WorldWideScience

Sample records for revealed s-100 protein

  1. Protein S100B and physical exercise

    Directory of Open Access Journals (Sweden)

    Álvaro Reischak Oliveira

    2010-01-01

    Full Text Available Protein S100B has been used as a peripheral biochemical marker of brain injury and/or activity. However, recent studies have demonstrated that this protein is also increased in serum after physical exercise, although the interpretation of this finding remains controversial. Although predominantly released by astrocytes in the central nervous system, extracerebral sources of protein S100B have been suggested to contribute to the increase in serum levels of this protein. However, in the case of exercises that have an impact on the brain such as boxing, elevated levels are clearly associated with brain damage. More recently, some studies have proposed that protein S100B might be released by activated adipocytes and by damaged muscle cells. If confirmed experimentally, protein S100B might be potentially useful in sports training. We are currently investigating the potential role of serum protein S100B as an indicator of muscle damage. Therefore, the objective of this review was to discuss the current knowledge about the relationship between physical exercise and serum protein S100B and its possible leakage from muscle cells injured by exercise.

  2. S100B proteins in febrile seizures

    DEFF Research Database (Denmark)

    Mikkonen, Kirsi; Pekkala, Niina; Pokka, Tytti

    2011-01-01

    S100B protein concentrations correlate with the severity and outcome of brain damage after brain injuries, and have been shown to be markers of blood-brain barrier damage. In children elevated S100B values are seen as a marker of damage to astrocytes even after mild head injuries. S100B proteins...... may also give an indication of an ongoing pathological process in the brain with respect to febrile seizures (FS) and the likelihood of their recurrence. To evaluate this, we measured S100B protein concentrations in serum and cerebrospinal fluid from 103 children after their first FS. 33 children...

  3. Significance of the S100A4 protein in psoriasis

    DEFF Research Database (Denmark)

    Zibert, John R; Skov, Lone; Thyssen, Jacob P

    2010-01-01

    the expression and significance of S100A4 in psoriasis. We found significant upregulation of S100A4 in the dermis of psoriatic skin compared with normal skin. This pattern of S100A4 expression differs considerably from that of other S100 proteins, S100A7 and S100A8/9, with predominant expression in the epidermis...... of psoriasis. Furthermore, we revealed a massive release of the biologically active forms of S100A4 from psoriatic skin. Interestingly, we found stabilization (increase) of p53 in the basal layer of epidermis in close proximity to cells expressing S100A4. To examine the possible implication of S100A4...... in the pathogenesis of psoriasis, we analyzed the effect of S100A4 blocking antibodies in a human psoriasis xenograft SCID mouse model and observed a significant reduction of the epidermal thickness and impairment in cell proliferation and dermal vascularization. In conclusion, we showed strong upregulation...

  4. S100 Proteins As an Important Regulator of Macrophage Inflammation

    Directory of Open Access Journals (Sweden)

    Chang Xia

    2018-01-01

    Full Text Available The S100 proteins, a family of calcium-binding cytosolic proteins, have a broad range of intracellular and extracellular functions through regulating calcium balance, cell apoptosis, migration, proliferation, differentiation, energy metabolism, and inflammation. The intracellular functions of S100 proteins involve interaction with intracellular receptors, membrane protein recruitment/transportation, transcriptional regulation and integrating with enzymes or nucleic acids, and DNA repair. The S100 proteins could also be released from the cytoplasm, induced by tissue/cell damage and cellular stress. The extracellular S100 proteins, serving as a danger signal, are crucial in regulating immune homeostasis, post-traumatic injury, and inflammation. Extracellular S100 proteins are also considered biomarkers for some specific diseases. In this review, we will discuss the multi-functional roles of S100 proteins, especially their potential roles associated with cell migration, differentiation, tissue repair, and inflammation.

  5. Large-scale proteomic identification of S100 proteins in breast cancer tissues

    International Nuclear Information System (INIS)

    Cancemi, Patrizia; Di Cara, Gianluca; Albanese, Nadia Ninfa; Costantini, Francesca; Marabeti, Maria Rita; Musso, Rosa; Lupo, Carmelo; Roz, Elena; Pucci-Minafra, Ida

    2010-01-01

    Attempts to reduce morbidity and mortality in breast cancer is based on efforts to identify novel biomarkers to support prognosis and therapeutic choices. The present study has focussed on S100 proteins as a potentially promising group of markers in cancer development and progression. One reason of interest in this family of proteins is because the majority of the S100 genes are clustered on a region of human chromosome 1q21 that is prone to genomic rearrangements. Moreover, there is increasing evidence that S100 proteins are often up-regulated in many cancers, including breast, and this is frequently associated with tumour progression. Samples of breast cancer tissues were obtained during surgical intervention, according to the bioethical recommendations, and cryo-preserved until used. Tissue extracts were submitted to proteomic preparations for 2D-IPG. Protein identification was performed by N-terminal sequencing and/or peptide mass finger printing. The majority of the detected S100 proteins were absent, or present at very low levels, in the non-tumoral tissues adjacent to the primary tumor. This finding strengthens the role of S100 proteins as putative biomarkers. The proteomic screening of 100 cryo-preserved breast cancer tissues showed that some proteins were ubiquitously expressed in almost all patients while others appeared more sporadic. Most, if not all, of the detected S100 members appeared reciprocally correlated. Finally, from the perspective of biomarkers establishment, a promising finding was the observation that patients which developed distant metastases after a three year follow-up showed a general tendency of higher S100 protein expression, compared to the disease-free group. This article reports for the first time the comparative proteomic screening of several S100 protein members among a large group of breast cancer patients. The results obtained strongly support the hypothesis that a significant deregulation of multiple S100 protein members is

  6. S100B protein in serum is elevated after global cerebral ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Bao-di Sun; Hong-mei Liu; Shi-nan Nie

    2013-01-01

    BACKGROUND:S100B protein in patients with cardiac arrest,hemorrhagic shock and other causes of global cerebral ischemic injury will be dramatically increased.Ischemic brain injury may elevate the level of serum S100 B protein and the severity of brain damage.METHODS:This article is a critical and descriptive review on S100 B protein in serum after ischemic brain injury.We searched Pubmed database with key words or terms such as 'S100B protein', 'cardiac arrest', 'hemorrhagic shock' and 'ischemia reperfusion injury' appeared in the last five years.RESULTS:S100B protein in patients with cardiac arrest,hemorrhagic shock and other causes of ischemic brain injury will be dramatically increased.Ischemic brain injury elevated the level of serum S100 B protein,and the severity of brain damage.CONCLUSION:The level of S100 B protein in serum is elevated after ischemic brain injury,but its mechanism is unclear.

  7. Immunoreactivity of S100β protein in the hippocampus of chinchilla

    Directory of Open Access Journals (Sweden)

    Krawczyk Aleksandra

    2014-03-01

    Full Text Available The aim of the study was to investigate S100β protein in astrocytes of CA1 and CA3 areas of the hippocampus proper and the dentate gyrus with the hilus yet undefined in mature males of chinchilla. The presence of S100β was determined using indirect immunohistochemical peroxidase-antiperoxidase method with specific monoclonal antibody against this protein. Most of the S100β-positive cells were detected in the subgranular zone of the dentate gyrus and in the middle part of the hilus. In CA3 area, it was found that the most numerous cells with S100β are in stratum radiatum. In CA1 area, there were single astrocytes expressing this protein. This data demonstrates species differences and a large quantity of S100β immunoreactive cells in the subgranular zone of the dentate gyrus of chinchilla, which may be associated with structural reorganisation of the hippocampus and with neurogenesis, learning, and memorising process dependent on the hippocampus.

  8. S-100 protein in the diagnosis of tuberculoid borderline tuberculoidleprosy

    International Nuclear Information System (INIS)

    Khan, A.R.

    1998-01-01

    A definitive diagnosis of tuberculoid and borderline tuberculoid leprosyis based on a demonstration of either acid-fast bacilli or nerve elementswithin the granulomas. On routine hematoxylin and eosin stains, the nervefibers are not easily identifiable. In this study, we used S-100 protein tohighlight the nerve elements and to count their numbers in leprosy andnon-leprosy granulomas. Skin biopsy specimens from 15 cases oftuberculoid/borderline tuberculoid leprosy and 14 cases belonging to othergranulomatous disease of the skin were stained with S-100 protein. Thesurface area of all the biopsies was calculated and the numbers of nervebundles stained with S-100 protein were counted in each specimen. The nervebundles were 15 per cm2 in leprosy cases, and 9.2 per cm2 in non-leprosycases. In addition, the leprosy cases showed longer nerve twigs that wereperpendicularly oriented to the skin surface. Immunostaining with S-100facilitated detection of nerve elements in tuberculoid/borderline tuberculoidleprosy. Also, an increased number of nerve elements were found in leprosygranulomas when compared with non-leprosy granulomas (P=<0.05). (author)

  9. The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments

    Directory of Open Access Journals (Sweden)

    M. Garbuglia

    1999-10-01

    Full Text Available The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix type, S100A1 and S100B, that have been shown to inhibit microtubule (MT protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF subunits, desmin and glial fibrillary acidic protein (GFAP, with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 µM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.

  10. The metastasis-promoting S100A4 protein confers neuroprotection in brain injury

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Pankratova, Stanislava; Owczarek, Sylwia

    2012-01-01

    and downregulating the neuroprotective protein metallothionein I+II. We identify two neurotrophic motifs in S100A4 and show that these motifs are neuroprotective in animal models of brain trauma. Finally, we find that S100A4 rescues neurons via the Janus kinase/STAT pathway and, partially, the interleukin-10......Identification of novel pro-survival factors in the brain is paramount for developing neuroprotective therapies. The multifunctional S100 family proteins have important roles in many human diseases and are also upregulated by brain injury. However, S100 functions in the nervous system remain...... unclear. Here we show that the S100A4 protein, mostly studied in cancer, is overexpressed in the damaged human and rodent brain and released from stressed astrocytes. Genetic deletion of S100A4 exacerbates neuronal loss after brain trauma or excitotoxicity, increasing oxidative cell damage...

  11. Molecular mechanisms of Ca(2+) signaling in neurons induced by the S100A4 protein

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Novitskaya, Vera; Soroka, Vladislav

    2006-01-01

    The S100A4 protein belongs to the S100 family of vertebrate-specific proteins possessing both intra- and extracellular functions. In the nervous system, high levels of S100A4 expression are observed at sites of neurogenesis and lesions, suggesting a role of the protein in neuronal plasticity. Ext...... at the cell surface. Thus, glycosaminoglycans may act as coreceptors of S100 proteins in neurons. This may provide a mechanism by which S100 proteins could locally regulate neuronal plasticity in connection with brain lesions and neurological disorders....

  12. Study of lymphocyte sensitization to protein S-100 in the patients with cerebrovascular diseases, suffered due to Chernobyl NPP accident

    International Nuclear Information System (INIS)

    Khomenko, V.Yi.

    2004-01-01

    Among the persons with cerebrovascular diseases, suffered due to Chernobyl NPP accident two groups of patients were revealed: with DNA coloration coefficients in response to protein S-100 stimulation below and above 1. Patients with DNA coloration coefficients <1 were older, they had statistically significant lower monocytes and T-activated lymphocytes absolute counts as well as increased content of cholesterol-2 and circulating immune complexes. Charges found there suggested possible existence of different pathways of immune response to antigenic stimulation by S-100 protein

  13. Serum S-100β protein as a biomarker for brain damage in patients with encephalopathy

    International Nuclear Information System (INIS)

    Takeda, Munekazu; Yaguchi, Arino; Yamada, Sou; Nagai, Atsushi; Yuzawa, Junji

    2008-01-01

    Cerebrospinal fluid concentrations of S-100β protein, an acidic calcium-binding protein found in astrocytes and Schwann cells, increase after central nervous system damage. Serum S-100β protein, thus, has been expected to be a biochemical marker of brain cell damage. Several reports show a relation between severity of head injury and serum S-100β protein levels, although, there are still not significant advances in the study of S-100β regarding the prediction of the clinical outcome in brain diseases. The objective of the present study was to verify S-100β as a marker for the clinical outcome in patients with encephalopathy. Serum S-100β protein concentrations (pg/ml) were measured daily using enzyme-linked immunosorbent assay (ELISA) until discharge from the intensive care unit (ICU) in 82 patients (54 men, 28 women; age 20-93 years [mean 61.0±19.2]) with moderate or severe encephalopathy. There were 50 survivors and 32 non-survivors. S-100β levels were significantly lower in survivors (240.2 pg/ml) than in non-survivors (1,594.8 pg/ml) from day 1 until ICU discharge. The electroencephalogram (EEG) and computed tomography (CT) abnormalities were correlated with S-100β levels. The optimal cut-off value at 451.2 pg/ml calculated from receiver operating characteristic (ROC) curve analysis showed the sensitivity of 80.2% and specificity of 78.1% for ICU mortality. Our results indicate that serum S-100β protein could be a useful biomarker to assess brain damage and predict prognosis in patients with encephalopathy. (author)

  14. Purification and partial characterization of canine S100A12.

    Science.gov (United States)

    Heilmann, Romy M; Suchodolski, Jan S; Steiner, Jörg M

    2010-12-01

    Canine S100A12 (cS100A12) is a calcium-binding protein of the S100 superfamily of EF-hand proteins, and its expression is restricted to neutrophils and monocytes. Interaction of S100A12 with the receptor for advanced glycation end products (RAGE) has been suggested to play a central role in inflammation. Moreover, S100A12 has been shown to represent a sensitive and specific marker for gastrointestinal inflammation in humans. Only human, porcine, bovine, and rabbit S100A12 have been purified to date, and an immunoassay for the quantification of S100A12 is available only for humans. Therefore, the aim of this study was to develop a protocol for the purification of S100A12 and to partially characterize this protein in the dog (Canis lupus familiaris) as a prelude to the development of an immunologic method for its detection and quantification in canine serum and fecal specimens. Leukocytes were isolated from canine whole blood by dextran sedimentation, and canine S100A12 was extracted from the cytosol fraction of these cells. Further purification of cS100A12 comprised of ammonium sulfate precipitation, hydrophobic interaction chromatography, and strong cation- and anion-exchange column chromatography. Canine S100A12 was successfully purified from canine whole blood. The relative molecular mass of the protein was estimated at 10,379.5 and isoelectric focusing revealed an isoelectric point of 6.0. The approximate specific absorbance of cS100A12 at 280 nm was determined to be 1.78 for a 1 mg/ml solution. The N-terminal AA sequence of the first 15 residues of cS100A12 was Thr-Lys-Leu-Glu-Asp-His-X-Glu-Gly-Ile-Val-Asp-Val-Phe-His, and revealed 100% identity with the predicted protein sequence available through the canine genome project. Sequence homology for the 14 N-terminal residues identified for cS100A12 with those of feline, bovine, porcine, and human S100A12 was 78.6%. We conclude that canine S100A12 can be successfully purified from canine whole blood using the

  15. Detection and significance of S-100 protein and NSE during mild hypothermia cardiopulmonary bypass

    International Nuclear Information System (INIS)

    Liu Xiuqin; Jin Mu; Tan Jiefang; Huang Wenqi; Chen Bingxue; Huang Weiming; Huang Xiongqing

    2001-01-01

    To observe dynamic changes of S-100 protein and NSE during mild hypothermia cardiopulmonary bypass (CPB), the venous blood samples of 25 patients with elective cardiac surgery were obtained simultaneously from the left artery and left jugular bulb before CPB(A), hypothermia period (32-35 degree C) (B) and rewarming to 36 degree C (C) during CPB, 30 minutes (D), 4-6 hours (E) and 24 hours (F) after CPB. Plasma S-100 protein concentration was determined by chemiluminescence immunoassay, and NSE level was determined by radioimmunoassay. The results showed that the levels of S-100 protein and NSE increased significantly during CPB, and NSE peaked at 30 minutes (D) after CPB. It suggested the central nervous system dysfunctions. The S-100 protein and NSE concentrations decreased gradually and retuned to normal nearly (F) after mild hypothermia CPB. It suggested that there were not obvious central nervous system dysfunctions

  16. Immunohistochemical Characterization of S100A6 in the Murine Ovary

    International Nuclear Information System (INIS)

    Hanaue, Mayu; Miwa, Naofumi; Takamatsu, Ken

    2012-01-01

    S100 proteins comprise a large family of Ca 2+ -binding proteins and exhibit a variety of intra- and extracellular functions. Despite our growing knowledge about the biology of S100 proteins in some tissues such as brain and smooth muscle, little is known about S100 proteins in the normal mammalian reproductive tissue. In the present study, we investigated the distribution pattern of S100A6 (alternatively named calcyclin) in the murine ovary by immunohistochemical study using specific antibody. S100A6 was localized substantially in the cytoplasm of luteal cells, with concomitant expression of S100A11, another S100 protein, but not in the other type of cells such as oocytes, follicle epithelial cells (granulosa cells), and cells of stroma including theca interna cells in the murine ovary. S100A6-immunoreactive corpora lutea (CLs) were divided into two types: homogeneously and heterogeneously stained CLs, and possibly they may represent differentiating and mature CL, respectively. Our regression analysis revealed that expression level of S100A6 positively correlated with that of cytochrome P450 11A, a steroidogenic enzyme in the heterogeously stained CL. These results suggested that S100A6 may contribute to differentiation of steroidogenic activity of luteal cells in a synergistic manner with S100A11 by facilitating some shared functions

  17. Both Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function

    Directory of Open Access Journals (Sweden)

    Shekhtman Alexander

    2009-04-01

    Full Text Available Abstract Background Human S100A12 is a member of the S100 family of EF-hand calcium-modulated proteins that are associated with many diseases including cancer, chronic inflammation and neurological disorders. S100A12 is an important factor in host/parasite defenses and in the inflammatory response. Like several other S100 proteins, it binds zinc and copper in addition to calcium. Mechanisms of zinc regulation have been proposed for a number of S100 proteins e.g. S100B, S100A2, S100A7, S100A8/9. The interaction of S100 proteins with their targets is strongly dependent on cellular microenvironment. Results The aim of the study was to explore the factors that influence S100A12 oligomerization and target interaction. A comprehensive series of biochemical and biophysical experiments indicated that changes in the concentration of calcium and zinc led to changes in the oligomeric state of S100A12. Surface plasmon resonance confirmed that the presence of both calcium and zinc is essential for the interaction of S100A12 with one of its extracellular targets, RAGE – the Receptor for Advanced Glycation End products. By using a single-molecule approach we have shown that the presence of zinc in tissue culture medium favors both the oligomerization of exogenous S100A12 protein and its interaction with targets on the cell surface. Conclusion We have shown that oligomerization and target recognition by S100A12 is regulated by both zinc and calcium. Our present work highlighted the potential role of calcium-binding S100 proteins in zinc metabolism and, in particular, the role of S100A12 in the cross talk between zinc and calcium in cell signaling.

  18. Proteomics unveil corticoid-induced S100A11 shuttling in keratinocyte differentiation

    International Nuclear Information System (INIS)

    Dezitter, Xavier; Hammoudi, Fatma; Belverge, Nicolas; Deloulme, Jean-Christophe; Drobecq, Herve; Masselot, Bernadette; Formstecher, Pierre; Mendy, Denise; Idziorek, Thierry

    2007-01-01

    Unlike classical protein extraction techniques, proteomic mapping using a selective subcellular extraction kit revealed S100A11 as a new member of the S100 protein family modulated by glucocorticoids in keratinocytes. Glucocorticoids (GC)-induced S100A11 redistribution in the 'organelles and membranes' compartment. Microscopic examination indicated that glucocorticoids specifically routed cytoplasmic S100A11 toward perinuclear compartment. Calcium, a key component of skin terminal differentiation, directed S100A11 to the plasma membrane as previously reported. When calcium was added to glucocorticoids, minor change was observed at the proteomic level while confocal microscopy revealed a rapid and dramatic translocation of S100A11 toward plasma membrane. This effect was accompanied by strong nuclear condensation, loss of mitochondrial potential and DNA content, and increased high molecular weight S100A11 immunoreactivity, suggesting corticoids accelerate calcium-induced terminal differentiation. Finally, our results suggest GC-induced S100A11 relocalization could be a key step in both keratinocyte homeostasis and glucocorticoids side effects in human epidermis

  19. S100A10 protein expression is associated with oxaliplatin sensitivity in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Suzuki Sayo

    2011-12-01

    Full Text Available Abstract Background Individual responses to oxaliplatin (L-OHP-based chemotherapy remain unpredictable. The objective of our study was to find candidate protein markers for tumor sensitivity to L-OHP from intracellular proteins of human colorectal cancer (CRC cell lines. We performed expression difference mapping (EDM analysis of whole cell lysates from 11 human CRC cell lines with different sensitivities to L-OHP by using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS, and identified a candidate protein by liquid chromatography/mass spectrometry ion trap time-of-flight (LCMS-IT-TOF. Results Of the qualified mass peaks obtained by EDM analysis, 41 proteins were differentially expressed in 11 human colorectal cancer cell lines. Among these proteins, the peak intensity of 11.1 kDa protein was strongly correlated with the L-OHP sensitivity (50% inhibitory concentrations (P R2 = 0.80. We identified this protein as Protein S100-A10 (S100A10 by MS/MS ion search using LCMS-IT-TOF. We verified its differential expression and the correlation between S100A10 protein expression levels in drug-untreated CRC cells and their L-OHP sensitivities by Western blot analyses. In addition, S100A10 protein expression levels were not correlated with sensitivity to 5-fluorouracil, suggesting that S100A10 is more specific to L-OHP than to 5-fluorouracil in CRC cells. S100A10 was detected in cell culture supernatant, suggesting secretion out of cells. Conclusions By proteomic approaches including SELDI technology, we have demonstrated that intracellular S100A10 protein expression levels in drug-untreated CRC cells differ according to cell lines and are significantly correlated with sensitivity of CRC cells to L-OHP exposure. Our findings provide a new clue to searching predictive markers of the response to L-OHP, suggesting that S100A10 is expected to be one of the candidate protein markers.

  20. Localization of S-100 proteins in the testis and epididymis of poultry and rabbits

    Science.gov (United States)

    Abd-Elmaksoud, Ahmed; Marei, Hany E. S.

    2014-01-01

    The present investigation was conducted to demonstrate S-100 protein in the testis and epididymis of adult chickens, Sudani ducks, pigeons, and rabbits. This study may represent the first indication for the presence of S-100 in the male reproductive organs of these species and might therefore serve as a milestone for further reports. In the testis of chickens, pigeons and rabbits, intense S-100 was seen in Sertoli cells. S-100 was also seen in the endothelial lining of blood vessels in rabbit testis. On the contrary, no S-100 reaction was detected in the Sertoli cells of Sudani ducks. In epididymis, the localization of S-100 had varied according to species studied; it was seen in the basal cells (BC) of epididymal duct in duck, non-ciliated cells of the distal efferent ductules in pigeons and ciliated cells of the efferent ductules and BC of rabbit epididymis. Conversely, S-100 specific staining was not detected in the epithelial lining of the rooster and pigeon epididymal duct as well as the principal cells of the rabbit epididymis. In conclusion, the distribution of the S-100 proteins in the testis and epididymis might point out to its roles in the male reproduction. PMID:25276477

  1. Structural and functional diversification in the teleost S100 family of calcium-binding proteins

    Directory of Open Access Journals (Sweden)

    Korsching Sigrun I

    2008-02-01

    Full Text Available Abstract Background Among the EF-Hand calcium-binding proteins the subgroup of S100 proteins constitute a large family with numerous and diverse functions in calcium-mediated signaling. The evolutionary origin of this family is still uncertain and most studies have examined mammalian family members. Results We have performed an extensive search in several teleost genomes to establish the s100 gene family in fish. We report that the teleost S100 repertoire comprises fourteen different subfamilies which show remarkable similarity across six divergent teleost species. Individual species feature distinctive subsets of thirteen to fourteen genes that result from local gene duplications and gene losses. Eight of the fourteen S100 subfamilies are unique for teleosts, while six are shared with mammalian species and three of those even with cartilaginous fish. Several S100 family members are found in jawless fish already, but none of them are clear orthologs of cartilaginous or bony fish s100 genes. All teleost s100 genes show the expected structural features and are subject to strong negative selection. Many aspects of the genomic arrangement and location of mammalian s100 genes are retained in the teleost s100 gene family, including a completely conserved intron/exon border between the two EF hands. Zebrafish s100 genes exhibit highly specific and characteristic expression patterns, showing both redundancy and divergence in their cellular expression. In larval tissue expression is often restricted to specific cell types like keratinocytes, hair cells, ionocytes and olfactory receptor neurons as demonstrated by in situ hybridization. Conclusion The origin of the S100 family predates at least the segregation of jawed from jawless fish and some extant family members predate the divergence of bony from cartilaginous fish. Despite a complex pattern of gene gains and losses the total repertoire size is remarkably constant between species. On the expression

  2. Metastasis-inducing S100A4 protein is associated with the disease activity of rheumatoid arthritis

    DEFF Research Database (Denmark)

    Oslejsková, Lucie; Grigorian, Mariam; Hulejová, Hana

    2009-01-01

    To evaluate the association between metastasis-inducing protein S100A4 and disease activity in patients with RA, and to demonstrate the effect of TNF-alpha blocking therapy on plasma levels of S100A4 in these patients.......To evaluate the association between metastasis-inducing protein S100A4 and disease activity in patients with RA, and to demonstrate the effect of TNF-alpha blocking therapy on plasma levels of S100A4 in these patients....

  3. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    Science.gov (United States)

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B.

  4. The Effect of Erythropoietin on S100 Protein Expression in Cochlea After Acoustic Overstimulation: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Gulsen Gurgen

    2014-03-01

    Full Text Available Aim: To investigate the effect of Erythropoietin on acoustically overstimulated rat spiral ganglion neurons (SGNs using S100 protein immunostaining.Material and Method: Twenty-two Wistar albino rats were divided into three groups: healthy control group (n=7, Saline solution (n=7 and Erythropoietin injection groups (n=8. Saline solution and Erythropoietin injection groups received white noise (100 dB SPL for 3 hours. Cochlear sections were stained by silver staining technique and immunostained by S100 antibody. Results: Histochemical analysis of silver staining sections revealed normal structure and a weak staining in SGNs of healthy control group. However, dark-black cytoplasmic staining, cellular shrinkage and degeneration were detected in saline injection group. On the other hand, a few weakly stained neurons were observed in erythropoietin injection group. S100 staining demonstrated strong reaction in Schwann cells and myelin sheaths of SGNs in healthy control group (p<0.05. In saline solution injection group, Schwann cells showed moderate S100 reaction and other regions of SGNs showed weak reaction (p<0.05. In erythropoietin injection group, strong S100 expression almost similar to the healthy control group was determined, although there was an occasional decrease. Discussion: Erythropoetin may prevent noise induced SGN degeneration via protecting the Schwann cells in rat cochlea.

  5. Correlation between Amitriptyline-Induced Cardiotoxic Effects and Cardiac S100b Protein in Isolated Rat Hearts

    Directory of Open Access Journals (Sweden)

    Nil Hocaoğlu

    2016-12-01

    Full Text Available Background: Amitriptyline is an important cause of mortality due to its cardiovascular toxicity. Aims: To investigate the changes in levels of cardiac S100b protein on amitriptyline-induced cardiotoxicity and also to examine the correlation between amitriptyline-induced cardiotoxic effects and cardiac S100b protein in an isolated rat heart model. Study Design: Animal experimentation, isolated heart model. Methods: After a stabilization period, isolated hearts were randomized to two groups (n=5 and n=7. In the control group, isolated hearts were subjected to an infusion of 5% dextrose for 60 minutes. In the amitriptyline group, 5.5×10-5 M amitriptyline was infused for 60 minutes to achieve amitriptyline toxicity. After the infusion period, heart tissues were removed for histological examination. Results: In comparison to control treatment, amitriptyline infusion decreased left ventricular developed pressure (LVDP, dp/dtmax and heart rate (HR and significantly prolonged QRS duration (p<0.05. The semiquantitative scores for S100b protein levels in amitriptyline-infused hearts were higher than in the control group (p<0.01. At the end of the experiment, in the amitriptyline-infused group, significant correlations were found between LVDP and S100b protein scores (r=-0.807, p=0.003 and between QRS duration and S100b protein scores (r=0.859, p=0.001. Conclusion: Our results indicate that the S100b protein may be a helpful indicator or biomarker in studying the cardiotoxic effects of amitriptyline.

  6. Immunohistochemical localization of anterior pituitary hormones in S-100 protein-positive cells in the rat pituitary gland.

    Science.gov (United States)

    Kikuchi, Motoshi; Yatabe, Megumi; Tando, Yukiko; Yashiro, Takashi

    2011-09-01

    In the anterior and intermediate lobes of the rat pituitary gland, non-hormone-producing cells that express S-100 protein coexist with various types of hormone-producing cells and are believed to function as phagocytes, supporting and paracrine-controlling cells of hormone-producing cells and stem cells, among other functions; however, their cytological characteristics are not yet fully understood. Using a transgenic rat that expresses green fluorescent protein under the promoter of the S100β protein gene, we immunohistochemically detected expression of the luteinizing hormone, thyroid-stimulating hormone, prolactin, growth hormone and proopiomelanocortin by S-100 protein-positive cells located between clusters of hormone-producing cells in the intermediate lobe. These findings lend support to the hypothesis that S-100 protein-positive cells are capable of differentiating into hormone-producing cells in the adult rat pituitary gland.

  7. Molecular dynamics simulation of S100B protein to explore ligand blockage of the interaction with p53 protein

    Science.gov (United States)

    Zhou, Zhigang; Li, Yumin

    2009-10-01

    As a tumor suppressor, p53 plays an important role in cancer suppression. The biological function of p53 as a tumor suppressor is disabled when it binds to S100B. Developing the ligands to block the S100B-p53 interaction has been proposed as one of the most important approaches to the development of anti-cancer agents. We screened a small compound library against the binding interface of S100B and p53 to identify potential compounds to interfere with the interaction. The ligand-binding effect on the S100B-p53 interaction was explored by molecular dynamics at the atomic level. The results show that the ligand bound between S100B and p53 propels the two proteins apart by about 2 Å compared to the unligated S100B-p53 complex. The binding affinity of S100B and p53 decreases by 8.5-14.6 kcal/mol after a ligand binds to the interface from the original unligated state of the S100B-p53 complex. Ligand-binding interferes with the interaction of S100B and p53. Such interference could impact the association of S100B and p53, which would free more p53 protein from the pairing with S100B and restore the biological function of p53 as a tumor suppressor. The analysis of the binding mode and ligand structural features would facilitate our effort to identify and design ligands to block S100B-p53 interaction effectively. The results from the work suggest that developing ligands targeting the interface of S100B and p53 could be a promising approach to recover the normal function of p53 as a tumor suppressor.

  8. Demonstration of S-100 protein in sustentacular cells of phaeochromocytomas and paragangliomas

    DEFF Research Database (Denmark)

    Schroder, H D; Johannsen, L

    1986-01-01

    to the sustentacular cells of normal paraganglia and adrenal medulla were found in all paragangliomas and in the benign and aggressively growing phaeochromocytomas. In the two malignant tumours no positive reaction was demonstrated. In one tumour the sustentacular cells were shown to contain glial fibrillary acidic......Eighteen phaeochromocytomas, including both sporadic and familial cases, four cervical paragangliomas, two jugular paragangliomas, and one abdominal paraganglioma were examined immunohistochemically for the presence of S-100 protein. Positive staining in cells morphologically similar...... protein further supporting their Schwann cell relationship. The number of S-100 positive cells varied considerably. They demonstrated a spindle celled or elongated configuration with long slender processes. The nature of the sustentacular cell proliferation, neoplastic versus reactive, is discussed....

  9. Role of S100A12 in the pathogenesis of osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Motoshige [Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Sakai, Tadahiro, E-mail: tadsakai@med.nagoya-u.ac.jp [Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Hiraiwa, Hideki; Hamada, Takashi; Omachi, Takaaki [Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Ono, Yohei [Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC 27834 (United States); Inukai, Norio [Department of Orthopaedic Surgery, Nishio Municipal Hospital, 6 Kumami-cho, Nishio 445-8510 (Japan); Ishizuka, Shinya; Matsukawa, Tetsuya; Oda, Tomoyuki; Takamatsu, Akira; Yamashita, Satoshi; Ishiguro, Naoki [Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer This is the first report of S100A12 expression in human OA articular cartilages. Black-Right-Pointing-Pointer Exogenous S100A12 increased the production of MMP13 and VEGF in OA chondrocytes. Black-Right-Pointing-Pointer Soluble RAGE suppressed the increased production of MMP13 and VEGF. Black-Right-Pointing-Pointer p38MAPK and NF-{kappa}B inhibitors abrogated S100A12-induced MMP13 and VEGF production. Black-Right-Pointing-Pointer S100A12 may contribute to OA progression by increasing MMP13 and VEGF production. -- Abstract: S100A12 is a member of the S100 protein family, which are intracellular calcium-binding proteins. Although there are many reports on the involvement of S100A12 in inflammatory diseases, its presence in osteoarthritic cartilage has not been reported. The purpose of this study was to investigate the expression of S100A12 in human articular cartilage in osteoarthritis (OA) and to evaluate the role of S100A12 in human OA chondrocytes. We analyzed S100A12 expression by immunohistochemical staining of cartilage samples obtained from OA and non-OA patients. In addition, chondrocytes were isolated from knee cartilage of OA patients and treated with recombinant human S100A12. Real-time RT-PCR was performed to analyze mRNA expression. Protein production of matrix metalloproteinase 13 (MMP-13) and vascular endothelial growth factor (VEGF) in the culture medium were measured by ELISA. Immunohistochemical analyses revealed that S100A12 expression was markedly increased in OA cartilages. Protein production and mRNA expression of MMP-13 and VEGF in cultured OA chondrocytes were significantly increased by treatment with exogenous S100A12. These increases in mRNA expression and protein production were suppressed by administration of soluble receptor for advanced glycation end products (RAGE). Both p38 mitogen-activated protein kinase (MAPK) and nuclear factor-{kappa}B (NF-{kappa}B) inhibitors also suppressed the increases

  10. Effect of calcium-binding protein S100A8 expression on early phase of radiation pulmonary fibrosis

    International Nuclear Information System (INIS)

    Rao Yalan; Li Ming; Cong Yue; Li Fengsheng; Chen Xiaohua; Dong Bo; Zhang Junquan; Gao Ling; Mao Bingzhi

    2008-01-01

    The study explores the expression and effect of calcium-binding protein S100A8 on early phase of radiation pulmonary fibrosis via in vivo and in vitro experiments. In vivo experiment, the thoracic regions of rats were irradiated under 20Gy 60 Co γ-rays to establish radiation pulmonary fibrosis. After irradiation, the lung specimens of the sacrificed rats were separately harvested by the ends of the first, second, and fourth weeks respectively. The protein expression of S100A8 was tested through immunohistochemistry, the mRNA expression of S100A8 and its heterodimeric S100A9 were investigated by RT-PCR method. In vitro experiment, RT-PCR method was also applied to measure the mRNA expression of S100A8 in mouse macrophage cell line RAW264.7 after γ-rays irradiation and/or lipopolysaccharide (LPS). It shows that the protein expression of S100A8 was increased in the plasma of lung macrophages samples and the mRNA expression of S100A8 and S100A9 was also increased in the lung tissue samples in four weeks after irradiation in vivo experiment. And in vitro experiment it shows that the cooperation between γ-rays and LPS can increase the mRNA expression of S100A8 in RAW264.7. These phenomena suggest that S100A8 can exert the chemotactic activity, participate in the inflammatory response, and influence the establishment of radiation pulmonary fibrosis. (authors)

  11. Expression of human protein S100A7 (psoriasin, preparation of antibody and application to human larynx squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Barbieri Manuela R

    2011-11-01

    Full Text Available Abstract Background Up-regulation of S100A7 (Psoriasin, a small calcium-binding protein, is associated with the development of several types of carcinomas, but its function and possibility to serve as a diagnostic or prognostic marker have not been fully defined. In order to prepare antibodies to the protein for immunohistochemical studies we produced the recombinant S100A7 protein in E. coli. mRNA extracted from human tracheal tumor tissue which was amplified by RT-PCR to provide the region coding for the S100A7 gene. The amplified fragment was cloned in the vector pCR2.1-TOPO and sub-cloned in the expression vector pAE. The protein rS100A7 (His-tag was expressed in E. coli BL21::DE3, purified by affinity chromatography on an Ni-NTA column, recovered in the 2.0 to 3.5 mg/mL range in culture medium, and used to produce a rabbit polyclonal antibody anti-rS100A7 protein. The profile of this polyclonal antibody was evaluated in a tissue microarray. Results The rS100A7 (His-tag protein was homogeneous by SDS-PAGE and mass spectrometry and was used to produce an anti-recombinant S100A7 (His-tag rabbit serum (polyclonal antibody anti-rS100A7. The molecular weight of rS100A7 (His-tag protein determined by linear MALDI-TOF-MS was 12,655.91 Da. The theoretical mass calculated for the nonapeptide attached to the amino terminus is 12,653.26 Da (delta 2.65 Da. Immunostaining with the polyclonal anti-rS100A7 protein generated showed reactivity with little or no background staining in head and neck squamous cell carcinoma cells, detecting S100A7 both in nucleus and cytoplasm. Lower levels of S100A7 were detected in non-neoplastic tissue. Conclusions The polyclonal anti-rS100A7 antibody generated here yielded a good signal-to-noise contrast and should be useful for immunohistochemical detection of S100A7 protein. Its potential use for other epithelial lesions besides human larynx squamous cell carcinoma and non-neoplastic larynx should be explored in future.

  12. S100A6 - New facts and features

    Energy Technology Data Exchange (ETDEWEB)

    Lesniak, Wieslawa; Slomnicki, Lukasz P. [Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw (Poland); Filipek, Anna, E-mail: a.filipek@nencki.gov.pl [Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw (Poland)

    2009-12-25

    S100A6 (calcyclin) is a 10.5 kDa Ca{sup 2+}-binding protein that belongs to the S100 protein family. S100A6 contains two EF-hand motifs responsible for binding of Ca{sup 2+}. It also binds Zn{sup 2+} through not yet identified structures. Binding of Ca{sup 2+} induces a conformational change in the S100A6 molecule which in consequence increases its overall hydrophobicity and allows for interaction with target proteins. S100A6 was found in different mammalian and avian (chicken) tissues. A high level of S100A6 is observed in epithelial cells, fibroblasts and in different kinds of cancer cells. The function of S100A6 is not clear at present, but it has been suggested that it may be involved in cell proliferation, cytoskeletal dynamics and tumorigenesis. Additionally, S100A6 might have some extracellular activities. This review presents new facts and features concerning the S100A6 protein.

  13. The metastasis-associated Mts1(S100A4) protein could act as an angiogenic factor

    DEFF Research Database (Denmark)

    Ambartsumian, N; Klingelhöfer, Jörg; Grigorian, M

    2001-01-01

    The involvement of Mts1(S100A4), a small Ca(2+)-binding protein in tumor progression and metastasis had been demonstrated. However, the mechanism by which mts1(S100A4) promoted metastasis had not been identified. Here we demonstrated that Mts1(S100A4) had significant stimulatory effect on the ang...

  14. S100B Protein concentration in milk-formulas for preterm and term infants. Correlation with industrial preparation procedures.

    Science.gov (United States)

    Nigro, Francesco; Gagliardi, Luigi; Ciotti, Sabina; Galvano, Fabio; Pietri, Amedeo; Tina, Gabriella Lucia; Cavallaro, Daniela; La Fauci, Luca; Iacopino, Leonardo; Bognanno, Matteo; Li Volti, Giovanni; Scacco, Antonio; Michetti, Fabrizio; Gazzolo, Diego

    2008-05-01

    Human milk S100B protein possesses important neurotrophic properties. However, in some conditions human milk is substituted by milk formulas. The aims of the present study were: to assess S100B concentrations in milk formulas, to verify any differences in S100B levels between preterm and term infant formulas and to evaluate the impact of industrial preparation at predetermined phases on S100B content. Two different set of samples were tested: (i) commercial preterm (n = 36) and term (n = 36) infant milk formulas; ii) milk preterm (n = 10) and term infant (n = 10) formulas sampled at the following predetermined industrial preparation time points: skimmed cow milk (Time 0); after protein sources supplementation (Time 1); after pasteurization (Time 2); after spray-drying (Time 3). Our results showed that S100B concentration in preterm formulas were higher than in term ones (p 0.05) at Time 2, whereas a significant (p pasteurization but not spry-drying. New feeding strategies in preterm and term infants are therefore warranted in order to preserve S100B protein during industrial preparation.

  15. Comparison between capillary, venous and arterial levels of protein S100B in patients with severe brain pathology

    DEFF Research Database (Denmark)

    Astrand, Ramona; Romner, Bertil; Reinstrup, Peter

    2012-01-01

    of the study was to investigate the relation between capillary, venous and arterial measurements of protein S100B, primarily by determining whether capillary S100B differ from venous and if capillary S100B can predict venous S100B levels, and secondarily, if arterial S100B samples can substitute venous samples...... in severely brain-injured patients....

  16. S100B protein, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in human milk.

    Directory of Open Access Journals (Sweden)

    Ruisong Li

    Full Text Available Human milk contains a wide variety of nutrients that contribute to the fulfillment of its functions, which include the regulation of newborn development. However, few studies have investigated the concentrations of S100B protein, brain-derived neurotrophic factor (BDNF, and glial cell line-derived neurotrophic factor (GDNF in human milk. The associations of the concentrations of S100B protein, BDNF, and GDNF with maternal factors are not well explored.To investigate the concentrations of S100B protein, BDNF, and GDNF in human milk and characterize the maternal factors associated with their levels in human milk, human milk samples were collected at days 3, 10, 30, and 90 after parturition. Levels of S100B protein, BDNF, and GDNF, and their mRNAs in the samples were detected. Then, these concentrations were compared with lactation and other maternal factors. S100B protein levels in human milk samples collected at 3, 10, 30, and 90 d after parturition were 1249.79±398.10, 1345.05±539.16, 1481.83±573.30, and 1414.39±621.31 ng/L, respectively. On the other hand, the BDNF concentrations in human milk samples were 10.99±4.55, 13.01±5.88, 13.35±6.43, and 2.83±5.47 µg/L, while those of GDNF were 10.90±1.65, 11.38±1., 11.29±3.10, and 11.40±2.21 g/L for the same time periods. Maternal post-pregnancy body mass index was positively associated with S100B levels in human milk (r = 0.335, P = 0.030<0.05. In addition, there was a significant correlation between the levels of S100B protein and BDNF (z = 2.09, P = 0.037<0.05. Delivery modes were negatively associated with the concentration of GDNF in human milk.S100B protein, BDNF, and GDNF are present in all samples of human milk, and they may be responsible for the long term effects of breast feeding.

  17. Olopatadine Suppresses the Migration of THP-1 Monocytes Induced by S100A12 Protein

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Olopatadine hydrochloride (olopatadine is an antiallergic drug with histamine H 1 receptor antagonistic activity. Recently, olopatadine has been shown to bind to S100A12 which is a member of the S100 family of calcium-binding proteins, and exerts multiple proinflammatory activities including chemotaxis for monocytes and neutrophils. In this study, we examined the possibility that the interaction of olopatadine with S100A12 inhibits the proinflammatory effects of S100A12. Pretreatment of olopatadine with S100A12 reduced migration of THP-1, a monocyte cell line, induced by S100A12 alone, but did not affect recombinant human regulated upon activation, normal T cell expressed and secreted (RANTES-induced migration. Amlexanox, which also binds to S100A12, inhibited the THP-1 migration induced by S100A12. However, ketotifen, another histamine H 1 receptor antagonist, had little effect on the activity of S100A12. These results suggest that olopatadine has a new mechanism of action, that is, suppression of the function of S100A12, in addition to histamine H 1 receptor antagonistic activity.

  18. Expression of Slug in S100β-protein-positive cells of postnatal developing rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Yako, Hideji; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2016-02-01

    Among heterogeneous S100β-protein-positive (S100β-positive) cells, star-like cells with extended cytoplasmic processes, the so-called folliculo-stellate cells, envelop hormone-producing cells or interconnect homophilically in the anterior pituitary. S100β-positive cells are known, from immunohistochemistry, to emerge from postnatal day (P) 10 and to proliferate and migrate in the parenchyma of the anterior pituitary with growth. Recent establishment of S100β-GFP transgenic rats expressing specifically green fluorescent protein (GFP) under the control of the S100β-promoter has allowed us to observe living S100β-positive cells. In the present study, we first confirmed that living S100β-positive cells in tissue cultures of S100β-GFP rat pituitary at P5 were present prior to P10 by means of confocal laser microscopy and that they proliferated and extended their cytoplasmic processes. Second, we examined the expression of the Snail-family zinc-finger transcription factors, Snail and Slug, to investigate the mechanism behind the morphological changes and the proliferation of S100β-positive cells. Interestingly, we detected Slug expression in S100β-positive cells and its increase together with development in the anterior pituitary. To analyze downstream of SLUG in S100β-positive cells, we utilized specific small interfering RNA for Slug mRNAs and observed that the expression of matrix metalloprotease (Mmp) 9, Mmp14 and chemokine Cxcl12 was down-regulated and that morphological changes and proliferation were decreased. Thus, our findings suggest that S100β-positive cells express Slug and that its expression is important for subsequent migration and proliferation.

  19. Down-regulation of S100C is associated with bladder cancer progression and poor survival

    DEFF Research Database (Denmark)

    Memon, Ashfaque Ahmed; Sorensen, Boe Sandahl; Meldgaard, Peter

    2005-01-01

    cancer biopsy samples obtained from 88 patients followed for a median of 23 months (range, 1-97 months). RESULTS: We found a significantly lower mRNA expression of S100C in connective tissue invasive tumors (T1, P = 0.0030) and muscle invasive tumors [(T2-T4), P ...PURPOSE: The goal of this study was to identify proteins down-regulated during bladder cancer progression. EXPERIMENTAL DESIGN: By using comparative proteome analysis and measurement of mRNA, we found a significant down-regulation of S100C, a member of the S100 family of proteins, in T24 (grade 3......) as compared with RT4 (grade 1) bladder cancer cell lines. Moreover, quantification of the mRNA level revealed that decreased expression of the protein reflects a low level of transcription of the S100C gene. Based on this observation, we quantified the S100C mRNA expression level with real-time PCR in bladder...

  20. Expression of calcium binding protein S100 A7 (psoriasin) in laryngeal carcinoma.

    Science.gov (United States)

    Tiveron, Rogério Costa; de Freitas, Luiz Carlos Conti; Figueiredo, David L; Serafini, Luciano N; Mamede, Rui Celso Martins; Zago, Marco A

    2012-01-01

    Many studies have reported increased expression of S100 A7 (psoriasin) in neoplastic lesions. Among them are studies on breast carcinoma, bladder squamous cell carcinoma, skin tumors and oral cavity squamous cell carcinoma. The expression of S100 A7 has not been described for laryngeal cancer. This study aims to identify the expression of the calcium-binding protein S100 A7 and its correlation with squamous cell carcinomas of the larynx. Specimens from 63 patients were submitted to immunohistochemistry testing with antibody S100 A7. Results were classified and compared. The group with highly differentiated tumors had the highest treatment failure scores. Moderately differentiated tumors had higher treatment failure scores than poorly differentiated tumors. Higher scores were predominantly seen on stages I and II in moderately differentiated tumors, whereas score distribution was more homogeneous in advanced stage disease (III and IV). Regarding failure in treatment, the group scoring zero (3/4 complications: 75%) differed significantly from the remaining groups (13/59: 22%). S100 A7 marker was expressed in 93.7% of laryngeal cancer cases, with higher positive correlation rates in more differentiated tumors and significantly lower rates of treatment failure. Scores had no impact on survival rates.

  1. Expression of microphthalmia transcription factor, S100 protein, and HMB-45 in malignant melanoma and pigmented nevi.

    Science.gov (United States)

    Xia, Jianxin; Wang, Yanlong; Li, Fuqiu; Wang, Jinfeng; Mu, Yan; Mei, Xianglin; Li, Xue; Zhu, Wenjing; Jin, Xianhua; Yu, Kai

    2016-09-01

    Malignant melanoma (MM) is a type of malignant tumor, which originates from neural crest melanocytes. MM progresses rapidly and results in a high mortality rate. The present study aims to investigate the expression of microphthalmia transcription factor (MITF), the S100 protein, and HMB-45 in MM and pigmented nevi. A total of 32 MM samples (including three skin metastasis, three lymph node metastasis and two spindle cell MM samples), two Spitz nevus samples, four pigmented nevus samples and two blue nevus samples were collected. The expression levels of S100 protein, HMB-45, and MITF were observed via immunostaining. The S100 protein exhibited high positive rates in MM and pigment disorders (96.7 and 100%, respectively), but with low specificity. The S100 protein was also expressed in fibroblasts, myoepithelial cells, histocytes and Langerhans cells in normal skin samples. HMB-45 had high specificity. Its positive expression was only confined to MM cells and junctional nevus cells. Furthermore, HMB-45 was not expressed in melanocytes in the normal tissue samples around the tumor or in the benign intradermal nevus cells. MITF exhibited high specificity and high sensitivity. It was expressed in the nuclei of melanocytes, MM cells and nevus cells. It was observed to be strongly expressed in metastatic MM and spindle cell MMs. Thus, MITF may present as a specific immunomarker for the diagnosis and differential diagnosis of MM.

  2. Protein S100B in umbilical cord blood as a potential biomarker of hypoxic-ischemic encephalopathy in asphyxiated newborns.

    Science.gov (United States)

    Zaigham, Mehreen; Lundberg, Fredrik; Olofsson, Per

    2017-09-01

    Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating condition resulting from a sustained lack of oxygen during birth. The interest in identifying a relevant biomarker of HIE has thrown into limelight the role of protein S100B as a clinical diagnostic marker of hypoxic brain damage in neonates. To evaluate the diagnostic value of protein S100B, measured in umbilical cord blood immediately after birth, as a useful biomarker in the diagnosis of HIE Sarnat stages II-III as well as a marker for long-term mortality and morbidity. Protein S100B was analyzed in cord blood sampled at birth from 13 newborns later diagnosed with stage II-III HIE and compared with 21 healthy controls. S100B concentrations were related to cord artery pH, amplitude-integrated electroencephalography (aEEG), stage of HIE, and death/sequelae up to an age of 6years. Both parametric and non-parametric statistics were used with a two-sided P<0.05 considered significant. The difference in S100B concentration was marginally statistically significant between HIE cases and controls (P=0.056). Cord blood acidosis (P=0.046), aEEG pattern severity (P=0.030), HIE severity (P=0.027), and condition at 6-year follow-up (healthy/permanent sequelae/death; P=0.027) were all related to an increase in S100B concentration. Protein S100B in neonates suffering from HIE stages II-III appeared elevated in umbilical cord blood at birth. The S100B concentrations were positively associated to the severity of disease and the risk of suffering from neurodevelopmental sequelae and even death. Copyright © 2017. Published by Elsevier B.V.

