial product, muramyl-dipeptide, a component of peptidoglycan, followed by ribonucleoside triphosphates. Caspase-1 activation by NALP1 does not require but is enhanced by adaptor protein ASC. The findings provide the biochemical basis for understanding how inflammasome assembly and function are regulated, and shed light on NALP1 as a direct sensor of bacterial components in host defense against pathogens.

  20. Direct observation of TALE protein dynamics reveals a two-state search mechanism.

    Science.gov (United States)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M

    2015-06-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process-a search state and a recognition state-facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state.

  1. Molecular Dynamics Simulation and Statistics Analysis Reveals the Defense Response Mechanism in Plants

    Science.gov (United States)

    Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team

    As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.

  2. Using Cellular Proteins to Reveal Mechanisms of HIV Infection | Center for Cancer Research

    Science.gov (United States)

    A vital step in HIV infection is the insertion of viral DNA into the genome of the host cell. In order for the insertion to occur, viral nucleic acid must be transported through the membrane that separates the main cellular compartment (the cytoplasm) from the nucleus, where the host DNA is located. Scientists are actively studying the mechanism used to transport viral DNA into the nucleus in the hopes of targeting this step with future anti-HIV treatments. Up to this point, researchers have identified some of the viral components that play a role in nuclear transport, but they have not determined how viral interactions with other molecules in the cell contribute to the process.

  3. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    Science.gov (United States)

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. Copyright © 2016, American Association for the Advancement of Science.

  4. Main outcomes from in situ thermo-hydro-mechanical experiments programme to demonstrate feasibility of radioactive high-level waste disposal in the Callovo-Oxfordian claystone

    Directory of Open Access Journals (Sweden)

    G. Armand

    2017-06-01

    Full Text Available In the context of radioactive waste disposal, an underground research laboratory (URL is a facility in which experiments are conducted to demonstrate the feasibility of constructing and operating a radioactive waste disposal facility within a geological formation. The Meuse/Haute-Marne URL is a site-specific facility planned to study the feasibility of a radioactive waste disposal in the Callovo-Oxfordian (COx claystone. The thermo-hydro-mechanical (THM behaviour of the host rock is significant for the design of the underground nuclear waste disposal facility and for its long-term safety. The French National Radioactive Waste Management Agency (Andra has begun a research programme aiming to demonstrate the relevancy of the French high-level waste (HLW concept. This paper presents the programme implemented from small-scale (small diameter boreholes to full-scale demonstration experiments to study the THM effects of the thermal transient on the COx claystone and the strategy implemented in this new programme to demonstrate and optimise current disposal facility components for HLW. It shows that the French high-level waste concept is feasible and working in the COx claystone. It also exhibits that, as for other plastic clay or claystone, heating-induced pore pressure increases and that the THM behaviour is anisotropic.

  5. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis.

    Directory of Open Access Journals (Sweden)

    Najealicka Armstrong

    Full Text Available Silver nanoparticles (AgNPs, like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities past that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, we attempted to monitor the effects of AgNPs at a nonlethal concentration on wild type Drosophila melanogaster by exposing them throughout their development. All adult flies raised in AgNP doped food showed that up to 50 mg/L concentration AgNP has no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised due to AgNP feeding. Determination of the amount of free ionic silver (Ag(+ led us to claim that the observed biological effects have resulted from the AgNPs and not from Ag(+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, are decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Consequently, we propose a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explains the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, we claim that Drosophila, an established genetic model system, can be well utilized for further understanding of the biological effects of nanoparticles.

  6. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    Science.gov (United States)

    Bestembayeva, Aizhan; Kramer, Armin; Labokha, Aksana A.; Osmanović, Dino; Liashkovich, Ivan; Orlova, Elena V.; Ford, Ian J.; Charras, Guillaume; Fassati, Ariberto; Hoogenboom, Bart W.

    2015-01-01

    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins, and is therefore not well understood. Here, we show that stiffness topography with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel.

  7. Ribosome•RelA structures reveal the mechanism of stringent response activation

    Science.gov (United States)

    Loveland, Anna B; Bah, Eugene; Madireddy, Rohini; Zhang, Ying; Brilot, Axel F; Grigorieff, Nikolaus; Korostelev, Andrei A

    2016-01-01

    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit 'closure', providing insights into the dynamics of high-fidelity tRNA decoding. DOI: http://dx.doi.org/10.7554/eLife.17029.001 PMID:27434674

  8. Turbulent flow over craters on Mars: Vorticity dynamics reveal aeolian excavation mechanism

    Science.gov (United States)

    Anderson, William; Day, Mackenzie

    2017-10-01

    Impact craters are scattered across Mars. These craters exhibit geometric self-similarity over a spectrum of diameters, ranging from tens to thousands of kilometers. The late Noachian-early Hesperian boundary marks a dramatic shift in the role of mid-latitude craters, from depocenter sedimentary basins to aeolian source areas. At present day, many craters contain prominent layered sedimentary mounds with maximum elevations comparable to the rim height. The mounds are remnants of Noachian deposition and are surrounded by a radial moat. Large-eddy simulation has been used to model turbulent flows over synthetic craterlike geometries. Geometric attributes of the craters and the aloft flow have been carefully matched to resemble ambient conditions in the atmospheric boundary layer of Mars. Vorticity dynamics analysis within the crater basin reveals the presence of counterrotating helical vortices, verifying the efficacy of deflationary models put forth recently by Bennett and Bell [K. Bennett and J. Bell, Icarus 264, 331 (2016)], 10.1016/j.icarus.2015.09.041 and Day et al. [M. Day et al., Geophys. Res. Lett. 43, 2473 (2016)], 10.1002/2016GL068011. We show how these helical counterrotating vortices spiral around the outer rim, gradually deflating the moat and carving the mound; excavation occurs faster on the upwind side, explaining the radial eccentricity of the mounds relative to the surrounding crater basin.

  9. Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation.

    Science.gov (United States)

    Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R

    2017-07-05

    The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Turbulent flow over craters on Mars: Vorticity dynamics reveal aeolian excavation mechanism.

    Science.gov (United States)

    Anderson, William; Day, Mackenzie

    2017-10-01

    Impact craters are scattered across Mars. These craters exhibit geometric self-similarity over a spectrum of diameters, ranging from tens to thousands of kilometers. The late Noachian-early Hesperian boundary marks a dramatic shift in the role of mid-latitude craters, from depocenter sedimentary basins to aeolian source areas. At present day, many craters contain prominent layered sedimentary mounds with maximum elevations comparable to the rim height. The mounds are remnants of Noachian deposition and are surrounded by a radial moat. Large-eddy simulation has been used to model turbulent flows over synthetic craterlike geometries. Geometric attributes of the craters and the aloft flow have been carefully matched to resemble ambient conditions in the atmospheric boundary layer of Mars. Vorticity dynamics analysis within the crater basin reveals the presence of counterrotating helical vortices, verifying the efficacy of deflationary models put forth recently by Bennett and Bell [K. Bennett and J. Bell, Icarus 264, 331 (2016)]ICRSA50019-103510.1016/j.icarus.2015.09.041 and Day et al. [M. Day et al., Geophys. Res. Lett. 43, 2473 (2016)]GPRLAJ0094-827610.1002/2016GL068011. We show how these helical counterrotating vortices spiral around the outer rim, gradually deflating the moat and carving the mound; excavation occurs faster on the upwind side, explaining the radial eccentricity of the mounds relative to the surrounding crater basin.

  11. The enzymes of biotin dependent CO2 metabolism: What structures reveal about their reaction mechanisms

    Science.gov (United States)

    Waldrop, Grover L; Holden, Hazel M; Maurice, Martin St

    2012-01-01

    Biotin is the major cofactor involved in carbon dioxide metabolism. Indeed, biotin-dependent enzymes are ubiquitous in nature and are involved in a myriad of metabolic processes including fatty acid synthesis and gluconeogenesis. The cofactor, itself, is composed of a ureido ring, a tetrahydrothiophene ring, and a valeric acid side chain. It is the ureido ring that functions as the CO2 carrier. A complete understanding of biotin-dependent enzymes is critically important for translational research in light of the fact that some of these enzymes serve as targets for anti-obesity agents, antibiotics, and herbicides. Prior to 1990, however, there was a dearth of information regarding the molecular architectures of biotin-dependent enzymes. In recent years there has been an explosion in the number of three-dimensional structures reported for these proteins. Here we review our current understanding of the structures and functions of biotin-dependent enzymes. In addition, we provide a critical analysis of what these structures have and have not revealed about biotin-dependent catalysis. PMID:22969052

  12. An experimental and analytical study on the feasibility of SMA spring driven actuation of an iris mechanism

    International Nuclear Information System (INIS)

    Rajan, Aravindh; Abouseada, Mostafa; Manghaipathy, Pavithra; Ozalp, Nesrin; Majid, Feras Abdul; Salem, Ayman; Srinivasa, Arun

    2016-01-01

    Highlights: • An iris mechanism proposed in response to fluctuations in solar energy. • Iris motion controlled with the use of Nickel–Titanium Shape Memory Alloy springs. • Variation of the force exerted by SMA spring w.r.t. temperature tested experimentally. • An analytical expression that relates the aperture area and crank rotation is given. • SMA springs showed promising actuation mechanism as a replacement to motor. - Abstract: Variation in incoming solar energy adversely affects the temperature inside a solar reactor and lowers its efficiency. Therefore, it is important to develop a mechanism that can maintain semi-constant temperatures inside the reactor from sunrise to sunset. In this paper, we present an iris mechanism that reduces or enlarges its circular opening with the use of Nickel–Titanium Shape Memory Alloy (SMA) springs. SMA springs possess memory of their shapes at certain temperatures. Hence, by controlling the temperature of the spring, it is possible to exert different forces that may then be transferred to the variable aperture mechanism. In this study, variation of the force exerted by an SMA spring with respect to temperature was experimentally tested and the viability of an SMA spring’s use in actuating an iris mechanism aperture was examined. In order to simulate conditions under fluctuating solar radiation, a 7 kW solar simulator was used in experiments at varying power levels. It was observed that SMA springs are promising as a replacement of the actuation mechanism driven by a motor.

  13. An in vitro fatty acylation assay reveals a mechanism for Wnt recognition by the acyltransferase Porcupine.

    Science.gov (United States)

    Asciolla, James J; Miele, Matthew M; Hendrickson, Ronald C; Resh, Marilyn D

    2017-08-18

    Wnt proteins are a family of secreted signaling proteins that play key roles in regulating cell proliferation in both embryonic and adult tissues. Production of active Wnt depends on attachment of palmitoleate, a monounsaturated fatty acid, to a conserved serine by the acyltransferase Porcupine (PORCN). Studies of PORCN activity relied on cell-based fatty acylation and signaling assays as no direct enzyme assay had yet been developed. Here, we present the first in vitro assay that accurately recapitulates PORCN-mediated fatty acylation of a Wnt substrate. The critical feature is the use of a double disulfide-bonded Wnt peptide that mimics the two-dimensional structure surrounding the Wnt acylation site. PORCN-mediated Wnt acylation was abolished when the Wnt peptide was treated with DTT, and did not occur with a linear (non-disulfide-bonded) peptide, or when the double disulfide-bonded Wnt peptide contained Ala substituted for the Ser acylation site. We exploited this in vitro Wnt acylation assay to provide direct evidence that the small molecule LGK974, which is in clinical trials for managing Wnt-driven tumors, is a bona fide PORCN inhibitor whose IC 50 for inhibition of Wnt fatty acylation in vitro closely matches that for inhibition of Wnt signaling. Side-by-side comparison of PORCN and Hedgehog acyltransferase (HHAT), two enzymes that attach 16-carbon fatty acids to secreted proteins, revealed that neither enzyme will accept the other's fatty acyl-CoA or peptide substrates. These findings illustrate the unique enzyme-substrate selectivity exhibited by members of the membrane-bound O -acyl transferase family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses.

    Science.gov (United States)

    Yin, Zepeng; Ren, Jing; Zhou, Lijuan; Sun, Lina; Wang, Jiewan; Liu, Yulong; Song, Xingshun

    2016-01-01

    Drought (Water deficit, WD) poses a serious threat to extensively economic losses of trees throughout the world. Chinese dwarf cherry ( Cerasus humilis ) is a good perennial plant for studying the physiological and sophisticated molecular network under WD. The aim of this study is to identify the effect of WD on C. humilis through physiological and global proteomics analysis and improve understanding of the WD resistance of plants. Currently, physiological parameters were applied to investigate C. humilis response to WD. Moreover, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in C. humilis leaves subjected to WD (24 d). Furthermore, we also examined the correlation between protein and transcript levels. Several physiological parameters, including relative water content and Pn were reduced by WD. In addition, the malondialdehyde (MDA), relative electrolyte leakage (REL), total soluble sugar, and proline were increased in WD-treated C. humilis . Comparative proteomic analysis revealed 46 protein spots (representing 43 unique proteins) differentially expressed in C. humilis leaves under WD. These proteins were mainly involved in photosynthesis, ROS scavenging, carbohydrate metabolism, transcription, protein synthesis, protein processing, and nitrogen and amino acid metabolisms, respectively. WD promoted the CO 2 assimilation by increase light reaction and Calvin cycle, leading to the reprogramming of carbon metabolism. Moreover, the accumulation of osmolytes (i.e., proline and total soluble sugar) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione s-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under WD. Importantly, the regulation role of carbohydrate metabolisms (e. g. glycolysis, pentose phosphate pathways, and TCA) was enhanced. These findings provide key candidate proteins for genetic improvement of perennial plants metabolism under

  15. Structures of the Gasdermin D C-Terminal Domains Reveal Mechanisms of Autoinhibition.

    Science.gov (United States)

    Liu, Zhonghua; Wang, Chuanping; Rathkey, Joseph K; Yang, Jie; Dubyak, George R; Abbott, Derek W; Xiao, Tsan Sam

    2018-05-01

    Pyroptosis is an inflammatory form of programmed cell death that plays important roles in immune protection against infections and in inflammatory disorders. Gasdermin D (GSDMD) is an executor of pyroptosis upon cleavage by caspases-1/4/5/11 following canonical and noncanonical inflammasome activation. GSDMD N-terminal domain assembles membrane pores to induce cytolysis, whereas its C-terminal domain inhibits cell death through intramolecular association with the N domain. The molecular mechanisms of autoinhibition for GSDMD are poorly characterized. Here we report the crystal structures of the human and murine GSDMD C-terminal domains, which differ from those of the full-length murine GSDMA3 and the human GSDMB C-terminal domain. Mutations of GSDMD C-domain residues predicted to locate at its interface with the N-domain enhanced pyroptosis. Our results suggest that GSDMDs may employ a distinct mode of intramolecular domain interaction and autoinhibition, which may be relevant to its unique role in pyroptosis downstream of inflammasome activation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression

    Science.gov (United States)

    Brunwasser-Meirom, Michal; Pollak, Yaroslav; Goldberg, Sarah; Levy, Lior; Atar, Orna; Amit, Roee

    2016-01-01

    We explore a model for ‘quenching-like' repression by studying synthetic bacterial enhancers, each characterized by a different binding site architecture. To do so, we take a three-pronged approach: first, we compute the probability that a protein-bound dsDNA molecule will loop. Second, we use hundreds of synthetic enhancers to test the model's predictions in bacteria. Finally, we verify the mechanism bioinformatically in native genomes. Here we show that excluded volume effects generated by DNA-bound proteins can generate substantial quenching. Moreover, the type and extent of the regulatory effect depend strongly on the relative arrangement of the binding sites. The implications of these results are that enhancers should be insensitive to 10–11 bp insertions or deletions (INDELs) and sensitive to 5–6 bp INDELs. We test this prediction on 61 σ54-regulated qrr genes from the Vibrio genus and confirm the tolerance of these enhancers' sequences to the DNA's helical repeat. PMID:26832446

  17. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians

    KAUST Repository

    Wolfowicz, Iliona

    2016-09-01

    Symbiosis, defined as the persistent association between two distinct species, is an evolutionary and ecologically critical phenomenon facilitating survival of both partners in diverse habitats. The biodiversity of coral reef ecosystems depends on a functional symbiosis with photosynthetic dinoflagellates of the highly diverse genus Symbiodinium, which reside in coral host cells and continuously support their nutrition. The mechanisms underlying symbiont selection to establish a stable endosymbiosis in non-symbiotic juvenile corals are unclear. Here we show for the first time that symbiont selection patterns for larvae of two Acropora coral species and the model anemone Aiptasia are similar under controlled conditions. We find that Aiptasia larvae distinguish between compatible and incompatible symbionts during uptake into the gastric cavity and phagocytosis. Using RNA-Seq, we identify a set of candidate genes potentially involved in symbiosis establishment. Together, our data complement existing molecular resources to mechanistically dissect symbiont phagocytosis in cnidarians under controlled conditions, thereby strengthening the role of Aiptasia larvae as a powerful model for cnidarian endosymbiosis establishment.

  18. Tribology. Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts.

    Science.gov (United States)

    Gosvami, N N; Bares, J A; Mangolini, F; Konicek, A R; Yablon, D G; Carpick, R W

    2015-04-03

    Zinc dialkyldithiophosphates (ZDDPs) form antiwear tribofilms at sliding interfaces and are widely used as additives in automotive lubricants. The mechanisms governing the tribofilm growth are not well understood, which limits the development of replacements that offer better performance and are less likely to degrade automobile catalytic converters over time. Using atomic force microscopy in ZDDP-containing lubricant base stock at elevated temperatures, we monitored the growth and properties of the tribofilms in situ in well-defined single-asperity sliding nanocontacts. Surface-based nucleation, growth, and thickness saturation of patchy tribofilms were observed. The growth rate increased exponentially with either applied compressive stress or temperature, consistent with a thermally activated, stress-assisted reaction rate model. Although some models rely on the presence of iron to catalyze tribofilm growth, the films grew regardless of the presence of iron on either the tip or substrate, highlighting the critical role of stress and thermal activation. Copyright © 2015, American Association for the Advancement of Science.

  19. The maize milkweed pod1 mutant reveals a mechanism to modify organ morphology.

    Science.gov (United States)

    Johnston, Robyn; Candela, Héctor; Hake, Sarah; Foster, Toshi

    2010-07-01

    Plant lateral organs, such as leaves, have three primary axes of growth-proximal-distal, medial--lateral and adaxial-abaxial (dorsal-ventral). Although most leaves are planar, modified leaf forms, such as the bikeeled grass prophyll, can be found in nature. A detailed examination of normal prophyll development indicates that polarity is established differently in the keels than in other parts of the prophyll. Analysis of the maize HD-ZIPIII gene rolled leaf1 (rld1) suggests that altered expression patterns are responsible for keel outgrowth. Recessive mutations in the maize (Zea mays) KANADI (KAN) gene milkweed pod1 (mwp1), which promotes abaxial cell identity, strongly affect development of the prophyll and silks (fused carpels). The prophyll is reduced to two unfused midribs and the silks are narrow and misshapen. Our data indicate that the prophyll and other fused organs are particularly sensitive to disruptions in adaxial-abaxial polarity. In addition, lateral and proximal-distal growth of most lateral organs is reduced in the mwp1-R mutant, supporting a role for the adaxial-abaxial boundary in promoting growth along both axes. We propose that the adaxial-abaxial patterning mechanism has been co-opted during evolution to generate diverse organ morphologies. (c) 2010 Wiley-Liss, Inc.

  20. Whole transcriptome analysis reveals potential novel mechanisms of low-level linezolid resistance in Enterococcus faecalis.

    Science.gov (United States)

    Hua, Ruoyi; Xia, Yun; Wu, Wenyao; Yan, Jia; Yang, Mi

    2018-03-20

    Linezolid is an oxazolidinone antibiotic commonly used to treat serious infections caused by vancomycin-resistant enterococcus. Recently, low-level linezolid resistant Enterococcus faecalis strains have emerged worldwide, but the resistant mechanisms remain undefined. Whole-transcriptome profiling was performed on an E. faecalis strain P10748 with low-level linezolid resistance in comparison with a linezolid-susceptible strain 3138 and the standard control strain ATCC29212. The functions of differentially expressed genes (DEGs) were predicted, with some DEGs potentially involved in drug resistance were validated by PCR and quantitative PCR (qPCR). RNA-Seq on three E. faecalis strains generated 1920 unigenes, with 98% of them assigned to various function groups. A total of 150 DEGs were identified in the linezolid resistant strain P10748 compared to the linezolid susceptible strains 3138 and ATCC29212. Functional analysis indicated a significant transcriptomic shift to membrane transportation and biofilm formation in strain P10748, with three significantly up-regulated DEGs predicted to be associated with drug resistance through active efflux pumps and biofilm formation. The existence of these three DEGs was further confirmed by PCR and qPCR. The significant upregulation of genes associated with efflux pumps and biofilm formation in the linezolid resistant strain suggests their roles in low-level resistance to linezolid in E. faecalis. Copyright © 2018. Published by Elsevier B.V.

  1. An integrated chemical biology approach reveals the mechanism of action of HIV replication inhibitors.

    Science.gov (United States)

    Pagano, Nicholas; Teriete, Peter; Mattmann, Margrith E; Yang, Li; Snyder, Beth A; Cai, Zhaohui; Heil, Marintha L; Cosford, Nicholas D P

    2017-12-01

    Continuous flow (microfluidic) chemistry was employed to prepare a small focused library of dihydropyrimidinone (DHPM) derivatives. Compounds in this class have been reported to exhibit activity against the human immunodeficiency virus (HIV), but their molecular target had not been identified. We tested the initial set of DHPMs in phenotypic assays providing a hit (1i) that inhibited the replication of the human immunodeficiency virus HIV in cells. Flow chemistry-driven optimization of 1i led to the identification of HIV replication inhibitors such as 1l with cellular potency comparable with the clinical drug nevirapine (NVP). Mechanism of action (MOA) studies using cellular and biochemical assays coupled with 3D fingerprinting and in silico modeling demonstrated that these drug-like probe compounds exert their effects by inhibiting the viral reverse transcriptase polymerase (RT). This led to the design and synthesis of the novel DHPM 1at that inhibits the replication of drug resistant strains of HIV. Our work demonstrates that combining flow chemistry-driven analogue refinement with phenotypic assays, in silico modeling and MOA studies is a highly effective strategy for hit-to-lead optimization applicable to the discovery of future therapeutic agents. Copyright © 2017. Published by Elsevier Ltd.

  2. Genome-wide analysis reveals a cell cycle–dependent mechanism controlling centromere propagation

    Science.gov (United States)

    Erhardt, Sylvia; Mellone, Barbara G.; Betts, Craig M.; Zhang, Weiguo; Karpen, Gary H.; Straight, Aaron F.

    2008-01-01

    Centromeres are the structural and functional foundation for kinetochore formation, spindle attachment, and chromosome segregation. In this study, we isolated factors required for centromere propagation using genome-wide RNA interference screening for defects in centromere protein A (CENP-A; centromere identifier [CID]) localization in Drosophila melanogaster. We identified the proteins CAL1 and CENP-C as essential factors for CID assembly at the centromere. CID, CAL1, and CENP-C coimmunoprecipitate and are mutually dependent for centromere localization and function. We also identified the mitotic cyclin A (CYCA) and the anaphase-promoting complex (APC) inhibitor RCA1/Emi1 as regulators of centromere propagation. We show that CYCA is centromere localized and that CYCA and RCA1/Emi1 couple centromere assembly to the cell cycle through regulation of the fizzy-related/CDH1 subunit of the APC. Our findings identify essential components of the epigenetic machinery that ensures proper specification and propagation of the centromere and suggest a mechanism for coordinating centromere inheritance with cell division. PMID:19047461

  3. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation.

    Science.gov (United States)

    Erhardt, Sylvia; Mellone, Barbara G; Betts, Craig M; Zhang, Weiguo; Karpen, Gary H; Straight, Aaron F

    2008-12-01

    Centromeres are the structural and functional foundation for kinetochore formation, spindle attachment, and chromosome segregation. In this study, we isolated factors required for centromere propagation using genome-wide RNA interference screening for defects in centromere protein A (CENP-A; centromere identifier [CID]) localization in Drosophila melanogaster. We identified the proteins CAL1 and CENP-C as essential factors for CID assembly at the centromere. CID, CAL1, and CENP-C coimmunoprecipitate and are mutually dependent for centromere localization and function. We also identified the mitotic cyclin A (CYCA) and the anaphase-promoting complex (APC) inhibitor RCA1/Emi1 as regulators of centromere propagation. We show that CYCA is centromere localized and that CYCA and RCA1/Emi1 couple centromere assembly to the cell cycle through regulation of the fizzy-related/CDH1 subunit of the APC. Our findings identify essential components of the epigenetic machinery that ensures proper specification and propagation of the centromere and suggest a mechanism for coordinating centromere inheritance with cell division.

  4. Proteomics approach reveals mechanism underlying susceptibility of loquat fruit to sunburn during color changing period.

    Science.gov (United States)

    Jiang, Ji-Mou; Lin, Yong-Xiang; Chen, Yi-Yong; Deng, Chao-Jun; Gong, Hui-Wen; Xu, Qi-Zhi; Zheng, Shao-Quan; Chen, Wei

    2015-06-01

    The objective of this work was to investigate why loquat fruit peels are more sensitive to high temperature and strong sunlight, making them highly susceptible to sunburn, during the color changing period (CCP). Two dimensional gel electrophoresis (2-DE) of the fruit peel proteins was performed over three developmental periods, namely green fruit period (GFP), color changing period and yellow ripening period (YRP). Fifty-five protein spots with at least 2-fold differences in abundance were successfully identified by MALDI-TOF-TOF/MS. The identified proteins were divided into categories related to heat-shock response, stress response and defense, energy metabolism, photosynthesis and protein biosynthesis. The results showed that expression of proteins related to anaerobic respiration and photorespiration were increased while the proteins related to ROS scavenging, polyamine biosynthesis, defense pathogens and photosynthesis were decreased during CCP under heat stress. Our findings provide new insights into the molecular mechanism of loquat fruit susceptible to sunburn during CCP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm.

    Science.gov (United States)

    Tombu, Michael; Seiffert, Adriane E

    2011-04-01

    People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target-distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking--one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.

  6. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians

    KAUST Repository

    Wolfowicz, Iliona; Baumgarten, Sebastian; Voss, Philipp A.; Hambleton, Elizabeth A.; Voolstra, Christian R.; Hatta, Masayuki; Guse, Annika

    2016-01-01

    Symbiosis, defined as the persistent association between two distinct species, is an evolutionary and ecologically critical phenomenon facilitating survival of both partners in diverse habitats. The biodiversity of coral reef ecosystems depends on a functional symbiosis with photosynthetic dinoflagellates of the highly diverse genus Symbiodinium, which reside in coral host cells and continuously support their nutrition. The mechanisms underlying symbiont selection to establish a stable endosymbiosis in non-symbiotic juvenile corals are unclear. Here we show for the first time that symbiont selection patterns for larvae of two Acropora coral species and the model anemone Aiptasia are similar under controlled conditions. We find that Aiptasia larvae distinguish between compatible and incompatible symbionts during uptake into the gastric cavity and phagocytosis. Using RNA-Seq, we identify a set of candidate genes potentially involved in symbiosis establishment. Together, our data complement existing molecular resources to mechanistically dissect symbiont phagocytosis in cnidarians under controlled conditions, thereby strengthening the role of Aiptasia larvae as a powerful model for cnidarian endosymbiosis establishment.

  7. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    Science.gov (United States)

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Molecular mechanism of allosteric communication in Hsp70 revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Federica Chiappori

    Full Text Available Investigating ligand-regulated allosteric coupling between protein domains is fundamental to understand cell-life regulation. The Hsp70 family of chaperones represents an example of proteins in which ATP binding and hydrolysis at the Nucleotide Binding Domain (NBD modulate substrate recognition at the Substrate Binding Domain (SBD. Herein, a comparative analysis of an allosteric (Hsp70-DnaK and a non-allosteric structural homolog (Hsp110-Sse1 of the Hsp70 family is carried out through molecular dynamics simulations, starting from different conformations and ligand-states. Analysis of ligand-dependent modulation of internal fluctuations and local deformation patterns highlights the structural and dynamical changes occurring at residue level upon ATP-ADP exchange, which are connected to the conformational transition between closed and open structures. By identifying the dynamically responsive protein regions and specific cross-domain hydrogen-bonding patterns that differentiate Hsp70 from Hsp110 as a function of the nucleotide, we propose a molecular mechanism for the allosteric signal propagation of the ATP-encoded conformational signal.

  9. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics.

    Science.gov (United States)

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic; Jennings, Paul

    2015-12-25

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 μM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning.

    Science.gov (United States)

    Musselman, Kristin E; Roemmich, Ryan T; Garrett, Ben; Bastian, Amy J

    2016-05-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6-17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking pattern. In contrast, children under 12 yr of age did not re-learn faster on the next day after washout had occurred-they behaved as if they had never adapted their walking before. Re-learning could be improved in younger children when the adaptation time on day 1 was increased to allow more practice at the plateau of the adapted pattern, but never to adult-like levels. These results show that the ability to store a separate, adapted version of the same general motor pattern does not fully develop until adolescence, and furthermore, that the mechanisms underlying the retention and rapid re-learning of adapted motor patterns are distinct. © 2016 Musselman et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization.

    Directory of Open Access Journals (Sweden)

    Anna D Koromyslova

    2017-11-01

    Full Text Available Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42 were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14, allosteric interference (Nano-32, and violation of normal capsid morphology (Nano-26 and Nano-85. Finally, we showed that two Nanobodies (Nano-26 and Nano-85 not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great

  12. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization

    Science.gov (United States)

    2017-01-01

    Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to

  13. High Resolution Monitoring of River Bluff Erosion Reveals Failure Mechanisms and Geomorphically Effective Flows

    Directory of Open Access Journals (Sweden)

    Sara Ann Kelly

    2018-03-01

    Full Text Available Using a combination of Structure from Motion and time lapse photogrammetry, we document rapid river bluff erosion occurring in the Greater Blue Earth River (GBER basin, a muddy tributary to the sediment-impaired Minnesota River in south central Minnesota. Our datasets elucidated dominant bluff failure mechanisms and rates of bluff retreat in a transient system responding to ongoing streamflow increases and glacial legacy impacts. Specifically, we document the importance of fluvial scour, freeze–thaw, as well as other drivers of bluff erosion. We find that even small flows, a mere 30% of the two-year recurrence interval flow, are capable of causing bluff erosion. During our study period (2014–2017, the most erosion was associated with two large flood events with 13- and 25-year return periods. However, based on the frequency of floods and magnitude of bluff face erosion associated with floods over the last 78 years, the 1.2-year return interval flood has likely accomplished the most cumulative erosion, and is thus more geomorphically effective than larger magnitude floods. Flows in the GBER basin are nonstationary, increasing across the full range of return intervals. We find that management implications differ considerably depending on whether the bluff erosion-runoff power law exponent, γ, is greater than, equal to, or less than 1. Previous research has recommended installation of water retention sites in tributaries to the Minnesota River in order to reduce flows and sediment loading from river bluffs. Our findings support the notion that water retention would be an effective practice to reduce sediment loading and highlight the importance of managing for both runoff frequency and magnitude.

  14. Revealing molecular mechanisms by integrating high-dimensional functional screens with protein interaction data.

    Directory of Open Access Journals (Sweden)

    Angela Simeone

    2014-09-01

    Full Text Available Functional genomics screens using multi-parametric assays are powerful approaches for identifying genes involved in particular cellular processes. However, they suffer from problems like noise, and often provide little insight into molecular mechanisms. A bottleneck for addressing these issues is the lack of computational methods for the systematic integration of multi-parametric phenotypic datasets with molecular interactions. Here, we present Integrative Multi Profile Analysis of Cellular Traits (IMPACT. The main goal of IMPACT is to identify the most consistent phenotypic profile among interacting genes. This approach utilizes two types of external information: sets of related genes (IMPACT-sets and network information (IMPACT-modules. Based on the notion that interacting genes are more likely to be involved in similar functions than non-interacting genes, this data is used as a prior to inform the filtering of phenotypic profiles that are similar among interacting genes. IMPACT-sets selects the most frequent profile among a set of related genes. IMPACT-modules identifies sub-networks containing genes with similar phenotype profiles. The statistical significance of these selections is subsequently quantified via permutations of the data. IMPACT (1 handles multiple profiles per gene, (2 rescues genes with weak phenotypes and (3 accounts for multiple biases e.g. caused by the network topology. Application to a genome-wide RNAi screen on endocytosis showed that IMPACT improved the recovery of known endocytosis-related genes, decreased off-target effects, and detected consistent phenotypes. Those findings were confirmed by rescreening 468 genes. Additionally we validated an unexpected influence of the IGF-receptor on EGF-endocytosis. IMPACT facilitates the selection of high-quality phenotypic profiles using different types of independent information, thereby supporting the molecular interpretation of functional screens.

  15. Comprehensive genomic characterization of campylobacter genus reveals some underlying mechanisms for its genomic diversification.

    Directory of Open Access Journals (Sweden)

    Yizhuang Zhou

    Full Text Available Campylobacter species.are phenotypically diverse in many aspects including host habitats and pathogenicities, which demands comprehensive characterization of the entire Campylobacter genus to study their underlying genetic diversification. Up to now, 34 Campylobacter strains have been sequenced and published in public databases, providing good opportunity to systemically analyze their genomic diversities. In this study, we first conducted genomic characterization, which includes genome-wide alignments, pan-genome analysis, and phylogenetic identification, to depict the genetic diversity of Campylobacter genus. Afterward, we improved the tetranucleotide usage pattern-based naïve Bayesian classifier to identify the abnormal composition fragments (ACFs, fragments with significantly different tetranucleotide frequency profiles from its genomic tetranucleotide frequency profiles including horizontal gene transfers (HGTs to explore the mechanisms for the genetic diversity of this organism. Finally, we analyzed the HGTs transferred via bacteriophage transductions. To our knowledge, this study is the first to use single nucleotide polymorphism information to construct liable microevolution phylogeny of 21 Campylobacter jejuni strains. Combined with the phylogeny of all the collected Campylobacter species based on genome-wide core gene information, comprehensive phylogenetic inference of all 34 Campylobacter organisms was determined. It was found that C. jejuni harbors a high fraction of ACFs possibly through intraspecies recombination, whereas other Campylobacter members possess numerous ACFs possibly via intragenus recombination. Furthermore, some Campylobacter strains have undergone significant ancient viral integration during their evolution process. The improved method is a powerful tool for bacterial genomic analysis. Moreover, the findings would provide useful information for future research on Campylobacter genus.

  16. Musical training generalises across modalities and reveals efficient and adaptive mechanisms for reproducing temporal intervals.

    Science.gov (United States)

    Aagten-Murphy, David; Cappagli, Giulia; Burr, David

    2014-03-01

    Expert musicians are able to time their actions accurately and consistently during a musical performance. We investigated how musical expertise influences the ability to reproduce auditory intervals and how this generalises across different techniques and sensory modalities. We first compared various reproduction strategies and interval length, to examine the effects in general and to optimise experimental conditions for testing the effect of music, and found that the effects were robust and consistent across different paradigms. Focussing on a 'ready-set-go' paradigm subjects reproduced time intervals drawn from distributions varying in total length (176, 352 or 704 ms) or in the number of discrete intervals within the total length (3, 5, 11 or 21 discrete intervals). Overall, Musicians performed more veridical than Non-Musicians, and all subjects reproduced auditory-defined intervals more accurately than visually-defined intervals. However, Non-Musicians, particularly with visual stimuli, consistently exhibited a substantial and systematic regression towards the mean interval. When subjects judged intervals from distributions of longer total length they tended to regress more towards the mean, while the ability to discriminate between discrete intervals within the distribution had little influence on subject error. These results are consistent with a Bayesian model that minimizes reproduction errors by incorporating a central tendency prior weighted by the subject's own temporal precision relative to the current distribution of intervals. Finally a strong correlation was observed between all durations of formal musical training and total reproduction errors in both modalities (accounting for 30% of the variance). Taken together these results demonstrate that formal musical training improves temporal reproduction, and that this improvement transfers from audition to vision. They further demonstrate the flexibility of sensorimotor mechanisms in adapting to

  17. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms

    Science.gov (United States)

    Young, Jodi N.; Heureux, Ana M.C.; Sharwood, Robert E.; Rickaby, Rosalind E.M.; Morel, François M.M.; Whitney, Spencer M.

    2016-01-01

    While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat c), oxygenation (k cat o), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23–68 µM), SC/O (57–116mol mol−1), and K O (413–2032 µM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat c for each diatom Rubisco showed less variation (2.1–3.7s−1), thus averting the canonical trade-off typically observed between K C and k cat c for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily. PMID:27129950

  18. Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos.

    Directory of Open Access Journals (Sweden)

    Karen A Roddy

    2011-02-01

    Full Text Available Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint.

  19. Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    Science.gov (United States)

    Roddy, Karen A.; Prendergast, Patrick J.; Murphy, Paula

    2011-01-01

    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint. PMID:21386908

  20. Non-invasive Drosophila ECG recording by using eutectic gallium-indium alloy electrode: a feasible tool for future research on the molecular mechanisms involved in cardiac arrhythmia.

    Directory of Open Access Journals (Sweden)

    Po-Hung Kuo

    Full Text Available BACKGROUND: Drosophila heart tube is a feasible model for cardiac physiological research. However, obtaining Drosophila electrocardiograms (ECGs is difficult, due to the weak signals and limited contact area to apply electrodes. This paper presents a non-invasive Gallium-Indium (GaIn based recording system for Drosophila ECG measurement, providing the heart rate and heartbeat features to be observed. This novel, high-signal-quality system prolongs the recording time of insect ECGs, and provides a feasible platform for research on the molecular mechanisms involved in cardiovascular diseases. METHODS: In this study, two types of electrode, tungsten needle probes and GaIn electrodes, were used respectively to noiselessly conduct invasive and noninvasive ECG recordings of Drosophila. To further analyze electrode properties, circuit models were established and simulated. By using electromagnetic shielded heart signal acquiring system, consisted of analog amplification and digital filtering, the ECG signals of three phenotypes that have different heart functions were recorded without dissection. RESULTS AND DISCUSSION: The ECG waveforms of different phenotypes of Drosophila recorded invasively and repeatedly with n value (n>5 performed obvious difference in heart rate. In long period ECG recordings, non-invasive method implemented by GaIn electrodes acts relatively stable in both amplitude and period. To analyze GaIn electrode, the correctness of GaIn electrode model established by this paper was validated, presenting accuracy, stability, and reliability. CONCLUSIONS: Noninvasive ECG recording by GaIn electrodes was presented for recording Drosophila pupae ECG signals within a limited contact area and signal strength. Thus, the observation of ECG changes in normal and SERCA-depleted Drosophila over an extended period is feasible. This method prolongs insect survival time while conserving major ECG features, and provides a platform for

  1. Whole-genome sequencing reveals the mechanisms for evolution of streptomycin resistance in Lactobacillus plantarum.

    Science.gov (United States)

    Zhang, Fuxin; Gao, Jiayuan; Wang, Bini; Huo, Dongxue; Wang, Zhaoxia; Zhang, Jiachao; Shao, Yuyu

    2018-04-01

    In this research, we investigated the evolution of streptomycin resistance in Lactobacillus plantarum ATCC14917, which was passaged in medium containing a gradually increasing concentration of streptomycin. After 25 d, the minimum inhibitory concentration (MIC) of L. plantarum ATCC14917 had reached 131,072 µg/mL, which was 8,192-fold higher than the MIC of the original parent isolate. The highly resistant L. plantarum ATCC14917 isolate was then passaged in antibiotic-free medium to determine the stability of resistance. The MIC value of the L. plantarum ATCC14917 isolate decreased to 2,048 µg/mL after 35 d but remained constant thereafter, indicating that resistance was irreversible even in the absence of selection pressure. Whole-genome sequencing of parent isolates, control isolates, and isolates following passage was used to study the resistance mechanism of L. plantarum ATCC14917 to streptomycin and adaptation in the presence and absence of selection pressure. Five mutated genes (single nucleotide polymorphisms and structural variants) were verified in highly resistant L. plantarum ATCC14917 isolates, which were related to ribosomal protein S12, LPXTG-motif cell wall anchor domain protein, LrgA family protein, Ser/Thr phosphatase family protein, and a hypothetical protein that may correlate with resistance to streptomycin. After passage in streptomycin-free medium, only the mutant gene encoding ribosomal protein S12 remained; the other 4 mutant genes had reverted to the wild type as found in the parent isolate. Although the MIC value of L. plantarum ATCC14917 was reduced in the absence of selection pressure, it remained 128-fold higher than the MIC value of the parent isolate, indicating that ribosomal protein S12 may play an important role in streptomycin resistance. Using the mobile elements database, we demonstrated that streptomycin resistance-related genes in L. plantarum ATCC14917 were not located on mobile elements. This research offers a way of

  2. Development of a 3D bellows tracheal graft: mechanical behavior analysis, fabrication and an in vivo feasibility study

    International Nuclear Information System (INIS)

    Park, Jeong Hun; Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo; Kang, Hyun-Wook; Joo, Young Hoon

    2012-01-01

    Artificial tracheal grafts should have not only enough compressive strength to maintain an open tracheal lumen, but also sufficient flexibility for stable mechanical behavior, similar to the native trachea at the implant site. In this study, we developed a new 3D artificial tracheal graft using a bellows design for considering its mechanical behavior. To investigate the mechanical behavior of the bellows structure, finite element method (FEM) analysis in terms of longitudinal tension/compression, bending and radial compression was conducted. The bellows structure was then compared with the cylinder structure generally used for artificial tracheal grafts. The FEM analysis showed that the bellows had outstanding flexibility in longitudinal tension/compression and bending. Moreover, the bellows kept the lumen open without severe luminal deformation in comparison with the cylinder structure. A three-dimensional artificial tracheal graft with a bellows design was fabricated using indirect solid freeform fabrication technology, and the actual mechanical test was conducted to investigate the actual mechanical behavior of the bellows graft. The fabricated bellows graft was then applied to segmental tracheal reconstruction in a rabbit model to assess its applicability. The bellows graft was completely incorporated into newly regenerated connective tissue and no obstruction at the implanted site was observed for up to 8 weeks after implantation. The data suggested that the developed bellows tracheal graft could be a promising alternative for tracheal reconstruction. (paper)

  3. An analysis of the feasibility of carbon management policies as a mechanism to influence water conservation using optimization methods.

    Science.gov (United States)

    Wright, Andrew; Hudson, Darren

    2014-10-01

    Studies of how carbon reduction policies would affect agricultural production have found that there is a connection between carbon emissions and irrigation. Using county level data we develop an optimization model that accounts for the gross carbon emitted during the production process to evaluate how carbon reducing policies applied to agriculture would affect the choices of what to plant and how much to irrigate by producers on the Texas High Plains. Carbon emissions were calculated using carbon equivalent (CE) calculations developed by researchers at the University of Arkansas. Carbon reduction was achieved in the model through a constraint, a tax, or a subsidy. Reducing carbon emissions by 15% resulted in a significant reduction in the amount of water applied to a crop; however, planted acreage changed very little due to a lack of feasible alternative crops. The results show that applying carbon restrictions to agriculture may have important implications for production choices in areas that depend on groundwater resources for agricultural production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Azadirachtin(A) distinctively modulates subdomain 2 of actin - novel mechanism to induce depolymerization revealed by molecular dynamics study.

    Science.gov (United States)

    Pravin Kumar, R; Roopa, L; Sudheer Mohammed, M M; Kulkarni, Naveen

    2016-12-01

    Azadirachtin(A) (AZA), a potential insecticide from neem, binds to actin and induces depolymerization in Drosophila. AZA binds to the pocket same as that of Latrunculin A (LAT), but LAT inhibits actin polymerization by stiffening the actin structure and affects the ADP-ATP exchange. The mechanism by which AZA induces actin depolymerization is not clearly understood. Therefore, different computational experiments were conducted to delineate the precise mechanism of AZA-induced actin depolymerization. Molecular dynamics studies showed that AZA strongly interacted with subdomain 2 and destabilized the interactions between subdomain 2 of one actin and subdomains 1 and 4 of the adjacent actin, causing the separation of actin subunits. The separation was observed between subdomain 3 of subunit n and subdomain 4 of subunit n + 2. However, the specific triggering point for the separation of the subunits was the destabilization of direct interactions between subdomain 2 of subunit n (Arg39, Val45, Gly46 and Arg62) and subdomain 4 of subunit n + 2 (Asp286, Ile287, Asp288, Ile289, Asp244 and Lys291). These results reveal a unique mechanism of an actin filament modulator that induces depolymerization. This mechanism of AZA can be used to design similar molecules against mammalian actins for cancer therapy.

  5. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions

    Science.gov (United States)

    Kovacs, Erika; Harmat, Veronika; Tóth, Judit; Vértessy, Beáta G.; Módos, Károly; Kardos, József; Liliom, Károly

    2010-01-01

    Lipid-protein interactions are rarely characterized at a structural molecular level due to technical difficulties; however, the biological significance of understanding the mechanism of these interactions is outstanding. In this report, we provide mechanistic insight into the inhibitory complex formation of the lipid mediator sphingosylphosphorylcholine with calmodulin, the most central and ubiquitous regulator protein in calcium signaling. We applied crystallographic, thermodynamic, kinetic, and spectroscopic approaches using purified bovine calmodulin and bovine cerebral microsomal fraction to arrive at our conclusions. Here we present 1) a 1.6-Å resolution crystal structure of their complex, in which the sphingolipid occupies the conventional hydrophobic binding site on calmodulin; 2) a peculiar stoichiometry-dependent binding process: at low or high protein-to-lipid ratio calmodulin binds lipid micelles or a few lipid molecules in a compact globular conformation, respectively, and 3) evidence that the sphingolipid displaces calmodulin from its targets on cerebral microsomes. We have ascertained the specificity of the interaction using structurally related lipids as controls. Our observations reveal the structural basis of selective calmodulin inhibition by the sphingolipid. On the basis of the crystallographic and biophysical characterization of the calmodulin–sphingosylphosphorylcholine interaction, we propose a novel lipid-protein binding model, which might be applicable to other interactions as well.—Kovacs, E., Harmat, V., Tóth, J., Vértessy, B. G., Módos, K., Kardos, J., Liliom, K. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions. PMID:20522785

  6. TryCYCLE: A Prospective Study of the Safety and Feasibility of Early In-Bed Cycling in Mechanically Ventilated Patients.

    Directory of Open Access Journals (Sweden)

    Michelle E Kho

    Full Text Available The objective of this study was to assess the safety and feasibility of in-bed cycling started within the first 4 days of mechanical ventilation (MV to inform a future randomized clinical trial.We conducted a 33-patient prospective cohort study in a 21-bed adult academic medical-surgical intensive care unit (ICU in Hamilton, ON, Canada. We included adult patients (≥ 18 years receiving MV who walked independently pre-ICU. Our intervention was 30 minutes of in-bed supine cycling 6 days/week in the ICU. Our primary outcome was Safety (termination, measured as events prompting cycling termination; secondary Safety (disconnection or dislodgement outcomes included catheter/tube dislodgements. Feasibility was measured as consent rate and fidelity to intervention. For our primary outcome, we calculated the binary proportion and 95% confidence interval (CI.From 10/2013-8/2014, we obtained consent from 34 of 37 patients approached (91.9%, 33 of whom received in-bed cycling. Of those who cycled, 16(48.4% were female, the mean (SD age was 65.8(12.2 years, and APACHE II score was 24.3(6.7; 29(87.9% had medical admitting diagnoses. Cycling termination was infrequent (2.0%, 95% CI: 0.8%-4.9% and no device dislodgements occurred. Cycling began a median [IQR] of 3 [2, 4] days after ICU admission; patients received 5 [3, 8] cycling sessions with a median duration of 30.7 [21.6, 30.8] minutes per session. During 205 total cycling sessions, patients were receiving invasive MV (150 [73.1%], vasopressors (6 [2.9%], sedative or analgesic infusions (77 [37.6%] and dialysis (4 [2.0%].Early cycling within the first 4 days of MV among hemodynamically stable patients is safe and feasible. Research to evaluate the effect of early cycling on patient function is warranted.Clinicaltrials.gov: NCT01885442.

  7. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs).

    Science.gov (United States)

    Wang, Huizheng; Zhang, Kai; Zhu, Jie; Song, Weiwei; Zhao, Li; Zhang, Xiuguo

    2013-01-01

    Polyhydroxyalkanoates (PHAs) have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC), which belongs to (R)-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R)-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic. We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R)-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC. The data in our study reveal the regulatory mechanism of an (R)-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  8. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs.

    Directory of Open Access Journals (Sweden)

    Huizheng Wang

    Full Text Available Polyhydroxyalkanoates (PHAs have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC, which belongs to (R-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic.We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC.The data in our study reveal the regulatory mechanism of an (R-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  9. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support.

    Science.gov (United States)

    Yang, Kai-Chien; Yamada, Kathryn A; Patel, Akshar Y; Topkara, Veli K; George, Isaac; Cheema, Faisal H; Ewald, Gregory A; Mann, Douglas L; Nerbonne, Jeanne M

    2014-03-04

    Microarrays have been used extensively to profile transcriptome remodeling in failing human heart, although the genomic coverage provided is limited and fails to provide a detailed picture of the myocardial transcriptome landscape. Here, we describe sequencing-based transcriptome profiling, providing comprehensive analysis of myocardial mRNA, microRNA (miRNA), and long noncoding RNA (lncRNA) expression in failing human heart before and after mechanical support with a left ventricular (LV) assist device (LVAD). Deep sequencing of RNA isolated from paired nonischemic (NICM; n=8) and ischemic (ICM; n=8) human failing LV samples collected before and after LVAD and from nonfailing human LV (n=8) was conducted. These analyses revealed high abundance of mRNA (37%) and lncRNA (71%) of mitochondrial origin. miRNASeq revealed 160 and 147 differentially expressed miRNAs in ICM and NICM, respectively, compared with nonfailing LV. Among these, only 2 (ICM) and 5 (NICM) miRNAs are normalized with LVAD. RNASeq detected 18 480, including 113 novel, lncRNAs in human LV. Among the 679 (ICM) and 570 (NICM) lncRNAs differentially expressed with heart failure, ≈10% are improved or normalized with LVAD. In addition, the expression signature of lncRNAs, but not miRNAs or mRNAs, distinguishes ICM from NICM. Further analysis suggests that cis-gene regulation represents a major mechanism of action of human cardiac lncRNAs. The myocardial transcriptome is dynamically regulated in advanced heart failure and after LVAD support. The expression profiles of lncRNAs, but not mRNAs or miRNAs, can discriminate failing hearts of different pathologies and are markedly altered in response to LVAD support. These results suggest an important role for lncRNAs in the pathogenesis of heart failure and in reverse remodeling observed with mechanical support.

  10. The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Tse, Herman; Teng, Jade L L; Curreem, Shirly O T; Tsang, Alan K L; Fan, Rachel Y Y; Wong, Gilman K M; Huang, Yi; Loman, Nicholas J; Snyder, Lori A S; Cai, James J; Huang, Jian-Dong; Mak, William; Pallen, Mark J; Lok, Si; Yuen, Kwok-Yung

    2009-03-01

    Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish-borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals different mechanisms potentially important for its adaptation to diverse habitats of human and freshwater fish intestines and freshwater environments. The gene contents support its phenotypic properties and suggest that amino acids and fatty acids can be used as carbon sources. The extensive variety of transporters, including multidrug efflux and heavy metal transporters as well as genes involved in chemotaxis, may enable L. hongkongensis to survive in different environmental niches. Genes encoding urease, bile salts efflux pump, adhesin, catalase, superoxide dismutase, and other putative virulence factors-such as hemolysins, RTX toxins, patatin-like proteins, phospholipase A1, and collagenases-are present. Proteomes of L. hongkongensis HLHK9 cultured at 37 degrees C (human body temperature) and 20 degrees C (freshwater habitat temperature) showed differential gene expression, including two homologous copies of argB, argB-20, and argB-37, which encode two isoenzymes of N-acetyl-L-glutamate kinase (NAGK)-NAGK-20 and NAGK-37-in the arginine biosynthesis pathway. NAGK-20 showed higher expression at 20 degrees C, whereas NAGK-37 showed higher expression at 37 degrees C. NAGK-20 also had a lower optimal temperature for enzymatic activities and was inhibited by arginine probably as negative-feedback control. Similar duplicated copies of argB are also observed in bacteria from hot springs such as Thermus thermophilus, Deinococcus geothermalis, Deinococcus radiodurans, and Roseiflexus castenholzii, suggesting that similar mechanisms for temperature adaptation may be employed by other

  11. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease

    KAUST Repository

    Chauhan, Sakshi

    2016-09-02

    Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have previously reported histone H3 specific proteolytic clipping and a protein inhibitor in chicken liver. However, the sites of clipping are still not known very well. In this study, we attempt to identify clipping sites in histone H3 and to determine the mechanism of inhibition by stefin B protein, a cysteine protease inhibitor. By employing site-directed mutagenesis and in vitro biochemical assays, we have identified three distinct clipping sites in recombinant human histone H3 and its variants (H3.1, H3.3, and H3t). However, post-translationally modified histones isolated from chicken liver and Saccharomyces cerevisiae wild-type cells showed different clipping patterns. Clipping of histone H3 N-terminal tail at three sites occurs in a sequential manner. We have further observed that clipping sites are regulated by the structure of the N-terminal tail as well as the globular domain of histone H3. We also have identified the QVVAG region of stefin B protein to be very crucial for inhibition of the protease activity. Altogether, our comprehensive biochemical studies have revealed three distinct clipping sites in histone H3 and their regulation by the structure of histone H3, histone modifications marks, and stefin B.

  12. Feasible Histories, Maximum Entropy

    International Nuclear Information System (INIS)

    Pitowsky, I.

    1999-01-01

    We consider the broadest possible consistency condition for a family of histories, which extends all previous proposals. A family that satisfies this condition is called feasible. On each feasible family of histories we choose a probability measure by maximizing entropy, while keeping the probabilities of commuting histories to their quantum mechanical values. This procedure is justified by the assumption that decoherence increases entropy. Finally, a criterion for identifying the nearly classical families is proposed

  13. The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent.

    Science.gov (United States)

    Pan, Hua-Qi; Li, Qing-Lian; Hu, Jiang-Chun

    2017-04-10

    A Bacillus sp. 9912 mutant, 9912D, was approved as a new biological fungicide agent by the Ministry of Agriculture of the People's Republic of China in 2016 owing to its excellent inhibitory effect on various plant pathogens and being environment-friendly. Here, we present the genome of 9912D with a circular chromosome having 4436 coding DNA sequences (CDSs), and a circular plasmid encoding 59 CDSs. This strain was finally designated as Bacillus velezensis based on phylogenomic analyses. Genome analysis revealed a total of 19 candidate gene clusters involved in secondary metabolite biosynthesis, including potential new type II lantibiotics. The absence of fengycin biosynthetic gene cluster is noteworthy. Our data offer insights into the genetic, biological and physiological characteristics of this strain and aid in deeper understanding of its biocontrol mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Monitoring of Structures and Mechanical Systems Using Virtual Visual Sensors for Video Analysis: Fundamental Concept and Proof of Feasibility

    Directory of Open Access Journals (Sweden)

    Thomas Schumacher

    2013-12-01

    Full Text Available Structural health monitoring (SHM has become a viable tool to provide owners of structures and mechanical systems with quantitative and objective data for maintenance and repair. Traditionally, discrete contact sensors such as strain gages or accelerometers have been used for SHM. However, distributed remote sensors could be advantageous since they don’t require cabling and can cover an area rather than a limited number of discrete points. Along this line we propose a novel monitoring methodology based on video analysis. By employing commercially available digital cameras combined with efficient signal processing methods we can measure and compute the fundamental frequency of vibration of structural systems. The basic concept is that small changes in the intensity value of a monitored pixel with fixed coordinates caused by the vibration of structures can be captured by employing techniques such as the Fast Fourier Transform (FFT. In this paper we introduce the basic concept and mathematical theory of this proposed so-called virtual visual sensor (VVS, we present a set of initial laboratory experiments to demonstrate the accuracy of this approach, and provide a practical in-service monitoring example of an in-service bridge. Finally, we discuss further work to improve the current methodology.

  15. Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity.

    Science.gov (United States)

    Mao, Peng; Brown, Alexander J; Malc, Ewa P; Mieczkowski, Piotr A; Smerdon, Michael J; Roberts, Steven A; Wyrick, John J

    2017-10-01

    DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers. © 2017 Mao et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Feasibility study into the use of mechanical choppers to alter the natural time structure of the APS

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The prospect of extending static x-ray measurements into the time domain is an exciting one indeed. The foundations for this extension have already been laid by some very innovative experiments performed at existing storage ring sources. The enormous enhancement in brilliance that the APS will afford over existing sources will, I believe, foster a tremendous growth in the area of time-resolved x-ray experimentation. The growing interest in this field is evidenced by both the number of participants and their enthusiasm at an APS Workshop on Time-Resolved Studies and Ultrafast Detectors held on January 25-26, 1988, at Argonne. We present here what may be a viable approach to the problem of altering the natural time structure of the APS with a minimal impact on other users. Our technique involves placing 19 of the 20 circulating bunches of positrons in (nearly) contiguous RF buckets and the remaining one bunch 180 degrees around the ring from this pack. The method we are advocating has several advantages over other schemes (such as wobblers) in that it is a passive technique: there are no external forces on the particle beam to destroy its stability, emittance, or lifetime properties, and it will not limit the total number of bunches in the beam to one (or a few) in order to get long dark periods between x-ray bursts. In this configuaration is should be possible to transmit the lone bunch and mechanically shutter the remaining 19 bunches with a chopper running at approximately 18,000 RPM. Although high, such revolution frequencies are achieved in neutron choppers which are generally much more massive than what is envisioned for an x-ray chopper

  17. Meta-analysis reveals host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia

    KAUST Repository

    Cui, Guoxin

    2018-02-22

    The metabolic symbiosis with photosynthetic algae of the genus Symbiodinium allows corals to thrive in the oligotrophic environments of tropical seas. Many aspects of this relationship have been investigated using transcriptomic analyses in the emerging model organism Aiptasia. However, previous studies identified thousands of putatively symbiosis-related genes, making it difficult to disentangle symbiosis-induced responses from undesired experimental parameters. Using a meta-analysis approach, we identified a core set of 731 high-confidence symbiosis-associated genes that reveal host-dependent recycling of waste ammonium and amino acid synthesis as central processes in this relationship. Combining transcriptomic and metabolomic analyses, we show that symbiont-derived carbon enables host recycling of ammonium into nonessential amino acids. We propose that this provides a regulatory mechanism to control symbiont growth through a carbon-dependent negative feedback of nitrogen availability to the symbiont. The dependence of this mechanism on symbiont-derived carbon highlights the susceptibility of this symbiosis to changes in carbon translocation, as imposed by environmental stress.

  18. Deciding where to attend: Large-scale network mechanisms underlying attention and intention revealed by graph-theoretic analysis.

    Science.gov (United States)

    Liu, Yuelu; Hong, Xiangfei; Bengson, Jesse J; Kelley, Todd A; Ding, Mingzhou; Mangun, George R

    2017-08-15

    The neural mechanisms by which intentions are transformed into actions remain poorly understood. We investigated the network mechanisms underlying spontaneous voluntary decisions about where to focus visual-spatial attention (willed attention). Graph-theoretic analysis of two independent datasets revealed that regions activated during willed attention form a set of functionally-distinct networks corresponding to the frontoparietal network, the cingulo-opercular network, and the dorsal attention network. Contrasting willed attention with instructed attention (where attention is directed by external cues), we observed that the dorsal anterior cingulate cortex was allied with the dorsal attention network in instructed attention, but shifted connectivity during willed attention to interact with the cingulo-opercular network, which then mediated communications between the frontoparietal network and the dorsal attention network. Behaviorally, greater connectivity in network hubs, including the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, and the inferior parietal lobule, was associated with faster reaction times. These results, shown to be consistent across the two independent datasets, uncover the dynamic organization of functionally-distinct networks engaged to support intentional acts. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Transcriptomic analysis of tail regeneration in the lizard Anolis carolinensis reveals activation of conserved vertebrate developmental and repair mechanisms.

    Directory of Open Access Journals (Sweden)

    Elizabeth D Hutchins

    Full Text Available Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326 differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22 unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However, high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip. These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies.

  20. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest

    Science.gov (United States)

    Arenz, Stefan; Bock, Lars V.; Graf, Michael; Innis, C. Axel; Beckmann, Roland; Grubmüller, Helmut; Vaiana, Andrea C.; Wilson, Daniel N.

    2016-07-01

    Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation.

  1. Quantitative proteomics revealed partial fungistatic mechanism of ammonia against conidial germination of nematode-trapping fungus Arthrobotrys oligospora ATCC24927.

    Science.gov (United States)

    Liu, Tong; Tian, Dong-Wei; Zou, Li-Juan; Liu, Fang-Yu; Can, Qi-Yan; Yang, Jin-Kui; Xu, Jian-Ping; Huang, Xiao-Wei; Xi, Jia-Qin; Zhu, Ming-Liang; Mo, Ming-He; Zhang, Ke-Qin

    2018-05-01

    Ammonia is one of the fungistatic factors in soil that can suppress conidial germination, but the molecular mechanism underlying the suppression is unknown. In this study, the proteomes of fungistatic conidia, fresh conidia and germinated conidia of Arthrobotrys oligospora ATCC24927 were determined and quantified. The protein expression profile of fungistatic conidia was significantly different from those in the other two conditions. 281 proteins were down expressed in fungistatic conidia and characterized by GO annotation. Gene transcription analysis and inhibition of puromycin (a protein translation inhibitor) on conidial germination suggested that down expression of 33 protein translation related proteins might well result in repression of protein synthesis and inhibition of conidial germination. In addition, 16 down-expressed proteins were mapped to the Ras/mitogen-activated protein (Ras/MAP) regulatory networks which regulate conidial DNA synthesis. The conidial DNA synthesis was found to be definitely inhibited under by ammonia, and function studies of two Ras/MAP proteins by using knock-out strains provided partial evidence that Ras/MAP pathway regulate the conidial germination. These results suggested that down-expression of Ras/MAP related proteins might result in inhibition of DNA synthesis and finally result in inhibition conidial germination. This study revealed partial fungistatic mechanism of ammonia against conidial germination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Comparison of closely related, uncultivated Coxiella tick endosymbiont population genomes reveals clues about the mechanisms of symbiosis.

    Science.gov (United States)

    Tsementzi, Despina; Castro Gordillo, Juan; Mahagna, Mustafa; Gottlieb, Yuval; Konstantinidis, Konstantinos T

    2018-05-01

    Understanding the symbiotic interaction between Coxiella-like endosymbionts (CLE) and their tick hosts is challenging due to lack of isolates and difficulties in tick functional assays. Here we sequenced the metagenome of a CLE population from wild Rhipicephalus sanguineus ticks (CRs) and compared it to the previously published genome of its close relative, CLE of R. turanicus (CRt). The tick hosts are closely related sympatric species, and their two endosymbiont genomes are highly similar with only minor differences in gene content. Both genomes encode numerous pseudogenes, consistent with an ongoing genome reduction process. In silico flux balance metabolic analysis (FBA) revealed the excess production of L-proline for both genomes, indicating a possible proline transport from Coxiella to the tick. Additionally, both CR genomes encode multiple copies of the proline/betaine transporter, proP gene. Modelling additional Coxiellaceae members including other tick CLE, did not identify proline as an excreted metabolite. Although both CRs and CRt genomes encode intact B vitamin synthesis pathway genes, which are presumed to underlay the mechanism of CLE-tick symbiosis, the FBA analysis indicated no changes for their products. Therefore, this study provides new testable hypotheses for the symbiosis mechanism and a better understanding of CLE genome evolution and diversity. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Science.gov (United States)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R.; Foulongne-Oriol, Marie; Lombard, Vincent; Nagye, Laszlo G.; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L.; Bailey, Andrew M.; Billette, Christophe; Coutinho, Pedro M.; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hildén, Kristiina; Kües, Ursula; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Murat, Claude; Riley, Robert W.; Salamov, Asaf A.; Schmutz, Jeremy; Subramanian, Venkataramanan; Wösten, Han A. B.; Xu, Jianping; Eastwood, Daniel C.; Foster, Gary D.; Sonnenberg, Anton S. M.; Cullen, Dan; de Vries, Ronald P.; Lundell, Taina; Hibbett, David S.; Henrissat, Bernard; Burton, Kerry S.; Kerrigan, Richard W.; Challen, Michael P.; Grigoriev, Igor V.; Martin, Francis

    2012-01-01

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the “button mushroom” forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics. PMID:23045686

  4. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R.; Foulongne-Oriol, Marie; Lombard, Vincent; Nagy, Laszlo G.; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L.; Bailey, Andrew M.; Billette, Christophe; Coutinho, Pedro M.; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hilden, Kristiina; Kues, Ursula; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Murat, Claude; Riley, Robert W.; Salamov, Asaf A.; Schmutz, Jeremy; Subramanian, Venkataramanan; Wosten, Han A. B.; Xu, Jianping; Eastwood, Daniel C.; Foster, Gary D.; Sonnenberg, Anton S. M.; Cullen, Dan; de Vries, Ronald P.; Lundell, Taina; Hibbett, David S.; Henrissat, Bernard; Burton, Kerry S.; Kerrigan, Richard W.; Challen, Michael P.; Grigoriev, Igor V.; Martin, Francis

    2012-04-27

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the button mushroom forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.

  5. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes.

    Science.gov (United States)

    Thybert, David; Roller, Maša; Navarro, Fábio C P; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C; Laukaitis, Christina M; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M; Odom, Duncan T; Flicek, Paul

    2018-04-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli , which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. © 2018 Thybert et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche.

    Science.gov (United States)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R; Foulongne-Oriol, Marie; Lombard, Vincent; Nagy, Laszlo G; Ohm, Robin A; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L; Bailey, Andrew M; Billette, Christophe; Coutinho, Pedro M; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hildén, Kristiina; Kües, Ursula; Labutti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lucas, Susan M; Murat, Claude; Riley, Robert W; Salamov, Asaf A; Schmutz, Jeremy; Subramanian, Venkataramanan; Wösten, Han A B; Xu, Jianping; Eastwood, Daniel C; Foster, Gary D; Sonnenberg, Anton S M; Cullen, Dan; de Vries, Ronald P; Lundell, Taina; Hibbett, David S; Henrissat, Bernard; Burton, Kerry S; Kerrigan, Richard W; Challen, Michael P; Grigoriev, Igor V; Martin, Francis

    2012-10-23

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.

  7. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes

    Science.gov (United States)

    Thybert, David; Roller, Maša; Navarro, Fábio C.P.; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C.; Laukaitis, Christina M.; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A.; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J.; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M.; Odom, Duncan T.; Flicek, Paul

    2018-01-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. PMID:29563166

  8. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation.

    Directory of Open Access Journals (Sweden)

    Peter Rellos

    2010-07-01

    Full Text Available Long-term potentiation (LTP, a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM-dependent kinase II (CaMKII. CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIdelta/Ca2+/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIdelta/Ca2+/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix alphaD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the Web plugin are available in Text S1.

  9. Dynamic features of apo and bound HIV-Nef protein reveal the anti-HIV dimerization inhibition mechanism.

    Science.gov (United States)

    Moonsamy, Suri; Bhakat, Soumendranath; Soliman, Mahmoud E S

    2015-01-01

    The first account on the dynamic features of Nef or negative factor, a small myristoylated protein located in the cytoplasm believes to increase HIV-1 viral titer level, is reported herein. Due to its major role in HIV-1 pathogenicity, Nef protein is considered an emerging target in anti-HIV drug design and discovery process. In this study, comparative long-range all-atom molecular dynamics simulations were employed for apo and bound protein to unveil molecular mechanism of HIV-Nef dimerization and inhibition. Results clearly revealed that B9, a newly discovered Nef inhibitor, binds at the dimeric interface of Nef protein and caused significant separation between orthogonally opposed residues, namely Asp108, Leu112 and Gln104. Large differences in magnitudes were observed in the radius of gyration (∼1.5 Å), per-residue fluctuation (∼2 Å), C-alpha deviations (∼2 Å) which confirm a comparatively more flexible nature of apo conformation due to rapid dimeric association. Compared to the bound conformer, a more globally correlated motion in case of apo structure of HIV-Nef confirms the process of dimeric association. This clearly highlights the process of inhibition as a result of ligand binding. The difference in principal component analysis (PCA) scatter plot and per-residue mobility plot across first two normal modes further justifies the same findings. The in-depth dynamic analyses of Nef protein presented in this report would serve crucial in understanding its function and inhibition mechanisms. Information on inhibitor binding mode would also assist in designing of potential inhibitors against this important HIV target.

  10. Mechanism of porcine liver xanthine oxidoreductase mediated N-oxide reduction of cyadox as revealed by docking and mutagenesis studies.

    Directory of Open Access Journals (Sweden)

    Chigang Chen

    Full Text Available Xanthine oxidoreductase (XOR is a cytoplasmic molybdenum-containing oxidoreductase, catalyzing both endogenous purines and exogenous compounds. It is suggested that XOR in porcine hepatocytes catalyzes the N-oxide reduction of quinoxaline 1,4-di-N-oxides (QdNOs. To elucidate the molecular mechanism underlying this metabolism, the cDNA of porcine XOR was cloned and heterologously expressed in Spodoptera frugiperda insect cells. The bovine XOR, showing sequence identity of 91% to porcine XOR, was employed as template for homology modeling. By docking cyadox, a representative compound of QdNOs, into porcine XOR model, eight amino acid residues, Gly47, Asn352, Ser360, Arg427, Asp430, Asp431, Ser1227 and Lys1230, were located at distances of less than 4Å to cyadox. Site-directed mutagenesis was performed to analyze their catalytic functions. Compared with wild type porcine XOR, G47A, S360P, D431A, S1227A, and K1230A displayed altered kinetic parameters in cyadox reduction, similarly to that in xanthine oxidation, indicating these mutations influenced electron-donating process of xanthine before subsequent electron transfer to cyadox to fulfill the N-oxide reduction. Differently, R427E and D430H, both located in the 424-434 loop, exhibited a much lower K(m and a decreased V(max respectively in cyadox reduction. Arg427 may be related to the substrate binding of porcine XOR to cyadox, and Asp430 is suggested to be involved in the transfer of electron to cyadox. This study initially reveals the possible catalytic mechanism of porcine XOR in cyadox metabolism, providing with novel insights into the structure-function relationship of XOR in the reduction of exogenous di-N-oxides.

  11. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  12. Feasibility study

    International Nuclear Information System (INIS)

    Gibbs, P.; Kalas, P.

    1975-01-01

    The feasibility study itself examines the technical, economic and financial implications of a nuclear power station in depth so as to make sure that nuclear power is the right course to take. This means that it is quite an expensive operation and it is to avoid wasting this money that a pre-feasibility study is carried out. This preliminary study should eliminate cases where the electrical system cannot absorb the capacity of a nuclear station of commercial size, where other sources of power such as hydro-electricity, gas or cheap coal would make nuclear obviously uneconomic or where no suitable sites exist. If this first rather simple survey shows that nuclear power is a credible solution to a utilities need for electricity or heat production plant, then the next stage is a full feasibility study. (orig./TK) [de

  13. Teaching assistants’ performance at identifying common introductory student difficulties in mechanics revealed by the Force Concept Inventory

    Directory of Open Access Journals (Sweden)

    Alexandru Maries

    2016-05-01

    Full Text Available The Force Concept Inventory (FCI has been widely used to assess student understanding of introductory mechanics concepts by a variety of educators and physics education researchers. One reason for this extensive use is that many of the items on the FCI have strong distractor choices which correspond to students’ alternate conceptions in mechanics. Instruction is unlikely to be effective if instructors do not know the common alternate conceptions of introductory physics students and explicitly take into account students’ initial knowledge states in their instructional design. Here, we discuss research involving the FCI to evaluate one aspect of the pedagogical content knowledge of teaching assistants (TAs: knowledge of introductory student alternate conceptions in mechanics as revealed by the FCI. For each item on the FCI, the TAs were asked to identify the most common incorrect answer choice of introductory physics students. This exercise was followed by a class discussion with the TAs related to this task, including the importance of knowing student difficulties in teaching and learning. Then, we used FCI pretest and post-test data from a large population (∼900 of introductory physics students to assess the extent to which TAs were able to identify alternate conceptions of introductory students related to force and motion. In addition, we carried out think-aloud interviews with graduate students who had more than two semesters of teaching experience in recitations to examine how they reason about the task. We find that while the TAs, on average, performed better than random guessing at identifying introductory students’ difficulties with FCI content, they did not identify many common difficulties that introductory physics students have after traditional instruction. We discuss specific alternate conceptions, the extent to which TAs are able to identify them, and results from the think-aloud interviews that provided valuable information

  14. Systems biology modeling reveals a possible mechanism of the tumor cell death upon oncogene inactivation in EGFR addicted cancers.

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhou

    Full Text Available Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK and phosphoinositol-3 kinase (PI3K/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential due to the elevated level of reactive oxygen species (ROS is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

  15. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    Science.gov (United States)

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  16. Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession.

    Science.gov (United States)

    Ma, Liyuan; Wang, Xingjie; Feng, Xue; Liang, Yili; Xiao, Yunhua; Hao, Xiaodong; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan

    2017-01-01

    The effect of co-culture microorganisms with different initial proportions on chalcopyrite bioleaching was investigated. Communities were rebuilt by six typical strains isolated from the same habitat. The results indicated, by community with more sulfur oxidizers at both 30 and 40°C, the final copper extraction rate was 19.8% and 6.5% higher, respectively, than that with more ferrous oxidizers. The variations of pH, redox potential, ferrous and copper ions in leachate also provided evidences that community with more sulfur oxidizers was more efficient. Community succession of free and attached cells revealed that initial proportions played decisive roles on community dynamics at 30°C, while communities shared similar structures, not relevant to initial proportions at 40°C. X-ray diffraction analysis confirmed different microbial functions on mineral surface. A mechanism model for chalcopyrite bioleaching was established coupling with community succession. This will provide theoretical basis for reconstructing an efficient community in industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G.

    Directory of Open Access Journals (Sweden)

    Terumasa Ikeda

    2018-04-01

    Full Text Available HIV-1 replication normally requires Vif-mediated neutralization of APOBEC3 antiviral enzymes. Viruses lacking Vif succumb to deamination-dependent and -independent restriction processes. Here, HIV-1 adaptation studies were leveraged to ask whether viruses with an irreparable vif deletion could develop resistance to restrictive levels of APOBEC3G. Several resistant viruses were recovered with multiple amino acid substitutions in Env, and these changes alone are sufficient to protect Vif-null viruses from APOBEC3G-dependent restriction in T cell lines. Env adaptations cause decreased fusogenicity, which results in higher levels of Gag-Pol packaging. Increased concentrations of packaged Pol in turn enable faster virus DNA replication and protection from APOBEC3G-mediated hypermutation of viral replication intermediates. Taken together, these studies reveal that a moderate decrease in one essential viral activity, namely Env-mediated fusogenicity, enables the virus to change other activities, here, Gag-Pol packaging during particle production, and thereby escape restriction by the antiviral factor APOBEC3G. We propose a new paradigm in which alterations in viral homeostasis, through compensatory small changes, constitute a general mechanism used by HIV-1 and other viral pathogens to escape innate antiviral responses and other inhibitions including antiviral drugs.

  18. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress.

    Science.gov (United States)

    Bekele, Elias A; Beshir, Wasiye F; Hertog, Maarten L A T M; Nicolai, Bart M; Geeraerd, Annemie H

    2015-11-01

    Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production. © 2015 Scandinavian Plant Physiology Society.

  19. Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici

    Energy Technology Data Exchange (ETDEWEB)

    Lamour, Kurt H.; Mudge, Joann; Gobena, Daniel; Hurtado-Gonzales, Oscar P.; Schmutz, Jeremy; Kuo, Alan; Miller, Neil A.; Rice, Brandon J.; Raffaele, Sylvain; Cano, Liliana M.; Bharti, Arvind K.; Donahoo, Ryan S.; Finely, Sabra; Huitema, Edgar; Hulvey, Jon; Platt, Darren; Salamov, Asaf; Savidor, Alon; Sharma, Rahul; Stam, Remco; Sotrey, Dylan; Thines, Marco; Win, Joe; Haas, Brian J.; Dinwiddie, Darrell L.; Jenkins, Jerry; Knight, James R.; Affourtit, Jason P.; Han, Cliff S.; Chertkov, Olga; Lindquist, Erika A.; Detter, Chris; Grigoriev, Igor V.; Kamoun, Sophien; Kingsmore, Stephen F.

    2012-02-07

    The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30percent of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.

  20. Feasibility of using 'lung density' values estimated from EIT images for clinical diagnosis of lung abnormalities in mechanically ventilated ICU patients.

    Science.gov (United States)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Iwashita, Yoshiaki; Brown, Brian H; Soma, Kazui

    2015-06-01

    This paper reports on the results of a study which compares lung density values obtained from electrical impedance tomography (EIT), clinical diagnosis and CT values (HU) within a region of interest in the lung. The purpose was to assess the clinical use of lung density estimation using EIT data. In 11 patients supported by a mechanical ventilator, the consistency of regional lung density measurements as estimated by EIT was validated to assess the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities recorded in the supine position between normal lungs and diseased lungs associated with pneumonia, atelectasis and pleural effusion (normal; 240 ± 71.7 kg m(-3), pneumonia; 306 ± 38.6 kg m(-3), atelectasis; 497 ± 130 kg m(-3), pleural effusion; 467 ± 113 kg m(-3): Steel-Dwass test, p EIT images. The results of CT and EIT images from five patients in an intensive care unit showed a correlation coefficient of 0.66 ± 0.13 between the CT values (HU) and the lung density values (kg m(-3)) obtained from EIT. These results indicate that it may be possible to obtain a quantitative value for regional lung density using EIT.