  3. The level of neuron-specific enolase and S-100 protein in the cerebrospinal fluid of patients with acute bacterial meningitis

    Directory of Open Access Journals (Sweden)

    A. V. Sokhan

    2016-08-01

    Full Text Available Aim. To evaluate the diagnostic and prognostic role of neuron-specific enolase (NSE and S-100 protein levels in cerebrospinal fluid (CSF of patients with acute bacterial meningitis in the course of the disease. Materials and Methods. 54 cases of acute bacterial meningitis were analyzed, among them – 26 with pneumococcal and 28 with meningococcal etiology. Patients were divided into groups depending on the severity and etiology of disease. In addition to routine laboratory methods, we analyzed the CSF levels of S-100 protein and NSE at admission and after 10 – 12 days of treatment. 12 patients with acute respiratory infections and meningism were examined as a comparison group. Results. In all patients with acute bacterial meningitis CSF NSE and protein S-100 levels were significantly higher than in the control group (P <0,05. CSF neuro specific proteins level was in direct dependence on severity of the disease, and in patients with severe disease was significantly higher than in patients with moderate severity and in the control group (P <0,01. After 10 – 12 days of treatment, the level of the NSE and S-100 protein decreased, but in severe cases was still higher than in the control group (P <0,05. Conclusions. Increased cerebrospinal fluid NSE and S100 protein levels shows the presence and value of neurons and glial cells damage in patients with acute bacterial meningitis. CSF S-100 protein and neuron-specific enolase levels help to determine the severity of neurons destruction and glial cells in patients with acute bacterial meningitis. Level of neurospecific protein is in direct proportion to the severity of the disease and is the highest in patients with severe cases (P<0,05. It confirms the diagnostic and prognostic value of CSF neurospecific protein determination in patients with bacterial meningitis.

  4. Day/night changes in serum S100B protein concentrations in acute paranoid schizophrenia.

    Science.gov (United States)

    Morera-Fumero, Armando L; Díaz-Mesa, Estefanía; Abreu-Gonzalez, Pedro; Fernandez-Lopez, Lourdes; Cejas-Mendez, Maria Del Rosario

    2017-04-03

    There are day/night and seasonal changes in biological markers such as melatonin and cortisol. Controversial changes in serum S100B protein levels have been described in schizophrenia. We aim studying whether serum S100B levels present day/night variations in schizophrenia patients and whether S100B levels are related to psychopathology. Sixty-five paranoid schizophrenic inpatients participated in the study. Psychopathology was assessed with the Positive and Negative Syndrome Scale (PANSS) at admission and discharge. Blood was drawn at 12:00 (midday) and 00:00 (midnight) hours at admission and discharge. Sixty-five healthy subjects matched by age, gender and season acted as control group. At admission and discharge patients had significantly higher serum S100B concentrations at midday and midnight than healthy subjects. At admission, patients showed a day/night variation of S100B levels, with higher S100B levels at 12:00 than at 00:00h (143.7±26.3pg/ml vs. 96.9±16.6pg/ml). This day/night difference was not present in the control group. Midday and midnight S100B at admission decreased when compared to S100B at discharge (midday, 143.7±26.3 vs. 83.0±12, midnight 96.9±16.6 vs. 68.6±14.5). There was a positive correlation between the PANSS positive subscale and S100B concentrations at admission. This correlation was not present at discharge. acute paranoid schizophrenia inpatients present a day/night change of S100B serum levels at admission that disappears at discharge. The correlation between serum S100B concentrations and the PANSS positive scores at admission as well as the decrease of S100B at discharge may be interpreted as an acute biological response to the clinical state of the patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Structural insights into calcium-bound S100P and the V domain of the RAGE complex.

    Directory of Open Access Journals (Sweden)

    Srinivasa R Penumutchu

    Full Text Available The S100P protein is a member of the S100 family of calcium-binding proteins and possesses both intracellular and extracellular functions. Extracellular S100P binds to the cell surface receptor for advanced glycation end products (RAGE and activates its downstream signaling cascade to meditate tumor growth, drug resistance and metastasis. Preventing the formation of this S100P-RAGE complex is an effective strategy to treat various disease conditions. Despite its importance, the detailed structural characterization of the S100P-RAGE complex has not yet been reported. In this study, we report that S100P preferentially binds to the V domain of RAGE. Furthermore, we characterized the interactions between the RAGE V domain and Ca(2+-bound S100P using various biophysical techniques, including isothermal titration calorimetry (ITC, fluorescence spectroscopy, multidimensional NMR spectroscopy, functional assays and site-directed mutagenesis. The entropy-driven binding between the V domain of RAGE and Ca(+2-bound S100P was found to lie in the micromolar range (Kd of ∼ 6 µM. NMR data-driven HADDOCK modeling revealed the putative sites that interact to yield a proposed heterotetrameric model of the S100P-RAGE V domain complex. Our study on the spatial structural information of the proposed protein-protein complex has pharmaceutical relevance and will significantly contribute toward drug development for the prevention of RAGE-related multifarious diseases.

  6. Secretion of S100A8, S100A9, and S100A12 by Neutrophils Involves Reactive Oxygen Species and Potassium Efflux

    Directory of Open Access Journals (Sweden)

    Mélanie R. Tardif

    2015-01-01

    Full Text Available S100A8/A9 (calprotectin and S100A12 proinflammatory mediators are found at inflammatory sites and in the serum of patients with inflammatory or autoimmune diseases. These cytoplasmic proteins are secreted by neutrophils at sites of inflammation via alternative secretion pathways of which little is known. This study examined the nature of the stimuli leading to S100A8/A9 and S100A12 secretion as well as the mechanism involved in this alternative secretion pathway. Chemotactic agents, cytokines, and particulate molecules were used to stimulate human neutrophils. MSU crystals, PMA, and H2O2 induced the release of S100A8, S100A9, and S100A12 homodimers, as well as S100A8/A9 heterodimer. High concentrations of S100A8/A9 and S100A12 were secreted in response to nanoparticles like MSU, silica, TiO2, fullerene, and single-wall carbon nanotubes as well as in response to microbe-derived molecules, such as zymosan or HKCA. However, neutrophils exposed to the chemotactic factors fMLP failed to secrete S100A8/A9 or S100A12. Secretion of S100A8/A9 was dependent on the production of reactive oxygen species and required K+ exchanges through the ATP-sensitive K+ channel. Altogether, these findings suggest that S100A12 and S100A8/A9 are secreted independently either via distinct mechanisms of secretion or following the activation of different signal transduction pathways.

  7. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    Energy Technology Data Exchange (ETDEWEB)

    Yamakoshi, Takako [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Makino, Teruhiko, E-mail: tmakino@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Ur Rehman, Mati; Yoshihisa, Yoko [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Sugimori, Michiya [Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Shimizu, Tadamichi, E-mail: shimizut@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan)

    2013-03-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain and a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes.

  8. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    International Nuclear Information System (INIS)

    Yamakoshi, Takako; Makino, Teruhiko; Ur Rehman, Mati; Yoshihisa, Yoko; Sugimori, Michiya; Shimizu, Tadamichi

    2013-01-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain and a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes

  9. Oxidative stress and S-100B protein in children with bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Hamed Enas A

    2009-10-01

    Full Text Available Abstract Background Bacterial meningitis is often associated with cerebral compromise which may be responsible for neurological sequelae in nearly half of the survivors. Little is known about the mechanisms of CNS involvement in bacterial meningitis. Several studies have provided substantial evidence for the key role of nitric oxide (NO and reactive oxygen species in the complex pathophysiology of bacterial meningitis. Methods In the present study, serum and CSF levels of NO, lipid peroxide (LPO (mediators for oxidative stress and lipid peroxidation; total thiol, superoxide dismutase (SOD (antioxidant mediators and S-100B protein (mediator of astrocytes activation and injury, were investigated in children with bacterial meningitis (n = 40. Albumin ratio (CSF/serum is a marker of blood-CSF barriers integrity, while mediator index (mediator ratio/albumin ratio is indicative of intrathecal synthesis. Results Compared to normal children (n = 20, patients had lower serum albumin but higher NO, LPO, total thiol, SOD and S-100B. The ratios and indices of NO and LPO indicate blood-CSF barriers dysfunction, while the ratio of S-100B indicates intrathecal synthesis. Changes were marked among patients with positive culture and those with neurological complications. Positive correlation was found between NO index with CSF WBCs (r = 0.319, p Conclusion This study suggests that loss of integrity of brain-CSF barriers, oxidative stress and S-100B may contribute to the severity and neurological complications of bacterial meningitis.

  10. EF-hands at atomic resolution: The structure of human psoriasin (S100A7) solved by MAD phasing

    DEFF Research Database (Denmark)

    Brodersen, Ditlev Egeskov; Etzerodt, Michael; Madsen, Peder Søndergaard

    1998-01-01

    psoriasin reveals that this protein, in contrast to other S100 proteins with known structure, is not likely to strongly bind more than one calcium ion per monomer. The present study contradicts the idea that calcium binding induces large changes in conformation, as suggested by previously determined......The S100 family consists of small acidic proteins, belonging to the EF-hand class of calcium-binding proteins. They are primarily regulatory proteins, involved in cell growth, cell structure regulation and signal transduction. Psoriasin (S100A7) is an 11.7 kDa protein that is highly upregulated...... in the epidermis of patients suffering from the chronic skin disease psoriasis. Although its exact function is not known, psoriasin is believed to participate in the biochemical response which follows transient changes in the cellular Ca2+ concentration. RESULTS: The three-dimensional structure of holmium...

  11. Interaction between S100P and the anti-allergy drug cromolyn

    International Nuclear Information System (INIS)

    Penumutchu, Srinivasa R.; Chou, Ruey-Hwang; Yu, Chin

    2014-01-01

    Highlights: • The interaction between S100P–cromolyn was investigated by fluorescence spectroscopy. • The interfacial residues on S100P and cromolyn contact surface were mapped by 1 H- 15 N HSQC experiments. • S100P–cromolyn complex model was generated from NMR restraints using HADDOCK program. • The stability of the S100P–cromolyn complex was studied using molecular dynamics simulations. - Abstract: The S100P protein has been known to mediate cell proliferation by binding the receptor for advanced glycation end products (RAGE) to activate signaling pathways, such as the extracellular regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. S100P/RAGE signaling is involved in a variety of diseases, such as cancer, metastasis, and diabetes. Cromolyn is an anti-allergy drug that binds S100P to block the interaction between S100P and RAGE. In the present study, we characterized the properties of the binding between cromolyn and calcium-bound S100P using various biophysical techniques. The binding affinity for S100P and cromolyn was measured to be in the millimolar range by fluorescence spectroscopy. NMR-HSQC titration experiments and HADDOCK modeling was employed to determine the spatial structure of the proposed heterotetramer model of the S100P–cromolyn complex. Additional MD simulation results revealed the important properties in the complex stability and conformational flexibility of the S100P–cromolyn complex. This proposed model has provided an understanding of the molecular level interactions of S100P–cromolyn complex

  12. Expression of S100B during the innate immune of corneal epithelium against fungi invasion

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2016-02-01

    Full Text Available AIM: To explore the expression of S100B in corneal epithelial cells under Aspergillus stimulation both in vivo and in vitro. METHODS: Immortalized human corneal epithelial cells (HCECs were exposed to inactive Aspergillus fumigatus (A. fumigatus conidia at 0, 4, 8, 12, 16, and 24h respectively. The corneas of Wistar rats were exposed to active A. fumigatus at 0, 12, 24, 48h and the normal rat corneas were used for normal control. The mRNA level of S100B was evaluated by real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR. S100B protein expression in cornea epithelium was detected by immunohistochemical/immunocytochemical staining (IHC/ICC. RESULTS: Histopathology revealed a significant inflammatory cell infiltration in fungal keratitis human and rat cornea. Corneal epithelial cells didn’t express or rarely express S100B at baseline. A. fumigatus significantly induced S100B mRNA expression in cultured corneal epithelial cells in a time depended manner in vitro, the mRNA began to rise significantly at 8h in vitro (P<0.05 and continue to rise as time prolonged (P<0.01. In vivo, S100B mRNA level was low in the normal corneas. However, it was increased in keratitis corneas from 12h after infection (P<0.05 and reached to a peak at 24h (P<0.001. Immunochemistry revealed an obvious staining in fungal keratitis corneas as well as immortalized HCECs compared to the normal ones respectively, indicating an increased expression of S100B protein. CONCLUSION: S100B exists in corneal epithelial cells and is over-expressed under A. fumigatus stimulation. S100B may play an important role in the innate immune response of the corneal epithelium during A. fumigatus infection.

  13. Expression of S100B during the innate immune of corneal epithelium against fungi invasion

    Science.gov (United States)

    Zhang, Jie; Zhao, Gui-Qiu; Qu, Jing; Che, Cheng-Ye; Lin, Jing; Jiang, Nan; Zhao, Han; Wang, Xue-Jun

    2016-01-01

    AIM To explore the expression of S100B in corneal epithelial cells under Aspergillus stimulation both in vivo and in vitro. METHODS Immortalized human corneal epithelial cells (HCECs) were exposed to inactive Aspergillus fumigatus (A. fumigatus) conidia at 0, 4, 8, 12, 16, and 24h respectively. The corneas of Wistar rats were exposed to active A. fumigatus at 0, 12, 24, 48h and the normal rat corneas were used for normal control. The mRNA level of S100B was evaluated by real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). S100B protein expression in cornea epithelium was detected by immunohistochemical/immunocytochemical staining (IHC/ICC). RESULTS Histopathology revealed a significant inflammatory cell infiltration in fungal keratitis human and rat cornea. Corneal epithelial cells didn't express or rarely express S100B at baseline. A. fumigatus significantly induced S100B mRNA expression in cultured corneal epithelial cells in a time depended manner in vitro, the mRNA began to rise significantly at 8h in vitro (P<0.05) and continue to rise as time prolonged (P<0.01). In vivo, S100B mRNA level was low in the normal corneas. However, it was increased in keratitis corneas from 12h after infection (P<0.05) and reached to a peak at 24h (P<0.001). Immunochemistry revealed an obvious staining in fungal keratitis corneas as well as immortalized HCECs compared to the normal ones respectively, indicating an increased expression of S100B protein. CONCLUSION S100B exists in corneal epithelial cells and is over-expressed under A. fumigatus stimulation. S100B may play an important role in the innate immune response of the corneal epithelium during A. fumigatus infection. PMID:26949634

  14. Overexpression of the S100A2 protein as a prognostic marker for patients with stage II and III colorectal cancer

    Science.gov (United States)

    MASUDA, TAIKI; ISHIKAWA, TOSHIAKI; MOGUSHI, KAORU; OKAZAKI, SATOSHI; ISHIGURO, MEGUMI; IIDA, SATORU; MIZUSHIMA, HIROSHI; TANAKA, HIROSHI; UETAKE, HIROYUKI; SUGIHARA, KENICHI

    2016-01-01

    We aimed to identify a novel prognostic biomarker related to recurrence in stage II and III colorectal cancer (CRC) patients. Stage II and III CRC tissue mRNA expression was profiled using an Affymetrix Gene Chip, and copy number profiles of 125 patients were generated using an Affymetrix 250K Sty array. Genes showing both upregulated expression and copy number gains in cases involving recurrence were extracted as candidate biomarkers. The protein expression of the candidate gene was assessed using immunohistochemical staining of tissue from 161 patients. The relationship between protein expression and clinicopathological features was also examined. We identified 9 candidate genes related to recurrence of stage II and III CRC, whose mRNA expression was significantly higher in CRC than in normal tissue. Of these proteins, the S100 calcium-binding protein A2 (S100A2) has been observed in several human cancers. S100A2 protein overexpression in CRC cells was associated with significantly worse overall survival and relapse-free survival, indicating that S100A2 is an independent risk factor for stage II and III CRC recurrence. S100A2 overexpression in cancer cells could be a biomarker of poor prognosis in stage II and III CRC recurrence and a target for treatment of this disease. PMID:26783118

  15. Metastasis-associated protein, S100A4 mediates cardiac fibrosis potentially through the modulation of p53 in cardiac fibroblasts

    DEFF Research Database (Denmark)

    Tamaki, Yodo; Iwanaga, Yoshitaka; Niizuma, Shinichiro

    2013-01-01

    Metastasis-associated protein, S100A4 is suggested as a marker for fibrosis in several organs. It also modulates DNA binding of p53 and affects its function. However, the functional role of S100A4 in the myocardium has remained unclear. Therefore, we investigated the role of S100A4 and its relati...

  16. S100A14 is a novel independent prognostic biomarker in the triple-negative breast cancer subtype

    DEFF Research Database (Denmark)

    Ehmsen, Sidse; Hansen, Lea Tykgaard; Bak, Martin

    2015-01-01

    Triple-negative breast cancer (TNBC) represents a heterogeneous subgroup with generally poor outcome and lack of an effective targeted therapy. Prognostic or predictive biomarkers to guide treatment decisions for this group of patients are needed. To evaluate the potential of S100A14 protein...... as a novel biomarker in TNBC, the protein expression of S100A14 was correlated with clinical outcomes in a Pilot Sample set and a Danish cohort of predominantly TNBC patients. Kaplan-Meier analysis identified a prognostic impact of S100A14 on disease-free survival and overall survival, showing that tumors......-), had equally poor outcomes as those with tumor-positive axillary lymph nodes (N+), while TNBC/N- patients with low S100A14 expression had a significantly better disease free survival (p = 0.013). Multivariate analysis revealed that S100A14 is an independent prognostic factor for TNBC patients (p = 0...

  17. Expression of S100 protein and protective effect of arundic acid on the rat brain in chronic cerebral hypoperfusion.

    Science.gov (United States)

    Ohtani, Ryo; Tomimoto, Hidekazu; Wakita, Hideaki; Kitaguchi, Hiroshi; Nakaji, Kayoko; Takahashi, Ryosuke

    2007-03-02

    S100 protein is expressed primarily by astroglia in the brain, and accumulates in and around the ischemic lesions. Arundic acid, a novel astroglia-modulating agent, is neuroprotective in acute cerebral infarction, whereas the protective effects remain unknown during chronic cerebral hypoperfusion. Rats undergoing chronic cerebral hypoperfusion were subjected to a bilateral ligation of the common carotid arteries, and were allowed to survive for 3, 7 and 14 days. The animals received a daily intraperitoneal injection of 5.0, 10.0 or 20.0 mg/kg of arundic acid, or vehicle, for 14 days. Alternatively, other groups of rats received a delayed intraperitoneal injection of 20.0 mg/kg of arundic acid or vehicle, which started from 1, 3 or 7 days after ligation and continued to 14 days. The degree of white matter (WM) lesions and the numerical density of S100 protein-immunoreactive astroglia were estimated. In the WM of rats with vehicle injections, the number of S100 protein-immunoreactive astroglia increased significantly after chronic cerebral hypoperfusion as compared to the sham-operation. A dosage of 10.0 and 20.0 mg/kg of arundic acid suppressed the numerical increase in S100 protein-immunoreactive astroglia and the WM lesions. These pathological changes were suppressed with delayed treatment up to 7 days in terms of astroglial activation, and up to 3 days in terms of the WM lesions. The protective effects of arundic acid against WM lesions were demonstrated in a dose-dependent manner, and even after postischemic treatments. These results suggest the potential usefulness of arundic acid in the treatment of cerebrovascular WM lesions.

  18. Inflammation and pancreatic cancer: molecular and functional interactions between S100A8, S100A9, NT-S100A8 and TGFβ1.

    Science.gov (United States)

    Basso, Daniela; Bozzato, Dania; Padoan, Andrea; Moz, Stefania; Zambon, Carlo-Federico; Fogar, Paola; Greco, Eliana; Scorzeto, Michele; Simonato, Francesca; Navaglia, Filippo; Fassan, Matteo; Pelloso, Michela; Dupont, Sirio; Pedrazzoli, Sergio; Fassina, Ambrogio; Plebani, Mario

    2014-03-26

    In order to gain further insight on the crosstalk between pancreatic cancer (PDAC) and stromal cells, we investigated interactions occurring between TGFβ1 and the inflammatory proteins S100A8, S100A9 and NT-S100A8, a PDAC-associated S100A8 derived peptide, in cell signaling, intracellular calcium (Cai2+) and epithelial to mesenchymal transition (EMT). NF-κB, Akt and mTOR pathways, Cai2+ and EMT were studied in well (Capan1 and BxPC3) and poorly differentiated (Panc1 and MiaPaCa2) cell lines. NT-S100A8, one of the low molecular weight N-terminal peptides from S100A8 to be released by PDAC-derived proteases, shared many effects on NF-κB, Akt and mTOR signaling with S100A8, but mainly with TGFβ1. The chief effects of S100A8, S100A9 and NT-S100A8 were to inhibit NF-κB and stimulate mTOR; the molecules inhibited Akt in Smad4-expressing, while stimulated Akt in Smad4 negative cells. By restoring Smad4 expression in BxPC3 and silencing it in MiaPaCa2, S100A8 and NT-S100A8 were shown to inhibit NF-κB and Akt in the presence of an intact TGFβ1 canonical signaling pathway. TGFβ1 counteracted S100A8, S100A9 and NT-S100A8 effects in Smad4 expressing, not in Smad4 negative cells, while it synergized with NT-S100A8 in altering Cai2+ and stimulating PDAC cell growth. The effects of TGFβ1 on both EMT (increased Twist and decreased N-Cadherin expression) and Cai2+ were antagonized by S100A9, which formed heterodimers with TGFβ1 (MALDI-TOF/MS and co-immuno-precipitation). The effects of S100A8 and S100A9 on PDAC cell signaling appear to be cell-type and context dependent. NT-S100A8 mimics the effects of TGFβ1 on cell signaling, and the formation of complexes between TGFβ1 with S100A9 appears to be the molecular mechanism underlying the reciprocal antagonism of these molecules on cell signaling, Cai2+ and EMT.

  19. Interaction between S100P and the anti-allergy drug cromolyn

    Energy Technology Data Exchange (ETDEWEB)

    Penumutchu, Srinivasa R. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chou, Ruey-Hwang [Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan (China); Department of Biotechnology, Asia University, Taichung 413, Taiwan (China); Yu, Chin, E-mail: cyu.nthu@gmail.com [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2014-11-21

    Highlights: • The interaction between S100P–cromolyn was investigated by fluorescence spectroscopy. • The interfacial residues on S100P and cromolyn contact surface were mapped by {sup 1}H-{sup 15}N HSQC experiments. • S100P–cromolyn complex model was generated from NMR restraints using HADDOCK program. • The stability of the S100P–cromolyn complex was studied using molecular dynamics simulations. - Abstract: The S100P protein has been known to mediate cell proliferation by binding the receptor for advanced glycation end products (RAGE) to activate signaling pathways, such as the extracellular regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. S100P/RAGE signaling is involved in a variety of diseases, such as cancer, metastasis, and diabetes. Cromolyn is an anti-allergy drug that binds S100P to block the interaction between S100P and RAGE. In the present study, we characterized the properties of the binding between cromolyn and calcium-bound S100P using various biophysical techniques. The binding affinity for S100P and cromolyn was measured to be in the millimolar range by fluorescence spectroscopy. NMR-HSQC titration experiments and HADDOCK modeling was employed to determine the spatial structure of the proposed heterotetramer model of the S100P–cromolyn complex. Additional MD simulation results revealed the important properties in the complex stability and conformational flexibility of the S100P–cromolyn complex. This proposed model has provided an understanding of the molecular level interactions of S100P–cromolyn complex.

  20. Participation of the oviductal s100 calcium binding protein G in the genomic effect of estradiol that accelerates oviductal embryo transport in mated rats

    Directory of Open Access Journals (Sweden)

    Croxatto Horacio B

    2011-05-01

    Full Text Available Abstract Background Mating changes the mechanism by which E2 regulates oviductal egg transport, from a non-genomic to a genomic mode. Previously, we found that E2 increased the expression of several genes in the oviduct of mated rats, but not in unmated rats. Among the transcripts that increased its level by E2 only in mated rats was the one coding for an s100 calcium binding protein G (s100 g whose functional role in the oviduct is unknown. Methods Herein, we investigated the participation of s100 g on the E2 genomic effect that accelerates oviductal transport in mated rats. Thus, we determined the effect of E2 on the mRNA and protein level of s100 g in the oviduct of mated and unmated rats. Then, we explored the effect of E2 on egg transport in unmated and mated rats under conditions in which s100 g protein was knockdown in the oviduct by a morpholino oligonucleotide against s100 g (s100 g-MO. In addition, the localization of s100 g in the oviduct of mated and unmated rats following treatment with E2 was also examined. Results Expression of s100 g mRNA progressively increased at 3-24 h after E2 treatment in the oviduct of mated rats while in unmated rats s100 g increased only at 12 and 24 hours. Oviductal s100 g protein increased 6 h following E2 and continued elevated at 12 and 24 h in mated rats, whereas in unmated rats s100 g protein increased at the same time points as its transcript. Administration of a morpholino oligonucleotide against s100 g transcript blocked the effect of E2 on egg transport in mated, but not in unmated rats. Finally, immunoreactivity of s100 g was observed only in epithelial cells of the oviducts of mated and unmated rats and it was unchanged after E2 treatment. Conclusions Mating affects the kinetic of E2-induced expression of s100 g although it not changed the cellular localization of s100 g in the oviduct after E2 . On the other hand, s100 g is a functional component of E2 genomic effect that accelerates egg

  1. Production and characterization of monoclonal antibodies that discriminate among individual S100 polypeptides

    International Nuclear Information System (INIS)

    Van Eldik, L.J.

    1984-01-01

    The term S100 refers to a heterogeneous fraction of low molecular weight, acidic, calcium binding proteins. The S100 fraction is a mixture of polypeptides, only some of which have been isolated and characterized. The amino acid sequences of two S100 proteins from bovine brain, S100α and S100β, have been determined. The physiological functions of the S100 proteins are not known. Although assay of immunoreactive S100 has been used clinically to screen tumors of neural origin, as an index of cell injury in various disorders, and as an index of malignancy, most of the antisera used in previous studies react with more than one protein in the S100 fraction. Even the currently available monoclonal antibodies against S100 (2-4) do not appear to measure the individual S100α and S100β components. In order to unequivocally interpret studies on the localization of S100 and its potential alterations in various disease states, and on the validity of S100 immunoreactivity as a diagnostic tool for tumor diagnosis, it would be useful to have antibodies that discriminate among the individual S100 components. The authors report here the production of monoclonal antibodies that appear to be specific for S100β

  2. The correlation of serum S100β protein levels and hippocampal Seladin-1 gene expression in a rat model of sporadic Alzheimer\\\\\\'s disease

    Directory of Open Access Journals (Sweden)

    Soheila Hosseinzadeh

    2015-11-01

    Full Text Available Background: Seladin-1 protein protects the neural cells against amyloid beta toxicity and its expression decreased in vulnerable regions of Alzheimer's disease (AD brains. On the other hand, changes in serum levels of S100 have been considered as a marker of brain damage in neurodegenerative diseases. Furthermore, this study was carried out to determine the relation between the change profile of serum S100β protein levels and hippocampal Seladin-1 gene expression in a rat model of sporadic AD. Methods: In this experimental study that established in Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Science, from March 2011 to April 2013, 72 animals were randomly divided into control, 4, 7, 14, and 21days ICV-STZ/Saline administrated rats. Alzheimer's model was induced by intracerebroventricular (ICV injections of streptozotocin (STZ [3 mg/kg] on days 1 and 3. Serum levels of S100β and hippocampal Seladin-1 gene expression were evalu-ated in experimental groups. The initial and step-through latencies (STL were deter-mined using passive avoidance test. Results: Serum levels of S100β were significantly different between the STZ-7 day and STZ-14 day groups in comparison with the control, saline and STZ-4 day groups. As well as, there was a significant difference between the STZ-7 day group in comparison with the STZ-14 day and STZ-21 day groups (P=0.0001. Hippocampal Seladin-1 gene expression in STZ-14 day and STZ-21 day groups significantly decreased as compared to the control, saline and STZ-4 day groups (P=0.0001. However, significant correla-tion was detected between serum S100β protein decrement and Seladin-1 down regula-tion (P=0.001. Also, the STL was significantly decreased in 21 days ICV-STZ adminis-trated rats as compared to the control or saline groups (P=0.001. Conclusion: Monitoring the changes of serum S100β protein levels by relationship with changes in hippocampal Seladin-1

  3. S100B proteins in febrile seizures

    DEFF Research Database (Denmark)

    Mikkonen, Kirsi; Pekkala, Niina; Pokka, Tytti

    2011-01-01

    at the hospital after FS and S100B concentration in serum (r=-0.130, P=0.28) or in cerebrospinal fluid samples (r=-0.091, P=0.52). Our findings indicate that FS does not cause significant blood-brain barrier openings, and increase the evidence that these seizures are relatively harmless for the developing brain....

  4. Solving the crystal structure of human calcium-free S100Z: the siege and conquer of one of the last S100 family strongholds.

    Science.gov (United States)

    Calderone, V; Fragai, M; Gallo, G; Luchinat, C

    2017-06-01

    The X-ray structure of human apo-S100Z has been solved and compared with that of the zebrafish calcium-bound S100Z, which is the closest in sequence. Human apo-S100A12, which shows only 43% sequence identity to human S100Z, has been used as template model to solve the crystallographic phase problem. Although a significant buried surface area between the two physiological dimers is present in the asymmetric unit of human apo-S100Z, the protein does not form the superhelical arrangement in the crystal as observed for the zebrafish calcium-bound S100Z and human calcium-bound S100A4. These findings further demonstrate that calcium plays a fundamental role in triggering quaternary structure formation in several S100s. Solving the X-ray structure of human apo-S100Z by standard molecular replacement procedures turned out to be a challenge and required trying different models and different software tools among which only one was successful. The model that allowed structure solution was that with one of the lowest sequence identity with the target protein among the S100 family in the apo state. Based on the previously solved zebrafish holo-S100Z, a putative human holo-S100Z structure has been then calculated through homology modeling; the differences between the experimental human apo and calculated holo structure have been compared to those existing for other members of the family.

  5. S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis.

    Science.gov (United States)

    Hibino, Toshihiko; Sakaguchi, Masakiyo; Miyamoto, Shoko; Yamamoto, Mami; Motoyama, Akira; Hosoi, Junichi; Shimokata, Tadashi; Ito, Tomonobu; Tsuboi, Ryoji; Huh, Nam-Ho

    2013-01-01

    The calcium-binding proteins S100A8 and S100A9 can dimerize to form calprotectin, the release of which during tissue damage has been implicated in inflammation and metastasis. However, receptor(s) mediating the physiologic and pathophysiologic effects of this damage-associated "danger signal" are uncertain. In this study, searching for candidate calprotectin receptors by affinity isolation-mass spectrometry, we identified the cell surface glycoprotein EMMPRIN/BASIGIN (CD147/BSG). EMMPRIN specifically bound to S100A9 but not S100A8. Induction of cytokines and matrix metalloproteases (MMP) by S100A9 was markedly downregulated in melanoma cells by attenuation of EMMPRIN. We found that EMMPRIN signaling used the TNF receptor-associated factor TRAF2 distinct from the known S100-binding signaling pathway mediated by RAGE (AGER). S100A9 strongly promoted migration when EMMPRIN was highly expressed, independent of RAGE, whereas EMMPRIN blockade suppressed migration by S100A9. Immunohistologic analysis of melanomas revealed that EMMPRIN was expressed at both the invasive edge of lesions and the adjacent epidermis, where S100A9 was also strongly expressed. In epidermal-specific transgenic mice, tail vein-injected melanoma accumulated in skin expressing S100A9 but not S100A8. Together, our results establish EMMPRIN as a receptor for S100A9 and suggest the therapeutic use in targeting S100A9-EMMPRIN interactions.

  6. Dynamic change of serum protein S100b and its clinical significance in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-qing; ZHU Lie-lie

    2005-01-01

    Objective: To analyze the dynamic change of serum protein S100b in patients with traumatic brain injury and its clinical value in assessing brain damage. Methods: According to Glasgow coma scale (GCS), 102 cases of traumatic brain injury were divided into mild brain injury group (GCS≥13, n=31, Group A), moderate brain injury group (8S100b concentrations were analyzed by enzyme-linked immunosorbent assay (ELISA) in blood samples taken on admission, 12 h, 24 h, 48 h, 72 h and 7 days after traumatic brain injury. Results: The severe brain injury group showed significantly higher concentration of serum S100b, with earlier increase and longer duration, than the mild and moderate brain injury groups. The patients with higher S100b exhibited lower GCS scores and poor clinical prognosis. The increase in S100b could emerge before clinical image evidence indicated so. Conclusions: Serum S100b can be used as a sensitive index for assessment and prediction of traumatic brain injury severity and prognosis.

  7. Purification, crystallization and preliminary X-ray diffraction of human S100A15

    Energy Technology Data Exchange (ETDEWEB)

    Boeshans, Karen M. [X-ray Crystallography Facility, NIAMS, National Institutes of Health, Bethesda, MD 20892 (United States); Wolf, Ronald; Voscopoulos, Christopher [Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gillette, William; Esposito, Dominic [Protein Expression Laboratory, Research Technology Program, National Cancer Institute, SAIC-Frederick Inc., Frederick, MD 21702 (United States); Mueser, Timothy C. [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States); Yuspa, Stuart H. [Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Ahvazi, Bijan, E-mail: ahvazib@mail.nih.gov [X-ray Crystallography Facility, NIAMS, National Institutes of Health, Bethesda, MD 20892 (United States)

    2006-05-01

    S100 proteins are differentially expressed during epithelial cell maturation, tumorigenesis and inflammation. The novel human S100A15 protein has been cloned, expressed, purified and crystallized in two crystal forms, a triclinic and a monoclinic form, which diffract to 1.7 and 2.0 Å, respectively. Human S100A15 is a novel member of the S100 family of EF-hand calcium-binding proteins and was recently identified in psoriasis, where it is significantly upregulated in lesional skin. The protein is implicated as an effector in calcium-mediated signal transduction pathways. Although its biological function is unclear, the association of the 11.2 kDa S100A15 with psoriasis suggests that it contributes to the pathogenesis of the disease and could provide a molecular target for therapy. To provide insight into the function of S100A15, the protein was crystallized to visualize its structure and to further the understanding of how the many similar calcium-binding mediator proteins in the cell distinguish their cognate target molecules. The S100A15 protein has been cloned, expressed and purified to homogeneity and produced two crystal forms. Crystals of form I are triclinic, with unit-cell parameters a = 33.5, b = 44.3, c = 44.8 Å, α = 71.2, β = 68.1, γ = 67.8° and an estimated two molecules in the asymmetric unit, and diffract to 1.7 Å resolution. Crystals of form II are monoclinic, with unit-cell parameters a = 82.1, b = 33.6, c = 52.2 Å, β = 128.2° and an estimated one molecule in the asymmetric unit, and diffract to 2.0 Å resolution. This structural analysis of the human S100A15 will further aid in the phylogenic comparison between the other members of the S100 protein family, especially the highly homologous paralog S100A7.

  8. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4.

    NARCIS (Netherlands)

    Schelbergen, R.F.P.; Blom, A.B.; Bosch, M.H.J. van den; Sloetjes, A.W.; Abdollahi-Roodsaz, S.; Schreurs, B.W.; Mort, J.S.; Vogl, T.; Roth, J.; Berg, W.B. van den; Lent, P.L.E.M. van

    2012-01-01

    OBJECTIVE: S100A8 and S100A9 are two Ca(2+) binding proteins classified as damage-associated molecular patterns or alarmins that are found in high amounts in the synovial fluid of osteoarthritis (OA) patients. The purpose of this study was to investigate whether S100A8 and/or S100A9 can interact

  9. Membrane interactions of S100A12 (Calgranulin C.

    Directory of Open Access Journals (Sweden)

    Assuero F Garcia

    Full Text Available S100A12 (Calgranulin C is a small acidic calcium-binding peripheral membrane protein with two EF-hand structural motifs. It is expressed in macrophages and lymphocytes and highly up-regulated in several human inflammatory diseases. In pigs, S100A12 is abundant in the cytosol of granulocytes, where it is believed to be involved in signal modulation of inflammatory process. In this study, we investigated the interaction of the porcine S100A12 with phospholipid bilayers and the effect that ions (Ca(2+, Zn(2+ or both together have in modifying protein-lipid interactions. More specifically, we intended to address issues such as: (1 is the protein-membrane interaction modulated by the presence of ions? (2 is the protein overall structure affected by the presence of the ions and membrane models simultaneously? (3 what are the specific conformational changes taking place when ions and membranes are both present? (4 does the protein have any kind of molecular preferences for a specific lipid component? To provide insight into membrane interactions and answer those questions, synchrotron radiation circular dichroism spectroscopy, fluorescence spectroscopy, and surface plasmon resonance were used. The use of these combined techniques demonstrated that this protein was capable of interacting both with lipids and with ions in solution, and enabled examination of changes that occur at different levels of structure organization. The presence of both Ca(2+ and Zn(2+ ions modify the binding, conformation and thermal stability of the protein in the presence of lipids. Hence, these studies examining molecular interactions of porcine S100A12 in solution complement the previously determined crystal structure information on this family of proteins, enhancing our understanding of its dynamics of interaction with membranes.

  10. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Proteins.

    Directory of Open Access Journals (Sweden)

    Dimitar V Pachov

    2015-07-01

    Full Text Available Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key

  11. [Analysis of the mRNA expression of the S100β protein in adipocytes of patients with diabetes mellitus, type 2].

    Science.gov (United States)

    Hamasaki, Mike Yoshio; Hirata, Mario Hiroyuki; Hirata, Rosario Dominguez Crespo; Himelfarb, Silvia Tchernin; Campos, Leila Maria Guissoni; Nogueira, Maria Inês

    2012-10-01

    This study aims to explore the possible relationship between the expression level of S100β protein mRNA with diabetes mellitus type 2 in adipocytes from patients with this disease in comparison with normoglycemic individuals. Samples of adipose tissue of eight patients from the coronary section of the Institute Dante Pazzanese of Cardiology (IDPC), four in Group Diabetes and four of Normoglycemic group, were evaluated by RT-PCR real time. An increase around 15 times values, between the threshold cycle (ΔCt), of mRNA expression of S100β protein in adipocytes of the diabetes group was observed in comparison to the control group (p = 0.015). Our results indicate, for the first time, that there is coexistence of increased expression of the S100β and the type 2 diabetes mellitus gene.

  12. Interplay between Trx-1 and S100P promotes colorectal cancer cell epithelial-mesenchymal transition by up-regulating S100A4 through AKT activation.

    Science.gov (United States)

    Zuo, Zhigui; Zhang, Peili; Lin, Feiyan; Shang, Wenjing; Bi, Ruichun; Lu, Fengying; Wu, Jianbo; Jiang, Lei

    2018-04-01

    We previously reported a novel positive feedback loop between thioredoxin-1 (Trx-1) and S100P, which promotes the invasion and metastasis of colorectal cancer (CRC). However, the underlying molecular mechanisms remain poorly understood. In this study, we examined the roles of Trx-1 and S100P in CRC epithelial-to-mesenchymal transition (EMT) and their underlying mechanisms. We observed that knockdown of Trx-1 or S100P in SW620 cells inhibited EMT, whereas overexpression of Trx-1 or S100P in SW480 cells promoted EMT. Importantly, S100A4 and the phosphorylation of AKT were identified as potential downstream targets of Trx-1 and S100P in CRC cells. Silencing S100A4 or inhibition of AKT phosphorylation eliminated S100P- or Trx-1-mediated CRC cell EMT, migration and invasion. Moreover, inhibition of AKT activity reversed S100P- or Trx-1-induced S100A4 expression. The expression of S100A4 was higher in human CRC tissues compared with their normal counterpart tissues and was significantly correlated with lymph node metastasis and poor survival. The overexpression of S100A4 protein was also positively correlated with S100P or Trx-1 protein overexpression in our cohort of CRC tissues. In addition, overexpression of S100P reversed the Trx-1 knockdown-induced inhibition of S100A4 expression, EMT and migration and invasion in SW620 cells. The data suggest that interplay between Trx-1 and S100P promoted CRC EMT as well as migration and invasion by up-regulating S100A4 through AKT activation, thus providing further potential therapeutic targets for suppressing the EMT in metastatic CRC. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Comparison of mRNA, Protein, and Urinary Nucleic Acid Levels of S100A8 and S100A9 between Prostate Cancer and BPH.

    Science.gov (United States)

    Yun, Seok Joong; Yan, Chunri; Jeong, Pildu; Kang, Ho Won; Kim, Ye-Hwan; Kim, Eun-Ah; Lee, Ok-Jun; Kim, Won Tae; Moon, Sung-Kwon; Kim, Isaac Yi; Choi, Yung-Hyun; Kim, Wun-Jae

    2015-07-01

    Infections and inflammation in the prostate play a critical role in carcinogenesis, and S100A8 and S100A9 are key mediators in acute and chronic inflammation. Therefore, we investigated the differences of S100A8/A9 expression between prostate cancer (CaP) and benign prostatic hyperplasia (BPH) tissues, and we evaluated the possibilities of urinary nucleic acids of S100A8/A9 as diagnostic and prognostic markers. Tissues from 132 CaP patients who underwent prostatectomy or transurethral resection and 90 BPH patients who underwent transurethral prostatectomy were assessed.sd In addition, S100A8 and S100A9 nucleic acid levels were measured in the urine of 283 CaP patients and 363 BPH controls. S100A8 and S100A9 mRNA levels were lower in CaP than BPH tissues (P BPH tissues stained more strongly for both S100A8 and S100A9 than CaP tissues (P BPH (P = 0.001 and BPH. Both were more highly expressed in patients with aggressive disease and shorter biochemical recurrence-free time. S100A8/A9 urinary cell-free nucleic acid levels correlated positively with expression levels obtained from tissue staining. Therefore, S100A8/A9 measurement in tissues and urine may have diagnostic and prognostic value in CaP.

  14. Change and significance of serum inflammatory factors, NSE, S100 protein and stress hormone levels in patients with craniocerebral injury

    Directory of Open Access Journals (Sweden)

    Rui-Feng Liu

    2017-09-01

    Full Text Available Objective: To investigate the change and significance of serum inflammatory factors, neuron specific enolase (NSE, S100 protein and stress hormone levels in patients with brain diseases. Methods: A total of 115 patients with craniocerebral injury were selected as the observation group, according to the Glasgow Coma Scale (GCS, they were divided into light-sized group (n=38, middle-sized group (n=40 and severe-sized group (n=37, at the same time the other 120 healthy subjects were selected as the control group. The levels of serum inflammatory cytokines [tumor necrosis factor alpha (TNF-α and procalcitonin (PCT], neuron specific enolase (NSE, S100 protein and the stress hormone cortisol [(COR, adrenocorticotropic hormone (ACTH, β-endorphin (β-EP] of both groups were compared. Results: The levels of TNF-α, PCT, NSE, S100, COR, ACTH and β-EP in the observation group were (145.73±19.24 ng/L, (2.41±0.64 ng/mL, (38.11±12.28 ng/mL, (0.87±0.32 μg/L, (818.87±121.14 nmol/L, (107.38±13.94 ng/L, (126.74±39.04 ng/mL, which were significantly higher than control group, the difference was statistically significant; Comparison of indexes among the observation group, NF-α, PCT, NSE, S100, COR, ACTH and β-EP levels in the middle-sized group and severe-sized group were significantly higher than those in the light-sized group, and the levels in the severe-sized group were significantly higher than those of the middle-sized group, the difference was statistically significant. Conclusion: The levels of Serum inflammatory factors, NSE, S100 protein and stress hormone were significantly increased in patients with craniocerebral injury, the level was related to the degree of traumatic brain injury, which could be used as an important indicator to assess the severity of the disease.

  15. Proteomic Analysis Reveals the Deregulation of Inflammation-Related Proteins in Acupuncture-Treated Rats with Asthma Onset

    Directory of Open Access Journals (Sweden)

    Yu-Dong Xu

    2012-01-01

    Full Text Available Although the beneficial effects of acupuncture in asthma treatment have been well documented, little is known regarding the biological basis of this treatment. Changes in the lung proteome of acupuncture-treated rats with asthma onset were comparatively analyzed using a two-dimensional gel electrophoresis (2DE and mass-spectrometry- (MS- based proteomic approach. Acupuncture on specific acupuncture points appeared to improve respiratory function and reduce the total number of leukocytes and eosinophils in bronchoalveolar lavage fluid in OVA-induced asthma onset. Image analysis of 2DE gels revealed 32 differentially expressed acupuncture-specific protein spots in asthma onset; 30 of which were successfully identified as 28 unique proteins using LC-MS/MS. Bioinformatic analyses indicated that these altered proteins are most likely involved in inflammation-related biological functions, and the functional associations of these proteins result in an inflammation signaling pathway. Acupuncture regulates the pathway at different levels by regulating several key nodal proteins, including downregulating of proinflammatory proteins (e.g., S100A8, RAGE, and S100A11 and upregulating of anti-inflammatory proteins (e.g., CC10, ANXA5, and sRAGE. These deregulated inflammation-related proteins may mediate, at least in part, the antiasthmatic effect of acupuncture. Further functional investigation of these acupuncture-specific effector proteins could identify new drug candidates for the prophylaxis and treatment of asthma.

  16. Peptide mimetic of the S100A4 protein modulates peripheral nerve regeneration and attenuates the progression of neuropathy in myelin protein P0 null mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Pinchenko, Volodymyr; Dmytriyeva, Oksana

    2013-01-01

    and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration......, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1...... disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss...

  17. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2012-02-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  18. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2011-06-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  19. Altered gravity causes the changes in the proteins NoA100 in plant cell nucleoli

    Science.gov (United States)

    Sobol, Margarita A.; Gonzalez-Camacho, Fernando; Kordyum, Elizabeth L.; Medina, Francisco Javier

    2005-08-01

    A nucleolar protein homologous to the mammalian nucleolin and to the onion nucleolin-like protein NopA100 was detected in nuclear soluble protein fraction from Lepidium sativum root meristematic cells, using the specific silver staining method and the cross-reaction with the anti-NopA100 antibody. In 2D Western blots of soluble nuclear fraction, NopA100 was revealed as a smear extending through a certain range of pI. In extracts obtained from seedlings grown under clinorotation, the extension of the pI range was shorter than in the stationary control indicating a lower phosphorylation of the protein. This suggests that altered gravity causes a decrease in the rate of nucleolar activity.

  20. Chronic lithium treatment increased intracellular S100ß levels in rat primary neuronal culture.

    Directory of Open Access Journals (Sweden)

    Masoumeh Emamghoreishi

    2015-02-01

    Full Text Available S100ß a neurotrophic factor mainly released by astrocytes, has been implicated in the pathogenesis of bipolar disorder. Thus, lithium may exert its neuroprotective effects to some extent through S100ß. Furthermore, the possible effects of lithium on astrocytes as well as on interactions between neurons and astrocytes as a part of its mechanisms of actions are unknown. This study was undertaken to determine the effect of lithium on S100β in neurons, astrocytes and a mixture of neurons and astrocytes. Rat primary astrocyte, neuronal and mixed neuro-astroglia cultures were prepared from cortices of 18-day's embryos. Cell cultures were exposed to lithium (1mM or vehicle for 1day (acute or 7 days (chronic. RT-PCR and ELISA determined S100β mRNA and intra- and extracellular protein levels. Chronic lithium treatment significantly increased intracellular S100β in neuronal and neuro-astroglia cultures in comparison to control cultures (P<0.05. Acute and chronic lithium treatments exerted no significant effects on intracellular S100β protein levels in astrocytes, and extracellular S100β protein levels in three studied cultures as compared to control cultures. Acute and chronic lithium treatments did not significantly alter S100β mRNA levels in three studied cultures, compared to control cultures. Chronic lithium treatment increased intracellular S100ß protein levels in a cell-type specific manner which may favor its neuroprotective action. The findings of this study suggest that lithium may exert its neuroprotective action, at least partly, by increasing neuronal S100ß level, with no effect on astrocytes or interaction between neurons and astrocytes.

  1. Long-Term Intake of Uncaria rhynchophylla Reduces S100B and RAGE Protein Levels in Kainic Acid-Induced Epileptic Seizures Rats.

    Science.gov (United States)

    Tang, Nou-Ying; Lin, Yi-Wen; Ho, Tin-Yun; Cheng, Chin-Yi; Chen, Chao-Hsiang; Hsieh, Ching-Liang

    2017-01-01

    Epileptic seizures are crucial clinical manifestations of recurrent neuronal discharges in the brain. An imbalance between the excitatory and inhibitory neuronal discharges causes brain damage and cell loss. Herbal medicines offer alternative treatment options for epilepsy because of their low cost and few side effects. We established a rat epilepsy model by injecting kainic acid (KA, 12 mg/kg, i.p.) and subsequently investigated the effect of Uncaria rhynchophylla (UR) and its underlying mechanisms. Electroencephalogram and epileptic behaviors revealed that the KA injection induced epileptic seizures. Following KA injection, S100B levels increased in the hippocampus. This phenomenon was attenuated by the oral administration of UR and valproic acid (VA, 250 mg/kg). Both drugs significantly reversed receptor potentiation for advanced glycation end product proteins. Rats with KA-induced epilepsy exhibited no increase in the expression of metabotropic glutamate receptor 3, monocyte chemoattractant protein 1, and chemokine receptor type 2, which play a role in inflammation. Our results provide novel and detailed mechanisms, explaining the role of UR in KA-induced epileptic seizures in hippocampal CA1 neurons.

  2. Reference values for venous and capillary S100B in children

    DEFF Research Database (Denmark)

    Astrand, Ramona; Romner, Bertil; Lanke, Jan

    2011-01-01

    The current management guidelines for pediatric mild head injury (MHI) liberally recommend computed tomography (CT) and frequent admission. Serum protein S100B, currently used in management of adult head injury, has recently shown potential for reducing unnecessary CT scans after pediatric mild h...... head injury. Capillary sampling in children is commonly used when venous sampling fails or is inappropriate. We present reference values for both venous and capillary samples of protein S100B in children....

  3. The S100A4 Oncoprotein Promotes Prostate Tumorigenesis in a Transgenic Mouse Model

    DEFF Research Database (Denmark)

    Siddique, Hifzur R; Adhami, Vaqar M; Parray, Aijaz

    2013-01-01

    earlier showed that S100A4 expression progressively increases in prostatic tissues with the advancement of prostate cancer (CaP) in TRAMP, an autochthonous mouse model. To study the functional significance of S100A4 in CaP, we generated a heterozygously deleted S100A4 (TRAMP/S100A4(+/-)) genotype...... (intracellular and extracellular) forms. We observed that 1) the growth-promoting effect of S100A4 is due to its activation of NFκB, 2) S100A4-deficient tumors exhibit reduced NFκB activity, 3) S100A4 regulates NFκB through the RAGE receptor, and 4) S100A4 and RAGE co-localize in prostatic tissues of mice......S100A4, a calcium-binding protein, is known for its role in the metastatic spread of tumor cells, a late event of cancer disease. This is the first report showing that S100A4 is not merely a metastatic protein but also an oncoprotein that plays a critical role in the development of tumors. We...

  4. Up-regulation of metastasis-promoting S100A4 (Mts-1) in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Senolt, Ladislav; Baslund, Bo

    2007-01-01

    To examine the involvement of the metastasis-inducing protein S100A4 (Mts-1) in the pathogenesis of rheumatoid arthritis (RA).......To examine the involvement of the metastasis-inducing protein S100A4 (Mts-1) in the pathogenesis of rheumatoid arthritis (RA)....

  5. The calcium-binding protein complex S100A8/A9 has a crucial role in controlling macrophage-mediated renal repair following ischemia/reperfusion

    NARCIS (Netherlands)

    Dessing, Mark C.; Tammaro, Alessandra; Pulskens, Wilco P.; Teske, Gwendoline J.; Butter, Loes M.; Claessen, Nike; van Eijk, Marco; van der Poll, Tom; Vogl, Thomas; Roth, Johannes; Florquin, Sandrine; Leemans, Jaklien C.