  1. Study of ethanol-induced Golgi disorganization reveals the potential mechanism of alcohol-impaired N-glycosylation

    Science.gov (United States)

    Casey, Carol A.; Bhat, Ganapati; Holzapfel, Melissa S.; Petrosyan, Armen

    2016-01-01

    Background It is known that ethanol (EtOH) and its metabolites have a negative effect on protein glycosylation. The fragmentation of the Golgi apparatus induced by alteration of the structure of largest Golgi matrix protein, giantin, is the major consequence of damaging effects of EtOH-metabolism on the Golgi, however, the link between this and abnormal glycosylation remains unknown. Because previously we have shown that Golgi morphology dictates glycosylation, we examined the effect EtOH administration has on function of Golgi residential enzymes involved in N-glycosylation. Methods HepG2 cells transfected with mouse ADH1 (VA-13 cells) were treated with 35 mM ethanol for 72 h. Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Characterization of Golgi-associated mannosyl (α-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (MGAT1), α-1,2-mannosidase (Man-I) and α-mannosidase II (Man-II) were performed in VA-13 cells and rat hepatocytes followed by 3D Structured Illumination Microscopy (SIM). Results First, we detected that EtOH administration results in the loss of sialylated N-glycans on asialoglycoprotein receptor, however the high mannose-type N-glycans are increased. Further analysis by 3D SIM microscopy revealed that EtOH treatment despite Golgi disorganization does not change cis-Golgi localization for Man-I, but does induce medial-to-cis relocation of MGAT1 and Man-II. Using different approaches, including electron microscopy, we revealed that EtOH treatment results in dysfunction of Arf1 GTPase followed by a deficiency in COPI vesicles at the Golgi. Silencing beta-COP or expression of GDP-bound mutant Arf1(T31N) mimics the EtOH effect on retaining MGAT1 and Man-II at the cis-Golgi, suggesting that (a) EtOH specifically blocks activation of Arf1, and (b) EtOH alters the proper localization of Golgi enzymes through impairment of COPI. Importantly, the level of MGAT1 was reduced, because likely MGAT1, contrary to Man-I and Man

  2. Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors.

    Directory of Open Access Journals (Sweden)

    Vítor Borges

    Full Text Available Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC, and the functionality of the cytotoxin (CT166 through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations and rapidly increasing in frequency (~23% mutants per 10 passages. RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1. This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to

  3. Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling.

    Science.gov (United States)

    Sturgis, James N; Niederman, Robert A

    2008-01-01

    Recent topographs of the intracytoplasmic membrane (ICM) of purple bacteria obtained by atomic force microscopy (AFM) have provided the first surface views of the native architecture of a multicomponent biological membrane at submolecular resolution, representing an important landmark in structural biology. A variety of species-dependent, closely packed arrangements of light-harvesting (LH) complexes was revealed: the most highly organized was found in Rhodobacter sphaeroides in which the peripheral LH2 antenna was seen either in large clusters or in fixed rows interspersed among ordered arrays of dimeric LH1-reaction center (RC) core complexes. A more random organization was observed in other species containing both the LH1 and LH2 complexes, as typified by Rhododspirillum photometricum with randomly packed monomeric LH1-RC core complexes intermingled with large, paracrystalline domains of LH2 antenna. Surprisingly, no structures that could be identified as the ATP synthase or cytochrome bc (1) complexes were observed, which may reflect their localization at ICM vesicle poles or in curved membrane areas, out of view from the flat regions imaged by AFM. This possible arrangement of energy transducing complexes has required a reassessment of energy tranduction mechanisms which place the cytochrome bc (1) complex in close association with the RC. Instead, more plausible proposals must account for the movement of quinone redox species over considerable membrane distances on appropriate time scales. AFM, together with atomic resolution structures are also providing the basis for molecular modeling of the ICM that is leading to an improved picture of the supramolecular organization of photosynthetic complexes, as well as the forces that drive their segregation into distinct domains.

  4. Revealing the mechanisms of protein disorder and N-glycosylation in CD44-hyaluronan binding using molecular simulation

    Directory of Open Access Journals (Sweden)

    Olgun eGuvench

    2015-06-01

    Full Text Available The extracellular N-terminal hyaluronan binding domain (HABD of CD44 is a small globular domain that confers hyaluronan (HA binding functionality to this large transmembrane glycoprotein. When recombinantly expressed by itself, HABD exists as a globular water-soluble protein that retains the capacity to bind HA. This has enabled atomic-resolution structural biology experiments that have revealed the structure of HABD and its binding mode with oligomeric HA. Such experiments have also pointed to an order-to-disorder transition in HABD that is associated with HA binding. However, it had remained unclear how this structural transition was involved in binding since it occurs in a region of HABD distant from the HA-binding site. Furthermore, HABD is known to be N-glycosylated, and such glycosylation can diminish HA binding when the associated N-glycans are capped with sialic acid residues. The intrinsic flexibility of disordered proteins and of N-glycans makes it difficult to apply experimental structural biology approaches to probe the molecular mechanisms of how the order-to-disorder transition and N-glycosylation can modulate HA binding by HABD. We review recent results from molecular dynamics simulations that provide atomic-resolution mechanistic understanding of such modulation to help bridge gaps between existing experimental binding and structural biology data. Findings from these simulations include: Tyr42 may function as a molecular switch that converts the HA binding site from a low affinity to a high affinity state; in the partially-disordered form of HABD, basic amino acids in the C-terminal region can gain sufficient mobility to form direct contacts with bound HA to further stabilize binding; and terminal sialic acids on covalently-attached N-glycans can form charge-paired hydrogen bonding interactions with basic amino acids that could otherwise bind to HA, thereby blocking HA binding to glycosylated CD44 HABD.

  5. Characterization of Trichome-Expressed BAHD Acyltransferases in Petunia axillaris Reveals Distinct Acylsugar Assembly Mechanisms within the Solanaceae1[OPEN

    Science.gov (United States)

    Uebler, Joseph B.; Liu, Xiaoxiao

    2017-01-01

    Acylsugars are synthesized in the glandular trichomes of the Solanaceae family and are implicated in protection against abiotic and biotic stress. Acylsugars are composed of either sucrose or glucose esterified with varying numbers of acyl chains of differing length. In tomato (Solanum lycopersicum), acylsugar assembly requires four acylsugar acyltransferases (ASATs) of the BAHD superfamily. Tomato ASATs catalyze the sequential esterification of acyl-coenzyme A thioesters to the R4, R3, R3ʹ, and R2 positions of sucrose, yielding a tetra-acylsucrose. Petunia spp. synthesize acylsugars that are structurally distinct from those of tomato. To explore the mechanisms underlying this chemical diversity, a Petunia axillaris transcriptome was mined for trichome preferentially expressed BAHDs. A combination of phylogenetic analyses, gene silencing, and biochemical analyses coupled with structural elucidation of metabolites revealed that acylsugar assembly is not conserved between tomato and petunia. In P. axillaris, tetra-acylsucrose assembly occurs through the action of four ASATs, which catalyze sequential addition of acyl groups to the R2, R4, R3, and R6 positions. Notably, in P. axillaris, PaxASAT1 and PaxASAT4 catalyze the acylation of the R2 and R6 positions of sucrose, respectively, and no clear orthologs exist in tomato. Similarly, petunia acylsugars lack an acyl group at the R3ʹ position, and congruently, an ortholog of SlASAT3, which catalyzes acylation at the R3ʹ position in tomato, is absent in P. axillaris. Furthermore, where putative orthologous relationships of ASATs are predicted between tomato and petunia, these are not supported by biochemical assays. Overall, these data demonstrate the considerable evolutionary plasticity of acylsugar biosynthesis. PMID:28701351

  6. Characterization of Trichome-Expressed BAHD Acyltransferases in Petunia axillaris Reveals Distinct Acylsugar Assembly Mechanisms within the Solanaceae.

    Science.gov (United States)

    Nadakuduti, Satya Swathi; Uebler, Joseph B; Liu, Xiaoxiao; Jones, A Daniel; Barry, Cornelius S

    2017-09-01

    Acylsugars are synthesized in the glandular trichomes of the Solanaceae family and are implicated in protection against abiotic and biotic stress. Acylsugars are composed of either sucrose or glucose esterified with varying numbers of acyl chains of differing length. In tomato ( Solanum lycopersicum ), acylsugar assembly requires four acylsugar acyltransferases (ASATs) of the BAHD superfamily. Tomato ASATs catalyze the sequential esterification of acyl-coenzyme A thioesters to the R4, R3, R3', and R2 positions of sucrose, yielding a tetra-acylsucrose. Petunia spp. synthesize acylsugars that are structurally distinct from those of tomato. To explore the mechanisms underlying this chemical diversity, a Petunia axillaris transcriptome was mined for trichome preferentially expressed BAHDs. A combination of phylogenetic analyses, gene silencing, and biochemical analyses coupled with structural elucidation of metabolites revealed that acylsugar assembly is not conserved between tomato and petunia. In P. axillaris , tetra-acylsucrose assembly occurs through the action of four ASATs, which catalyze sequential addition of acyl groups to the R2, R4, R3, and R6 positions. Notably, in P. axillaris , PaxASAT1 and PaxASAT4 catalyze the acylation of the R2 and R6 positions of sucrose, respectively, and no clear orthologs exist in tomato. Similarly, petunia acylsugars lack an acyl group at the R3' position, and congruently, an ortholog of SlASAT3, which catalyzes acylation at the R3' position in tomato, is absent in P. axillaris Furthermore, where putative orthologous relationships of ASATs are predicted between tomato and petunia, these are not supported by biochemical assays. Overall, these data demonstrate the considerable evolutionary plasticity of acylsugar biosynthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease

    KAUST Repository

    Chauhan, Sakshi; Mandal, Papita; Tomar, Raghuvir S.

    2016-01-01

    Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have

  8. Feasibility of using ‘lung density’ values estimated from EIT images for clinical diagnosis of lung abnormalities in mechanically ventilated ICU patients

    International Nuclear Information System (INIS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Iwashita, Yoshiaki; Brown, Brian H; Soma, Kazui

    2015-01-01

    This paper reports on the results of a study which compares lung density values obtained from electrical impedance tomography (EIT), clinical diagnosis and CT values (HU) within a region of interest in the lung. The purpose was to assess the clinical use of lung density estimation using EIT data. In 11 patients supported by a mechanical ventilator, the consistency of regional lung density measurements as estimated by EIT was validated to assess the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities recorded in the supine position between normal lungs and diseased lungs associated with pneumonia, atelectasis and pleural effusion (normal; 240 ± 71.7 kg m"−"3, pneumonia; 306 ± 38.6 kg m"−"3, atelectasis; 497 ± 130 kg m"−"3, pleural effusion; 467 ± 113 kg m"−"3: Steel–Dwass test, p < 0.05). In addition, in order to compare lung density with CT image pixels, the image resolution of CT images, which was originally 512 × 512 pixels, was changed to 16 × 16 pixels to match that of the EIT images. The results of CT and EIT images from five patients in an intensive care unit showed a correlation coefficient of 0.66 ± 0.13 between the CT values (HU) and the lung density values (kg m"−"3) obtained from EIT. These results indicate that it may be possible to obtain a quantitative value for regional lung density using EIT. (paper)

  9. Revealing the Molecular Structure and the Transport Mechanism at the Base of Primary Cilia Using Superresolution STED Microscopy

    Science.gov (United States)

    Yang, Tung-Lin

    the width of the basal body, distant from the potential Y-links region of the TZ. Moreover, IFT88 was intriguingly distributed in two distinct patterns, forming three puncta or a Y shape at the ciliary base found in human retinal pigment epithelial cells (RPE), human fibroblasts (HFF), mouse inner medullary collecting duct (IMCD) cells and mouse embryonic fibroblasts (MEFs). We hypothesize that the two distribution states of IFT88 correspond to the open and closed gating states of the TZ, where IFT particles aggregate to form three puncta when the gate is closed, and move to form the branches of the Y-shape pattern when the gate is open. Two reservoirs of IFT particles, correlating with phases of ciliary growth, were localized relative to the internal structure of the TZ. These subdiffraction images reveal unprecedented architectural details of the TZ, providing a basic structural framework for future functional studies. To visualize the dynamic movement of IFT particles within primary cilia, we further conducted superresolution live-cell imaging of IFT88 fused to EYFP in IMCD cells. Our findings, in particular, show IFT88 particles pass through the TZ at a reduced speed by approximately 50%, implying the gating mechanism is involved at this region to slow down IFT trafficking. Finally, we report the distinct transport pathways of IFT88 and Smo (Smoothened), an essential player to hedgehog signaling, to support our hypothesis that two proteins are transported in different mechanisms at the ciliary base, based on dual-color superresolution imaging.

  10. Transcriptome analysis reveals differences in mechanisms regulating cessation of luteal function in pregnant and non-pregnant dogs.

    Science.gov (United States)

    Zatta, Sophie; Rehrauer, Hubert; Gram, Aykut; Boos, Alois; Kowalewski, Mariusz Pawel

    2017-09-27

    In the domestic dog, corpora lutea (CL) are the only source of progesterone (P4), both in pregnant and non-pregnant cycles because there is no placental steroidogenesis. The absence of an endogenous luteolysin in absence of pregnancy results in long-lasting physiological pseudopregnancy, strongly contrasting with the acute luteolysis observed prepartum. The underlying biological mechanisms and the involvement of P4 signalling remain, however, not fully understood. Therefore, here, next-generation sequencing (RNA-Seq) was performed on CL from the late luteal phase and compared with normally luteolyzing CL collected at the prepartum P4 decrease. The contrast "luteal regression over luteolysis" yielded 1595 differentially expressed genes (DEG). The CL in late luteal regression were predominantly associated with functional terms linked to extracellular matrix (p = 5.52e-05). Other terms related to transcriptional activity (p = 2.45e-04), and steroid hormone signalling (p = 2.29e-04), which were more highly represented in late regression than during luteolysis. The prepartum luteolysis was associated with immune inflammatory responses (p = 2.87e-14), including acute-phase reaction (p = 4.10e-06). Immune system-related events were also more highly represented in CL derived from normal luteolysis (p = 7.02e-04), compared with those from dogs in which luteolysis was induced with an antigestagen (1480 DEG in total). Additionally, the withdrawal of P4 at mid-gestation resulted in 92 DEG; over-represented terms enriched in antigestagen-treated dogs were related to the inflammatory response (p = 0.005) or response to IL1 (p = 7.29e-05). Terms related to proliferation, e.g., centrosome organization (p = 0.002) and steroid metabolic processes (p = 0.001), prevailed at mid-gestation. Thereby, our results revealed the nature of luteotropic effects of P4 within canine CL. It appears that, even though they result in diminished steroidogenic output, the effect of

  11. Cutaneous nociceptors lack sensitisation, but reveal μ-opioid receptor-mediated reduction in excitability to mechanical stimulation in neuropathy

    Directory of Open Access Journals (Sweden)

    Schmidt Yvonne

    2012-11-01

    Full Text Available Abstract Background Peripheral nerve injuries often trigger a hypersensitivity to tactile stimulation. Behavioural studies demonstrated efficient and side effect-free analgesia mediated by opioid receptors on peripheral sensory neurons. However, mechanistic approaches addressing such opioid properties in painful neuropathies are lacking. Here we investigated whether opioids can directly inhibit primary afferent neuron transmission of mechanical stimuli in neuropathy. We analysed the mechanical thresholds, the firing rates and response latencies of sensory fibres to mechanical stimulation of their cutaneous receptive fields. Results Two weeks following a chronic constriction injury of the saphenous nerve, mice developed a profound mechanical hypersensitivity in the paw innervated by the damaged nerve. Using an in vitro skin-nerve preparation we found no changes in the mechanical thresholds and latencies of sensory fibres from injured nerves. The firing rates to mechanical stimulation were unchanged or reduced following injury. Importantly, μ-opioid receptor agonist [D-Ala2,N-Me-Phe4,Gly5]-ol-enkephalin (DAMGO significantly elevated the mechanical thresholds of nociceptive Aδ and C fibres. Furthermore, DAMGO substantially diminished the mechanically evoked discharges of C nociceptors in injured nerves. These effects were blocked by DAMGO washout and pre-treatment with the selective μ-opioid receptor antagonist Cys2-Tyr3-Orn5-Pen7-amide. DAMGO did not alter the responses of sensory fibres in uninjured nerves. Conclusions Our findings suggest that behaviourally manifested neuropathy-induced mechanosensitivity does not require a sensitised state of cutaneous nociceptors in damaged nerves. Yet, nerve injury renders nociceptors sensitive to opioids. Prevention of action potential generation or propagation in nociceptors might represent a cellular mechanism underlying peripheral opioid-mediated alleviation of mechanical hypersensitivity in neuropathy.

  12. Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups

    NARCIS (Netherlands)

    De Souza, F.A.; Fernández, F.; Delmas, N.S.; Declerck, S.

    2005-01-01

    The significance of anastomosis formation and the hyphal healing mechanism (HHM) for functionality and integrity of the arbuscular mycorrhizal (AM) fungal mycelial network remains poorly documented. Four Glomeraceae and three Gigasporaceae were cultured monoxenically. Anastomosis formation was

  13. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing

    International Nuclear Information System (INIS)

    Idrissi, Hosni; Kobler, Aaron; Amin-Ahmadi, Behnam; Schryvers, Dominique; Coulombier, Michael; Pardoen, Thomas; Galceran, Montserrat; Godet, Stéphane; Raskin, Jean-Pierre; Kübel, Christian

    2014-01-01

    In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected

  14. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Idrissi, Hosni, E-mail: hosni.idrissi@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-La-Neuve (Belgium); Kobler, Aaron [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Joint Research Laboratory Nanomaterials (KIT and TUD) at Technische Universität Darmstadt (TUD), Petersenstr. 32, 64287 Darmstadt (Germany); Amin-Ahmadi, Behnam; Schryvers, Dominique [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coulombier, Michael; Pardoen, Thomas [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-La-Neuve (Belgium); Galceran, Montserrat; Godet, Stéphane [Matters and Materials Department, Université Libre de Bruxelles, 50 Av. FD Roosevelt CP194/03, 1050 Brussels (Belgium); Raskin, Jean-Pierre [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Université catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Kübel, Christian [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-03-10

    In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected.

  15. Narrative review of the in vivo mechanics of the cervical spine after anterior arthrodesis as revealed by dynamic biplane radiography.

    Science.gov (United States)

    Anderst, William

    2016-01-01

    Arthrodesis is the standard of care for numerous pathologic conditions of the cervical spine and is performed over 150,000 times annually in the United States. The primary long-term concern after this surgery is adjacent segment disease (ASD), defined as new clinical symptoms adjacent to a previous fusion. The incidence of adjacent segment disease is approximately 3% per year, meaning that within 10 years of the initial surgery, approximately 25% of cervical arthrodesis patients require a second procedure to address symptomatic adjacent segment degeneration. Despite the high incidence of ASD, until recently, there was little data available to characterize in vivo adjacent segment mechanics during dynamic motion. This manuscript reviews recent advances in our knowledge of adjacent segment mechanics after cervical arthrodesis that have been facilitated by the use of dynamic biplane radiography. The primary observations from these studies are that current in vitro test paradigms often fail to replicate in vivo spine mechanics before and after arthrodesis, that intervertebral mechanics vary among cervical motion segments, and that joint arthrokinematics (i.e., the interactions between adjacent vertebrae) are superior to traditional kinematics measurements for identifying altered adjacent segment mechanics after arthrodesis. Future research challenges are identified, including improving the biofidelity of in vitro tests, determining the natural history of in vivo spine mechanics, conducting prospective longitudinal studies on adjacent segment kinematics and arthrokinematics after single and multiple-level arthrodesis, and creating subject-specific computational models to accurately estimate muscle forces and tissue loading in the spine during dynamic activities. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Relaxation mechanisms in a gold thin film on a compliant substrate as revealed by X-ray diffraction

    Science.gov (United States)

    Godard, Pierre; Renault, Pierre-Olivier; Faurie, Damien; Thiaudière, Dominique

    2017-05-01

    The fact that the polymeric substrate does not relax after a load jump allows realizing an original relaxation experiment of a metallic thin film. Thanks to the combination of two strain probes done at different scales, namely, X-ray synchrotron diffraction and digital image correlation techniques, the apparent activation volumes are monitored and their values help to capture leading deformation mechanisms in thin films. Such experiments have been performed on a nanocrystalline gold thin film, and deformation mechanisms involved during a biaxial straining have been distinguished between different texture components.

  17. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger

    OpenAIRE

    Manzanares-Miralles, Lara; Bayram, Ozgur; Sarikaya-Bayram, Ozlem; Smith, Elizabeth B.; Dolan, Stephen K.; Jones, Gary W.; Doyle, Sean

    2016-01-01

    Gliotoxin (GT) is a redox-active metabolite, produced by Aspergillus fumigatus,which inhibits the growth of other fungi. Here we demonstrate how Aspergillus niger responds to GT exposure. Quantitative proteomics revealed that GT dysregulated the abundance of 378 proteins including those involved in methionine metabolism and induced de novo abundance of two S-adenosylmethionine (SAM)-dependent methyltransferases. Increased abundance of enzymes S-adenosylhomocysteinase (p = 0.0018) ...

  18. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain

    OpenAIRE

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-01-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and con...

  19. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger.

    Science.gov (United States)

    Manzanares-Miralles, Lara; Sarikaya-Bayram, Özlem; Smith, Elizabeth B; Dolan, Stephen K; Bayram, Özgür; Jones, Gary W; Doyle, Sean

    2016-01-10

    Gliotoxin (GT) is a redox-active metabolite, produced by Aspergillus fumigatus, which inhibits the growth of other fungi. Here we demonstrate how Aspergillus niger responds to GT exposure. Quantitative proteomics revealed that GT dysregulated the abundance of 378 proteins including those involved in methionine metabolism and induced de novo abundance of two S-adenosylmethionine (SAM)-dependent methyltransferases. Increased abundance of enzymes S-adenosylhomocysteinase (p=0.0018) required for homocysteine generation from S-adenosylhomocysteine (SAH), and spermidine synthase (p=0.0068), involved in the recycling of Met, was observed. Analysis of Met-related metabolites revealed significant increases in the levels of Met and adenosine, in correlation with proteomic data. Methyltransferase MT-II is responsible for bisthiobis(methylthio)gliotoxin (BmGT) formation, deletion of MT-II abolished BmGT formation and led to increased GT sensitivity in A. niger. Proteomic analysis also revealed that GT exposure also significantly (pniger. Thus, it provides new opportunities to exploit the response of GT-naïve fungi to GT. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Toxicity of ozone and nitrogen dioxide to alveolar macrophages: comparative study revealing differences in their mechanism of toxic action

    NARCIS (Netherlands)

    Rietjens, I. M.; Poelen, M. C.; Hempenius, R. A.; Gijbels, M. J.; Alink, G. M.

    1986-01-01

    The toxicity of ozone and nitrogen dioxide is generally ascribed to their oxidative potential. In this study their toxic mechanism of action was compared using an intact cell model. Rat alveolar macrophages were exposed by means of gas diffusion through a Teflon film. In this in vitro system, ozone

  1. Double-lock ratchet mechanism revealing the role of  SER-344 in FoF1 ATP synthase

    KAUST Repository

    Beke-Somfai, T.; Lincoln, P.; Norden, B.

    2011-01-01

    In a majority of living organisms, FoF1 ATP synthase performs the fundamental process of ATP synthesis. Despite the simple net reaction formula, ADP+Pi→ATP+H2O, the detailed step-by-step mechanism of the reaction yet remains to be resolved owing

  2. Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Olsen, Jeppe A; Ahring, Philip K; Kastrup, Jette Sandholm Jensen

    2014-01-01

    Modulation of Cys loop receptor ion channels is a proven drug discovery strategy, but many underlying mechanisms of the mode of action are poorly understood. We report the x-ray structure of the acetylcholine-binding protein from Lymnaea stagnalis with NS9283, a stoichiometry selective positive...... on efficacy. The shared modulatory profile along with a binding site located in an extracellular subunit interface suggest that modulation via an agonist-like mechanism may be a common mechanism of action that potentially could apply to Cys loop receptors beyond the α4β2 nAChRs....... modulator that targets the α4-α4 interface of α4β2 nicotinic acetylcholine receptors (nAChRs). Together with homology modeling, mutational data, quantum mechanical calculations, and pharmacological studies on α4β2 nAChRs, the structure reveals a modulator binding mode that overlaps the α4-α4 interface...

  3. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression.

    Science.gov (United States)

    Dolega, M E; Delarue, M; Ingremeau, F; Prost, J; Delon, A; Cappello, G

    2017-01-27

    The surrounding microenvironment limits tumour expansion, imposing a compressive stress on the tumour, but little is known how pressure propagates inside the tumour. Here we present non-destructive cell-like microsensors to locally quantify mechanical stress distribution in three-dimensional tissue. Our sensors are polyacrylamide microbeads of well-defined elasticity, size and surface coating to enable internalization within the cellular environment. By isotropically compressing multicellular spheroids (MCS), which are spherical aggregates of cells mimicking a tumour, we show that the pressure is transmitted in a non-trivial manner inside the MCS, with a pressure rise towards the core. This observed pressure profile is explained by the anisotropic arrangement of cells and our results suggest that such anisotropy alone is sufficient to explain the pressure rise inside MCS composed of a single cell type. Furthermore, such pressure distribution suggests a direct link between increased mechanical stress and previously observed lack of proliferation within the spheroids core.

  4. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis.

    Science.gov (United States)

    Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin

    2017-01-01

    Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Gene Expression Analysis Reveals New Possible Mechanisms of Vancomycin-Induced Nephrotoxicity and Identifies Gene Markers Candidates

    OpenAIRE

    Dieterich, Christine; Puey, Angela; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C.; Ng, Hanna H.

    2008-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and...

  6. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones

    OpenAIRE

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 ...

  7. Atomistic detailed mechanism and weak cation-conducting activity of HIV-1 Vpu revealed by free energy calculations.

    Directory of Open Access Journals (Sweden)

    Siladitya Padhi

    Full Text Available The viral protein U (Vpu encoded by HIV-1 has been shown to assist in the detachment of virion particles from infected cells. Vpu forms cation-specific ion channels in host cells, and has been proposed as a potential drug target. An understanding of the mechanism of ion transport through Vpu is desirable, but remains limited because of the unavailability of an experimental structure of the channel. Using a structure of the pentameric form of Vpu--modeled and validated based on available experimental data--umbrella sampling molecular dynamics simulations (cumulative simulation time of more than 0.4 µs were employed to elucidate the energetics and the molecular mechanism of ion transport in Vpu. Free energy profiles corresponding to the permeation of Na+ and K+ were found to be similar to each other indicating lack of ion selection, consistent with previous experimental studies. The Ser23 residue is shown to enhance ion transport via two mechanisms: creating a weak binding site, and increasing the effective hydrophilic length of the channel, both of which have previously been hypothesized in experiments. A two-dimensional free energy landscape has been computed to model multiple ion permeation, based on which a mechanism for ion conduction is proposed. It is shown that only one ion can pass through the channel at a time. This, along with a stretch of hydrophobic residues in the transmembrane domain of Vpu, explains the slow kinetics of ion conduction. The results are consistent with previous conductance studies that showed Vpu to be a weakly conducting ion channel.

  8. Audio-based, unsupervised machine learning reveals cyclic changes in earthquake mechanisms in the Geysers geothermal field, California

    Science.gov (United States)

    Holtzman, B. K.; Paté, A.; Paisley, J.; Waldhauser, F.; Repetto, D.; Boschi, L.

    2017-12-01

    The earthquake process reflects complex interactions of stress, fracture and frictional properties. New machine learning methods reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Our methods are based closely on those developed for music information retrieval and voice recognition, using the spectrogram instead of the waveform directly. Unsupervised learning involves identification of patterns based on differences among signals without any additional information provided to the algorithm. Clustering of 46,000 earthquakes of $0.3

  9. Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems.

    Science.gov (United States)

    Adams, Alyssa; Zenil, Hector; Davies, Paul C W; Walker, Sara Imari

    2017-04-20

    Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.

  10. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes.

    Science.gov (United States)

    Subramanian, Devika; Natarajan, Jeyakumar

    2015-12-10

    Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Double-lock ratchet mechanism revealing the role of  SER-344 in FoF1 ATP synthase

    KAUST Repository

    Beke-Somfai, T.

    2011-03-07

    In a majority of living organisms, FoF1 ATP synthase performs the fundamental process of ATP synthesis. Despite the simple net reaction formula, ADP+Pi→ATP+H2O, the detailed step-by-step mechanism of the reaction yet remains to be resolved owing to the complexity of this multisubunit enzyme. Based on quantum mechanical computations using recent high resolution X-ray structures, we propose that during ATP synthesis the enzyme first prepares the inorganic phosphate for the γP-OADP bond-forming step via a double-proton transfer. At this step, the highly conserved αS344 side chain plays a catalytic role. The reaction thereafter progresses through another transition state (TS) having a planar ion configuration to finally form ATP. These two TSs are concluded crucial for ATP synthesis. Using stepwise scans and several models of the nucleotide-bound active site, some of the most important conformational changes were traced toward direction of synthesis. Interestingly, as the active site geometry progresses toward the ATP-favoring tight binding site, at both of these TSs, a dramatic increase in barrier heights is observed for the reverse direction, i.e., hydrolysis of ATP. This change could indicate a "ratchet" mechanism for the enzyme to ensure efficacy of ATP synthesis by shifting residue conformation and thus locking access to the crucial TSs.

  12. Trans-Binding Mechanism of Ubiquitin-like Protein Activation Revealed by a UBA5-UFM1 Complex

    Directory of Open Access Journals (Sweden)

    Walaa Oweis

    2016-09-01

    Full Text Available Modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs is a critical cellular process implicated in a variety of cellular states and outcomes. A prerequisite for target protein modification by a UBL is the activation of the latter by activating enzymes (E1s. Here, we present the crystal structure of the non-canonical homodimeric E1, UBA5, in complex with its cognate UBL, UFM1, and supporting biochemical experiments. We find that UBA5 binds to UFM1 via a trans-binding mechanism in which UFM1 interacts with distinct sites in both subunits of the UBA5 dimer. This binding mechanism requires a region C-terminal to the adenylation domain that brings UFM1 to the active site of the adjacent UBA5 subunit. We also find that transfer of UFM1 from UBA5 to the E2, UFC1, occurs via a trans mechanism, thereby requiring a homodimer of UBA5. These findings explicitly elucidate the role of UBA5 dimerization in UFM1 activation.

  13. Unexperienced mechanical effects of muscular fatigue can be predicted by the Central Nervous System as revealed by anticipatory postural adjustments.

    Science.gov (United States)

    Monjo, Florian; Forestier, Nicolas

    2014-09-01

    Muscular fatigue effects have been shown to be compensated by the implementation of adaptive compensatory neuromuscular strategies, resulting in modifications of the initial motion coordination. However, no studies have focused on the efficiency of the feedforward motor commands when muscular fatigue occurs for the first time during a particular movement. This study included 18 healthy subjects who had to perform arm-raising movements in a standing posture at a maximal velocity before and after a fatiguing procedure involving focal muscles. The arm-raising task implies the generation of predictive processes of control, namely Anticipatory Postural Adjustments (APAs), whose temporal and quantitative features have been shown to be dependent on the kinematics of the upcoming arm-raising movement. By altering significantly the kinematic profile of the focal movement with a fatiguing procedure, we sought to find out whether APAs scaled to the lower mechanical disturbance. APAs were measured using surface electromyography. Following the fatiguing procedure, acceleration peaks of the arm movement decreased by ~27%. APAs scaled to this lower fatigue-related disturbance during the very first trial post-fatigue, suggesting that the Central Nervous System can predict unexperienced mechanical effects of muscle fatigue. It is suggested that these results are accounted for by prediction processes in which the central integration of the groups III and IV afferents leads to an update of the internal model by remapping the relationship between focal motor command magnitude and the actual mechanical output.

  14. Single-Cell Analyses of ESCs Reveal Alternative Pluripotent Cell States and Molecular Mechanisms that Control Self-Renewal

    Directory of Open Access Journals (Sweden)

    Dmitri Papatsenko

    2015-08-01

    Full Text Available Analyses of gene expression in single mouse embryonic stem cells (mESCs cultured in serum and LIF revealed the presence of two distinct cell subpopulations with individual gene expression signatures. Comparisons with published data revealed that cells in the first subpopulation are phenotypically similar to cells isolated from the inner cell mass (ICM. In contrast, cells in the second subpopulation appear to be more mature. Pluripotency Gene Regulatory Network (PGRN reconstruction based on single-cell data and published data suggested antagonistic roles for Oct4 and Nanog in the maintenance of pluripotency states. Integrated analyses of published genomic binding (ChIP data strongly supported this observation. Certain target genes alternatively regulated by OCT4 and NANOG, such as Sall4 and Zscan10, feed back into the top hierarchical regulator Oct4. Analyses of such incoherent feedforward loops with feedback (iFFL-FB suggest a dynamic model for the maintenance of mESC pluripotency and self-renewal.

  15. An integrated lipidomics and metabolomics reveal nephroprotective effect and biochemical mechanism of Rheum officinale in chronic renal failure

    Science.gov (United States)

    Zhang, Zhi-Hao; Vaziri, Nosratola D.; Wei, Feng; Cheng, Xian-Long; Bai, Xu; Zhao, Ying-Yong

    2016-01-01

    Chronic renal failure (CRF) is a major public health problem worldwide. Earlier studies have revealed salutary effects of rhubarb extracts in CRF. In this study, we employed lipidomic and metabolomic approaches to identify the plasma biomarkers and to determine the effect of treatment with petroleum ether, ethyl acetate and n-butanol extracts of rhubarb in a rat model of CRF with adenine-induced chronic tubulointerstitial nephropathy. In addition, clinical biochemistry, histological evaluation and pro-fibrotic protein expression were analyzed. Significant changes were found between the CRF and control groups representing characteristic phenotypes of rats with CRF. Treatment with the three rhubarb extracts improved renal injury and dysfunction, either fully or partially reversed the plasma metabolites abnormalities and attenuated upregulation of pro-fibrotic proteins including TGF-β1, α-SMA, PAI-1, CTGF, FN and collagen-1. The nephroprotective effect of ethyl acetate extract was better than other extracts. The differential metabolites were closely associated with glycerophospholipid, fatty acid and amino acid metabolisms. The results revealed a strong link between renal tubulointerstitial fibrosis and glycerophospholipid metabolism and L-carnitine metabolism in the development of CRF. Amelioration of CRF with the three rhubarb extracts was associated with the delayed development and/or reversal the disorders in key metabolites associated with adenine-induced CRF. PMID:26903149

  16. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    Science.gov (United States)

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  17. Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis.

    Science.gov (United States)

    Zheng, Liwei; Ma, Juanjuan; Zhang, Lizhi; Gao, Cai; Zhang, Dong; Zhao, Caiping; Han, Mingyu

    2018-02-20

    Brassinosteroid is identified as an important hormone. However, information about brassinosteroid has not been fully elucidated, and few studies concerned its role in apple. The aim of this work was to study the role of brassinosteroid for apple tree growth. In our study, the effect of brassinosteroid on apple nursery tree was analyzed. The biomass, cell size and xylem content of apple nursery tree were obviously evaluated by brassinosteroid treatment; mineral elements contents, photosynthesis indexes, carbohydrate level and hormone contents were significantly high in brassinosteroid treated trees. To explore the molecular mechanisms of these phenotypic differences, iTRAQ-based quantitative proteomics were used to identify the expression profiles of proteins in apple nursery tree shoot tips in response to brassinosteroid at a key period (14days after brassinosteroid treatment). A total of 175 differentially expressed proteins were identified. They were mainly involved in chlorophyII biosynthesis, photosynthesis, carbohydrate metabolism, glycolysis, citric acid cycle, respiratory action, hormone signal, cell growth and ligin metabolism. The findings in this study indicate that brassinosteroid mediating apple nursery tree growth may be mainly through energy metabolism. Important biological processes identified here can be useful theoretical basis and provide new insights into the molecular mechanisms of brassinosteroid. Brassinosteroid is very important for plant growth and development. However, the molecular mechanism of brassinosteroid mediating growth process is not perfectly clear in plant, especially in apple nursery tree. We used a combination of physiological and bioinformatics analysis to investigate the effects of brassinosteroid on apple nursery tree growth and development. The data reported here demonstrated that brassinosteroid regulates apple nursery tree growth mainly through energy metabolism. Therefore it can provide a theoretical basis from energy

  18. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants.

    Directory of Open Access Journals (Sweden)

    Gustavo Gómez

    Full Text Available Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5'UTR-end mediates the functional import of Green Fluorescent Protein (GFP mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5'UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.

  19. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms.

    Directory of Open Access Journals (Sweden)

    Vemanna S Ramu

    Full Text Available In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses.

  20. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii

    Science.gov (United States)

    Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert; Nagy, Laszlo G.; Koehler, Gage; Ransdell, Anthony S.; Younus, Hina; Chow, Julianna; Chiniquy, Jennifer; Lipzen, Anna; Tritt, Andrew; Sun, Hui; Haridas, Sajeet; LaButti, Kurt; Ohm, Robin A.; Kües, Ursula; Blanchette, Robert A.; Grigoriev, Igor V.; Minto, Robert E.; Hibbett, David S.

    2015-01-01

    Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white rot fungus Cylindrobasidium torrendii and the brown rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. Cylindrobasidium torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. Fistulina hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition towards a brown rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. PMID:25683379

  1. Mechanism of SOS PR-domain autoinhibition revealed by single-molecule assays on native protein from lysate.

    Science.gov (United States)

    Lee, Young Kwang; Low-Nam, Shalini T; Chung, Jean K; Hansen, Scott D; Lam, Hiu Yue Monatrice; Alvarez, Steven; Groves, Jay T

    2017-04-28

    The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) plays a critical role in signal transduction by activating Ras. Here we introduce a single-molecule assay in which individual SOS molecules are captured from raw cell lysate using Ras-functionalized supported membrane microarrays. This enables characterization of the full-length SOS protein, which has not previously been studied in reconstitution due to difficulties in purification. Our measurements on the full-length protein reveal a distinct role of the C-terminal proline-rich (PR) domain to obstruct the engagement of allosteric Ras independently of the well-known N-terminal domain autoinhibition. This inhibitory role of the PR domain limits Grb2-independent recruitment of SOS to the membrane through binding of Ras·GTP in the SOS allosteric binding site. More generally, this assay strategy enables characterization of the functional behaviour of GEFs with single-molecule precision but without the need for purification.

  2. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Michael J.; Skorupski, Karen; Pellegrini, Maria; Chiorazzo, Michael G.; Taylor, Ronald K.; Kull, F. Jon (Dartmouth)

    2010-03-04

    Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 {angstrom} resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding that cis-palmitoleic acid reduces TCP and CT expression in V. cholerae and prevents ToxT from binding to DNA in vitro provides a direct link between the host environment of V. cholerae and regulation of virulence gene expression.

  3. Poly(ADP-ribose polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain

    Directory of Open Access Journals (Sweden)

    Prashanth Komirishetty

    2016-01-01

    Full Text Available Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose polymerase (PARP upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  4. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain.

    Science.gov (United States)

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-10-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  5. Domain activities of PapC usher reveal the mechanism of action of an Escherichia coli molecular machine.

    Science.gov (United States)

    Volkan, Ender; Ford, Bradley A; Pinkner, Jerome S; Dodson, Karen W; Henderson, Nadine S; Thanassi, David G; Waksman, Gabriel; Hultgren, Scott J

    2012-06-12

    P pili are prototypical chaperone-usher pathway-assembled pili used by Gram-negative bacteria to adhere to host tissues. The PapC usher contains five functional domains: a transmembrane β-barrel, a β-sandwich Plug, an N-terminal (periplasmic) domain (NTD), and two C-terminal (periplasmic) domains, CTD1 and CTD2. Here, we delineated usher domain interactions between themselves and with chaperone-subunit complexes and showed that overexpression of individual usher domains inhibits pilus assembly. Prior work revealed that the Plug domain occludes the pore of the transmembrane domain of a solitary usher, but the chaperone-adhesin-bound usher has its Plug displaced from the pore, adjacent to the NTD. We demonstrate an interaction between the NTD and Plug domains that suggests a biophysical basis for usher gating. Furthermore, we found that the NTD exhibits high-affinity binding to the chaperone-adhesin (PapDG) complex and low-affinity binding to the major tip subunit PapE (PapDE). We also demonstrate that CTD2 binds with lower affinity to all tested chaperone-subunit complexes except for the chaperone-terminator subunit (PapDH) and has a catalytic role in dissociating the NTD-PapDG complex, suggesting an interplay between recruitment to the NTD and transfer to CTD2 during pilus initiation. The Plug domain and the NTD-Plug complex bound all of the chaperone-subunit complexes tested including PapDH, suggesting that the Plug actively recruits chaperone-subunit complexes to the usher and is the sole recruiter of PapDH. Overall, our studies reveal the cooperative, active roles played by periplasmic domains of the usher to initiate, grow, and terminate a prototypical chaperone-usher pathway pilus.

  6. Mechanisms of Acquired Drug Resistance to the HDAC6 Selective Inhibitor Ricolinostat Reveals Rational Drug-Drug Combination with Ibrutinib.

    Science.gov (United States)

    Amengual, Jennifer E; Prabhu, Sathyen A; Lombardo, Maximilian; Zullo, Kelly; Johannet, Paul M; Gonzalez, Yulissa; Scotto, Luigi; Serrano, Xavier Jirau; Wei, Ying; Duong, Jimmy; Nandakumar, Renu; Cremers, Serge; Verma, Akanksha; Elemento, Olivier; O'Connor, Owen A

    2017-06-15

    Purpose: Pan-class I/II histone deacetylase (HDAC) inhibitors are effective treatments for select lymphomas. Isoform-selective HDAC inhibitors are emerging as potentially more targeted agents. ACY-1215 (ricolinostat) is a first-in-class selective HDAC6 inhibitor. To better understand the discrete function of HDAC6 and its role in lymphoma, we developed a lymphoma cell line resistant to ACY-1215. Experimental Design: The diffuse large B-cell lymphoma cell line OCI-Ly10 was exposed to increasing concentrations of ACY-1215 over an extended period of time, leading to the development of a resistant cell line. Gene expression profiling (GEP) was performed to investigate differentially expressed genes. Combination studies of ACY-1215 and ibrutinib were performed in cell lines, primary human lymphoma tissue, and a xenograft mouse model. Results: Systematic incremental increases in drug exposure led to the development of distinct resistant cell lines with IC 50 values 10- to 20-fold greater than that for parental lines. GEP revealed upregulation of MAPK10, HELIOS, HDAC9, and FYN, as well as downregulation of SH3BP5 and LCK. Gene-set enrichment analysis (GSEA) revealed modulation of the BTK pathway. Ibrutinib was found to be synergistic with ACY-1215 in cell lines as well as in 3 primary patient samples of lymphoma. In vivo confirmation of antitumor synergy was demonstrated with a xenograft of DLBCL. Conclusions: The development of this ACY-1215-resistant cell line has provided valuable insights into the mechanistic role of HDAC6 in lymphoma and offered a novel method to identify rational synergistic drug combinations. Translation of these findings to the clinic is underway. Clin Cancer Res; 23(12); 3084-96. ©2016 AACR . ©2016 American Association for Cancer Research.

  7. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics

    Directory of Open Access Journals (Sweden)

    Sijia Wei

    2017-05-01

    Full Text Available Palmella stage is critical for some unicellular algae to survive in extreme environments. The halotolerant algae Dunaliella salina is a good single-cell model for studying plant adaptation to high salinity. To investigate the molecular adaptation mechanism in salinity shock-induced palmella formation, we performed a comprehensive physiological, proteomics and phosphoproteomics study upon palmella formation of D. salina using dimethyl labeling and Ti4+-immobilized metal ion affinity chromatography (IMAC proteomic approaches. We found that 151 salinity-responsive proteins and 35 salinity-responsive phosphoproteins were involved in multiple signaling and metabolic pathways upon palmella formation. Taken together with photosynthetic parameters and enzyme activity analyses, the patterns of protein accumulation and phosphorylation level exhibited the mechanisms upon palmella formation, including dynamics of cytoskeleton and cell membrane curvature, accumulation and transport of exopolysaccharides, photosynthesis and energy supplying (i.e., photosystem II stability and activity, cyclic electron transport, and C4 pathway, nuclear/chloroplastic gene expression regulation and protein processing, reactive oxygen species homeostasis, and salt signaling transduction. The salinity-responsive protein–protein interaction (PPI networks implied that signaling and protein synthesis and fate are crucial for modulation of these processes. Importantly, the 3D structure of phosphoprotein clearly indicated that the phosphorylation sites of eight proteins were localized in the region of function domain.

  8. Mechanism of enhanced conversion of 1,2,3-trichloropropane by mutant haloalkane dehalogenase revealed by molecular modeling

    Science.gov (United States)

    Banáš, Pavel; Otyepka, Michal; Jeřábek, Petr; Petřek, Martin; Damborský, Jiří

    2006-06-01

    1,2,3-Trichloropropane (TCP) is a highly toxic, recalcitrant byproduct of epichlorohydrin manufacture. Haloalkane dehalogenase (DhaA) from Rhodococcus sp. hydrolyses the carbon-halogen bond in various halogenated compounds including TCP, but with low efficiency ( k cat/ K m = 36 s-1 M-1). A Cys176Tyr-DhaA mutant with a threefold higher catalytic efficiency for TCP dehalogenation has been previously obtained by error-prone PCR. We have used molecular simulations and quantum mechanical calculations to elucidate the molecular mechanisms involved in the improved catalysis of the mutant, and enantioselectivity of DhaA toward TCP. The Cys176Tyr mutation modifies the protein access and export routes. Substitution of the Cys residue by the bulkier Tyr narrows the upper tunnel, making the second tunnel "slot" the preferred route. TCP can adopt two major orientations in the DhaA enzyme, in one of which the halide-stabilizing residue Asn41 forms a hydrogen bond with the terminal halogen atom of the TCP molecule, while in the other it bonds with the central halogen atom. The differences in these binding patterns explain the preferential formation of the ( R)- over the ( S)-enantiomer of 2,3-dichloropropane-1-ol in the reaction catalyzed by the enzyme.

  9. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing

    Science.gov (United States)

    Su, Tao; Tan, Yong; Tsui, Man-Shan; Yi, Hua; Fu, Xiu-Qiong; Li, Ting; Chan, Chi Leung; Guo, Hui; Li, Ya-Xi; Zhu, Pei-Li; Tse, Anfernee Kai Wing; Cao, Hui; Lu, Ai-Ping; Yu, Zhi-Ling

    2016-10-01

    Pinelliae Rhizoma (PR) is a commonly used Chinese medicinal herb, but it has been frequently reported about its toxicity. According to the traditional Chinese medicine theory, processing can reduce the toxicity of the herbs. Here, we aim to determine if processing reduces the toxicity of raw PR, and to explore the underlying mechanisms of raw PR-induced toxicities and the toxicity-reducing effect of processing. Biochemical and histopathological approaches were used to evaluate the toxicities of raw and processed PR. Rat serum metabolites were analyzed by LC-TOF-MS. Ingenuity pathway analysis of the metabolomics data highlighted the biological pathways and network functions involved in raw PR-induced toxicities and the toxicity-reducing effect of processing, which were verified by molecular approaches. Results showed that raw PR caused cardiotoxicity, and processing reduced the toxicity. Inhibition of mTOR signaling and activation of the TGF-β pathway contributed to raw PR-induced cardiotoxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. This study provides scientific justifications for the traditional processing theory of PR, and should help in optimizing the processing protocol and clinical combinational application of PR.

  10. New insights into enterocin CRL35: mechanism of action and immunity revealed by heterologous expression in Escherichia coli.

    Science.gov (United States)

    Barraza, Daniela E; Ríos Colombo, Natalia S; Galván, Adriana E; Acuña, Leonardo; Minahk, Carlos J; Bellomio, Augusto; Chalón, Miriam C

    2017-09-01

    The role of the class IIa bacteriocin membrane receptor protein remains unclear, and the following two different mechanisms have been proposed: the bacteriocin could interact with the receptor changing it to an open conformation or the receptor might act as an anchor allowing subsequent bacteriocin insertion and membrane disruption. Bacteriocin-producing cells synthesize an immunity protein that forms an inactive bacteriocin-receptor-immunity complex. To better understand the molecular mechanism of enterocin CRL35, the peptide was expressed as the suicidal probe EtpM-enterocin CRL35 in Escherichia coli, a naturally insensitive microorganism since it does not express the receptor. When the bacteriocin is anchored to the periplasmic face of the plasma membrane through the bitopic membrane protein, EtpM , E. coli cells depolarize and die. Moreover, co-expression of the immunity protein prevents the deleterious effect of EtpM-enterocin CRL35. The binding and anchoring of the bacteriocin to the membrane has demonstrated to be a sufficient condition for its membrane insertion. The final step of membrane disruption by EtpM-enterocin CRL35 is independent from the receptor, which means that the mannose PTS might not be involved in the pore structure. In addition, the immunity protein can protect even in the absence of the receptor. © 2017 John Wiley & Sons Ltd.

  11. Proteomic profiling of Bacillus licheniformis reveals a stress response mechanism in the synthesis of extracellular polymeric flocculants.

    Science.gov (United States)

    Yu, Wencheng; Chen, Zhen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao; Yan, Shan; Zhong, Chuan-Jian; He, Ning

    2016-04-01

    Some bioflocculants composed of extracellular polymeric substances are produced under peculiar conditions. Bacillus licheniformis CGMCC2876 is a microorganism that secretes both extracellular polysaccharides (EPS) and poly-gamma-glutamic acid (γ-PGA) under stress conditions. In this work, SWATH acquisition LC-MS/MS method was adopted for differential proteomic analysis of B. licheniformis, aiming at determining the bacterial stress mechanism. Compared with LB culture, 190 differentially expressed proteins were identified in B. licheniformis CGMCC2876 cultivated in EPS culture, including 117 up-regulated and 73 down-regulated proteins. In γ-PGA culture, 151 differentially expressed proteins, 89 up-regulated and 62 down-regulated, were found in the cells. Up-regulated proteins involved in amino acid biosynthesis were found to account for 43% and 41% of the proteomes in EPS and γ-PGA cultivated cells, respectively. Additionally, a series of proteins associated with amino acid degradation were found to be repressed under EPS and γ-PGA culture conditions. Transcriptional profiling via the qPCR detection of selected genes verified the proteomic analysis. Analysis of free amino acids in the bacterial cells further suggested the presence of amino acid starvation conditions. EPS or γ-PGA was synthesized to alleviate the effect of amino acid limitation in B. licheniformis. This study identified a stress response mechanism in the synthesis of macromolecules in B. licheniformis, providing potential culture strategies to improve the production of two promising bioflocculants. © 2015 Wiley Periodicals, Inc.

  12. RNA-Seq and iTRAQ Reveal the Dwarfing Mechanism of Dwarf Polish Wheat (Triticum polonicum L.).

    Science.gov (United States)

    Wang, Yi; Xiao, Xue; Wang, Xiaolu; Zeng, Jian; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    The dwarfing mechanism of Rht-dp in dwarf Polish wheat (DPW) is unknown. Each internode of DPW was significantly shorter than it in high Polish wheat (HPW), and the dwarfism was insensitive to photoperiod, abscisic acid (ABA), gibberellin (GA), cytokinin (CK), auxin and brassinolide (BR). To understand the mechanism, three sets of transcripts, DPW, HPW, and a chimeric set (a combination of DPW and HPW), were constructed using RNA sequencing (RNA-Seq). Based on the chimeric transcripts, 2,446 proteins were identified using isobaric tags for relative and absolute quantification (iTRAQ). A total of 108 unigenes and 12 proteins were considered as dwarfism-related differentially expressed genes (DEGs) and differentially expressed proteins (DEPs), respectively. Among of these DEGs and DEPs, 6 DEGs and 6 DEPs were found to be involved in flavonoid and S-adenosyl-methionine (SAM) metabolisms; 5 DEGs and 3 DEPs were involved in cellulose metabolism, cell wall plasticity and cell expansion; 2 DEGs were auxin transporters; 2 DEPs were histones; 1 DEP was a peroxidase. These DEGs and DEPs reduced lignin and cellulose contents, increased flavonoid content, possibly decreased S-adenosyl-methionine (SAM) and polyamine contents and increased S-adenosyl-L-homocysteine hydrolase (SAHH) content in DPW stems, which could limit auxin transport and reduce extensibility of the cell wall, finally limited cell expansion (the cell size of DPW was significantly smaller than HPW cells) and caused dwarfism in DPW.

  13. The Transcriptome and Terpene Profile of Eucalyptus grandis Reveals Mechanisms of Defense Against the Insect Pest, Leptocybe invasa.

    Science.gov (United States)

    Oates, Caryn N; Külheim, Carsten; Myburg, Alexander A; Slippers, Bernard; Naidoo, Sanushka

    2015-07-01

    Plants have evolved complex defenses that allow them to protect themselves against pests and pathogens. However, there is relatively little information regarding the Eucalyptus defensome. Leptocybe invasa is one of the most damaging pests in global Eucalyptus forestry, and essentially nothing is known regarding the molecular mechanisms governing the interaction between the pest and host. The aim of the study was to investigate changes in the transcriptional landscape and terpene profile of a resistant and susceptible Eucalyptus genotype in an effort to improve our understanding of this interaction. We used RNA-seqencing to investigate transcriptional changes following L. invasa oviposition. Expression levels were validated using real-time quantitative PCR. Terpene profiles were investigated using gas chromatography coupled to mass spectometry on uninfested and oviposited leaves. We found 698 and 1,115 significantly differentially expressed genes from the resistant and susceptible interactions, respectively. Gene Ontology enrichment and Mapman analyses identified putative defense mechanisms including cell wall reinforcement, protease inhibitors, cell cycle suppression and regulatory hormone signaling pathways. There were significant differences in the mono- and sesquiterpene profiles between genotypes and between control and infested material. A model of the interaction between Eucalyptus and L. invasa was proposed from the transcriptomic and chemical data. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Caenorhabditis elegans reveals a FxNPxY-independent low-density lipoprotein receptor internalization mechanism mediated by epsin1

    Science.gov (United States)

    Kang, Yuan-Lin; Yochem, John; Bell, Leslie; Sorensen, Erika B.; Chen, Lihsia; Conner, Sean D.

    2013-01-01

    Low-density lipoprotein receptor (LDLR) internalization clears cholesterol-laden LDL particles from circulation in humans. Defects in clathrin-dependent LDLR endocytosis promote elevated serum cholesterol levels and can lead to atherosclerosis. However, our understanding of the mechanisms that control LDLR uptake remains incomplete. To identify factors critical to LDLR uptake, we pursued a genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport. In doing so, we discovered an unanticipated requirement for the clathrin-binding endocytic adaptor epsin1 in LDLR endocytosis. Epsin1 depletion reduced LDLR internalization rates in mammalian cells, similar to the reduction observed following clathrin depletion. Genetic and biochemical analyses of epsin in C. elegans and mammalian cells uncovered a requirement for the ubiquitin-interaction motif (UIM) as critical for receptor transport. As the epsin UIM promotes the internalization of some ubiquitinated receptors, we predicted LDLR ubiquitination as necessary for endocytosis. However, engineered ubiquitination-impaired LDLR mutants showed modest internalization defects that were further enhanced with epsin1 depletion, demonstrating epsin1-mediated LDLR endocytosis is independent of receptor ubiquitination. Finally, we provide evidence that epsin1-mediated LDLR uptake occurs independently of either of the two documented internalization motifs (FxNPxY or HIC) encoded within the LDLR cytoplasmic tail, indicating an additional internalization mechanism for LDLR. PMID:23242996

  15. Transcriptomics and in vivo tests reveal novel mechanisms underlying endocrine disruption in an ecological sentinel, Nucella lapillus.

    Science.gov (United States)

    Pascoal, Sonia; Carvalho, Gary; Vasieva, Olga; Hughes, Roger; Cossins, Andrew; Fang, Yongxiang; Ashelford, Kevin; Olohan, Lisa; Barroso, Carlos; Mendo, Sonia; Creer, Simon

    2013-03-01

    Anthropogenic endocrine disruptors now contaminate all environments globally, with concomitant deleterious effects across diverse taxa. While most studies on endocrine disruption (ED) have focused on vertebrates, the superimposition of male sexual characteristics in the female dogwhelk, Nucella lapillus (imposex), caused by organotins, provides one of the most clearcut ecological examples of anthropogenically induced ED in aquatic ecosystems. To identify the underpinning mechanisms of imposex for this 'nonmodel' species, we combined Roche 454 pyrosequencing with custom oligoarray fabrication inexpensively to both generate gene models and identify those responding to chronic tributyltin (TBT) treatment. The results supported the involvement of steroid, neuroendocrine peptide hormone dysfunction and retinoid mechanisms, but suggested additionally the involvement of putative peroxisome proliferator-activated receptor (PPAR) pathways. Application of rosiglitazone, a well-known vertebrate PPARγ ligand, to dogwhelks induced imposex in the absence of TBT. Thus, while TBT-induced imposex is linked to the induction of many genes and has a complex phenotype, it is likely also to be driven by PPAR-responsive pathways, hitherto not described in invertebrates. Our findings provide further evidence for a common signalling pathway between invertebrate and vertebrate species that has previously been overlooked in the study of endocrine disruption. © 2012 Blackwell Publishing Ltd.

  16. Quantum mechanical/molecular mechanical calculated reactivity networks reveal how cytochrome P450cam and Its T252A mutant select their oxidation pathways.

    Science.gov (United States)

    Wang, Binju; Li, Chunsen; Dubey, Kshatresh Dutta; Shaik, Sason

    2015-06-17

    Quantum mechanical/molecular mechanical calculations address the longstanding-question of a "second oxidant" in P450 enzymes wherein the proton-shuttle, which leads to formation of the "primary-oxidant" Compound I (Cpd I), was severed by mutating the crucial residue (in P450cam: Threonine-252-to-Alanine, hence T252A). Investigating the oxidant candidates Cpd I, ferric hydroperoxide, and ferric hydrogen peroxide (Fe(III)(O2H2)), and their reactions, generates reactivity networks which enable us to rule out a "second oxidant" and at the same time identify an additional coupling pathway that is responsible for the epoxidation of 5-methylenylcamphor by the T252A mutant. In this "second-coupling pathway", the reaction starts with the Fe(III)(O2H2) intermediate, which transforms to Cpd I via a O-O homolysis/H-abstraction mechanism. The persistence of Fe(III)(O2H2) and its oxidative reactivity are shown to be determined by interplay of substrate and protein. The substrate 5-methylenylcamphor prevents H2O2 release, while the protein controls the Fe(III)(O2H2) conversion to Cpd I by nailing-through hydrogen-bonding interactions-the conformation of the HO(•) radical produced during O-O homolysis. This conformation prevents HO(•) attack on the porphyrin's meso position, as in heme oxygenase, and prefers H-abstraction from Fe(IV)OH thereby generating H2O + Cpd I. Cpd I then performs substrate oxidations. Camphor cannot prevent H2O2 release and hence the T252A mutant does not oxidize camphor. This "second pathway" transpires also during H2O2 shunting of the cycle of wild-type P450cam, where the additional hydrogen-bonding with Thr252 prevents H2O2 release, and contributes to a successful Cpd I formation. The present results lead to a revised catalytic cycle of Cytochrome P450cam.

  17. Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth.

    Science.gov (United States)

    Radotić, Ksenija; Roduit, Charles; Simonović, Jasna; Hornitschek, Patricia; Fankhauser, Christian; Mutavdžić, Dragosav; Steinbach, Gabor; Dietler, Giovanni; Kasas, Sandor

    2012-08-08

    Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. A dissociative quantum mechanical/molecular mechanical molecular dynamics simulation and infrared experiments reveal characteristics of the strongly hydrolytic arsenic(III).

    Science.gov (United States)

    Canaval, Lorenz R; Lutz, Oliver M D; Weiss, Alexander K H; Huck, Christian W; Hofer, Thomas S

    2014-11-17

    This work presents a hybrid ab initio quantum mechanical/molecular mechanical simulation at the RI-MP2 level of theory investigating the hydrolysis process of arsenic(III), ultimately leading to arsenous acid (H3AsO3). A newly implemented dissociative water model has been applied to treat the interactions in the classical region, which is capable of describing non-neutral water species such as hydroxide and oxonium ions. Three stages of hydrolysis have been observed during the simulation and besides profound dynamical considerations, detailed insights into structural changes and atomic partial charge shifts are presented. In particular, the geometrical properties of H-bonds involved in each of the three proton transfer events and subsequent proton hopping reactions are discussed. A Laguerre tessellation analysis has been employed to estimate the molecular volume of H3AsO3. Estimations of pKa values of the arsenic(III)-aquo-complexes have been obtained at the G4 and CBS-Q//B3 levels of theory using a thermodynamic cycle, whereas rate constants for the final hydrolysis step have been determined via reaction path optimization and transition state theory. Newly recorded Fourier transform infrared (FT-IR) spectroscopy measurements have been compared to power spectra obtained from the simulation data, confirming its quality. The simulation findings, as well as results from computational spectroscopic calculations utilizing the PT2-VSCF methodology, proved valuable for the interpretation of the experimental FT-IR data, elucidating the particularities of the strongly observed IR Raman noncoincidence effect.

  19. Transgenic Analysis of the Leishmania MAP Kinase MPK10 Reveals an Auto-inhibitory Mechanism Crucial for Stage-Regulated Activity and Parasite Viability

    DEFF Research Database (Denmark)

    Cayla, M.; Rachidi, N.; Leclercq, O.

    2014-01-01

    Protozoan pathogens of the genus Leishmania have evolved unique signaling mechanisms that can sense changes in the host environment and trigger adaptive stage differentiation essential for host cell infection. The signaling mechanisms underlying parasite development remain largely elusive even...... though Leishmania mitogen-activated protein kinases (MAPKs) have been linked previously to environmentally induced differentiation and virulence. Here, we unravel highly unusual regulatory mechanisms for Leishmania MAP kinase 10 (MPK10). Using a transgenic approach, we demonstrate that MPK10 is stage...... at position 395 that could be implicated in kinase regulation. Finally, we uncovered a feedback loop that limits MPK10 activity through dephosphorylation of the tyrosine residue of the TxY motif. Together our data reveal novel aspects of protein kinase regulation in Leishmania, and propose MPK10...

  20. Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy

    Science.gov (United States)

    Kuppan, Saravanan; Xu, Yahong; Liu, Yijin; Chen, Guoying

    2017-02-01

    Understanding the reaction pathway and kinetics of solid-state phase transformation is critical in designing advanced electrode materials with better performance and stability. Despite the first-order phase transition with a large lattice mismatch between the involved phases, spinel LiMn1.5Ni0.5O4 is capable of fast rate even at large particle size, presenting an enigma yet to be understood. The present study uses advanced two-dimensional and three-dimensional nano-tomography on a series of well-formed LixMn1.5Ni0.5O4 (0growth process instead of a shrinking-core or a particle-by-particle process. Superior kinetics of (100) facets at the vertices of truncated octahedral particles promote preferential delithiation, whereas the observation of strain-induced cracking suggests mechanical degradation in the material.

  1. Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination

    Science.gov (United States)

    Ehrenstein, Michael R.; Rada, Cristina; Jones, Anne-Marie; Milstein, César; Neuberger, Michael S.

    2001-01-01

    Isotype switching involves a region-specific, nonhomologous recombinational deletion that has been suggested to occur by nonhomologous joining of broken DNA ends. Here, we find increased donor/acceptor homology at switch junctions from PMS2-deficient mice and propose that class switching can occur by microhomology-mediated end-joining. Interestingly, although isotype switching and somatic hypermutation show many parallels, we confirm that PMS2 deficiency has no major effect on the pattern of nucleotide substitutions generated during somatic hypermutation. This finding is in contrast to MSH2 deficiency. With MSH2, the altered pattern of switch recombination and hypermutation suggests parallels in the mechanics of the two processes, whereas the fact that PMS2 deficiency affects only switch recombination may reflect differences in the pathways of break resolution. PMID:11717399

  2. An RT distribution analysis of relatedness proportion effects in lexical decision and semantic categorization reveals different mechanisms.

    Science.gov (United States)

    de Wit, Bianca; Kinoshita, Sachiko

    2015-01-01

    The magnitude of the semantic priming effect is known to increase as the proportion of related prime-target pairs in an experiment increases. This relatedness proportion (RP) effect was studied in a lexical decision task at a short prime-target stimulus onset asynchrony (240 ms), which is widely assumed to preclude strategic prospective usage of the prime. The analysis of the reaction time (RT) distribution suggested that the observed RP effect reflected a modulation of a retrospective semantic matching process. The pattern of the RP effect on the RT distribution found here is contrasted to that reported in De Wit and Kinoshita's (2014) semantic categorization study, and it is concluded that the RP effect is driven by different underlying mechanisms in lexical decision and semantic categorization.

  3. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.; Morozov, Giora I.; Mage, Michael G.; Margulies, David H. (NIH); (Hebrew)

    2017-10-12

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.

  4. Structural, Biochemical, and Computational Studies Reveal the Mechanism of Selective Aldehyde Dehydrogenase 1A1 Inhibition by Cytotoxic Duocarmycin Analogues.

    Science.gov (United States)

    Koch, Maximilian F; Harteis, Sabrina; Blank, Iris D; Pestel, Galina; Tietze, Lutz F; Ochsenfeld, Christian; Schneider, Sabine; Sieber, Stephan A

    2015-11-09

    Analogues of the natural product duocarmycin bearing an indole moiety were shown to bind aldehyde dehydrogenase 1A1 (ALDH1A1) in addition to DNA, while derivatives without the indole solely addressed the ALDH1A1 protein. The molecular mechanism of selective ALDH1A1 inhibition by duocarmycin analogues was unraveled through cocrystallization, mutational studies, and molecular dynamics simulations. The structure of the complex shows the compound embedded in a hydrophobic pocket, where it is stabilized by several crucial π-stacking and van der Waals interactions. This binding mode positions the cyclopropyl electrophile for nucleophilic attack by the noncatalytic residue Cys302, thereby resulting in covalent attachment, steric occlusion of the active site, and inhibition of catalysis. The selectivity of duocarmycin analogues for ALDH1A1 is unique, since only minor alterations in the sequence of closely related protein isoforms restrict compound accessibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for beta-lactam acetylation.

    Science.gov (United States)

    He, Hongzhen; Ding, Yi; Bartlam, Mark; Sun, Fei; Le, Yi; Qin, Xincheng; Tang, Hong; Zhang, Rongguang; Joachimiak, Andrzej; Liu, Jinyuan; Zhao, Nanming; Rao, Zihe

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55A resolution. The binary complex forms a characteristic "V" shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  6. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    Energy Technology Data Exchange (ETDEWEB)

    He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.; Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.; Rao, Z.; Biosciences Division; Tsinghua Univ.; Chinese Academy of Science

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  7. Microbial Metabolism in Soil at Subzero Temperatures: Adaptation Mechanisms Revealed by Position-Specific 13C Labeling

    Directory of Open Access Journals (Sweden)

    Ezekiel K. Bore

    2017-05-01

    Full Text Available Although biogeochemical models designed to simulate carbon (C and nitrogen (N dynamics in high-latitude ecosystems incorporate extracellular parameters, molecular and biochemical adaptations of microorganisms to freezing remain unclear. This knowledge gap hampers estimations of the C balance and ecosystem feedback in high-latitude regions. To analyze microbial metabolism at subzero temperatures, soils were incubated with isotopomers of position-specifically 13C-labeled glucose at three temperatures: +5 (control, -5, and -20°C. 13C was quantified in CO2, bulk soil, microbial biomass, and dissolved organic carbon (DOC after 1, 3, and 10 days and also after 30 days for samples at -20°C. Compared to +5°C, CO2 decreased 3- and 10-fold at -5 and -20°C, respectively. High 13C recovery in CO2 from the C-1 position indicates dominance of the pentose phosphate pathway at +5°C. In contrast, increased oxidation of the C-4 position at subzero temperatures implies a switch to glycolysis. A threefold higher 13C recovery in microbial biomass at -5 than +5°C points to synthesis of intracellular compounds such as glycerol and ethanol in response to freezing. Less than 0.4% of 13C was recovered in DOC after 1 day, demonstrating complete glucose uptake by microorganisms even at -20°C. Consequently, we attribute the fivefold higher extracellular 13C in soil than in microbial biomass to secreted antifreeze compounds. This suggests that with decreasing temperature, intracellular antifreeze protection is complemented by extracellular mechanisms to avoid cellular damage by crystallizing water. The knowledge of sustained metabolism at subzero temperatures will not only be useful for modeling global C dynamics in ecosystems with periodically or permanently frozen soils, but will also be important in understanding and controlling the adaptive mechanisms of food spoilage organisms.

  8. Combined Spectroscopic and Calorimetric Studies to Reveal Absorption Mechanisms and Conformational Changes of Protein on Nanoporous Biomaterials

    Directory of Open Access Journals (Sweden)

    Saharnaz Ahmadi

    2015-07-01

    Full Text Available In this study the effect of surface modification of mesoporous silica nanoparticles (MSNs on its adsorption capacities and protein stability after immobilization of beta-lactoglobulin B (BLG-B was investigated. For this purpose, non-functionalized (KIT-6 and aminopropyl-functionalized cubic Ia3d mesoporous silica ([n-PrNH2-KIT-6] nanoparticles were used as nanoporous supports. Aminopropyl-functionalized mesoporous nanoparticles exhibited more potential candidates for BLG-B adsorption and minimum BLG leaching than non-functionalized nanoparticles. It was observed that the amount of adsorbed BLG is dependent on the initial BLG concentration for both KIT-6 and [n-PrNH2-KIT-6] mesoporous nanoparticles. Also larger amounts of BLG-B on KIT-6 was immobilized upon raising the temperature of the medium from 4 to 55 °C while such increase was undetectable in the case of immobilization of BLG-B on the [n-PrNH2-KIT-6]. At temperatures above 55 °C the amounts of adsorbed BLG on both studied nanomaterials decreased significantly. By Differential scanning calorimetry or DSC analysis the heterogeneity of the protein solution and increase in Tm may indicate that immobilization of BLG-B onto the modified KIT-6 results in higher thermal stability compared to unmodified one. The obtained results provide several crucial factors in determining the mechanism(s of protein adsorption and stability on the nanostructured solid supports and the development of engineered nano-biomaterials for controlled drug-delivery systems and biomimetic interfaces for the immobilization of living cells.

  9. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells.

    Science.gov (United States)

    Ma, Jie; Sheng, Huachun; Li, Xiuli; Wang, Lijun

    2016-07-01

    Silicon (Si) can alleviate cadmium (Cd) stress in rice (Oryza sativa) plants, however, the understanding of the molecular mechanisms at the single-cell level remains limited. To address these questions, we investigated suspension cells of rice cultured in the dark environment in the absence and presence of Si with either short- (12 h) or long-term (5 d) Cd treatments using a combination of isobaric tags for relative and absolute quantitation (iTRAQ), fluorescent staining, and inductively coupled plasma mass spectroscopy (ICP-MS). We identified 100 proteins differentially regulated by Si under the short- or long-term Cd stress. 70% of these proteins were down-regulated, suggesting that Si may improve protein use efficiency by maintaining cells in the normal physiological status. Furthermore, we showed two different mechanisms for Si-mediated Cd tolerance. Under the short-term Cd stress, the Si-modified cell walls inhibited the uptake of Cd ions into cells and consequently reduced the expressions of glycosidase, cell surface non-specific lipid-transfer proteins (nsLTPs), and several stress-related proteins. Under the long-term Cd stress, the amount of Cd in the cytoplasm in Si-accumulating (+Si) cells was decreased by compartmentation of Cd into vacuoles, thus leading to a lower expression of glutathione S-transferases (GST). These results provide protein-level insights into the Si-mediated Cd detoxification in rice single cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Pogribny, Igor P.; Bagnyukova, Tetyana V.; Tryndyak, Volodymyr P.; Muskhelishvili, Levan; Rodriguez-Juarez, Rocio; Kovalchuk, Olga; Han Tao; Fuscoe, James C.; Ross, Sharon A.; Beland, Frederick A.

    2007-01-01

    Tamoxifen is a widely used anti-estrogenic drug for chemotherapy and, more recently, for the chemoprevention of breast cancer. Despite the indisputable benefits of tamoxifen in preventing the occurrence and re-occurrence of breast cancer, the use of tamoxifen has been shown to induce non-alcoholic steatohepatitis, which is a life-threatening fatty liver disease with a risk of progression to cirrhosis and hepatocellular carcinoma. In recent years, the high-throughput microarray technology for large-scale analysis of gene expression has become a powerful tool for increasing the understanding of the molecular mechanisms of carcinogenesis and for identifying new biomarkers with diagnostic and predictive values. In the present study, we used the high-throughput microarray technology to determine the gene expression profiles in the liver during early stages of tamoxifen-induced rat hepatocarcinogenesis. Female Fisher 344 rats were fed a 420 ppm tamoxifen containing diet for 12 or 24 weeks, and gene expression profiles were determined in liver of control and tamoxifen-exposed rats. The results indicate that early stages of tamoxifen-induced liver carcinogenesis are characterized by alterations in several major cellular pathways, specifically those involved in the tamoxifen metabolism, lipid metabolism, cell cycle signaling, and apoptosis/cell proliferation control. One of the most prominent changes during early stages of tamoxifen-induced hepatocarcinogenesis is dysregulation of signaling pathways in cell cycle progression from the G 1 to S phase, evidenced by the progressive and sustained increase in expression of the Pdgfc, Calb3, Ets1, and Ccnd1 genes accompanied by the elevated level of the PI3K, p-PI3K, Akt1/2, Akt3, and cyclin B, D1, and D3 proteins. The early appearance of these alterations suggests their importance in the mechanism of neoplastic cell transformation induced by tamoxifen

  11. Transcriptomic Analysis Reveals the Molecular Mechanisms of Drought-Stress-Induced Decreases in Camellia sinensis Leaf Quality

    Science.gov (United States)

    Wang, Weidong; Xin, Huahong; Wang, Mingle; Ma, Qingping; Wang, Le; Kaleri, Najeeb A.; Wang, Yuhua; Li, Xinghui

    2016-01-01

    The tea plant [Camellia sinensis (L.) O. Kuntze] is an important commercial crop rich in bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids, which the quality of tea leaves depends on. Drought is the most important environmental stress affecting the yield and quality of this plant. In this study, the effects of drought stress on the phenotype, physiological characteristics and major bioactive ingredients accumulation of C. sinensis leaves were examined, and the results indicated that drought stress resulted in dehydration and wilt of the leaves, and significant decrease in the total polyphenols and free amino acids and increase in the total flavonoids. In addition, HPLC analysis showed that the catechins, caffeine, theanine and some free amino acids in C. sinensis leaves were significantly reduced in response to drought stress, implying that drought stress severely decreased the quality of C. sinensis leaves. Furthermore, differentially expressed genes (DEGs) related to amino acid metabolism and secondary metabolism were identified and quantified in C. sinensis leaves under drought stress using high-throughput Illumina RNA-Seq technology, especially the key regulatory genes of the catechins, caffeine, and theanine biosynthesis pathways. The expression levels of key regulatory genes were consistent with the results from the HPLC analysis, which indicate a potential molecular mechanism for the above results. Taken together, these data provide further insights into the mechanisms underlying the change in the quality of C. sinensis leaves under environmental stress, which involve changes in the accumulation of major bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids. PMID:27066035

  12. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Yanlong Wang

    Full Text Available We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli, Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology and KEGG (Kyoto encyclopedia of genes and genomes enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species scavenging, membrane proteins and ABC (ATP binding cassette transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli.

  13. Quantitative Proteomic Analysis Reveals that Antioxidation Mechanisms Contribute to Cold Tolerance in Plantain (Musa paradisiaca L.; ABB Group) Seedlings*

    Science.gov (United States)

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A.; Chen, Wei; Yang, Yong; Rose, Jocelyn K. C.; Zhang, Sheng; Yi, Gan-Jun

    2012-01-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  14. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings.

    Science.gov (United States)

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A; Chen, Wei; Yang, Yong; Rose, Jocelyn K C; Zhang, Sheng; Yi, Gan-Jun

    2012-12-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  15. Multistructure index in revealing complexity of regulatory mechanisms of human cardiovascular system at rest and orthostatic stress in healthy humans

    Science.gov (United States)

    Makowiec, Danuta; Graff, Beata; Struzik, Zbigniew R.

    2017-02-01

    Biological regulation is sufficiently complex to pose an enduring challenge for characterization of both its equilibrium and transient non-equilibrium dynamics. Two univariate but coupled observables, heart rate and systolic blood pressure, are commonly characterized in the benchmark example of the human cardiovascular regulatory system. Asymmetric distributions of accelerations and decelerations of heart rate, as well as rises and falls in systolic blood pressure, recorded in humans during a head-up tilt test provide insights into the dynamics of cardiovascular response to a rapid, controlled deregulation of the system's homeostasis. The baroreflex feedback loop is assumed to be the fundamental physiological mechanism for ensuring homeostatic blood supply to distant organs at rest and during orthostatic stress, captured in a classical beat-to-beat autoregressive model of baroreflex by de Boer et al. (1987). For model corroboration, a multistructure index statistic is proposed, seamlessly evaluating the size spectrum of magnitudes of neural reflexes such as baroreflex, responsible for maintaining the homeostatic dynamics. The multistructure index exposes a distinctly different dynamics of multiscale asymmetry between results obtained from real-life signals recorded from healthy subjects and those simulated using both the classical and perturbed versions of the model. Nonlinear effects observed suggest the pronounced presence of complex mechanisms resulting from baroreflex regulation when a human is at rest, which is aggravated in the system's response to orthostatic stress. Using our methodology of multistructure index, we therefore show a marked difference between model and real-life scenarios, which we attribute to multiscale asymmetry of non-linear origin in real-life signals, which we are not reproducible by the classical model.

  16. Phosphoproteomic Analysis Reveals a Novel Mechanism of CaMKIIα Regulation Inversely Induced by Cocaine Memory Extinction versus Reconsolidation

    Science.gov (United States)

    Rich, Matthew T.; Abbott, Thomas B.; Chung, Lisa; Gulcicek, Erol E.; Stone, Kathryn L.; Colangelo, Christopher M.; Lam, TuKiet T.; Nairn, Angus C.; Taylor, Jane R.

    2016-01-01

    Successful addiction treatment depends on maintaining long-term abstinence, making relapse prevention an essential therapeutic goal. However, exposure to environmental cues associated with drug use often thwarts abstinence efforts by triggering drug using memories that drive craving and relapse. We sought to develop a dual approach for weakening cocaine memories through phosphoproteomic identification of targets regulated in opposite directions by memory extinction compared with reconsolidation in male Sprague-Dawley rats that had been trained to self-administer cocaine paired with an audiovisual cue. We discovered a novel, inversely regulated, memory-dependent phosphorylation event on calcium-calmodulin-dependent kinase II α (CaMKIIα) at serine (S)331. Correspondingly, extinction-associated S331 phosphorylation inhibited CaMKIIα activity. Intra-basolateral amygdala inhibition of CaMKII promoted memory extinction and disrupted reconsolidation, leading to a reduction in subsequent cue-induced reinstatement. CaMKII inhibition had no effect if the memory was neither retrieved nor extinguished. Therefore, inhibition of CaMKII represents a novel mechanism for memory-based addiction treatment that leverages both extinction enhancement and reconsolidation disruption to reduce relapse-like behavior. SIGNIFICANCE STATEMENT Preventing relapse to drug use is an important goal for the successful treatment of addictive disorders. Relapse-prevention therapies attempt to interfere with drug-associated memories, but are often hindered by unintentional memory strengthening. In this study, we identify phosphorylation events that are bidirectionally regulated by the reconsolidation versus extinction of a cocaine-associated memory, including a novel site on CaMKIIα. Additionally, using a rodent model of addiction, we show that CaMKII inhibition in the amygdala can reduce relapse-like behavior. Together, our data supports the existence of mechanisms that can be used to enhance

  17. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development.