    2015-01-01

    Upon ischemia/reperfusion (I/R)-induced injury, several damage-associated molecular patterns are expressed including the calcium-binding protein S100A8/A9 complex. S100A8/A9 can be recognized by Toll-like receptor-4 and its activation is known to deleteriously contribute to renal I/R-induced injury.

  6. S100A8 and S100A9 are messengers in the crosstalk between epidermis and dermis modulating a psoriatic milieu in human skin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young; Jang, Sunhyae [Department of Dermatology, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Min, Jeong-Ki; Lee, Kyungmin [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Department of Biomolecular Science, University of Science and Technology, Daejeon (Korea, Republic of); Sohn, Kyung-Cheol [Department of Dermatology, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Lim, Jong-Soon [College of Oriental Medicine, Daejeon University, Daejeon (Korea, Republic of); Im, Myung; Lee, Hae-Eul; Seo, Young-Joon; Kim, Chang-Deok [Department of Dermatology, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Lee, Jeung-Hoon, E-mail: jhoon@cnu.ac.kr [Department of Dermatology, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce cytokine production. Black-Right-Pointing-Pointer Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce migration of immune cells. Black-Right-Pointing-Pointer Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce angiogenesis. Black-Right-Pointing-Pointer S100A8 and/or S100A9 may play a role in the crosstalk between epidermis and dermis in psoriasis. -- Abstract: S100A8 and S100A9 are members of the S100A8 protein family that exist as homodimers and heterodimers in neutrophils, monocytes, and macrophages. Recent studies have shown the pivotal roles of S100A8 and S100A9 in the propagation of inflammation and keratinocyte proliferation in psoriasis. We found significant up-regulation of S100A8 and S100A9 secretion from keratinocytes in psoriatic lesions. To mimic the in vivo secretory conditions of S100A8 and S100A9 from psoriatic epidermal keratinocytes, we used the culture medium (CM) of S100A8 and S100A8/A9 adenovirus-transduced keratinocytes to investigate the functions of S100A8 and S100A9. We detected increased levels of various pro-inflammatory cytokines in the CM, including IL-8 and TNF-{alpha}, which are involved in aggravating psoriatic skin lesions, and IL-6 and members of the CXCL family of pro-angiogenic cytokines. The CM increased immune cell migration and increased angiogenesis in human umbilical vein endothelial cells. In conclusion, we found that the upregulated production of S100A8 and S100A9 by psoriatic epidermal keratinocytes activated adjacent keratinocytes to produce several cytokines. Moreover, S100A8 and S100A9 themselves function as pro-angiogenic and chemotactic factors, generating a psoriatic milieu in skin.

  7. S100A8 and S100A9 are messengers in the crosstalk between epidermis and dermis modulating a psoriatic milieu in human skin

    International Nuclear Information System (INIS)

    Lee, Young; Jang, Sunhyae; Min, Jeong-Ki; Lee, Kyungmin; Sohn, Kyung-Cheol; Lim, Jong-Soon; Im, Myung; Lee, Hae-Eul; Seo, Young-Joon; Kim, Chang-Deok; Lee, Jeung-Hoon

    2012-01-01

    Highlights: ► Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce cytokine production. ► Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce migration of immune cells. ► Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce angiogenesis. ► S100A8 and/or S100A9 may play a role in the crosstalk between epidermis and dermis in psoriasis. -- Abstract: S100A8 and S100A9 are members of the S100A8 protein family that exist as homodimers and heterodimers in neutrophils, monocytes, and macrophages. Recent studies have shown the pivotal roles of S100A8 and S100A9 in the propagation of inflammation and keratinocyte proliferation in psoriasis. We found significant up-regulation of S100A8 and S100A9 secretion from keratinocytes in psoriatic lesions. To mimic the in vivo secretory conditions of S100A8 and S100A9 from psoriatic epidermal keratinocytes, we used the culture medium (CM) of S100A8 and S100A8/A9 adenovirus-transduced keratinocytes to investigate the functions of S100A8 and S100A9. We detected increased levels of various pro-inflammatory cytokines in the CM, including IL-8 and TNF-α, which are involved in aggravating psoriatic skin lesions, and IL-6 and members of the CXCL family of pro-angiogenic cytokines. The CM increased immune cell migration and increased angiogenesis in human umbilical vein endothelial cells. In conclusion, we found that the upregulated production of S100A8 and S100A9 by psoriatic epidermal keratinocytes activated adjacent keratinocytes to produce several cytokines. Moreover, S100A8 and S100A9 themselves function as pro-angiogenic and chemotactic factors, generating a psoriatic milieu in skin.

  8. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer

    International Nuclear Information System (INIS)

    Fleming, Jodie M; Ginsburg, Erika; Oliver, Shannon D; Goldsmith, Paul; Vonderhaar, Barbara K

    2012-01-01

    Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca 2+ homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin’s potential role in normal breast cells and breast cancer. The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H 2 O 2 to detect changes in hornerin expression during induction of apoptosis/necrosis. Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. Our data opens new possibilities for hornerin and its proteolytic fragments in the control of mammary cell function and breast

  9. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer

    Directory of Open Access Journals (Sweden)

    Fleming Jodie M

    2012-06-01

    Full Text Available Abstract Background Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca2+ homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin’s potential role in normal breast cells and breast cancer. Methods The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H2O2 to detect changes in hornerin expression during induction of apoptosis/necrosis. Results Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. Conclusions Our data opens new possibilities for hornerin and its

  10. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    Science.gov (United States)

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  11. How does extracerebral trauma affect the clinical value of S100B measurements?

    DEFF Research Database (Denmark)

    Ohrt-Nissen, Søren; Friis-Hansen, Lennart; Dahl, Benny

    2011-01-01

    Background Protein S100B has proven to be a useful biomarker for cerebral damage. The predictive ability of S100B may, however, be affected by extracerebral injuries. The aim of this study was to investigate serum levels of S100B in patients with either isolated head injury (IHI), multi trauma...

  12. S100A4 amplifies TGF-β-induced fibroblast activation in systemic sclerosis

    DEFF Research Database (Denmark)

    Tomcik, Michal; Palumbo-Zerr, Katrin; Zerr, Pawel

    2015-01-01

    (SSc). METHODS: The expression of S100A4 was analysed in human samples, murine models of SSc and in cultured fibroblasts by real-time PCR, immunohistochemistry and western blot. The functional role of S100A4 was evaluated using siRNA, overexpression, recombinant protein and S100A4 knockout (S100A4...... or stimulation with recombinant S100A4 induced an activated phenotype in resting normal fibroblasts. In contrast, knockdown of S100A4 reduced the pro-fibrotic effects of TGF-β and decreased the release of collagen. S100A4(-/-) mice were protected from bleomycin-induced skin fibrosis with reduced dermal...

  13. Low-Molecular-Weight Peptides from Salmon Protein Prevent Obesity-Linked Glucose Intolerance, Inflammation, and Dyslipidemia in LDLR-/-/ApoB100/100 Mice.

    Science.gov (United States)

    Chevrier, Geneviève; Mitchell, Patricia L; Rioux, Laurie-Eve; Hasan, Fida; Jin, Tianyi; Roblet, Cyril Roland; Doyen, Alain; Pilon, Geneviève; St-Pierre, Philippe; Lavigne, Charles; Bazinet, Laurent; Jacques, Hélène; Gill, Tom; McLeod, Roger S; Marette, André

    2015-07-01

    We previously reported that fish proteins can alleviate metabolic syndrome (MetS) in obese animals and human subjects. We tested whether a salmon peptide fraction (SPF) could improve MetS in mice and explored potential mechanisms of action. ApoB(100) only, LDL receptor knockout male mice (LDLR(-/-)/ApoB(100/100)) were fed a high-fat and -sucrose (HFS) diet (25 g/kg sucrose). Two groups were fed 10 g/kg casein hydrolysate (HFS), and 1 group was additionally fed 4.35 g/kg fish oil (FO; HFS+FO). Two other groups were fed 10 g SPF/kg (HFS+SPF), and 1 group was additionally fed 4.35 g FO/kg (HFS+SPF+FO). A fifth (reference) group was fed a standard feed pellet diet. We assessed the impact of dietary treatments on glucose tolerance, adipose tissue inflammation, lipid homeostasis, and hepatic insulin signaling. The effects of SPF on glucose uptake, hepatic glucose production, and inducible nitric oxide synthase activity were further studied in vitro with the use of L6 myocytes, FAO hepatocytes, and J774 macrophages. Mice fed HFS+SPF or HFS+SPF+FO diets had lower body weight (protein effect, P = 0.024), feed efficiency (protein effect, P = 0.018), and liver weight (protein effect, P = 0.003) as well as lower concentrations of adipose tissue cytokines and chemokines (protein effect, P ≤ 0.003) compared with HFS and HFS+FO groups. They also had greater glucose tolerance (protein effect, P < 0.001), lower activation of the mammalian target of rapamycin complex 1/S6 kinase 1/insulin receptor substrate 1 (mTORC1/S6K1/IRS1) pathway, and increased insulin signaling in liver compared with the HFS and HFS+FO groups. The HFS+FO, HFS+SPF, and HFS+SPF+FO groups had lower plasma triglycerides (protein effect, P = 0.003; lipid effect, P = 0.002) than did the HFS group. SPF increased glucose uptake and decreased HGP and iNOS activation in vitro. SPF reduces obesity-linked MetS features in LDLR(-/-)/ApoB(100/100) mice. The anti-inflammatory and glucoregulatory properties of SPF were

  14. Andrographolide protects mouse astrocytes against hypoxia injury by promoting autophagy and S100B expression

    Directory of Open Access Journals (Sweden)

    Juan Du

    2018-04-01

    Full Text Available Andrographolide (ANDRO has been studied for its immunomodulation, anti-inflammatory, and neuroprotection effects. Because brain hypoxia is the most common factor of secondary brain injury after traumatic brain injury, we studied the role and possible mechanism of ANDRO in this process using hypoxia-injured astrocytes. Mouse cortical astrocytes C8-D1A (astrocyte type I clone from C57/BL6 strains were subjected to 3 and 21% of O2 for various times (0–12 h to establish an astrocyte hypoxia injury model in vitro. After hypoxia and ANDRO administration, the changes in cell viability and apoptosis were assessed using CCK-8 and flow cytometry. Expression changes in apoptosis-related proteins, autophagy-related proteins, main factors of JNK pathway, ATG5, and S100B were determined by western blot. Hypoxia remarkably damaged C8-D1A cells evidenced by reduction of cell viability and induction of apoptosis. Hypoxia also induced autophagy and overproduction of S100B. ANDRO reduced cell apoptosis and promoted cell autophagy and S100B expression. After ANDRO administration, autophagy-related proteins, S-100B, JNK pathway proteins, and ATG5 were all upregulated, while autophagy-related proteins and s100b were downregulated when the jnk pathway was inhibited or ATG5 was knocked down. ANDRO conferred a survival advantage to hypoxia-injured astrocytes by reducing cell apoptosis and promoting autophagy and s100b expression. Furthermore, the promotion of autophagy and s100b expression by ANDRO was via activation of jnk pathway and regulation of ATG5.

  15. Crystallization and preliminary X-ray analysis of human S100A13

    International Nuclear Information System (INIS)

    Imai, Fabiana Lica; Nagata, Koji; Yonezawa, Naoto; Yu, Jinyan; Ito, Eriko; Kanai, Saeko; Tanokura, Masaru; Nakano, Minoru

    2006-01-01

    Human S100A13 protein was cloned, expressed, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals obtained belonged to space group P2 1 2 1 2 1 and diffracted to a resolution of 1.8 Å. S100A13 is a member of the S100 family of EF-hand-containing calcium-binding proteins and plays an important role in the secretion of fibroblast growth factor-1 and interleukin 1α, two pro-angiogenic factors released by the endoplasmic reticulum/Golgi-independent non-classical secretory pathway. Human S100A13 was heterologously expressed in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystals diffracted X-rays from a synchrotron-radiation source to 1.8 Å resolution and the space group was assigned as primitive orthorhombic P2 1 2 1 2 1

  16. In silico analysis and verification of S100 gene expression in gastric cancer

    International Nuclear Information System (INIS)

    Liu, Ji; Li, Xue; Dong, Guang-Long; Zhang, Hong-Wei; Chen, Dong-Li; Du, Jian-Jun; Zheng, Jian-Yong; Li, Ji-Peng; Wang, Wei-Zhong

    2008-01-01

    The S100 protein family comprises 22 members whose protein sequences encompass at least one EF-hand Ca 2+ binding motif. They were involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. However, the expression status of S100 family members in gastric cancer was not known yet. Combined with analysis of series analysis of gene expression, virtual Northern blot and microarray data, the expression levels of S100 family members in normal and malignant stomach tissues were systematically investigated. The expression of S100A3 was further evaluated by quantitative RT-PCR. At least 5 S100 genes were found to be upregulated in gastric cance by in silico analysis. Among them, four genes, including S100A2, S100A4, S100A7 and S100A10, were reported to overexpressed in gastric cancer previously. The expression of S100A3 in eighty patients of gastric cancer was further examined. The results showed that the mean expression levels of S100A3 in gastric cancer tissues were 2.5 times as high as in adjacent non-tumorous tissues. S100A3 expression was correlated with tumor differentiation and TNM (Tumor-Node-Metastasis) stage of gastric cancer, which was relatively highly expressed in poorly differentiated and advanced gastric cancer tissues (P < 0.05). To our knowledge this is the first report of systematic evaluation of S100 gene expressions in gastric cancers by multiple in silico analysis. The results indicated that overexpression of S100 gene family members were characteristics of gastric cancers and S100A3 might play important roles in differentiation and progression of gastric cancer

  17. Long-Term Intake of Uncaria rhynchophylla Reduces S100B and RAGE Protein Levels in Kainic Acid-Induced Epileptic Seizures Rats

    Directory of Open Access Journals (Sweden)

    Nou-Ying Tang

    2017-01-01

    Full Text Available Epileptic seizures are crucial clinical manifestations of recurrent neuronal discharges in the brain. An imbalance between the excitatory and inhibitory neuronal discharges causes brain damage and cell loss. Herbal medicines offer alternative treatment options for epilepsy because of their low cost and few side effects. We established a rat epilepsy model by injecting kainic acid (KA, 12 mg/kg, i.p. and subsequently investigated the effect of Uncaria rhynchophylla (UR and its underlying mechanisms. Electroencephalogram and epileptic behaviors revealed that the KA injection induced epileptic seizures. Following KA injection, S100B levels increased in the hippocampus. This phenomenon was attenuated by the oral administration of UR and valproic acid (VA, 250 mg/kg. Both drugs significantly reversed receptor potentiation for advanced glycation end product proteins. Rats with KA-induced epilepsy exhibited no increase in the expression of metabotropic glutamate receptor 3, monocyte chemoattractant protein 1, and chemokine receptor type 2, which play a role in inflammation. Our results provide novel and detailed mechanisms, explaining the role of UR in KA-induced epileptic seizures in hippocampal CA1 neurons.

  18. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    Science.gov (United States)

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  19. Functional significance of metastasis-inducing S100A4(Mts1) in tumor-stroma interplay

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Birgitte; Klingelhöfer, Jörg; Grum-Schwensen, Birgitte

    2004-01-01

    Causal implication of S100A4 in inducing metastases was convincingly shown previously. However, the mechanisms that associate S100A4 with tumor progression are not well understood. S100A4 protein, as a typical member of the S100 family, exhibits dual, intracellular and extracellular, functions. T...

  20. Molecular basis of interactions between mitochondrial proteins and hydroxyapatite in the presence of Triton X-100, as revealed by proteomic and recombinant techniques.

    Science.gov (United States)

    Yamamoto, Takenori; Tamaki, Haruna; Katsuda, Chie; Nakatani, Kiwami; Terauchi, Satsuki; Terada, Hiroshi; Shinohara, Yasuo

    2013-08-02

    Hydroxyapatite chromatography is a very important step in the purification of voltage-dependent anion channels (VDACs) and several members of solute carrier family 25 (Slc25) from isolated mitochondria. In the presence of Triton X-100, VDACs and Slc25 members present a peculiar property, i.e., a lack of interaction with hydroxyapatite, resulting in their presence in the flow-through fraction of hydroxyapatite chromatography. This property has allowed selective isolation of VDACs and Slc25 members from a mixture of total mitochondrial proteins. However, the reason why only these few proteins are selectively obtained in the presence of Triton X-100 from the flow-though fraction of hydroxyapatite chromatography has not yet been adequately understood. In this study, when we examined the protein species in the flow-through fractions by proteomic analysis, VDAC isoforms, Slc25 members, and some other membrane proteins were identified. All the mitochondrial proteins had in common high hydrophobicity over their entire protein sequences. When the proteins were fused to soluble proteins, the fused proteins showed affinity for hydroxyapatite even in the presence of Triton X-100. Based on these results, we discussed the molecular basis of the interactions between proteins and hydroxyapatite in the presence of Triton X-100. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Crystallization and preliminary X-ray analysis of human S100A13

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Fabiana Lica [Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Nagata, Koji [Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Yonezawa, Naoto [Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Yu, Jinyan; Ito, Eriko; Kanai, Saeko [Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Tanokura, Masaru [Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Nakano, Minoru, E-mail: mnakano@faculty.chiba-u.jp [Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2006-11-01

    Human S100A13 protein was cloned, expressed, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals obtained belonged to space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to a resolution of 1.8 Å. S100A13 is a member of the S100 family of EF-hand-containing calcium-binding proteins and plays an important role in the secretion of fibroblast growth factor-1 and interleukin 1α, two pro-angiogenic factors released by the endoplasmic reticulum/Golgi-independent non-classical secretory pathway. Human S100A13 was heterologously expressed in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystals diffracted X-rays from a synchrotron-radiation source to 1.8 Å resolution and the space group was assigned as primitive orthorhombic P2{sub 1}2{sub 1}2{sub 1}.

  2. Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typimurium in response to infection-like conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Wu, Si; Meng, Da; Liu, Xiaowen; Brewer, Heather M.; Kaiser, Brooke LD; Nakayasu, Ernesto S.; Cort, John R.; Pevzner, Pavel A.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.; Pasa-Tolic, Ljiljana

    2013-06-18

    Characterization of the mature protein complement in cells is crucial for a better understanding of cellular processes on a systems-wide scale. Bottom-up proteomic approaches often lead to loss of critical information about an endogenous protein’s actual state due to post translational modifications (PTMs) and other processes. Top-down approaches that involve analysis of the intact protein can address this concern but present significant analytical challenges related to the separation quality needed, measurement sensitivity, and speed that result in low throughput and limited coverage. Here we used single-dimension ultra high pressure liquid chromatography mass spectrometry to investigate the comprehensive ‘intact’ proteome of the Gram negative bacterial pathogen Salmonella Typhimurium. Top-down proteomics analysis revealed 563 unique proteins including 1665 proteoforms generated by PTMs, representing the largest microbial top-down dataset reported to date. Our analysis not only confirmed several previously recognized aspects of Salmonella biology and bacterial PTMs in general, but also revealed several novel biological insights. Of particular interest was differential utilization of the protein S-thiolation forms S-glutathionylation and S-cysteinylation in response to infection-like conditions versus basal conditions, which was corroborated by changes in corresponding biosynthetic pathways. This differential utilization highlights underlying metabolic mechanisms that modulate changes in cellular signaling, and represents to our knowledge the first report of S-cysteinylation in Gram negative bacteria. The demonstrated utility of our simple proteome-wide intact protein level measurement strategy for gaining biological insight should promote broader adoption and applications of top-down proteomics approaches.

  3. S100A8/A9 Is Not Involved in Host Defense against Murine Urinary Tract Infection

    NARCIS (Netherlands)

    Dessing, M.C.; Butter, L.M.; Teske, G.J.; Claessen, N.; van der Loos, C.M.; Vogl, T.; Roth, J.; van der Poll, T.; Florquin, S.; Leemans, J.C.

    2010-01-01

    Background: Inflammation is commonly followed by the release of endogenous proteins called danger associated molecular patterns (DAMPs) that are able to warn the host for eminent danger. S100A8/A9 subunits are DAMPs that belong to the S100 family of calcium binding proteins. S100A8/A9 complexes

  4. Expression of chemokine CXCL10 in dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Higuchi, Masashi; Yoshida, Saishu; Tsukada, Takehiro; Ueharu, Hiroki; Chen, Mo; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2014-09-01

    Chemokines are mostly small secreted polypeptides whose signals are mediated by seven trans-membrane G-protein-coupled receptors. Their functions include the control of leukocytes and the intercellular mediation of cell migration, proliferation, and adhesion in several tissues. We have previously revealed that the CXC chemokine ligand 12 (CXCL12) and its receptor 4 (CXCR4) are expressed in the anterior pituitary gland, and that the CXCL12/CXCR4 axis evokes the migration and interconnection of S100β-protein-positive cells (S100β-positive cells), which do not produce classical anterior pituitary hormones. However, little is known of the cells producing the other CXCLs and CXCRs or of their characteristics in the anterior pituitary. We therefore examined whether CXCLs and CXCRs occurred in the rat anterior pituitary lobe. We used reverse transcription plus the polymerase chain reaction to analyze the expression of Cxcl and Cxcr and identified the cells that expressed Cxcl by in situ hybridization. Transcripts of Cxcl10 and its receptor (Cxcr3 and toll-like receptor 4, Tlr4) were clearly detected: cells expressing Cxcl10 and Tlr4 were identified amongst S100β-positive cells and those expressing Cxcr3 amongst adrenocorticotropic hormone (ACTH)-producing cells. We also investigated Cxcl10 expression in subpopulations of S100β-positive cells. We separated cultured S100β-positive cells into the round-type (dendritic-cell-like) and process-type (astrocyte- or epithelial-cell-like) by their adherent activity to laminin, a component of the extracellular matrix; CXCL10 was expressed only in round-type S100β-positive cells. Thus, CXCL10 produced by a subpopulation of S100β-positive cells probably exerts an autocrine/paracrine effect on S100β-positive cells and ACTH-producing cells in the anterior lobe.

  5. Sensitization of interferon-γ induced apoptosis in human osteosarcoma cells by extracellular S100A4

    International Nuclear Information System (INIS)

    Pedersen, Kjetil Boye; Andersen, Kristin; Fodstad, Øystein; Mælandsmo, Gunhild Mari

    2004-01-01

    S100A4 is a small Ca 2+ -binding protein of the S100 family with metastasis-promoting properties. Recently, secreted S100A4 protein has been shown to possess a number of functions, including induction of angiogenesis, stimulation of cell motility and neurite extension. Cell cultures from two human osteosarcoma cell lines, OHS and its anti-S100A4 ribozyme transfected counterpart II-11b, was treated with IFN-γ and recombinant S100A4 in order to study the sensitizing effects of extracellular S100A4 on IFN-γ mediated apoptosis. Induction of apoptosis was demonstrated by DNA fragmentation, cleavage of poly (ADP-ribose) polymerase and Lamin B. In the present work, we found that the S100A4-expressing human osteosarcoma cell line OHS was more sensitive to IFN-γ-mediated apoptosis than the II-11b cells. S100A4 protein was detected in conditioned medium from OHS cells, but not from II-11b cells, and addition of recombinant S100A4 to the cell medium sensitized II-11b cells to apoptosis induced by IFN-γ. The S100A4/IFN-γ-mediated induction of apoptosis was shown to be independent of caspase activation, but dependent on the formation of reactive oxygen species. Furthermore, addition of extracellular S100A4 was demonstrated to activate nuclear factor-κB (NF-κB). In conclusion, we have shown that S100A4 sensitizes osteosarcoma cells to IFN-γ-mediated induction of apoptosis. Additionally, extracellular S100A4 activates NF-κB, but whether these events are causally related remains unknown

  6. S100A4: a common mediator of epithelial-mesenchymal transition, fibrosis and regeneration in diseases?

    DEFF Research Database (Denmark)

    Schneider, M.; Sheikh, S.P.; Hansen, Jakob Lerche

    2008-01-01

    and neuronal injuries. Common to all these diseases is the involvement of fibrotic and inflammatory processes, i.e. processes greatly dependent on tissue remodelling, cell motility and epithelial-mesenchymal transition. Therefore, the basic biological mechanisms behind S100A4's effects are emerging. S100A4...... belongs to the S100 family of proteins that contain two Ca2+-binding sites including a canonical EF-hand motif. S100A4 is involved in the regulation of a wide range of biological effects including cell motility, survival, differentiation and contractility. S100A4 has both intracellular and extracellular...... effects. Hence, S100A4 interacts with cytoskeletal proteins and enhances metastasis of several types of cancer cells. In addition, S100A4 is secreted by unknown mechanisms, thus, paracrinely stimulating a variety of cellular responses, including angiogenesis and neuronal growth. Although many cellular...

  7. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation.

    Directory of Open Access Journals (Sweden)

    Ching Chang Cho

    Full Text Available The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs.

  8. Protein profiling in serum after traumatic brain injury in rats reveals potential injury markers.

    Science.gov (United States)

    Thelin, Eric Peter; Just, David; Frostell, Arvid; Häggmark-Månberg, Anna; Risling, Mårten; Svensson, Mikael; Nilsson, Peter; Bellander, Bo-Michael

    2018-03-15

    The serum proteome following traumatic brain injury (TBI) could provide information for outcome prediction and injury monitoring. The aim with this affinity proteomic study was to identify serum proteins over time and between normoxic and hypoxic conditions in focal TBI. Sprague Dawley rats (n=73) received a 3mm deep controlled cortical impact ("severe injury"). Following injury, the rats inhaled either a normoxic (22% O 2 ) or hypoxic (11% O 2 ) air mixture for 30min before resuscitation. The rats were sacrificed at day 1, 3, 7, 14 and 28 after trauma. A total of 204 antibodies targeting 143 unique proteins of interest in TBI research, were selected. The sample proteome was analyzed in a suspension bead array set-up. Comparative statistics and factor analysis were used to detect differences as well as variance in the data. We found that complement factor 9 (C9), complement factor B (CFB) and aldolase c (ALDOC) were detected at higher levels the first days after trauma. In contrast, hypoxia inducing factor (HIF)1α, amyloid precursor protein (APP) and WBSCR17 increased over the subsequent weeks. S100A9 levels were higher in hypoxic-compared to normoxic rats, together with a majority of the analyzed proteins, albeit few reached statistical significance. The principal component analysis revealed a variance in the data, highlighting clusters of proteins. Protein profiling of serum following TBI using an antibody based microarray revealed temporal changes of several proteins over an extended period of up to four weeks. Further studies are warranted to confirm our findings. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Can S100B predict cerebral vasospasms in patients suffering from subarachnoid hemorrhage?

    Directory of Open Access Journals (Sweden)

    Moshgan eAmiri

    2013-06-01

    Full Text Available Background: Protein S100B has proven to be a useful biomarker for cerebral damages. Increased levels of serum and CSF S100B have been shown in patients suffering subarachnoid hemorrhage, severe head injury and stroke. In patients with subarachnoid hemorrhage, the course of S100B levels has been correlated with neurological deficits and outcome. Cerebral vasospasm is a major contributor to morbidity and mortality. The primary aim of this study was to investigate the potential of S100B protein as a predictor of cerebral vasospasm in patients with severe subarachnoid hemorrhage.Methods: Patients with SAH, Fisher grade 3 and 4, were included in the study. Five samples of CSF and serum S100B were collected from each patient. The first sample (baseline sample was drawn within the first three days following ictus and the following four samples, once a day on days 5 to 8, with day of ictus defined as day 1. Clinical suspicion of cerebral vasospasm confirmed by computed tomography angiography was used to diagnose cerebral vasospasm.Results: A total of 18 patients were included. Five patients (28 % developed cerebral vasospasm, two (11 % developed ventriculitis. There were no significant differences between S100B for those with and without vasospasm. Serum S100B levels in patients with vasospasm were slightly lower within the first 5 days following ictus, compared to patients without vasospasm. Two out of 5 patients had elevated and increasing serum S100B prior to vasospasm. Only one showed a peak level of S100B one day before vasospasm could be diagnosed. Due to the low number of patients in the study, statistical significance could not be reached. Conclusion: Neither serum nor CSF S100B can be used as predictor of cerebral vasospasm in patients suffering from subarachnoid hemorrhage.

  10. S100A11 promotes human pancreatic cancer PANC-1 cell proliferation and is involved in the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Xiao, Mingbing; Li, Tao; Ji, Yifei; Jiang, Feng; Ni, Wenkai; Zhu, Jing; Bao, Baijun; Lu, Cuihua; Ni, Runzhou

    2018-01-01

    S100A11, a member of S100 calcium-binding protein family, is associated with the numerous processes of tumorigenesis and metastasis. In the present study, the role of S100A11, and its possible underlying mechanisms in cell proliferation, apoptosis and cell cycle distribution in human pancreatic cancer were explored. Immunohistochemical analyses of S100A11 and phosphorylated (p)-AKT serine/threonine kinase (AKT) were performed in 30 resected specimens from patients with pancreatic cancer. PANC-1 cells were transfected with pcDNA3.1-S100A11 or treated with 50 µmol/l LY294002 for 48 h. Cell proliferation was determined using a cell counting kit-8 assay, whereas apoptosis and cell cycle distribution were determined by flow cytometry analysis. The mRNA and protein levels of S100A11, and AKT were determined using semi quantitative reverse transcription-polymerase chain reaction and western blot analyses, respectively. Pearson correlation analysis revealed that the expression levels of S100A11 and p-AKT were positively correlated (r, 0.802; PPANC-1 cell proliferation and reduced the percentage of early apoptotic cells. Flow cytometric analysis indicated that the proportion of PANC-1 cells in the S phase was significantly elevated and cell percentage in the G0/G1 phase declined in response to S100A11 overexpression (all PPANC-1 cell proliferation, promoted apoptosis and caused G1/S phase arrest in PANC-1 cells (all PPANC-1 cells through the upregulation of the PI3K/AKT signaling pathway. Thus, S100A11 may be considered as a novel drug target for targeted therapy of pancreatic cancer.

  11. The role of the metastasis promoting protein S100A4 during EMT in mammary gland epithelial cells

    OpenAIRE

    Rognlien, Vibeke Wethe

    2013-01-01

    Master i biomedisin Breast cancer is one of the greatest contributors to mortality among the different cancer types in the female population of the western world each year. An increasing degree of evidence state that the S100A4 protein, which has been identified in several tumors of different origins and has proven to be associated with a poor patient prognosis, might have an important role in a process which induces carcinoma cells of the breast to gain a more motile and invas...

  12. S100 calcium binding protein B as a biomarker of delirium duration in the intensive care unit – an exploratory analysis

    Directory of Open Access Journals (Sweden)

    Khan BA

    2013-12-01

    Full Text Available Babar A Khan,1–3 Mark O Farber,1 Noll Campbell,2–5 Anthony Perkins,2,3 Nagendra K Prasad,6 Siu L Hui,1–3 Douglas K Miller,1–3 Enrique Calvo-Ayala,1 John D Buckley,1 Ruxandra Ionescu,1 Anantha Shekhar,1 E Wesley Ely,7,8 Malaz A Boustani1–3 1Indiana University School of Medicine, 2Indiana University Center for Aging Research, 3Regenstrief Institute, Inc., 4Wishard Health Services, Indianapolis, 5Department of Pharmacy Practice, Purdue University College of Pharmacy, West Lafayette, 6Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 7Vanderbilt University School of Medicine, 8VA Tennessee Valley Geriatric Research Education Clinical Center (GRECC, Nashville, TN, USA Background: Currently, there are no valid and reliable biomarkers to identify delirious patients predisposed to longer delirium duration. We investigated the hypothesis that elevated S100 calcium binding protein B (S100β levels will be associated with longer delirium duration in critically ill patients. Methods: A prospective observational cohort study was performed in the medical, surgical, and progressive intensive care units (ICUs of a tertiary care, university affiliated, and urban hospital. Sixty-three delirious patients were selected for the analysis, with two samples of S100β collected on days 1 and 8 of enrollment. The main outcome measure was delirium duration. Using the cutoff of <0.1 ng/mL and $0.1 ng/mL as normal and abnormal levels of S100β, respectively, on day 1 and day 8, four exposure groups were created: Group A, normal S100β levels on day 1 and day 8; Group B, normal S100β level on day 1 and abnormal S100β level on day 8; Group C, abnormal S100β level on day 1 and normal on day 8; and Group D, abnormal S100β levels on both day 1 and day 8. Results: Patients with abnormal levels of S100β showed a trend towards higher delirium duration (P=0.076; Group B (standard deviation (7.0 [3.2] days, Group C (5.5 [6.3] days, and Group D

  13. Evaluating the prognosis and degree of brain injury by combined S-100 protein and neuron specific enolase determination

    Institute of Scientific and Technical Information of China (English)

    Xihua Wang; Xinding Zhang

    2006-01-01

    Background:S-100 and neuron specific enolase(NSE)possess the characteristics of specific distribution in brain and relative stable content.Some studies suggest that combined detection of the both is of very importance for evaluating the degree of brain injury.OBJECTIVE: To observe the changes of S-100 protein and NSE levels at different time points after acute brain injury,and evaluate the values of combined detection detection of the both for different injury degrees,pathological changes and prognosis.DESIGN: Case-control observation SETTING: Department of Neurosurgery,Second Affiliated Hospital,Lanzhou University.PARTICIPANTS:Thirty-four inpatients with brain injury,19 males and 15 females,aged 15 to 73 years.who received treatment between September 2005 and May 2006 in the Department of Neurosurgery. Second Affiliated Hospital,Lanzhou University,were recruited.The patients were admitted to hospital at 24 hours after brain injury.After admission,skull CT confirmed that they suffered from brain injury.Following Glasgow coma score(GCS)on admission,the patients were assigned into 3 groups:severe group(GCS 3 to 8 points,n=15).moderate group(GCS 9 to 12 points,n=8)and mild group(GCS 13 to 15 points,n=11).Following Glasgow outcome scale(GOS)at 3 months after brain injury,the patients were assigned into good outcome group (GOS 4 to 5 points,good recovery and moderate disability included,n=19)and poor outcome group(GOS 1 to 3 points,severe disability,vegetative state and death,n=15).Ten subjects who received health examination concurrently were chosen as normal control group,including 6 males and 4 females,aged(45.4±14.3)years.In our laboratory,the normal level of NSE was≤15.2 ng/L,and that of S100 was≤0.105 μg/L.METHODS:①Blood samples of control group were collected when the subjects received health examination Blood samples of patients with brain injury were collected at 24 hours,3,7 and 14 days after injury.According to the instructions of NSE and S-100 kits

  14. Correlation of expressions of S100A8 and S100A9 and its ...

    African Journals Online (AJOL)

    (S100A9) in nasopharyngeal carcinoma (NPC) tissues and their correlation with clinical pathological characteristics and ..... receptor (RAGE), a process which also activates .... S100A8 and S100A9 between Prostate Cancer and. BPH.

  15. Serum S100B: A possible biomarker for severity of obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Eman Riad

    2017-10-01

    Conclusion: Serum S100B protein was significantly elevated in OSA patients and its serum levels correlated with the severity of the disease. Increased serum S100B could indicat brain injury and could be a potential serum biomarker for detection of early neurological complications in OSA patients that could improve the management and care of these patients.

  16. S100A8/A9 is not involved in host defense against murine urinary tract infection.

    Directory of Open Access Journals (Sweden)

    Mark C Dessing

    Full Text Available BACKGROUND: Inflammation is commonly followed by the release of endogenous proteins called danger associated molecular patterns (DAMPs that are able to warn the host for eminent danger. S100A8/A9 subunits are DAMPs that belong to the S100 family of calcium binding proteins. S100A8/A9 complexes induce an inflammatory response and their expression correlates with disease severity in several inflammatory disorders. S100A8/A9 promote endotoxin- and Escherichia (E. coli-induced sepsis showing its contribution in systemic infection. The role of S100A8/A9 during a local infection of the urinary tract system caused by E. coli remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the contribution of S100A8/A9 in acute urinary tract infection (UTI by instilling 2 different doses of uropathogenic E. coli transurethrally in wild type (WT and S100A9 knockout (KO mice. Subsequently, we determined bacterial outgrowth, neutrophilic infiltrate and inflammatory mediators in bladder and kidney 24 and 48 hours later. UTI resulted in a substantial increase of S100A8/A9 protein in bladder and kidney tissue of WT mice. S100A9 KO mice displayed similar bacterial load in bladder or kidney homogenate compared to WT mice using 2 different doses at 2 different time points. S100A9 deficiency had little effect on the inflammatory responses to E. Coli-induced UTI infection, as assessed by myeloperoxidase activity in bladder and kidneys, histopathologic analysis, and renal and bladder cytokine concentrations. CONCLUSIONS: We show that despite high S100A8/A9 expression in bladder and kidney tissue upon UTI, S100A8/A9 does not contribute to an effective host response against E. Coli in the urinary tract system.

  17. Circulating S100B and Adiponectin in Children Who Underwent Open Heart Surgery and Cardiopulmonary Bypass

    Directory of Open Access Journals (Sweden)

    Alessandro Varrica

    2015-01-01

    Full Text Available Background. S100B protein, previously proposed as a consolidated marker of brain damage in congenital heart disease (CHD newborns who underwent cardiac surgery and cardiopulmonary bypass (CPB, has been progressively abandoned due to S100B CNS extra-source such as adipose tissue. The present study investigated CHD newborns, if adipose tissue contributes significantly to S100B serum levels. Methods. We conducted a prospective study in 26 CHD infants, without preexisting neurological disorders, who underwent cardiac surgery and CPB in whom blood samples for S100B and adiponectin (ADN measurement were drawn at five perioperative time-points. Results. S100B showed a significant increase from hospital admission up to 24 h after procedure reaching its maximum peak (P0.05 have been found all along perioperative monitoring. ADN/S100B ratio pattern was identical to S100B alone with the higher peak at the end of CPB and remained higher up to 24 h from surgery. Conclusions. The present study provides evidence that, in CHD infants, S100B protein is not affected by an extra-source adipose tissue release as suggested by no changes in circulating ADN concentrations.

  18. Pentamidine blocks the interaction between mutant S100A5 and RAGE V domain and inhibits the RAGE signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Ching Chang, E-mail: ccjwo@yahoo.com.tw [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Chou, Ruey Hwang, E-mail: rhchou@mail.cmu.edu.tw [Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Yu, Chin, E-mail: cyu.nthu@gmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2016-08-19

    The human S100 protein family contains small, dimeric and acidic proteins that contain two EF-hand motifs and bind calcium. When S100A5 binds calcium, its conformation changes and promotes interaction with the target protein. The extracellular domain of RAGE (Receptor of Advanced Glycation End products) contain three domains: C1, C2 and V. The RAGE V domain is the target protein of S100A5 that promotes cell survival, growth and differentiation by activating several signaling pathways. Pentamidine is an apoptotic and antiparasitic drug that is used to treat or prevent pneumonia. Here, we found that pentamidine interacts with S100A5 using HSQC titration. We elucidated the interactions of S100A5 with RAGE V domain and pentamidine using fluorescence and NMR spectroscopy. We generated two binary models—the S100A5-RAGE V domain and S100A5-Pentamidine complex—and then observed that the pentamidine and RAGE V domain share a similar binding region in mS100A5. We also used the WST-1 assay to investigate the bioactivity of S100A5, RAGE V domain and pentamidine. These results indicated that pentamidine blocks the binding between S100A5 and RAGE V domain. This finding is useful for the development of new anti-proliferation drugs. - Highlights: • The interaction between mS100A5–RAGE V was investigated by fluorescence spectroscopy. • The interfacial residues on mS100A5–RAGE V and mS100A5–pentamidine contact surface were mapped by {sup 1}H-{sup 15}N HSQC experiments. • mS100A5–RAGE V and mS100A5–pentamidine complex models were generated from NMR restraints using HADDOCK program. • The bioactivity of the mS100A5–RAGE V and mS100A5–pentamidine complex was studied using WST-1 assay.

  19. Expressão da proteína ligadora de cálcio S100 A7 (psoriasina no carcinoma laríngeo Expression of calcium binding protein S100 A7 (psoriasin in laryngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Rogério Costa Tiveron

    2012-08-01

    Full Text Available Muitos estudos relatam o aumento da expressão de S100 A7 (psoriasina em lesões neoplásicas. Destacam-se trabalhos em carcinoma da mama, espinocelular da bexiga, pele e cavidade oral. Não foi demonstrada expressão da S100 A7 em câncer de laringe. OBJETIVO: Identificar a expressão da proteína ligadora de cálcio S100 A7 e sua correlação com carcinomas espinocelular da laringe. MATERIAL E MÉTODOS: Amostras de tecido neoplásico de 63 pacientes foram submetidos à imunohis toquímica com o anticorpo S110 A7. Os resultados foram classificados e comparados. RESULTADOS: O grupo bem diferenciado teve a maior pontuação de falha no tratamento. O grupo moderadamente diferenciado apresentou escores mais elevados do que o grupo pouco diferenciado. Pontuações mais altas predominaram nos estágios I e II no grupo moderadamente diferenciado, enquanto a distribuição do escore foi mais homogênea em estados avançados (III e IV. Em relação às falhas no tratamento, o grupo pontuação zero (04/03 complicações: 75% diferiu significativamente da pontuação restante (13/59: 22%. CONCLUSÕES: A S100 A7 foi expressa em 93,7% dos casos de câncer de laringe, com maior positividade nos tumores mais diferenciados e taxa significativamente menor de falha no tratamento. A pontuação obtida não teve impacto sobre a sobrevivência.Many studies have reported increased expression of S100 A7 (psoriasin in neoplastic lesions. Among them are studies on breast carcinoma, bladder squamous cell carcinoma, skin tumors and oral cavity squamous cell carcinoma. The expression of S100 A7 has not been described for laryngeal cancer. OBJECTIVE: This study aims to identify the expression of the calcium-binding protein S100 A7 and its correlation with squamous cell carcinomas of the larynx. MATERIAL AND METHODS: Specimens from 63 patients were submitted to immunohistochemistry testing with antibody S100 A7. Results were classified and compared. RESULTS: The group with

  20. GFAP and S100B in the acute phase of mild traumatic brain injury

    NARCIS (Netherlands)

    Metting, Z.; Wilczak, N.; Rodiger, L. A.; Schaaf, J. M.; van der Naalt, J.

    Objective: The biomarkers glial fibrillary acid protein (GFAP) and S100B are increasingly used as prognostic tools in severe traumatic brain injury (TBI). Data for mild TBI are scarce. This study aims to analyze the predictive value of GFAP and S100B for outcome in mild TBI and the relation with

  1. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Forst

    2010-04-01

    Full Text Available The tumor microenvironment has been described as a critical milieu determining tumor growth and metastases. A pivotal role of metastasis-inducing S100A4 in the development of tumor stroma has been proven in animal models and verified in human breast cancer biopsies. Expression and release of S100A4 has been shown in various types of stroma composing cells, including fibroblasts and immune cells. However, the events implicated in upstream and downstream pathways regulating the activity of the extracellular S100A4 protein in the tumor milieu remain unsolved.We studied the interplay between the tumor cell-derived cytokine regulated-upon-activation, normal T-cell expressed and secreted (RANTES; CCL5 and S100A4 which were shown to be critical factors in tumor progression. We found that RANTES stimulates the externalization of S100A4 via microparticle shedding from the plasma membrane of tumor and stroma cells. Conversely, the released S100A4 protein induces the upregulation of fibronectin (FN in fibroblasts and a number of cytokines, including RANTES in tumor cells as well as stimulates cell motility in a wound healing assay. Importantly, using wild type and S100A4-deficient mouse models, we demonstrated a substantial influence of tumor cell-derived RANTES on S100A4 release into blood circulation which ultimately increases the metastatic burden in mice.Altogether, the data presented strongly validate the pro-metastatic function of S100A4 in the tumor microenvironment and define how the tumor cell-derived cytokine RANTES acts as a critical regulator of S100A4-dependent tumor cell dissemination. Additionally, for the first time we demonstrated the mechanism of S100A4 release associated with plasma membrane microparticle shedding from various cells types.

  2. Faecal S100A12 as a non-invasive marker distinguishing inflammatory bowel disease from irritable bowel syndrome

    NARCIS (Netherlands)

    Kaiser, T; Langhorst, J; Wittkowski, H; Becker, K; Friedrich, A W; Rueffer, A; Dobos, G J; Roth, J; Foell, D

    2007-01-01

    OBJECTIVE: S100A12 is a pro-inflammatory protein that is secreted by granulocytes. S100A12 serum levels increase during inflammatory bowel disease (IBD). We performed the first study analysing faecal S100A12 in adults with signs of intestinal inflammation. METHODS: Faecal S100A12 was determined by

  3. Amino acid sequences of ribosomal proteins S11 from Bacillus stearothermophilus and S19 from Halobacterium marismortui. Comparison of the ribosomal protein S11 family.

    Science.gov (United States)

    Kimura, M; Kimura, J; Hatakeyama, T

    1988-11-21

    The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45-49%) than to the eubacterial counterparts (35%).

  4. Influence of energy balance on the antimicrobial peptides S100A8 and S100A9 in the endometrium of the post-partum dairy cow

    Science.gov (United States)

    Swangchan-Uthai, Theerawat; Chen, Qiusheng; Kirton, Sally E; Fenwick, Mark A; Cheng, Zhangrui; Patton, Joe; Fouladi-Nashta, Ali A; Wathes, D Claire

    2013-01-01

    Uterine inflammation occurs after calving in association with extensive endometrial remodelling and bacterial contamination. If the inflammation persists, it leads to reduced fertility. Chronic endometritis is highly prevalent in high-yielding cows that experience negative energy balance (NEB) in early lactation. This study investigated the effect of NEB on the antimicrobial peptides S100A8 and S100A9 in involuting uteri collected 2 weeks post partum. Holstein-Friesian cows (six per treatment) were randomly allocated to two interventions designed to produce mild or severe NEB (MNEB and SNEB) status. Endometrial samples were examined histologically, and the presence of neutrophils, macrophages, lymphocytes and natural killer cells was confirmed using haematoxylin and eosin and immunostaining. SNEB cows had greater signs of uterine inflammation. Samples of previously gravid uterine horn were used to localise S100A8 and S100A9 by immunohistochemistry. Both S100 proteins were present in bovine endometrium with strong staining in epithelial and stromal cells and in infiltrated leucocytes. Immunostaining was significantly higher in SNEB cows along with increased numbers of segmented neutrophils. These results suggest that the metabolic changes of a post-partum cow suffering from NEB delay uterine involution and promote a chronic state of inflammation. We show that upregulation of S100A8 and S100A9 is clearly a key component of the early endometrial response to uterine infection. Further studies are warranted to link the extent of this response after calving to the likelihood of cows developing endometritis and to their subsequent fertility. PMID:23533291

  5. Targeting S100P Inhibits Colon Cancer Growth and Metastasis by Lentivirus-Mediated RNA Interference and Proteomic Analysis

    Science.gov (United States)

    Jiang, Lei; Lai, Yiu-Kay; Zhang, Jinfang; Wang, Hua; Lin, Marie CM; He, Ming-liang; Kung, Hsiang-fu

    2011-01-01

    S100P was recently found to be overexpressed in a variety of cancers and is considered a potential target for cancer therapy, but the functional role or mechanism of action of S100P in colon cancer is not fully understood. In the present study, we knocked down the gene expression of S100P in colon cancer cells using lentivirus-mediated RNA interference. This step resulted in significant inhibition of cancer cell growth, migration and invasion in vitro and tumor growth and liver metastasis in vivo. Moreover, S100P downstream target proteins were identified by proteomic analysis in colon cancer DLD-1 cells with deletion of S100P. Knockdown of S100P led to downregulation of thioredoxin 1 and β-tubulin and upregulation of Rho guanosine diphosphate (GDP) dissociation inhibitor α (RhoGDIA), all potential therapeutic targets in cancer. Taken together, these findings suggest that S100P plays an important role in colon tumorigenesis and metastasis, and the comprehensive and comparative analyses of proteins associated with S100P could contribute to understanding the downstream signal cascade of S100P, leading to tumorigenesis and metastasis. PMID:21327297

  6. Brain injury markers (S100B and NSE) in chronic cocaine dependents

    OpenAIRE

    Kessler, Felix Henrique Paim; Woody, George; Portela, Luís Valmor Cruz; Tort, Adriano Bretanha Lopes; De Boni, Raquel; Peuker, Ana Carolina Wolf Baldino; Genro, Vanessa; Diemen, Lísia von; Souza, Diogo Onofre Gomes de; Pechansky, Flavio

    2007-01-01

    OBJECTIVE: Studies have shown signs of brain damage caused by different mechanisms in cocaine users. The serum neuron specific enolase and S100B protein are considered specific biochemical markers of neuronal and glial cell injury. This study aimed at comparing blood levels of S100B and NSE in chronic cocaine users and in volunteers who did not use cocaine or other illicit drugs. METHOD: Twenty subjects dependent on cocaine but not on alcohol or marijuana, and 20 non-substance using controls ...

  7. Isolation of dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Yoshida, Saishu; Higuchi, Masashi; Tsukada, Takehiro; Kanno, Naoko; Yashiro, Takashi; Tateno, Kozue; Osako, Shunji; Kato, Takako; Kato, Yukio

    2014-07-01

    S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.

  8. Attenuation of cancer-initiating cells stemness properties by abrogating S100A4 calcium binding ability in head and neck cancers.

    Science.gov (United States)

    Cheng, Li-Hao; Hung, Kai-Feng; Huang, Tung-Fu; Hsieh, Hsin-Pei; Wang, Shu-Ying; Huang, Chih-Yang; Lo, Jeng-Fan

    2016-11-29

    S100A4 is a calcium-binding protein capable of promoting epithelial-mesenchymal transition. Previously, we have demonstrated that S100A4 is required to sustain the head and neck cancer-initiating cells (HN-CICs) subpopulation. In this study, to further investigate the molecular mechanism, we established the head and neck squamous cell carcinoma (HNSCC) cell lines stably expressing mutant S100A4 proteins with defective calcium-binding sites on either N-terminal (NM) or C-terminal (CM), or a deletion of the last 15 amino-acid residues (CD). We showed that the NM, CM and CD harboring sphere cells that were enriched with HN-CICs population exhibited impaired stemness and malignant properties in vitro, as well as reduced tumor growth ability in vivo. Mechanistically, we demonstrated that mutant S100A4 proteins decreased the promoter activity of Nanog, likely through inhibition of p53. Moreover, the biophysical analyses of purified recombinant mutant S100A4 proteins suggest that both NM and CM mutant S100A4 were very similar to the WT S100A4 with subtle difference on the secondary structure, and that the CD mutant protein displayed the unexpected monomeric form in the solution phase.Taken together, our results suggest that both the calcium-binding ability and the C-terminal region of S100A4 are important for HN-CICs to sustain its stemness property and malignancy, and that the mechanism could be mediated by repressing p53 and subsequently activating the Nanog expression.

  9. Expression of S100A4, ephrin-A1 and osteopontin in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Rud, Ane Kongsgaard; Lund-Iversen, Marius; Berge, Gisle; Brustugun, Odd Terje; Solberg, Steinar K; Mælandsmo, Gunhild M; Boye, Kjetil

    2012-01-01

    The metastasis-promoting protein S100A4 induces expression of ephrin-A1 and osteopontin in osteosarcoma cell lines. The aim of this study was to investigate S100A4-mediated stimulation of ephrin-A1 and osteopontin in non-small cell lung cancer (NSCLC) cell lines, and to characterize the expression of these biomarkers in primary tumor tissue from NSCLC patients. Four NSCLC cell lines were treated with extracellular S100A4, and ephrin-A1 and osteopontin expression was analyzed by real time RT-PCR and Western blotting. Immunohistochemical staining for S100A4, ephrin-A1 and osteopontin was performed on tissue microarrays containing primary tumor samples from a cohort of 217 prospectively recruited NSCLC patients, and associations with clinicopathological parameters were investigated. S100A4 induced ephrin-A1 mRNA and protein expression in adenocarcinoma, but not in squamous carcinoma cell lines, whereas the level of osteopontin was unaffected by S100A4 treatment. In primary tumors, moderate or strong immunoreactivity was observed in 57% of cases for cytoplasmic S100A4, 46% for nuclear S100A4, 86% for ephrin-A1 and 77% for osteopontin. Interestingly, S100A4 expression was associated with ephrin-A1 also in vivo, but there was no association between S100A4 and osteopontin. Expression levels of S100A4 and ephrin-A1 were significantly higher in adenocarcinomas compared to other histological subtypes, and S100A4-positive tumors were smaller and more differentiated than tumors without expression. Our findings suggest that S100A4, ephrin-A1 and osteopontin are involved in the biology of NSCLC, and further investigation of their potential use as biomarkers in NSCLC is warranted

  10. Downregulation of placental S100P is associated with cadmium exposure in Guiyu, an e-waste recycling town in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingying; Zhou, Taimei [Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041 (China); Xu, Xijin; Guo, Yongyong [Analytic Cytology Laboratory, Shantou University Medical College, Shantou, Guangdong 515041 (China); Zhao, Zhiguo; Zhu, Min [Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041 (China); Li, Weiqiu [Analytic Cytology Laboratory, Shantou University Medical College, Shantou, Guangdong 515041 (China); Yi, Deqing [Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041 (China); Huo, Xia, E-mail: xhuo@stu.edu.cn [Analytic Cytology Laboratory, Shantou University Medical College, Shantou, Guangdong 515041 (China)

    2011-12-01

    Excessive release of heavy metals, especially cadmium (Cd) and lead (Pb), results from primitive electronic waste (e-waste) recycling activities in Guiyu, China, and has adverse effects on the health of local infants and pregnant women. We investigated the expression of placental S100P, a Ca{sup 2+}-binding protein, as a biological indicator of heavy-metal environmental pollution in pregnant women involved in these activities and constantly exposed to Cd and Pb. We included 105 pregnant women in the study: 55 from Guiyu and 50 from Shantou, an area not involved in e-waste recycling. The placental concentrations of Cd and Pb (PCCd, PCPb) after birth were measured by graphite-furnace atomic-absorption spectrometry. S100P mRNA expression was determined by semi-quantitative RT-PCR and real-time quantitative PCR. S100P protein expression was examined by western blot analysis and immunohistochemistry. The expression of metallothionein (MT), previously found upregulated after heavy metal contamination, was used for comparison. Placentas from Guiyu women showed 62.8% higher Cd concentrations, higher MT levels, and lower S100P protein levels than placentas from Shantou women. Furthermore, PCCd was negatively correlated with S100P protein expression and positively with MT expression, with no correlation between PCPb and S100P or MT expression. The PCCd-associated downregulation of S100P in placentas from Guiyu women suggests that S100P might be an effective biological indicator in the placental response to Cd toxicity in areas of e-waste recycling.

  11. Downregulation of placental S100P is associated with cadmium exposure in Guiyu, an e-waste recycling town in China

    International Nuclear Information System (INIS)

    Zhang, Qingying; Zhou, Taimei; Xu, Xijin; Guo, Yongyong; Zhao, Zhiguo; Zhu, Min; Li, Weiqiu; Yi, Deqing; Huo, Xia

    2011-01-01

    Excessive release of heavy metals, especially cadmium (Cd) and lead (Pb), results from primitive electronic waste (e-waste) recycling activities in Guiyu, China, and has adverse effects on the health of local infants and pregnant women. We investigated the expression of placental S100P, a Ca 2+ -binding protein, as a biological indicator of heavy-metal environmental pollution in pregnant women involved in these activities and constantly exposed to Cd and Pb. We included 105 pregnant women in the study: 55 from Guiyu and 50 from Shantou, an area not involved in e-waste recycling. The placental concentrations of Cd and Pb (PCCd, PCPb) after birth were measured by graphite-furnace atomic-absorption spectrometry. S100P mRNA expression was determined by semi-quantitative RT-PCR and real-time quantitative PCR. S100P protein expression was examined by western blot analysis and immunohistochemistry. The expression of metallothionein (MT), previously found upregulated after heavy metal contamination, was used for comparison. Placentas from Guiyu women showed 62.8% higher Cd concentrations, higher MT levels, and lower S100P protein levels than placentas from Shantou women. Furthermore, PCCd was negatively correlated with S100P protein expression and positively with MT expression, with no correlation between PCPb and S100P or MT expression. The PCCd-associated downregulation of S100P in placentas from Guiyu women suggests that S100P might be an effective biological indicator in the placental response to Cd toxicity in areas of e-waste recycling.

  12. S100B-immunopositive glia is elevated in paranoid as compared to residual schizophrenia: a morphometric study.

    Science.gov (United States)

    Steiner, Johann; Bernstein, Hans-Gert; Bielau, Hendrik; Farkas, Nadine; Winter, Jana; Dobrowolny, Henrik; Brisch, Ralf; Gos, Tomasz; Mawrin, Christian; Myint, Aye Mu; Bogerts, Bernhard

    2008-08-01

    Several studies have revealed increased S100B levels in peripheral blood and cerebrospinal fluid (CSF) of patients with schizophrenia. In this context, it was postulated that elevated levels of S100B may indicate changes of pathophysiological significance to brain tissue in general and astrocytes in particular. However, no histological study has been published on the cellular distribution of S100B in the brain of individuals with schizophrenia to clarify this hypothesis. The cell-density of S100B-immunopositive glia was analyzed in the anterior cingulate, dorsolateral prefrontal (DLPF), orbitofrontal, and superior temporal cortices/adjacent white matter, pyramidal layer/alveus of the hippocampus, and the mediodorsal thalamic nucleus of 18 patients with schizophrenia and 16 matched control subjects. Cortical brain regions contained more S100B-immunopositive glia in the schizophrenia group relative to controls (P=0.046). This effect was caused by the paranoid schizophrenia subgroup (P=0.018). Separate analysis of white matter revealed no diagnostic main group effect (P=0.846). However, the white matter of patients with paranoid schizophrenia contained more (mainly oligodendrocytic) S100B-positive glia as compared to residual schizophrenia (P=0.021). These effects were particularly pronounced in the DLPF brain area. Our study reveals distinct histological patterns of S100B immunoeactive glia in two schizophrenia subtypes. This may be indicative of a heterogenic pathophysiology or distinct compensatory abilities: Astro-/oligodendroglial activation may result in increased cellular S100B in paranoid schizophrenia. On the contrary, residual schizophrenia may be caused by white matter oligodendroglial damage or dysfunction, associated with a release of S100B into body fluids.

  13. Effect of poly and mono-unsaturated fatty acids on stability and structure of recombinant S100A8/A9.

    Science.gov (United States)

    Asghari, Hamideh; Chegini, Koorosh Goodarzvand; Amini, Abbas; Gheibi, Nematollah

    2016-03-01

    Recombinant pET 15b vectors containing the coding sequences S100A8 and S100A9 are expressed in Escherichia coli BL21 (DE3) and purified using Ni-NTA affinity chromatography. The structural changes of S100A8/A9 complex are analyzed upon interaction with poly/mono-unsaturated fatty acids (UFAs). The thermodynamic values, Gibbs free energy and the protein melting point, are obtained through thermal denaturation of protein both with and without UFAs by thermal scanning of protein emission using the fluorescence spectroscopy technique. The far-ultraviolet circular dichroism spectra show that all studied unsaturated fatty acids, including arachidonic, linoleic, alpha-linolenic and oleic acids, induce changes in the secondary structure of S100A8/A9 by reducing the α-helix and β-sheet structures. The tertiary structure of S100A8/A9 has fluctuations in the fluorescence emission spectra after the incubation of protein with UFAs. The blue-shift of emission maximum wavelength and the increase in fluorescence intensity of anilino naphthalene-8-sulfonic acid confirm that the partial unfolding is caused by the conformational changes in the tertiary structure in the presence of UFAs. The structural changes in S100A8/A9 and its lower stability in the presence of UFAs may be necessary for S100A8/A9 to play a biological role in the inflammatory milieu. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Holder pasteurization affects S100B concentrations in human milk.

    Science.gov (United States)

    Peila, Chiara; Coscia, Alessandra; Bertino, Enrico; Li Volti, Giovanni; Galvano, Fabio; Visser, Gerard H A; Gazzolo, Diego

    2018-02-01

    Donor milk (DM) represents an important nutrition source for high-risk newborns. Holder pasteurization (HoP) is the most recommended procedure for DM treatment, providing a good compromise between microbiological safety and biological quality. HoP was previously shown to affect DM cytokines, growth factors and hormones levels, whilst no data concerning the possible effects of HoP on neurobiomarkers (NB) are available. Therefore, our study investigated whether the concentration in DM of a well-known NB involved in brain development/damage, namely S100B, changes due to HoP. We conducted a pretest-test study in 11 mothers, whose DM samples were sub-divided into two parts: the first was immediately frozen (-80 °C); the second was pasteurized with Holder method before freezing. S100B DM levels were measured using a commercially available immunoluminometric assay. S100B protein was detected in all milk samples. Results showed significant differences between groups (p pasteurization stresses and the need to develop new storage techniques to preserve the biological quality of human milk.

  15. Vildagliptin and its metabolite M20.7 induce the expression of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells.

    Science.gov (United States)

    Asakura, Mitsutoshi; Karaki, Fumika; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-10-19

    Vildagliptin is a potent, orally active inhibitor of dipeptidyl peptidase-4 (DPP-4) for the treatment of type 2 diabetes mellitus. It has been reported that vildagliptin can cause hepatic dysfunction in patients. However, the molecular-mechanism of vildagliptin-induced liver dysfunction has not been elucidated. In this study, we employed an expression microarray to determine hepatic genes that were highly regulated by vildagliptin in mice. We found that pro-inflammatory S100 calcium-binding protein (S100) a8 and S100a9 were induced more than 5-fold by vildagliptin in the mouse liver. We further examined the effects of vildagliptin and its major metabolite M20.7 on the mRNA expression levels of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells. In HepG2 cells, vildagliptin, M20.7, and sitagliptin - another DPP-4 inhibitor - induced S100A9 mRNA. In HL-60 cells, in contrast, S100A8 and S100A9 mRNAs were significantly induced by vildagliptin and M20.7, but not by sitagliptin. The release of S100A8/A9 complex in the cell culturing medium was observed in the HL-60 cells treated with vildagliptin and M20.7. Therefore, the parental vildagliptin- and M20.7-induced release of S100A8/A9 complex from immune cells, such as neutrophils, might be a contributing factor of vildagliptin-associated liver dysfunction in humans.

  16. Case report: Extreme levels of serum S-100B in a patient with chronic subdural hematoma

    Directory of Open Access Journals (Sweden)

    Malin Elisabet Persson

    2012-12-01

    Full Text Available The protein S-100B is a biomarker increasingly used within neurosurgery and neurointensive care. As a relatively sensitive, yet unspecific, indicator of CNS pathology, potential sources of error must be clearly understood when interpreting serum S-100B levels. This case report studied the course of a 46-year-old gentleman with a chronic subdural haemorrhage, serum S-100B levels of 22 μg/L and a history of malignant melanoma. Both intra- and extra-cranial sources of S-100B are evaluated and imply an unclear contribution of several sources to the total serum concentration. Potential sources of error when interpreting serum concentrations of S-100B are discussed

  17. Malignant peripheral nerve sheath tumor of the uterine cervix expressing both S-100 protein and HMB-45.

    Science.gov (United States)

    Kim, Na Rae; Chung, Dong-Hae; Park, Chan Yong; Ha, Seung Yeon

    2009-12-01

    A 50-year-old woman presented with a large cervical polypoid mass. Grossly, the mass occupied a substantial proportion of the cervical canal, measuring 6 cm. Histologically, the mass showed a spindle cell malignancy arranged in large fascicles that penetrated deeply into the fibromuscular wall of the cervix. The spindle cells were immunoreactive for both S-100 protein and HMB-45 antigen, but were negative for Melan-A. Electron microscopy showed that cytoplasmic processes of the spindle to oval tumor cells contained microtubules and were lined by basal lamina and abundant intercellular collagen spacing with no melanosomes in any stage. As far as we are aware, this is the ninth reported case of cervical malignant peripheral nerve sheath tumor (MPNST), and the second reported case of MPNST expressing HMB-45 antigen.

  18. S100A16 promotes differentiation and contributes to a less aggressive tumor phenotype in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Sapkota, Dipak; Bruland, Ove; Parajuli, Himalaya; Osman, Tarig A.; Teh, Muy-Teck; Johannessen, Anne C.; Costea, Daniela Elena

    2015-01-01

    Altered expression of S100A16 has been reported in human cancers, but its biological role in tumorigenesis is not fully understood. This study aimed to investigate the clinical significance and functional role of S100A16 in oral squamous cell carcinoma (OSCC) suppression. S100A16 mRNA and/or protein levels were examined by quantitative RT-PCR and immunohistochemistry in whole- and laser microdissected-specimens of normal human oral mucosa (NHOM, n = 65), oral dysplastic lesions (ODL, n = 21), OSCCs (n = 132) and positive cervical nodes (n = 17). S100A16 protein expression in OSCC was examined for correlations with clinicopathological variables and patient survival. S100A16 was over-expressed and knocked-down in OSCC-derived (CaLH3 and H357) cells by employing retroviral constructs to investigate its effects on cell proliferation, sphere formation and three dimensional (3D)-organotypic invasive abilities in vitro and tumorigenesis in a mouse xenograft model. Both S100A16 mRNA and protein levels were found to be progressively down-regulated from NHOM to ODL and OSCC. Low S100A16 protein levels in OSCC significantly correlated with reduced 10-year overall survival and poor tumor differentiation. Analysis of two external OSCC microarray datasets showed a positive correlation between the mRNA expression levels of S100A16 and keratinocyte differentiation markers. CaLH3 and H357 cell fractions enriched for differentiated cells either by lack of adherence to collagen IV or FACS sorting for low p75NTR expression expressed significantly higher S100A16 mRNA levels than the subpopulations enriched for less differentiated cells. Corroborating these findings, retroviral mediated S100A16 over-expression and knock-down in CaLH3 and H357 cells led to respective up- and down-regulation of differentiation markers. In vitro functional studies showed significant reduction in cell proliferation, sphere formation and 3D-invasive abilities of CaLH3 and H357 cells upon S100A16 over

  19. Evidence supporting a role for astrocytes in the regulation of cognitive flexibility and neuronal oscillations through the Ca2+ binding protein S100β.

    Science.gov (United States)

    Brockett, Adam T; Kane, Gary A; Monari, Patrick K; Briones, Brandy A; Vigneron, Pierre-Antoine; Barber, Gabriela A; Bermudez, Andres; Dieffenbach, Uma; Kloth, Alexander D; Buschman, Timothy J; Gould, Elizabeth

    2018-01-01

    The medial prefrontal cortex (mPFC) is important for cognitive flexibility, the ability to switch between two task-relevant dimensions. Changes in neuronal oscillations and alterations in the coupling across frequency ranges have been correlated with attention and cognitive flexibility. Here we show that astrocytes in the mPFC of adult male Sprague Dawley rats, participate in cognitive flexibility through the astrocyte-specific Ca2+ binding protein S100β, which improves cognitive flexibility and increases phase amplitude coupling between theta and gamma oscillations. We further show that reduction of astrocyte number in the mPFC impairs cognitive flexibility and diminishes delta, alpha and gamma power. Conversely, chemogenetic activation of astrocytic intracellular Ca2+ signaling in the mPFC enhances cognitive flexibility, while inactivation of endogenous S100β among chemogenetically activated astrocytes in the mPFC prevents this improvement. Collectively, our work suggests that astrocytes make important contributions to cognitive flexibility and that they do so by releasing a Ca2+ binding protein which in turn enhances coordinated neuronal oscillations.

  20. Expression of S100A4 by a variety of cell types present in the tumor microenvironment of human breast cancer

    DEFF Research Database (Denmark)

    Cabezón, Teresa; Celis, Julio E; Skibshøj, Inge

    2007-01-01

    The S100A4 protein, which is involved in the metastasis process, is a member of the S100 superfamily of Ca-binding proteins. Members of this family are multifunctional signaling proteins with dual extra and intracellular functions involved in the regulation of diverse cellular processes. Several ...... interstitial fluid (TIF) as compared to their corresponding normal counterparts (NIF)....

  1. Shared features of S100B immunohistochemistry and cytochrome oxidase histochemistry in the ventroposterior thalamus and lateral habenula in neonatal rats.

    Science.gov (United States)

    Muneoka, Katsumasa; Funahashi, Hisayuki; Ogawa, Tetsuo; Whitaker-Azmitia, Patricia M; Shioda, Seiji

    2012-10-01

    The ventroposterior thalamus and the habenular nuclei of the epithalamus are relevant to the monoaminergic system functionally and anatomically. The glia-derived S100B protein plays a critical role in the development of the nervous system including the monoaminergic systems. In this study, we performed an immunohistochemical study of glia-related proteins including S100B, serotonin transporter, and microtubule-associated protein 2, as well as cytochrome oxidase histochemistry in neonatal rats. Results showed the same findings for S100B immunohistochemistry between the ventroposterior thalamus and the lateral habenula at postnatal day 7: intense staining in cell bodies of astrocytes, diffusely spread immunoproduct in the intercellular space, and S100B-free areas as well as a strong reaction to cytochrome oxidase histochemistry. Further common features were the scarcity of glial fibrillary acidic protein-positive astrocytes and the few apoptotic cells observed. The results of the cytochrome oxidase reaction suggested that S100B is released actively into intercellular areas in restricted brain regions showing high neuronal activity at postnatal day 7. Pathology of the ventroposterior thalamus and the habenula is suggested in mental disorders, and S100B might be a key factor for investigations in these areas. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation

    Directory of Open Access Journals (Sweden)

    Young Keith A

    2010-11-01

    Full Text Available Abstract Background Numerous studies have reported that increased expression of S100B, an intracellular Ca2+ receptor protein and secreted neuropeptide, exacerbates Alzheimer's disease (AD pathology. However, the ability of S100B inhibitors to prevent/reverse AD histopathology remains controversial. This study examines the effect of S100B ablation on in vivo plaque load, gliosis and dystrophic neurons. Methods Because S100B-specific inhibitors are not available, genetic ablation was used to inhibit S100B function in the PSAPP AD mouse model. The PSAPP/S100B-/- line was generated by crossing PSAPP double transgenic males with S100B-/- females and maintained as PSAPP/S100B+/- crosses. Congo red staining was used to quantify plaque load, plaque number and plaque size in 6 month old PSAPP and PSAPP/S100B-/- littermates. The microglial marker Iba1 and astrocytic marker glial fibrillary acidic protein (GFAP were used to quantify gliosis. Dystrophic neurons were detected with the phospho-tau antibody AT8. S100B immunohistochemistry was used to assess the spatial distribution of S100B in the PSAPP line. Results PSAPP/S100B-/- mice exhibited a regionally selective decrease in cortical but not hippocampal plaque load when compared to PSAPP littermates. This regionally selective reduction in plaque load was accompanied by decreases in plaque number, GFAP-positive astrocytes, Iba1-positive microglia and phospho-tau positive dystrophic neurons. These effects were not attributable to regional variability in the distribution of S100B. Hippocampal and cortical S100B immunoreactivity in PSAPP mice was associated with plaques and co-localized with astrocytes and microglia. Conclusions Collectively, these data support S100B inhibition as a novel strategy for reducing cortical plaque load, gliosis and neuronal dysfunction in AD and suggest that both extracellular as well as intracellular S100B contribute to AD histopathology.

  3. Correlation of serum S100B protein with depressive episode of bipolar disorder and its prognosis%血清S100B蛋白与双相障碍抑郁发作及其预后的相关性研究

    Institute of Scientific and Technical Information of China (English)

    张载福; 杨帆; 王卫平; 施波; 赵俊雄; 吕望强; 喻跃国; 贾玉萍; 张晨

    2017-01-01

    目的·探讨血清S100B蛋白水平与双相障碍抑郁发作及其预后的相关性.方法·根据美国精神病协会《精神障碍诊断与统计手册》第4版(DSM-Ⅳ)诊断标准,入组双相障碍抑郁发作患者80例(病例组)以及健康对照者42名(对照组).病例组患者采用随机数字表法进入碳酸锂联合喹硫平治疗组(喹硫平组)及碳酸锂合并改良无抽搐电休克治疗组(MECT组);治疗前及治疗4周末分别测定2组血清S100B水平并评定汉密尔顿抑郁量表(HAMD).结果·经过4周随访,喹硫平组共完成36例,MECT组完成31例.病例组治疗前血清S100B水平显著高于对照组(P=0.000);治疗后,喹硫平组与MECT组患者血清S100B水平均较治疗前显著下降,HAMD评分均较治疗前显著降低(P=0.000);PearSon相关分析显示病例组治疗前后血清S100B变化水平与HAMD评分变化值呈正相关(r=0.33,P=0.013).结论·S100B可能与双相障碍抑郁发作以及预后有关.%Objective · To explore the correlation of serum S100B protein with depressive episode of bipolar disorder (BD) and its prognosis.Methods· Based on BD criteria of Diagnostic and Statistical Manual of Mental Disorders 4th edition (DSM-Ⅳ),80 patients with depressive episode of BD (case group) and 42 healthy controls (control group) were enrolled.Patients were randomly assigned into quetiapine group who were treated with lithium and quetiapine and modified electroconvulsive therapy (MECT) group who received lithium and MECT.The serum S100B level and Hamilton Rating Scale for Depression (HAMD) were assayed before and after 4-week treatment.Results· The serum S100B levels before treatment in patients with depressive episode of BD were significantly higher than those in healthy controls (P=0.000).The levels of S100B in both drug and MECT groups decreased after 4-week treatment.The HAMD score after treatment significantly decreased than that before treatment (P=0.000).Pearson correlation analysis

  4. Brain injury markers (S100B and NSE) in chronic cocaine dependents Marcadores de lesão cerebral (S100B e NSE) em dependentes crônicos de cocaína

    OpenAIRE

    Felix Henrique Paim Kessler; George Woody; Luís Valmor Cruz Portela; Adriano Bretanha Lopes Tort; Raquel De Boni; Ana Carolina Wolf Baldino Peuker; Vanessa Genro; Lísia von Diemen; Diogo Onofre Gomes de Souza; Flavio Pechansky

    2007-01-01

    OBJECTIVE: Studies have shown signs of brain damage caused by different mechanisms in cocaine users. The serum neuron specific enolase and S100B protein are considered specific biochemical markers of neuronal and glial cell injury. This study aimed at comparing blood levels of S100B and NSE in chronic cocaine users and in volunteers who did not use cocaine or other illicit drugs. METHOD: Twenty subjects dependent on cocaine but not on alcohol or marijuana, and 20 non-substance using controls ...

  5. Huperzine A, but not tacrine, stimulates S100B secretion in astrocyte cultures.

    Science.gov (United States)

    Lunardi, Paula; Nardin, Patrícia; Guerra, Maria Cristina; Abib, Renata; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2013-04-09

    The loss of cholinergic function in the central nervous system contributes significantly to the cognitive decline associated with advanced age and dementias. Huperzine A (HupA) is a selective inhibitor of acetylcholinesterase (AChE) and has been shown to significantly reduce cognitive impairment in animal models of dementia. Based on the importance of astrocytes in physiological and pathological brain activities, we investigated the effect of HupA and tacrine on S100B secretion in primary astrocyte cultures. S100B is an astrocyte-derived protein that has been proposed to be a marker of brain injury. Primary astrocyte cultures were exposed to HupA, tacrine, cholinergic agonists, and S100B secretion was measured by enzyme-linked immunosorbent assay (ELISA) at 1 and 24h. HupA, but not tacrine, at 100μM significantly increased S100B secretion in astrocyte cultures. Nicotine (at 100 and 1000μM) was able to stimulate S100B secretion in astrocyte cultures. Our data reinforce the idea that AChE inhibitors, particularly HupA, do not act exclusively on the acetylcholine balance. This effect of HupA could contribute to improve the cognitive deficit observed in patients, which are attributed to cholinergic dysfunction. In addition, for the first time, to our knowledge, these data indicate that S100B secretion can be modulated by nicotinic receptors, in addition to glutamate, dopamine and serotonin receptors. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    Directory of Open Access Journals (Sweden)

    Takahiro Ochiya

    Full Text Available The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy.

  7. S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression.

    Science.gov (United States)

    Prieto, Daniel; Sotelo, Natalia; Seija, Noé; Sernbo, Sandra; Abreu, Cecilia; Durán, Rosario; Gil, Magdalena; Sicco, Estefanía; Irigoin, Victoria; Oliver, Carolina; Landoni, Ana Inés; Gabus, Raúl; Dighiero, Guillermo; Oppezzo, Pablo

    2017-08-10

    Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by accumulation of clonal B lymphocytes, resulting from a complex balance between cell proliferation and apoptotic death. Continuous crosstalk between cancer cells and local/distant host environment is required for effective tumor growth. Among the main actors of this dynamic interplay between tumoral cells and their microenvironment are the nano-sized vesicles called exosomes. Emerging evidence indicates that secretion, composition, and functional capacity of exosomes are altered as tumors progress to an aggressive phenotype. In CLL, no data exist exploring the specific changes in the proteomic profile of plasma-derived exosomes from patients during disease evolution. We hereby report for the first time different proteomic profiles of plasma exosomes, both between indolent and progressive CLLs as well as within the individual patients at the onset of disease and during its progression. Next, we focus on the changes of the exosome protein cargoes, which are found exclusively in patients with progressive CLL after disease progression. The alterations in the proteomic cargoes underline different networks specific for leukemia progression related to inflammation, oxidative stress, and NF-κB and phosphatidylinositol 3-kinase/AKT pathway activation. Finally, our results suggest a preponderant role for the protein S100-A9 as an activator of the NFκB pathway during CLL progression and suggest that the leukemic clone can generate an autoactivation loop through S100-A9 expression, NF-κB activation, and exosome secretion. Collectively, our data propose a new pathway for NF-κB activation in CLL and highlight the importance of exosomes as extracellular mediators promoting tumor progression in CLL. © 2017 by The American Society of Hematology.

  8. Diagnostic accuracy of S100B urinary testing at birth in full-term asphyxiated newborns to predict neonatal death.

    Directory of Open Access Journals (Sweden)

    Diego Gazzolo

    Full Text Available BACKGROUND: Neonatal death in full-term infants who suffer from perinatal asphyxia (PA is a major subject of investigation, since few tools exist to predict patients at risk of ominous outcome. We studied the possibility that urine S100B measurement may identify which PA-affected infants are at risk of early postnatal death. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study between January 1, 2001 and December 1, 2006 we measured S100B protein in urine collected from term infants (n = 132, 60 of whom suffered PA. According to their outcome at 7 days, infants with PA were subsequently classified either as asphyxiated infants complicated by hypoxic ischemic encephalopathy with no ominous outcome (HIE Group; n = 48, or as newborns who died within the first post-natal week (Ominous Outcome Group; n = 12. Routine laboratory variables, cerebral ultrasound, neurological patterns and urine concentrations of S100B protein were determined at first urination and after 24, 48 and 96 hours. The severity of illness in the first 24 hours after birth was measured using the Score for Neonatal Acute Physiology-Perinatal Extension (SNAP-PE. Urine S100B levels were higher from the first urination in the ominous outcome group than in healthy or HIE Groups (p1.0 microg/L S100B had a sensitivity/specificity of 100% for predicting neonatal death. CONCLUSIONS/SIGNIFICANCE: Increased S100B protein urine levels in term newborns suffering PA seem to suggest a higher risk of neonatal death for these infants.

  9. Impact of S100A4 Expression on Clinicopathological Characteristics and Prognosis in Pancreatic Cancer: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Shanshan Huang

    2016-01-01

    Full Text Available Background. The small Ca2+-binding protein S100A4 is identified as a metastasis-associated or metastasis-inducing protein in various types of cancer. The goal of this meta-analysis was to evaluate the relationship between S100A4 expression and clinicopathological characteristics and prognosis of patients with pancreatic cancer. Methods. A comprehensive literature search was carried out in the electronic databases PubMed and Chinese CNKI. Only the studies reporting the correlation between S100A4 expression and clinicopathological characteristics or overall survival (OS of patients with pancreatic cancer are enrolled. Extracted data was analyzed using the RevMan 5.3 software to calculate the pooled relative risks (95% confidence interval, CI for statistical analyses. Results. Seven studies including a total of 474 patients were enrolled into this meta-analysis. Negative expression of S100A4 was significantly associated with higher 3-year OS rate (RR = 3.92, 95% CI = 2.24–6.87, P<0.0001, compared to S100A4-positive cases. Moreover, negative expression of S100A4 was also related to N0 stage for lymph node metastasis (RR = 2.15, 95% CI = 1.60–2.88, P<0.0001. However, S100A4 expression was not significantly correlated with histological types and distant metastasis status. Conclusion. S100A4 expression represents a potential marker for lymph node metastasis of pancreatic cancer and a potential unfavorable factor for prognosis of patients with this disease.

  10. Calbindin and S100 protein expression in the developing inner ear in mice

    Czech Academy of Sciences Publication Activity Database

    Buckiová, Daniela; Syka, Josef

    2009-01-01

    Roč. 513, č. 5 (2009), s. 469-482 ISSN 0021-9967 R&D Projects: GA ČR GA309/07/1336; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50390512 Keywords : Calcium binding proteins * Immunohistochemistry * Development Subject RIV: FH - Neurology Impact factor: 3.718, year: 2009

  11. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina

    2013-02-11

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction\\'s strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Inflammation-Related Gene S100A12 Is Positively Regulated by C/EBPβ and AP-1 in Pigs

    Directory of Open Access Journals (Sweden)

    Xinyun Li

    2014-08-01

    Full Text Available S100A12 is involved in the inflammatory response and is considered an important marker for many inflammatory diseases in humans. Our previous studies indicated that the S100A12 gene was abundant in the immune tissues of pigs and was significantly upregulated during infection with Haemophilus parasuis (HPS or porcine circovirus type 2 (PCV2. In this study, the mechanism of transcriptional regulation of S100A12 was investigated in pigs. Our results showed that S100A12, CCAAT/enhancer-binding protein beta (C/EBPβ and activator protein-1 (AP-1 genes were up-regulated in PK-15 (ATCC, CCL-33 cells when treated with LPS or Poly I: C. Additionally, the promoter activity and expression level of the S100A12 gene were significantly upregulated when C/EBPβ or AP-1 were overexpressed. We utilized electromobility shift assays (EMSA to confirm that C/EBPβ and AP-1 could directly bind the S100A12 gene promoter. We also found that the transcriptional activity and expression levels of C/EBPβ and AP-1 could positively regulate each other. Furthermore, the promoter activity of the S100A12 gene was higher when C/EBPβ and AP-1 were cotransfected than when they were transfected individually. We concluded that the S100A12 gene was cooperatively and positively regulated by C/EBPβ and AP-1 in pigs. Our study offers new insight into the transcriptional regulation of the S100A12 gene.

  13. Interleukin-6 induces S100A9 expression in colonic epithelial cells through STAT3 activation in experimental ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Min Jeoung Lee

    Full Text Available BACKGROUND: Intestinal epithelium is essential for maintaining normal intestinal homeostasis; its breakdown leads to chronic inflammatory pathologies, such as inflammatory bowel diseases (IBDs. Although high concentrations of S100A9 protein and interleukin-6 (IL-6 are found in patients with IBD, the expression mechanism of S100A9 in colonic epithelial cells (CECs remains elusive. We investigated the role of IL-6 in S100A9 expression in CECs using a colitis model. METHODS: IL-6 and S100A9 expression, signal transducer and activator of transcription 3 (STAT3 phosphorylation, and infiltration of immune cells were analyzed in mice with dextran sulfate sodium (DSS-induced colitis. The effects of soluble gp130-Fc protein (sgp130Fc and S100A9 small interfering (si RNA (si-S100A9 on DSS-induced colitis were evaluated. The molecular mechanism of S100A9 expression was investigated in an IL-6-treated Caco-2 cell line using chromatin immunoprecipitation assays. RESULTS: IL-6 concentrations increased significantly in the colon tissues of DSS-treated mice. sgp130Fc or si-S100A9 administration to DSS-treated mice reduced granulocyte infiltration in CECs and induced the down-regulation of S100A9 and colitis disease activity. Treatment with STAT3 inhibitors upon IL-6 stimulation in the Caco-2 cell line demonstrated that IL-6 mediated S100A9 expression through STAT3 activation. Moreover, we found that phospho-STAT3 binds directly to the S100A9 promoter. S100A9 may recruit immune cells into inflamed colon tissues. CONCLUSIONS: Elevated S100A9 expression in CECs mediated by an IL-6/STAT3 signaling cascade may play an important role in the development of colitis.

  14. Chronic sustained inflammation links to left ventricular hypertrophy and aortic valve sclerosis: a new link between S100/RAGE and FGF23.

    Science.gov (United States)

    Yan, Ling; Bowman, Marion A Hofmann

    Cardiovascular disease including left ventricular hypertrophy, diastolic dysfunction and ectopic valvular calcification are common in patients with chronic kidney disease (CKD). Both S100A12 and fibroblast growth factor 23 (FGF23) have been identified as biomarkers of cardiovascular morbidity and mortality in patients with CKD. We tested the hypothesis that human S100/calgranulin would accelerate cardiovascular disease in mice subjected to CKD. This review paper focuses on S100 proteins and their receptor for advanced glycation end products (RAGE) and summarizes recent findings obtained in novel developed transgenic hBAC-S100 mice that express S100A12 and S100A8/9 proteins. A bacterial artificial chromosome of the human S100/calgranulin gene cluster containing the genes and regulatory elements for S100A8, S100A9 and S100A12 was expressed in C57BL/6J mice (hBAC-S100). CKD was induced by ureteral ligation, and hBAC-S100 mice and WT mice were studied after 10 weeks of chronic uremia. hBAC-S100 mice with CKD showed increased FGF23 in the heart, left ventricular hypertrophy (LVH), diastolic dysfunction, focal cartilaginous metaplasia and calcification of the mitral and aortic valve annulus together with aortic valve sclerosis. This phenotype was not observed in WT mice with CKD or in hBAC-S100 mice lacking RAGE with CKD, suggesting that the inflammatory milieu mediated by S100/RAGE promotes pathological cardiac hypertrophy in CKD. In vitro, inflammatory stimuli including IL-6, TNFα, LPS, or serum from hBAC-S100 mice up regulated FGF23 mRNA and protein in primary murine neonatal and adult cardiac fibroblasts. Taken together, our study shows that myeloid-derived human S100/calgranulin is associated with the development of cardiac hypertrophy and ectopic cardiac calcification in a RAGE dependent manner in a mouse model of CKD. We speculate that FGF23 produced by cardiac fibroblasts in response to cytokines may act in a paracrine manner to accelerate LVH and diastolic

  15. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway.

    Science.gov (United States)

    Yu, Jiangkun; Lu, Yanyu; Li, Yapeng; Xiao, Lili; Xing, Yu; Li, Yanshen; Wu, Leiming

    2015-09-01

    S100A1 plays a crucial role in hypoxia-induced inflammatory response in cardiomyocytes. However, the role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes is still unknown. enzyme-linked immunosorbent assay (ELISA) was performed for the determination of inflammatory cytokines. Immunocytochemistry and immunofluorescence, Western blot analysis and Real-time polymerase chain reaction (RT-PCR) were conducted to assess protein or mRNA expressions. Fluorogenic probe dihydroethidium (DHE) was used to evaluate the generation of reactive oxygen species (ROS) while Hoechst 33342 staining for apoptosis. Small interfering RNA (siRNA) for S100A1 was used to evaluate the role of S100A1. The levels of ROS and inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 in H9c2 cells were increased remarkably by hypoxia. However, IL-37 protein or mRNA levels were decreased significantly. Both Toll-like receptor 4 (TLR4) inhibitor Ethyl (6R)-6-[N-(2-Chloro-4fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) treatment or siRNA S100A1 downregulated TLR4 expression and inflammatory cytokine level and mRNA in H9c2 cells, as well as weakening ROS and phospho-p65 Nuclear factor (NF)-κB levels. Further, S100A1 treatment significantly reduced TNF-α protein or mRNA level whereas enhanced IL-37 protein or mRNA level, and could attenuate ROS and phospho-p65 NF-κB levels. Our results demonstrate that S100A1 can regulate the inflammatory response and oxidative stress in H9C2 cells via TLR4/ROS/NF-κB pathway. These findings provide an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response. © 2015 Royal Pharmaceutical Society.

  16. The primary structures of ribosomal proteins S14 and S16 from the archaebacterium Halobacterium marismortui. Comparison with eubacterial and eukaryotic ribosomal proteins.

    Science.gov (United States)

    Kimura, J; Kimura, M

    1987-09-05

    The amino acid sequences of two ribosomal proteins, S14 and S16, from the archaebacterium Halobacterium marismortui have been determined. Sequence data were obtained by the manual and solid-phase sequencing of peptides derived from enzymatic digestions with trypsin, chymotrypsin, pepsin, and Staphylococcus aureus protease as well as by chemical cleavage with cyanogen bromide. Proteins S14 and S16 contain 109 and 126 amino acid residues and have Mr values of 11,964 and 13,515, respectively. Comparison of the sequences with those of ribosomal proteins from other organisms demonstrates that S14 has a significant homology with the rat liver ribosomal protein S11 (36% identity) as well as with the Escherichia coli ribosomal protein S17 (37%), and that S16 is related to the yeast ribosomal protein YS22 (40%) and proteins S8 from E. coli (28%) and Bacillus stearothermophilus (30%). A comparison of the amino acid residues in the homologous regions of halophilic and nonhalophilic ribosomal proteins reveals that halophilic proteins have more glutamic acids, asparatic acids, prolines, and alanines, and less lysines, arginines, and isoleucines than their nonhalophilic counterparts. These amino acid substitutions probably contribute to the structural stability of halophilic ribosomal proteins.

  17. S100A6 is a negative regulator of the induction of cardiac genes by trophic stimuli in cultured rat myocytes

    International Nuclear Information System (INIS)

    Tsoporis, J.N.; Marks, A.; Haddad, A.; O'Hanlon, D.; Jolly, S.; Parker, T.G.

    2005-01-01

    S100A6 (calcyclin), a member of the S100 family of EF-hand Ca 2+ binding proteins, has been implicated in the regulation of cell growth and proliferation. We have previously shown that S100B, another member of the S100 family, is induced postinfarction and limits the hypertrophic response of surviving cardiac myocytes. We presently report that S100A6 expression is also increased in the periinfarct zone of rat heart postinfarction and in cultured neonatal rat myocytes by treatment with several trophic agents, including platelet-derived growth factor (PDGF), the α 1 -adrenergic agonist phenylephrine (PE), and angiotensin II (AII). Cotransfection of S100A6 in cultured neonatal rat cardiac myocytes inhibits induction of the cardiac fetal gene promoters skeletal α-actin (skACT) and β-myosin heavy chain (β-MHC) by PDGF, PE, AII, and the prostaglandin F 2α (PGF 2α ), induction of the S100B promoter by PE, and induction of the α-MHC promoter by triiodothyronine (T3). By contrast, S100B cotransfection selectively inhibited only PE induction of skACT and β-MHC promoters. Fluorescence microscopy demonstrated overlapping intracellular distribution of S100B and S100A6 in transfected myocytes and in postinfarct myocardium but heterodimerization of the two proteins could not be detected by co-immunoprecipitation. We conclude that S100A6 may function as a global negative modulator of differentiated cardiac gene expression comparable to its putative role in cell cycle progression of dividing cells

  18. Os possíveis papéis da S100B na esquizofrenia Potential roles of S100B in schizophrenia

    Directory of Open Access Journals (Sweden)

    Johann Steiner

    2012-01-01

    Full Text Available CONTEXTO: Evidências científicas do aumento da concentração da proteína S100B no sangue de pacientes esquizofrênicos são muito consistentes. No passado essa informação era principalmente considerada como reflexo da disfunção astroglial ou da barreira hematoencefálica. MÉTODOS: Pesquisa de publicações no PubMed até o dia 15 de junho de 2011 visando estabelecer potenciais ligações entre a proteína S100B e as hipóteses correntes da esquizofrenia. RESULTADOS: A S100B está potencialmente associada com as hipóteses dopaminérgica e glutamatérgica. O aumento da expressão de S100B tem sido detectado em astrócitos corticais em casos de esquizofrenia paranoide, enquanto se observa uma redução da expressão em oligodendrócitos na esquizofrenia residual, dando suporte à hipótese glial. Recentemente, a hipótese da neuroinflamação da esquizofrenia tem recebido atenção crescente. Nesse sentido, a S100B pode funcionar como uma citocina secretada por células gliais, linfócitos CD8+ e células NK, levando à ativação de monócitos e microglia. Além disso, a S100B apresenta propriedades do tipo adipocina e pode estar desregulada na esquizofrenia, devido a distúrbios da sinalização de insulina, levando ao aumento da liberação de S100B e ácidos graxos do tecido adiposo. CONCLUSÃO: A expressão de S100B em diferentes tipos celulares está envolvida em muitos processos regulatórios. Atualmente, não pode ser respondido qual mecanismo relacionado à esquizofrenia é o mais importante.BACKGROUND: Scientific evidence for increased S100B concentrations in the peripheral blood of acutely ill schizophrenia patients is consistent. In the past, this finding was mainly considered to reflect astroglial or blood-brain barrier dysfunction. METHODS: Using Entrez, PubMed was searched for articles published on or before June 15, 2011, including electronic early release publications, in order to determine other potential links between S

  19. Os possíveis papéis da S100B na esquizofrenia Potential roles of S100B in schizophrenia

    Directory of Open Access Journals (Sweden)

    Johann Steiner

    2013-01-01

    Full Text Available CONTEXTO: Evidências científicas do aumento da concentração da proteína S100B no sangue de pacientes esquizofrênicos são muito consistentes. No passado essa informação era principalmente considerada como reflexo da disfunção astroglial ou da barreira hematoencefálica. MÉTODOS: Pesquisa de publicações no PubMed até o dia 15 de junho de 2011 visando estabelecer potenciais ligações entre a proteína S100B e as hipóteses correntes da esquizofrenia. RESULTADOS: A S100B está potencialmente associada com as hipóteses dopaminérgica e glutamatérgica. O aumento da expressão de S100B tem sido detectado em astrócitos corticais em casos de esquizofrenia paranoide, enquanto se observa uma redução da expressão em oligodendrócitos na esquizofrenia residual, dando suporte à hipótese glial. Recentemente, a hipótese da neuroinflamação da esquizofrenia tem recebido atenção crescente. Nesse sentido, a S100B pode funcionar como uma citocina secretada por células gliais, linfócitos CD8+ e células NK, levando à ativação de monócitos e microglia. Além disso, a S100B apresenta propriedades do tipo adipocina e pode estar desregulada na esquizofrenia, devido a distúrbios da sinalização de insulina, levando ao aumento da liberação de S100B e ácidos graxos do tecido adiposo. CONCLUSÃO: A expressão de S100B em diferentes tipos celulares está envolvida em muitos processos regulatórios. Atualmente, não pode ser respondido qual mecanismo relacionado à esquizofrenia é o mais importante.BACKGROUND: Scientific evidence for increased S100B concentrations in the peripheral blood of acutely ill schizophrenia patients is consistent. In the past, this finding was mainly considered to reflect astroglial or blood-brain barrier dysfunction. METHODS: Using Entrez, PubMed was searched for articles published on or before June 15, 2011, including electronic early release publications, in order to determine other potential links between S

  20. Systematic review and meta-analysis of circulating S100B blood levels in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Katina Aleksovska

    Full Text Available S100B is a calcium-binding protein secreted in central nervous system from astrocytes and other glia cells. High blood S100B levels have been linked to brain damage and psychiatric disorders. S100B levels have been reported to be higher in schizophrenics than healthy controls. To quantify the relationship between S100B blood levels and schizophrenia a systematic literature review of case-control studies published on this topic within July 3rd 2014 was carried out using three bibliographic databases: Medline, Scopus and Web of Science. Studies reporting mean and standard deviation of S100B blood levels both in cases and controls were included in the meta-analysis. The meta-Mean Ratio (mMR of S100B blood levels in cases compared to controls was used as a measure of effect along with its 95% Confidence Intervals (CI. 20 studies were included totaling for 994 cases and 785 controls. Schizophrenia patients showed 76% higher S100B blood levels than controls with mMR = 1.76 95% CI: 1.44-2.15. No difference could be found between drug-free patients with mMR = 1.84 95%CI: 1.24-2.74 and patients on antipsychotic medication with mMR = 1.75 95% CI: 1.41-2.16. Similarly, ethnicity and stage of disease didn't affect results. Although S100B could be regarded as a possible biomarker of schizophrenia, limitations should be accounted when interpreting results, especially because of the high heterogeneity that remained >70%, even after carrying out subgroups analyses. These results point out that approaches based on traditional categorical diagnoses may be too restrictive and new approaches based on the characterization of new complex phenotypes should be considered.

  1. Serum S100B levels after meningioma surgery: A comparison of two laboratory assays

    Directory of Open Access Journals (Sweden)

    Weiniger Carolyn F

    2008-09-01

    Full Text Available Abstract Background S100B protein is a potential biomarker of central nervous system insult. This study quantitatively compared two methods for assessing serum concentration of S100B. Methods A prospective, observational study performed in a single tertiary medical center. Included were fifty two consecutive adult patients undergoing surgery for meningioma that provided blood samples for determination of S100B concentrations. Eighty samples (40 pre-operative and 40 postoperative were randomly selected for batch testing. Each sample was divided into two aliquots. These were analyzed by ELISA (Sangtec and a commercial kit (Roche Elecsys® for S100B concentrations. Statistical analysis included regression modelling and Bland-Altman analysis. Results A parsimonious linear model best described the prediction of commercial kit values by those determined by ELISA (y = 0.045 + 0.277*x, x = ELISA value, R2 = 0.732. ELISA measurements tended to be higher than commercial kit measurements. This discrepancy increased linearly with increasing S100B concentrations. At concentrations above 0.7 μg/L the paired measurements were consistently outside the limits of agreement in the Bland-Altman display. Similar to other studies that used alternative measurement methods, sex and age related differences in serum S100B levels were not detected using the Elecsys® (p = 0.643 and 0.728 respectively. Conclusion Although a generally linear relationship exists between serum S100B concentrations measured by ELISA and a commercially available kit, ELISA values tended to be higher than commercial kit measurements particularly at concentrations over 0.7 μg/L, which are suggestive of brain injury. International standardization of commercial kits is required before the predictive validity of S100B for brain damage can be effectively assessed in clinical practice.

  2. Effect of salvia miltiorrhiza and ligustrazine hydrochloride injection combined with hydroxyethyl starch injection on serum BNP, Hcy, MMP-2, S100B protein and hemorheology in patients with acute cerebral watershed infarction

    Directory of Open Access Journals (Sweden)

    Dong Chen

    2017-09-01

    Full Text Available Objective: To study the effect of salvia miltiorrhiza and ligustrazine hydrochloride injection combined with hydroxyethyl starch injection on serum BNP, Hcy, MMP-2, S100B protein and hemorheology in patients with acute cerebral watershed infarction. Methods: A total of 90 patientswith acute cerebral watershed infarction in our hospital from August 2014 to December 2016 were enrolled in this study. The subjects were divided into the control group (n=45 and the treatment group (n=45 randomly. The control group was treated with hydroxyethyl starch injection, the treatment group was treated withsalvia miltiorrhiza and ligustrazine hydrochloride injection combined with hydroxyethyl starch injection, and both the two groups were treated for 2 weeks. The serum BNP, Hcy, MMP-2, S100B protein and hemorheology of the two groups before and after treatments were compared. Results: There were no significantly differences of the serum BNP, Hcy, MMP-2, S100B protein and hemorheology of the two groups before treatment. The serum BNP, Hcy, MMP-2, S100B proteinlevels of the two groups after treatment were significantly lower than before treatment, and that of the treatment group after treatment were significantly lower than the control group. The PV, Lr, Mr, Hr and RE of the two groups after treatment were significantly lower than before treatment, and that of the treatment group after treatment were significantly lower than the control group. Conclusion: Salvia miltiorrhiza and ligustrazine hydrochloride injection combined with hydroxyethyl starch injectioncan significantlyimprovetheneurological function and hemorheology, reduce inflammation of the patients with acute cerebral watershed infarction, and it was worthy clinical application.

  3. Prognostic utility of plasma S100A12 levels to establish a novel scoring system for predicting mortality in maintenance hemodialysis patients: a two-year prospective observational study in Japan

    Directory of Open Access Journals (Sweden)

    Shiotsu Yayoi

    2013-01-01

    Full Text Available Abstract Background S100A12 protein is an endogenous receptor ligand for advanced glycation end products. In this study, the plasma S100A12 level was assessed as an independent predictor of mortality, and its utility in clinical settings was examined. Methods In a previous cross-sectional study, plasma S100A12 levels were measured in 550 maintenance hemodialysis patients to determine the association between S100A12 and the prevalence of cardiovascular diseases (CVD. In this prospective study, the risk of mortality within a two-year period was determined. An integer scoring system was developed to predict mortality on the basis of the plasma S100A12 levels. Results Higher plasma S100A12 levels (≥18.79 ng/mL were more closely associated with higher all-cause mortality than lower plasma S100A12 levels (P = 0.001. Multivariate Cox proportional hazards analysis revealed higher plasma S100A12 levels [hazard ratio (HR, 2.267; 95% confidence interval (CI, 1.195–4.302; P = 0.012], age ≥65 years (HR, 1.961; 95%CI, 1.017–3.781; P = 0.044, serum albumin levels P = 0.012, and history of CVD (HR, 2.068; 95%CI, 1.146–3.732; P = 0.016 to be independent predictors of two-year all-cause mortality. The integer score was derived by assigning points to these factors and determining total scores. The scoring system revealed trends across increasing scores for predicting the all-cause mortality [c-statistic = 0.730 (0.656–0.804]. The resulting model demonstrated good discriminative power for distinguishing the validation population of 303 hemodialysis patients [c-statistic = 0.721 (0.627–0.815]. Conclusion The results indicate that plasma S100A12 level is an independent predictor for two-year all-cause mortality. A simple integer scoring system was therefore established for predicting mortality on the basis of plasma S100A12 levels.