    Science.gov (United States)

    Vivancos, Julien; Spinner, Lara; Mazubert, Christelle; Charlot, Florence; Paquet, Nicolas; Thareau, Vincent; Dron, Michel; Nogué, Fabien; Charon, Céline

    2012-03-01

    The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.

  18. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    Science.gov (United States)

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.

  19. Revealing vilazodone's binding mechanism underlying its partial agonism to the 5-HT1A receptor in the treatment of major depressive disorder.

    Science.gov (United States)

    Zheng, Guoxun; Xue, Weiwei; Yang, Fengyuan; Zhang, Yang; Chen, Yuzong; Yao, Xiaojun; Zhu, Feng

    2017-11-01

    It has been estimated that major depressive disorder (MDD) will become the second largest global burden among all diseases by 2030. Various types of drugs, including selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), and serotonin receptor partial agonist/reuptake inhibitors (SPARIs), have been approved and become the primary or first-line medications prescribed for MDD. SPARI was expected to demonstrate more enhanced drug efficacy and a rapid onset of action as compared to SSRI and SNRI. As one of the most famous SPARIs, vilazodone was approved by the FDA for the treatment of MDD. Because of the great clinical importance of vilazodone, its binding mechanism underlying its partial agonism to the 5-HT 1A receptor (5-HT 1A R) could provide valuable information to SPARIs' drug-like properties. However, this mechanism has not been reported to date; consequently, the rational design of new efficacious SPARI-based MDD drugs is severely hampered. To explore the molecular mechanism of vilazodone, an integrated computational strategy was adopted in this study to reveal its binding mechanism and prospective structural feature at the agonist binding site of 5-HT 1A R. As a result, 22 residues of this receptor were identified as hotspots, consistently favoring the binding of vilazodone and its analogues, and a common binding mechanism underlying their partial agonism to 5-HT 1A R was, therefore, discovered. Moreover, three main interaction features between vilazodone and 5-HT 1A R have been revealed and schematically summarized. In summary, this newly identified binding mechanism will provide valuable information for medicinal chemists working in the field of rational design of novel SPARIs for MDD treatment.

  20. Confocal imaging of whole vertebrate embryos reveals novel insights into molecular and cellular mechanisms of organ development

    Science.gov (United States)

    Hadel, Diana M.; Keller, Bradley B.; Sandell, Lisa L.

    2014-03-01

    Confocal microscopy has been an invaluable tool for studying cellular or sub-cellular biological processes. The study of vertebrate embryology is based largely on examination of whole embryos and organs. The application of confocal microscopy to immunostained whole mount embryos, combined with three dimensional (3D) image reconstruction technologies, opens new avenues for synthesizing molecular, cellular and anatomical analysis of vertebrate development. Optical cropping of the region of interest enables visualization of structures that are morphologically complex or obscured, and solid surface rendering of fluorescent signal facilitates understanding of 3D structures. We have applied these technologies to whole mount immunostained mouse embryos to visualize developmental morphogenesis of the mammalian inner ear and heart. Using molecular markers of neuron development and transgenic reporters of neural crest cell lineage we have examined development of inner ear neurons that originate from the otic vesicle, along with the supporting glial cells that derive from the neural crest. The image analysis reveals a previously unrecognized coordinated spatial organization between migratory neural crest cells and neurons of the cochleovestibular nerve. The images also enable visualization of early cochlear spiral nerve morphogenesis relative to the developing cochlea, demonstrating a heretofore unknown association of neural crest cells with extending peripheral neurite projections. We performed similar analysis of embryonic hearts in mouse and chick, documenting the distribution of adhesion molecules during septation of the outflow tract and remodeling of aortic arches. Surface rendering of lumen space defines the morphology in a manner similar to resin injection casting and micro-CT.

  1. Metabolomics Reveals New Mechanisms for Pathogenesis in Barth Syndrome and Introduces Novel Roles for Cardiolipin in Cellular Function.

    Directory of Open Access Journals (Sweden)

    Yana Sandlers

    Full Text Available Barth Syndrome is the only known Mendelian disorder of cardiolipin remodeling, with characteristic clinical features of cardiomyopathy, skeletal myopathy, and neutropenia. While the primary biochemical defects of reduced mature cardiolipin and increased monolysocardiolipin are well-described, much of the downstream biochemical dysregulation has not been uncovered, and biomarkers are limited. In order to further expand upon the knowledge of the biochemical abnormalities in Barth Syndrome, we analyzed metabolite profiles in plasma from a cohort of individuals with Barth Syndrome compared to age-matched controls via 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. A clear distinction between metabolite profiles of individuals with Barth Syndrome and controls was observed, and was defined by an array of metabolite classes including amino acids and lipids. Pathway analysis of these discriminating metabolites revealed involvement of mitochondrial and extra-mitochondrial biochemical pathways including: insulin regulation of fatty acid metabolism, lipid metabolism, biogenic amine metabolism, amino acid metabolism, endothelial nitric oxide synthase signaling, and tRNA biosynthesis. Taken together, this data indicates broad metabolic dysregulation in Barth Syndrome with wide cellular effects.

  2. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants.

    Science.gov (United States)

    Guo, Shengye; Li, Xingyu; He, Pengfei; Ho, Honhing; Wu, Yixin; He, Yueqiu

    2015-06-01

    Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites. In addition, the genes contributed to the strain's plant colonization, bio-control and stimulation of plant growth. Sequencing of the genome is a fundamental step for developing a desired strain to serve as an efficient biological control agent and plant growth stimulator. Similar to other members of the taxon, XF-1 has a genome that contains giant gene clusters for the non-ribosomal synthesis of antifungal lipopeptides (surfactin and fengycin), the polyketides (macrolactin and bacillaene), the siderophore bacillibactin, and the dipeptide bacilysin. There are two synthesis pathways for volatile growth-promoting compounds. The expression of biosynthesized antibiotic peptides in XF-1 was revealed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

  3. Interactions between Casein kinase Iepsilon (CKIepsilon and two substrates from disparate signaling pathways reveal mechanisms for substrate-kinase specificity.

    Directory of Open Access Journals (Sweden)

    Caroline Lund Dahlberg

    Full Text Available Members of the Casein Kinase I (CKI family of serine/threonine kinases regulate diverse biological pathways. The seven mammalian CKI isoforms contain a highly conserved kinase domain and divergent amino- and carboxy-termini. Although they share a preferred target recognition sequence and have overlapping expression patterns, individual isoforms often have specific substrates. In an effort to determine how substrates recognize differences between CKI isoforms, we have examined the interaction between CKIepsilon and two substrates from different signaling pathways.CKIepsilon, but not CKIalpha, binds to and phosphorylates two proteins: Period, a transcriptional regulator of the circadian rhythms pathway, and Disheveled, an activator of the planar cell polarity pathway. We use GST-pull-down assays data to show that two key residues in CKIalpha's kinase domain prevent Disheveled and Period from binding. We also show that the unique C-terminus of CKIepsilon does not determine Dishevelled's and Period's preference for CKIepsilon nor is it essential for binding, but instead plays an auxillary role in stabilizing the interactions of CKIepsilon with its substrates. We demonstrate that autophosphorylation of CKIepsilon's C-terminal tail prevents substrate binding, and use mass spectrometry and chemical crosslinking to reveal how a phosphorylation-dependent interaction between the C-terminal tail and the kinase domain prevents substrate phosphorylation and binding.The biochemical interactions between CKIepsilon and Disheveled, Period, and its own C-terminus lead to models that explain CKIepsilon's specificity and regulation.

  4. Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacher, Claude; Supekar, Vinit M.; Whitbeck, J. Charles; Lazear, Eric; Connolly, Sarah A.; Eisenberg, Roselyn J.; Cohen, Gary H.; Wiley, Don C.; Carfi, Andrea (UPENN); (IRBM); (CHLMM)

    2010-07-19

    Herpes simplex virus (HSV) entry into cells requires binding of the envelope glycoprotein D (gD) to one of several cell surface receptors. The 50 C-terminal residues of the gD ectodomain are essential for virus entry, but not for receptor binding. We have determined the structure of an unliganded gD molecule that includes these C-terminal residues. The structure reveals that the C-terminus is anchored near the N-terminal region and masks receptor-binding sites. Locking the C-terminus in the position observed in the crystals by an intramolecular disulfide bond abolished receptor binding and virus entry, demonstrating that this region of gD moves upon receptor binding. Similarly, a point mutant that would destabilize the C-terminus structure was nonfunctional for entry, despite increased affinity for receptors. We propose that a controlled displacement of the gD C-terminus upon receptor binding is an essential feature of HSV entry, ensuring the timely activation of membrane fusion.

  5. Structure of the large terminase from a hyperthermophilic virus reveals a unique mechanism for oligomerization and ATP hydrolysis.

    Science.gov (United States)

    Xu, Rui-Gang; Jenkins, Huw T; Antson, Alfred A; Greive, Sandra J

    2017-12-15

    The crystal structure of the large terminase from the Geobacillus stearothermophilus bacteriophage D6E shows a unique relative orientation of the N-terminal adenosine triphosphatase (ATPase) and C-terminal nuclease domains. This monomeric 'initiation' state with the two domains 'locked' together is stabilized via a conserved C-terminal arm, which may interact with the portal protein during motor assembly, as predicted for several bacteriophages. Further work supports the formation of an active oligomeric state: (i) AUC data demonstrate the presence of oligomers; (ii) mutational analysis reveals a trans-arginine finger, R158, indispensable for ATP hydrolysis; (iii) the location of this arginine is conserved with the HerA/FtsK ATPase superfamily; (iv) a molecular docking model of the pentamer is compatible with the location of the identified arginine finger. However, this pentameric model is structurally incompatible with the monomeric 'initiation' state and is supported by the observed increase in kcat of ATP hydrolysis, from 7.8 ± 0.1 min-1 to 457.7 ± 9.2 min-1 upon removal of the C-terminal nuclease domain. Taken together, these structural, biophysical and biochemical data suggest a model where transition from the 'initiation' state into a catalytically competent pentameric state, is accompanied by substantial domain rearrangements, triggered by the removal of the C-terminal arm from the ATPase active site. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Daniel L.; Alexander-Brett, Jennifer M.; Karch, Celeste M.; Cruchaga, Carlos; Colonna, Marco; Holtzman, Michael J.; Brett, Thomas J. (WU-MED)

    2016-12-20

    Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s risk variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.

  7. Mechanisms Underlying Decision-Making as Revealed by Deep-Brain Stimulation in Patients with Parkinson's Disease.

    Science.gov (United States)

    Herz, Damian M; Little, Simon; Pedrosa, David J; Tinkhauser, Gerd; Cheeran, Binith; Foltynie, Tom; Bogacz, Rafal; Brown, Peter

    2018-04-23

    To optimally balance opposing demands of speed and accuracy during decision-making, we must flexibly adapt how much evidence we require before making a choice. Such adjustments in decision thresholds have been linked to the subthalamic nucleus (STN), and therapeutic STN deep-brain stimulation (DBS) has been shown to interfere with this function. Here, we performed continuous as well as closed-loop DBS of the STN while Parkinson's disease patients performed a perceptual decision-making task. Closed-loop STN DBS allowed temporally patterned STN stimulation and simultaneous recordings of STN activity. This revealed that DBS only affected patients' ability to adjust decision thresholds if applied in a specific temporally confined time window during deliberation. Only stimulation in that window diminished the normal slowing of response times that occurred on difficult trials when DBS was turned off. Furthermore, DBS eliminated a relative, time-specific increase in STN beta oscillations and compromised its functional relationship with trial-by-trial adjustments in decision thresholds. Together, these results provide causal evidence that the STN is involved in adjusting decision thresholds in distinct, time-limited processing windows during deliberation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Different foraging preferences of hummingbirds on artificial and natural flowers reveal mechanisms structuring plant-pollinator interactions.

    Science.gov (United States)

    Maglianesi, María A; Böhning-Gaese, Katrin; Schleuning, Matthias

    2015-05-01

    In plant-pollinator networks, the floral morphology of food plants is an important determinant of the interaction niche of pollinators. Studies on foraging preferences of pollinators combining experimental and observational approaches may help to understand the mechanisms behind patterns of interactions and niche partitioning within pollinator communities. In this study, we tested whether morphological floral traits were associated with foraging preferences of hummingbirds for artificial and natural flower types in Costa Rica. We performed field experiments with artificial feeders, differing in length and curvature of flower types, to quantify the hummingbirds' interaction niche under unlimited nectar resources. To quantify the interaction niche under real-world conditions of limited nectar resources, we measured foraging preferences of hummingbirds for a total of 34 plant species. Artificial feeders were visited by Eupherusa nigriventris and Phaethornis guy in the pre-montane forest, and Lampornis calolaemus in the lower montane forest. Under experimental conditions, all three hummingbird species overlapped their interaction niches and showed a preference for the short artificial flower type over the long-straight and the long-curved flower types. Under natural conditions, the two co-occurring hummingbird species preferred to feed on plant species with floral traits corresponding to their bill morphology. The short-billed hummingbird E. nigriventris preferred to feed on short and straight flowers, whereas the long- and curved-billed P. guy preferred long and curved natural flowers. The medium-size billed species L. calolaemus preferred to feed on flowers of medium length and did not show preferences for plant species with specific corolla curvature. Our results show that floral morphological traits constrain access by short-billed hummingbird species to nectar resources. Morphological constraints, therefore, represent one important mechanism structuring trophic

  9. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    Science.gov (United States)

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  10. Crystal structures of the transcriptional repressor RolR reveals a novel recognition mechanism between inducer and regulator.

    Directory of Open Access Journals (Sweden)

    De-Feng Li

    Full Text Available Many members of the TetR family control the transcription of genes involved in multidrug resistance and pathogenicity. RolR (ResorcinolRegulator, the recently reported TetR-type regulator for aromatic catabolism from Corynebacterium glutamicum, distinguishes itself by low sequence similarities and different regulation from the previously known members of the TetR family. Here we report the crystal structures of RolR in its effector-bound (with resorcinol and aop- forms at 2.5 Å and 3.6 Å, respectively. The structure of resorcinol-RolR complex reveal that the hydrogen-bonded network mediated by the four-residue motif (Asp94- Arg145- Arg148- Asp149 with two water molecules and the hydrophobic interaction via five residues (Phe107, Leu111, Leu114, Leu142, and Phe172 are the key factors for the recognition and binding between the resorcinol and RolR molecules. The center-to-center separation of the recognition helices h3-h3' is decreased upon effector-binding from 34.9 Å to 30.4 Å. This structural change results in that RolR was unsuitable for DNA binding. Those observations are distinct from that in other TetR members. Structure-based mutagenesis on RolR was carried out and the results confirmed the critical roles of the above mentioned residues for effector-binding specificity and affinity. Similar sequence searches and sequence alignments identified 29 RolR homologues from GenBank, and all the above mentioned residues are highly conserved in the homologues. Based on these structural and other functional investigations, it is proposed that RolR may represent a new subfamily of TetR proteins that are invovled in aromatic degradation and sharing common recognition mode as for RolR.

  11. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Michelle R Jones

    2015-08-01

    Full Text Available Genome wide association studies (GWAS have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS, a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  12. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Science.gov (United States)

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  13. A Synthetic Oligo Library and Sequencing Approach Reveals an Insulation Mechanism Encoded within Bacterial σ54 Promoters

    Directory of Open Access Journals (Sweden)

    Lior Levy

    2017-10-01

    Full Text Available We use an oligonucleotide library of >10,000 variants to identify an insulation mechanism encoded within a subset of σ54 promoters. Insulation manifests itself as reduced protein expression for a downstream gene that is expressed by transcriptional readthrough. It is strongly associated with the presence of short CT-rich motifs (3–5 bp, positioned within 25 bp upstream of the Shine-Dalgarno (SD motif of the silenced gene. We provide evidence that insulation is triggered by binding of the ribosome binding site (RBS to the upstream CT-rich motif. We also show that, in E. coli, insulator sequences are preferentially encoded within σ54 promoters, suggesting an important regulatory role for these sequences in natural contexts. Our findings imply that sequence-specific regulatory effects that are sparsely encoded by short motifs may not be easily detected by lower throughput studies. Such sequence-specific phenomena can be uncovered with a focused oligo library (OL design that mitigates sequence-related variance, as exemplified herein.

  14. Transcriptomics and metabolite analysis reveals the molecular mechanism of anthocyanin biosynthesis branch pathway in different Senecio cruentus cultivars

    Directory of Open Access Journals (Sweden)

    Xuehua Jin

    2016-09-01

    Full Text Available The cyanidin (Cy, pelargonidin (Pg and delphinidin (Dp pathways are the three major branching anthocyanin biosynthesis pathways that regulate flavonoid metabolic flux and are responsible for red, orange and blue flower colors, respectively. Different species have evolved to develop multiple regulation mechanisms that form the branched pathways. In the current study, five Senecio cruentus cultivars with different colors were investigated. We found that the white and yellow cultivars do not accumulate anthocyanin and that the blue, pink and carmine cultivars mainly accumulate Dp, Pg and Cy in differing densities. Subsequent transcriptome analysis determined that there were 43 unigenes encoding anthocyanin biosynthesis genes in the blue cultivar. We also combined chemical and transcriptomic analyses to investigate the major metabolic pathways that are related to the observed differences in flower pigmentation in the series of S. cruentus. The results showed that mutations of the ScbHLH17 and ScCHI1/2 coding regions abolish anthocyanin formation in the white and the yellow cultivars; the competition of the ScF3’H1, ScF3’5’H and ScDFR1/2 genes for naringenin determines the differences in branching metabolic flux of the Cy, Dp and Pg pathways. Our findings provide new insights into the regulation of anthocyanin branching and also supplement gene resources (including ScF3’5’H, ScF3’H and ScDFRs for flower color modification of ornamentals.

  15. Energy dissipation mechanism revealed by spatially resolved Raman thermometry of graphene/hexagonal boron nitride heterostructure devices

    Science.gov (United States)

    Kim, Daehee; Kim, Hanul; Yun, Wan Soo; Watanabe, Kenji; Taniguchi, Takashi; Rho, Heesuk; Bae, Myung-Ho

    2018-04-01

    Understanding the energy transport by charge carriers and phonons in two-dimensional (2D) van der Waals heterostructures is essential for the development of future energy-efficient 2D nanoelectronics. Here, we performed in situ spatially resolved Raman thermometry on an electrically biased graphene channel and its hBN substrate to study the energy dissipation mechanism in graphene/hBN heterostructures. By comparing the temperature profile along the biased graphene channel with that along the hBN substrate, we found that the thermal boundary resistance between the graphene and hBN was in the range of (1-2) ~ × 10-7 m2 K W-1 from ~100 °C to the onset of graphene break-down at ~600 °C in air. Consideration of an electro-thermal transport model together with the Raman thermometry conducted in air showed that a doping effect occurred under a strong electric field played a crucial role in the energy dissipation of the graphene/hBN device up to T ~ 600 °C.

  16. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition.

    Directory of Open Access Journals (Sweden)

    Matthew W Parker

    Full Text Available Neuropilin (Nrp receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF family of proangiogenic cytokines and the semaphorin 3 (Sema3 family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

  17. Noninvasive Assessment of Antenatal Hydronephrosis in Mice Reveals a Critical Role for Robo2 in Maintaining Anti-Reflux Mechanism

    Science.gov (United States)

    Wang, Hang; Li, Qinggang; Liu, Juan; Mendelsohn, Cathy; Salant, David J.; Lu, Weining

    2011-01-01

    Antenatal hydronephrosis and vesicoureteral reflux (VUR) are common renal tract birth defects. We recently showed that disruption of the Robo2 gene is associated with VUR in humans and antenatal hydronephrosis in knockout mice. However, the natural history, causal relationship and developmental origins of these clinical conditions remain largely unclear. Although the hydronephrosis phenotype in Robo2 knockout mice has been attributed to the coexistence of ureteral reflux and obstruction in the same mice, this hypothesis has not been tested experimentally. Here we used noninvasive high-resolution micro-ultrasonography and pathological analysis to follow the progression of antenatal hydronephrosis in individual Robo2-deficient mice from embryo to adulthood. We found that hydronephrosis progressed continuously after birth with no spontaneous resolution. With the use of a microbubble ultrasound contrast agent and ultrasound-guided percutaneous aspiration, we demonstrated that antenatal hydronephrosis in Robo2-deficient mice is caused by high-grade VUR resulting from a dilated and incompetent ureterovesical junction rather than ureteral obstruction. We further documented Robo2 expression around the developing ureterovesical junction and identified early dilatation of ureteral orifice structures as a potential fetal origin of antenatal hydronephrosis and VUR. Our results thus demonstrate that Robo2 is crucial for the formation of a normal ureteral orifice and for the maintenance of an effective anti-reflux mechanism. This study also establishes a reproducible genetic mouse model of progressive antenatal hydronephrosis and primary high-grade VUR. PMID:21949750

  18. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen

    Science.gov (United States)

    Plouffe, David; Brinker, Achim; McNamara, Case; Henson, Kerstin; Kato, Nobutaka; Kuhen, Kelli; Nagle, Advait; Adrián, Francisco; Matzen, Jason T.; Anderson, Paul; Nam, Tae-gyu; Gray, Nathanael S.; Chatterjee, Arnab; Janes, Jeff; Yan, S. Frank; Trager, Richard; Caldwell, Jeremy S.; Schultz, Peter G.; Zhou, Yingyao; Winzeler, Elizabeth A.

    2008-01-01

    The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities. PMID:18579783

  19. Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism

    Science.gov (United States)

    Kim, Eunkyoung; Panzella, Lucia; Micillo, Raffaella; Bentley, William E.; Napolitano, Alessandra; Payne, Gregory F.

    2015-01-01

    Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin’s pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin’s redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism. PMID:26669666

  20. Mechanism of Microwave-Assisted Pyrolysis of Glucose to Furfural Revealed by Isotopic Tracer and Quantum Chemical Calculations.

    Science.gov (United States)

    Bao, Liwei; Shi, Lei; Luo, Hu; Kong, Lingzhao; Li, Shenggang; Wei, Wei; Sun, Yuhan

    2017-08-10

    Glucose labeled with 13 C or 18 O was used to investigate the mechanism of its conversion into furfural by microwaveassisted pyrolysis. The isotopic content and location in furfural were determined from GC-MS and 13 C NMR spectroscopic measurements and data analysis. The results suggest that the carbon skeleton in furfural is mainly derived from C1 to C5 of glucose, whereas the C of the aldehyde group and the O of the furan ring in furfural primarily originate from C1 and O5 of glucose, respectively. For the first time, the source of O in the furan ring of furfural was elucidated directly by experiment, providing results that are consistent with predictions from recent quantum chemical calculations. Moreover, further theoretical calculations indicate substantially lower energy barriers than previous predictions by considering the potential catalytic effect of formic acid, which is one of the pyrolysis products. The catalytic role of formic acid is further confirmed by experimental evidence. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms.

    Directory of Open Access Journals (Sweden)

    Marlena M Wilson

    Full Text Available Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.

  2. Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule.

    Science.gov (United States)

    Tsai, Jordan C; Miller-Vedam, Lakshmi E; Anand, Aditya A; Jaishankar, Priyadarshini; Nguyen, Henry C; Renslo, Adam R; Frost, Adam; Walter, Peter

    2018-03-30

    Regulation by the integrated stress response (ISR) converges on the phosphorylation of translation initiation factor eIF2 in response to a variety of stresses. Phosphorylation converts eIF2 from a substrate to a competitive inhibitor of its dedicated guanine nucleotide exchange factor, eIF2B, thereby inhibiting translation. ISRIB, a drug-like eIF2B activator, reverses the effects of eIF2 phosphorylation, and in rodents it enhances cognition and corrects cognitive deficits after brain injury. To determine its mechanism of action, we solved an atomic-resolution structure of ISRIB bound in a deep cleft within decameric human eIF2B by cryo-electron microscopy. Formation of fully active, decameric eIF2B holoenzyme depended on the assembly of two identical tetrameric subcomplexes, and ISRIB promoted this step by cross-bridging a central symmetry interface. Thus, regulation of eIF2B assembly emerges as a rheostat for eIF2B activity that tunes translation during the ISR and that can be further modulated by ISRIB. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Proteomic analysis reveals the mechanisms of Mycena dendrobii promoting transplantation survival and growth of tissue culture seedlings of Dendrobium officinale.

    Science.gov (United States)

    Xu, X B; Ma, X Y; Lei, H H; Song, H M; Ying, Q C; Xu, M J; Liu, S B; Wang, H Z

    2015-06-01

    Dendrobium officinale is an important traditional Chinese medicinal herb. Its seedlings generally show low survival and growth when transferred from in vitro tissue culture to a greenhouse or field environment. In this study, the effect of Mycena dendrobii on the survival and growth of D. officinale tissue culture seedlings and the mechanisms involved was explored. Mycena dendrobii were applied underneath the roots of D. officinale tissue culture seedlings. The seedling survival and growth were analysed. The root proteins induced by M. dendrobii were identified using two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF-MS). Mycena dendrobii treatment significantly enhanced survival and growth of D. officinale seedlings. Forty-one proteins induced by M. dendrobii were identified. Among them, 10 were involved in defence and stress response, two were involved in the formation of root or mycorrhizae, and three were related to the biosynthesis of bioactive constituents. These results suggest that enhancing stress tolerance and promoting new root formation induced by M. dendrobii may improve the survival and growth of D. officinale tissue culture seedlings. This study provides a foundation for future use of M. dendrobii in the large-scale cultivation of Dendrobiums. © 2015 The Society for Applied Microbiology.

  4. Feasibility investigations on a novel micro-manufacturing process for fabrication of fuel cell bipolar plates: Internal pressure-assisted embossing of micro-channels with in-die mechanical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Muammer [NSF I/UCR Center for Precision Forming (CPF), Department of Mechanical Engineering, Virginia Commonwealth University (VCU), Richmond, VA (United States); Mahabunphachai, Sasawat [NSF I/UCR Center for Precision Forming (CPF), Department of Mechanical Engineering, Virginia Commonwealth University (VCU), Richmond, VA (United States); Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States)

    2007-10-25

    In this paper, we present the results of our studies on conceptual design and feasibility experiments towards development of a novel hybrid manufacturing process to fabricate fuel cell bipolar plates that consists of multi-array micro-channels on a large surface area. The premises of this hybrid micro-manufacturing process stem from the use of an internal pressure-assisted embossing process (cold or warm) combined with mechanical bonding of double bipolar plates in a single-die and single-step operation. Such combined use of hydraulic and mechanical forming forces and in-process bonding will (a) enable integrated forming of micro-channels on both surfaces (as anode and cathode flow fields) and at the middle (as cooling channels), (b) reduce the process steps, (c) reduce variation in dimensional tolerances and surface finish, (d) increase the product quality, (e) increase the performance of fuel cell by optimizing flow-field designs and ensuring consistent contact resistance, and (f) reduce the overall stack cost. This paper explains two experimental investigations that were performed to characterize and evaluate the feasibility of the conceptualized manufacturing process. The first investigation involved hydroforming of micro-channels using thin sheet metals of SS304 with a thickness of 51 {mu}m. The width of the channels ranged from 0.46 to 1.33 mm and the height range was between 0.15 and 0.98 mm. Our feasibility experiments resulted in that different aspect ratios of micro-channels could be fabricated using internal pressure in a controllable manner although there is a limit to very sharp channel shapes (i.e., high aspect ratios with narrow channels). The second investigation was on the feasibility of mechanical bonding of thin sheet metal blanks. The effects of different process and material variables on the bond quality were studied. Successful bonding of various metal blanks (Ni201, Al3003, and SS304) was obtained. The experimental results from both

  5. Transcriptomic variation of locally-infected skin of Epinephelus coioides reveals the mucosal immune mechanism against Cryptocaryon irritans.

    Science.gov (United States)

    Hu, Yazhou; Li, Anxing; Xu, Yang; Jiang, Biao; Lu, Geling; Luo, Xiaochun

    2017-07-01

    Fish skin is the largest immunologically active mucosal organ, providing first-line defense against external pathogens. However, the skin-associated immune mechanisms of fish are still unclear. Cryptocaryon irritans is an obligate ectoparasitic ciliated protozoan that infects almost all marine fish, and is believed to be an excellent pathogen model to study fish mucosal immunity. In this study, a de novo transcriptome assembly of Epinephelus coioides skin post C. irritans tail-infection was performed for the first time using the Illumina HiSeq™ 2500 system. Comparative analyses of infected skin (group Isk) and uninfected skin (group Nsk) from the same challenged fish and control skin (group C) from uninfected control fish were conducted. As a result, a total of 91,082 unigenes with an average length of 2880 base pairs were obtained and among them, 38,704 and 48,617 unigenes were annotated based on homology with matches in the non-redundant and zebrafish database, respectively. Pairwise comparison resulted in 10,115 differentially-expressed genes (DEGs) in the Isk/C group comparison (4,983 up-regulated and 5,132 down-regulated), 2,275 DEGs in the Isk/Nsk group comparison (1,319 up-regulated and 956 down-regulated) and 4,566 DEGs in the Nsk/C group comparison (1,534 up-regulated and 3,032 down-regulated). Seven immune-related categories including 91 differentially-expressed immune genes (86 up-regulated and 5 down-regulated) were scrutinized. Both DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and immune-related gene expression analysis were used, and both analyses showed that the genes were more significantly altered in the locally-infected skin than in the uninfected skin of the same challenged fish. This suggests the skin's local immune response is important for host defense against this ectoparasite infection. Innate immune molecules, including hepcidin, C-type lectin, transferrin, transferrin receptor protein, serum amyloid A

  6. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.

    Science.gov (United States)

    Egerod, Kristoffer L; Petersen, Natalia; Timshel, Pascal N; Rekling, Jens C; Wang, Yibing; Liu, Qinghua; Schwartz, Thue W; Gautron, Laurent

    2018-06-01

    G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Na v 1.8-expressing afferents. GPCRs for gut hormones that were the most enriched in Na v 1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Na v 1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Na v 1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  7. Functional Analysis of In-frame Indel ARID1A Mutations Reveals New Regulatory Mechanisms of Its Tumor Suppressor Functions

    Directory of Open Access Journals (Sweden)

    Bin Guan

    2012-10-01

    Full Text Available AT-rich interactive domain 1A (ARID1A has emerged as a new tumor suppressor in which frequent somatic mutations have been identified in several types of human cancers. Although most ARID1A somatic mutations are frame-shift or nonsense mutations that contribute to mRNA decay and loss of protein expression, 5% of ARID1A mutations are in-frame insertions or deletions (indels that involve only a small stretch of peptides. Naturally occurring in-frame indel mutations provide unique and useful models to explore the biology and regulatory role of ARID1A. In this study, we analyzed indel mutations identified in gynecological cancers to determine how these mutations affect the tumor suppressor function of ARID1A. Our results demonstrate that all in-frame mutants analyzed lost their ability to inhibit cellular proliferation or activate transcription of CDKN1A, which encodes p21, a downstream effector of ARID1A. We also showed that ARID1A is a nucleocytoplasmic protein whose stability depends on its subcellular localization. Nuclear ARID1A is less stable than cytoplasmic ARID1A because ARID1A is rapidly degraded by the ubiquitin-proteasome system in the nucleus. In-frame deletions affecting the consensus nuclear export signal reduce steady-state protein levels of ARID1A. This defect in nuclear exportation leads to nuclear retention and subsequent degradation. Our findings delineate a mechanism underlying the regulation of ARID1A subcellular distribution and protein stability and suggest that targeting the nuclear ubiquitin-proteasome system can increase the amount of the ARID1A protein in the nucleus and restore its tumor suppressor functions.

  8. Molecular modeling reveals the novel inhibition mechanism and binding mode of three natural compounds to staphylococcal α-hemolysin.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available α-Hemolysin (α-HL is a self-assembling, channel-forming toxin that is produced as a soluble monomer by Staphylococcus aureus strains. Until now, α-HL has been a significant virulence target for the treatment of S. aureus infection. In our previous report, we demonstrated that some natural compounds could bind to α-HL. Due to the binding of those compounds, the conformational transition of α-HL from the monomer to the oligomer was blocked, which resulted in inhibition of the hemolytic activity of α-HL. However, these results have not indicated how the binding of the α-HL inhibitors influence the conformational transition of the whole protein during the oligomerization process. In this study, we found that three natural compounds, Oroxylin A 7-O-glucuronide (OLG, Oroxin A (ORA, and Oroxin B (ORB, when inhibiting the hemolytic activity of α-HL, could bind to the "stem" region of α-HL. This was completed using conventional Molecular Dynamics (MD simulations. By interacting with the novel binding sites of α-HL, the ligands could form strong interactions with both sides of the binding cavity. The results of the principal component analysis (PCA indicated that because of the inhibitors that bind to the "stem" region of α-HL, the conformational transition of α-HL from the monomer to the oligomer was restricted. This caused the inhibition of the hemolytic activity of α-HL. This novel inhibition mechanism has been confirmed by both the steered MD simulations and the experimental data obtained from a deoxycholate-induced oligomerization assay. This study can facilitate the design of new antibacterial drugs against S. aureus.

  9. Comparative proteomic and metabolomic analysis of Streptomyces tsukubaensis reveals the metabolic mechanism of FK506 overproduction by feeding soybean oil.

    Science.gov (United States)

    Wang, Jun; Liu, Huanhuan; Huang, Di; Jin, Lina; Wang, Cheng; Wen, Jianping

    2017-03-01

    FK506 (tacrolimus) is a 23-membered polyketide macrolide that possesses powerful immunosuppressant activity. In this study, feeding soybean oil into the fermentation culture of Streptomyces tsukubaensis improved FK506 production by 88.8%. To decipher the overproduction mechanism, comparative proteomic and metabolomic analysis was carried out. A total of 72 protein spots with differential expression in the two-dimensional gel electrophoresis (2-DE) were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS), and 66 intracellular metabolites were measured by gas chromatography-mass spectrometer (GC-MS). The analysis of proteome and metabolome indicated that feeding soybean oil as a supplementary carbon source could not only strengthen the FK506 precursor metabolism and energy metabolism but also tune the pathways related to transcriptional regulation, translation, and stress response, suggesting a better intracellular metabolic environment for the synthesis of FK506. Based on these analyses, 20 key metabolites and precursors of FK506 were supplemented into the soybean oil medium. Among them, lysine, citric acid, shikimic acid, and malonic acid performed excellently for promoting the FK506 production and biomass. Especially, the addition of malonic acid achieved the highest FK506 production, which was 1.56-fold of that in soybean oil medium and 3.05-fold of that in initial medium. This report represented the first comprehensive study on the comparative proteomics and metabolomics applied in S. tsukubaensis, and it would be a rational guidance to further strengthen the FK506 production.

  10. Combined chromatin and expression analysis reveals specific regulatory mechanisms within cytokine genes in the macrophage early immune response.

    Directory of Open Access Journals (Sweden)

    Maria Jesus Iglesias

    Full Text Available Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS.To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches--gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII, which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF, was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines, was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/-LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40% was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at

  11. A genome-wide analysis of the RNA-guided silencing pathway in coffee reveals insights into its regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Christiane Noronha Fernandes-Brum

    Full Text Available microRNAs (miRNAs are derived from self-complementary hairpin structures, while small-interfering RNAs (siRNAs are derived from double-stranded RNA (dsRNA or hairpin precursors. The core mechanism of sRNA production involves DICER-like (DCL in processing the smallRNAs (sRNAs and ARGONAUTE (AGO as effectors of silencing, and siRNA biogenesis also involves action of RNA-Dependent RNA Polymerase (RDR, Pol IV and Pol V in biogenesis. Several other proteins interact with the core proteins to guide sRNA biogenesis, action, and turnover. We aimed to unravel the components and functions of the RNA-guided silencing pathway in a non-model plant species of worldwide economic relevance. The sRNA-guided silencing complex members have been identified in the Coffea canephora genome, and they have been characterized at the structural, functional, and evolutionary levels by computational analyses. Eleven AGO proteins, nine DCL proteins (which include a DCL1-like protein that was not previously annotated, and eight RDR proteins were identified. Another 48 proteins implicated in smallRNA (sRNA pathways were also identified. Furthermore, we identified 235 miRNA precursors and 317 mature miRNAs from 113 MIR families, and we characterized ccp-MIR156, ccp-MIR172, and ccp-MIR390. Target prediction and gene ontology analyses of 2239 putative targets showed that significant pathways in coffee are targeted by miRNAs. We provide evidence of the expansion of the loci related to sRNA pathways, insights into the activities of these proteins by domain and catalytic site analyses, and gene expression analysis. The number of MIR loci and their targeted pathways highlight the importance of miRNAs in coffee. We identified several roles of sRNAs in C. canephora, which offers substantial insight into better understanding the transcriptional and post-transcriptional regulation of this major crop.

  12. A linked lake system beneath Thwaites Glacier, West Antarctica reveals an efficient mechanism for subglacial water flow.

    Science.gov (United States)

    Smith, B. E.; Gourmelen, N.; Huth, A.; Joughin, I. R.

    2016-12-01

    In this presentation we show the results of a multi-sensor survey of a system of subglacial lakes beneath Thwaites Glacier, West Antarctica. This is the first substantial active (meaning draining or filling on annual time scales) lake system detected under the fast-flowing glaciers of the Amundsen Coast. Altimetry data show that over the 2013 calendar year, four subglacial lakes drained, essentially simultaneously, with the bulk of the drainage taking place over the course the first three months of the year. The largest of the lakes appears to have drained around 3.7 km3 of water, with the others each draining less than 1 km3. The high-resolution radar surveys conducted in this area by NASA's IceBridge program allow detailed analysis of the subglacial hydrologic potential, which shows that the potential map in this area is characterized by small closed basins that should not, under the common assumption that water flow is directed down the gradient of the hydropotential, allow long-range water transport. The lakes' discharge demonstrates that, at least in some cases, water can flow out of apparently closed hydropotential basins. Combining a basal-flow routing map with a map of basal melt production suggests that the largest drainage event could recur as often as every 22 years, provided that overflow or leakage of mapped hydropotential basins allows melt water transport to refill the lake. An analysis of ice-surface speed records both around the lakes and at the Thwaites grounding line shows small changes in ice speed, but none clearly associated with the drainage event, suggesting that, at least in this area where subglacial melt is abundant, the addition of further water to the subglacial hydrologic system need not have any significant effect on ice flow. It is likely that the main impact of the lake system on the glacier is that as an efficient mechanism to remove meltwater from the system, it drains water that would otherwise flow through less efficient

  13. Kinematics and hydrodynamics analysis of swimming anurans reveals striking inter-specific differences in the mechanism for producing thrust.

    Science.gov (United States)

    Richards, Christopher T

    2010-02-15

    the body velocity in H. boettgeri and X. laevis, resulting in negative net translational EFV. Consequently, the translational component of thrust (caused mostly by hip, knee and ankle extension) was twofold higher than rotational thrust in Rana pipiens. Likewise, rotational components of thrust were nearly twofold higher than translational components in H. boettgeri. X. laevis, however, was the most skewed species observed, generating nearly 100% of total thrust by foot rotation generated by hip, ankle and tmt extension. Thus, this study presents a simple kinematics analysis that is predictive of hydrodynamic differences among species. Such differences in kinematics reveal a continuum of different propulsive strategies ranging from mostly rotation-powered (X. laevis) to mostly translation-powered (R. pipiens) swimming.