  4. BIOMARKERS S100B AND NSE PREDICT OUTCOME IN HYPOTHERMIA-TREATED ENCEPHALOPATHIC NEWBORNS

    Science.gov (United States)

    Massaro, An N.; Chang, Taeun; Baumgart, Stephen; McCarter, Robert; Nelson, Karin B.; Glass, Penny

    2014-01-01

    Objective To evaluate if serum S100B protein and neuron specific enolase (NSE) measured during therapeutic hypothermia are predictive of neurodevelopmental outcome at 15 months in children with neonatal encephalopathy (NE). Design Prospective longitudinal cohort study Setting A level IV neonatal intensive care unit in a free-standing children’s hospital. Patients Term newborns with moderate to severe NE referred for therapeutic hypothermia during the study period. Interventions Serum NSE and S100B were measured at 0, 12, 24 and 72 hrs of hypothermia. Measurements and Main Reseults Of the 83 infants were enrolled, fifteen (18%) died in the newborn period. Survivors were evaluated by the Bayley Scales of Infant Development (BSID-II) at 15 months of age. Outcomes were assessed in 49/68 (72%) survivors at a mean age of 15.2±2.7 months. Neurodevelopmental outcome was classified by BSID-II Mental (MDI) and Psychomotor (PDI) Developmental Index scores, reflecting cognitive and motor outcomes respectively. Four-level outcome classifications were defined a priori: normal= MDI/PDI within 1SD (>85), mild= MDI/PDI <1SD (70–85), moderate/severe= MDI/PDI <2SD (<70), or died. Elevated serum S100B and NSE levels measured during hypothermia were associated with increasing outcome severity after controlling for baseline and soceioeconomic characteristics in ordinal regression models. Adjusted odds ratios for cognitive outcome were: S100B 2.5 (95% CI 1.3–4.8) and NSE 2.1 (1.2–3.6); for motor outcome: S100B 2.6 (1.2–5.6) and NSE 2.1 (1.2–3.6). Conclusions Serum S100B and NSE levels in babies with NE are associated with neurodevelopmental outcome at 15 months. These putative biomarkers of brain injury may help direct care during therapeutic hypothermia. PMID:24777302

  5. A systematic review of the biomarker S100B: implications for sport-related concussion management.

    Science.gov (United States)

    Schulte, Stefanie; Podlog, Leslie W; Hamson-Utley, J Jordan; Strathmann, Frederick G; Strüder, Heiko K

    2014-01-01

    Elevated levels of the astroglial protein S100B have been shown to predict sport-related concussion. However, S100B levels within an athlete can vary depending on the type of physical activity (PA) engaged in and the methodologic approach used to measure them. Thus, appropriate reference values in the diagnosis of concussed athletes remain undefined. The purpose of our systematic literature review was to provide an overview of the current literature examining S100B measurement in the context of PA. The overall goal is to improve the use of the biomarker S100B in the context of sport-related concussion management. PubMed, SciVerse Scopus, SPORTDiscus, CINAHL, and Cochrane. We selected articles that contained (1) research studies focusing exclusively on humans in which (2) either PA was used as an intervention or the test participants or athletes were involved in PA and (3) S100B was measured as a dependent variable. We identified 24 articles. Study variations included the mode of PA used as an intervention, sample types, sample-processing procedures, and analytic techniques. Given the nonuniformity of the analytical methods used and the data samples collected, as well as differences in the types of PA investigated, we were not able to determine a single consistent reference value of S100B in the context of PA. Thus, a clear distinction between a concussed athlete and a healthy athlete based solely on the existing S100B cutoff value of 0.1 μg/L remains unclear. However, because of its high sensitivity and excellent negative predictive value, S100B measurement seems to have the potential to be a diagnostic adjunct for concussion in sports settings. We recommend that the interpretation of S100B values be based on congruent study designs to ensure measurement reliability and validity.

  6. [(35)S]-GTPgammaS autoradiography reveals alpha(2) adrenoceptor-mediated G-protein activation in amygdala and lateral septum.

    Science.gov (United States)

    Newman-Tancredi, A; Chaput, C; Touzard, M; Millan, M J

    2000-04-03

    alpha(2)-adrenoceptor-mediated G-protein activation was examined by [(35)S]-GTPgammaS autoradiography. In alpha(2)-adrenoceptor-rich regions (amygdala, lateral septum), noradrenaline stimulated [(35)S]-GTPgammaS binding. These actions were abolished by the selective alpha(2) antagonist, atipamezole. Conversely, in caudate nucleus, which expresses few alpha(2) receptors, noradrenaline-induced stimulation was not inhibited by atipamezole, suggesting that it is not mediated by alpha(2)-adrenoceptors.

  7. Gene expression and protein secretion of apolipoprotein B100 (ApoB100 in transition dairy cows under hot or thermoneutral environments

    Directory of Open Access Journals (Sweden)

    Alessandro Nardone

    2010-01-01

    Full Text Available The aim of the study was to investigate the effects of hot season on gene expression and protein secretion of ApoB100 in transition dairy cows. Hot season strongly down-regulated ApoB100 gene and protein expression. This condition and the higher circulating NEFA were responsible for the higher lipid accumulation in liver of heat-stressed transition cows.

  8. Combination PPARγ and RXR Agonist Treatment in Melanoma Cells: Functional Importance of S100A2

    Directory of Open Access Journals (Sweden)

    Joshua P. Klopper

    2010-01-01

    Full Text Available Nuclear hormone receptors, including RXR and PPARγ, represent novel therapeutic targets in melanoma. We have previously shown that the DRO subline of the amelanotic melanoma A375 responds to rexinoid and thiazolidinedione (TZD treatment in vitro and in vivo. We performed microarray analysis of A375(DRO after TZD and combination rexinoid/TZD treatment in which the calcium binding protein S100A2 had increased expression after rexinoid or TZD treatment and a synergistic increase to combination treatment. Increased S100A2 expression is dependent on an intact PPARγ receptor, but it is not sufficient to mediate the antiproliferative effects of rexinoid/TZD treatment. Over expression of S100A2 enhanced the effect of rexinoid and TZD treatment while inhibition of S100A2 expression attenuated the response to rexinoid/TZD treatment, suggesting that S100A2 is necessary for optimal response to RXR and PPARγ activation by respective ligands. In summary, we have identified potential downstream mediators of rexinoid and TZD treatment in a poorly differentiated melanoma and found that alterations in S100A2 expression affect RXR and PPARγ signaling in A375(DRO cells. These studies provide insight into potential mechanisms of tumor response or resistance to these novel therapies.

  9. S100A7, a novel Alzheimer's disease biomarker with non-amyloidogenic alpha-secretase activity acts via selective promotion of ADAM-10.

    Directory of Open Access Journals (Sweden)

    Weiping Qin

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia among older people. At present, there is no cure for the disease and as of now there are no early diagnostic tests for AD. There is an urgency to develop a novel promising biomarker for early diagnosis of AD. Using surface-enhanced laser desorption ionization-mass spectrometry SELDI-(MS proteomic technology, we identified and purified a novel 11.7-kDa metal- binding protein biomarker whose content is increased in the cerebrospinal fluid (CSF and in the brain of AD dementia subjects as a function of clinical dementia. Following purification and protein-sequence analysis, we identified and classified this biomarker as S100A7, a protein known to be involved in immune responses. Using an adenoviral-S100A7 expression system, we continued to examine the potential role of S100A7 in AD amyloid neuropathology in in vitro model of AD. We found that the expression of exogenous S100A7 in primary cortico-hippocampal neuron cultures derived from Tg2576 transgenic embryos inhibits the generation of beta-amyloid (Abeta(1-42 and Abeta(1-40 peptides, coincidental with a selective promotion of "non- amyloidogenic" alpha-secretase activity via promotion of ADAM (a disintegrin and metalloproteinase-10. Finally, a selective expression of human S100A7 in the brain of transgenic mice results in significant promotion of alpha-secretase activity. Our study for the first time suggests that S100A7 may be a novel biomarker of AD dementia and supports the hypothesis that promotion of S100A7 expression in the brain may selectively promote alpha-secretase activity in the brain of AD precluding the generation of amyloidogenic peptides. If in the future we find that S1000A7 protein content in CSF is sensitive to drug intervention experimentally and eventually in the clinical setting, S100A7 might be developed as novel surrogate index (biomarker of therapeutic efficacy in the characterization of novel drug agents for

  10. Expression of S100A6 in Rat Hippocampus after Traumatic Brain Injury Due to Lateral Head Acceleration

    Directory of Open Access Journals (Sweden)

    Bo Fang

    2014-04-01

    Full Text Available In a rat model of traumatic brain injury (TBI, we investigated changes in cognitive function and S100A6 expression in the hippocampus. TBI-associated changes in this protein have not previously been reported. Rat S100A6 was studied via immunohistochemical staining, Western blot, and reverse transcription-polymerase chain reaction (RT-PCR after either lateral head acceleration or sham. Reduced levels of S100A6 protein and mRNA were observed 1 h after TBI, followed by gradual increases over 6, 12, 24, and 72 h, and then a return to sham level at 14 day. Morris water maze (MWM test was used to evaluate animal spatial cognition. TBI- and sham-rats showed an apparent learning curve, expressed as escape latency. Although TBI-rats displayed a relatively poorer cognitive ability than sham-rats, the disparity was not significant early post-injury. Marked cognitive deficits in TBI-rats were observed at 72 h post-injury compared with sham animals. TBI-rats showed decreased times in platform crossing in the daily MWM test; the performance at 72 h post-injury was the worst. In conclusion, a reduction in S100A6 may be one of the early events that lead to secondary cognitive decline after TBI, and its subsequent elevation is tightly linked with cognitive improvement. S100A6 may play important roles in neuronal degeneration and regeneration in TBI.

  11. Subject-specific increases in serum S-100B distinguish sports-related concussion from sports-related exertion.

    Science.gov (United States)

    Kiechle, Karin; Bazarian, Jeffrey J; Merchant-Borna, Kian; Stoecklein, Veit; Rozen, Eric; Blyth, Brian; Huang, Jason H; Dayawansa, Samantha; Kanz, Karl; Biberthaler, Peter

    2014-01-01

    The on-field diagnosis of sports-related concussion (SRC) is complicated by the lack of an accurate and objective marker of brain injury. To compare subject-specific changes in the astroglial protein, S100B, before and after SRC among collegiate and semi-professional contact sport athletes, and compare these changes to differences in S100B before and after non-contact exertion. Longitudinal cohort study. From 2009-2011, we performed a prospective study of athletes from Munich, Germany, and Rochester, New York, USA. Serum S100B was measured in all SRC athletes at pre-season baseline, within 3 hours of injury, and at days 2, 3 and 7 post-SRC. Among a subset of athletes, S100B was measured after non-contact exertion but before injury. All samples were collected identically and analyzed using an automated electrochemiluminescent assay to quantify serum S100B levels. Forty-six athletes (30 Munich, 16 Rochester) underwent baseline testing. Thirty underwent additional post-exertion S100B testing. Twenty-two athletes (16 Rochester, 6 Munich) sustained a SRC, and 17 had S100B testing within 3 hours post-injury. The mean 3-hour post-SRC S100B was significantly higher than pre-season baseline (0.099±0.008 µg/L vs. 0.058±0.006 µg/L, p = 0.0002). Mean post-exertion S100B was not significantly different than the preseason baseline. S100B levels at post-injury days 2, 3 and 7 were significantly lower than the 3-hour level, and not different than baseline. Both the absolute change and proportional increase in S100B 3-hour post-injury were accurate discriminators of SRC from non-contact exertion without SRC (AUC 0.772 and 0.904, respectively). A 3-hour post-concussion S100B >0.122 µg/L and a proportional S100B increase of >45.9% over baseline were both 96.7% specific for SRC. Relative and absolute increases in serum S100B can accurately distinguish SRC from sports-related exertion, and may be a useful adjunct to the diagnosis of SRC.

  12. Subject-specific increases in serum S-100B distinguish sports-related concussion from sports-related exertion.

    Directory of Open Access Journals (Sweden)

    Karin Kiechle

    Full Text Available The on-field diagnosis of sports-related concussion (SRC is complicated by the lack of an accurate and objective marker of brain injury.To compare subject-specific changes in the astroglial protein, S100B, before and after SRC among collegiate and semi-professional contact sport athletes, and compare these changes to differences in S100B before and after non-contact exertion.Longitudinal cohort study.From 2009-2011, we performed a prospective study of athletes from Munich, Germany, and Rochester, New York, USA. Serum S100B was measured in all SRC athletes at pre-season baseline, within 3 hours of injury, and at days 2, 3 and 7 post-SRC. Among a subset of athletes, S100B was measured after non-contact exertion but before injury. All samples were collected identically and analyzed using an automated electrochemiluminescent assay to quantify serum S100B levels.Forty-six athletes (30 Munich, 16 Rochester underwent baseline testing. Thirty underwent additional post-exertion S100B testing. Twenty-two athletes (16 Rochester, 6 Munich sustained a SRC, and 17 had S100B testing within 3 hours post-injury. The mean 3-hour post-SRC S100B was significantly higher than pre-season baseline (0.099±0.008 µg/L vs. 0.058±0.006 µg/L, p = 0.0002. Mean post-exertion S100B was not significantly different than the preseason baseline. S100B levels at post-injury days 2, 3 and 7 were significantly lower than the 3-hour level, and not different than baseline. Both the absolute change and proportional increase in S100B 3-hour post-injury were accurate discriminators of SRC from non-contact exertion without SRC (AUC 0.772 and 0.904, respectively. A 3-hour post-concussion S100B >0.122 µg/L and a proportional S100B increase of >45.9% over baseline were both 96.7% specific for SRC.Relative and absolute increases in serum S100B can accurately distinguish SRC from sports-related exertion, and may be a useful adjunct to the diagnosis of SRC.

  13. Protein-protein interactions within photosystem II under photoprotection: the synergy between CP29 minor antenna, subunit S (PsbS) and zeaxanthin at all-atom resolution.

    Science.gov (United States)

    Daskalakis, Vangelis

    2018-05-07

    The assembly and disassembly of protein complexes within cells are crucial life-sustaining processes. In photosystem II (PSII) of higher plants, there is a delicate yet obscure balance between light harvesting and photo-protection under fluctuating light conditions, that involves protein-protein complexes. Recent breakthroughs in molecular dynamics (MD) simulations are combined with new approaches herein to provide structural and energetic insight into such a complex between the CP29 minor antenna and the PSII subunit S (PsbS). The microscopic model involves extensive sampling of bound and dissociated states at atomic resolution in the presence of photo-protective zeaxanthin (Zea), and reveals well defined protein-protein cross-sections. The complex is placed within PSII, and macroscopic connections are emerging (PsbS-CP29-CP24-CP47) along the energy transfer pathways from the antenna to the PSII core. These connections explain macroscopic observations in the literature, while the previously obscured atomic scale details are now revealed. The implications of these findings are discussed in the context of the Non-Photochemical Quenching (NPQ) of chlorophyll fluorescence, the down-regulatory mechanism of photosynthesis, that enables the protection of PSII against excess excitation load. Zea is found at the PsbS-CP29 cross-section and a pH-dependent equilibrium between PsbS dimer/monomers and the PsbS-CP29 dissociation/association is identified as the target for engineering tolerant plants with increased crop and biomass yields. Finally, the new MD based approaches can be used to probe protein-protein interactions in general, and the PSII structure provided can initiate large scale molecular simulations of the photosynthetic apparatus, under NPQ conditions.

  14. Validation of an enzyme-linked immunosorbent assay (ELISA) for the measurement of canine S100A12.

    Science.gov (United States)

    Heilmann, Romy M; Cranford, Shannon M; Ambrus, Andy; Grützner, Niels; Schellenberg, Stefan; Ruaux, Craig G; Suchodolski, Jan S; Steiner, Jörg M

    2016-03-01

    Canine S100 calcium-binding protein A12 (cS100A12) shows promise as biomarker of inflammation in dogs. A previously developed cS100A12-radioimmunoassay (RIA) requires radioactive tracers and is not sensitive enough for fecal cS100A12 concentrations in 79% of tested healthy dogs. An ELISA assay may be more sensitive than RIA and does not require radioactive tracers. The purpose of the study was to establish a sandwich ELISA for serum and fecal cS100A12, and to establish reference intervals (RI) for normal healthy canine serum and feces. Polyclonal rabbit anti-cS100A12 antibodies were generated and tested by Western blotting and immunohistochemistry. A sandwich ELISA was developed and validated, including accuracy and precision, and agreement with cS100A12-RIA. The RI, stability, and biologic variation in fecal cS100A12, and the effect of corticosteroids on serum cS100A12 were evaluated. Lower detection limits were 5 μg/L (serum) and 1 ng/g (fecal), respectively. Intra- and inter-assay coefficients of variation were ≤ 4.4% and ≤ 10.9%, respectively. Observed-to-expected ratios for linearity and spiking recovery were 98.2 ± 9.8% (mean ± SD) and 93.0 ± 6.1%, respectively. There was a significant bias between the ELISA and the RIA. The RI was 49-320 μg/L for serum and 2-484 ng/g for fecal cS100A12. Fecal cS100A12 was stable for 7 days at 23, 4, -20, and -80°C; biologic variation was negligible but variation within one fecal sample was significant. Corticosteroid treatment had no clinically significant effect on serum cS100A12 concentrations. The cS100A12-ELISA is a precise and accurate assay for serum and fecal cS100A12 in dogs. © 2016 American Society for Veterinary Clinical Pathology.

  15. Thioredoxin-1 promotes colorectal cancer invasion and metastasis through crosstalk with S100P.

    Science.gov (United States)

    Lin, Feiyan; Zhang, Peili; Zuo, Zhigui; Wang, Fule; Bi, Ruichun; Shang, Wenjing; Wu, Aihua; Ye, Ju; Li, Shaotang; Sun, Xuecheng; Wu, Jianbo; Jiang, Lei

    2017-08-10

    Thioredoxin-1 (Trx-1) is a small redox-regulating protein, which plays an important role in several cellular functions. Despite recent advances in understanding the biology of Trx-1, the role of Trx-1 and its underlying signaling mechanism in colorectal cancer (CRC) metastasis have not been extensively studied. In this study, we observed that Trx-1 expression is increased in CRC tissues compared to the paired non-cancerous tissues and is significantly correlated with clinical staging, lymph node metastasis and poor survival. Overexpression of Trx-1 enhanced CRC cell invasion and metastasis in vitro and in vivo. Conversely, suppression of Trx-1 expression decreased cell invasion and metastasis in vitro and in vivo. Moreover, Trx-1 activates S100P gene transcription. S100P, in turn, promotes Trx-1 expression and nuclear localization by upregulating p-ERK1/2 and downregulating TXNIP expression. Our finding provides new insight into the mechanism of Trx-1/S100P axis in the promotion of CRC metastasis, and suggests that the Trx-1/S100P axis and their related signaling pathways could be novel targets for the treatment of metastatic CRC. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jun Ni

    Full Text Available The Auxin/Indole-3-Acetic Acid (Aux/IAA and Auxin Response Factor (ARF are two important families that play key roles in auxin signal transduction. Both of the families contain a similar carboxyl-terminal domain (Domain III/IV that facilitates interactions between these two families. In spite of the importance of protein-protein interactions among these transcription factors, the mechanisms involved in these interactions are largely unknown. In this study, we isolated six intragenic suppressors of an auxin insensitive mutant, Osiaa23. Among these suppressors, Osiaa23-R5 successfully rescued all the defects of the mutant. Sequence analysis revealed that an amino acid substitution occurred in the Tryptophan (W residue in Domain IV of Osiaa23. Yeast two-hybrid experiments showed that the mutation in Domain IV prevents the protein-protein interactions between Osiaa23 and OsARFs. Phylogenetic analysis revealed that the W residue is conserved in both OsIAAs and OsARFs. Next, we performed site-specific amino acid substitutions within Domain IV of OsARFs, and the conserved W in Domain IV was exchanged by Serine (S. The mutated OsARF(WSs can be released from the inhibition of Osiaa23 and maintain the transcriptional activities. Expression of OsARF(WSs in Osiaa23 mutant rescued different defects of the mutant. Our results suggest a previously unknown importance of Domain IV in both families and provide an indirect way to investigate functions of OsARFs.

  17. 2D proteome analysis initiates new Insights on the Salmonella Typhimurium LuxS protein

    Directory of Open Access Journals (Sweden)

    Vanderleyden Jos

    2009-09-01

    Full Text Available Abstract Background Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium, we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2. Results Differential proteome analysis of wildtype S. Typhimurium versus a luxS mutant revealed relatively few changes beyond the known effect on phase 2 flagellin. However, two highly differentially expressed protein spots with similar molecular weight but differing isoelectric point, were identified as LuxS whereas the S. Typhimurium genome contains only one luxS gene. This observation was further explored and we show that the S. Typhimurium LuxS protein can undergo posttranslational modification at a catalytic cysteine residue. Additionally, by constructing LuxS-βla and LuxS-PhoA fusion proteins, we demonstrate that S. Typhimurium LuxS can substitute the cognate signal peptide sequences of β-lactamase and alkaline phosphatase for translocation across the cytoplasmic membrane in S. Typhimurium. This was further confirmed by fractionation of S. Typhimurium protein extracts, followed by Western blot analysis. Conclusion 2D-DIGE analysis of a luxS mutant vs. wildtype Salmonella Typhimurium did not reveal new insights into the role of AI-2/LuxS in Salmonella as only a small amount of proteins were differentially expressed. However, subsequent in depth analysis of the LuxS protein itself revealed two interesting features: posttranslational modification and potential translocation across the cytoplasmic membrane. As

  18. Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Birgitte; Ornås, Dorte; Grigorian, Mariam

    2004-01-01

    with the transcriptional modulation of genes involved in the proteolytic degradation of extracellular matrix (ECM). Treatment of SVEC 4-10 with the S100A4 protein leads to the transcriptional activation of collagenase 3 (MMP-13) mRNA followed by subsequent release of the protein from the cells. Beta-casein zymography...... demonstrates enhancement of proteolytic activity associated with MMP-13. This observation indicates that extracellular S100A4 stimulates the production of ECM degrading enzymes from endothelial cells, thereby stimulating the remodeling of ECM. This could explain the angiogenic and metastasis...

  19. Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2

    International Nuclear Information System (INIS)

    Ozorowski, Gabriel; Milton, Saskia; Luecke, Hartmut

    2013-01-01

    Structure of a 20-amino-acid peptide of AHNAK bound asymmetrically to the AnxA2–S100A10A heterotetramer (1:2:2 symmetry) provides insights into the atomic level interactions that govern this membrane-repair scaffolding complex. AHNAK, a large 629 kDa protein, has been implicated in membrane repair, and the annexin A2–S100A10 heterotetramer [(p11) 2 (AnxA2) 2 )] has high affinity for several regions of its 1002-amino-acid C-terminal domain. (p11) 2 (AnxA2) 2 is often localized near the plasma membrane, and this C2-symmetric platform is proposed to be involved in the bridging of membrane vesicles and trafficking of proteins to the plasma membrane. All three proteins co-localize at the intracellular face of the plasma membrane in a Ca 2+ -dependent manner. The binding of AHNAK to (p11) 2 (AnxA2) 2 has been studied previously, and a minimal binding motif has been mapped to a 20-amino-acid peptide corresponding to residues 5654–5673 of the AHNAK C-terminal domain. Here, the 2.5 Å resolution crystal structure of this 20-amino-acid peptide of AHNAK bound to the AnxA2–S100A10 heterotetramer (1:2:2 symmetry) is presented, which confirms the asymmetric arrangement first described by Rezvanpour and coworkers and explains why the binding motif has high affinity for (p11) 2 (AnxA2) 2 . Binding of AHNAK to the surface of (p11) 2 (AnxA2) 2 is governed by several hydrophobic interactions between side chains of AHNAK and pockets on S100A10. The pockets are large enough to accommodate a variety of hydrophobic side chains, allowing the consensus sequence to be more general. Additionally, the various hydrogen bonds formed between the AHNAK peptide and (p11) 2 (AnxA2) 2 most often involve backbone atoms of AHNAK; as a result, the side chains, particularly those that point away from S100A10/AnxA2 towards the solvent, are largely interchangeable. While the structure-based consensus sequence allows interactions with various stretches of the AHNAK C-terminal domain, comparison

  20. Use of Donkey Milk in Children with Cow’s Milk Protein Allergy

    Directory of Open Access Journals (Sweden)

    Paolo Polidori

    2013-05-01

    Full Text Available Human breast milk is the best nutritional support that insures the right development and influences the immune status of the newborn infant. However, when it is not possible to breast feed, it may be necessary to use commercial infant formulas that mimic, where possible, the levels and types of nutrients present in human milk. Despite this, some formula-fed infant develops allergy and/or atopic disease compared to breast-fed infants. Cow’s milk allergy can be divided into immunoglobulin IgE mediated food allergy and non-IgE-mediated food allergy. Most infants with cow’s milk protein allergy (CMPA develop symptoms before 1 month of age, often within 1 week after introduction of cow’s milk-based formula. Donkey milk may be considered a good substitute for cow’s milk in feeding children with CMPA since its composition is very similar to human milk. Donkey milk total protein content is low (1.5–1.8 g/100 g, very close to human milk. A thorough analysis of the donkey milk protein profile has been performed in this study; the interest was focused on the milk proteins considered safe for the prevention and treatment of various disorders in humans. The content of lactoferrin, lactoperoxidase and lysozyme, peptides with antimicrobial activity, able to stimulate the development of the neonatal intestine, was determined. Donkey milk is characterized by a low casein content, with values very close to human milk; the total whey protein content in donkey milk ranges between 0.49 and 0.80 g/100 g, very close to human milk (0.68–0.83 g/100 g. Among whey proteins, α-lactalbumin average concentration in donkey milk is 1.8 mg/mL. The results of this study confirmed the possibility of using donkey milk in feeding children with CMPA.

  1. The prognostic value of serum S100B in patients with cutaneous melanoma: a meta-analysis.

    Science.gov (United States)

    Mocellin, Simone; Zavagno, Giorgio; Nitti, Donato

    2008-11-15

    S100B protein detected in the serum of patients with cutaneous melanoma has been long reported as a prognostic biomarker. However, no consensus exists on its implementation in the routine clinical setting. This study aimed to comprehensively and quantitatively summarize the evidence on the suitability of serum S100B to predict patients' survival. Twenty-two series enrolling 3393 patients with TNM stage I to IV cutaneous melanoma were reviewed. Standard meta-analysis methods were applied to evaluate the overall relationship between S100B serum levels and patients' survival (meta-risk). Serum S100B positivity was associated with significantly poorer survival (hazard ratio [HR] = 2.23, 95% CI: 1.92-2.58, p < 0.0001). Between-study heterogeneity was significant, which appeared to be related mainly to dissemination bias and the inclusion of patients with stage IV disease. Considering stage I to III melanoma (n = 1594), the meta-risk remained highly significant (HR = 2.28, 95% CI: 1.8-2.89; p < 0.0001) and studies' estimates were homogeneous. Subgroup analysis of series reporting multivariate survival analysis supported S100B as a prognostic factor independent of the TNM staging system. Our findings suggest that serum S100B detection has a clinically valuable independent prognostic value in patients with melanoma, with particular regard to stage I-III disease. Further investigation focusing on this subset of patients is justified and warranted before S100B can be implemented in the routine clinical management of melanoma. (c) 2008 Wiley-Liss, Inc.

  2. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins.

    Science.gov (United States)

    Dallas, David C; Citerne, Florine; Tian, Tian; Silva, Vitor L M; Kalanetra, Karen M; Frese, Steven A; Robinson, Randall C; Mills, David A; Barile, Daniela

    2016-04-15

    The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins

    Science.gov (United States)

    Dallas, David C.; Citerne, Florine; Tian, Tian; Silva, Vitor L. M.; Kalanetra, Karen M.; Frese, Steven A.; Robinson, Randall C.; Mills, David A.; Barile, Daniela

    2015-01-01

    Scope The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Methods and results Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1,500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. Conclusion The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. PMID:26616950

  4. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1

    Czech Academy of Sciences Publication Activity Database

    Jirků, M.; Lánský, Z.; Bednárová, Lucie; Šulc, M.; Monincová, Lenka; Majer, Pavel; Vyklický, L.; Vondrášek, Jiří; Teisinger, J.; Boušová, Kristýna

    2016-01-01

    Roč. 78, Sep (2016), s. 186-193 ISSN 1357-2725 Institutional support: RVO:61388963 Keywords : TRPM1 channel * binding site * calcium-binding protein S100A1 * steady-state fluorescence anisotropy * molecular modeling * circular dichroism Subject RIV: CE - Biochemistry Impact factor: 3.505, year: 2016

  5. Serum levels of psoriasin (S100A7) and koebnerisin (S100A15) as potential markers of atherosclerosis in patients with psoriasis.

    Science.gov (United States)

    Awad, S M; Attallah, D A; Salama, R H; Mahran, A M; Abu El-Hamed, E

    2018-04-01

    Psoriasin (S100A7) and koebnerisin (S100A15) are proinflammatory proteins upregulated in psoriasis, but their relation to atherosclerosis remains unclear. To evaluate the role of serum psoriasin and koebnerisin as possible markers for subclinical atherosclerosis in patients with psoriasis. Serum levels of psoriasin and koebnerisin were measured by ELISA in 45 patients with psoriasis and in 45 healthy controls (HCs). Intima-media thickness (IMT) of the right and left common carotid arteries was measured to detect the presence of subclinical atherosclerosis. Clinical severity of psoriasis was estimated using the Psoriasis Area and Severity Index (PASI). Compared with HCs, patients with psoriasis had significantly higher levels of psoriasin (26.61 ± 22.45 ng/mL vs. 6.31 ± 1.68 ng/mL, P  0.01) and serum koebnerisin (r = 0.48, P psoriasis with subclinical atherosclerosis had higher serum levels of koebnerisin compared with patients without subclinical atherosclerosis (P = 0.04), which was not observed for psoriasin (P = 0.94). Serum psoriasin and koebnerisin correlate with IMT, underlining their value as a potential link between psoriasis and atherosclerosis. In particular, koebnerisin seems to be a useful marker of subclinical atherosclerosis in patients with psoriasis. © 2018 British Association of Dermatologists.

  6. [Association between S100B gene polymorphisms and hand, foot and mouth disease caused by enterovirus 71 infection].

    Science.gov (United States)

    Li, Jing; Shan, Ruo-Bing; Liu, Rui-Hai; Xu, Ying-Jun; Qu, Ni-Yan; Pan, Gui-Mei; Zhang, Na; Yang, Na; Chen, Zhen-Zhen; Zhang, Wen-Xiang; Li, Zi-Pu

    2017-08-01

    To investigate the association between rs9722 polymorphisms in the S100B gene and hand, foot and mouth disease (HFMD) caused by enterovirus 71. A total of 124 HFMD children with enterovirus 71 infection were enrolled as subjects, and 56 healthy children were enrolled as control group. The rs9722 polymorphisms in the S100B gene were detected for both groups, and the serum level of S100B protein was measured for 74 HFMD children. The rs9722 locus of the S100B gene had three genotypes, CC, CT, and TT, and the genotype frequencies were in accordance with Hardy-Weinberg equilibrium. Compared with the control group, the HFMD group had significant increases in the frequencies of TT genotype and T allele (Penterovirus 71 infection had significantly higher frequencies of TT genotype and T allele than those with moderate or mild HFMD (Penterovirus 71 infection.

  7. XL-100S microprogrammable processor

    International Nuclear Information System (INIS)

    Gorbunov, N.V.; Guzik, Z.; Sutulin, V.A.; Forytski, A.

    1983-01-01

    The XL-100S microprogrammable processor providing the multiprocessor operation mode in the XL system crate is described. The processor meets the EUR 6500 CAMAC standards, address up to 4 Mbyte memory, and interacts with 7 CAMAC branchas. Eight external requests initiate operations preset by a sequence of microcommands in a memory of the capacity up to 64 kwords of 32-Git. The microprocessor architecture allows one to emulate commands of the majority of mini- or micro-computers, including floating point operations. The XL-100S processor may be used in various branches of experimental physics: for physical experiment apparatus control, fast selection of useful physical events, organization of the of input/output operations, organization of direct assess to memory included, etc. The Am2900 microprocessor set is used as an elementary base. The device is made in the form of a single width CAMAC module

  8. Proteomic analysis revealed the altered tear protein profile in a rabbit model of Sjögren's syndrome-associated dry eye.

    Science.gov (United States)

    Zhou, Lei; Wei, Ruihua; Zhao, Ping; Koh, Siew Kwan; Beuerman, Roger W; Ding, Chuanqing

    2013-08-01

    Sjögren's syndrome (SS) is an autoimmune disease that results in pathological dryness of mouth and eye. The diagnosis of SS depends on both clinical evaluation and specific antibodies. The goal of this study was to use quantitative proteomics to investigate changes in tear proteins in a rabbit model of SS-associated dry eye, induced autoimmune dacryoadenitis (IAD). Proteomic analysis was performed by iTRAQ and nano LC-MS/MS on tears collected from the ocular surface, and specific proteins were verified by high resolution MRM. It was found that in the tears of IAD rabbits at 2 and 4 weeks after induction, S100 A6, S100 A9, and serum albumin were upregulated, whereas serotransferrin (TF), prolactin-inducible protein (PIP), polymeric immunoglobulin receptor (pIgR), and Ig gamma chain C region were downregulated. High resolution MRM with mTRAQ labeling verified the changes in S100 A6, TF, PIP, and pIgR. Our results indicated significant changes of tear proteins in IAD rabbits, suggesting these proteins could potentially be used as biomarkers for the diagnosis and prognosis of dry eye. Several of these proteins were also found in the tears of non-SS dry eye patients indicating a common basis of ocular surface pathology, however, pIgR appears to be unique to SS. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study

    Energy Technology Data Exchange (ETDEWEB)

    Lesoil, Charles [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsutacho 4259, Midori-ku, Yokohama 226-8501 (Japan); Nonaka, Takahiro [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Sekiguchi, Hiroshi; Osada, Toshiya [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsutacho 4259, Midori-ku, Yokohama 226-8501 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Afrin, Rehana [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsutacho 4259, Midori-ku, Yokohama 226-8501 (Japan); Biofrontier Center, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsutacho 4259, Midori-ku, Yokohama 226-8501 (Japan); Ikai, Atsushi, E-mail: ikai.a.aa@m.titech.ac.jp [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsutacho 4259, Midori-ku, Yokohama 226-8501 (Japan)

    2010-01-15

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the 'leg' of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the 'leg' protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.

  10. 100 Gb/s single VCSEL data transmission link

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Estaran Tolosa, Jose Manuel; Li, Bomin

    2012-01-01

    100 Gb/s optical fiber transmission link with a single 1.5 um VCSEL has been experimentally demonstrated using 4-level pulse amplitude modulation.......100 Gb/s optical fiber transmission link with a single 1.5 um VCSEL has been experimentally demonstrated using 4-level pulse amplitude modulation....

  11. S100A4 and its role in metastasis – computational integration of data on biological networks.

    Science.gov (United States)

    Buetti-Dinh, Antoine; Pivkin, Igor V; Friedman, Ran

    2015-08-01

    Characterising signal transduction networks is fundamental to our understanding of biology. However, redundancy and different types of feedback mechanisms make it difficult to understand how variations of the network components contribute to a biological process. In silico modelling of signalling interactions therefore becomes increasingly useful for the development of successful therapeutic approaches. Unfortunately, quantitative information cannot be obtained for all of the proteins or complexes that comprise the network, which limits the usability of computational models. We developed a flexible computational framework for the analysis of biological signalling networks. We demonstrate our approach by studying the mechanism of metastasis promotion by the S100A4 protein, and suggest therapeutic strategies. The advantage of the proposed method is that only limited information (interaction type between species) is required to set up a steady-state network model. This permits a straightforward integration of experimental information where the lack of details are compensated by efficient sampling of the parameter space. We investigated regulatory properties of the S100A4 network and the role of different key components. The results show that S100A4 enhances the activity of matrix metalloproteinases (MMPs), causing higher cell dissociation. Moreover, it leads to an increased stability of the pathological state. Thus, avoiding metastasis in S100A4-expressing tumours requires multiple target inhibition. Moreover, the analysis could explain the previous failure of MMP inhibitors in clinical trials. Finally, our method is applicable to a wide range of biological questions that can be represented as directional networks.

  12. Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors

    DEFF Research Database (Denmark)

    Grum-Schwensen, Birgitte; Klingelhöfer, Jörg; Grigorian, Mariam

    2010-01-01

    significantly reduced the metastatic burden in lungs of PyMT-induced mammary tumors. In S100A4(+/+) PyMT mice, massive leukocyte infiltration at the site of the growing tumor at the stage of malignant transition was associated with increased concentration of extracellular S100A4 in the tumor microenvironment......Interactions between tumor and stroma cells are essential for the progression of cancer from its initial growth at a primary site to its metastasis to distant organs. The metastasis-stimulating protein S100A4 exerts its function as a stroma cell-derived factor. Genetic depletion of S100A4...... monolayers. In vivo, the presence of S100A4(+/+), but not S100A4(-/-), fibroblasts significantly stimulated the attraction of T lymphocytes to the site of the growing tumor. Increased levels of T cells were also observed in the premetastatic lungs of tumor-bearing mice primed to metastasize by S100A4...

  13. [Family of ribosomal proteins S1 contains unique conservative domain].

    Science.gov (United States)

    Deriusheva, E I; Machulin, A V; Selivanova, O M; Serdiuk, I N

    2010-01-01

    Different representatives of bacteria have different number of amino acid residues in the ribosomal proteins S1. This number varies from 111 (Spiroplasma kunkelii) to 863 a.a. (Treponema pallidum). Traditionally and for lack of this protein three-dimensional structure, its architecture is represented as repeating S1 domains. Number of these domains depends on the protein's length. Domain's quantity and its boundaries data are contained in the specialized databases, such as SMART, Pfam and PROSITE. However, for the same object these data may be very different. For search of domain's quantity and its boundaries, new approach, based on the analysis of dicted secondary structure (PsiPred), was used. This approach allowed us to reveal structural domains in amino acid sequences of S1 proteins and at that number varied from one to six. Alignment of S1 proteins, containing different domain's number, with the S1 RNAbinding domain of Escherichia coli PNPase elicited a fact that in family of ribosomal proteins SI one domain has maximal homology with S1 domain from PNPase. This conservative domain migrates along polypeptide chain and locates in proteins, containing different domain's number, according to specified pattern. In this domain as well in the S1 domain from PNPase, residues Phe-19, Phe-22, His-34, Asp-64 and Arg-68 are clustered on the surface and formed RNA binding site.

  14. Nimodipine accelerates the postnatal development of parvalbumin and S-100β immunoreactivity in the rat brain

    NARCIS (Netherlands)

    Buwalda, Bauke; Naber, Riet; Nyakas, Csaba; Luiten, Paul G.M.

    1994-01-01

    The effects of chronic maternal perinatal nimodipine treatment on the immunocytochemical distribution of the Ca2+-binding proteins parvalbumin (PV) and S-100β in neocortex and hippocampus were studied at the age of postnatal day (PD) 5, 7, 10, 14 and 20. The Ca2+ antagonist nimodipine (1000 ppm BAY

  15. Interaction of an S100A9 gene variant with saturated fat and carbohydrates to modulate insulin resistance in 3 populations of different ancestries

    Science.gov (United States)

    BACKGROUND: S100 calcium binding protein A9 (S100A9) has previously been identified as a type 2 diabetes (T2D) gene. However, this finding requires independent validation and more in depth analyses in other populations and ancestries. OBJECTIVES: We aimed to replicate the associations between an S10...

  16. [Rapid expression and preparation of the recombinant fusion protein sTNFRII-gAD by adenovirus vector system].

    Science.gov (United States)

    Lu, Yue; Liu, Dan; Zhang, Xiaoren; Liu, Xuerong; Shen, Wei; Zheng, Gang; Liu, Yunfan; Dong, Xiaoyan; Wu, Xiaobing; Gao, Jimin

    2011-08-01

    We expressed and prepared the recombinant fusion protein sTNFRII-gAD consisted of soluble TNF receptor II and the globular domain of adiponectin by Adenovirus Vector System in mammalian BHK21c022 cells. First we used the adenovirus vector containing EGFP gene (rAd5-EGFP) to infect BHK21c022 cells at different MOI (from 0 to 1 000), and then evaluated their transduction efficiency and cytotoxicity. Similarly, we constructed the replication-deficient adenovirus type 5-sTNFRII-gAD (rAd5-sTNFRII-gAD). We collected the supernatants for Western blotting to determine the optimal MOI by comparing the expression levels of sTNFRII-gAD fusion protein, 48 h after the BHK21c022 cells were infected by rAd5-sTNFRII-gAD at different MOIs (from 0 to 1 000). Then, we chose rAd5-sTNFRII-gAD at MOI 100 to infect five bottles of BHK21c022 cells in 100 mL of serum-free chemically defined media 100 mL, harvested the supernatant every 48 h for 6 times, and condense and purify sTNFRII-gAD fusion protein by ammonium sulfate salt-out and size-exclusion chromatography, respectively. Finally, we analyzed anti-TNFalpha activity of sTNFRII-gAD fusion protein on L929 cells in vitro. The results showed that the number of BHK21c022 cells expressing EGFP protein was increased significantly with the increase of MOI. However, some cells died at MOI of 1 000 while there was no significant cytotoxicity at MOI from 0 to 100. Western blotting analysis showed that the more adenoviruses, the higher expression of sTNFRII-gAD fusion protein in the supernatant with the highest expression at MOI 1 000. We successfully obtained about 11 mg bioactive and purified sTNFRII-gAD fusion protein at last. The in vitro assay demonstrated that the sTNFRII-gAD fusion protein was potent to antagonize TNFalpha's cytotoxicity to L929 cells. Put together, we established a recombinant adenovirus vector/BHK21 cell expression system, characteristic of the efficient serum-free culture and easy scaling-up.

  17. Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2

    Energy Technology Data Exchange (ETDEWEB)

    Ozorowski, Gabriel [University of California, Irvine, Irvine, CA 92697-3900 (United States); University of California, Irvine, Irvine, CA 92697-3900 (United States); Milton, Saskia [University of California, Irvine, Irvine, CA 92697-3900 (United States); Luecke, Hartmut, E-mail: hudel@uci.edu [University of California, Irvine, Irvine, CA 92697-3900 (United States); University of California, Irvine, Irvine, CA 92697-3900 (United States); University of California, Irvine, Irvine, CA 92697 (United States); University of California, Irvine, Irvine, CA 92697 (United States)

    2013-01-01

    Structure of a 20-amino-acid peptide of AHNAK bound asymmetrically to the AnxA2–S100A10A heterotetramer (1:2:2 symmetry) provides insights into the atomic level interactions that govern this membrane-repair scaffolding complex. AHNAK, a large 629 kDa protein, has been implicated in membrane repair, and the annexin A2–S100A10 heterotetramer [(p11){sub 2}(AnxA2){sub 2})] has high affinity for several regions of its 1002-amino-acid C-terminal domain. (p11){sub 2}(AnxA2){sub 2} is often localized near the plasma membrane, and this C2-symmetric platform is proposed to be involved in the bridging of membrane vesicles and trafficking of proteins to the plasma membrane. All three proteins co-localize at the intracellular face of the plasma membrane in a Ca{sup 2+}-dependent manner. The binding of AHNAK to (p11){sub 2}(AnxA2){sub 2} has been studied previously, and a minimal binding motif has been mapped to a 20-amino-acid peptide corresponding to residues 5654–5673 of the AHNAK C-terminal domain. Here, the 2.5 Å resolution crystal structure of this 20-amino-acid peptide of AHNAK bound to the AnxA2–S100A10 heterotetramer (1:2:2 symmetry) is presented, which confirms the asymmetric arrangement first described by Rezvanpour and coworkers and explains why the binding motif has high affinity for (p11){sub 2}(AnxA2){sub 2}. Binding of AHNAK to the surface of (p11){sub 2}(AnxA2){sub 2} is governed by several hydrophobic interactions between side chains of AHNAK and pockets on S100A10. The pockets are large enough to accommodate a variety of hydrophobic side chains, allowing the consensus sequence to be more general. Additionally, the various hydrogen bonds formed between the AHNAK peptide and (p11){sub 2}(AnxA2){sub 2} most often involve backbone atoms of AHNAK; as a result, the side chains, particularly those that point away from S100A10/AnxA2 towards the solvent, are largely interchangeable. While the structure-based consensus sequence allows interactions with various

  18. Correlation of human S100A12 (EN-RAGE) and high-sensitivity C-reactive protein as gingival crevicular fluid and serum markers of inflammation in chronic periodontitis and type 2 diabetes.

    Science.gov (United States)

    Pradeep, A R; Martande, Santosh S; Singh, Sonender Pal; Suke, Deepak Kumar; Raju, Arjun P; Naik, Savitha B

    2014-04-01

    The aim of the present study was to evaluate the levels and correlation of human S100A12 and high-sensitivity C-reactive protein (hs-CRP) in gingival crevicular fluid (GCF) and serum in chronic periodontitis (CP) subjects with and without type 2 diabetes mellitus (DM). A total of 44 subjects were divided into three groups: group 1 had 10 periodontally healthy subjects, group 2 consisted of 17 CP subjects and group 3 had 17 type 2 DM subjects with CP. GCF and serum levels of human S100A12 and hs-CRP were quantified using enzyme-linked immunosorbent assay and immunoturbidimetric analysis, respectively. The clinical outcomes evaluated were gingival index, probing depth and clinical attachment level and the correlations of the two inflammatory mediators with clinical parameters were evaluated. Both human S100A12 and hs-CRP levels increased from group 1 to group 2 to group 3. The GCF and serum values of both these inflammatory mediators correlated positively with each other and with the periodontal parameters evaluated (p < 0.05). Human S100A12 and hs-CRP can be considered as possible GCF and serum markers of inflammatory activity in CP and DM.

  19. S100A9 interaction with TLR4 promotes tumor growth.

    Directory of Open Access Journals (Sweden)

    Eva Källberg

    Full Text Available By breeding TRAMP mice with S100A9 knock-out (S100A9(-/- animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b(+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68(+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9(-/- and TLR4(-/-, but not in RAGE(-/- animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b(+ cells. Lastly, treatment of mice with a small molecule (ABR-215050 that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies.

  20. S100A9 Interaction with TLR4 Promotes Tumor Growth

    Science.gov (United States)

    Källberg, Eva; Vogl, Thomas; Liberg, David; Olsson, Anders; Björk, Per; Wikström, Pernilla; Bergh, Anders; Roth, Johannes; Ivars, Fredrik; Leanderson, Tomas

    2012-01-01

    By breeding TRAMP mice with S100A9 knock-out (S100A9−/−) animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9−/− and TLR4−/−, but not in RAGE−/− animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b+ cells. Lastly, treatment of mice with a small molecule (ABR-215050) that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies. PMID:22470535

  1. The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway.

    Science.gov (United States)

    Yano, Junko; Kolls, Jay K; Happel, Kyle I; Wormley, Floyd; Wozniak, Karen L; Fidel, Paul L

    2012-01-01

    Vulvovaginal candidiasis (VVC) caused by Candida albicans affects a significant number of women during their reproductive ages. Clinical observations revealed that a robust vaginal polymorphonuclear neutrophil (PMN) migration occurs in susceptible women, promoting pathological inflammation without affecting fungal burden. Evidence to date in the mouse model suggests that a similar acute PMN migration into the vagina is mediated by chemotactic S100A8 and S100A9 alarmins produced by vaginal epithelial cells in response to Candida. Based on the putative role for the Th17 response in mucosal candidiasis as well as S100 alarmin induction, this study aimed to determine whether the Th17 pathway plays a role in the S100 alarmin-mediated acute inflammation during VVC using the experimental mouse model. For this, IL-23p19(-/-), IL-17RA(-/-) and IL-22(-/-) mice were intravaginally inoculated with Candida, and vaginal lavage fluids were evaluated for fungal burden, PMN infiltration, the presence of S100 alarmins and inflammatory cytokines and chemokines. Compared to wild-type mice, the cytokine-deficient mice showed comparative levels of vaginal fungal burden and PMN infiltration following inoculation. Likewise, inoculated mice of all strains with substantial PMN infiltration exhibited elevated levels of vaginal S100 alarmins in both vaginal epithelia and secretions in the vaginal lumen. Finally, cytokine analyses of vaginal lavage fluid from inoculated mice revealed equivalent expression profiles irrespective of the Th17 cytokine status or PMN response. These data suggest that the vaginal S100 alarmin response to Candida does not require the cells or cytokines of the Th17 lineage, and therefore, the immunopathogenic inflammatory response during VVC occurs independently of the Th17-pathway.

  2. S100 chemokines mediate bookmarking of premetastatic niches

    Science.gov (United States)

    Rafii, Shahin; Lyden, David

    2010-01-01

    Primary tumours release soluble factors, including VEGF-A, TGFβ and TNFα, which induce expression of the chemokines S100A8 and S100A9 in the myeloid and endothelial cells within the lung before tumour metastasis. These chemokine-activated premetastatic niches support adhesion and invasion of disseminating malignant cells, thereby establishing a fertile habitat for metastatic tumours. PMID:17139281

  3. The histone demethylase LSD1 is required for estrogen-dependent S100A7 gene expression in human breast cancer cells

    International Nuclear Information System (INIS)

    Yu, Seung Eun; Jang, Yeun Kyu

    2012-01-01

    Highlights: ► S100A7 gene is up-regulated in response to estrogen in breast cancer cells. ► Histone demethylase LSD1 can associate physically with S100A7 gene promoters. ► E2-induced S100A7 expression requires the enzymatic activity of LSD1. ► S100A7 inhibits cell proliferation, implying its tumor suppressor-like function. -- Abstract: S100A7, a member of S100 calcium binding protein family, is highly associated with breast cancer. However, the molecular mechanism of S100A7 regulation remains unclear. Here we show that long-term treatment with estradiol stimulated S100A7 expression in MCF7 breast cancer cells at both the transcriptional and translational levels. Both treatment with a histone demethylase LSD1 inhibitor and shRNA-based knockdown of LSD1 expression significantly decreased 17β-estradiol (E2)-induced S100A7 expression. These reduced E2-mediated S100A7 expression are rescued by the overexpressed wild-type LSD1 but not by its catalytically inactive mutant. Our data showed in vivo association of LSD1 with S100A7 promoters, confirming the potential role of LSD1 in regulating S100A7 expression. S100A7 knockdown increased both normal cell growth and estrogen-induced cell proliferation, suggesting a negative influence by S100A7 on the growth of cancer cells. Together, our data suggest that estrogen-induced S100A7 expression mediated by the histone demethylase LSD1 may downregulate breast cancer cell proliferation, implying a potential tumor suppressor-like function for S100A7.

  4. Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294.

    Science.gov (United States)

    Yun, Bingling; Guan, Xiaolu; Liu, Yongzhen; Gao, Yanni; Wang, Yongqiang; Qi, Xiaole; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Gao, Li; Li, Kai; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2015-10-26

    Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV.

  5. Serial Sampling of Serum Protein Biomarkers for Monitoring Human Traumatic Brain Injury Dynamics: A Systematic Review.