  14. Analysis of the feasibility of inclusion of decentralised renewable electricity systems into a mandated market share mechanism for China. Executive summary

    International Nuclear Information System (INIS)

    Van der Linden, N.H.; Junfeng, L.; Keyun, D.; Martens, J.W.; Ramani, K.V.; Sicheng, W.; Shutian, W.; Tak, C. van der

    2003-09-01

    The World Bank and the Global Environment Facility provide assistance to the Government of China with the implementation of the renewable energy programme during the 10th and 11th Five Year Plans. To this end, the China Renewable Energy Scale-up Programme (CRESP) was set up. CRESP is managed by the Project Management Office (PMO), which is institutionally placed in the National Development and Planning Commission (NDRC). One of the first activities initiated by CRESP is the development of the institutional framework within which the Mandated Market System (MMS) policy for renewable energy can be introduced. An MMS policy is based on the requirement that a set amount (or proportion) of the electricity supply is produced from renewable energy sources. The obligation is placed at some point in the supply chain, which could range from production, through transmission to supply or consumption. Monitoring procedures are put in place to ensure that the obligation will be met. Environmental considerations are the main reason behind the intention to introduce an MMS in China but the government has also recognised the importance of (renewable) energy to achieving poverty objectives. Decentralised renewable electricity systems (DRES) have special relevance for rural poor communities that are unserved or underserved by centralised fossil fuel networks or utility electricity grids. DRES may offer a promising solution to meet demand for energy services of these communities in remote location, which cannot be reach by the electricity grid. The analysis in this study focused on mini-hydro (less than 10 kW), solar home systems and stand-alone wind turbines. The principal objective of the study is to analyse the feasibility of inclusion of DRES into the proposed MMS for China. Because DRES are often used in remote areas, which are difficult to reach, the costs of verifying these systems are prohibitive if the procedures are not sufficiently simple and efficient. Therefore

  15. Analysis of the feasibility of inclusion of decentralised renewable electricity systems into a mandated market share mechanism for China. Final Report

    International Nuclear Information System (INIS)

    Van der Linden, N.H.; Junfeng, L.; Keyun, D.; Martens, J.W.; Ramani, K.V.; Sicheng, W.; Shutian, W.; Tak, C. van der

    2003-10-01

    The World Bank and the Global Environment Facility provide assistance to the Government of China with the implementation of the renewable energy programme during the 10th and 11th Five Year Plans. To this end, the China Renewable Energy Scale-up Programme (CRESP) was set up. CRESP is managed by the Project Management Office (PMO), which is institutionally placed in the National Development and Planning Commission (NDRC). One of the first activities initiated by CRESP is the development of the institutional framework within which the Mandated Market System (MMS) policy for renewable energy can be introduced. An MMS policy is based on the requirement that a set amount (or proportion) of the electricity supply is produced from renewable energy sources. The obligation is placed at some point in the supply chain, which could range from production, through transmission to supply or consumption. Monitoring procedures are put in place to ensure that the obligation will be met. Environmental considerations are the main reason behind the intention to introduce an MMS in China but the government has also recognised the importance of (renewable) energy to achieving poverty objectives. Decentralised renewable electricity systems (DRES) have special relevance for rural poor communities that are unserved or underserved by centralised fossil fuel networks or utility electricity grids. DRES may offer a promising solution to meet demand for energy services of these communities in remote location, which cannot be reach by the electricity grid. The analysis in this study focused on mini-hydro (less than 10 kW), solar home systems and stand-alone wind turbines. The principal objective of the study is to analyse the feasibility of inclusion of DRES into the proposed MMS for China. Because DRES are often used in remote areas, which are difficult to reach, the costs of verifying these systems are prohibitive if the procedures are not sufficiently simple and efficient. Therefore

  16. Quantitative Proteomics Analysis Reveals Novel Insights into Mechanisms of Action of Long Noncoding RNA Hox Transcript Antisense Intergenic RNA (HOTAIR) in HeLa Cells*

    Science.gov (United States)

    Zheng, Peng; Xiong, Qian; Wu, Ying; Chen, Ying; Chen, Zhuo; Fleming, Joy; Gao, Ding; Bi, Lijun; Ge, Feng

    2015-01-01

    Long noncoding RNAs (lncRNAs), which have emerged in recent years as a new and crucial layer of gene regulators, regulate various biological processes such as carcinogenesis and metastasis. HOTAIR (Hox transcript antisense intergenic RNA), a lncRNA overexpressed in most human cancers, has been shown to be an oncogenic lncRNA. Here, we explored the role of HOTAIR in HeLa cells and searched for proteins regulated by HOTAIR. To understand the mechanism of action of HOTAIR from a systems perspective, we employed a quantitative proteomic strategy to systematically identify potential targets of HOTAIR. The expression of 170 proteins was significantly dys-regulated after inhibition of HOTAIR, implying that they could be potential targets of HOTAIR. Analysis of this data at the systems level revealed major changes in proteins involved in diverse cellular components, including the cytoskeleton and the respiratory chain. Further functional studies on vimentin (VIM), a key protein involved in the cytoskeleton, revealed that HOTAIR exerts its effects on migration and invasion of HeLa cells, at least in part, through the regulation of VIM expression. Inhibition of HOTAIR leads to mitochondrial dysfunction and ultrastructural alterations, suggesting a novel role of HOTAIR in maintaining mitochondrial function in cancer cells. Our results provide novel insights into the mechanisms underlying the function of HOTAIR in cancer cells. We expect that the methods used in this study will become an integral part of functional studies of lncRNAs. PMID:25762744

  17. Transcriptional analysis and molecular dynamics simulations reveal the mechanism of toxic metals removal and efflux pumps in Lysinibacillus sphaericus OT4b.31

    KAUST Repository

    Shaw, Dario Rangel

    2017-11-23

    Lysinibacillus sphaericus strain OT4b.31 is a bacterium widely applied in bioremediation processes of hydrocarbon and metal polluted environments. In this study, we identified the molecular mechanism underlying the Pb2+ and Cr6+ resistance. Metal uptake and temporal transcription patterns of metal resistance operons were evaluated using reverse-transcribed quantitative PCR amplification. The function of the resistance determinants was studied applying docking and in silico mutagenesis methods. The results revealed that the adaptation of Lysinibacillus sphaericus OT4b.31 to elevated levels of lead and chromium involves the pbr and chr operons which comprise a transcriptional regulatory component (pbrR and chrB) and efflux ATPases (pbrA and chrA) to expel ions from the cytoplasm. Expression of metal resistance genes was constitutive and specifically inducible to the exposure of Pb2+ and Cr6+. The simultaneous presence of cations didn\\'t affect the bioaccumulation of metals, evidencing the multimetal resistance of L. sphaericus. Docking analysis revealed the key metal-protein interactions and the conformational changes after metal or ATP binding. Results showed that residues with aromatic rings or imidazole in the catalytic domain are crucial for metal binding and achievement of the function. To our knowledge, this is the first report of a specific mechanism for lead and chromium resistance in Lysinibacillus genus. From the findings of this study, it is possible to suggest the bacterium as a suitable candidate for rapid toxic metals bioremediation processes.

  18. Transcriptome analysis of the digestive system of a wood-feeding termite (Coptotermes formosanus) revealed a unique mechanism for effective biomass degradation.

    Science.gov (United States)

    Geng, Alei; Cheng, Yanbing; Wang, Yongli; Zhu, Daochen; Le, Yilin; Wu, Jian; Xie, Rongrong; Yuan, Joshua S; Sun, Jianzhong

    2018-01-01

    Wood-feeding termite, Coptotermes formosanus Shiraki, represents a highly efficient system for biomass deconstruction and utilization. However, the detailed mechanisms of lignin modification and carbohydrate degradation in this system are still largely elusive. In order to reveal the inherent mechanisms for efficient biomass degradation, four different organs (salivary glands, foregut, midgut, and hindgut) within a complete digestive system of a lower termite, C. formosanus , were dissected and collected. Comparative transcriptomics was carried out to analyze these organs using high-throughput RNA sequencing. A total of 71,117 unigenes were successfully assembled, and the comparative transcriptome analyses revealed significant differential distributions of GH (glycosyl hydrolase) genes and auxiliary redox enzyme genes in different digestive organs. Among the GH genes in the salivary glands, the most abundant were GH9, GH22, and GH1 genes. The corresponding enzymes may have secreted into the foregut and midgut to initiate the hydrolysis of biomass and to achieve a lignin-carbohydrate co-deconstruction system. As the most diverse GH families, GH7 and GH5 were primarily identified from the symbiotic protists in the hindgut. These enzymes could play a synergistic role with the endogenous enzymes from the host termite for biomass degradation. Moreover, twelve out of fourteen genes coding auxiliary redox enzymes from the host termite origin were induced by the feeding of lignin-rich diets. This indicated that these genes may be involved in lignin component deconstruction with its redox network during biomass pretreatment. These findings demonstrate that the termite digestive system synergized the hydrolysis and redox reactions in a programmatic process, through different parts of its gut system, to achieve a maximized utilization of carbohydrates. The detailed unique mechanisms identified from the termite digestive system may provide new insights for advanced design of

  19. Kinetic mechanism of human DNA ligase I reveals magnesium-dependent changes in the rate-limiting step that compromise ligation efficiency.

    Science.gov (United States)

    Taylor, Mark R; Conrad, John A; Wahl, Daniel; O'Brien, Patrick J

    2011-07-01

    DNA ligase I (LIG1) catalyzes the ligation of single-strand breaks to complete DNA replication and repair. The energy of ATP is used to form a new phosphodiester bond in DNA via a reaction mechanism that involves three distinct chemical steps: enzyme adenylylation, adenylyl transfer to DNA, and nick sealing. We used steady state and pre-steady state kinetics to characterize the minimal mechanism for DNA ligation catalyzed by human LIG1. The ATP dependence of the reaction indicates that LIG1 requires multiple Mg(2+) ions for catalysis and that an essential Mg(2+) ion binds more tightly to ATP than to the enzyme. Further dissection of the magnesium ion dependence of individual reaction steps revealed that the affinity for Mg(2+) changes along the reaction coordinate. At saturating concentrations of ATP and Mg(2+) ions, the three chemical steps occur at similar rates, and the efficiency of ligation is high. However, under conditions of limiting Mg(2+), the nick-sealing step becomes rate-limiting, and the adenylylated DNA intermediate is prematurely released into solution. Subsequent adenylylation of enzyme prevents rebinding to the adenylylated DNA intermediate comprising an Achilles' heel of LIG1. These ligase-generated 5'-adenylylated nicks constitute persistent breaks that are a threat to genomic stability if they are not repaired. The kinetic and thermodynamic framework that we have determined for LIG1 provides a starting point for understanding the mechanism and specificity of mammalian DNA ligases.

  20. Leaf cDNA-AFLP analysis reveals novel mechanisms for boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings.

    Science.gov (United States)

    Wang, Liu-Qing; Yang, Lin-Tong; Guo, Peng; Zhou, Xin-Xing; Ye, Xin; Chen, En-Jun; Chen, Li-Song

    2015-10-01

    Little information is available on the molecular mechanisms of boron (B)-induced alleviation of aluminum (Al)-toxicity. 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing different concentrations of B (2.5 or 20μM H3BO3) and Al (0 or 1.2mM AlCl3·6H2O). B alleviated Al-induced inhibition in plant growth accompanied by lower leaf Al. We used cDNA-AFLP to isolate 127 differentially expressed genes from leaves subjected to B and Al interactions. These genes were related to signal transduction, transport, cell wall modification, carbohydrate and energy metabolism, nucleic acid metabolism, amino acid and protein metabolism, lipid metabolism and stress responses. The ameliorative mechanisms of B on Al-toxicity might be related to: (a) triggering multiple signal transduction pathways; (b) improving the expression levels of genes related to transport; (c) activating genes involved in energy production; and (d) increasing amino acid accumulation and protein degradation. Also, genes involved in nucleic acid metabolism, cell wall modification and stress responses might play a role in B-induced alleviation of Al-toxicity. To conclude, our findings reveal some novel mechanisms on B-induced alleviation of Al-toxicity at the transcriptional level in C. grandis leaves. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Anti-inflammatory mechanisms of IFN-γ studied in experimental autoimmune encephalomyelitis reveal neutrophils as a potential target in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Nichole M Miller

    2015-08-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease of the central nervous system (CNS mediated by T helper (h1 and/or Th17 CD4 T cells that drive inflammatory lesion development along with demyelination and neuronal damage. Defects in immune regulatory mechanisms are thought to play a role in the pathogenesis of MS. While an early clinical trial indicated that IFN-γ administration was detrimental to MS, studies in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE, indicated that IFN-γ exhibits a number of anti-inflammatory properties within the CNS. These mechanisms include inhibition of IL-17 production, induction of regulatory T cells, T cell apoptosis and regulation of chemokine production. Mice deficient in IFN-γ or its receptor were instrumental in deciphering the anti-inflammatory properties of IFN-γ in the CNS. In particular, they revealed that IFN-γ is a major regulator of neutrophil recruitment into the CNS, which by a variety of mechanisms including disruption of the blood-brain-barrier (BBB and production of reactive oxygen species are thought to contribute to the onset and progression of EAE. Neutrophils were also shown to be instrumental in EAE relapses. To date neutrophils have not been appreciated as a driver of MS, but more recently based largely on the strong EAE data this view is being reevaluated by some investigators in the field.

  2. Size-dependent physicochemical and mechanical interactions in battery paste anodes of Si-microwires revealed by Fast-Fourier-Transform Impedance Spectroscopy

    Science.gov (United States)

    Hansen, Sandra; Quiroga-González, Enrique; Carstensen, Jürgen; Adelung, Rainer; Föll, Helmut

    2017-05-01

    Perfectly aligned silicon microwire arrays show exceptionally high cycling stability with record setting (high) areal capacities of 4.25 mAh cm-2. Those wires have a special, modified length and thickness in order to perform this good. Geometry and sizes are the most important parameters of an anode to obtain batteries with high cycling stability without irreversible losses. The wires are prepared with a unique etching fabrication method, which allows to fabricate wires of very precise sizes. In order to investigate how good randomly oriented silicon wires perform in contrast to the perfect order of the array, the wires are embedded in a paste. This study reveals the fundamental correlation between geometry, mechanics and charge transfer kinetics of silicon electrodes. Using a suitable RC equivalent circuit allows to evaluate data from cyclic voltammetry and simultaneous FFT-Impedance Spectroscopy (FFT-IS), yielding in time-resolved resistances, time constants, and their direct correlation to the phase transformations. The change of the resistances during lithiation and delithiation correlates to kinetics and charge transfer mechanisms. This study demonstrates how the mechanical and physiochemical interactions at the silicon/paste interface inside the paste electrodes lead to void formation around silicon and with it to material loss and capacity fading.

  3. Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis.

    Science.gov (United States)

    Wei, Tao; Deng, Kejun; Wang, Hongbin; Zhang, Lipeng; Wang, Chunguo; Song, Wenqin; Zhang, Yong; Chen, Chengbin

    2018-03-12

    In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study we compared the global transcriptional profiles of wild-type (WT) and AtDREB1A -expressing transgenic plants using RNA-sequencing (RNA-seq). Using cluster analysis, we identified 3904 differentially expressed genes (DEGs). Compared with WT plants, 423 unigenes were up-regulated in pRD29A::AtDREB1A-31 before drought treatment, while 936 were down-regulated and 1580 and 1313 unigenes were up- and down-regulated after six days of drought. COG analysis revealed that the 'signal transduction mechanisms' category was highly enriched among these DEGs both before and after drought stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, DEGs associated with "ribosome", "plant hormone signal transduction", photosynthesis", "plant-pathogen interaction", "glycolysis/gluconeogenesis" and "carbon fixation" are hypothesized to perform major functions in drought resistance in AtDREB1A -expressing transgenic plants. Furthermore, the number of DEGs associated with different transcription factors increased significantly after drought stress, especially the AP2/ERF, bZIP and MYB protein families. Taken together, this study substantially expands the transcriptomic information for S. miltiorrhiza and provides valuable clues for elucidating the mechanism of AtDREB1A-mediated drought tolerance in transgenic plants.

  4. Investigation on the feasibility of coffee husk (endocarp) as efficient filler material for enhancing physical and mechanical properties of styrofoam based particleboard

    Science.gov (United States)

    Milawarni; Nurlaili; Ernayusnianti

    2018-03-01

    This research focuses on introducing a coffee husk as viable and efficient filler for enhancing physical and mechanical properties of Styrofoam based particleboard. Heat treatment method was adopted to produce the particleboard from the mixture of coffee husk (CH) with Styrofoam (PS). Styrofoam is material derived from polystyrene. The aim of this research is to get the appropriate weight composition between coffee husks with PS and to identify the physical and mechanical properties of the produced particleboard. The composition of coffee husk varies between 0-90%wt. The manufacture of particleboard i.e. coffee husk milled with size 20/10 mesh then soak with 10% NaOH for 2 hours, rinsed with clean water and dried and weight according to the composition. The mixture of CH and PS is inserted into mold and put into hot-press. The result shows from physical properties that density, water absorption and thick development test corresponding with SNI 03-2105-2006 standard, the mechanical properties shows MOR test meets the standard on the addition of CH 10-50%, while the MOE test has not meet the standard.

  5. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms.

    Directory of Open Access Journals (Sweden)

    Juliana Durack

    Full Text Available The ability of Listeria monocytogenes to adapt to various food and food- processing environments has been attributed to its robustness, persistence and prevalence in the food supply chain. To improve the present understanding of molecular mechanisms involved in hyperosmotic and low-temperature stress adaptation of L. monocytogenes, we undertook transcriptomics analysis on three strains adapted to sub-lethal levels of these stress stimuli and assessed functional gene response. Adaptation to hyperosmotic and cold-temperature stress has revealed many parallels in terms of gene expression profiles in strains possessing different levels of stress tolerance. Gene sets associated with ribosomes and translation, transcription, cell division as well as fatty acid biosynthesis and peptide transport showed activation in cells adapted to either cold or hyperosmotic stress. Repression of genes associated with carbohydrate metabolism and transport as well as flagella was evident in stressed cells, likely linked to activation of CodY regulon and consequential cellular energy conservation.

  6. Evaluation of chemical and/or mechanical treatments of the smear layer as revealed by scanning electron microscopy - a blind comparative study

    Directory of Open Access Journals (Sweden)

    LUZ Maria Aparecida Alves de Cerqueira

    2000-01-01

    Full Text Available A blind comparative study of chemical and/or mechanical treatments of the smear layer, according to scanning electron microscopy images, was carried out. The effect of the treatments was analyzed on the smear layer of mesio-occlusodistal cavity walls prepared in vitro in human third molars. The agents used were air/water spray, 37% phosphoric acid, 5% tannic acid, biologic detergent, 0.5% sodium hypochlorite, and enamel hatchet alone or in association with the previous agents. Electron micrographs were evaluated by three professionals according to the degree of visualization of underlying dentin or enamel. Phosphoric acid received the highest scores due to the complete removal of the smear layer. However, statistical analyses revealed diverse performances of non or slightly demineralizing agents, according to the cavity walls in dentin, while there was equivalent effect on the enamel of gingival walls.

  7. The structural pathway of interleukin 1 (IL-1 initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer.

    Directory of Open Access Journals (Sweden)

    Saliha Ece Acuner Ozbabacan

    2014-02-01

    Full Text Available Interleukin-1 (IL-1 is a large cytokine family closely related to innate immunity and inflammation. IL-1 proteins are key players in signaling pathways such as apoptosis, TLR, MAPK, NLR and NF-κB. The IL-1 pathway is also associated with cancer, and chronic inflammation increases the risk of tumor development via oncogenic mutations. Here we illustrate that the structures of interfaces between proteins in this pathway bearing the mutations may reveal how. Proteins are frequently regulated via their interactions, which can turn them ON or OFF. We show that oncogenic mutations are significantly at or adjoining interface regions, and can abolish (or enhance the protein-protein interaction, making the protein constitutively active (or inactive, if it is a repressor. We combine known structures of protein-protein complexes and those that we have predicted for the IL-1 pathway, and integrate them with literature information. In the reconstructed pathway there are 104 interactions between proteins whose three dimensional structures are experimentally identified; only 15 have experimentally-determined structures of the interacting complexes. By predicting the protein-protein complexes throughout the pathway via the PRISM algorithm, the structural coverage increases from 15% to 71%. In silico mutagenesis and comparison of the predicted binding energies reveal the mechanisms of how oncogenic and single nucleotide polymorphism (SNP mutations can abrogate the interactions or increase the binding affinity of the mutant to the native partner. Computational mapping of mutations on the interface of the predicted complexes may constitute a powerful strategy to explain the mechanisms of activation/inhibition. It can also help explain how an oncogenic mutation or SNP works.

  8. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  9. An eco-epidemiological study of Morbilli-related paramyxovirus infection in Madagascar bats reveals host-switching as the dominant macro-evolutionary mechanism.

    Science.gov (United States)

    Mélade, Julien; Wieseke, Nicolas; Ramasindrazana, Beza; Flores, Olivier; Lagadec, Erwan; Gomard, Yann; Goodman, Steven M; Dellagi, Koussay; Pascalis, Hervé

    2016-04-12

    An eco-epidemiological investigation was carried out on Madagascar bat communities to better understand the evolutionary mechanisms and environmental factors that affect virus transmission among bat species in closely related members of the genus Morbillivirus, currently referred to as Unclassified Morbilli-related paramyxoviruses (UMRVs). A total of 947 bats were investigated originating from 52 capture sites (22 caves, 18 buildings, and 12 outdoor sites) distributed over different bioclimatic zones of the island. Using RT-PCR targeting the L-polymerase gene of the Paramyxoviridae family, we found that 10.5% of sampled bats were infected, representing six out of seven families and 15 out of 31 species analyzed. Univariate analysis indicates that both abiotic and biotic factors may promote viral infection. Using generalized linear modeling of UMRV infection overlaid on biotic and abiotic variables, we demonstrate that sympatric occurrence of bats is a major factor for virus transmission. Phylogenetic analyses revealed that all paramyxoviruses infecting Malagasy bats are UMRVs and showed little host specificity. Analyses using the maximum parsimony reconciliation tool CoRe-PA, indicate that host-switching, rather than co-speciation, is the dominant macro-evolutionary mechanism of UMRVs among Malagasy bats.

  10. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations.

    Directory of Open Access Journals (Sweden)

    Jackson Champer

    2017-07-01

    Full Text Available A functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for the drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Although CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles, which cannot be converted to drive alleles. In this study, we developed two CRISPR gene drive constructs based on the nanos and vasa promoters that allowed us to illuminate the different mechanisms by which resistance alleles are formed in the model organism Drosophila melanogaster. We observed resistance allele formation at high rates both prior to fertilization in the germline and post-fertilization in the embryo due to maternally deposited Cas9. Assessment of drive activity in genetically diverse backgrounds further revealed substantial differences in conversion efficiency and resistance rates. Our results demonstrate that the evolution of resistance will likely impose a severe limitation to the effectiveness of current CRISPR gene drive approaches, especially when applied to diverse natural populations.

  11. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study

    Science.gov (United States)

    Marini, Francesco; Demeter, Elise; Roberts, Kenneth C.; Chelazzi, Leonardo

    2016-01-01

    Given the information overload often imparted to human cognitive-processing systems, suppression of irrelevant and distracting information is essential for successful behavior. Using a hybrid block/event-related fMRI design, we characterized proactive and reactive brain mechanisms for filtering distracting stimuli. Participants performed a flanker task, discriminating the direction of a target arrow in the presence versus absence of congruent or incongruent flanking distracting arrows during either Pure blocks (distracters always absent) or Mixed blocks (distracters on 80% of trials). Each Mixed block had either 20% or 60% incongruent trials. Activations in the dorsal frontoparietal attention network during Mixed versus Pure blocks evidenced proactive (blockwise) recruitment of a distraction-filtering mechanism. Sustained activations in right middle frontal gyrus during 60% Incongruent blocks correlated positively with behavioral indices of distraction-filtering (slowing when distracters might occur) and negatively with distraction-related behavioral costs (incongruent vs congruent trials), suggesting a role in coordinating proactive filtering of potential distracters. Event-related analyses showed that incongruent trials elicited greater reactive activations in 20% (vs 60%) Incongruent blocks for counteracting distraction and conflict, including in the insula and anterior cingulate. Context-related effects in occipitoparietal cortex consisted of greater target-evoked activations for distracter-absent trials (central-target-only) in Mixed versus Pure blocks, suggesting enhanced attentional engagement. Functional-localizer analyses in V1/V2/V3 revealed less distracter-processing activity in 60% (vs 20%) Incongruent blocks, presumably reflecting tonic suppression by proactive filtering mechanisms. These results delineate brain mechanisms underlying proactive and reactive filtering of distraction and conflict, and how they are orchestrated depending on distraction

  12. How Do People Become W.E.I.R.D.? Migration Reveals the Cultural Transmission Mechanisms Underlying Variation in Psychological Processes.

    Science.gov (United States)

    Mesoudi, Alex; Magid, Kesson; Hussain, Delwar

    2016-01-01

    Cultural psychologists have shown that people from Western, Educated, Industrialised, Rich, Democratic (WEIRD) countries often exhibit different psychological processing to people from less-WEIRD countries. The former exhibit more individualistic and less collectivistic social orientation, and more analytic and less holistic cognition, than non-Westerners. Yet the mechanisms responsible for maintaining this cultural variation are unclear. Immigration is an ideal 'natural experiment' for uncovering such mechanisms. We used a battery of psychological measures previously shown to vary cross-culturally to compare the social orientation and cognitive style of 286 residents of East London from three cultural backgrounds: (i) 1st-generation British Bangladeshi immigrants; (ii) 2nd-generation British Bangladeshis raised in the UK to Bangladeshi-raised parents; and (iii) non-migrants whose parents were born and raised in the UK. Model comparison revealed that individualism and dispositional attribution, typical of Western societies, are driven primarily by horizontal cultural transmission (e.g. via mass media), with parents and other family members having little or no effect, while collectivism, social closeness and situational attribution were driven by a mix of vertical/oblique cultural transmission (e.g. via family contact) and horizontal cultural transmission. These individual-level transmission dynamics can explain hitherto puzzling population-level phenomena, such as the partial acculturation of 2nd-generation immigrants on measures such as collectivism (due to the mix of vertical and horizontal cultural transmission), or the observation in several countries of increasing individualism (which is transmitted horizontally and therefore rapidly) despite little corresponding change in collectivism (which is transmitted partly vertically and therefore more slowly). Further consideration of cultural transmission mechanisms, in conjunction with the study of migrant

  13. How Do People Become W.E.I.R.D.? Migration Reveals the Cultural Transmission Mechanisms Underlying Variation in Psychological Processes.

    Directory of Open Access Journals (Sweden)

    Alex Mesoudi

    Full Text Available Cultural psychologists have shown that people from Western, Educated, Industrialised, Rich, Democratic (WEIRD countries often exhibit different psychological processing to people from less-WEIRD countries. The former exhibit more individualistic and less collectivistic social orientation, and more analytic and less holistic cognition, than non-Westerners. Yet the mechanisms responsible for maintaining this cultural variation are unclear. Immigration is an ideal 'natural experiment' for uncovering such mechanisms. We used a battery of psychological measures previously shown to vary cross-culturally to compare the social orientation and cognitive style of 286 residents of East London from three cultural backgrounds: (i 1st-generation British Bangladeshi immigrants; (ii 2nd-generation British Bangladeshis raised in the UK to Bangladeshi-raised parents; and (iii non-migrants whose parents were born and raised in the UK. Model comparison revealed that individualism and dispositional attribution, typical of Western societies, are driven primarily by horizontal cultural transmission (e.g. via mass media, with parents and other family members having little or no effect, while collectivism, social closeness and situational attribution were driven by a mix of vertical/oblique cultural transmission (e.g. via family contact and horizontal cultural transmission. These individual-level transmission dynamics can explain hitherto puzzling population-level phenomena, such as the partial acculturation of 2nd-generation immigrants on measures such as collectivism (due to the mix of vertical and horizontal cultural transmission, or the observation in several countries of increasing individualism (which is transmitted horizontally and therefore rapidly despite little corresponding change in collectivism (which is transmitted partly vertically and therefore more slowly. Further consideration of cultural transmission mechanisms, in conjunction with the study of

  14. How Do People Become W.E.I.R.D.? Migration Reveals the Cultural Transmission Mechanisms Underlying Variation in Psychological Processes

    Science.gov (United States)

    Mesoudi, Alex; Magid, Kesson; Hussain, Delwar

    2016-01-01

    Cultural psychologists have shown that people from Western, Educated, Industrialised, Rich, Democratic (WEIRD) countries often exhibit different psychological processing to people from less-WEIRD countries. The former exhibit more individualistic and less collectivistic social orientation, and more analytic and less holistic cognition, than non-Westerners. Yet the mechanisms responsible for maintaining this cultural variation are unclear. Immigration is an ideal ‘natural experiment’ for uncovering such mechanisms. We used a battery of psychological measures previously shown to vary cross-culturally to compare the social orientation and cognitive style of 286 residents of East London from three cultural backgrounds: (i) 1st-generation British Bangladeshi immigrants; (ii) 2nd-generation British Bangladeshis raised in the UK to Bangladeshi-raised parents; and (iii) non-migrants whose parents were born and raised in the UK. Model comparison revealed that individualism and dispositional attribution, typical of Western societies, are driven primarily by horizontal cultural transmission (e.g. via mass media), with parents and other family members having little or no effect, while collectivism, social closeness and situational attribution were driven by a mix of vertical/oblique cultural transmission (e.g. via family contact) and horizontal cultural transmission. These individual-level transmission dynamics can explain hitherto puzzling population-level phenomena, such as the partial acculturation of 2nd-generation immigrants on measures such as collectivism (due to the mix of vertical and horizontal cultural transmission), or the observation in several countries of increasing individualism (which is transmitted horizontally and therefore rapidly) despite little corresponding change in collectivism (which is transmitted partly vertically and therefore more slowly). Further consideration of cultural transmission mechanisms, in conjunction with the study of migrant

  15. BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism.

    Science.gov (United States)

    Lv, Wentang; Du, Ba; Shangguan, Xinxin; Zhao, Yan; Pan, Yufang; Zhu, Lili; He, Yuqing; He, Guangcun

    2014-08-11

    Brown planthopper (BPH, Nilaparvata lugens Stål), is the most destructive phloem-feeding insect pest of rice (Oryza sativa). The BPH-resistance gene BPH15 has been proved to be effective in controlling the pest and widely applied in rice breeding programs. Nevertheless, molecular mechanism of the resistance remain unclear. In this study, we narrowed down the position of BPH15 on chromosome 4 and investigated the transcriptome of BPH15 rice after BPH attacked. We analyzed 13,000 BC2F2 plants of cross between susceptible rice TN1 and the recombinant inbred line RI93 that carrying the BPH15 gene from original resistant donor B5. BPH15 was mapped to a 0.0269 cM region on chromosome 4, which is 210-kb in the reference genome of Nipponbare. Sequencing bacterial artificial chromosome (BAC) clones that span the BPH15 region revealed that the physical size of BPH15 region in resistant rice B5 is 580-kb, much bigger than the corresponding region in the reference genome of Nipponbare. There were 87 predicted genes in the BPH15 region in resistant rice. The expression profiles of predicted genes were analyzed. Four jacalin-related lectin proteins genes and one LRR protein gene were found constitutively expressed in resistant parent and considered the candidate genes of BPH15. The transcriptomes of resistant BPH15 introgression line and the susceptible recipient line were analyzed using high-throughput RNA sequencing. In total, 2,914 differentially expressed genes (DEGs) were identified. BPH-responsive transcript profiles were distinct between resistant and susceptible plants and between the early stage (6 h after infestation, HAI) and late stage (48 HAI). The key defense mechanism was related to jasmonate signaling, ethylene signaling, receptor kinase, MAPK cascades, Ca(2+) signaling, PR genes, transcription factors, and protein posttranslational modifications. Our work combined BAC and RNA sequencing to identify candidate genes of BPH15 and revealed the resistance mechanism

  16. Making the Outcomes of the Doha Development Round Favourable for Developing Countries: Reflections on a Feasible Proposal for a Special Safeguard Mechanism

    Directory of Open Access Journals (Sweden)

    Francis Shasha Matambalya

    2010-06-01

    Full Text Available In principle, there is consensus among World Trade organisation members (WTO on the need to establish Special Safeguard Mechanisms (SSM for use by developing countries. Building on a survey of literature, empirical studies, and exchange of ideas through participation in the international debate on the subject matter, this paper outlines the architecture of a pro-development SSM. The elaboration is based on ten dimensions: country eligibility, criteria for selection of special products, triggers of safeguard action, precondition for application of safeguard action, geographic coverage, permissible remedies, restrictions on the levels of compensation, time scale, other rules, and treatment of developing countries. Compared to the SSG, it allows trigger levels at lower volumes and higher prices. Also, it differentiates demand increase and import surges, maintains linkages of domestic producers to long-run world market dynamics, and allows the computation of the price trigger on consignment by consignment basis.

  17. A transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas reveals molecular mechanisms targeting tumor cell growth and survival

    Directory of Open Access Journals (Sweden)

    Roussos Charis

    2009-12-01

    expression profile. Promoter analysis in a representative cluster revealed shared putative cis-elements suggesting a common regulatory transcription mechanism. Conclusions Present results provide novel evidence on the molecular basis of tumor growth inhibition mediated by mastic oil and set a rational basis for application of genomics and bioinformatic methodologies in the screening of natural compounds with potential cancer chemopreventive activities.

  18. The Role of Chaperone-subunit Usher Domain Interactions in the Mechanism of Bacterial Pilus Biogenesis Revealed by ESI-MS*

    Science.gov (United States)

    Morrissey, Bethny; Leney, Aneika C.; Toste Rêgo, Ana; Phan, Gilles; Allen, William J.; Verger, Denis; Waksman, Gabriel; Ashcroft, Alison E.; Radford, Sheena E.

    2012-01-01

    The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerization and orchestrates a correct and functional order of subunit assembly remain unclear. Here, the ability of the soluble N-terminal (UsherN), C-terminal (UsherC2), and Plug (UsherP) domains of the usher to bind different chaperone-subunit (PapDPapX) complexes is investigated using noncovalent electrospray ionization mass spectrometry. The results reveal that each usher domain is able to bind all six PapDPapX complexes, consistent with an active role of all three usher domains in pilus biogenesis. Using collision induced dissociation, combined with competition binding experiments and dissection of the adhesin subunit, PapG, into separate pilin and adhesin domains, the results reveal why PapG has a uniquely high affinity for the usher, which is consistent with this subunit always being displayed at the pilus tip. In addition, we show how the different soluble usher domains cooperate to coordinate and control efficient pilus assembly at the usher platform. As well as providing new information about the protein-protein interactions that determine pilus biogenesis, the results highlight the power of noncovalent MS to interrogate biological mechanisms, especially in complex mixtures of species. PMID:22371487

  19. The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS.

    Science.gov (United States)

    Morrissey, Bethny; Leney, Aneika C; Toste Rêgo, Ana; Phan, Gilles; Allen, William J; Verger, Denis; Waksman, Gabriel; Ashcroft, Alison E; Radford, Sheena E

    2012-07-01

    The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerization and orchestrates a correct and functional order of subunit assembly remain unclear. Here, the ability of the soluble N-terminal (UsherN), C-terminal (UsherC2), and Plug (UsherP) domains of the usher to bind different chaperone-subunit (PapDPapX) complexes is investigated using noncovalent electrospray ionization mass spectrometry. The results reveal that each usher domain is able to bind all six PapDPapX complexes, consistent with an active role of all three usher domains in pilus biogenesis. Using collision induced dissociation, combined with competition binding experiments and dissection of the adhesin subunit, PapG, into separate pilin and adhesin domains, the results reveal why PapG has a uniquely high affinity for the usher, which is consistent with this subunit always being displayed at the pilus tip. In addition, we show how the different soluble usher domains cooperate to coordinate and control efficient pilus assembly at the usher platform. As well as providing new information about the protein-protein interactions that determine pilus biogenesis, the results highlight the power of noncovalent MS to interrogate biological mechanisms, especially in complex mixtures of species.

  20. Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain.

    Directory of Open Access Journals (Sweden)

    Yunjie Zhao

    Full Text Available The zinc-binding Bbox1 domain in protein MID1, a member of the TRIM family of proteins, facilitates the ubiquitination of the catalytic subunit of protein phosphatase 2A and alpha4, a protein regulator of PP2A. The natural mutation of residue A130 to a valine or threonine disrupts substrate recognition and catalysis. While NMR data revealed the A130T mutant Bbox1 domain failed to coordinate both structurally essential zinc ions and resulted in an unfolded structure, the unfolding mechanism is unknown. Principle component analysis revealed that residue A130 served as a hinge point between the structured β-strand-turn-β-strand (β-turn-β and the lasso-like loop sub-structures that constitute loop1 of the ββα-RING fold that the Bbox1 domain adopts. Backbone RMSD data indicate significant flexibility and departure from the native structure within the first 5 ns of the molecular dynamics (MD simulation for the A130V mutant (>6 Å and after 30 ns for A130T mutant (>6 Å. Overall RMSF values were higher for the mutant structures and showed increased flexibility around residues 125 and 155, regions with zinc-coordinating residues. Simulated pKa values of the sulfhydryl group of C142 located near A130 suggested an increased in value to ~9.0, paralleling the increase in the apparent dielectric constants for the small cavity near residue A130. Protonation of the sulfhydryl group would disrupt zinc-coordination, directly contributing to unfolding of the Bbox1. Together, the increased motion of residues of loop 1, which contains four of the six zinc-binding cysteine residues, and the increased pKa of C142 could destabilize the structure of the zinc-coordinating residues and contribute to the unfolding.

  1. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    Science.gov (United States)

    Prejean, Stephanie; Ellsworth, William L.; Zoback, Mark; Waldhauser, Felix

    2002-01-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  2. Molecular dynamics analysis reveals structural insights into mechanism of nicotine N-demethylation catalyzed by tobacco cytochrome P450 mono-oxygenase.

    Directory of Open Access Journals (Sweden)

    Shan Wang

    Full Text Available CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys-trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase.

  3. Structure-function analyses reveal the molecular architecture and neutralization mechanism of a bacterial HEPN-MNT toxin-antitoxin system.

    Science.gov (United States)

    Jia, Xuanyan; Yao, Jianyun; Gao, Zengqiang; Liu, Guangfeng; Dong, Yu-Hui; Wang, Xiaoxue; Zhang, Heng

    2018-05-04

    Toxin-antitoxin (TA) loci in bacteria are small genetic modules that regulate various cellular activities, including cell growth and death. The two-gene module encoding a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain and a cognate MNT (minimal nucleotidyltransferase) domain have been predicted to represent a novel type II TA system prevalent in archaea and bacteria. However, the neutralization mechanism and cellular targets of the TA family remain unclear. The toxin SO_3166 having a HEPN domain and its cognate antitoxin SO_3165 with an MNT domain constitute a typical type II TA system that regulates cell motility and confers plasmid stability in the bacterium Shewanella oneidensis Here, we report the crystal structure and solution conformation of the SO_3166-SO_3165 pair, representing the first complex structures in this TA family. The structures revealed that SO_3165 and SO_3166 form a tight heterooctamer (at a 2:6 ratio), an organization that is very rare in other TA systems. We also observed that SO_3166 dimerization enables the formation of a deep cleft at the HEPN-domain interface harboring a composite R X 4-6H active site that functions as an RNA-cleaving RNase. SO_3165 bound SO_3166 mainly through its two α-helices (α2 and α4), functioning as molecular recognition elements. Moreover, their insertion into the SO_3166 cleft sterically blocked the R X 4-6H site or narrowed the cleft to inhibit RNA substrate binding. Structure-based mutagenesis confirmed the important roles of these α-helices in SO_3166 binding and inhibition. Our structure-function analysis provides first insights into the neutralization mechanism of the HEPN-MNT TA family. © 2018 Jia et al.