    Science.gov (United States)

    Thelin, Eric Peter; Zeiler, Frederick Adam; Ercole, Ari; Mondello, Stefania; Büki, András; Bellander, Bo-Michael; Helmy, Adel; Menon, David K; Nelson, David W

    2017-01-01

    The proteins S100B, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and neurofilament light (NF-L) have been serially sampled in serum of patients suffering from traumatic brain injury (TBI) in order to assess injury severity and tissue fate. We review the current literature of serum level dynamics of these proteins following TBI and used the term "effective half-life" ( t 1/2 ) in order to describe the "fall" rate in serum. Through searches on EMBASE, Medline, and Scopus, we looked for articles where these proteins had been serially sampled in serum in human TBI. We excluded animal studies, studies with only one presented sample and studies without neuroradiological examinations. Following screening (10,389 papers), n  = 122 papers were included. The proteins S100B ( n  = 66) and NSE ( n  = 27) were the two most frequent biomarkers that were serially sampled. For S100B in severe TBI, a majority of studies indicate a t 1/2 of about 24 h, even if very early sampling in these patients reveals rapid decreases (1-2 h) though possibly of non-cerebral origin. In contrast, the t 1/2 for NSE is comparably longer, ranging from 48 to 72 h in severe TBI cases. The protein GFAP ( n  = 18) appears to have t 1/2 of about 24-48 h in severe TBI. The protein UCH-L1 ( n  = 9) presents a t 1/2 around 7 h in mild TBI and about 10 h in severe. Frequent sampling of these proteins revealed different trajectories with persisting high serum levels, or secondary peaks, in patients with unfavorable outcome or in patients developing secondary detrimental events. Finally, NF-L ( n  = 2) only increased in the few studies available, suggesting a serum availability of >10 days. To date, automated assays are available for S100B and NSE making them faster and more practical to use. Serial sampling of brain-specific proteins in serum reveals different temporal trajectories that should be

  6. Serial Sampling of Serum Protein Biomarkers for Monitoring Human Traumatic Brain Injury Dynamics: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Eric Peter Thelin

    2017-07-01

    Full Text Available BackgroundThe proteins S100B, neuron-specific enolase (NSE, glial fibrillary acidic protein (GFAP, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1, and neurofilament light (NF-L have been serially sampled in serum of patients suffering from traumatic brain injury (TBI in order to assess injury severity and tissue fate. We review the current literature of serum level dynamics of these proteins following TBI and used the term “effective half-life” (t1/2 in order to describe the “fall” rate in serum.Materials and methodsThrough searches on EMBASE, Medline, and Scopus, we looked for articles where these proteins had been serially sampled in serum in human TBI. We excluded animal studies, studies with only one presented sample and studies without neuroradiological examinations.ResultsFollowing screening (10,389 papers, n = 122 papers were included. The proteins S100B (n = 66 and NSE (n = 27 were the two most frequent biomarkers that were serially sampled. For S100B in severe TBI, a majority of studies indicate a t1/2 of about 24 h, even if very early sampling in these patients reveals rapid decreases (1–2 h though possibly of non-cerebral origin. In contrast, the t1/2 for NSE is comparably longer, ranging from 48 to 72 h in severe TBI cases. The protein GFAP (n = 18 appears to have t1/2 of about 24–48 h in severe TBI. The protein UCH-L1 (n = 9 presents a t1/2 around 7 h in mild TBI and about 10 h in severe. Frequent sampling of these proteins revealed different trajectories with persisting high serum levels, or secondary peaks, in patients with unfavorable outcome or in patients developing secondary detrimental events. Finally, NF-L (n = 2 only increased in the few studies available, suggesting a serum availability of >10 days. To date, automated assays are available for S100B and NSE making them faster and more practical to use.ConclusionSerial sampling of brain-specific proteins in serum reveals

  7. On the intracellular trafficking of mouse S5 ribosomal protein from cytoplasm to nucleoli.

    Science.gov (United States)

    Matragkou, Ch; Papachristou, H; Karetsou, Z; Papadopoulos, G; Papamarcaki, T; Vizirianakis, I S; Tsiftsoglou, A S; Choli-Papadopoulou, T

    2009-10-09

    The non-ribosomal functions of mammalian ribosomal proteins have recently attracted worldwide attention. The mouse ribosomal protein S5 (rpS5) derived from ribosomal material is an assembled non-phosphorylated protein. The free form of rpS5 protein, however, undergoes phosphorylation. In this study, we have (a) investigated the potential role of phosphorylation in rpS5 protein transport into the nucleus and then into nucleoli and (b) determined which of the domains of rpS5 are involved in this intracellular trafficking. In vitro PCR mutagenesis of mouse rpS5 cDNA, complemented by subsequent cloning and expression of rpS5 truncated recombinant forms, produced in fusion with green fluorescent protein, permitted the investigation of rpS5 intracellular trafficking in HeLa cells using confocal microscopy complemented by Western blot analysis. Our results indicate the following: (a) rpS5 protein enters the nucleus via the region 38-50 aa that forms a random coil as revealed by molecular dynamic simulation. (b) Immunoprecipitation of rpS5 with casein kinase II and immobilized metal affinity chromatography analysis complemented by in vitro kinase assay revealed that phosphorylation of rpS5 seems to be indispensable for its transport from nucleus to nucleoli; upon entering the nucleus, Thr-133 phosphorylation triggers Ser-24 phosphorylation by casein kinase II, thus promoting entrance of rpS5 into the nucleoli. Another important role of rpS5 N-terminal region is proposed to be the regulation of protein's cellular level. The repetitively co-appearance of a satellite C-terminal band below the entire rpS5 at the late stationary phase, and not at the early logarithmic phase, of cell growth suggests a specific degradation balancing probably the unassembled ribosomal protein molecules with those that are efficiently assembled to ribosomal subunits. Overall, these data provide new insights on the structural and functional domains within the rpS5 molecule that contribute to its

  8. Brain injury markers (S100B and NSE in chronic cocaine dependents Marcadores de lesão cerebral (S100B e NSE em dependentes crônicos de cocaína

    Directory of Open Access Journals (Sweden)

    Felix Henrique Paim Kessler

    2007-06-01

    Full Text Available OBJECTIVE: Studies have shown signs of brain damage caused by different mechanisms in cocaine users. The serum neuron specific enolase and S100B protein are considered specific biochemical markers of neuronal and glial cell injury. This study aimed at comparing blood levels of S100B and NSE in chronic cocaine users and in volunteers who did not use cocaine or other illicit drugs. METHOD: Twenty subjects dependent on cocaine but not on alcohol or marijuana, and 20 non-substance using controls were recruited. Subjects were selected by consecutive and non-probabilistic sampling. Neuron specific enolase and S100B levels were determined by luminescence assay. RESULTS: Cocaine users had significantly higher scores than controls in all psychiatric dimensions of the SCL-90 and had cognitive deficits in the subtest cubes of WAIS and the word span. Mean serum S100B level was 0.09 ± 0.04 µg/l among cocaine users and 0.08 ± 0.04 µg/l among controls. Mean serum neuron specific enolase level was 9.7 ± 3.5 ng/l among cocaine users and 8.3 ± 2.6 ng/l among controls. CONCLUSIONS: In this first study using these specific brain damage markers in cocaine users, serum levels of S100B and neuron specific enolase were not statistically different between cocaine dependent subjects and controls.OBJETIVO: Estudos têm demonstrado sinais de lesão cerebral causadas por diferentes mecanismos em usuários de cocaína. A enolase sérica neurônio-específica e a proteína S100B são consideradas marcadores bioquímicos específicos de lesão neuronal e glial. Este estudo objetivou comparar os níveis sangüíneos de S100B e enolase sérica neurônio-específica em usuários crônicos de cocaína e em voluntários que não usam cocaína ou outras drogas ilícitas. MÉTODO: Vinte sujeitos dependentes de cocaína, mas não dependentes de álcool, maconha ou outra droga, e 20 sujeitos controles não usuários de drogas foram recrutados. Os sujeitos foram selecionados por

  9. Soluble endothelial protein C receptor (sEPCR) is likely a biomarker of cancer-associated hypercoagulability in human hematologic malignancies

    International Nuclear Information System (INIS)

    Ducros, Elodie; Mirshahi, Shah Soltan; Faussat, Anne-Marie; Mirshahi, Pezhman; Dimicoli, Sophie; Tang, Ruoping; Pardo, Julia; Ibrahim, Jdid; Marie, Jean-Pierre; Therwath, Amu; Soria, Jeannette; Mirshahi, Massoud

    2012-01-01

    Elevated plasma level of soluble endothelial protein C receptor (sEPCR) may be an indicator of thrombotic risk. The present study aims to correlate leukemia-associated hypercoagulability to high level plasma sEPCR and proposes its measurement in routine clinical practice. EPCR expressions in leukemic cell lines were determined by flow cytometry, immunocytochemistry, and reverse transcription polymerase chain reaction (RT-PCR). EPCR gene sequence of a candidate cell line HL-60 was also determined. Plasma samples (n = 76) and bone marrow aspirates (n = 72) from 148 patients with hematologic malignancies and 101 healthy volunteers were analyzed by enzyme-linked immunosorbent assay (ELISA) via a retrospective study for sEPCR and D-dimer. All leukemic cell lines were found to express EPCR. Also, HL-60 EPCR gene sequence showed extensive similarities with the endothelial reference gene. All single nucleotide polymorphisms (SNPs) originally described and some new SNPs were revealed in the promoter and intronic regions. Among these patients 67% had plasma sEPCR level higher than the controls (100 ± 28 ng/mL), wherein 16.3% patients had experienced a previous thrombotic event. These patients were divided into: group-1 (n = 45) with amount of plasmatic sEPCR below 100 ng/mL, group-2 (n = 45) where the concentration of sEPCR was between 100 and 200, and group-3 (n = 20) higher than 200 ng/mL. The numbers of thrombotic incidence recorded in each group were four, six, and eight, respectively. These results reveal that EPCR is expressed not only by a wide range of human malignant hematological cells but also the detection of plasma sEPCR levels provides a powerful insight into thrombotic risk assessment in cancer patients, especially when it surpasses 200 ng/mL

  10. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    Science.gov (United States)

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Immunohistochemical diagnosis of malignant melanoma of the conjunctiva and uvea: comparison of the novel antibody against melan-A with S100 protein and HMB-45

    DEFF Research Database (Denmark)

    Heegaard, Steffen; Jensen, O.A.; Prause, J.U.

    2000-01-01

    ophthalmology, A103, conjunctiva, gp100, HMB-45, malignant melanoma, MART-1, melan-A, S100, uvea......ophthalmology, A103, conjunctiva, gp100, HMB-45, malignant melanoma, MART-1, melan-A, S100, uvea...

  12. Expression and function of S100A8/A9 (calprotectin) in human typhoid fever and the murine Salmonella model.

    Science.gov (United States)

    De Jong, Hanna K; Achouiti, Ahmed; Koh, Gavin C K W; Parry, Christopher M; Baker, Stephen; Faiz, Mohammed Abul; van Dissel, Jaap T; Vollaard, Albert M; van Leeuwen, Ester M M; Roelofs, Joris J T H; de Vos, Alex F; Roth, Johannes; van der Poll, Tom; Vogl, Thomas; Wiersinga, Willem Joost

    2015-04-01

    Typhoid fever, caused by the Gram-negative bacterium Salmonella enterica serovar Typhi, is a major cause of community-acquired bacteremia and death worldwide. S100A8 (MRP8) and S100A9 (MRP14) form bioactive antimicrobial heterodimers (calprotectin) that can activate Toll-like receptor 4, promoting lethal, endotoxin-induced shock and multi-organ failure. We aimed to characterize the expression and function of S100A8/A9 in patients with typhoid fever and in a murine invasive Salmonella model. S100A8/A9 protein levels were determined in acute phase plasma or feces from 28 Bangladeshi patients, and convalescent phase plasma from 60 Indonesian patients with blood culture or PCR-confirmed typhoid fever, and compared to 98 healthy control subjects. To functionally characterize the role of S100A8/A9, we challenged wildtype (WT) and S100A9-/- mice with S. Typhimurium and determined bacterial loads and inflammation 2- and 5- days post infection. We further assessed the antimicrobial function of recombinant S100A8/A9 on S. Typhimurium and S. Typhi replication in vitro. Typhoid fever patients demonstrated a marked increase of S100A8/A9 in acute phase plasma and feces and this increases correlated with duration of fever prior to admission. S100A8/A9 directly inhibited the growth of S. Typhimurium and S. Typhi in vitro in a dose and time dependent fashion. WT mice inoculated with S. Typhimurium showed increased levels of S100A8/A9 in both the liver and the systemic compartment but S100A9-/- mice were indistinguishable from WT mice with respect to bacterial growth, survival, and inflammatory responses, as determined by cytokine release, histopathology and organ injury. S100A8/A9 is markedly elevated in human typhoid, correlates with duration of fever prior to admission and directly inhibits the growth of S. Typhimurium and S. Typhi in vitro. Despite elevated levels in the murine invasive Salmonella model, S100A8/A9 does not contribute to an effective host response against S

  13. Expression and function of S100A8/A9 (calprotectin in human typhoid fever and the murine Salmonella model.

    Directory of Open Access Journals (Sweden)

    Hanna K De Jong

    2015-04-01

    Full Text Available Typhoid fever, caused by the Gram-negative bacterium Salmonella enterica serovar Typhi, is a major cause of community-acquired bacteremia and death worldwide. S100A8 (MRP8 and S100A9 (MRP14 form bioactive antimicrobial heterodimers (calprotectin that can activate Toll-like receptor 4, promoting lethal, endotoxin-induced shock and multi-organ failure. We aimed to characterize the expression and function of S100A8/A9 in patients with typhoid fever and in a murine invasive Salmonella model.S100A8/A9 protein levels were determined in acute phase plasma or feces from 28 Bangladeshi patients, and convalescent phase plasma from 60 Indonesian patients with blood culture or PCR-confirmed typhoid fever, and compared to 98 healthy control subjects. To functionally characterize the role of S100A8/A9, we challenged wildtype (WT and S100A9-/- mice with S. Typhimurium and determined bacterial loads and inflammation 2- and 5- days post infection. We further assessed the antimicrobial function of recombinant S100A8/A9 on S. Typhimurium and S. Typhi replication in vitro. Typhoid fever patients demonstrated a marked increase of S100A8/A9 in acute phase plasma and feces and this increases correlated with duration of fever prior to admission. S100A8/A9 directly inhibited the growth of S. Typhimurium and S. Typhi in vitro in a dose and time dependent fashion. WT mice inoculated with S. Typhimurium showed increased levels of S100A8/A9 in both the liver and the systemic compartment but S100A9-/- mice were indistinguishable from WT mice with respect to bacterial growth, survival, and inflammatory responses, as determined by cytokine release, histopathology and organ injury.S100A8/A9 is markedly elevated in human typhoid, correlates with duration of fever prior to admission and directly inhibits the growth of S. Typhimurium and S. Typhi in vitro. Despite elevated levels in the murine invasive Salmonella model, S100A8/A9 does not contribute to an effective host response

  14. High glutamate attenuates S100B and LDH outputs from rat cortical slices enhanced by either oxygen-glucose deprivation or menadione.

    Science.gov (United States)

    Demircan, Celaleddin; Gül, Zülfiye; Büyükuysal, R Levent

    2014-07-01

    One hour incubation of rat cortical slices in a medium without oxygen and glucose (oxygen-glucose deprivation, OGD) increased S100B release to 6.53 ± 0.3 ng/ml/mg protein from its control value of 3.61 ± 0.2 ng/ml/mg protein. When these slices were then transferred to a medium containing oxygen and glucose (reoxygenation, REO), S100B release rose to 344 % of its control value. REO also caused 192 % increase in lactate dehydrogenase (LDH) leakage. Glutamate added at millimolar concentration into the medium decreased OGD or REO-induced S100B release and REO-induced LDH leakage. Alpha-ketoglutarate, a metabolic product of glutamate, was found to be as effective as glutamate in decreasing the S100B and LDH outputs. Similarly lactate, 2-ketobutyrate and ethyl pyruvate, a lipophilic derivative of pyruvate, also exerted a glutamate-like effect on S100B and LDH outputs. Preincubation with menadione, which produces H2O2 intracellularly, significantly increased S100B and LDH levels in normoxic medium. All drugs tested in the present study, with the exception of pyruvate, showed a complete protection against menadione preincubation. Additionally, each OGD-REO, menadione or H2O2-induced mitochondrial energy impairments determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining and OGD-REO or menadione-induced increases in reactive oxygen substances (ROS) determined by 2,7-dichlorofluorescin diacetate (DCFH-DA) were also recovered by glutamate. Interestingly, H2O2-induced increase in fluorescence intensity derived from DCFH-DA in a slice-free physiological medium was attenuated significantly by glutamate and alpha-keto acids. All these drug actions support the conclusion that high glutamate, such as alpha-ketoglutarate and other keto acids, protects the slices against OGD- and REO-induced S100B and LDH outputs probably by scavenging ROS in addition to its energy substrate metabolite property.

  15. The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties: Implication for S100A4 protein

    International Nuclear Information System (INIS)

    Bruyere, Emilie; Jonckheere, Nicolas; Frenois, Frederic; Mariette, Christophe; Van Seuningen, Isabelle

    2011-01-01

    Highlights: → Loss of MUC4 reduces proliferation of esophageal cancer cells. → MUC4 inhibition impairs migration of esophageal cancer cells but not their invasion. → Loss of MUC4 significantly reduces in vivo tumor growth. → Decrease of S100A4 induced by MUC4 inhibition impairs proliferation and migration. -- Abstract: MUC4 is a membrane-bound mucin known to participate in tumor progression. It has been shown that MUC4 pattern of expression is modified during esophageal carcinogenesis, with a progressive increase from metaplastic lesions to adenocarcinoma. The principal cause of development of esophageal adenocarcinoma is the gastro-esophageal reflux, and MUC4 was previously shown to be upregulated by several bile acids present in reflux. In this report, our aim was thus to determine whether MUC4 plays a role in biological properties of human esophageal cancer cells. For that stable MUC4-deficient cancer cell lines (shMUC4 cells) were established using a shRNA approach. In vitro (proliferation, migration and invasion) and in vivo (tumor growth following subcutaneous xenografts in SCID mice) biological properties of shMUC4 cells were analyzed. Our results show that shMUC4 cells were less proliferative, had decreased migration properties and did not express S100A4 protein when compared with MUC4 expressing cells. Absence of MUC4 did not impair shMUC4 invasiveness. Subcutaneous xenografts showed a significant decrease in tumor size when cells did not express MUC4. Altogether, these data indicate that MUC4 plays a key role in proliferative and migrating properties of esophageal cancer cells as well as is a tumor growth promoter. MUC4 mucin appears thus as a good therapeutic target to slow-down esophageal tumor progression.

  16. The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties: Implication for S100A4 protein

    Energy Technology Data Exchange (ETDEWEB)

    Bruyere, Emilie; Jonckheere, Nicolas; Frenois, Frederic [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France); Mariette, Christophe [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France); Department of Digestive and Oncological Surgery, University Hospital Claude Huriez, 1 place de Verdun, 59045 Lille Cedex (France); Van Seuningen, Isabelle, E-mail: isabelle.vanseuningen@inserm.fr [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France)

    2011-09-23

    Highlights: {yields} Loss of MUC4 reduces proliferation of esophageal cancer cells. {yields} MUC4 inhibition impairs migration of esophageal cancer cells but not their invasion. {yields} Loss of MUC4 significantly reduces in vivo tumor growth. {yields} Decrease of S100A4 induced by MUC4 inhibition impairs proliferation and migration. -- Abstract: MUC4 is a membrane-bound mucin known to participate in tumor progression. It has been shown that MUC4 pattern of expression is modified during esophageal carcinogenesis, with a progressive increase from metaplastic lesions to adenocarcinoma. The principal cause of development of esophageal adenocarcinoma is the gastro-esophageal reflux, and MUC4 was previously shown to be upregulated by several bile acids present in reflux. In this report, our aim was thus to determine whether MUC4 plays a role in biological properties of human esophageal cancer cells. For that stable MUC4-deficient cancer cell lines (shMUC4 cells) were established using a shRNA approach. In vitro (proliferation, migration and invasion) and in vivo (tumor growth following subcutaneous xenografts in SCID mice) biological properties of shMUC4 cells were analyzed. Our results show that shMUC4 cells were less proliferative, had decreased migration properties and did not express S100A4 protein when compared with MUC4 expressing cells. Absence of MUC4 did not impair shMUC4 invasiveness. Subcutaneous xenografts showed a significant decrease in tumor size when cells did not express MUC4. Altogether, these data indicate that MUC4 plays a key role in proliferative and migrating properties of esophageal cancer cells as well as is a tumor growth promoter. MUC4 mucin appears thus as a good therapeutic target to slow-down esophageal tumor progression.

  17. The C-terminal random coil region tunes the Ca²⁺-binding affinity of S100A4 through conformational activation.

    Directory of Open Access Journals (Sweden)

    Annette Duelli

    Full Text Available S100A4 interacts with many binding partners upon Ca2+ activation and is strongly associated with increased metastasis formation. In order to understand the role of the C-terminal random coil for the protein function we examined how small angle X-ray scattering of the wild-type S100A4 and its C-terminal deletion mutant (residues 1-88, Δ13 changes upon Ca2+ binding. We found that the scattering intensity of wild-type S100A4 changes substantially in the 0.15-0.25 Å-1 q-range whereas a similar change is not visible in the C-terminus deleted mutant. Ensemble optimization SAXS modeling indicates that the entire C-terminus is extended when Ca2+ is bound. Pulsed field gradient NMR measurements provide further support as the hydrodynamic radius in the wild-type protein increases upon Ca2+ binding while the radius of Δ13 mutant does not change. Molecular dynamics simulations provide a rational explanation of the structural transition: the positively charged C-terminal residues associate with the negatively charged residues of the Ca2+-free EF-hands and these interactions loosen up considerably upon Ca2+-binding. As a consequence the Δ13 mutant has increased Ca2+ affinity and is constantly loaded at Ca2+ concentration ranges typically present in cells. The activation of the entire C-terminal random coil may play a role in mediating interaction with selected partner proteins of S100A4.

  18. Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake.

    Directory of Open Access Journals (Sweden)

    Robert M Gill

    Full Text Available Protein S-glutathionylation is a reversible redox modification that regulates mitochondrial metabolism and reactive oxygen species (ROS production in liver and cardiac tissue. However, whether or not it controls ROS release from skeletal muscle mitochondria has not been explored. In the present study, we examined if chemically-induced protein S-glutathionylation could alter superoxide (O2●-/hydrogen peroxide (H2O2 release from isolated muscle mitochondria. Disulfiram, a powerful chemical S-glutathionylation catalyst, was used to S-glutathionylate mitochondrial proteins and ascertain if it can alter ROS production. It was found that O2●-/H2O2 release rates from permeabilized muscle mitochondria decreased with increasing doses of disulfiram (100-500 μM. This effect was highest in mitochondria oxidizing succinate or palmitoyl-carnitine, where a ~80-90% decrease in the rate of ROS release was observed. Similar effects were detected in intact mitochondria respiring under state 4 conditions. Incubation of disulfiram-treated mitochondria with DTT (2 mM restored ROS release confirming that these effects were associated with protein S-glutathionylation. Disulfiram treatment also inhibited phosphorylating and proton leak-dependent respiration. Radiolabelled substrate uptake experiments demonstrated that disulfiram inhibited pyruvate import but had no effect on carnitine uptake. Immunoblot analysis of complex I revealed that it contained several protein S-glutathionylation targets including NDUSF1, a subunit required for NADH oxidation. Taken together, these results demonstrate that O2●-/H2O2 release from muscle mitochondria can be altered by protein S-glutathionylation. We attribute these changes to the protein S-glutathionylation complex I and inhibition of mitochondrial pyruvate carrier.

  19. Cortisol, Interleukins and S100B in Delirium in the Elderly

    Science.gov (United States)

    van Munster, Barbara C.; Bisschop, Peter H.; Zwinderman, Aeilko H.; Korevaar, Johanna C.; Endert, Erik; Wiersinga, W. Joost; van Oosten, Hannah E.; Goslings, J. Carel; de Rooij, Sophia E. J. A.

    2010-01-01

    In independent studies delirium was associated with higher levels of cortisol, interleukin(IL)s, and S100B. The aim of this study was to simultaneously compare cortisol, IL-6, IL-8, and S100B levels in patients aged 65 years and older admitted for hip fracture surgery with and without delirium. Cortisol, IL-6, IL-8, and S100B were assayed in…

  20. Comparative Membrane Proteomics Reveals a Nonannotated E. coli Heat Shock Protein.

    Science.gov (United States)

    Yuan, Peijia; D'Lima, Nadia G; Slavoff, Sarah A

    2018-01-09

    Recent advances in proteomics and genomics have enabled discovery of thousands of previously nonannotated small open reading frames (smORFs) in genomes across evolutionary space. Furthermore, quantitative mass spectrometry has recently been applied to analysis of regulated smORF expression. However, bottom-up proteomics has remained relatively insensitive to membrane proteins, suggesting they may have been underdetected in previous studies. In this report, we add biochemical membrane protein enrichment to our previously developed label-free quantitative proteomics protocol, revealing a never-before-identified heat shock protein in Escherichia coli K12. This putative smORF-encoded heat shock protein, GndA, is likely to be ∼36-55 amino acids in length and contains a predicted transmembrane helix. We validate heat shock-regulated expression of the gndA smORF and demonstrate that a GndA-GFP fusion protein cofractionates with the cell membrane. Quantitative membrane proteomics therefore has the ability to reveal nonannotated small proteins that may play roles in bacterial stress responses.

  1. Dissection of an old protein reveals a novel application: domain D of Staphylococcus aureus Protein A (sSpAD as a secretion - tag

    Directory of Open Access Journals (Sweden)

    Paal Michael

    2010-11-01

    Full Text Available Abstract Background Escherichia coli as a frequently utilized host organism for recombinant protein production offers different cellular locations with distinct qualities. The periplasmic space is often favored for the production of complex proteins due to enhanced disulfide bond formation, increased target product stability and simplified downstream processing. To direct proteins to the periplasmic space rather small proteinaceus tags that can be used for affinity purification would be advantageous. Results We discovered that domain D of the Staphylococcus aureus protein A was sufficient for the secretion of various target proteins into the periplasmic space of E. coli. Our experiments indicated the Sec pathway as the mode of secretion, although N-terminal processing was not observed. Furthermore, the solubility of recombinant fusion proteins was improved for proteins prone to aggregation. The tag allowed a straightforward affinity purification of recombinant fusion protein via an IgG column, which was exemplified for the target protein human superoxide dismutase 1 (SOD. Conclusions In this work we present a new secretion tag that combines several advantages for the production of recombinant proteins in E. coli. Domain D of S. aureus protein A protects the protein of interest against N-terminal degradation, increases target protein solubility and enables a straight-forward purification of the recombinant protein using of IgG columns.

  2. Interaction between Nbp35 and Cfd1 proteins of cytosolic Fe-S cluster assembly reveals a stable complex formation in Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Shadab Anwar

    Full Text Available Iron-Sulfur (Fe-S proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1 protein and Nucleotide binding protein 35 (Nbp35. In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151 of Nbp35 and (G5-V6, M34-D39 and G46-A52 of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins

  3. The Human Antimicrobial Protein Calgranulin C Participates in Control of Helicobacter pylori Growth and Regulation of Virulence.

    Science.gov (United States)

    Haley, Kathryn P; Delgado, Alberto G; Piazuelo, M Blanca; Mortensen, Brittany L; Correa, Pelayo; Damo, Steven M; Chazin, Walter J; Skaar, Eric P; Gaddy, Jennifer A

    2015-07-01

    During infectious processes, antimicrobial proteins are produced by both epithelial cells and innate immune cells. Some of these antimicrobial molecules function by targeting transition metals and sequestering these metals in a process referred to as "nutritional immunity." This chelation strategy ultimately starves invading pathogens, limiting their growth within the vertebrate host. Recent evidence suggests that these metal-binding antimicrobial molecules have the capacity to affect bacterial virulence, including toxin secretion systems. Our previous work showed that the S100A8/S100A9 heterodimer (calprotectin, or calgranulin A/B) binds zinc and represses the elaboration of the H. pylori cag type IV secretion system (T4SS). However, there are several other S100 proteins that are produced in response to infection. We hypothesized that the zinc-binding protein S100A12 (calgranulin C) is induced in response to H. pylori infection and also plays a role in controlling H. pylori growth and virulence. To test this, we analyzed gastric biopsy specimens from H. pylori-positive and -negative patients for S100A12 expression. These assays showed that S100A12 is induced in response to H. pylori infection and inhibits bacterial growth and viability in vitro by binding nutrient zinc. Furthermore, the data establish that the zinc-binding activity of the S100A12 protein represses the activity of the cag T4SS, as evidenced by the gastric cell "hummingbird" phenotype, interleukin 8 (IL-8) secretion, and CagA translocation assays. In addition, high-resolution field emission gun scanning electron microscopy (FEG-SEM) was used to demonstrate that S100A12 represses biogenesis of the cag T4SS. Together with our previous work, these data reveal that multiple S100 proteins can repress the elaboration of an oncogenic bacterial surface organelle. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production.

    Science.gov (United States)

    Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha

    2015-09-29

    S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis.

  5. Blocking peptides against HBV: PreS1 protein selected from a phage display library

    International Nuclear Information System (INIS)

    Wang, Wei; Liu, Yang; Zu, Xiangyang; Jin, Rui; Xiao, Gengfu

    2011-01-01

    Highlights: → Successfully selected specific PreS1-interacting peptides by using phage displayed library. → Alignment of the positive phage clones revealed a consensus PreS1 binding motif. → A highly enriched peptide named P7 had a strong binding ability for PreS1. → P7 could block PreS1 attachment. -- Abstract: The PreS1 protein is present on the outermost part of the hepatitis B virus (HBV) surface and has been shown to have a pivotal function in viral infectivity and assembly. The development of reagents with high affinity and specificity for PreS1 is of great significance for early diagnosis and treatment of HBV infection. A phage display library of dodecapeptide was screened for interactions with purified PreS1 protein. Alignment of the positive phage clones revealed a putative consensus PreS1 binding motif of HX n HX m HP/R. Moreover, a peptide named P7 (KHMHWHPPALNT) was highly enriched and occurred with a surprisingly high frequency of 72%. A thermodynamic study revealed that P7 has a higher binding affinity to PreS1 than the other peptides. Furthermore, P7 was able to abrogate the binding of HBV virions to the PreS1 antibody, suggesting that P7 covers key functional sites on the native PreS1 protein. This newly isolated peptide may, therefore, be a new therapeutic candidate for the treatment of HBV. The consensus motif could be modified to deliver imaging, diagnostic, and therapeutic agents to tissues affected by HBV.

  6. Blocking peptides against HBV: PreS1 protein selected from a phage display library

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Liu, Yang; Zu, Xiangyang; Jin, Rui [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Xiao, Gengfu, E-mail: xiaogf@wh.iov.cn [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China)

    2011-09-09

    Highlights: {yields} Successfully selected specific PreS1-interacting peptides by using phage displayed library. {yields} Alignment of the positive phage clones revealed a consensus PreS1 binding motif. {yields} A highly enriched peptide named P7 had a strong binding ability for PreS1. {yields} P7 could block PreS1 attachment. -- Abstract: The PreS1 protein is present on the outermost part of the hepatitis B virus (HBV) surface and has been shown to have a pivotal function in viral infectivity and assembly. The development of reagents with high affinity and specificity for PreS1 is of great significance for early diagnosis and treatment of HBV infection. A phage display library of dodecapeptide was screened for interactions with purified PreS1 protein. Alignment of the positive phage clones revealed a putative consensus PreS1 binding motif of HX{sub n}HX{sub m}HP/R. Moreover, a peptide named P7 (KHMHWHPPALNT) was highly enriched and occurred with a surprisingly high frequency of 72%. A thermodynamic study revealed that P7 has a higher binding affinity to PreS1 than the other peptides. Furthermore, P7 was able to abrogate the binding of HBV virions to the PreS1 antibody, suggesting that P7 covers key functional sites on the native PreS1 protein. This newly isolated peptide may, therefore, be a new therapeutic candidate for the treatment of HBV. The consensus motif could be modified to deliver imaging, diagnostic, and therapeutic agents to tissues affected by HBV.

  7. Scientific Opinion on the safety and suitability for use by infants of follow-on formulae with a protein content of at least 1.6 g/100 kcal

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2017-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on the safety and suitability for use by infants of follow-on formulae (FOF) based on cow’s milk intact protein with a protein content...... of at least 1.6 g/100 kcal (rounded value) that meet otherwise the requirements of relevant EU legislation. If the formula under evaluation is considered to be safe and suitable for use by infants, the NDA Panel is also asked to advise on whether FOF based on goat’s milk intact protein, soy protein isolates...... legislation is safe and suitable for healthy infants living in Europe with an intake of complementary foods of a sufficient quality. This conclusion does not apply to infant formula (IF). The Panel also concludes that the safety and suitability of FOF with a protein content of at least 1.6 g/100 kcal...

  8. The clinical expression of hereditary protein C and protein S deficiency: : a relation to clinical thrombotic risk-factors and to levels of protein C and protein S

    NARCIS (Netherlands)

    Henkens, C. M. A.; van der Meer, J.; Hillege, J. L.; Bom, V. J. J.; Halie, M. R.; van der Schaaf, W.

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  9. 11 CFR 100.11 - State (2 U.S.C. 431(12)).

    Science.gov (United States)

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false State (2 U.S.C. 431(12)). 100.11 Section 100.11 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) General Definitions § 100.11 State (2 U.S.C. 431(12)). State means each State of the United States, the District of...

  10. Marginal and joint distributions of S100, HMB-45, and Melan-A across a large series of cutaneous melanomas.

    Science.gov (United States)

    Viray, Hollis; Bradley, William R; Schalper, Kurt A; Rimm, David L; Gould Rothberg, Bonnie E

    2013-08-01

    The distribution of the standard melanoma antibodies S100, HMB-45, and Melan-A has been extensively studied. Yet, the overlap in their expression is less well characterized. To determine the joint distributions of the classic melanoma markers and to determine if classification according to joint antigen expression has prognostic relevance. S100, HMB-45, and Melan-A were assayed by immunofluorescence-based immunohistochemistry on a large tissue microarray of 212 cutaneous melanoma primary tumors and 341 metastases. Positive expression for each antigen required display of immunoreactivity for at least 25% of melanoma cells. Marginal and joint distributions were determined across all markers. Bivariate associations with established clinicopathologic covariates and melanoma-specific survival analyses were conducted. Of 322 assayable melanomas, 295 (91.6%), 203 (63.0%), and 236 (73.3%) stained with S100, HMB-45, and Melan-A, respectively. Twenty-seven melanomas, representing a diverse set of histopathologic profiles, were S100 negative. Coexpression of all 3 antibodies was observed in 160 melanomas (49.7%). Intensity of endogenous melanin pigment did not confound immunolabeling. Among primary tumors, associations with clinicopathologic parameters revealed a significant relationship only between HMB-45 and microsatellitosis (P = .02). No significant differences among clinicopathologic criteria were observed across the HMB-45/Melan-A joint distribution categories. Neither marginal HMB-45 (P = .56) nor Melan-A (P = .81), or their joint distributions (P = .88), was associated with melanoma-specific survival. Comprehensive characterization of the marginal and joint distributions for S100, HMB-45, and Melan-A across a large series of cutaneous melanomas revealed diversity of expression across this group of antigens. However, these immunohistochemically defined subclasses of melanomas do not significantly differ according to clinicopathologic correlates or outcome.

  11. Hypoxia Mediated Release of Endothelial Microparticles and Increased Association of S100A12 with Circulating Neutrophils

    Directory of Open Access Journals (Sweden)

    Rebecca V. Vince

    2009-01-01

    Full Text Available Microparticles are released from the endothelium under normal homeostatic conditions and have been shown elevated in disease states, most notably those characterised by endothelial dysfunction. The endothelium is sensitive to oxidative stress/status and vascular cell adhesion molecule-1 (VCAM-1 expression is upregulated upon activated endothelium, furthermore the presence of VCAM-1 on microparticles is known. S100A12, a calcium binding protein part of the S100 family, is shown to be present on circulating leukocytes and is thought a sensitive marker to local inflammatory process, which may be driven by oxidative stress. Eight healthy males were subjected to breathing hypoxic air (15% O2, approximately equivalent to 3000 metres altitude for 80 minutes in a temperature controlled laboratory and venous blood samples were processed immediately for VCAM-1 microparticles (VCAM-1 MP and S100A12 association with leukocytes by flow cytometry. A pre-hypoxic blood sample was used for comparison. Both VCAM-1 MP and S100A12 association with neutrophils were significantly elevated post hypoxic breathing later declining to levels observed in the pre-test samples. A similar trend was observed in both cases and a correlation may exist between these two markers in response to hypoxia. These data offer evidence using novel markers of endothelial and circulating blood responses to hypoxia.

  12. Fluorescent S-layer fusion proteins

    International Nuclear Information System (INIS)

    Kainz, B.

    2010-01-01

    This work describes the construction and characterisation of fluorescent S-layer fusion proteins used as building blocks for the fabrication of nanostructured monomolecular biocoatings on silica particles with defined fluorescence properties. The S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a was fused with the pH-dependant cyan, green and yellow variant of the green fluorescent protein (GFP) and the red fluorescent protein mRFP1. These fluorescent S-layer fusion proteins, acting as scaffold and optical sensing element simultaneously, were able to reassemble in solution and on silica particles forming 2D nanostructures with p2 lattice symmetry (a=11 ±0.5 nm, b=14 ±0.4 nm, g=80 ±1 o ). The pH-dependant fluorescence behaviour was studied with fluorimetry, confocal microscopy and flow cytometry. These fluorescent S-layer fusion proteins can be used as pH-sensor. 50% of the fluorescence intensity decreases at their calculated pKa values (pH6 - pH5). The fluorescence intensity of the GFP variants vanished completely between pH4 and pH3 whereas the chromophore of the red protein mRFP1 was only slightly affected in acidic conditions. At the isoelectric point of the S-layer coated silica particles (pH4.6 ±0.2) an increase in particle aggregation was detected by flow cytometry. The cyan and yellow fluorescent proteins were chosen to create a bi-fluorescent S-layer tandem fusion protein with the possibility for resonance energy transfer (FRET). A transfer efficiency of 20% and a molecular distance between the donor (ECFP) and acceptor (YFP) chromophores of around 6.2 nm could be shown. This bi-fluorescent ECFP-SgsE-YFP tandem fusion protein was able to reassemble on solid surfaces. The remarkable combination of fluorescence and self-assembly and the design of bi-functional S-layer tandem fusion protein matrices makes them to a promising tool in nanobiotechnology. (author) [de

  13. Structural characterization of the photoswitchable fluorescent protein Dronpa-C62S

    International Nuclear Information System (INIS)

    Nam, Ki-Hyun; Kwon, Oh Yeun; Sugiyama, Kanako; Lee, Won-Ho; Kim, Young Kwan; Song, Hyun Kyu; Kim, Eunice Eunkyung; Park, Sam-Yong; Jeon, Hyesung; Hwang, Kwang Yeon

    2007-01-01

    The photoswitching behavior of green fluorescent proteins (GFPs) or GFP-like proteins is increasingly recognized as a new technique for optical marking. Recently, Ando and his colleagues developed a new green fluorescent protein Dronpa, which possesses the unique photochromic property of being photoswitchable in a non-destructive manner. To better understand this mechanism, we determined the crystal structures of a new GFP Dronpa and its mutant C62S, at 1.9 A and 1.8 A, respectively. Determination of the structures demonstrates that a unique hydrogen-bonding network and the sulfur atom of the chromophore are critical to the photoswitching property of Dronpa. Reversible photoswitching was lost in cells expressing the Dronpa-C62S upon repetitive irradiation compared to the native protein. Structural and mutational analyses reveal the chemical basis for the functional properties of photoswitchable fluorescent proteins and provide the basis for subsequent coherent engineering of this subfamily of Dronpa homolog's

  14. Beyond 100 Gbit/s wireless connectivity enabled by THz photonics

    DEFF Research Database (Denmark)

    Yu, Xianbin; Jia, Shi; Pang, Xiaodan

    2017-01-01

    Beyond 100Gbit/s wireless connectivity is appreciated in many scenarios, such as big data wireless cloud, ultrafast wireless download, large volume data transfer, etc. In this paper, we will present our recent achievements on beyond 100Gbit/s ultrafast terahertz (THz) wireless links enabled by TH...... photonics....

  15. Resonance Energy Transfer between protein and rhamnolipid capped ZnS quantum dots: Application in in-gel staining of proteins

    Science.gov (United States)

    Janakiraman, Narayanan; Mohan, Abhilash; Kannan, Ashwin; Pennathur, Gautam

    The interaction of proteins with quantum dots is an interesting field of research. These interactions occur at the nanoscale. We have probed the interaction of Bovine Serum Albumin (BSA) and Candida rugosa lipase (CRL) with rhamnolipid capped ZnS (RhlZnSQDs) using absorption and fluorescence spectroscopy. Optical studies on mixtures of RhlZnSQDs and proteins resulted in Förster's Resonance Energy Transfer (FRET) from proteins to QDs. This phenomenon has been exploited to detect proteins in agarose gel electrophoresis. The activity of the CRL was unaffected on the addition of QDs as revealed by zymography.

  16. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1

    Czech Academy of Sciences Publication Activity Database

    Jirků, Michaela; Lánský, Zdeněk; Bednárová, L.; Šulc, Miroslav; Monincová, L.; Majer, P.; Vyklický ml., Ladislav; Vondrášek, J.; Teisinger, Jan; Boušová, Kristýna

    2016-01-01

    Roč. 78, Sep 2016 (2016), s. 186-193 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR(CZ) GA15-17488S Institutional support: RVO:67985823 ; RVO:61388971 ; RVO:86652036 Keywords : TRPM1 channel * binding site * calcium-binding protein S100A1 * steady-state fluorescence anisotropy * molecular modeling * circular dichroism Subject RIV: CE - Biochemistry ; EE - Microbiology, Virology (MBU-M); EB - Genetics ; Molecular Biology (BTO-N) Impact factor: 3.505, year: 2016

  17. Reassembly of S-layer proteins

    International Nuclear Information System (INIS)

    Pum, Dietmar; Sleytr, Uwe B

    2014-01-01

    Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology. (topical review)

  18. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    2014-10-01

    Full Text Available Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape.

  19. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins.

    Science.gov (United States)

    Barras, Frédéric; Loiseau, Laurent; Py, Béatrice

    2005-01-01

    Owing to the versatile electronic properties of iron and sulfur, iron sulfur (Fe/S) clusters are perfectly suited for sensing changes in environmental conditions and regulating protein properties accordingly. Fe/S proteins have been recruited in a wide array of diverse biological processes, including electron transfer chains, metabolic pathways and gene regulatory circuits. Chemistry has revealed the great diversity of Fe/S clusters occurring in proteins. The question now is to understand how iron and sulfur come together to form Fe/S clusters and how these clusters are subsequently inserted into apoproteins. Iron, sulfide and reducing conditions were found to be sufficient for successful maturation of many apoproteins in vitro, opening the possibility that insertion might be a spontaneous event. However, as in many other biological pathways such as protein folding, genetic analyses revealed that Fe/S cluster biogenesis and insertion depend in vivo upon auxiliary proteins. This was brought to light by studies on Azotobacter vinelandii nitrogenase, which, in particular, led to the concept of scaffold proteins, the role of which would be to allow transient assembly of Fe/S cluster. These studies paved the way toward the identification of the ISC and SUF systems, subjects of the present review that allow Fe/S cluster assembly into apoproteins of most organisms. Despite the recent discovery of the SUF and ISC systems, remarkable progress has been made in our understanding of their molecular composition and biochemical mechanisms. Such a rapid increase in our knowledge arose from a convergent interest from researchers engaged in unrelated fields and whose complementary expertise covered most experimental approaches used in biology. Also, the high conservation of ISC and SUF systems throughout a wide array of organisms helped cross-feeding between studies. The ISC system is conserved in eubacteria and most eukaryotes, while the SUF system arises in eubacteria, archaea

  20. Compact structure of ribosomal protein S4 in solution as revealed by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Serdyuk, I.N.; Sarkisyan, M.A.; Gogia, Z.V.

    1981-01-01

    The authors report the results of a small-angle X-ray scattering study of ribosomal protein preparations obtained by neutron scattering method. The theoretical resolution of the diffractometer (Kratky camera, the entrance slit 80 μm, the receiving slit 190 μm, the sample-detector distance 20.4 cm) was the same as the resolution of X-ray diffractometers, on which high rsub(g) values for ribosomal proteins were obtained. They used protein S4 adjusted to 20 mg/ml without any essential loss of solubility. The scattering indicatrix obtained in a wide range of angles has demonstrated that the X-ray rsub(g) obtained here coincides with the earlier obtained neutron rsub(g) and the outer part of the scattering curve is similar to that of slightly elongated compact bodies. They conclude that all discrepancies between their data on the study of ribosomal protein structure in solution and other data are not connected with the characteristics of the instruments used but only with the quality of the protein preparations. (Auth.)

  1. Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C

    DEFF Research Database (Denmark)

    Stammet, Pascal; Dankiewicz, Josef; Nielsen, Niklas

    2017-01-01

    -specific enolase (NSE) did not further improve the AUC. CONCLUSIONS: The allocated target temperature did not affect S100 to a clinically relevant degree. High S100 values are predictive of poor outcome but do not add value to present prognostication models with or without NSE. S100 measured at 24 h and afterward...

  2. Protein S is protective in pulmonary fibrosis.

    Science.gov (United States)

    Urawa, M; Kobayashi, T; D'Alessandro-Gabazza, C N; Fujimoto, H; Toda, M; Roeen, Z; Hinneh, J A; Yasuma, T; Takei, Y; Taguchi, O; Gabazza, E C

    2016-08-01

    Essentials Epithelial cell apoptosis is critical in the pathogenesis of idiopathic pulmonary fibrosis. Protein S, a circulating anticoagulant, inhibited apoptosis of lung epithelial cells. Overexpression of protein S in lung cells reduced bleomycin-induced pulmonary fibrosis. Intranasal therapy with exogenous protein S ameliorated bleomycin-induced pulmonary fibrosis. Background Pulmonary fibrosis is the terminal stage of interstitial lung diseases, some of them being incurable and of unknown etiology. Apoptosis plays a critical role in lung fibrogenesis. Protein S is a plasma anticoagulant with potent antiapoptotic activity. The role of protein S in pulmonary fibrosis is unknown. Objectives To evaluate the clinical relevance of protein S and its protective role in pulmonary fibrosis. Methods and Results The circulating level of protein S was measured in patients with pulmonary fibrosis and controls by the use of enzyme immunoassays. Pulmonary fibrosis was induced with bleomycin in transgenic mice overexpressing human protein S and wild-type mice, and exogenous protein S or vehicle was administered to wild-type mice; fibrosis was then compared in both models. Patients with pulmonary fibrosis had reduced circulating levels of protein S as compared with controls. Inflammatory changes, the levels of profibrotic cytokines, fibrosis score, hydroxyproline content in the lungs and oxygen desaturation were significantly reduced in protein S-transgenic mice as compared with wild-type mice. Wild-type mice treated with exogenous protein S showed significant decreases in the levels of inflammatory and profibrotic markers and fibrosis in the lungs as compared with untreated control mice. After bleomycin infusion, mice overexpressing human protein S showed significantly low caspase-3 activity, enhanced expression of antiapoptotic molecules and enhanced Akt and Axl kinase phosphorylation as compared with wild-type counterparts. Protein S also inhibited apoptosis of alveolar

  3. Insulin receptors mediate growth effects in cultured fetal neurons. II. Activation of a protein kinase that phosphorylates ribosomal protein S6

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    As an initial attempt to identify early steps in insulin action that may be involved in the growth responses of neurons to insulin, we investigated whether insulin receptor activation increases the phosphorylation of ribosomal protein S6 in cultured fetal neurons and whether activation of a protein kinase is involved in this process. When neurons were incubated for 2 h with 32Pi, the addition of insulin (100 ng/ml) for the final 30 min increased the incorporation of 32Pi into a 32K microsomal protein. The incorporation of 32Pi into the majority of other neuronal proteins was unaltered by the 30-min exposure to insulin. Cytosolic extracts from insulin-treated neurons incubated in the presence of exogenous rat liver 40S ribosomes and [gamma-32P]ATP displayed a 3- to 8-fold increase in the phosphorylation of ribosomal protein S6 compared to extracts from untreated cells. Inclusion of cycloheximide during exposure of the neurons to insulin did not inhibit the increased cytosolic kinase activity. Activation of S6 kinase activity by insulin was dose dependent (seen at insulin concentration as low as 0.1 ng/ml) and reached a maximum after 20 min of incubation. Addition of phosphatidylserine, diolein, and Ca2+ to the in vitro kinase reaction had no effect on the phosphorylation of ribosomal protein S6. Likewise, treatment of neurons with (Bu)2cAMP did not alter the phosphorylation of ribosomal protein S6 by neuronal cytosolic extracts. We conclude that insulin activates a cytosolic protein kinase that phosphorylates ribosomal S6 in neurons and is distinct from protein kinase-C and cAMP-dependent protein kinase. Stimulation of this kinase may play a role in insulin signal transduction in neurons

  4. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    Science.gov (United States)

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Functional Properties and Amino Acid Profile of Spirulina Platensis Protein Isolates

    International Nuclear Information System (INIS)

    Bashir, S.; Sharif, M. K.; Butt, M. S.; Shahid, M.

    2016-01-01

    Protein malnutrition and food insecurity represent serious obstructions to sustainable development, poverty reduction and food quality throughout the world. The present study has been designed to evaluate the Spirulina platensis (SP) as a protein alternative source for the utilization in food products. A protein isolate was prepared from S. platensis powder through extraction with 0.1N NaOH, precipitation at pH 3, neutralization of the dispersed precipitate to pH 6.8-7.0, and subsequent freeze drying. The S. platensis isolate amino acids compositions revealed that the total essential amino acids contribution was comparatively higher in SPI (31.16±1.43 g/100 g) as compared with SP (27.75±1.21 g/100 g). Moreover, oil and water absorption capacities, foaming and emulsifying properties, surface hydrophobicity and nitrogen solubility index were found better functional properties under laboratory conditions except emulsion properties. Conclusively, SP and its isolates might be used in various food products to curtail protein energy malnutrition. (author)

  6. Binding of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100) and/or its metabolites to mammalian biliary carrier proteins

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.; Huwe, J.; Hakk, H. [USDA ARS Biosciences Research Lab, Fargo, ND (United States); Low, M.; Rutherford, D. [Concordia College, Moorhead, MN (United States)

    2004-09-15

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in the textile and electronics industries and are globally produced in the range of 150,000 tons annually. Because they are very lipophilic, structurally similar to polychlorinated dibenzo-p-dioxins and biphenyls, environmentally persistent, and display an increasing number of toxicological effects, there is growing concern that this class of compounds may be emerging as a new environmental contaminant. Recent reports have documented their presence in human plasma, milk, and adipose tissue and in aquatic species such as sperm whales, harbor seals, and whitebeaked dolphins. Only a few PBDE congeners are consistently found and reported in the environment, e.g. BDE-47, 99, 100, 153 and 154, and 209. Of this group, only BDE-47 and 99 have been studied in mammals. Halogenated aromatic hydrocarbons can associate with endogenous carrier proteins in the urine and bile of rats, either as the parent or as metabolites. Toxic and non-toxic dioxins, PCB's, and PBDE's all have this capacity. Based on its lipophilicity, BDE-100 would be expected to require carrier proteins for mammalian in vivo transport. The purpose of the association has not been established but may be part of the process involved in mammalian elimination of these xenobiotics. However, the association may affect the normal function of these carrier proteins. One of the purposes of the present research was to administer a single oral dose of BDE-100 to male rats and measure the amount eliminated in the urine and bile, as well as characterize the nature and extent of binding to any proteins in these excreta.

  7. The 5HT(1A) receptor ligand, S15535, antagonises G-protein activation: a [35S]GTPgammaS and [3H]S15535 autoradiography study.

    Science.gov (United States)

    Newman-Tancredi, A; Rivet, J; Chaput, C; Touzard, M; Verrièle, L; Millan, M J

    1999-11-19

    4-(Benzodioxan-5-yl)1-(indan-2-yl)piperazine (S15535) is a highly selective ligand at 5-HT(1A) receptors. The present study compared its autoradiographic labelling of rat brain sections with its functional actions, visualised by guanylyl-5'-[gamma-thio]-triphosphate ([35S]GTPgammaS) autoradiography, which affords a measure of G-protein activation. [3H]S15535 binding was highest in hippocampus, frontal cortex, entorhinal cortex, lateral septum, interpeduncular nucleus and dorsal raphe, consistent with specific labelling of 5-HT(1A) receptors. In functional studies, S15535 (10 microM) did not markedly stimulate G-protein activation in any brain region, but abolished the activation induced by the selective 5-HT(1A) agonist, (+)-8-hydroxy-dipropyl-aminotetralin ((+)-8-OH-DPAT, 1 microM), in structures enriched in [3H]S15535 labelling. S15535 did not block 5-HT-stimulated activation in caudate nucleus or substantia nigra, regions where (+)-8-OH-DPAT was ineffective and [3H]S15535 binding was absent. Interestingly, S15535 attenuated (+)-8-OH-DPAT and 5-HT-stimulated G-protein activation in dorsal raphe, a region in which S15535 is known to exhibit agonist properties in vivo [Lejeune, F., Millan, M.J., 1998. Induction of burst firing in ventral tegmental area dopaminergic neurons by activation of serotonin (5-HT)(1A) receptors: WAY100,635-reversible actions of the highly selective ligands, flesinoxan and S15535. Synapse 30, 172-180.]. The present data show that (i) [3H]S15535 labels pre- and post-synaptic populations of 5-HT(1A) sites in rat brain sections, (ii) S15535 exhibits antagonist properties at post-synaptic 5-HT(1A) receptors in corticolimbic regions, and (iii) S15535 also attenuates agonist-stimulated G-protein activation at raphe-localised 5-HT(1A) receptors.

  8. Thioredoxin 1 regulation of protein S-desulfhydration

    Directory of Open Access Journals (Sweden)

    Youngjun Ju

    2016-03-01

    Full Text Available The importance of H2S in biology and medicine has been widely recognized in recent years, and protein S-sulfhydration is proposed to mediate the direct actions of H2S bioactivity in the body. Thioredoxin 1 (Trx1 is an important reducing enzyme that cleaves disulfides in proteins and acts as an S-denitrosylase. The regulation of Trx1 on protein S-sulfhydration is unclear. Here we showed that Trx1 facilitates protein S-desulfhydration. Overexpression of Trx1 attenuated the basal level and H2S-induced protein S-sulfhydration by direct interaction with S-sulfhydrated proteins, i.e., glyceraldehyde 3-phosphate dehydrogenase and pyruvate carboxylase. In contrast, knockdown of Trx1 mRNA expression by short interfering RNA or blockage of Trx1 redox activity with PX12 or 2,4-dinitrochlorobenzene enhanced protein S-sulfhydration. Mutation of cysteine-32 but not cysteine-35 in the Trp–Cys32–Gly–Pro–Cys35 motif eliminated the binding of Trx1 with S-sulfhydrated proteins and abolished the S-desulfhydrating effect of Trx1. All these data suggest that Trx1 acts as an S-desulfhydrase.

  9. The Interaction Pattern between a Homology Model of 40S Ribosomal S9 Protein of Rhizoctonia solani and 1-Hydroxyphenaize by Docking Study

    Directory of Open Access Journals (Sweden)

    Seema Dharni

    2014-01-01

    Full Text Available 1-Hydroxyphenazine (1-OH-PHZ, a natural product from Pseudomonas aeruginosa strain SD12, was earlier reported to have potent antifungal activity against Rhizoctonia solani. In the present work, the antifungal activity of 1-OH-PHZ on 40S ribosomal S9 protein was validated by molecular docking approach. 1-OH-PHZ showed interaction with two polar contacts with residues, Arg69 and Phe19, which inhibits the synthesis of fungal protein. Our study reveals that 1-OH-PHZ can be a potent inhibitor of 40S ribosomal S9 protein of R. solani that may be a promising approach for the management of fungal diseases.

  10. Pemberian makanan F100 dengan bahan substitusi tepung tempe terhadap status protein pasien anak dengan gizi kurang

    Directory of Open Access Journals (Sweden)

    Diniyah Kholidah

    2013-10-01

    Full Text Available Background: Much effort has been made to counter the weaknesses of F100 through the development of milk powder substituted with ingredients that have a high content of protein and energy, high bioavailability and relatively low cost. Objective: To analyze an effect of F100 supplementation using substitute tempeh flour on protein status (total protein serum and serum albumin among undernourished pediatric patients. Method: Experimental research with randomized clinical control trial among 30 undernourished children consisting of open clinical trial in two experiment groups, supplemented with F100 or substitute F100 (isoenergetic and isoprotein diet within 14 days. The study was undertaken in April-August 2010 at pediatric inpatient room of Dr. Saiful Anwar Hospital Malang. Data of food intake were obtained through visual Comstock and 24-hour food recall; data of total serum protein through biuret method; serum albumin (Alb through cellulose acetate electrophoresis method. Data analysis was using Pearson Chi-Square test and unpaired t-test. Results: The result of unpaired t-test on the average intake of energy, protein, fat and carbohydrate showed there was no significant difference in each experimental groups (p>0.05. The test result of total serum protein level and serum Alb level showed there was no significant difference in each experiment (p=0.240 and p=0.774. The result of correlation coefficient test showed there was no significant association between intake of energy and nutrient and total serum level and serum Alb level (p>0.05 and degree of association showed a weak association (r>0.25. Conclusion: Formula of F100 substitute as complementary food could be used as an alternative food in diet therapy of malnourished children on rehabilitation phase.

  11. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina; Malara, Natalia Maria; Trunzo, Valentina; Perozziello, Gerardo; Neužil, Pavel; Francardi, Marco; Roveda, Laura; Renne, Maria; Prati, Ubaldo; Mollace, Vincenzo; Manz, Andreas; Di Fabrizio, Enzo M.

    2013-01-01

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction's strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Internal jugular vein thrombosis associated with venous hypoplasia and protein S deficiency revealed by ultrasonography.

    Science.gov (United States)

    Lim, Byung Gun; Kim, Young Min; Kim, Heezoo; Lim, Sang Ho; Lee, Mi Kyoung

    2011-12-01

    A 41-year-old woman, who had no thrombotic risk factors and past history except congenital scoliosis, underwent central venous catheterization (CVC) before correction of the scoliosis. When internal jugular vein (IJV) catheterization using the anatomical landmark technique failed, CVC under ultrasound guidance was tried. As a consequence, thrombosis and hypoplasia of the right IJV were incidentally detected by ultrasonography. Central venous catheters were then successfully placed in other veins under ultrasound guidance. Also, after examinations to rule out the possibility of pulmonary embolism and to clarify the causes of the IJV thrombosis, the patient was found to have protein S deficiency. CVC under ultrasound guidance should be recommended to prevent the failure of cannulation and complications such as thromboembolism in patients who could possibly have anomalies of vessels as a result of anatomical deformities caused by severe scoliosis, even if patients do not have thrombotic risk factors such as a history of central catheter insertion or intravenous drug abuse, cancer, advanced age, cerebral infarction, and left ventricular dysfunction. Also, if venous thrombosis is found in patients without predisposing risk factors, one should ascertain the cause of the hypercoagulable state, for example protein S deficiency, and perform appropriate treatment and prevention of venous thromboembolism.

  13. SOX10-positive cells emerge in the rat pituitary gland during late embryogenesis and start to express S100β.

    Science.gov (United States)

    Ueharu, Hiroki; Yoshida, Saishu; Kanno, Naoko; Horiguchi, Kotaro; Nishimura, Naoto; Kato, Takako; Kato, Yukio

    2018-04-01

    In the pituitary gland, S100β-positive cells localize in the neurohypophysis and adenohypophysis but the lineage of the two groups remains obscure. S100β is often observed in many neural crest-derived cell types. Therefore, in this study, we investigate the origin of pituitary S100β-positive cells by immunohistochemistry for SOX10, a potent neural crest cell marker, using S100β-green fluorescence protein-transgenic rats. On embryonic day 21.5, a SOX10-positive cell population, which was also positive for the stem/progenitor cell marker SOX2, emerged in the pituitary stalk and posterior lobe and subsequently expanded to create a rostral-caudal gradient on postnatal day 3 (P3). Thereafter, SOX10-positive cells appeared in the intermediate lobe by P15, localizing to the boundary facing the posterior lobe, the gap between the lobule structures and the marginal cell layer, a pituitary stem/progenitor cell niche. Subsequently, there was an increase in SOX10/S100β double-positive cells; some of these cells in the gap between the lobule structures showed extended cytoplasm containing F-actin, indicating a feature of migration activity. The proportion of SOX10-positive cells in the postnatal anterior lobe was lower than 0.025% but about half of them co-localized with the pituitary-specific progenitor cell marker PROP1. Collectively, the present study identified that one of the lineages of S100β-positive cells is a SOX10-positive one and that SOX10-positive cells express pituitary stem/progenitor cell marker genes.

  14. The S100A10 Pathway Mediates an Occult Hyperfibrinolytic Subtype in Trauma Patients.

    Science.gov (United States)

    Gall, Lewis S; Vulliamy, Paul; Gillespie, Scarlett; Jones, Timothy F; Pierre, Rochelle S J; Breukers, Sabine E; Gaarder, Christine; Juffermans, Nicole P; Maegele, Marc; Stensballe, Jakob; Johansson, Pär I; Davenport, Ross A; Brohi, Karim

    2018-03-19

    To determine the characteristics of trauma patients with low levels of fibrinolysis as detected by viscoelastic hemostatic assay (VHA) and explore the underlying mechanisms of this subtype. Hyperfibrinolysis is a central component of acute traumatic coagulopathy but a group of patients present with low levels of VHA-detected fibrinolysis. There is concern that these patients may be at risk of thrombosis if empirically administered an antifibrinolytic agent. A prospective multicenter observational cohort study was conducted at 5 European major trauma centers. Blood was drawn on arrival, within 2 hours of injury, for VHA (rotation thromboelastometry [ROTEM]) and fibrinolysis plasma protein analysis including the fibrinolytic mediator S100A10. An outcomes-based threshold for ROTEM hypofibrinolysis was determined and patients grouped by this and by D-dimer (DD) levels. Nine hundred fourteen patients were included in the study. The VHA maximum lysis (ML) lower threshold was determined to be <5%. Heterogeneity existed among patients with low ML, with survivors sharing similar clinical and injury characteristics to patients with normal ML values (5-15%). Those who died were critically injured with a preponderance of traumatic brain injury and had a 7-fold higher DD level (died vs. survived: 103,170 vs. 13,672 ng/mL, P < 0.001). Patients with low ML and high DD demonstrated a hyperfibrinolytic biomarker profile, low tissue plasminogen activator levels but high plasma levels of S100A10. S100A10 was negatively correlated with %ML (r = -0.26, P < 0.001) and caused a significant reduction in %ML when added to whole blood ex-vivo. Patients presenting with low ML and low DD levels have low injury severity and normal outcomes. Conversely, patients with low ML but high DD levels are severely injured, functionally coagulopathic and have poor clinical outcomes. These patients have low tissue plasminogen activator levels and are not detectable by ROTEM. S100A10 is a cell

  15. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.

    Science.gov (United States)

    Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan

    2008-01-01

    The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.

  16. Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein

    Directory of Open Access Journals (Sweden)

    Han Lanlan

    2011-10-01

    Full Text Available Abstract Background Previous studies have revealed that the C-terminal region of the S-layer protein from Lactobacillus is responsible for the cell wall anchoring, which provide an approach for targeting heterologous proteins to the cell wall of lactic acid bacteria (LAB. In this study, we developed a new surface display system in lactic acid bacteria with the C-terminal region of S-layer protein SlpB of Lactobacillus crispatus K2-4-3 isolated from chicken intestine. Results Multiple sequence alignment revealed that the C-terminal region (LcsB of Lb. crispatus K2-4-3 SlpB had a high similarity with the cell wall binding domains SA and CbsA of Lactobacillus acidophilus and Lb. crispatus. To evaluate the potential application as an anchoring protein, the green fluorescent protein (GFP or beta-galactosidase (Gal was fused to the N-terminus of the LcsB region, and the fused proteins were successfully produced in Escherichia coli, respectively. After mixing them with the non-genetically modified lactic acid bacteria cells, the fused GFP-LcsB and Gal-LcsB were functionally associated with the cell surface of various lactic acid bacteria tested. In addition, the binding capacity could be improved by SDS pretreatment. Moreover, both of the fused proteins could simultaneously bind to the surface of a single cell. Furthermore, when the fused DNA fragment of gfp:lcsB was inserted into the Lactococcus lactis expression vector pSec:Leiss:Nuc, the GFP could not be secreted into the medium under the control of the nisA promoter. Western blot, in-gel fluorescence assay, immunofluorescence microscopy and SDS sensitivity analysis confirmed that the GFP was successfully expressed onto the cell surface of L. lactis with the aid of the LcsB anchor. Conclusion The LcsB region can be used as a functional scaffold to target the heterologous proteins to the cell surfaces of lactic acid bacteria in vitro and in vivo, and has also the potential for biotechnological

  17. S-Layer Protein-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Bernhard Schuster

    2018-04-01

    Full Text Available The present paper highlights the application of bacterial surface (S- layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  18. S-Layer Protein-Based Biosensors.

    Science.gov (United States)

    Schuster, Bernhard

    2018-04-11

    The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  19. The biomarkers neuron-specific enolase and S100b measured the day following admission for severe accidental hypothermia have high predictive values for poor outcome

    DEFF Research Database (Denmark)

    Wiberg, Sebastian; Kjaergaard, Jesper; Kjærgaard, Benedict

    2017-01-01

    was analyzed for NSE and S100b. Follow-up was conducted after 30days and poor neurologic outcome was defined as a Cerebral Performance Category (CPC) score of 3-5. The predictive value of NSE and S100b was assessed as the area under the receiver-operating characteristics curve (AUC). RESULTS: A total of 34......AIM: The aim of the present study was to assess the ability of the biomarkers neuron-specific enolase (NSE) and S100 calcium-binding protein b (S100b) to predict mortality and poor neurologic outcome after 30days in patients admitted with severe accidental hypothermia. METHODS: Consecutive patients...... in 30 unconscious and/or sedated patients. NSE and S100b achieved AUCs of 0.93 and 0.88, respectively, for prediction of 30day mortality and AUCs of 0.88 and 0.87, respectively, for prediction of poor neurologic outcome. CONCLUSIONS: In patients remaining unconscious the day following admission...

  20. Intercellular communications within the rat anterior pituitary. XVI: postnatal changes of distribution of S-100 protein positive cells, connexin 43 and LH-RH positive sites in the pars tuberalis of the rat pituitary gland. An immunohistochemical and electron microscopic study.

    Science.gov (United States)

    Wada, Ikuo; Sakuma, Eisuke; Shirasawa, Nobuyuki; Wakabayashi, Kenjiro; Otsuka, Takanobu; Hattori, Kazuki; Yashiro, Takashi; Herbert, Damon C; Soji, Tsuyoshi

    2014-02-01

    The architecture of luteinizing hormone-releasing hormone (LH-RH) nerve ends and the S-100 protein containing folliculo-stellate cells forming gap junctions in the pars tuberalis is basically important in understanding the regulation of the hormone producing mechanism of anterior pituitary glands. In this study, intact male rats 5-60 days old were prepared for immunohistochemistry and electron microscopy. From immunostained sections, the S-100 containing cells in pars tuberalis were first detected on day 30 and increased in number to day 60; this was parallel to the immunohistochemical staining of gap junction protein, connexin 43. LH-RH positive sites were clearly observed on just behind the optic chiasm and on the root of pituitary stalk on day 30. On day 60, the width of layer increased, while follicles and gap junctions were frequently observed between agranular cells in 10 or more layers of pars tuberalis. In the present study, we investigated the sexual maturation of the anterior pituitary glands through the postnatal development of S-100 positive cells, connexin 43 and LH-RH nerves. It is suggested that the folliculo-stellate cell system including the LH-RH neurons in the pars tuberalis participates in the control of LH secretion along with the portal vein system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The interaction of protein S with the phospholipid surface is essential for the activated protein C-independent activity of protein S

    NARCIS (Netherlands)

    van Wijnen, M.; Stam, J. G.; van't Veer, C.; Meijers, J. C.; Reitsma, P. H.; Bertina, R. M.; Bouma, B. N.

    1996-01-01

    Protein S is a vitamin-K dependent glycoprotein involved in the regulation of the anticoagulant activity of activated protein C (APC). Recent data showed a direct anticoagulant role of protein S independent of APC, as demonstrated by the inhibition of prothrombinase and tenase activity both in

  2. Ribosomal history reveals origins of modern protein synthesis.

    Directory of Open Access Journals (Sweden)

    Ajith Harish

    Full Text Available The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17 and the oldest substructure (the ribosomal ratchet in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.

  3. Hereditary protein S deficiency presenting with cerebral sinus thrombosis in an adolescent girl

    NARCIS (Netherlands)

    Koelman, J. H.; Bakker, C. M.; Plandsoen, W. C.; Peeters, F. L.; Barth, P. G.

    1992-01-01

    A 14-year-old girl, on oral contraceptives for 3 months, presented with cerebral sinus thrombosis. Investigation revealed underlying hereditary protein S deficiency. This uncommon cause of cerebral sinus thrombosis and the possible association with oral contraceptives are discussed

  4. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    Science.gov (United States)

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-08

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters.

  5. Serum S100B in elderly patients with and without delirium

    NARCIS (Netherlands)

    van Munster, Barbara C.; Korevaar, Johanna C.; Korse, Catharina M.; Bonfrer, Johannes M.; Zwinderman, Aeilko H.; de Rooij, Sophia E.

    2010-01-01

    Objective: Elevation of S100B has been shown after various neurologic diseases with cognitive dysfunction. The aim of this study was to compare the serum level of S100B of patients with and without delirium and investigate the possible associations with different subtypes of delirium. Methods:

  6. Serum S100B in elderly patients with and without delirium.

    NARCIS (Netherlands)

    Munster, B.C. van; Korevaar, J.C.; Korse, C.M.; Bonfrer, J.M.; Zwinderman, A.H.; Rooij, S.E. de

    2010-01-01

    Objective: Elevation of S100B has been shown after various neurologic diseases with cognitive dysfunction. The aim of this study was to compare the serum level of S100B of patients with and without delirium and investigate the possible associations with different subtypes of delirium. Methods:

  7. Proteins interacting with the 26S proteasome

    DEFF Research Database (Denmark)

    Hartmann-Petersen, R; Gordon, C

    2004-01-01

    The 26S proteasome is the multi-protein protease that recognizes and degrades ubiquitinylated substrates targeted for destruction by the ubiquitin pathway. In addition to the well-documented subunit organization of the 26S holoenzyme, it is clear that a number of other proteins transiently...... associate with the 26S complex. These transiently associated proteins confer a number of different roles such as substrate presentation, cleavage of the multi-ubiquitin chain from the protein substrate and turnover of misfolded proteins. Such activities are essential for the 26S proteasome to efficiently...... fulfill its intracellular function in protein degradation....

  8. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    Science.gov (United States)

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  9. The Role of S-Nitrosylation and S-Glutathionylation of Protein Disulphide Isomerase in Protein Misfolding and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    M. Halloran

    2013-01-01

    Full Text Available Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Protein disulphide isomerase (PDI is the prototype of a family of molecular chaperones and foldases upregulated during ER stress that are increasingly implicated in neurodegenerative diseases. PDI catalyzes the rearrangement and formation of disulphide bonds, thus facilitating protein folding, and in neurodegeneration may act to ameliorate the burden of protein misfolding. However, an aberrant posttranslational modification of PDI, S-nitrosylation, inhibits its protective function in these conditions. S-nitrosylation is a redox-mediated modification that regulates protein function by covalent addition of nitric oxide- (NO- containing groups to cysteine residues. Here, we discuss the evidence for abnormal S-nitrosylation of PDI (SNO-PDI in neurodegeneration and how this may be linked to another aberrant modification of PDI, S-glutathionylation. Understanding the role of aberrant S-nitrosylation/S-glutathionylation of PDI in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions in the future.

  10. Serum S100B: a potential biomarker for suicidality in adolescents?

    Directory of Open Access Journals (Sweden)

    Tatiana Falcone

    Full Text Available BACKGROUND: Studies have shown that patients suffering from depression or schizophrenia often have immunological alterations that can be detected in the blood. Others reported a possible link between inflammation, a microgliosis and the blood-brain barrier (BBB in suicidal patients. Serum S100B is a marker of BBB function commonly used to study cerebrovascular wall function. METHODS: We measured levels of S100B in serum of 40 adolescents with acute psychosis, 24 adolescents with mood disorders and 20 healthy controls. Patients were diagnosed according to DSM-IV TR criteria. We evaluated suicidal ideation using the suicidality subscale of the Brief Psychiatric Rating Scale for Children (BPRS-C. RESULTS: Serum S100B levels were significantly higher (p<0.05 and correlated to severity of suicidal ideation in patients with psychosis or mood disorders, independent of psychiatric diagnosis. Patients with a BPRS-C suicidality subscores of 1-4 (low suicidality had mean serum S100B values +/- SEM of 0.152+/-0.020 ng/mL (n = 34 compared to those with BPRS-C suicidality subscores of 5-7 (high suicidality with a mean of 0.354+/-0.044 ng/mL (n = 30. This difference was statistically significant (p<0.05. CONCLUSION: Our data support the use of S100B as an adjunctive biomarker to assess suicidal risk in patients with mood disorders or schizophrenia.

  11. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

    International Nuclear Information System (INIS)

    Kobayashi, Hiroshi; Swapna, G. V. T.; Wu, Kuen-Phon; Afinogenova, Yuliya; Conover, Kenith; Mao, Binchen; Montelione, Gaetano T.; Inouye, Masayori

    2012-01-01

    A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS 2 ) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS 2 -tag is replaced with non-isotope labeled PrS 2 -tag, silencing the NMR signals from PrS 2 -tag in isotope-filtered 1 H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS 2 -tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS 2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS 2 -tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS 2 -tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1 H, 15 N and 13 C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1 H– 15 N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

  12. Cotranslational protein folding reveals the selective use of ...

    Indian Academy of Sciences (India)

    to fold properly by decelerating the translation rate at these sites. Thus the cotranslational protein folding is believed to be true for many proteins and is an important selection factor for the selective codon usage to optimize proper gene expres- sion and function (Komar 2009). A web server CS and S has been created by ...

  13. DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a

    Science.gov (United States)

    Walters, Kylie J.; Lech, Patrycja J.; Goh, Amanda M.; Wang, Qinghua; Howley, Peter M.

    2003-01-01

    The Rad23 family of proteins, including the human homologs hHR23a and hHR23b, stimulates nucleotide excision repair and has been shown to provide a novel link between proteasome-mediated protein degradation and DNA repair. In this work, we illustrate how the proteasomal subunit S5a regulates hHR23a protein structure. By using NMR spectroscopy, we have elucidated the structure and dynamic properties of the 40-kDa hHR23a protein and show it to contain four structured domains connected by flexible linker regions. In addition, we reveal that these domains interact in an intramolecular fashion, and by using residual dipolar coupling data in combination with chemical shift perturbation analysis, we present the hHR23a structure. By itself, hHR23a adopts a closed conformation defined by the interaction of an N-terminal ubiquitin-like domain with two ubiquitin-associated domains. Interestingly, binding of the proteasomal subunit S5a disrupts the hHR23a interdomain interactions and thereby causes it to adopt an opened conformation. PMID:14557549

  14. Genome-Wide Characterization of Heat-Shock Protein 70s from Chenopodium quinoa and Expression Analyses of Cqhsp70s in Response to Drought Stress.

    Science.gov (United States)

    Liu, Jianxia; Wang, Runmei; Liu, Wenying; Zhang, Hongli; Guo, Yaodong; Wen, Riyu

    2018-01-23

    Heat-shock proteins (HSPs) are ubiquitous proteins with important roles in response to biotic and abiotic stress. The 70-kDa heat-shock genes ( Hsp70s ) encode a group of conserved chaperone proteins that play central roles in cellular networks of molecular chaperones and folding catalysts across all the studied organisms including bacteria, plants and animals. Several Hsp70s involved in drought tolerance have been well characterized in various plants, whereas no research on Chenopodium quinoa HSPs has been completed. Here, we analyzed the genome of C. quinoa and identified sixteen Hsp70 members in quinoa genome. Phylogenetic analysis revealed the independent origination of those Hsp70 members, with eight paralogous pairs comprising the Hsp70 family in quinoa. While the gene structure and motif analysis showed high conservation of those paralogous pairs, the synteny analysis of those paralogous pairs provided evidence for expansion coming from the polyploidy event. With several subcellular localization signals detected in CqHSP70 protein paralogous pairs, some of the paralogous proteins lost the localization information, indicating the diversity of both subcellular localizations and potential functionalities of those HSP70s. Further gene expression analyses revealed by quantitative polymerase chain reaction (qPCR) analysis illustrated the significant variations of Cqhsp70s in response to drought stress. In conclusion, the sixteen Cqhsp70 s undergo lineage-specific expansions and might play important and varied roles in response to drought stress.

  15. The interaction between endogenous 30S ribosomal subunit protein S11 and Cucumber mosaic virus LS2b protein affects viral replication, infection and gene silencing suppressor activity.

    Directory of Open Access Journals (Sweden)

    Ruilin Wang

    Full Text Available Cucumber mosaic virus (CMV is a model virus for plant-virus protein interaction and mechanism research because of its wide distribution, high-level of replication and simple genome structure. The 2b protein is a multifunctional protein encoded by CMV that suppresses RNA silencing-based antiviral defense and contributes to CMV virulence in host plants. In this report, 12 host proteins were identified as CMV LS2b binding partners using the yeast two-hybrid screen system from the Arabidopsis thaliana cDNA library. Among the host proteins, 30S ribosomal subunit protein S11 (RPS11 was selected for further studies. The interaction between LS2b and full-length RPS11 was confirmed using the yeast two-hybrid system. Bimolecular fluorescence complementation (BIFC assays observed by confocal laser microscopy and Glutathione S-transferase (GST pull-down assays were used to verify the interaction between endogenous NbRPS11 and viral CMVLS2b both in vivo and in vitro. TRV-based gene silencing vector was used to knockdown NbRPS11 transcription, and immunoblot analysis revealed a decline in infectious viral RNA replication and a decrease in CMV infection in RPS11 down-regulated Nicotiana benthamiana plants. Thus, the knockdown of RPS11 likely inhibited CMV replication and accumulation. The gene silencing suppressor activity of CMV2b protein was reduced by the RPS11 knockdown. This study demonstrated that the function of viral LS2b protein was remarkably affected by the interaction with host RPS11 protein.

  16. S100A4, a link between metastasis and inflammation

    DEFF Research Database (Denmark)

    Ambartsumian, N.; Grigorian, M.

    2016-01-01

    Chronic inflammation is acknowledged to be a hallmark of neoplasia—both in cancer initiation and metastasis progression. Here we summarise data suggesting that S100A4 is а trigger of the cascade events that establish an inflammatory milieu and provide a potent flame for primary tumour growth......-communicable diseases (NCD), such as autoimmune diseases, fibrosis, and other disorders. Therefore, we suggest that S100A4 is a common pro-inflammatory factor involved in the pathogenesis of diverse NCD including cancer....

  17. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes.

    Science.gov (United States)

    Clark, David J; Fondrie, William E; Yang, Austin; Mao, Li

    2016-02-05

    Exosomes are 30-100 nm sized membrane vesicles released by cells into the extracellular space that mediate intercellular communication via transfer of proteins and other biological molecules. To better understand the role of these microvesicles in lung carcinogenesis, we employed a Triple SILAC quantitative proteomic strategy to examine the differential protein abundance between exosomes derived from an immortalized normal bronchial epithelial cell line and two non-small cell lung cancer (NSCLC) cell lines harboring distinct activating mutations in the cell signaling molecules: Kirsten rat sarcoma viral oncogene homolog (KRAS) or epidermal growth factor receptor (EGFR). In total, we were able to quantify 721 exosomal proteins derived from the three cell lines. Proteins associated with signal transduction, including EGFR, GRB2 and SRC, were enriched in NSCLC exosomes, and could actively regulate cell proliferation in recipient cells. This study's investigation of the NSCLC exosomal proteome has identified enriched protein cargo that can contribute to lung cancer progression, which may have potential clinical implications in biomarker development for patients with NSCLC. The high mortality associated with lung cancer is a result of late-stage diagnosis of the disease. Current screening techniques used for early detection of lung cancer lack the specificity for accurate diagnosis. Exosomes are nano-sized extracellular vesicles, and the increased abundance of select protein cargo in exosomes derived from cancer cells may be used for diagnostic purposes. In this paper, we applied quantitative proteomic analysis to elucidate abundance differences in exosomal protein cargo between two NSCLC cell lines with distinctive oncogene mutations and an immortalized normal bronchial epithelial cell line. This study revealed proteins associated with cell adhesion, the extracellular matrix, and a variety of signaling molecules were enriched in NSCLC exosomes. The present data reveals

  18. SMAD4 loss enables EGF, TGFβ1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells.

    Science.gov (United States)

    Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario

    2016-10-25

    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner.

  19. Presence of S100A9-positive inflammatory cells in cancer tissues correlates with an early stage cancer and a better prognosis in patients with gastric cancer

    International Nuclear Information System (INIS)

    Fan, Biao; Li, Ying-Ai; Du, Hong; Zhao, Wei; Niu, Zhao-Jian; Lu, Ai-Ping; Li, Ji-You; Ji, Jia-Fu; Zhang, Lian-Hai; Jia, Yong-ning; Zhong, Xi-Yao; Liu, Yi-Qiang; Cheng, Xiao-Jing; Wang, Xiao-Hong; Xing, Xiao-Fang; Hu, Ying

    2012-01-01

    S100A9 was originally discovered as a factor secreted by inflammatory cells. Recently, S100A9 was found to be associated with several human malignancies. The purpose of this study is to investigate S100A9 expression in gastric cancer and explore its role in cancer progression. S100A9 expression in gastric tissue samples from 177 gastric cancer patients was assessed by immunohistochemistry. The expression of its dimerization partner S100A8 and the S100A8/A9 heterodimer were also assessed by the same method. The effect of exogenous S100A9 on motility of gastric cancer cells AGS and BGC-823 was then investigated. S100A9 was specifically expressed by inflammatory cells such as macrophages and neutrophils in human gastric cancer and gastritis tissues. Statistical analysis showed that a high S100A9 cell count (> = 200) per 200x magnification microscopic field in cancer tissues was predictive of early stage gastric cancer. High S100A9-positive cell count was negatively correlated with lymph node metastasis (P = 0.009) and tumor invasion (P = 0.011). S100A9 was identified as an independent prognostic predictor of overall survival of patients with gastric cancer (P = 0.04). Patients with high S100A9 cell count were with favorable prognosis (P = 0.021). Further investigation found that S100A8 distribution in human gastric cancer tissues was similar to S100A9. However, the number of S100A8-positive cells did not positively correlate with patient survival. The inflammatory cells infiltrating cancer were S100A8/A9 negative, while those in gastritis were positive. Furthermore, exogenous S100A9 protein inhibited migration and invasion of gastric cancer cells. Our results suggested S100A9-positive inflammatory cells in gastric cancer tissues are associated with early stage of gastric cancer and good prognosis

  20. Characterization of mini-protein S, a recombinant variant of protein S that lacks the sex hormone binding globulin-like domain

    NARCIS (Netherlands)

    van Wijnen, M.; Stam, J. G.; Chang, G. T.; Meijers, J. C.; Reitsma, P. H.; Bertina, R. M.; Bouma, B. N.

    1998-01-01

    Protein S is a vitamin K-dependent glycoprotein involved in the regulation of the anticoagulant activity of activated protein C (APC). Also, an anticoagulant role for protein S, independent of APC, has been described. Protein S has a unique C-terminal sex hormone binding globulin (SHBG)-like domain

  1. Extracellular and circulating redox- and metalloregulated eRNA and eRNP: copper ion-structured RNA cytokines (angiotropin ribokines) and bioaptamer targets imparting RNA chaperone and novel biofunctions to S100-EF-hand and disease-associated proteins.

    Science.gov (United States)

    Wissler, Josef H

    2004-06-01

    Bioassays for cellular differentiation and tissue morphogenesis were used to design methods for isolation of bioactive redox- and metalloregulated nucleic acids and copper ion complexes with proteins from extracellular, circulating, wound, and supernatant fluids of cultured cells. In extracellular biospheres, diversities of nucleic acids were found to be secreted by cells upon activation. They may reflect nucleic acid biolibraries with molecular imprints of cellular history. After removal of protein components, eRNA prototypes exuded by activated cells were sequenced. They are small, endogenous, highly modified and edited, redox- and metalloregulated 5'-end phosphorylated extracellular eRNA (approximately 2-200 bases) with cellular, enzymic, and bioaptamer functions. Fenton-type OH* radical redox reactions may form modified nucleotides in RNA as wobbles eRNA per se, or as copper ion-complex with protein (e.g., S100A12-EF-hand protein, angiotropin-related protein, calgranulin-C, hippocampal neurite differentiation factor) are shown to be bioactive in vivo and in vitro as cytokines (ribokines) and as nonmitogenic angiomorphogens for endothelial cell differentiation in the formation of organoid supracellular capillary structures. As bioaptamers, copper ion-structured eRNA imparts novel biofunctions to proteins that they do not have on their own. The origin of extracellular RNA and intermediate precursors (up to 500 bases) was traced to intracellular parent nucleic acids. Intermediate precursors with and without partial homology were found. This suggests that bioaptamers are not directly retranslatable gene products. Metalloregulated eRNA bioaptamer function was investigated by domains (e.g. 5'...CUG...3' hairpin loop) for folding, bioactivity, and binding of protein with copper, calcium, and alkali metal ion affinity. Vice versa, metalloregulated nucleic acid-binding domains (K3H, R3H) in proteins were identified. Interaction of protein and eRNA docking potentials

  2. SMAD4 loss enables EGF, TGF?1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells

    OpenAIRE

    Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H.; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario

    2016-01-01

    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor ?1 (TGF?1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGF?1 and S100A8/A...

  3. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  4. S100A8/A9 (Calprotectin), Interleukin-6, and C-Reactive Protein in Obesity and Diabetes before and after Roux-en-Y Gastric Bypass Surgery

    DEFF Research Database (Denmark)

    Lylloff, Louise; Bathum, Lise; Madsbad, Sten

    2017-01-01

    Background: In obesity, which is a major contributor to insulin resistance and diabetes, the circulating level of S100A8/A9 (calprotectin) is elevated and declines after Roux-en-Y gastric bypass surgery (RYGB). However, studies on S100A8/A9 and the pathophysiological mechanisms in insulin...... resistance and diabetes are few and contradictory. Methods: We studied 48 subjects who underwent RYGB, comprising a non-diabetic control group and two diabetic groups in whom diabetes either regressed or persisted, 6-12 months post-surgically. S100A8/A9, interleukin 6 (IL-6) as well as other inflammatory...... and diabetes-related markers were measured pre- A nd post-surgically. Results: Significant and similar decreases of BMI were found in all groups. S100A8/A9 and IL-6 decreased significantly in the group with diabetes remission and in the control group, but not in the group with persistent diabetes. The relative...

  5. An Interactome-Centered Protein Discovery Approach Reveals Novel Components Involved in Mitosome Function and Homeostasis in Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Samuel Rout

    2016-12-01

    Full Text Available Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30-40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein

  6. Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    Protein S is a vitamin K-dependent nonenzymatic anticoagulant protein that acts as a cofactor to activated protein C. Recently it was shown that protein S inhibits the prothrombinase reaction independent of activated protein C. In this study, we show that protein S can also inhibit the intrinsic

  7. Os possíveis papéis da S100B na esquizofrenia

    Directory of Open Access Journals (Sweden)

    Johann Steiner

    2013-01-01

    Full Text Available CONTEXTO: Evidências científicas do aumento da concentração da proteína S100B no sangue de pacientes esquizofrênicos são muito consistentes. No passado essa informação era principalmente considerada como reflexo da disfunção astroglial ou da barreira hematoencefálica. MÉTODOS: Pesquisa de publicações no PubMed até o dia 15 de junho de 2011 visando estabelecer potenciais ligações entre a proteína S100B e as hipóteses correntes da esquizofrenia. RESULTADOS: A S100B está potencialmente associada com as hipóteses dopaminérgica e glutamatérgica. O aumento da expressão de S100B tem sido detectado em astrócitos corticais em casos de esquizofrenia paranoide, enquanto se observa uma redução da expressão em oligodendrócitos na esquizofrenia residual, dando suporte à hipótese glial. Recentemente, a hipótese da neuroinflamação da esquizofrenia tem recebido atenção crescente. Nesse sentido, a S100B pode funcionar como uma citocina secretada por células gliais, linfócitos CD8+ e células NK, levando à ativação de monócitos e microglia. Além disso, a S100B apresenta propriedades do tipo adipocina e pode estar desregulada na esquizofrenia, devido a distúrbios da sinalização de insulina, levando ao aumento da liberação de S100B e ácidos graxos do tecido adiposo. CONCLUSÃO: A expressão de S100B em diferentes tipos celulares está envolvida em muitos processos regulatórios. Atualmente, não pode ser respondido qual mecanismo relacionado à esquizofrenia é o mais importante.

  8. Characterization of Three Different Unusual S-Layer Proteins from Viridibacillus arvi JG-B58 That Exhibits Two Super-Imposed S-Layer Proteins

    Science.gov (United States)

    Günther, Tobias J.; Raff, Johannes; Pollmann, Katrin

    2016-01-01

    Genomic analyses of Viridibacillus arvi JG-B58 that was previously isolated from heavy metal contaminated environment identified three different putative surface layer (S-layer) protein genes namely slp1, slp2, and slp3. All three genes are expressed during cultivation. At least two of the V. arvi JG-B58 S-layer proteins were visualized on the surface of living cells via atomic force microscopy (AFM). These S-layer proteins form a double layer with p4 symmetry. The S-layer proteins were isolated from the cells using two different methods. Purified S-layer proteins were recrystallized on SiO2 substrates in order to study the structure of the arrays and self-assembling properties. The primary structure of all examined S-layer proteins lack some features that are typical for Bacillus or Lysinibacillus S-layers. For example, they possess no SLH domains that are usually responsible for the anchoring of the proteins to the cell wall. Further, the pI values are relatively high ranging from 7.84 to 9.25 for the matured proteins. Such features are typical for S-layer proteins of Lactobacillus species although sequence comparisons indicate a close relationship to S-layer proteins of Lysinibacillus and Bacillus strains. In comparison to the numerous descriptions of S-layers, there are only a few studies reporting the concomitant existence of two different S-layer proteins on cell surfaces. Together with the genomic data, this is the first description of a novel type of S-layer proteins showing features of Lactobacillus as well as of Bacillus-type S-layer proteins and the first study of the cell envelope of Viridibacillus arvi. PMID:27285458

  9. FAM107B is regulated by S100A4 and mediates the effect of S100A4 on the proliferation and migration of MGC803 gastric cancer cells.

    Science.gov (United States)

    Guo, Junfu; Bian, Yue; Wang, Yu; Chen, Lisha; Yu, Aiwen; Sun, Xiuju

    2017-10-01

    FAM107B expression was decreased in stomach cancer and many other kinds of cancer. The forced expression of FAM107B in HeLa cells diminished proliferation in response to growth factors, suggesting that FAM107B might play important roles in many types of cancers. But the mechanisms underlying the decreased expression of FAM107B in cancers are not clear, the functional significance needs to be further clarified. Our previous findings from cDNA microarray showed that there are 179 differentially expressed genes after S100A4 inhibition in gastric cancer cells MGC803. FAM107B was an upregulated one among them. In the present study, we confirmed that FAM107B expression was upregulated in MGC803 cells after S100A4 inhibition by qRT-PCR. We demonstrated for the first time that FAM107B was downregulated by S100A4. The results from CCK-8 and transwell assay showed that FAM107B inhibition by siRNA led to significantly increased proliferation and migrating abilities of MGC803 cells, respectively, indicating that FAM107B plays important roles in inhibiting the proliferation and migration of MGC803 cells. The rescue experiment showed that FAM107B-siRNA transfection reversed the reduced proliferation and migration abilities induced by S100A4 inhibition in the cells. These findings suggest that, as a downstream effector, FAM107B at least partly mediates the effect of S100A4 on the proliferation and migration of MGC803 cells. In conclusion, we first provide experimental evidence suggesting that FAM107B was downregulated by S100A4 in gastric cancer MGC803 cells. And FAM107B at least partially mediates the biological effect of S100A4 in the cells. © 2017 International Federation for Cell Biology.

  10. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans.

    Science.gov (United States)

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C G; Benavente, Ricardo

    2012-10-09

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans.

  11. Solution structure of GSP13 from Bacillus subtilis exhibits an S1 domain related to cold shock proteins

    International Nuclear Information System (INIS)

    Yu Wenyu; Hu Jicheng; Yu Bingke; Xia Wei; Jin Changwen; Xia Bin

    2009-01-01

    GSP13 encoded by gene yugI is a σ B -dependent general stress protein in Bacillus subtilis, which can be induced by heat shock, salt stress, ethanol stress, glucose starvation, oxidative stress and cold shock. Here we report the solution structure of GSP13 and it is the first structure of S1 domain containing protein in Bacillus subtilis. The structure of GSP13 mainly consists of a typical S1 domain along with a C-terminal 50-residue flexible tail, different from the other known S1 domain containing proteins. Comparison with other S1 domain structures reveals that GSP13 has a conserved RNA binding surface, and it may function similarly to cold shock proteins in response to cold stress

  12. EMMPRIN is associated with S100A4 and predicts patient outcome in colorectal cancer

    Science.gov (United States)

    Boye, K; Nesland, J M; Sandstad, B; Haugland Haugen, M; Mælandsmo, G M; Flatmark, K

    2012-01-01

    Background: Proteolytic enzymes and their regulators have important biological roles in colorectal cancer by stimulating invasion and metastasis, which makes these factors attractive as potential prognostic biomarkers. Methods: The expression of extracellular matrix metalloproteinase inducer (EMMPRIN) was characterised using immunohistochemistry in primary tumours from a cohort of 277 prospectively recruited colorectal cancer patients, and associations with expression of S100A4, clinicopathological parameters and patient outcome were investigated. Results: One hundred and ninety-eight samples (72%) displayed positive membrane staining of the tumour cells, whereas 10 cases (4%) were borderline positive. EMMPRIN expression was associated with shorter metastasis-free, disease-specific and overall survival in both univariate and multivariate analyses. The prognostic impact was largely confined to TNM stage III, and EMMPRIN-negative stage III patients had an excellent prognosis. Furthermore, EMMPRIN was significantly associated with expression of S100A4, and the combined expression of these biomarkers conferred an even poorer prognosis. However, there was no evidence of direct regulation between the two proteins in the colorectal cancer cell lines HCT116 and SW620 in siRNA knockdown experiments. Conclusion: EMMPRIN is a promising prognostic biomarker in colorectal cancer, and our findings suggest that it could be used in the selection of stage III patients for adjuvant therapy. PMID:22782346

  13. Biomarkers S100B and neuron-specific enolase predict outcome in hypothermia-treated encephalopathic newborns*.

    Science.gov (United States)

    Massaro, An N; Chang, Taeun; Baumgart, Stephen; McCarter, Robert; Nelson, Karin B; Glass, Penny

    2014-09-01

    To evaluate if serum S100B protein and neuron-specific enolase measured during therapeutic hypothermia are predictive of neurodevelopmental outcome at 15 months in children with neonatal encephalopathy. Prospective longitudinal cohort study. A level IV neonatal ICU in a freestanding children's hospital. Term newborns with moderate to severe neonatal encephalopathy referred for therapeutic hypothermia during the study period. Serum neuron-specific enolase and S100B were measured at 0, 12, 24, and 72 hours of hypothermia. Of the 83 infants enrolled, 15 (18%) died in the newborn period. Survivors were evaluated by the Bayley Scales of Infant Development-II at 15 months. Outcomes were assessed in 49 of 68 survivors (72%) at a mean age of 15.2 ± 2.7 months. Neurodevelopmental outcome was classified by Bayley Scales of Infant Development-II Mental Developmental Index and Psychomotor Developmental Index scores, reflecting cognitive and motor outcomes, respectively. Four-level outcome classifications were defined a priori: normal = Mental Developmental Index/Psychomotor Developmental Index within 1 SD (> 85), mild = Mental Developmental Index/Psychomotor Developmental Index less than 1 SD (70-85), moderate/severe = Mental Developmental Index/Psychomotor Developmental Index less than 2 SD (encephalopathy are associated with neurodevelopmental outcome at 15 months. These putative biomarkers of brain injury may help direct care during therapeutic hypothermia.

  14. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis.

    Science.gov (United States)

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-09-27

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.

  15. Rhabdovirus matrix protein structures reveal a novel mode of self-association.

    Directory of Open Access Journals (Sweden)

    Stephen C Graham

    2008-12-01

    Full Text Available The matrix (M proteins of rhabdoviruses are multifunctional proteins essential for virus maturation and budding that also regulate the expression of viral and host proteins. We have solved the structures of M from the vesicular stomatitis virus serotype New Jersey (genus: Vesiculovirus and from Lagos bat virus (genus: Lyssavirus, revealing that both share a common fold despite sharing no identifiable sequence homology. Strikingly, in both structures a stretch of residues from the otherwise-disordered N terminus of a crystallographically adjacent molecule is observed binding to a hydrophobic cavity on the surface of the protein, thereby forming non-covalent linear polymers of M in the crystals. While the overall topology of the interaction is conserved between the two structures, the molecular details of the interactions are completely different. The observed interactions provide a compelling model for the flexible self-assembly of the matrix protein during virion morphogenesis and may also modulate interactions with host proteins.

  16. Does unpaired adenosine-66 from helix II of Escherichia coli 5S RNA bind to protein L18?

    DEFF Research Database (Denmark)

    Christiansen, J; Douthwaite, S R; Christensen, A

    1985-01-01

    Adenosine-66 is unpaired within helix II of Escherichia coli 5S RNA and lies in the binding site of ribosomal protein L18. It has been proposed as a recognition site for protein L18. We have investigated further the structural importance of this nucleotide by deleting it. The 5S RNA gene of the rrn...... plasmid derived from pKK3535. Binding studies with protein L18 revealed that the protein bound much more weakly to the mutated 5S RNA. We consider the most likely explanation of this result is that L18 interacts with adenosine-66, and we present a tentative model for an interaction between the unpaired...

  17. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    Science.gov (United States)

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-02-01

    Using a series of immunoprecipitation (IP) - tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.

  18. Structural organization of the genes for rat von Ebner's gland proteins 1 and 2 reveals their close relationship to lipocalins.

    Science.gov (United States)

    Kock, K; Ahlers, C; Schmale, H

    1994-05-01

    The rat von Ebner's gland protein 1 (VEGP 1) is a secretory protein, which is abundantly expressed in the small acinar von Ebner's salivary glands of the tongue. Based on the primary structure of this protein we have previously suggested that it is a member of the lipocalin superfamily of lipophilic-ligand carrier proteins. Although the physiological role of VEGP 1 is not clear, it might be involved in sensory or protective functions in the taste epithelium. Here, we report the purification of VEGP 1 and of a closely related secretory polypeptide, VEGP 2, the isolation of a cDNA clone encoding VEGP 2, and the isolation and structural characterization of the genes for both proteins. Protein purification by gel-filtration and anion-exchange chromatography using Mono Q revealed the presence of two different immunoreactive VEGP species. N-terminal sequence determination of peptide fragments isolated after protease Asp-N digestion allowed the identification of a new VEGP, named VEGP 2, in addition to the previously characterized VEGP 1. The complete VEGP 2 sequence was deduced from a cDNA clone isolated from a von Ebner's gland cDNA library. The VEGP 2 cDNA encodes a protein of 177 amino acids and is 94% identical to VEGP 1. DNA sequence analysis of the rat VEGP 1 and 2 genes isolated from rat genomic libraries revealed that both span about 4.5 kb and contain seven exons. The VEGP 1 and 2 genes are non-allelic distinct genes in the rat genome and probably arose by gene duplication. The high degree of nucleotide sequence identity in introns A-C (94-100%) points to a recent gene conversion event that included the 5' part of the genes. The genomic organization of the rat VEGP genes closely resembles that found in other lipocalins such as beta-lactoglobulin, mouse urinary proteins (MUPs) and prostaglandin D synthase, and therefore provides clear evidence that VEGPs belong to this superfamily of proteins.

  19. HMB-45, S-100, NK1/C3, and MART-1 in metastatic melanoma.

    Science.gov (United States)

    Zubovits, Judit; Buzney, Elizabeth; Yu, Lawrence; Duncan, Lyn M

    2004-02-01

    The diagnosis of melanoma metastatic to lymph node remains a difficult problem given its histological diversity. We examined the staining patterns of S-100, NK1/C3, HMB-45, and MART-1 (DC10) in melanoma metastases to lymph nodes. Immunohistochemical stains were performed on tissue sections of 126 formalin-fixed lymph nodes from 126 patients with an established diagnosis of metastatic melanoma. A total of 98% of cases (123 of 126) stained positive for S-100, 93% (117 of 125) stained positive for NK1/C3, 82% (103 of 126) stained positive for MART-1, and 76% (95 of 125) stained positive for HMB-45. The distribution and intensity of staining varied among these markers. A diffuse staining pattern, defined as >50% of tumor cells stained, was observed in 83% of MART-1-positive cases but in only 56% of S-100-positive cases, 48% of NK1/C3-positive cases, and 34% of HMB-45-positive cases. A maximally intense signal was almost always observed for MART-1 (83% of positive cases) but was rarely observed for NK1/C3 (20%). S-100 and HMB-45 showed maximally intense staining in 50% and 54% of cases, respectively. S-100 and NK1/C3 stained both histiocytes and melanocytes, whereas MART-1 and HMB-45 stained only melanocytes. Seventy-eight cases (63%) stained positive for all 4 markers, 17 cases (14%) stained for all markers except HMB-45, 13 cases (10%) stained for all markers except MART-1, 6 cases (5%) stained only with S-100 and NK1/C3, 4 cases (3%) stained only with S-100 and HMB-45, and 2 cases stained for all markers except S-100. One case each stained for the following: only S-100, only S-100 and HMB-45, and all markers except NK1/C3. One case exhibited absence of staining for any of these markers. We demonstrate that lymph node metastases of melanoma are heterogeneous with regard to tumor marker expression. S-100 and NK1/C3 were the most sensitive stains for detecting metastatic melanoma; however, they both also stain other nontumor cells in lymph nodes. MART-1 did not stain

  20. ATM-mediated Snail Serine 100 phosphorylation regulates cellular radiosensitivity

    International Nuclear Information System (INIS)

    Boohaker, Rebecca J.; Cui, Xiaoli; Stackhouse, Murray; Xu, Bo

    2013-01-01

    Purpose: Activation of the DNA damage responsive protein kinase ATM is a critical step for cellular survival in response to ionizing irradiation (IR). Direct targets of ATM regulating radiosensitivity remain to be fully investigated. We have recently reported that ATM phosphorylates the transcriptional repressor Snail on Serine 100. We aimed to further study the functional significance of ATM-mediated Snail phosphorylation in response to IR. Material and methods: We transfected vector-only, wild-type, the Serine 100 to alanine (S100A) or to glutamic acid (S100E) substitution of Snail into various cell lines. We assessed colony formation, γ-H2AX focus formation and the invasion index in the cells treated with or without IR. Results: We found that over-expression of the S100A mutant Snail in HeLa cells significantly increased radiosensitivity. Meanwhile the expression of S100E, a phospho-mimicking mutation, resulted in enhanced radio-resistance. Interestingly, S100E could rescue the radiosensitive phenotype in ATM-deficient cells. We also found that expression of S100E increased γ-H2AX focus formation and compromised inhibition of invasion in response to IR independent of cell survival. Conclusion: ATM-mediated Snail Serine 100 phosphorylation in response to IR plays an important part in the regulation of radiosensitivity

  1. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer; RMN de proteines (4Fe-4S): proprietes structurales et transfert electronique intramoleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J G

    1996-10-17

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an {alpha} helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S{sub {gamma}}-C{sub {beta}}-H{sub {beta}})Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven

  2. Protein profiles of CCL5, HPGDS, and NPSR1 in plasma reveal association with childhood asthma.

    Science.gov (United States)

    Hamsten, C; Häggmark, A; Grundström, J; Mikus, M; Lindskog, C; Konradsen, J R; Eklund, A; Pershagen, G; Wickman, M; Grunewald, J; Melén, E; Hedlin, G; Nilsson, P; van Hage, M

    2016-09-01

    Asthma is a common chronic childhood disease with many different phenotypes that need to be identified. We analyzed a broad range of plasma proteins in children with well-characterized asthma phenotypes to identify potential markers of childhood asthma. Using an affinity proteomics approach, plasma levels of 362 proteins covered by antibodies from the Human Protein Atlas were investigated in a total of 154 children with persistent or intermittent asthma and controls. After screening, chemokine ligand 5 (CCL5) hematopoietic prostaglandin D synthase (HPGDS) and neuropeptide S receptor 1 (NPSR1) were selected for further investigation. Significantly lower levels of both CCL5 and HPGDS were found in children with persistent asthma, while NPSR1 was found at higher levels in children with mild intermittent asthma compared to healthy controls. In addition, the protein levels were investigated in another respiratory disease, sarcoidosis, showing significantly higher NPSR1 levels in sera from sarcoidosis patients compared to healthy controls. Immunohistochemical staining of healthy tissues revealed high cytoplasmic expression of HPGDS in mast cells, present in stroma of both airway epithelia, lung as well as in other organs. High expression of NPSR1 was observed in neuroendocrine tissues, while no expression was observed in airway epithelia or lung. In conclusion, we have utilized a broad-scaled affinity proteomics approach to identify three proteins with altered plasma levels in asthmatic children, representing one of the first evaluations of HPGDS and NPSR1 protein levels in plasma. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression.