  4. Multi-state nonadiabatic deactivation mechanism of coumarin revealed by ab initio on-the-fly trajectory surface hopping dynamic simulation.

    Science.gov (United States)

    Gan, Yanzhen; Yue, Ling; Guo, Xugeng; Zhu, Chaoyuan; Cao, Zexing

    2017-05-17

    An on-the-fly trajectory surface hopping dynamic simulation has been performed for revealing the multi-state nonadiabatic deactivation mechanism of coumarin. The mechanism involves three adiabatic excited states, S 3 (ππ*L b ), S 2 (nπ*, ππ*L a ) and S 1 (ππ*L a , nπ*), and the ground state S 0 at the four state-averaged complete active space self-consistent field, SA4-CASSCF(12,10)/6-31G* level of theory. Upon photoexcitation to the third excited state S 3 (ππ*L b ) in the Franck-Condon region, 80% sampling trajectories decay to the dark S 2 (nπ*) state within an average of 5 fs via the conical intersection S 3 (ππ*L b )/S 2 (nπ*), while 20% decay to the S 2 (ππ*L a ) state within an average of 11 fs via the conical intersection S 3 (ππ*L b )/S 2 (ππ*L a ). Then, sampling trajectories via S 2 (nπ*)/S 1 (ππ*L a ) continue with ultrafast decay processes to give a final distribution of quantum yields as follows: 42% stay on the dark S 1 (nπ*) state, 43.3% go back to the ground S 0 state, 12% undergo a ring-opening reaction to the Z-form S 0 (Z) state, and 2.7% go to the E-form S 0 (E) state. The lifetimes of the excited states are estimated as follows: the S 3 state is about 12 fs on average, the S 2 state is about 80 fs, and the S 1 state has a fast component of about 160 fs and a slow component of 15 ps. The simulated ultrafast radiationless deactivation pathways of photoexcited coumarin immediately interpret the experimentally observed weak fluorescence emission.

  5. Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis

    Directory of Open Access Journals (Sweden)

    Tao Wei

    2018-03-01

    Full Text Available In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study we compared the global transcriptional profiles of wild-type (WT and AtDREB1A-expressing transgenic plants using RNA-sequencing (RNA-seq. Using cluster analysis, we identified 3904 differentially expressed genes (DEGs. Compared with WT plants, 423 unigenes were up-regulated in pRD29A::AtDREB1A-31 before drought treatment, while 936 were down-regulated and 1580 and 1313 unigenes were up- and down-regulated after six days of drought. COG analysis revealed that the ‘signal transduction mechanisms’ category was highly enriched among these DEGs both before and after drought stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG annotation, DEGs associated with “ribosome”, “plant hormone signal transduction”, photosynthesis”, “plant-pathogen interaction”, “glycolysis/gluconeogenesis” and “carbon fixation” are hypothesized to perform major functions in drought resistance in AtDREB1A-expressing transgenic plants. Furthermore, the number of DEGs associated with different transcription factors increased significantly after drought stress, especially the AP2/ERF, bZIP and MYB protein families. Taken together, this study substantially expands the transcriptomic information for S. miltiorrhiza and provides valuable clues for elucidating the mechanism of AtDREB1A-mediated drought tolerance in transgenic plants.

  6. Resistive switching mechanism in the one diode-one resistor memory based on p+-Si/n-ZnO heterostructure revealed by in-situ TEM

    Science.gov (United States)

    Zhang, Lei; Zhu, Liang; Li, Xiaomei; Xu, Zhi; Wang, Wenlong; Bai, Xuedong

    2017-03-01

    One diode-one resistor (1D1R) memory is an effective architecture to suppress the crosstalk interference, realizing the crossbar network integration of resistive random access memory (RRAM). Herein, we designed a p+-Si/n-ZnO heterostructure with 1D1R function. Compared with the conventional multilayer 1D1R devices, the structure and fabrication technique can be largely simplified. The real-time imaging of formation/rupture process of conductive filament (CF) process demonstrated the RS mechanism by in-situ transmission electron microscopy (TEM). Meanwhile, we observed that the formed CF is only confined to the outside of depletion region of Si/ZnO pn junction, and the formation of CF does not degrade the diode performance, which allows the coexistence of RS and rectifying behaviors, revealing the 1D1R switching model. Furthermore, it has been confirmed that the CF is consisting of the oxygen vacancy by in-situ TEM characterization.

  7. The Cytotoxicity Mechanism of 6-Shogaol-Treated HeLa Human Cervical Cancer Cells Revealed by Label-Free Shotgun Proteomics and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Qun Liu

    2012-01-01

    Full Text Available Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale. In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight mass spectrometry was subsequently proposed to identify, in a non-target-biased manner, the molecular changes in cellular proteins in response to 6-shogaol treatment. A total of 287 proteins were differentially expressed in response to 24 h treatment with 15 μM 6-shogaol in HeLa cells. Significantly changed proteins were subjected to functional pathway analysis by multiple analyzing software. Ingenuity pathway analysis (IPA suggested that 14-3-3 signaling is a predominant canonical pathway involved in networks which may be significantly associated with the process of apoptosis and G2/M cell cycle arrest induced by 6-shogaol. In conclusion, this work developed an unbiased protein analysis strategy by shotgun proteomics and bioinformatics analysis. Data observed provide a comprehensive analysis of the 6-shogaol-treated HeLa cell proteome and reveal protein alterations that are associated with its anticancer mechanism.

  8. Mechanisms of charge transfer and redistribution in LaAlO3/SrTiO3 revealed by high-energy optical conductivity.

    Science.gov (United States)

    Asmara, T C; Annadi, A; Santoso, I; Gogoi, P K; Kotlov, A; Omer, H M; Motapothula, M; Breese, M B H; Rübhausen, M; Venkatesan, T; Ariando; Rusydi, A

    2014-04-14

    In condensed matter physics the quasi two-dimensional electron gas at the interface of two different insulators, polar LaAlO3 on nonpolar SrTiO3 (LaAlO3/SrTiO3) is a spectacular and surprising observation. This phenomenon is LaAlO3 film thickness dependent and may be explained by the polarization catastrophe model, in which a charge transfer of 0.5e(-) from the LaAlO3 film into the LaAlO3/SrTiO3 interface is expected. Here we show that in conducting samples (≥ 4 unit cells of LaAlO3) there is indeed a ~0.5e(-) transfer from LaAlO3 into the LaAlO3/SrTiO3 interface by studying the optical conductivity in a broad energy range (0.5-35 eV). Surprisingly, in insulating samples (≤ 3 unit cells of LaAlO3) a redistribution of charges within the polar LaAlO3 sublayers (from AlO2 to LaO) as large as ~0.5e(-) is observed, with no charge transfer into the interface. Hence, our results reveal the different mechanisms for the polarization catastrophe compensation in insulating and conducting LaAlO3/SrTiO3 interfaces.

  9. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin

    Science.gov (United States)

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-xian; Reiter, Russel J.; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. PMID:25225478

  10. Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability

    Directory of Open Access Journals (Sweden)

    M. Catarina Silva

    2016-09-01

    Full Text Available Frontotemporal dementia (FTD and other tauopathies characterized by focal brain neurodegeneration and pathological accumulation of proteins are commonly associated with tau mutations. However, the mechanism of neuronal loss is not fully understood. To identify molecular events associated with tauopathy, we studied induced pluripotent stem cell (iPSC-derived neurons from individuals carrying the tau-A152T variant. We highlight the potential of in-depth phenotyping of human neuronal cell models for pre-clinical studies and identification of modulators of endogenous tau toxicity. Through a panel of biochemical and cellular assays, A152T neurons showed accumulation, redistribution, and decreased solubility of tau. Upregulation of tau was coupled to enhanced stress-inducible markers and cell vulnerability to proteotoxic, excitotoxic, and mitochondrial stressors, which was rescued upon CRISPR/Cas9-mediated targeting of tau or by pharmacological activation of autophagy. Our findings unmask tau-mediated perturbations of specific pathways associated with neuronal vulnerability, revealing potential early disease biomarkers and therapeutic targets for FTD and other tauopathies.

  11. Resistive switching mechanism in the one diode-one resistor memory based on p+-Si/n-ZnO heterostructure revealed by in-situ TEM.

    Science.gov (United States)

    Zhang, Lei; Zhu, Liang; Li, Xiaomei; Xu, Zhi; Wang, Wenlong; Bai, Xuedong

    2017-03-21

    One diode-one resistor (1D1R) memory is an effective architecture to suppress the crosstalk interference, realizing the crossbar network integration of resistive random access memory (RRAM). Herein, we designed a p + -Si/n-ZnO heterostructure with 1D1R function. Compared with the conventional multilayer 1D1R devices, the structure and fabrication technique can be largely simplified. The real-time imaging of formation/rupture process of conductive filament (CF) process demonstrated the RS mechanism by in-situ transmission electron microscopy (TEM). Meanwhile, we observed that the formed CF is only confined to the outside of depletion region of Si/ZnO pn junction, and the formation of CF does not degrade the diode performance, which allows the coexistence of RS and rectifying behaviors, revealing the 1D1R switching model. Furthermore, it has been confirmed that the CF is consisting of the oxygen vacancy by in-situ TEM characterization.

  12. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion?

    Science.gov (United States)

    2015-01-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by 1H NMR and LC–MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC–MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice. PMID:24702026

  13. A comparative study on Ca content and distribution in two Gesneriaceae species reveals distinctive mechanisms to cope with high rhizospheric soluble calcium

    Directory of Open Access Journals (Sweden)

    Wenlong eLi

    2014-11-01

    Full Text Available Excessive Ca is toxic to plants thus significantly affects plant growth and species distribution in Ca-rich karst areas. To understand how plants survive high Ca soil, laboratory experiments were established to compare the physiological responses and internal Ca distribution in organ, tissue, cell and intracellular levels under different Ca levels for Lysionotus pauciflorus and Boea hygrometrica, two karst habitant Gesneriaceae species in Southwest China. In the controlled condition, L. pauciflorus could survive as high as 200 mM rhizospheric soluble Ca, attributed to a series of physiological responses and preferential storage that limited Ca accumulation in chloroplasts of palisade cells. In contrast, B. hygrometrica could survive only 20 mM rhizospheric soluble Ca, but accumulated a high level of internal Ca in both palisade and spongy cells without disturbance on photosynthetic activity. By phenotype screening of transgenic plants expressing high Ca-inducible genes from B. hygrometrica, the expression of BhDNAJC2 in A. thaliana was found to enhance plant growth and photosynthesis under high soluble Ca stress. BhDNAJC2 encodes a recently reported heat shock protein (HSP 40 family DnaJ-domain protein. The Ca-resistant phenotype of BhDNAJC2 highlights the important role of chaperone-mediated protein quality control in Ca tolerance in B. hygrometrica. Taken together, our results revealed that distinctive mechanisms were employed in the two Gesneriaceae karst habitants to cope with a high Ca environment.

  14. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin.

    Science.gov (United States)

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-Xian; Reiter, Russel J; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-02-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Structural and biochemical characterization of phage λ FI protein (gpFI) reveals a novel mechanism of DNA packaging chaperone activity.

    Science.gov (United States)

    Popovic, Ana; Wu, Bin; Arrowsmith, Cheryl H; Edwards, Aled M; Davidson, Alan R; Maxwell, Karen L

    2012-09-14

    One of the final steps in the morphogenetic pathway of phage λ is the packaging of a single genome into a preformed empty head structure. In addition to the terminase enzyme, the packaging chaperone, FI protein (gpFI), is required for efficient DNA packaging. In this study, we demonstrate an interaction between gpFI and the major head protein, gpE. Amino acid substitutions in gpFI that reduced the strength of this interaction also decreased the biological activity of gpFI, implying that this head binding activity is essential for the function of gpFI. We also show that gpFI is a two-domain protein, and the C-terminal domain is responsible for the head binding activity. Using nuclear magnetic resonance spectroscopy, we determined the three-dimensional structure of the C-terminal domain and characterized the helical nature of the N-terminal domain. Through structural comparisons, we were able to identify two previously unannotated prophage-encoded proteins with tertiary structures similar to gpFI, although they lack significant pairwise sequence identity. Sequence analysis of these diverse homologues led us to identify related proteins in a variety of myo- and siphophages, revealing that gpFI function has a more highly conserved role in phage morphogenesis than was previously appreciated. Finally, we present a novel model for the mechanism of gpFI chaperone activity in the DNA packaging reaction of phage λ.

  16. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  17. Possible Different Rifting Mechanisms Between South and North Part of the Fenhe-Weihe Rift Zone Revealed by Shear Velocity Structures

    Science.gov (United States)

    Ai, S.; Zheng, Y.

    2017-12-01

    As an active intraplate continental rift, FWR plays an important role in accommodating the trans-tension in the Trans North China Craton (TNCO). Velocity field derived from GPS measurements reveals that the northern part of FWR is still under extension in N105°E direction at a rate of 4±2 mm/yr [Shen et al., 2000]. Actually, the FWR has been the most seismically active region in NCC. Bouguer gravity profile and seismic sounding lines [Xu and Ma, 1992] revealed a 2-3 km uplift of Moho depth beneath Taiyuan basin and 5-6 km beneath the Southwestern rift zone, those geophysical observations give clues to the un-evenly upwelling of the asthenosphere beneath the rift system and the different rifting process of the FWR. Therefore, studying the extension process of FWR is meaningful to understanding the NCC geodynamics associated with rifting tectonism. Using vertical continuous waveforms recorded during 2014 from CEarray, we construct a reliable and detailed 3-D crustal and uppermost mantle S-wave velocity structure of FWR, using a Bayesian Monte-Carlo method to jointly interpret teleseismic P-wave receiver functions and Rayleigh wave dispersions [Shen et al., 2013]. In the upmost crust, FWR appear as awful low velocity anomaly zone (LVZ), while the Taihang and Lvliang mountain ranges are imaged as strong high velocity anomaly zones(HVZ). In the middle crust, the low velocity zones still keep their LVZ features Additionally, nearly the whole FWR appears as a linearly LVZ line separating Taihang Uplift and Lvliang Uplift, except beneath Shilingguan and Linshi blocks that separate the Xinxian, Taiyuan and Linfen Basins, consisting with the high seismicity there. The velocity of the lower crust beneath Taiyuan and Weihe Basin are relatively higher than the rest rift regions, we interpret them as the limited mafic underplating beneath the TNCO. From the lower crust to upper mantle, the Datong volcanic zone display robust low velocity features, though the lowest velocity

  18. Analysis of the Genome and Mobilome of a Dissimilatory Arsenate Reducing Aeromonas sp. O23A Reveals Multiple Mechanisms for Heavy Metal Resistance and Metabolism

    Directory of Open Access Journals (Sweden)

    Witold Uhrynowski

    2017-05-01

    Full Text Available Aeromonas spp. are among the most ubiquitous microorganisms, as they have been isolated from different environmental niches including waters, soil, as well as wounds and digestive tracts of poikilothermic animals and humans. Although much attention has been paid to the pathogenicity of Aeromonads, the role of these bacteria in environmentally important processes, such as transformation of heavy metals, remains to be discovered. Therefore, the aim of this study was a detailed genomic characterization of Aeromonas sp. O23A, the first representative of this genus capable of dissimilatory arsenate reduction. The strain was isolated from microbial mats from the Zloty Stok mine (SW Poland, an environment strongly contaminated with arsenic. Previous physiological studies indicated that O23A may be involved in both mobilization and immobilization of this metalloid in the environment. To discover the molecular basis of the mechanisms behind the observed abilities, the genome of O23A (∼5.0 Mbp was sequenced and annotated, and genes for arsenic respiration, heavy metal resistance (hmr and other phenotypic traits, including siderophore production, were identified. The functionality of the indicated gene modules was assessed in a series of minimal inhibitory concentration analyses for various metals and metalloids, as well as mineral dissolution experiments. Interestingly, comparative analyses revealed that O23A is related to a fish pathogen Aeromonas salmonicida subsp. salmonicida A449 which, however, does not carry genes for arsenic respiration. This indicates that the dissimilatory arsenate reduction ability may have been lost during genome reduction in pathogenic strains, or acquired through horizontal gene transfer. Therefore, particular emphasis was placed upon the mobilome of O23A, consisting of four plasmids, a phage, and numerous transposable elements, which may play a role in the dissemination of hmr and arsenic metabolism genes in the

  19. Analysis of the Genome and Mobilome of a Dissimilatory Arsenate Reducing Aeromonas sp. O23A Reveals Multiple Mechanisms for Heavy Metal Resistance and Metabolism.

    Science.gov (United States)

    Uhrynowski, Witold; Decewicz, Przemyslaw; Dziewit, Lukasz; Radlinska, Monika; Krawczyk, Pawel S; Lipinski, Leszek; Adamska, Dorota; Drewniak, Lukasz

    2017-01-01

    Aeromonas spp. are among the most ubiquitous microorganisms, as they have been isolated from different environmental niches including waters, soil, as well as wounds and digestive tracts of poikilothermic animals and humans. Although much attention has been paid to the pathogenicity of Aeromonads, the role of these bacteria in environmentally important processes, such as transformation of heavy metals, remains to be discovered. Therefore, the aim of this study was a detailed genomic characterization of Aeromonas sp. O23A, the first representative of this genus capable of dissimilatory arsenate reduction. The strain was isolated from microbial mats from the Zloty Stok mine (SW Poland), an environment strongly contaminated with arsenic. Previous physiological studies indicated that O23A may be involved in both mobilization and immobilization of this metalloid in the environment. To discover the molecular basis of the mechanisms behind the observed abilities, the genome of O23A (∼5.0 Mbp) was sequenced and annotated, and genes for arsenic respiration, heavy metal resistance ( hmr ) and other phenotypic traits, including siderophore production, were identified. The functionality of the indicated gene modules was assessed in a series of minimal inhibitory concentration analyses for various metals and metalloids, as well as mineral dissolution experiments. Interestingly, comparative analyses revealed that O23A is related to a fish pathogen Aeromonas salmonicida subsp. salmonicida A449 which, however, does not carry genes for arsenic respiration. This indicates that the dissimilatory arsenate reduction ability may have been lost during genome reduction in pathogenic strains, or acquired through horizontal gene transfer. Therefore, particular emphasis was placed upon the mobilome of O23A, consisting of four plasmids, a phage, and numerous transposable elements, which may play a role in the dissemination of hmr and arsenic metabolism genes in the environment. The obtained

  20. Analysis of the Genome and Mobilome of a Dissimilatory Arsenate Reducing Aeromonas sp. O23A Reveals Multiple Mechanisms for Heavy Metal Resistance and Metabolism

    Science.gov (United States)

    Uhrynowski, Witold; Decewicz, Przemyslaw; Dziewit, Lukasz; Radlinska, Monika; Krawczyk, Pawel S.; Lipinski, Leszek; Adamska, Dorota; Drewniak, Lukasz

    2017-01-01

    Aeromonas spp. are among the most ubiquitous microorganisms, as they have been isolated from different environmental niches including waters, soil, as well as wounds and digestive tracts of poikilothermic animals and humans. Although much attention has been paid to the pathogenicity of Aeromonads, the role of these bacteria in environmentally important processes, such as transformation of heavy metals, remains to be discovered. Therefore, the aim of this study was a detailed genomic characterization of Aeromonas sp. O23A, the first representative of this genus capable of dissimilatory arsenate reduction. The strain was isolated from microbial mats from the Zloty Stok mine (SW Poland), an environment strongly contaminated with arsenic. Previous physiological studies indicated that O23A may be involved in both mobilization and immobilization of this metalloid in the environment. To discover the molecular basis of the mechanisms behind the observed abilities, the genome of O23A (∼5.0 Mbp) was sequenced and annotated, and genes for arsenic respiration, heavy metal resistance (hmr) and other phenotypic traits, including siderophore production, were identified. The functionality of the indicated gene modules was assessed in a series of minimal inhibitory concentration analyses for various metals and metalloids, as well as mineral dissolution experiments. Interestingly, comparative analyses revealed that O23A is related to a fish pathogen Aeromonas salmonicida subsp. salmonicida A449 which, however, does not carry genes for arsenic respiration. This indicates that the dissimilatory arsenate reduction ability may have been lost during genome reduction in pathogenic strains, or acquired through horizontal gene transfer. Therefore, particular emphasis was placed upon the mobilome of O23A, consisting of four plasmids, a phage, and numerous transposable elements, which may play a role in the dissemination of hmr and arsenic metabolism genes in the environment. The obtained

  1. The human brain and face: mechanisms of cranial, neurological and facial development revealed through malformations of holoprosencephaly, cyclopia and aberrations in chromosome 18.

    Science.gov (United States)

    Gondré-Lewis, Marjorie C; Gboluaje, Temitayo; Reid, Shaina N; Lin, Stephen; Wang, Paul; Green, William; Diogo, Rui; Fidélia-Lambert, Marie N; Herman, Mary M

    2015-09-01

    The study of inborn genetic errors can lend insight into mechanisms of normal human development and congenital malformations. Here, we present the first detailed comparison of cranial and neuro pathology in two exceedingly rare human individuals with cyclopia and alobar holoprosencephaly (HPE) in the presence and absence of aberrant chromosome 18 (aCh18). The aCh18 fetus contained one normal Ch18 and one with a pseudo-isodicentric duplication of chromosome 18q and partial deletion of 18p from 18p11.31 where the HPE gene, TGIF, resides, to the p terminus. In addition to synophthalmia, the aCh18 cyclopic malformations included a failure of induction of most of the telencephalon - closely approximating anencephaly, unchecked development of brain stem structures, near absence of the sphenoid bone and a malformed neurocranium and viscerocranium that constitute the median face. Although there was complete erasure of the olfactory and superior nasal structures, rudiments of nasal structures derived from the maxillary bone were evident, but with absent pharyngeal structures. The second non-aCh18 cyclopic fetus was initially classified as a true Cyclops, as it appeared to have a proboscis and one median eye with a single iris, but further analysis revealed two eye globes as expected for synophthalmic cyclopia. Furthermore, the proboscis was associated with the medial ethmoid ridge, consistent with an incomplete induction of these nasal structures, even as the nasal septum and paranasal sinuses were apparently developed. An important conclusion of this study is that it is the brain that predicts the overall configuration of the face, due to its influence on the development of surrounding skeletal structures. The present data using a combination of macroscopic, computed tomography (CT) and magnetic resonance imaging (MRI) techniques provide an unparalleled analysis on the extent of the effects of median defects, and insight into normal development and patterning of the brain

  2. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    Directory of Open Access Journals (Sweden)

    Jiayang Qin

    Full Text Available Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  3. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    Science.gov (United States)

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle)' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle)' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  4. Analysis of integrated multiple 'omics' datasets reveals the mechanisms of initiation and determination in the formation of tuberous roots in Rehmannia glutinosa.

    Science.gov (United States)

    Li, Mingjie; Yang, Yanhui; Li, Xinyu; Gu, Li; Wang, Fengji; Feng, Fajie; Tian, Yunhe; Wang, Fengqing; Wang, Xiaoran; Lin, Wenxiong; Chen, Xinjian; Zhang, Zhongyi

    2015-09-01

    All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry

    Science.gov (United States)

    Yang, Jing; McCormick, Mark A.; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K.; Li, Hao

    2015-01-01

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials (“aging factors”) through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms. PMID:26351681

  6. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.

    Science.gov (United States)

    Yang, Jing; McCormick, Mark A; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K; Li, Hao

    2015-09-22

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.

  7. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins*

    Science.gov (United States)

    Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki

    2017-01-01

    Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. PMID:27927989

  8. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins.

    Science.gov (United States)

    Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki

    2017-01-20

    Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Genomic and transcriptomic comparison of allergen and silver nanoparticle-induced mast cell degranulation reveals novel non-immunoglobulin E mediated mechanisms.

    Science.gov (United States)

    Johnson, Monica; Alsaleh, Nasser; Mendoza, Ryan P; Persaud, Indushekhar; Bauer, Alison K; Saba, Laura; Brown, Jared M

    2018-01-01

    Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.

  10. The regulation mechanisms of soluble starch and glycerol for production of azaphilone pigments in Monascus purpureus FAFU618 as revealed by comparative proteomic and transcriptional analyses.

    Science.gov (United States)

    Huang, Zi-Rui; Zhou, Wen-Bin; Yang, Xue-Ling; Tong, Ai-Jun; Hong, Jia-Li; Guo, Wei-Ling; Li, Tian-Tian; Jia, Rui-Bo; Pan, Yu-Yang; Lin, Jun; Lv, Xu-Cong; Liu, Bin

    2018-04-01

    Monascus spp. have been used for thousands of years as a traditional food additive in China. This mold can produce many different types of commercially valuable secondary metabolites of biological activity. Soluble starch and glycerol are the two principal carbon sources universally utilized by Monascus for the production of beneficial metabolites. In this study, the effects and regulation mechanisms of soluble starch and glycerol for M. purpureus FAFU618 on Monascus azaphilone pigments (MonAzPs) were investigated through ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS/MS), comparative proteomics and quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR). The production of intracellular and extracellular pigments was significantly different between the soluble starch group (SSG) and glycerol group (GCG). Additionally, the components of intracellular pigments revealed by UPLC-QTOF-MS/MS showed that Monascin and Ankaflavin increased significantly in the GCG, while Rubropunctatin and Monascorubrin increased in the SSG. Differentially expressed proteins of mycelia between SSG and GCG were analyzed by two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF MS. We identified 27 proteins with statistically altered expression, of which 18 proteins associated with the EMP (glycolytic pathway), translation, energy generation, proteolysis, etc. were up-regulated, and 9 proteins, including ribosomal proteins, heat shock proteins (HSPs) and others, were down-regulated in GCG. Meanwhile, the expression levels of MonAzP biosynthetic genes were also analyzed by RT-qPCR, and the results showed that mppA, mppC, mppR1 and mppR2 were down-regulated, whereas genes MpPKS5, MpFasA2, MpFasB2, mppB, mppD and mppE were up-regulated. Collectively, these findings illustrate that the regulation of MonAzPs is not only closely related to the expression levels of certain proteins in the polyketide synthesis pathway

  11. Comprehensive analysis of differential co-expression patterns reveal transcriptional dysregulation mechanism and identify novel prognostic lncRNAs in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Li Z

    2017-06-01

    Full Text Available Zhen Li,1 Qianlan Yao,1 Songjian Zhao,1 Yin Wang,2,3 Yixue Li,1,4 Zhen Wang4 1School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 2Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 3Collaborative Innovation Center for Genetics and Development, Fudan University, 4Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: Esophageal squamous cell carcinoma (ESCC is one of the most common malignancies worldwide and occurs at a relatively high frequency in People’s Republic of China. However, the molecular mechanism underlying ESCC is still unclear. In this study, the mRNA and long non-coding RNA (lncRNA expression profiles of ESCC were downloaded from the Gene Expression Omnibus database, and then differential co-expression analysis was used to reveal the altered co-expression relationship of gene pairs in ESCC tumors. A total of 3,709 mRNAs and 923 lncRNAs were differentially co-expressed between normal and tumor tissues, and we found that most of the gene pairs lost associations in the tumor tissues. The differential regulatory networking approach deciphered that transcriptional dysregulation was ubiquitous in ESCC, and most of the differentially regulated links were modulated by 37 TFs. Our study also found that two novel lncRNAs (ADAMTS9-AS1 and AP000696.2 might be essential in the development of ectoderm and epithelial cells, which could significantly stratify ESCC patients into high-risk and low-risk groups, and were much better than traditional clinical tumor markers. Further inspection of two risk groups showed that the changes in TF-target regulation in the high-risk patients were significantly higher than those in the low-risk patients. In addition, four signal transduction-related DCmRNAs (ERBB3, ENSA, KCNK7, MFSD5

  12. Mg2+ -Dependent High Mechanical Anisotropy of Three-Way-Junction pRNA as Revealed by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Sun, Yang; Di, Weishuai; Li, Yiran; Huang, Wenmao; Wang, Xin; Qin, Meng; Wang, Wei; Cao, Yi

    2017-08-01

    Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three-way-junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg 2+ binding. In the absence of Mg 2+ , 3WJ-pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg 2+ , the unfolding forces can differ by more than 4-fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ-pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg 2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ-pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 14-plex Feasibility Report

    Energy Technology Data Exchange (ETDEWEB)

    Kotongan, Victoria Hazel [Native Village of Unalakleet

    2013-06-21

    The Native Village of Unalakleet project was a feasibility study for a retrofit of a “tribally owned” three story, 14 apartment complex located in Unalakleet, Alaska. The program objective and overall goal was to create a plan for retrofitting to include current appraised value and comparable costs of new construction to determine genuine feasibility as low-income multi-family housing for tribal members.

  14. Characterization of cleavage events in the multifunctional cilium adhesin Mhp684 (P146) reveals a mechanism by which Mycoplasma hyopneumoniae regulates surface topography.

    Science.gov (United States)

    Bogema, Daniel R; Deutscher, Ania T; Woolley, Lauren K; Seymour, Lisa M; Raymond, Benjamin B A; Tacchi, Jessica L; Padula, Matthew P; Dixon, Nicholas E; Minion, F Chris; Jenkins, Cheryl; Walker, Mark J; Djordjevic, Steven P

    2012-01-01

    Mycoplasma hyopneumoniae causes enormous economic losses to swine production worldwide by colonizing the ciliated epithelium in the porcine respiratory tract, resulting in widespread damage to the mucociliary escalator, prolonged inflammation, reduced weight gain, and secondary infections. Protein Mhp684 (P146) comprises 1,317 amino acids, and while the N-terminal 400 residues display significant sequence identity to the archetype cilium adhesin P97, the remainder of the molecule is novel and displays unusual motifs. Proteome analysis shows that P146 preprotein is endogenously cleaved into three major fragments identified here as P50(P146), P40(P146), and P85(P146) that reside on the cell surface. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) identified a semitryptic peptide that delineated a major cleavage site in Mhp684. Cleavage occurred at the phenylalanine residue within sequence (672)ATEF↓QQ(677), consistent with a cleavage motif resembling S/T-X-F↓X-D/E recently identified in Mhp683 and other P97/P102 family members. Biotinylated surface proteins recovered by avidin chromatography and separated by two-dimensional gel electrophoresis (2-D GE) showed that more-extensive endoproteolytic cleavage of P146 occurs. Recombinant fragments F1(P146)-F3(P146) that mimic P50(P146), P40(P146), and P85(P146) were constructed and shown to bind porcine epithelial cilia and biotinylated heparin with physiologically relevant affinity. Recombinant versions of F3(P146) generated from M. hyopneumoniae strain J and 232 sequences strongly bind porcine plasminogen, and the removal of their respective C-terminal lysine and arginine residues significantly reduces this interaction. These data reveal that P146 is an extensively processed, multifunctional adhesin of M. hyopneumoniae. Extensive cleavage coupled with variable cleavage efficiency provides a mechanism by which M. hyopneumoniae regulates protein topography. Vaccines used to control Mycoplasma

  15. Transcriptional analysis and molecular dynamics simulations reveal the mechanism of toxic metals removal and efflux pumps in Lysinibacillus sphaericus OT4b.31

    KAUST Repository

    Shaw, Dario Rangel; Dussan, Jenny

    2017-01-01

    Lysinibacillus sphaericus strain OT4b.31 is a bacterium widely applied in bioremediation processes of hydrocarbon and metal polluted environments. In this study, we identified the molecular mechanism underlying the Pb2+ and Cr6+ resistance. Metal

  16. A Novel Method of Mechanical Oxidation of CNT for Polymer Nanocomposite Application: Evaluation of Mechanical, Dynamic Mechanical, and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Priyanka Pandey

    2014-01-01

    Full Text Available A new approach of oxidation of carbon nanotubes has been used to oxidize the CNTs. A comparative aspect of the mechanical oxidation and acid oxidation process has been established. FTIR analysis and titration method have shown the higher feasibility of the mechanical oxidation method to oxidize the CNTs. Comparatively less damage to the CNTs has been observed in case of mechanically oxidized as compared to acid oxidized CNTs. The mechanical properties of the nanocomposites reinforced with the acid oxidized CNT (ACNT and mechanically oxidized CNTs (McCNT were analyzed and relatively higher properties in the nanocomposites reinforced with McCNT were noticed. The less degree of entanglement in the McCNTs was noticed as compared to ACNTs. The dynamic mechanical analysis of the nanocomposites revealed much improved load transfer capability in the McCNT reinforced composites. Further, the rheological properties of the nanocomposites revealed the higher performance of McCNT reinforced composites.

  17. An Atomic Force Microscope Study Revealed Two Mechanisms in the Effect of Anticancer Drugs on Rate-Dependent Young's Modulus of Human Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Juan Ren

    Full Text Available Mechanical properties of cells have been recognized as a biomarker for cellular cytoskeletal organization. As chemical treatments lead to cell cytoskeletal rearrangements, thereby, modifications of cellular mechanical properties, investigating cellular mechanical property variations provides insightful knowledge to effects of chemical treatments on cancer cells. In this study, the effects of eight different anticancer drugs on the mechanical properties of human prostate cancer cell (PC-3 are investigated using a recently developed control-based nanoindentation measurement (CNM protocol on atomic force microscope (AFM. The CNM protocol overcomes the limits of other existing methods to in-liquid nanoindentation measurement of live cells on AFM, particularly for measuring mechanical properties of live cells. The Young's modulus of PC-3 cells treated by the eight drugs was measured by varying force loading rates over three orders of magnitude, and compared to the values of the control. The results showed that the Young's modulus of the PC-3 cells increased substantially by the eight drugs tested, and became much more pronounced as the force load rate increased. Moreover, two distinct trends were clearly expressed, where under the treatment of Disulfiram, paclitaxel, and MK-2206, the exponent coefficient of the frequency- modulus function remained almost unchanged, while with Celebrex, BAY, Totamine, TPA, and Vaproic acid, the exponential rate was significantly increased.

  18. Intermittently-visual Tracking Experiments Reveal the Roles of Error-correction and Predictive Mechanisms in the Human Visual-motor Control System

    Science.gov (United States)

    Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji

    Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.

  19. Feasible mathematics II

    CERN Document Server

    Remmel, Jeffrey

    1995-01-01

    Perspicuity is part of proof. If the process by means of which I get a result were not surveyable, I might indeed make a note that this number is what comes out - but what fact is this supposed to confirm for me? I don't know 'what is supposed to come out' . . . . 1 -L. Wittgenstein A feasible computation uses small resources on an abstract computa­ tion device, such as a 'lUring machine or boolean circuit. Feasible math­ ematics concerns the study of feasible computations, using combinatorics and logic, as well as the study of feasibly presented mathematical structures such as groups, algebras, and so on. This volume contains contributions to feasible mathematics in three areas: computational complexity theory, proof theory and algebra, with substantial overlap between different fields. In computational complexity theory, the polynomial time hierarchy is characterized without the introduction of runtime bounds by the closure of certain initial functions under safe composition, predicative recursion on nota...

  20. Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement

    KAUST Repository

    Jiang, Hanlun

    2015-07-16

    Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.

  1. Nonstructural leaf carbohydrates dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism

    Science.gov (United States)

    Adams, Henry D.; Germino, Matthew J.; Breshears, David D.; Barron-Gafford, Greg A.; Guardiola-Claramonte, Maite; Zou, Chris B.; Huxman, Travis E.

    2013-01-01

    * Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function.

  2. X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11beta-substituted steroids.

    NARCIS (Netherlands)

    Lusher, S.J.; Raaijmakers, H.C.A.; Vu-Pham, D.; Kazemier, B.; Bosch, R.; McGuire, R.; Azevedo, R.; Hamersma, H.; Dechering, K.; Oubrie, A.; Duin, M. van; Vlieg, J. de

    2012-01-01

    We present here the x-ray structures of the progesterone receptor (PR) in complex with two mixed profile PR modulators whose functional activity results from two differing molecular mechanisms. The structure of Asoprisnil bound to the agonist state of PR demonstrates the contribution of the ligand

  3. Are carnivore digestive separation mechanisms revealed on structure-rich diets?: Faecal inconsistency in dogs (Canis familiaris) fed day old chicks

    NARCIS (Netherlands)

    Cuyper, De Annelies; Clauss, M.; Hesta, Myriam; Cools, An; Bosch, G.; Hendriks, W.H.; Janssens, Geert P.J.

    2018-01-01

    Pronounced variations in faecal consistency have been described anecdotally for some carnivore species fed a structure-rich diet. Typically two faecal consistencies are distinguished, namely hard and firm versus liquid and viscous faeces. It is possible that a separation mechanism is operating in

  4. Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement

    KAUST Repository

    Jiang, Hanlun; Sheong, Fu Kit; Zhu, Lizhe; Gao, Xin; Bernauer, Julie; Huang, Xuhui

    2015-01-01

    Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.

  5. A unique growth mechanism of donut-shaped Mg–Al layered double hydroxides crystals revealed by AFM and STEM–EDX

    NARCIS (Netherlands)

    Budhysutanto, W.N.; Van Den Bruele, F.J.; Rossenaar, B.D.; Van Agterveld, D.; Van Enckevort, W.J.P.; Kramer, H.J.M.

    2010-01-01

    Donut-like crystals of Mg–Al layered double hydroxides (LDH) are synthesized using a hydrothermal method with microwave heating. This morphology provides enlargement of the specific surface area of the {h k 0} faces, needed for adsorption application. The growth mechanism for donut-shaped crystals

  6. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.

    Science.gov (United States)

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J

    2008-11-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.

  7. Single turnover studies of oxidative halophenol dehalogenation by horseradish peroxidase reveal a mechanism involving two consecutive one electron steps: toward a functional halophenol bioremediation catalyst.

    Science.gov (United States)

    Sumithran, Suganya; Sono, Masanori; Raner, Gregory M; Dawson, John H

    2012-12-01

    Horseradish peroxidase (HRP) catalyzes the oxidative para-dechlorination of the environmental pollutant/carcinogen 2,4,6-trichlorophenol (2,4,6-TCP). A possible mechanism for this reaction is a direct oxygen atom transfer from HRP compound I (HRP I) to trichlorophenol to generate 2,6-dichloro 1,4-benzoquinone, a two-electron transfer process. An alternative mechanism involves two consecutive one-electron transfer steps in which HRP I is reduced to compound II (HRP II) and then to the ferric enzyme as first proposed by Wiese et al. [F.W. Wiese, H.C. Chang, R.V. Lloyd, J.P. Freeman, V.M. Samokyszyn, Arch. Environ. Contam. Toxicol. 34 (1998) 217-222]. To probe the mechanism of oxidative halophenol dehalogenation, the reactions between 2,4,6-TCP and HRP compounds I or II have been investigated under single turnover conditions (i.e., without excess H(2)O(2)) using rapid scan stopped-flow spectroscopy. Addition of 2,4,6-TCP to HRP I leads rapidly to HRP II and then more slowly to the ferric resting state, consistent with a mechanism involving two consecutive one-electron oxidations of the substrate via a phenoxy radical intermediate. HRP II can also directly dechlorinate 2,4,6-TCP as judged by rapid scan stopped-flow and mass spectrometry. This observation is particularly significant since HRP II can only carry out one-electron oxidations. A more detailed understanding of the mechanism of oxidative halophenol dehalogenation will facilitate the use of HRP as a halophenol bioremediation catalyst. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi.

    Science.gov (United States)

    Pandit, Ramesh; Patel, Reena; Patel, Namrata; Bhatt, Vaibhav; Joshi, Chaitanya; Singh, Pawan Kumar; Kunjadia, Anju

    2017-04-01

    Nematode-trapping fungi are well known for their inherent potential to trap and kill nematodes using specialized trapping devices. However, the molecular mechanisms underlying the trapping and subsequent processes are still unclear. Therefore, in this study, we examined differential genes expression in two nematode-trapping fungi after baiting with nematode extracts. In Arthrobotrys conoides, 809 transcripts associated with diverse functions such as signal transduction, morphogenesis, stress response and peroxisomal proteins, proteases, chitinases and genes involved in the host-pathogen interaction showed differential expression with fold change (>±1.5 fold) in the presence of nematode extract with FDR (p-value nematode-trapping fungi for its host. The findings illustrate the molecular mechanism of fungal parasitism in A. conoides which may be helpful in developing a potential biocontrol agent against parasitic nematodes.

  9. Mechanism of Retinal Pigment Epithelium Tear Formation Following Intravitreal Anti–Vascular Endothelial Growth Factor Therapy Revealed by Spectral-Domain Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Nagiel, Aaron; Freund, K Bailey; Spaide, Richard F

    2013-01-01

    to the retracted RPE. In all eyes, the RPE ruptured along a segment of bare RPE not in contact with the CNV or Bruch membrane. CONCLUSIONS: Eyes with vascularized PEDs secondary to AMD may show specific OCT findings that increase the risk for RPE tear following intravitreal anti-VEGF injection. Rapid involution......PURPOSE: To demonstrate the mechanism by which retinal pigment epithelium (RPE) tears occur in eyes with neovascular age-related macular degeneration (AMD) treated with intravitreal anti-vascular endothelial growth factor (VEGF) agents using spectral-domain optical coherence tomography (OCT......). DESIGN: Retrospective observational case series. METHODS: OCT images of 8 eyes that developed RPE tears following the administration of intravitreal anti-VEGF agents for neovascular AMD were evaluated. Pretear and posttear images were compared in order to elucidate the mechanism by which RPE tears occur...

  10. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history.

    Science.gov (United States)

    Bhullar, Bhart-Anjan S; Morris, Zachary S; Sefton, Elizabeth M; Tok, Atalay; Tokita, Masayoshi; Namkoong, Bumjin; Camacho, Jasmin; Burnham, David A; Abzhanov, Arhat

    2015-07-01

    The avian beak is a key evolutionary innovation whose flexibility has permitted birds to diversify into a range of disparate ecological niches. We approached the problem of the mechanism behind this innovation using an approach bridging paleontology, comparative anatomy, and experimental developmental biology. First, we used fossil and extant data to show the beak is distinctive in consisting of fused premaxillae that are geometrically distinct from those of ancestral archosaurs. To elucidate underlying developmental mechanisms, we examined candidate gene expression domains in the embryonic face: the earlier frontonasal ectodermal zone (FEZ) and the later midfacial WNT-responsive region, in birds and several reptiles. This permitted the identification of an autapomorphic median gene expression region in Aves. To test the mechanism, we used inhibitors of both pathways to replicate in chicken the ancestral amniote expression. Altering the FEZ altered later WNT responsiveness to the ancestral pattern. Skeletal phenotypes from both types of experiments had premaxillae that clustered geometrically with ancestral fossil forms instead of beaked birds. The palatal region was also altered to a more ancestral phenotype. This is consistent with the fossil record and with the tight functional association of avian premaxillae and palate in forming a kinetic beak. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  11. Hualapai Wind Project Feasibility Report

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Kevin [Hualapai Tribe; Randall, Mark [Daystar Consulting; Isham, Tom [Power Engineers; Horna, Marion J [MJH Power Consulting LLC; Koronkiewicz, T [SWCA Environmental, Inc.; Simon, Rich [V-Bar, LLC; Matthew, Rojas [Squire Sanders Dempsey; MacCourt, Doug C. [Ater Wynne, LLP; Burpo, Rob [First American Financial Advisors, Inc.

    2012-12-20

    The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

  12. Trophic calculations reveal the mechanism of population-level variation in mercury concentrations between marine ecosystems: Case studies of two polar seabirds

    International Nuclear Information System (INIS)

    Brasso, Rebecka L.; Polito, Michael J.

    2013-01-01

    Highlights: • Ecosystem-specific baseline and consumer δ 15 N paired for population-specific trophic level. • Source of population-level variation in mercury exposure identified in two seabirds. • High mercury and trophic position suggests trophic driver of population-level variation. • Trophic similarities, differing mercury reveals geographic differences in bioavailability. -- Abstract: The incorporation of quantitative trophic level analysis in ecotoxicological studies provides explanatory power to identify the factors, trophic or environmental, driving population-level variation in mercury exposure at large geographic scales. In the Antarctic marine ecosystem, mercury concentrations and stable isotope values in Adélie penguins (Pygoscelis adeliae) were compared between the Antarctic Peninsula and the Ross Sea. Correcting tissue δ 15 N values for baseline δ 15 N values revealed population-level differences in trophic position which contributes to differences in mercury. Data from Thick-billed murres (Uria lomvia) were synthesized from published values from Baffin Bay and Svalbard to demonstrate the utility of baseline δ 15 N values in identifying differences in environmental mercury exposure independent of diet. Here, we demonstrate the importance of calculating population-specific trophic level data to uncover the source of variation in mercury concentrations between geographically distinct populations of marine predators

  13. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte-Endothelial Cell Adhesion.

    Science.gov (United States)

    Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector

    2015-10-01

    Cigarette smoke (CS) affects the adhesion of monocytes to endothelial cells, a critical step in atherogenesis. Using an in vitro adhesion assay together with innovative computational systems biology approaches to analyze omics data, our study aimed at investigating CS-induced mechanisms by which monocyte-endothelial cell adhesion is promoted. Primary human coronary artery endothelial cells (HCAECs) were treated for 4 h with (1) conditioned media of human monocytic Mono Mac-6 (MM6) cells preincubated with low or high concentrations of aqueous CS extract (sbPBS) from reference cigarette 3R4F for 2 h (indirect treatment, I), (2) unconditioned media similarly prepared without MM6 cells (direct treatment, D), or (3) freshly generated sbPBS (fresh direct treatment, FD). sbPBS promoted MM6 cells-HCAECs adhesion following I and FD, but not D. In I, the effect was mediated at a low concentration through activation of vascular inflammation processes promoted in HCAECs by a paracrine effect of the soluble mediators secreted by sbPBS-treated MM6 cells. Tumor necrosis factor α (TNFα), a major inducer, was actually shed by unstable CS compound-activated TNFα-converting enzyme. In FD, the effect was triggered at a high concentration that also induced some toxicity. This effect was mediated through an yet unknown mechanism associated with a stress damage response promoted in HCAECs by unstable CS compounds present in freshly generated sbPBS, which had decayed in D unconditioned media. Aqueous CS extract directly and indirectly promotes monocytic cell-endothelial cell adhesion in vitro via distinct concentration-dependent mechanisms. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Are carnivore digestive separation mechanisms revealed on structure-rich diets?: Faecal inconsistency in dogs (Canis familiaris fed day old chicks.

    Directory of Open Access Journals (Sweden)

    Annelies De Cuyper

    Full Text Available Pronounced variations in faecal consistency have been described anecdotally for some carnivore species fed a structure-rich diet. Typically two faecal consistencies are distinguished, namely hard and firm versus liquid and viscous faeces. It is possible that a separation mechanism is operating in the carnivore digestive tract, as in many herbivore species. Six beagle dogs were fed two experimental diets in a cross-over design of 7 days. Test diets consisted of chunked day old chicks differing only in particle size (fine = 7.8 mm vs coarse = 13 mm in order to vary dietary structure. Digestive retention time was measured using titanium oxide (TiO2 as marker. The total faecal output was scored for consistency and faecal fermentation profiles were evaluated through faecal short-chain fatty acid (SCFA and ammonia (NH3 analyses. A total of 181 faecal samples were collected. Dietary particle size did not affect faecal consistency, fermentative end products nor mean retention time (MRT. However, a faecal consistency dichotomy was observed with firm faeces (score 2-2.5 and soft faeces (score 4-4.5 being the most frequently occurring consistencies in an almost alternating pattern in every single dog. Firm and soft faeces differed distinctively in fermentative profiles. Although the structure difference between diets did not affect the faecal dichotomy, feeding whole prey provoked the occurrence of the latter which raises suspicion of a digestive separation mechanism in the canine digestive tract. Further faecal characterisation is however required in order to unravel the underlying mechanism.

  15. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations.

    Science.gov (United States)

    Rigsby, C M; Showalter, D N; Herms, D A; Koch, J L; Bonello, P; Cipollini, D

    2015-07-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance

  16. A km-scale "triaxial experiment" reveals the extreme mechanical weakness and anisotropy of mica-schists (Grandes Rousses Massif, France)

    Science.gov (United States)

    Bolognesi, Francesca; Bistacchi, Andrea

    2018-02-01

    The development of Andersonian faults is predicted, according to theory and experiments, for brittle/frictional deformation occurring in a homogeneous medium. In contrast, in an anisotropic medium it is possible to observe fault nucleation and propagation that is non-Andersonian in geometry and kinematics. Here, we consider post-metamorphic brittle/frictional deformation in the mechanically anisotropic mylonitic mica-schists of the Grandes Rousse Massif (France). The role of the mylonitic foliation (and of any other source of mechanical anisotropy) in brittle/frictional deformation is a function of orientation and friction angle. According to the relative orientation of principal stress axes and foliation, a foliation characterized by a certain coefficient of friction will be utilized or not for the nucleation and propagation of brittle/frictional fractures and faults. If the foliation is not utilized, the rock behaves as if it was isotropic, and Andersonian geometry and kinematics can be observed. If the foliation is utilized, the deviatoric stress magnitude is buffered and Andersonian faults/fractures cannot develop. In a narrow transition regime, both Andersonian and non-Andersonian structures can be observed. We apply stress inversion and slip tendency analysis to determine the critical angle for failure of the metamorphic foliation of the Grandes Rousses schists, defined as the limit angle between the foliation and principal stress axes for which the foliation was brittlely reactivated. This approach allows defining the ratio of the coefficient of internal friction for failure along the mylonitic foliation to the isotropic coefficient of friction. Thus, the study area can be seen as a km-scale triaxial experiment that allows measuring the degree of mechanical anisotropy of the mylonitic mica-schists. In this way, we infer a coefficient of friction μweak = 0.14 for brittle-frictional failure of the foliation, or 20 % of the isotropic coefficient of internal

  17. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  18. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)

    DEFF Research Database (Denmark)

    Johansson, L Christoffer; Håkansson, Jonas; Jakobsen, Lasse

    2016-01-01

    . We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains...... into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than...

  19. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle

    DEFF Research Database (Denmark)

    Salleh, M. S.; Mazzoni, G.; Höglund, J. K.

    2017-01-01

    -throughput RNA sequencing data of liver biopsies from 19 dairy cows were used to identify differentially expressed genes (DEGs) between high- and low-FE groups of cows (based on Residual Feed Intake or RFI). Subsequently, a profile of the pathways connecting the DEGs to FE was generated, and a list of candidate...... genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency....... On average, 57 million reads (short reads or short mRNA sequences ...

  20. Proteomics analysis of maize (Zea mays L.) grain based on iTRAQ reveals molecular mechanisms of poor grain filling in inferior grains.

    Science.gov (United States)

    Yu, Tao; Li, Geng; Liu, Peng; Dong, Shuting; Zhang, Jiwang; Zhao, Bin

    2017-06-01

    In maize, inferior grains (IG) located on the upper part of the ear have poor grain filling process compared to superior grains (SG) located on the middle and lower parts of the ear. This difference limits satisfactory yield and quality; however, the underlying molecular mechanisms remain unknown. Here, using the isobaric tag for relative and absolute quantification (iTRAQ) technology, the proteomes of IG and SG during early and middle grain filling stages were investigated. In total, 4720 proteins were identified in maize grain and 305 differentially accumulated proteins (DiAPs) were detected between IG and SG. These DiAPs were involved in diverse cellular and metabolic processes with preferred distribution in protein synthesis/destination and metabolism. Compared to SG, DiAPs related to cell growth/division and starch synthesis were lag-accumulated and down-regulated in IG, respectively, resulting in smaller sink sizes and lower sink activities in IG. Meanwhile, impediment of the glycolysis pathway in IG may lead to reduce energy supply and building materials for substance synthesis. Additionally, reactive oxygen species (ROS) homeostasis and the defense system were disturbed in IG, which might lead to reduce protection against various environmental stresses. The present study provides new information on the proteomic differences between IG and SG, and explains possible molecular mechanisms for poor grain filling in IG. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated site-specific recombination

    Science.gov (United States)

    Fan, Hsiu-Fang

    2012-01-01

    Tyrosine family recombinases (YRs) are widely utilized in genome engineering systems because they can easily direct DNA rearrangement. Cre recombinases, one of the most commonly used types of YRs, catalyze site-specific recombination between two loxP sites without the need for high-energy cofactors, other accessory proteins or a specific DNA target sequence between the loxP sites. Previous structural, analytical ultracentrifuge and electrophoretic analyses have provided details of the reaction kinetics and mechanisms of Cre recombinase activity; whether there are reaction intermediates or side pathways involved has been left unaddressed. Using tethered particle motion (TPM), the Cre-mediated site-specific recombination process has been delineated, from beginning to end, at the single-molecule level, including the formation of abortive complexes and wayward complexes blocking inactive nucleoprotein complexes from entering the recombination process. Reversibility in the strand-cleavage/-ligation process and the formation of a thermally stable Holliday junction intermediate were observed within the Cre-mediated site-specific recombination process. Rate constants for each elementary step, which explain the overall reaction outcomes under various conditions, were determined. Taking the findings of this study together, they demonstrate the potential of single-molecule methodology as an alternative approach for exploring reaction mechanisms in detail. PMID:22467208

  2. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism.

    Science.gov (United States)

    Adams, Henry D; Germino, Matthew J; Breshears, David D; Barron-Gafford, Greg A; Guardiola-Claramonte, Maite; Zou, Chris B; Huxman, Travis E

    2013-03-01

    Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function. We report analysis of foliar nonstructural carbohydrates (NSCs) and associated physiology from a previous experiment where earlier drought-induced mortality of Pinus edulis at elevated temperatures was associated with greater cumulative respiration. Here, we predicted faster NSC decline for warmed trees than for ambient-temperature trees. Foliar NSC in droughted trees declined by 30% through mortality and was lower than in watered controls. NSC decline resulted primarily from decreased sugar concentrations. Starch initially declined, and then increased above pre-drought concentrations before mortality. Although temperature did not affect NSC and sugar, starch concentrations ceased declining and increased earlier with higher temperatures. Reduced foliar NSC during lethal drought indicates a carbon metabolism role in mortality mechanism. Although carbohydrates were not completely exhausted at mortality, temperature differences in starch accumulation timing suggest that carbon metabolism changes are associated with time to death. Drought mortality appears to be related to temperature-dependent carbon dynamics concurrent with increasing hydraulic stress in P. edulis and potentially other similar species. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Computational Cardiac Modeling Reveals Mechanisms of Ventricular Arrhythmogenesis in Long QT Syndrome Type 8: CACNA1C R858H Mutation Linked to Ventricular Fibrillation

    Directory of Open Access Journals (Sweden)

    Jieyun Bai

    2017-10-01

    Full Text Available Functional analysis of the L-type calcium channel has shown that the CACNA1C R858H mutation associated with severe QT interval prolongation may lead to ventricular fibrillation (VF. This study investigated multiple potential mechanisms by which the CACNA1C R858H mutation facilitates and perpetuates VF. The Ten Tusscher-Panfilov (TP06 human ventricular cell models incorporating the experimental data on the kinetic properties of L-type calcium channels were integrated into one-dimensional (1D fiber, 2D sheet, and 3D ventricular models to investigate the pro-arrhythmic effects of CACNA1C mutations by quantifying changes in intracellular calcium handling, action potential profiles, action potential duration restitution (APDR curves, dispersion of repolarization (DOR, QT interval and spiral wave dynamics. R858H “mutant” L-type calcium current (ICaL augmented sarcoplasmic reticulum calcium content, leading to the development of afterdepolarizations at the single cell level and focal activities at the tissue level. It also produced inhomogeneous APD prolongation, causing QT prolongation and repolarization dispersion amplification, rendering R858H “mutant” tissue more vulnerable to the induction of reentry compared with other conditions. In conclusion, altered ICaL due to the CACNA1C R858H mutation increases arrhythmia risk due to afterdepolarizations and increased tissue vulnerability to unidirectional conduction block. However, the observed reentry is not due to afterdepolarizations (not present in our model, but rather to a novel blocking mechanism.

  4. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    Science.gov (United States)

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-06

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression*

    Science.gov (United States)

    Coke, Christopher J.; Scarlett, Kisha A.; Chetram, Mahandranauth A.; Jones, Kia J.; Sandifer, Brittney J.; Davis, Ahriea S.; Marcus, Adam I.

    2016-01-01

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863

  6. Mechanical characterization of the mouse diaphragm with optical coherence elastography reveals fibrosis-related change of direction-dependent muscle tissue stiffness

    Science.gov (United States)

    Wang, Shang; Loehr, James A.; Larina, Irina V.; Rodney, George G.; Larin, Kirill V.

    2016-03-01

    The diaphragm, composed of skeletal muscle, plays an important role in respiration through its dynamic contraction. Genetic and molecular studies of the biomechanics of mouse diaphragm can provide great insights into an improved understanding and potential treatment of the disorders that lead to diaphragm dysfunction (i.e. muscular dystrophy). However, due to the small tissue size, mechanical assessment of mouse diaphragm tissue under its proper physiological conditions has been challenging. Here, we present the application of noncontact optical coherence elastography (OCE) for quantitative elastic characterization of ex vivo mouse diaphragm. Phase-sensitive optical coherence tomography was combined with a focused air-puff system to capture and measure the elastic wave propagation from tissue surface. Experiments were performed on wildtype and dystrophic mouse diaphragm tissues containing different levels of fibrosis. The OCE measurements of elastic wave propagation were conducted along both the longitudinal and transverse axis of the muscle fibers. Cross-correlation of the temporal displacement profiles from different spatial locations was utilized to obtain the propagation time delay, which was used to calculate the wave group velocity and to further quantify the tissue Young's modulus. Prior to and after OCE assessment, peak tetanic force was measured to monitor viability of the tissue during the elasticity measurements. Our experimental results indicate a positive correlation between fibrosis level and tissue stiffness, suggesting this elastic-wave-based OCE method could be a useful tool to monitor mechanical properties of skeletal muscle under physiological and pathological conditions.

  7. Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies.

    Science.gov (United States)

    Koscher, Brent A; Bronstein, Noah D; Olshansky, Jacob H; Bekenstein, Yehonadav; Alivisatos, A Paul

    2016-09-21

    Ion-exchange transformations allow access to nanocrystalline materials with compositions that are inaccessible via direct synthetic routes. However, additional mechanistic insight into the processes that govern these reactions is needed. We present evidence for the presence of two distinct mechanisms of exchange during anion exchange in CsPbX3 nanocrystals (NCs), ranging in size from 6.5 to 11.5 nm, for transformations from CsPbBr3 to CsPbCl3 or CsPbI3. These NCs exhibit bright luminescence throughout the exchange, allowing their optical properties to be observed in real time, in situ. The iodine exchange presents surface-reaction-limited exchanges allowing all anionic sites within the NC to appear chemically identical, whereas the chlorine exchange presents diffusion-limited exchanges proceeding through a more complicated exchange mechanism. Our results represent the first steps toward developing a microkinetic description of the anion exchange, with implications not only for understanding the lead halide perovskites but also for nanoscale ion exchange in general.

  8. Revealing the Formation Mechanism of CsPbBr3 Perovskite Nanocrystals Produced via a Slowed-Down Microwave-Assisted Synthesis.

    Science.gov (United States)

    Li, Yanxiu; Huang, He; Xiong, Yuan; Kershaw, Stephen V; Rogach, Andrey L

    2018-03-24

    We developed a microwave-assisted slowed-down synthesis of CsPbBr 3 perovskite nanocrystals, which retards the reaction and allows us to gather useful insights into the formation mechanism of these nanoparticles, by examining the intermediate stages of their growth. The trends in the decay of the emission intensity of CsPbBr 3 nanocrystals under light exposure are well correlated with their stability against decomposition in TEM under electron beam. The results show the change of the crystal structure of CsPbBr 3 nanocrystals from a deficient and easier to be destroyed lattice to a well crystallized one. Conversely the shift in the ease of degradation sheds light on the formation mechanism, indicating first the formation of a bromoplumbate ionic scaffold, with Cs-ion infilling lagging a little behind. Increasing the cation to halide ratio towards the stoichiometric level may account for the improved radiative recombination rates observed in the longer reaction time materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation.

    Science.gov (United States)

    Corrada, Dario; Soshilov, Anatoly A; Denison, Michael S; Bonati, Laura

    2016-06-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the

  10. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation.

    Directory of Open Access Journals (Sweden)

    Dario Corrada

    2016-06-01

    Full Text Available The Aryl hydrocarbon Receptor (AhR is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT protein, occurring through the Helix-Loop-Helix (HLH and PER-ARNT-SIM (PAS domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms

  11. Oxygen self-diffusion mechanisms in monoclinic Zr O2 revealed and quantified by density functional theory, random walk analysis, and kinetic Monte Carlo calculations

    Science.gov (United States)

    Yang, Jing; Youssef, Mostafa; Yildiz, Bilge

    2018-01-01

    In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.

  12. The mechanism of DNA ejection in the Bacillus anthracis spore-binding phage 8a revealed by cryo-electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiaofeng [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States); Walter, Michael H. [Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614 (United States); Paredes, Angel [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States); Morais, Marc C., E-mail: mcmorais@utmb.edu [Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Liu, Jun, E-mail: Jun.Liu.1@uth.tmc.edu [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States)

    2011-12-20

    The structure of the Bacillus anthracis spore-binding phage 8a was determined by cryo-electron tomography. The phage capsid forms a T = 16 icosahedron attached to a contractile tail via a head-tail connector protein. The tail consists of a six-start helical sheath surrounding a central tail tube, and a structurally novel baseplate at the distal end of the tail that recognizes and attaches to host cells. The parameters of the icosahedral capsid lattice and the helical tail sheath suggest protein folds for the capsid and tail-sheath proteins, respectively, and indicate evolutionary relationships to other dsDNA viruses. Analysis of 2518 intact phage particles show four distinct conformations that likely correspond to four sequential states of the DNA ejection process during infection. Comparison of the four observed conformations suggests a mechanism for DNA ejection, including the molecular basis underlying coordination of tail sheath contraction and genome release from the capsid.

  13. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    International Nuclear Information System (INIS)

    Villarroya, Joan; Lara, Mari-Carmen; Dorado, Beatriz; Garrido, Marta; Garcia-Arumi, Elena; Meseguer, Anna; Hirano, Michio; Vila, Maya R.

    2011-01-01

    Highlights: → We impaired TK2 expression in Ost TK1 - cells via siRNA-mediated interference (TK2 - ). → TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. → Despite mtDNA depletion, TK2 - cells show high cytochrome oxidase activity. → Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. → Nuclear-encoded ENT1, DNA-pol γ, TFAM and TP gene expression is lowered in TK2 - cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed the first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1 - cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase γ, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory activity despite profound depletion in mtDNA levels.

  14. Changes in blood monocyte Toll-like receptor and serum surfactant protein A reveal a pathophysiological mechanism for community-acquired pneumonia in patients with type 2 diabetes.

    Science.gov (United States)

    Que, Y; Shen, X

    2016-02-01

    The lung is one of the target organs of microangiopathy in diabetes mellitus (DM); patients with type 2 diabetes mellitus (T2DM) are vulnerable to pneumonia, and a variety of pathophysiological mechanisms has been described. This study aimed to determine the pathophysiological mechanism of community-acquired pneumonia (CAP) in T2DM patients. A total of 90 individuals was included in this study comprised of three groups (n = 30): healthy control, T2DM and T2DM+ CAP groups. Toll-like receptor (TLR)2 and 4 protein and messenger RNA expression in peripheral blood monocytes(PBMC) was assessed by western blot and reverse transcription-polymerase chain reaction, respectively, and surfactant protein A (SP-A) levels were examined in serum samples by enzyme-linked immunosorbent assay. In T2DM and T2DM+CAP groups, levels of both TLR2/4 protein and mRNA in PBMC were decreased compared with controls (P <0.05), with lower levels observed in the T2DM+CAP group in comparison with T2DM patients (P <0.05). The serum SP-A levels in T2DM+CAP individuals were significantly higher than the values obtained for T2DM patients (P <0.05). It also showed apparent increases when compared with that in controls although no statistical significance was detected. In T2DM patients with pneumonia, TLR2/4 levels in PBMC and serum SP-A were altered, maybe playing an important role in the susceptibility to pneumonia in T2DM patients. © 2016 Royal Australasian College of Physicians.

  15. Intrinsic fluorescence of the clinically approved multikinase inhibitor nintedanib reveals lysosomal sequestration as resistance mechanism in FGFR-driven lung cancer.

    Science.gov (United States)

    Englinger, Bernhard; Kallus, Sebastian; Senkiv, Julia; Heilos, Daniela; Gabler, Lisa; van Schoonhoven, Sushilla; Terenzi, Alessio; Moser, Patrick; Pirker, Christine; Timelthaler, Gerald; Jäger, Walter; Kowol, Christian R; Heffeter, Petra; Grusch, Michael; Berger, Walter

    2017-09-07

    Studying the intracellular distribution of pharmacological agents, including anticancer compounds, is of central importance in biomedical research. It constitutes a prerequisite for a better understanding of the molecular mechanisms underlying drug action and resistance development. Hyperactivated fibroblast growth factor receptors (FGFRs) constitute a promising therapy target in several types of malignancies including lung cancer. The clinically approved small-molecule FGFR inhibitor nintedanib exerts strong cytotoxicity in FGFR-driven lung cancer cells. However, subcellular pharmacokinetics of this compound and its impact on therapeutic efficacy remain obscure. 3-dimensional fluorescence spectroscopy was conducted to asses cell-free nintedanib fluorescence properties. MTT assay was used to determine the impact of the lysosome-targeting agents bafilomycin A1 and chloroquine combined with nintedanib on lung cancer cell viability. Flow cytometry and live cell as well as confocal microscopy were performed to analyze uptake kinetics as well as subcellular distribution of nintedanib. Western blot was conducted to investigate protein expression. Cryosections of subcutaneous tumor allografts were generated to detect intratumoral nintedanib in mice after oral drug administration. Here, we report for the first time drug-intrinsic fluorescence properties of nintedanib in living and fixed cancer cells as well as in cryosections derived from allograft tumors of orally treated mice. Using this feature in conjunction with flow cytometry and confocal microscopy allowed to determine cellular drug accumulation levels, impact of the ABCB1 efflux pump and to uncover nintedanib trapping into lysosomes. Lysosomal sequestration - resulting in an organelle-specific and pH-dependent nintedanib fluorescence - was identified as an intrinsic resistance mechanism in FGFR-driven lung cancer cells. Accordingly, combination of nintedanib with agents compromising lysosomal acidification

  16. Single-Molecule Titration in a Protein Nanoreactor Reveals the Protonation/Deprotonation Mechanism of a C:C Mismatch in DNA.

    Science.gov (United States)

    Ren, Hang; Cheyne, Cameron G; Fleming, Aaron M; Burrows, Cynthia J; White, Henry S

    2018-04-18

    Measurement of single-molecule reactions can elucidate microscopic mechanisms that are often hidden from ensemble analysis. Herein, we report the acid-base titration of a single DNA duplex confined within the wild-type α-hemolysin (α-HL) nanopore for up to 3 h, while monitoring the ionic current through the nanopore. Modulation between two states in the current-time trace for duplexes containing the C:C mismatch in proximity to the latch constriction of α-HL is attributed to the base flipping of the C:C mismatch. As the pH is lowered, the rate for the C:C mismatch to flip from the intra-helical state to the extra-helical state ( k intra-extra ) decreases, while the rate for base flipping from the extra-helical state to the intra-helical state ( k extra-intra ) remains unchanged. Both k intra-extra and k extra-intra are on the order of 1 × 10 -2 s -1 to 1 × 10 -1 s -1 and remain stable over the time scale of the measurement (several hours). Analysis of the pH-dependent kinetics of base flipping using a hidden Markov kinetic model demonstrates that protonation/deprotonation occurs while the base pair is in the intra-helical state. We also demonstrate that the rate of protonation is limited by transport of H + into the α-HL nanopore. Single-molecule kinetic isotope experiments exhibit a large kinetic isotope effect (KIE) for k intra-extra ( k H / k D ≈ 5) but a limited KIE for k extra-intra ( k H / k D ≈ 1.3), supporting our model. Our experiments correspond to the longest single-molecule measurements performed using a nanopore, and demonstrate its application in interrogating mechanisms of single-molecule reactions in confined geometries.

  17. Mechanisms on boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis.

    Directory of Open Access Journals (Sweden)

    Xin-Xing Zhou

    Full Text Available The physiological and biochemical mechanisms on boron (B-induced alleviation of aluminum (B-toxicity in plants have been examined in some details, but our understanding of the molecular mechanisms underlying these processes is very limited. In this study, we first used the cDNA-AFLP to investigate the gene expression patterns in Citrus grandis roots responsive to B and Al interactions, and isolated 100 differentially expressed genes. Results showed that genes related to detoxification of reactive oxygen species (ROS and aldehydes (i.e., glutathione S-transferase zeta class-like isoform X1, thioredoxin M-type 4, and 2-alkenal reductase (NADP+-dependent-like, metabolism (i.e., carboxylesterases and lecithin-cholesterol acyltransferase-like 4-like, nicotianamine aminotransferase A-like isoform X3, thiosulfate sulfurtransferase 18-like isoform X1, and FNR, root isozyme 2, cell transport (i.e., non-specific lipid-transfer protein-like protein At2g13820-like and major facilitator superfamily protein, Ca signal and hormone (i.e., calcium-binding protein CML19-like and IAA-amino acid hydrolase ILR1-like 4-like, gene regulation (i.e., Gag-pol polyprotein and cell wall modification (i.e., glycosyl hydrolase family 10 protein might play a role in B-induced alleviation of Al-toxicity. Our results are useful not only for our understanding of molecular processes associated with B-induced alleviation of Al-toxicity, but also for obtaining key molecular genes to enhance Al-tolerance of plants in the future.

  18. Mechanisms on boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis.

    Science.gov (United States)

    Zhou, Xin-Xing; Yang, Lin-Tong; Qi, Yi-Ping; Guo, Peng; Chen, Li-Song

    2015-01-01

    The physiological and biochemical mechanisms on boron (B)-induced alleviation of aluminum (B)-toxicity in plants have been examined in some details, but our understanding of the molecular mechanisms underlying these processes is very limited. In this study, we first used the cDNA-AFLP to investigate the gene expression patterns in Citrus grandis roots responsive to B and Al interactions, and isolated 100 differentially expressed genes. Results showed that genes related to detoxification of reactive oxygen species (ROS) and aldehydes (i.e., glutathione S-transferase zeta class-like isoform X1, thioredoxin M-type 4, and 2-alkenal reductase (NADP+-dependent)-like), metabolism (i.e., carboxylesterases and lecithin-cholesterol acyltransferase-like 4-like, nicotianamine aminotransferase A-like isoform X3, thiosulfate sulfurtransferase 18-like isoform X1, and FNR, root isozyme 2), cell transport (i.e., non-specific lipid-transfer protein-like protein At2g13820-like and major facilitator superfamily protein), Ca signal and hormone (i.e., calcium-binding protein CML19-like and IAA-amino acid hydrolase ILR1-like 4-like), gene regulation (i.e., Gag-pol polyprotein) and cell wall modification (i.e., glycosyl hydrolase family 10 protein) might play a role in B-induced alleviation of Al-toxicity. Our results are useful not only for our understanding of molecular processes associated with B-induced alleviation of Al-toxicity, but also for obtaining key molecular genes to enhance Al-tolerance of plants in the future.

  19. Chemical proteomics approach reveals the direct targets and the heme-dependent activation mechanism of artemisinin in Plasmodium falciparum using an activity-based artemisinin probe

    Directory of Open Access Journals (Sweden)

    Jigang Wang

    2016-04-01

    Full Text Available Artemisinin and its analogues are currently the most effective anti-malarial drugs. The activation of artemisinin requires the cleavage of the endoperoxide bridge in the presence of iron sources. Once activated, artemisinins attack macromolecules through alkylation and propagate a series of damages, leading to parasite death. Even though several parasite proteins have been reported as artemisinin targets, the exact mechanism of action (MOA of artemisinin is still controversial and its high potency and specificity against the malaria parasite could not be fully accounted for. Recently, we have developed an unbiased chemical proteomics approach to directly probe the MOA of artemisinin in P. falciparum. We synthesized an activity-based artemisinin probe with an alkyne tag, which can be coupled with biotin through click chemistry. This enabled selective purification and identification of 124 protein targets of artemisinin. Many of these targets are critical for the parasite survival. In vitro assays confirmed the specific artemisinin binding and inhibition of selected targets. We thus postulated that artemisinin kills the parasite through disrupting its biochemical landscape. In addition, we showed that artemisinin activation requires heme, rather than free ferrous iron, by monitoring the extent of protein binding using a fluorescent dye coupled with the alkyne-tagged artemisinin. The extremely high level of heme released from the hemoglobin digestion by the parasite makes artemisinin exceptionally potent against late-stage parasites (trophozoite and schizont stages compared to parasites at early ring stage, which have low level of heme, possibly derived from endogenous synthesis. Such a unique activation mechanism also confers artemisinin with extremely high specificity against the parasites, while the healthy red blood cells are unaffected. Our results provide a sound explanation of the MOA of artemisinin and its specificity against malaria

  20. Secretome Characterization and Correlation Analysis Reveal Putative Pathogenicity Mechanisms and Identify Candidate Avirulence Genes in the Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Xia, Chongjing; Wang, Meinan; Cornejo, Omar E; Jiwan, Derick A; See, Deven R; Chen, Xianming

    2017-01-01

    Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat worldwide. Planting resistant cultivars is an effective way to control this disease, but race-specific resistance can be overcome quickly due to the rapid evolving Pst population. Studying the pathogenicity mechanisms is critical for understanding how Pst virulence changes and how to develop wheat cultivars with durable resistance to stripe rust. We re-sequenced 7 Pst isolates and included additional 7 previously sequenced isolates to represent balanced virulence/avirulence profiles for several avirulence loci in seretome analyses. We observed an uneven distribution of heterozygosity among the isolates. Secretome comparison of Pst with other rust fungi identified a large portion of species-specific secreted proteins, suggesting that they may have specific roles when interacting with the wheat host. Thirty-two effectors of Pst were identified from its secretome. We identified candidates for Avr genes corresponding to six Yr genes by correlating polymorphisms for effector genes to the virulence/avirulence profiles of the 14 Pst isolates. The putative AvYr76 was present in the avirulent isolates, but absent in the virulent isolates, suggesting that deleting the coding region of the candidate avirulence gene has produced races virulent to resistance gene Yr76 . We conclude that incorporating avirulence/virulence phenotypes into correlation analysis with variations in genomic structure and secretome, particularly presence/absence polymorphisms of effectors, is an efficient way to identify candidate Avr genes in Pst . The candidate effector genes provide a rich resource for further studies to determine the evolutionary history of Pst populations and the co-evolutionary arms race between Pst and wheat. The Avr candidates identified in this study will lead to cloning avirulence genes in Pst , which will enable us to understand molecular mechanisms

  1. Finite element modeling of shell shape in the freshwater turtle Pseudemys concinna reveals a trade-off between mechanical strength and hydrodynamic efficiency.

    Science.gov (United States)

    Rivera, Gabriel; Stayton, C Tristan

    2011-10-01

    Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that "lotic" shell shapes are weaker than "lentic" shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. "Lotic" shell shapes produced significantly higher stresses than "lentic" shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in

  2. The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR

    Science.gov (United States)

    Fujisawa, Masaki; Ito, Yasuhiro

    2013-01-01

    The developmental process of ripening is unique to fleshy fruits and a key factor in fruit quality. The tomato (Solanum lycopersicum) MADS-box transcription factor RIPENING INHIBITOR (RIN), one of the earliest-acting ripening regulators, is required for broad aspects of ripening, including ethylene-dependent and -independent pathways. However, our knowledge of direct RIN target genes has been limited, considering the broad effects of RIN on ripening. In a recent work published in The Plant Cell, we identified 241 direct RIN target genes by chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) and transcriptome analysis. Functional classification of the targets revealed that RIN participates in the regulation of many biological processes including well-known ripening processes such as climacteric ethylene production and lycopene accumulation. In addition, we found that ethylene is required for the full expression of RIN and several RIN-targeting transcription factor genes at the ripening stage. Here, based on our recently published findings and additional data, we discuss the ripening processes regulated by RIN and the interplay between RIN and ethylene. PMID:23518588

  3. Variant proteins stimulate more IgM+ GC B-cells revealing a mechanism of cross-reactive recognition by antibody memory.

    Science.gov (United States)

    Burton, Bronwen R; Tennant, Richard K; Love, John; Titball, Richard W; Wraith, David C; White, Harry N

    2018-05-01

    Vaccines induce memory B-cells that provide high affinity secondary antibody responses to identical antigens. Memory B-cells can also re-instigate affinity maturation, but how this happens against antigenic variants is poorly understood despite its potential impact on driving broadly protective immunity against pathogens such as Influenza and Dengue. We immunised mice sequentially with identical or variant Dengue-virus envelope proteins and analysed antibody and germinal-centre (GC) responses. Variant protein boosts induced GC with higher proportions of IgM+ B-cells. The most variant protein re-stimulated GCs with the highest proportion of IgM+ cells with the most diverse, least mutated V-genes and with a slower but efficient serum antibody response. Recombinant antibodies from GC B-cells showed a higher affinity for the variant antigen than antibodies from a primary response, confirming a memory origin. This reveals a new process of antibody memory, that IgM memory cells with fewer mutations participate in secondary responses to variant antigens, demonstrating how the hierarchical structure of B-cell memory is used and indicating the potential and limits of cross-reactive antibody based immunity. © 2018, Burton et al.

  4. Comparison of gene co-networks reveals the molecular mechanisms of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1 IA infection.

    Science.gov (United States)

    Zhang, Jinfeng; Zhao, Wenjuan; Fu, Rong; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping

    2018-05-05

    Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these findings by focusing on an analysis of gene co-expression in response to R. solani AG1 IA and identified gene modules within the networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein. Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.

  5. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Han, Gye Won; Abagyan, Ruben; Wu, Beili; Stevens, Raymond C.; Cherezov, Vadim; Kufareva, Irina; Handel, Tracy M. (USC); (Chinese Aca. Sci.); (UCSD)

    2017-06-01

    CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokine interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.

  6. Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin.

    Science.gov (United States)

    Shu, Benshui; Zhang, Jingjing; Sethuraman, Veeran; Cui, Gaofeng; Yi, Xin; Zhong, Guohua

    2017-10-16

    As an important botanical pesticide, azadirachtin demonstrates broad insecticidal activity against many agricultural pests. The results of a previous study indicated the toxicity and apoptosis induction of azadirachtin in Spodoptera frugiperda Sf9 cells. However, the lack of genomic data has hindered a deeper investigation of apoptosis in Sf9 cells at a molecular level. In the present study, the complete transcriptome