    Science.gov (United States)

    Liu, Chung-Hsiang; Lin, Yi-Wen; Tang, Nou-Ying; Liu, Hsu-Jan; Hsieh, Ching-Liang

    2012-01-01

    Uncaria rhynchophylla (UR), which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA-) induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABA(A)) receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus.

  4. Anti-thrombin III, Protein C, and Protein S deficiency in acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Dasnan Ismail

    2002-06-01

    Full Text Available The final most common pathway for the majority of coronary artery disease is occlusion of a coronary vessel. Under normal conditions, antithrombin III (AT III, protein C, and protein S as an active protein C cofactor, are natural anticoagulants (hemostatic control that balances procoagulant activity (thrombin antithrombin complex balance to prevent thrombosis. If the condition becomes unbalanced, natural anticoagulants and the procoagulants can lead to thrombosis. Thirty subjects with acute coronary syndrome (ACS were studied for the incidence of antithrombin III (AT III, protein C, and protein S deficiencies, and the result were compare to the control group. Among patients with ACS, the frequency of distribution of AT-III with activity < 75% were 23,3% (7 of 30, and only 6,7% ( 2 of 30 in control subject. No one of the 30 control subject have protein C activity deficient, in ACS with activity < 70% were 13,3% (4 of 30. Fifteen out of the 30 (50% control subjects had protein S activity deficiency, while protein S deficiency activity < 70% was found 73.3.% (22 out of 30. On linear regression, the deterministic coefficient of AT-III activity deficiency to the development ACS was 13,25 %, and the deterministic coefficient of protein C activity deficient to the development of ACS was 9,06 %. The cut-off point for AT-III without protein S deficiency expected to contribute to the development of vessel disease was 45%. On discriminant analysis, protein C activity deficiency posed a risk for ACS of 4,5 greater than non deficient subjects, and AT-III activity deficiency posed a risk for ACS of 3,5 times greater than non deficient subjects. On binary logistic regression, protein S activity acted only as a reinforcing factor of AT-III activity deficiency in the development of ACS. Protein C and AT III deficiency can trigger ACS, with determinant coefficients of 9,06% and 13,25% respectively. Low levels of protein C posed a greater risk of

  5. Hydrogen bonds of DsrD protein revealed by neutron crystallography

    International Nuclear Information System (INIS)

    Chatake, Toshiyuki; Higuchi, Yoshiki; Mizuno, Nobuhiro; Tanaka, Ichiro; Niimura, Nobuo; Morimoto, Yukio

    2008-01-01

    Hydrogen bonds of DNA-binding protein DsrD have been determined by neutron diffraction. In terms of proton donors and acceptors, DsrD protein shows striking differences from other proteins. The features of hydrogen bonds in DsrD protein from sulfate-reducing bacteria have been investigated by neutron protein crystallography. The function of DsrD has not yet been elucidated clearly, but its X-ray crystal structure revealed that it comprises a winged-helix motif and shows the highest structural homology to the DNA-binding proteins. Since any neutron structure of a DNA recognition protein has not yet been obtained, here detailed information on the hydrogen bonds in the winged-helix-motif protein is given and the following features found. (i) The number of hydrogen bonds per amino acid of DsrD is relatively fewer than for other proteins for which neutron structures were determined previously. (ii) Hydrogen bonds are localized between main-chain and main-chain atoms; there are few hydrogen bonds between main-chain and side-chain atoms and between side-chain and side-chain atoms. (iii) Hydrogen bonds inducted by protonation of specific amino acid residues (Glu50) seem to play an essential role in the dimerization of DsrD. The former two points are related to the function of the DNA-binding protein; the three-dimensional structure was mainly constructed by hydrogen bonds in main chains, while the side chains appeared to be used for another role. The latter point would be expected to contribute to the crystal growth of DsrD

  6. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Samuel Hertig

    2016-06-01

    Full Text Available Molecular dynamics (MD simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.

  7. Protein Networks in Alzheimer's Disease

    DEFF Research Database (Denmark)

    Carlsen, Eva Meier; Rasmussen, Rune

    2017-01-01

    Overlap of RNA and protein networks reveals glia cells as key players for the development of symptomatic Alzheimer’s disease in humans......Overlap of RNA and protein networks reveals glia cells as key players for the development of symptomatic Alzheimer’s disease in humans...

  8. End-System Network Interface Controller for 100 Gb/s Wide Area Networks: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jesse [Acadia Optronics LLC, Rockville, MD (United States)

    2013-08-30

    In recent years, network bandwidth requirements have scaled multiple folds, pushing the need for the development of data exchange mechanisms at 100 Gb/s and beyond. High performance computing, climate modeling, large-scale storage, and collaborative scientific research are examples of applications that can greatly benefit by leveraging high bandwidth capabilities of the order of 100 Gb/s. Such requirements and advances in IEEE Ethernet standards, Optical Transport Unit4 (OTU4), and host-system interconnects demand a network infrastructure supporting throughput rates of the order of 100 Gb/s with a single wavelength. To address such a demand Acadia Optronics in collaboration with the University of New Mexico, proposed and developed a end-system Network Interface Controller (NIC) for the 100Gbps WANs. Acadia’s 100G NIC employs an FPGA based system with a high-performance processor interconnect (PCIe 3.0) and a high capacity optical transmission link (CXP) to provide data transmission at the rate of 100 Gbps.

  9. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

    Science.gov (United States)

    Sinha, Sudhir; Kosalai, K; Arora, Shalini; Namane, Abdelkader; Sharma, Pawan; Gaikwad, Anil N; Brodin, Priscille; Cole, Stewart T

    2005-07-01

    Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73% of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-gamma production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute

  10. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    2011-01-01

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  11. Dissociation of activated protein C functions by elimination of protein S cofactor enhancement.

    LENUS (Irish Health Repository)

    Harmon, Shona

    2008-11-07

    Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function of APC but is not known to be involved in regulating APC-mediated protective PAR-1 signaling. In this study we utilized a site-directed mutagenesis strategy to characterize a putative protein S binding region within the APC Gla domain. Three single amino acid substitutions within the APC Gla domain (D35T, D36A, and A39V) were found to mildly impair protein S-dependent anticoagulant activity (<2-fold) but retained entirely normal cytoprotective activity. However, a single amino acid substitution (L38D) ablated the ability of protein S to function as a cofactor for this APC variant. Consequently, in assays of protein S-dependent factor Va proteolysis using purified proteins or in the plasma milieu, APC-L38D variant exhibited minimal residual anticoagulant activity compared with wild type APC. Despite the location of Leu-38 in the Gla domain, APC-L38D interacted normally with endothelial cell protein C receptor and retained its ability to trigger PAR-1 mediated cytoprotective signaling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to separate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain.

  12. Prognostic utility of plasma S100A12 levels to establish a novel scoring system for predicting mortality in maintenance hemodialysis patients: a two-year prospective observational study in Japan

    Science.gov (United States)

    2013-01-01

    Background S100A12 protein is an endogenous receptor ligand for advanced glycation end products. In this study, the plasma S100A12 level was assessed as an independent predictor of mortality, and its utility in clinical settings was examined. Methods In a previous cross-sectional study, plasma S100A12 levels were measured in 550 maintenance hemodialysis patients to determine the association between S100A12 and the prevalence of cardiovascular diseases (CVD). In this prospective study, the risk of mortality within a two-year period was determined. An integer scoring system was developed to predict mortality on the basis of the plasma S100A12 levels. Results Higher plasma S100A12 levels (≥18.79 ng/mL) were more closely associated with higher all-cause mortality than lower plasma S100A12 levels (statistic = 0.730 (0.656–0.804)]. The resulting model demonstrated good discriminative power for distinguishing the validation population of 303 hemodialysis patients [c-statistic = 0.721 (0.627–0.815)]. Conclusion The results indicate that plasma S100A12 level is an independent predictor for two-year all-cause mortality. A simple integer scoring system was therefore established for predicting mortality on the basis of plasma S100A12 levels. PMID:23324110

  13. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2016-05-01

    Full Text Available Plants have varying abilities to tolerate chilling (low but not freezing temperatures, and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance.

  14. Model experiments on growth modes and interface electronics of CuInS{sub 2}: Ultrathin epitaxial films on GaAs(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, Wolfram [Institute for Heterogeneous Materials Systems, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin (Germany); Lewerenz, Hans-Joachim [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91101 (United States); Pettenkofer, Christian [Institute Silicon Photovoltaics, Helmholtz-Zentrum Berlin, Kekulestrasse 5, 12489, Berlin (Germany)

    2014-09-15

    The heterojunction formation between GaAs(100) and CuInS{sub 2} is investigated using ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). Thin layers of CuInS{sub 2} films were deposited in a step-by-step process on wet chemically pre-treated GaAs(100) surfaces by molecular beam epitaxy (MBE) with a total upper thickness limit of the films of 60 nm. The film growth starts from a sulfur-rich GaAs(100) surface. XPS core level analysis of the substrate and film reveals initially a transitory growth regime with the formation of a Ga containing chalcopyrite phase. With increasing film thickness, a change in stoichiometry from Cu-poor to Cu-rich composition is observed. The evaluation of the LEED data shows the occurrence of a recrystallization process where the film orientation follows that of the substrate with the epitaxial relation GaAs{100} parallel CuInS{sub 2}{001}. On the completed junction with a CuInS{sub 2} film thickness of 60 nm, the band discontinuities of the GaAs(100)/CuInS{sub 2} structure measured with XPS and UPS were determined as ΔE{sub V} = 0.1 ± 0.1 eV and ΔE{sub C} = 0.0 ± 0.1 eV, thus showing a type II band alignment. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins.

    Directory of Open Access Journals (Sweden)

    Eric K Johnson

    Full Text Available Mutations affecting the expression of dystrophin result in progressive loss of skeletal muscle function and cardiomyopathy leading to early mortality. Interestingly, clinical studies revealed no correlation in disease severity or age of onset between cardiac and skeletal muscles, suggesting that dystrophin may play overlapping yet different roles in these two striated muscles. Since dystrophin serves as a structural and signaling scaffold, functional differences likely arise from tissue-specific protein interactions. To test this, we optimized a proteomics-based approach to purify, identify and compare the interactome of dystrophin between cardiac and skeletal muscles from as little as 50 mg of starting material. We found selective tissue-specific differences in the protein associations of cardiac and skeletal muscle full length dystrophin to syntrophins and dystrobrevins that couple dystrophin to signaling pathways. Importantly, we identified novel cardiac-specific interactions of dystrophin with proteins known to regulate cardiac contraction and to be involved in cardiac disease. Our approach overcomes a major challenge in the muscular dystrophy field of rapidly and consistently identifying bona fide dystrophin-interacting proteins in tissues. In addition, our findings support the existence of cardiac-specific functions of dystrophin and may guide studies into early triggers of cardiac disease in Duchenne and Becker muscular dystrophies.

  16. Proteomics investigation reveals cell death-associated proteins of basidiomycete fungus Trametes versicolor treated with Ferruginol.

    Science.gov (United States)

    Chen, Yu-Han; Yeh, Ting-Feng; Chu, Fang-Hua; Hsu, Fu-Lan; Chang, Shang-Tzen

    2015-01-14

    Ferruginol has antifungal activity against wood-rot fungi (basidiomycetes). However, specific research on the antifungal mechanisms of ferruginol is scarce. Two-dimensional gel electrophoresis and fluorescent image analysis were employed to evaluate the differential protein expression of wood-rot fungus Trametes versicolor treated with or without ferruginol. Results from protein identification of tryptic peptides via liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS) analyses revealed 17 protein assignments with differential expression. Downregulation of cytoskeleton β-tubulin 3 indicates that ferruginol has potential to be used as a microtubule-disrupting agent. Downregulation of major facilitator superfamily (MFS)–multiple drug resistance (MDR) transporter and peroxiredoxin TSA1 were observed, suggesting reduction in self-defensive capabilities of T. versicolor. In addition, the proteins involved in polypeptide sorting and DNA repair were also downregulated, while heat shock proteins and autophagy-related protein 7 were upregulated. These observations reveal that such cellular dysfunction and damage caused by ferruginol lead to growth inhibition and autophagic cell death of fungi.

  17. Interactions of β-Conglycinin (7S with Different Phenolic Acids—Impact on Structural Characteristics and Proteolytic Degradation of Proteins

    Directory of Open Access Journals (Sweden)

    Jing Gan

    2016-10-01

    Full Text Available p-Coumalic acid (PCA, caffeic acid (CA, gallic acid (GA and chlorogenic acid (CGA are the major phenolic acids that co-exist with soy protein components in foodstuffs. Surprisingly, there are only a handful of reports that describe their interaction with β-Conglycinin (7S, a major soy protein. In this report, we investigated the interaction between phenolic acids and soy protein 7S and observed an interaction between each of these phenolic acids and soy protein 7S, which was carried out by binding. Further analysis revealed that the binding activity of the phenolic acids was structure dependent. Here, the binding affinity of CA and GA towards 7S was found to be stronger than that of PCA, because CA and GA have one more hydroxyl group. Interestingly, the binding of phenolic acids with soy protein 7S did not affect protein digestion by pepsin and trypsin. These findings aid our understanding of the relationship between different phenolic acids and proteins in complex food systems.

  18. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression

    Directory of Open Access Journals (Sweden)

    Chung-Hsiang Liu

    2012-01-01

    Full Text Available Uncaria rhynchophylla (UR, which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA- induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABAA receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus

  19. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1.

    Science.gov (United States)

    DeMille, Desiree; Bikman, Benjamin T; Mathis, Andrew D; Prince, John T; Mackay, Jordan T; Sowa, Steven W; Hall, Tacie D; Grose, Julianne H

    2014-07-15

    Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein-protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase-deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis. © 2014 DeMille et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Leukocyte and serum S100A8/S100A9 expression reflects disease activity in ANCA-associated vasculitis and glomerulonephritis

    Science.gov (United States)

    Pepper, Ruth J; Hamour, Sally; Chavele, Konstantia-Maria; Todd, Sarah K; Rasmussen, Niels; Flint, Shaun; Lyons, Paul A; Smith, Kenneth G C; Pusey, Charles D; Cook, H Terence; Salama, Alan D

    2013-01-01

    Antineutrophil cytoplasm antibody (ANCA)–associated vasculitis (AAV) commonly results in glomerulonephritis, in which neutrophils and monocytes have important roles. The heterodimer calprotectin (S100A8/S100A9, mrp8/14) is a Toll-like receptor-4 ligand found in neutrophils and monocytes and is elevated in inflammatory conditions. By immunohistochemistry of renal biopsies, patients with focal or crescentic glomerular lesions were found to have the highest expression of calprotectin and those with sclerotic the least. Serum levels of calprotectin as measured by ELISA were elevated in patients with active AAV and the levels decreased but did not normalize during remission, suggesting subclinical inflammation. Calprotectin levels in patients with limited systemic disease increased following treatment withdrawal and were significantly elevated in patients who relapsed compared with those who did not. As assessed by flow cytometry, patients with AAV had higher monocyte and neutrophil cell surface calprotectin expression than healthy controls, but this was not associated with augmented mRNA expression in CD14+ monocytes or CD16+ neutrophils. Thus, serum calprotectin is a potential disease biomarker in patients with AAV, and may have a role in disease pathogenesis. PMID:23423260

  1. Increased Levels of S100A8/A9 in Patients with Peritonsillar Abscess: A New Promising Diagnostic Marker to Differentiate between Peritonsillar Abscess and Peritonsillitis.

    Science.gov (United States)

    Spiekermann, Christoph; Russo, Antonella; Stenner, Markus; Rudack, Claudia; Roth, Johannes; Vogl, Thomas

    2017-01-01

    Peritonsillar abscess (PTA) is a very frequent reason for urgent outpatient consultation and otolaryngological hospital admission. Early, correct diagnosis and therapy of peritonsillar abscess are important to prevent possible life-threatening complications. Based on physical examinations, a reliable differentiation between peritonsillar cellulitis and peritonsillar abscess is restricted. A heterodimeric complex called calprotectin consists of the S100 proteins A8 and A9 (S100A8/A9) and is predominantly expressed not only in monocytes and neutrophils but also in epithelial cells. Due to its release by activated phagocytes at local sites of inflammation, we assumed S100A8/A9 to be a potential biomarker for peritonsillar abscess. We examined serum and saliva of patients with peritonsillitis, acute tonsillitis, peritonsillar abscess, and healthy controls and found significantly increased levels of S100A8/A9 in patients with PTA. Furthermore, we could identify halitosis, trismus, uvula edema, and unilateral swelling of the arched palate to be characteristic symptoms for PTA. Using a combination of these characteristic symptoms and S100A8/A9 levels, we developed a PTA score as an objective and appropriate tool to differentiate between peritonsillitis and peritonsillar abscess with a sensitivity of 92% and specificity of 93%.

  2. Increased Levels of S100A8/A9 in Patients with Peritonsillar Abscess: A New Promising Diagnostic Marker to Differentiate between Peritonsillar Abscess and Peritonsillitis

    Directory of Open Access Journals (Sweden)

    Christoph Spiekermann

    2017-01-01

    Full Text Available Peritonsillar abscess (PTA is a very frequent reason for urgent outpatient consultation and otolaryngological hospital admission. Early, correct diagnosis and therapy of peritonsillar abscess are important to prevent possible life-threatening complications. Based on physical examinations, a reliable differentiation between peritonsillar cellulitis and peritonsillar abscess is restricted. A heterodimeric complex called calprotectin consists of the S100 proteins A8 and A9 (S100A8/A9 and is predominantly expressed not only in monocytes and neutrophils but also in epithelial cells. Due to its release by activated phagocytes at local sites of inflammation, we assumed S100A8/A9 to be a potential biomarker for peritonsillar abscess. We examined serum and saliva of patients with peritonsillitis, acute tonsillitis, peritonsillar abscess, and healthy controls and found significantly increased levels of S100A8/A9 in patients with PTA. Furthermore, we could identify halitosis, trismus, uvula edema, and unilateral swelling of the arched palate to be characteristic symptoms for PTA. Using a combination of these characteristic symptoms and S100A8/A9 levels, we developed a PTA score as an objective and appropriate tool to differentiate between peritonsillitis and peritonsillar abscess with a sensitivity of 92% and specificity of 93%.

  3. Expression analysis of the mouse S100A7/psoriasin gene in skin inflammation and mammary tumorigenesis

    International Nuclear Information System (INIS)

    Webb, Meghan; Myal, Yvonne; Shiu, Robert; Murphy, Leigh C; Watson, Peter H; Emberley, Ethan D; Lizardo, Michael; Alowami, Salem; Qing, Gefei; Alfia'ar, Abdullah; Snell-Curtis, Linda J; Niu, Yulian; Civetta, Alberto

    2005-01-01

    The human psoriasin (S100A7) gene has been implicated in inflammation and tumor progression. Implementation of a mouse model would facilitate further investigation of its function, however little is known of the murine psoriasin gene. In this study we have cloned the cDNA and characterized the expression of the potential murine ortholog of human S100A7/psoriasin in skin inflammation and mammary tumorigenesis. On the basis of chromosomal location, phylogenetic analysis, amino acid sequence similarity, conservation of a putative Jab1-binding motif, and similarities of the patterns of mouse S100A7/psoriasin gene expression (measured by RT-PCR and in-situ hybridization) with those of human S100A7/psoriasin, we propose that mouse S100A7/psoriasin is the murine ortholog of human psoriasin/S100A7. Although mouse S100A7/psoriasin is poorly conserved relative to other S100 family members, its pattern of expression parallels that of the human psoriasin gene. In murine skin S100A7/psoriasin was significantly upregulated in relation to inflammation. In murine mammary gland expression is also upregulated in mammary tumors, where it is localized to areas of squamous differentiation. This mirrors the context of expression in human tumor types where both squamous and glandular differentiation occur, including cervical and lung carcinomas. Additionally, mouse S100A7/psoriasin possesses a putative Jab1 binding motif that mediates many downstream functions of the human S100A7 gene. These observations and results support the hypothesis that the mouse S100A7 gene is structurally and functionally similar to human S100A7 and may offer a relevant model system for studying its normal biological function and putative role in tumor progression

  4. Proteomic identification of S-nitrosylated proteins in Arabidopsis

    DEFF Research Database (Denmark)

    Lindermayr, C.; Saalbach, G.; Durner, J.

    2005-01-01

    Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues...... to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S......-nitrosoglutathione. Furthermore, Arabidopsis plants were treated with gaseous NO to analyze whether S-nitrosylation can occur in the specific redox environment of a plant cell in vivo. S-Nitrosylated proteins were detected by a biotin switch method, converting S-nitrosylated Cys to biotinylated Cys. Biotin-labeled proteins were...

  5. The Biochemistry and Regulation of S100A10: A Multifunctional Plasminogen Receptor Involved in Oncogenesis

    Directory of Open Access Journals (Sweden)

    Patricia A. Madureira

    2012-01-01

    Full Text Available The plasminogen receptors mediate the production and localization to the cell surface of the broad spectrum proteinase, plasmin. S100A10 is a key regulator of cellular plasmin production and may account for as much as 50% of cellular plasmin generation. In parallel to plasminogen, the plasminogen-binding site on S100A10 is highly conserved from mammals to fish. S100A10 is constitutively expressed in many cells and is also induced by many diverse factors and physiological stimuli including dexamethasone, epidermal growth factor, transforming growth factor-α, interferon-γ, nerve growth factor, keratinocyte growth factor, retinoic acid, and thrombin. Therefore, S100A10 is utilized by cells to regulate plasmin proteolytic activity in response to a wide diversity of physiological stimuli. The expression of the oncogenes, PML-RARα and KRas, also stimulates the levels of S100A10, suggesting a role for S100A10 in pathophysiological processes such as in the oncogenic-mediated increases in plasmin production. The S100A10-null mouse model system has established the critical role that S100A10 plays as a regulator of fibrinolysis and oncogenesis. S100A10 plays two major roles in oncogenesis, first as a regulator of cancer cell invasion and metastasis and secondly as a regulator of the recruitment of tumor-associated cells, such as macrophages, to the tumor site.

  6. The crystal structure of the Dachshund domain of human SnoN reveals flexibility in the putative protein interaction surface.

    Directory of Open Access Journals (Sweden)

    Tomas Nyman

    2010-09-01

    Full Text Available The human SnoN is an oncoprotein that interacts with several transcription-regulatory proteins such as the histone-deacetylase, N-CoR containing co-repressor complex and Smad proteins. This study presents the crystal structure of the Dachshund homology domain of human SnoN. The structure reveals a groove composed of conserved residues with characteristic properties of a protein-interaction surface. A comparison of the 12 monomers in the asymmetric unit reveals the presence of two major conformations: an open conformation with a well accessible groove and a tight conformation with a less accessible groove. The variability in the backbone between the open and the tight conformations matches the differences seen in previously determined structures of individual Dachshund homology domains, suggesting a general plasticity within this fold family. The flexibility observed in the putative protein binding groove may enable SnoN to recognize multiple interaction partners.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  7. Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation

    DEFF Research Database (Denmark)

    Manteca, Angel; Ye, Juanying; Sánchez, Jesús

    2011-01-01

    Streptomycetes are bacterial species that undergo a complex developmental cycle that includes programmed cell death (PCD) events and sporulation. They are widely used in biotechnology because they produce most clinically relevant secondary metabolites. Although Streptomyces coelicolor is one...... events were detected during the presporulation and sporulation stages (80%). Most of these phosphorylations were not reported before in Streptomyces, and included sporulation factors, transcriptional regulators, protein kinases and other regulatory proteins. Several of the identified phosphorylated...... proteins, FtsZ, DivIVA, and FtsH2, were previously demonstrated to be involved in the sporulation process. We thus established for the first time the widespread occurrence and dynamic features of Ser/Thr/Tyr protein phosphorylation in a bacteria species and also revealed a previously unrecognized...

  8. Brain injury markers (S100B and NSE) in chronic cocaine dependents

    OpenAIRE

    Kessler, Felix Henrique Paim; Woody, George; Portela, Luis Valmor Cruz; Tort, Adriano Bretanha Lopes; De Boni, Raquel Brandini; Peuker, Ana Carolina Wolf Baldino; Genro, Vanessa Krebs; Diemen, Lisia von; Souza, Diogo Onofre Gomes de; Pechansky, Flavio

    2007-01-01

    Objetivo: Estudos têm demonstrado sinais de lesão cerebral causadas por diferentes mecanismos em usuários de cocaína. A enolase sérica neurônio-específica e a proteína S100B são consideradas marcadores bioquímicos específicos de lesão neuronal e glial. Este estudo objetivou comparar os níveis sangüíneos de S100B e enolase sérica neurônio-específica em usuários crônicos de cocaína e em voluntários que não usam cocaína ou outras drogas ilícitas. Método: Vinte sujeitos dependentes de cocaína, ma...

  9. Structural basis for ribosome protein S1 interaction with RNA in trans-translation of Mycobacterium tuberculosis.

    Science.gov (United States)

    Fan, Yi; Dai, Yazhuang; Hou, Meijing; Wang, Huilin; Yao, Hongwei; Guo, Chenyun; Lin, Donghai; Liao, Xinli

    2017-05-27

    Ribosomal protein S1 (RpsA), the largest 30S protein in ribosome, plays a significant role in translation and trans-translation. In Mycobacterium tuberculosis, the C-terminus of RpsA is known as tuberculosis drug target of pyrazinoic acid, which inhibits the interaction between MtRpsA and tmRNA in trans-translation. However, the molecular mechanism underlying the interaction of MtRpsA with tmRNA remains unknown. We herein analyzed the interaction of the C-terminal domain of MtRpsA with three RNA fragments poly(A), sMLD and pre-sMLD. NMR titration analysis revealed that the RNA binding sites on MtRpsA CTD are mainly located in the β2, β3 and β5 strands and the adjacent L3 loop of the S1 domain. Fluorescence experiments determined the MtRpsA CTD binding to RNAs are in the micromolar affinity range. Sequence analysis also revealed conserved residues in the mapped RNA binding region. Residues L304, V305, G308, F310, H322, I323, R357 and I358 were verified to be the key residues influencing the interaction between MtRpsA CTD and pre-sMLD. Molecular docking further confirmed that the poly(A)-like sequence and sMLD of tmRNA are all involved in the protein-RNA interaction, through charged interaction and hydrogen bonds. The results will be beneficial for designing new anti-tuberculosis drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Gain-of-function mutations in protein kinase Cα (PKCα) may promote synaptic defects in Alzheimer’s disease

    Science.gov (United States)

    Alfonso, Stephanie I.; Callender, Julia A.; Hooli, Basavaraj; Antal, Corina E.; Mullin, Kristina; Sherman, Mathew A.; Lesné, Sylvain E.; Leitges, Michael; Newton, Alexandra C.; Tanzi, Rudolph E.; Malinow, Roberto

    2016-01-01

    Alzheimer’s disease (AD) is a progressive dementia disorder characterized by synaptic degeneration and amyloid-β (Aβ) accumulation in the brain. Through whole-genome sequencing of 1345 individuals from 410 families with late-onset AD (LOAD), we identified three highly penetrant variants in PRKCA, the gene that encodes protein kinase Cα (PKCα), in five of the families. All three variants linked with LOAD displayed increased catalytic activity relative to wild-type PKCα as assessed in live-cell imaging experiments using a genetically encoded PKC activity reporter. Deleting PRKCA in mice or adding PKC antagonists to mouse hippocampal slices infected with a virus expressing the Aβ precursor CT100 revealed that PKCα was required for the reduced synaptic activity caused by Aβ. In PRKCA−/− neurons expressing CT100, introduction of PKCα, but not PKCα lacking a PDZ interaction moiety, rescued synaptic depression, suggesting that a scaffolding interaction bringing PKCα to the synapse is required for its mediation of the effects of Aβ. Thus, enhanced PKCα activity may contribute to AD, possibly by mediating the actions of Aβ on synapses. In contrast, reduced PKCα activity is implicated in cancer. Hence, these findings reinforce the importance of maintaining a careful balance in the activity of this enzyme. PMID:27165780

  11. In vitro estimation of rumen protein degradability using 35S to label the bacterial mass

    International Nuclear Information System (INIS)

    Khristov, A.; Aleksandrov, S.; Aleksiev, I.

    1994-01-01

    An experiment was carried out in order to simplify a previously developed 15 N-method for in vitro estimation of rumen protein degradability. Casein (Cas), whole soybeans (Sb) heated at 120 o C for 20 min (SbTherm) and sunflower (Sfl) were incubated at 39 o C for 4 hours in a water bathshaker with the following media: McDougall's buffer, strained and enriched with particle associated bacteria rumen fluid (2:1), rapidly (maltose, sucrose, glucose) and more slowly (pectin, soluble starch) degradable carbohydrates with final concentration of 815 mg/100 ml and 21.7 μCi/100 ml of 35 S (from Na 2 35 SO 4 ). After the incubation had been ceased, a bacterial fraction was isolated through differential centrifugation and specific activity of bacterial (Bac) and high speed total solids (TS) nitrogen was measured. The ratio was used to calculate bacterial mass in TS and through the Kjeldahl nitrogen concentration in TS - the net bacterial growth (against control vessels without protein). The level of ammonia-N in the supernate after blank correction was used to find the ammonia-N released from protein degradation. The data showed that the rate (and extend) of degradation for the Cas (as a standard protein) was lower compared to those obtained through the 15 N-method but it was higher than the rate derived through another in vitro method. The Cas equivalent of the Sb was higher than the figure we found in a previous experiment with solvent extracted soybean meal suggesting that the 35 S-method underestimated the degradability of the Cas. After being tested on a wider range of foodstuffs, the proposed 35 S-method might be considered as an alternative procedure which is less laborous than the 15 N-method. (author)

  12. A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana.

    Science.gov (United States)

    McClure, B; Mou, B; Canevascini, S; Bernatzky, R

    1999-11-09

    Although S-locus RNases (S-RNases) determine the specificity of pollen rejection in self-incompatible (SI) solanaceous plants, they alone are not sufficient to cause S-allele-specific pollen rejection. To identify non-S-RNase sequences that are required for pollen rejection, a Nicotiana alata cDNA library was screened by differential hybridization. One clone, designated HT, hybridized strongly to RNA from N. alata styles but not to RNA from Nicotiana plumbaginifolia, a species known to lack one or more factors necessary for S-allele-specific pollen rejection. Sequence analysis revealed a 101-residue ORF including a putative secretion signal and an asparagine-rich domain near the C terminus. RNA blot analysis showed that the HT-transcript accumulates in the stigma and style before anthesis. The timing of HT-expression lags slightly behind S(C10)-RNase in SI N. alata S(C10)S(C10) and is well correlated with the onset of S-allele-specific pollen rejection in the style. An antisense-HT construct was prepared to test for a role in pollen rejection. Transformed (N. plumbaginifolia x SI N. alata S(C10)S(C10)) hybrids with reduced levels of HT-protein continued to express S(C10)-RNase but failed to reject S(C10)-pollen. Control hybrids expressing both S(C10)-RNase and HT-protein showed a normal S-allele-specific pollen rejection response. We conclude that HT-protein is directly implicated in pollen rejection.

  13. Monocyte activation, brain-derived neurotrophic factor (BDNF), and S100B in bipolar offspring: a follow-up study from adolescence into adulthood.

    Science.gov (United States)

    Mesman, Esther; Hillegers, Manon Hj; Ambree, Oliver; Arolt, Volker; Nolen, Willem A; Drexhage, Hemmo A

    2015-02-01

    There is increasing evidence that both immune and neurochemical alterations are involved in the pathogenesis of bipolar disorder; however, their precise role remains unclear. In this study, we aimed to evaluate neuro-immune changes in a prospective study on children of patients with bipolar disorder. Bipolar offspring, from the prospective Dutch bipolar offspring study (n = 140), were evaluated cross-sectionally within a longitudinal context at adolescence, young adulthood, and adulthood. We examined the expression of 44 inflammation-related genes in monocytes, the cytokines pentraxin 3 (PTX3), chemokine ligand 2 (CCL2), and interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) and S100 calcium binding protein B (S100B) in the serum of bipolar offspring and healthy controls. During adolescence, bipolar offspring showed increased inflammatory gene expression in monocytes, high serum PTX3 levels, but normal CCL2 levels. BDNF levels were decreased, while S100B levels were normal. During young adulthood, monocyte activation remained, although to a lesser degree. Serum PTX3 levels remained high, and signs of monocyte migration became apparent through increased CCL2 levels. BDNF and S100B levels were not measured. At adulthood, circulating monocytes had lost their activation state, but CCL2 levels remained increased. Both BDNF and S100B were now increased. Abnormalities were independent of psychopathology state at all stages. This study suggests an aberrant neuro-immune state in bipolar offspring, which followed a dynamic course from adolescence into adulthood and was present irrespective of lifetime or future mood disorders. We therefore assumed that the aberrant neuro-immune state reflects a general state of vulnerability for mood disorders rather than being of direct predictive value. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. CSN1S2 protein of goat milk inhibits the decrease of viability and increases the proliferation of MC3T3E1 pre-osteoblast cell in methyl glyoxal exposure

    Directory of Open Access Journals (Sweden)

    Choirunil Chotimah

    2015-03-01

    Full Text Available Objective: To investigate whether the CNS1S2 protein of goat milk is able to inhibit the toxicity of methyl glyoxal (MG towards MC3T3E1 pre-osteoblast cells. Methods: At confluency, pre-osteoblast cells were divided into five groups which included control (untreated, pre-osteoblast cells exposed to 5 µmol/L MG, pre-osteoblast cells exposed to MG in the presence of CSN1S2 protein at doses of 0.025, 0.050, and 0.100 mg/L, respectively. Analysis of reactive oxygen species was done with 2,7-dichlorodihydrofluorescein diacetate fluorochrome. The proliferation and viability of MC3T3E1 cells were measured by trypan blue staining. Malondialdehyde analysis was done colorimetrically. Results: Cell's viabilities were significantly lower in MG+0.050 mg/L CSN1S2 protein of goat milk compared to MG group (P<0.05. MG+0.100 mg/L CSN1S2 protein of goat milk significantly increased the cells viability compared to MG group (P<0.05. The levels of proliferation were significantly higher in MG+0.100 mg/L CSN1S2 protein of goat milk compared to control group and all treatment groups, respectively (P<0.05. Conclusions: High dose of CSN1S2 protein of goat milk (0.100 mg/L in high MG environment inhibits the decrease of viability due to the increases of the proliferation of MC3T3E1 preosteoblast cell.

  15. Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9

    Directory of Open Access Journals (Sweden)

    Arava Yoav

    2007-08-01

    Full Text Available Abstract Background The yeast ribosomal protein S9 (S9 is located at the entrance tunnel of the mRNA into the ribosome. It is known to play a role in accurate decoding and its bacterial homolog (S4 has recently been shown to be involved in opening RNA duplexes. Here we examined the effects of changing the C terminus of S9, which is rich in acidic amino acids and extends out of the ribosome surface. Results We performed a genome-wide analysis to reveal effects at the transcription and translation levels of all yeast genes. While negligible relative changes were observed in steady-state mRNA levels, a significant number of mRNAs appeared to have altered ribosomal density. Notably, 40% of the genes having reliable signals changed their ribosomal association by more than one ribosome. Yet, no general correlations with physical or functional features of the mRNA were observed. Ribosome Density Mapping (RDM along four of the mRNAs with increased association revealed an increase in ribosomal density towards the end of the coding region for at least two of them. Read-through analysis did not reveal any increase in read-through of a premature stop codon by the mutant strain. Conclusion The ribosomal protein rpS9 appears to be involved in the translation of many mRNAs, since altering its C terminus led to a significant change in ribosomal association of many mRNAs. We did not find strong correlations between these changes and several physical features of the mRNA, yet future studies with advanced tools may allow such correlations to be determined. Importantly, our results indicate an accumulation of ribosomes towards the end of the coding regions of some mRNAs. This suggests an involvement of S9 in ribosomal dissociation during translation termination.

  16. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...... with anti-C1 s antibodies in ELISA, one of about 650-800 kDa, which in addition contained pMBP-28 and anti-alpha 2M reactive material, the other with an M(r) of 100-150 kDa. The latter peak revealed rhomboid molecules (7 x 15 nm) in the electron microscope and a 67 kDa band in SDS-PAGE under reducing...

  17. Broadband Packaging of Photodetectors for 100 Gb/s Ethernet Applications

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Krozer, Viktor; Bach, Heinz-Gunter

    2013-01-01

    The packing structure of functional modules is a major limitaion in achieving a desired performance for 100 Gb/s ethernet applications. This paper presents a methodology of developing advanced packaging of photodetectors (PDs) for high-speed data transmission applications by using 3-D electromagn......The packing structure of functional modules is a major limitaion in achieving a desired performance for 100 Gb/s ethernet applications. This paper presents a methodology of developing advanced packaging of photodetectors (PDs) for high-speed data transmission applications by using 3-D...... electromagnetic (EM) simulations. A simplified model of the PD module is first used to analyze and optimize packaging structures and propose an optimal packaging design based on the simplified model. Although a PD module with improved performance proved the success of the optimal packaging design, the simplified...... of limiting the bandwidth of PD modules. After eliminating the mode mismatch effect by improving the chip-conductor-backed coplanar waveguide transition, a final optimal packaging structure is implemented for the PD module with reduced attenuation up to 100 GHz and a broader 3-dB bandwidth of more than 90 GHz...

  18. STIMULUS: End-System Network Interface Controller for 100 Gb/s Wide Area Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zarkesh-Ha, Payman [University of New Mexico

    2014-09-12

    The main goal of this research grant is to develop a system-level solution leveraging novel technologies that enable network communications at 100 Gb/s or beyond. University of New Mexico in collaboration with Acadia Optronics LLC has been working on this project to develop the 100 Gb/s Network Interface Controller (NIC) under this Department of Energy (DOE) grant.

  19. Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of cereal yellow dwarf virus.

    Directory of Open Access Journals (Sweden)

    Cecilia Tamborindeguy

    Full Text Available Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphisgraminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV. The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S. graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate

  20. Role of serum S100B and PET-CT in follow-up of patients with cutaneous melanoma

    Directory of Open Access Journals (Sweden)

    Novakovic Srdjan

    2011-08-01

    Full Text Available Abstract Background Increased level of serum S100B can serve as a marker of metastatic spread in patients with cutaneous melanoma (CM. In patients with elevated S100 B and/or clinical signs of disease progression PET-CT scan is a valuable tool for discovering metastases and planning treatment. The aims of this study were to determine whether regular measurements of serum S100B are a useful tool for discovering patients with CM metastases and to evaluate the diagnostic value of PET-CT during the follow-up. Methods From September 2007 to February 2010, 115 CM patients included in regular follow up at the Institute of Oncology Ljubljana were appointed to PET-CT. There were 82 (71.3% patients with clinical signs of disease progression and 33 (28.7% asymptomatic patients with two subsequent elevated values of S100B. Sensitivity, specificity, positive and negative predictive value (PPV, NPV of S100B and PET-CT were calculated using standard procedures. Results Disease progression was confirmed in 81.7% of patients (in 86.5% of patients with clinical signs of disease progression and in 69.7% of asymptomatic patients with elevated S100B. Sensitivity, specificity, PPV and NPV of S100B was 33.8%, 90.9%, 96.0% and 17.5% in patients with clinical signs of disease progression. In 20.0% of patients increased serum S100B was the only sign of disease progression. Sensitivity and PPV of S100 in this group of patients were 100.0% and 69.7%. With PET-CT disease progression was diagnosed in 84.2% of symptomatic patients and in 72.7% of asymptomatic patients with elevated S100B. The sensitivity, specificity, PPV and NPV of PET-CT for symptomatic patients was 98.5%, 90.9%, 98.5% and 90.9% and 100%, 90.0%, 95.8% and 100% for asymptomatic patients with elevated S100. Conclusions Measurements of serum S100B during regular follow-up of patients with CM are a useful tool for discovering disease progression in asymptomatic patients. The value of its use increases if

  1. Mechanism of S100b release from rat cortical slices determined under basal and stimulated conditions.

    Science.gov (United States)

    Gürsoy, Murat; Büyükuysal, R Levent

    2010-03-01

    Incubation of rat cortical slices in a medium that was not containing oxygen and glucose (oxygen-glucose deprivation, OGD) caused a 200% increase in the release of S100B. However, when slices were transferred to a medium containing oxygen and glucose (reoxygenation conditions, or REO), S100B release reached 500% of its control value. Neither inhibition of nitric oxide (NO) synthase by L-NAME nor addition of the NO donors sodium nitroprussid (SNP) or hydroxylamine (HA) to the medium altered basal S100B release. Similarly, the presence of SNP, HA or NO precursor L: -arginine in the medium, or inhibition of NO synthase by L-NAME also failed to alter OGD- and REO-induced S100B outputs. Moreover, individual inhibition of PKC, PLA(2) or PLC all failed to attenuate the S100B release determined under control condition or enhanced by either OGD or REO. Blockade of calcium channels with verapamil, chelating the Ca(+2) ions with BAPTA or blockade of sodium channels with tetrodotoxin (TTX) did not alter OGD- and REO-induced S100B release. In contrast to the pharmacologic manipulations mentioned above, glutamate and alpha-ketoglutarate added at high concentrations to the medium prevented both OGD- and REO-induced S100B outputs. These results indicate that neither NO nor the activation of PKC, PLA(2) or PLC seem to be involved in basal or OGD- and REO-induced S100B outputs. Additionally, calcium and sodium currents that are sensitive to verapamil and TTX, respectively, are unlikely to contribute to the enhanced S100B release observed under these conditions.

  2. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of

  3. Optical LDPC decoders for beyond 100 Gbits/s optical transmission.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2009-05-01

    We present an optical low-density parity-check (LDPC) decoder suitable for implementation above 100 Gbits/s, which provides large coding gains when based on large-girth LDPC codes. We show that a basic building block, the probabilities multiplier circuit, can be implemented using a Mach-Zehnder interferometer, and we propose corresponding probabilistic-domain sum-product algorithm (SPA). We perform simulations of a fully parallel implementation employing girth-10 LDPC codes and proposed SPA. The girth-10 LDPC(24015,19212) code of the rate of 0.8 outperforms the BCH(128,113)xBCH(256,239) turbo-product code of the rate of 0.82 by 0.91 dB (for binary phase-shift keying at 100 Gbits/s and a bit error rate of 10(-9)), and provides a net effective coding gain of 10.09 dB.

  4. The S100P/RAGE signaling pathway regulates expression of microRNA-21 in colon cancer cells.

    Science.gov (United States)

    Mercado-Pimentel, Melania E; Onyeagucha, Benjamin C; Li, Qing; Pimentel, Angel C; Jandova, Jana; Nelson, Mark A

    2015-08-19

    S100P signaling through the receptor for advanced glycation end-products (RAGE) contributes to colon cancer invasion and metastasis, but the mechanistic features of this process are obscure. Here, we investigate whether activation of S100P/RAGE signaling regulates oncogenic microRNA-21 (miR-21). We show that exogenous S100P up-regulates miR-21 levels in human colon cancer cells, whereas knockdown of S100P results in a decrease of miR-21. Furthermore, blockage of RAGE with anti-RAGE antibody suppresses S100P induction of miR-21. In addition, we found that S100P induction of miR-21 expression involves ERK and is suppressed by the MEK inhibitor U0126. Also, S100P treatment stimulates the enrichment of c-Fos, and AP-1 family members, at the miR-21 gene promoter. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. The occurrence of gibberellin-binding protein(s) in pea

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.H.

    1988-01-01

    In vitro gibberellin (GA) binding properties of a cytosol fraction from epicotyls of dwarf pea (Pisum sativum L. cv. Progress No. 9) and tall pea (Pisum sativum L. cv. Alaska) were investigated using ({sup 3}H)GA{sub 4} in a DEAE filter paper assay at 0-3 C. The binding obtained is saturable, reversible, and temperature labile in dwarf pea, and has a half-life of dissociation of 5-6 min. By varying the concentration of ({sup 3}H)GA{sub 4} in the incubation medium the Kd was estimated to be 120-140 nM in dwarf pea and 70 nM in tall pea. The number of binding sites (n) was estimated to be 0.66 and 0.43 pmole mg{sup {minus}1} soluble protein in dwarf pea and in tall pea, respectively. In competition binding assays, biologically active GAs, such as GA{sub 3} and GA{sub 4} could reduce the level of ({sup 3}H)GA{sub 4} binding much more than the biologically inactive GA{sub 4} methyl ester and epi-GA{sub 4}. Changes in gibberellin-binding protein(s) were studied during seed germination. While the Kd of the binding protein(s) for ({sup 3}H)GA{sub 4} remained the same, there was a marked increase in the number of binding sites from 24 h soaked seed to 8-day old seedlings. Also, the Kd and the number of binding sites in the GA-responsive apical part and in the nonresponsive basal part in the epicotyl were similar. The effect of light on gibberellin-binding protein in dwarf pea was also studied. The GA-binding protein in dwarf pea was partially purified by gel filtration and ion exchange chromatography.

  6. The structure of BVU2987 from Bacteroides vulgatus reveals a superfamily of bacterial periplasmic proteins with possible inhibitory function

    International Nuclear Information System (INIS)

    Das, Debanu; Finn, Robert D.; Carlton, Dennis; Miller, Mitchell D.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of the BVU2987 gene product from B. vulgatus (UniProt A6L4L1) reveals that members of the new Pfam family PF11396 (domain of unknown function; DUF2874) are similar to β-lactamase inhibitor protein and YpmB. Proteins that contain the DUF2874 domain constitute a new Pfam family PF11396. Members of this family have predominantly been identified in microbes found in the human gut and oral cavity. The crystal structure of one member of this family, BVU2987 from Bacteroides vulgatus, has been determined, revealing a β-lactamase inhibitor protein-like structure with a tandem repeat of domains. Sequence analysis and structural comparisons reveal that BVU2987 and other DUF2874 proteins are related to β-lactamase inhibitor protein, PepSY and SmpA-OmlA proteins and hence are likely to function as inhibitory proteins

  7. Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100

    DEFF Research Database (Denmark)

    Cordwell, Stuart J; Larsen, Martin Røssel; Cole, Rebecca T

    2002-01-01

    profiles of S. aureus strains COL (methicillin-resistant) and 8325 (methicillin-sensitive). Reference mapping via this approach identified 377 proteins that corresponded to 266 distinct ORFs. Amongst these identified proteins were 14 potential virulence factors. The production of 41 'hypothetical' proteins....... Comparative maps were used to characterize the S. aureus response to treatment with Triton X-100 (TX-100), a detergent that has been shown to reduce methicillin resistance independently of an interaction with the mecA-encoded penicillin-binding protein 2a. In response to growth of the bacteria in the presence...... of TX-100, 44 protein spots showed altered levels of abundance, and 11 of these spots were found only in COL. The products of genes regulated by sigma(B) (the alternative sigma factor), including Asp23 and three proteins of unknown function, and SarA (a regulator of virulence genes) were shown...

  8. Frustration-guided motion planning reveals conformational transitions in proteins.

    Science.gov (United States)

    Budday, Dominik; Fonseca, Rasmus; Leyendecker, Sigrid; van den Bedem, Henry

    2017-10-01

    Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here, we present a new, robotics-inspired motion planning procedure called dCC-RRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non-native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eight proteins determined in two conformations separated by, on average, 7.5 Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. We then applied dCC-RRT to examine how collective, small-scale motions of four side-chains in the active site of cyclophilin A propagate through the protein. dCC-RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non-canonical capsid binding site 25 Å away, rationalizing NMR and multi-temperature crystallography experiments. In all, dCC-RRT can reveal detailed, all-atom molecular mechanisms for small and large amplitude motions. Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/. © 2017 Wiley Periodicals, Inc.

  9. Expression of Human CTP Synthetase in Saccharomyces cerevisiae Reveals Phosphorylation by Protein Kinase A*

    Science.gov (United States)

    Han, Gil-Soo; Sreenivas, Avula; Choi, Mal-Gi; Chang, Yu-Fang; Martin, Shelley S.; Baldwin, Enoch P.; Carman, George M.

    2005-01-01

    CTP synthetase (EC 6.3.4.2, UTP: ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Δ ura8Δ mutant lacking CTP synthetase activity. The expression of the CTPS1-and CTPS2-encoded human CTP synthetase enzymes in the ura7Δ ura8Δ mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from 32Pi-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation. PMID:16179339

  10. Effects of gamma-irradiation on meat proteins

    International Nuclear Information System (INIS)

    Yook, H.S.; Kim, M.R.; Kim, J.O.; Lim, S.I.; Byun, M.W.

    1998-01-01

    The proteins extracted from beef, pork and chicken meats were irradiated with up to 100 kGy at room temperature. The extracted proteins were evaluated on their in vitro digestibility by incubating successively with pepsin and pancreatin conjugate. Amino acid compositions and SDS-PAGE pattern were also analyzedin for these proteins. Gamma irradiation within the applied dose range (up to 100 kGy) produced negligible in in vitro digestibility and amino acid composition. Analysis of gamma-irradiated proteins by SDS-PAGE revealed radiolysis of ovalbumin to proteins or peptides with lower molecular weight. On the other hand, the proteins directly extracted from irradiated meats containing moisture were also evaluated for their in vitro digestibility, amino acid compositions and SDS-PAGE pattern. However, the results obtained from this experiment were similar to those of irradiated proteins after extraction from the meats

  11. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States.

    Science.gov (United States)

    Zhang, Yi; Kitazawa, Soichiro; Peran, Ivan; Stenzoski, Natalie; McCallum, Scott A; Raleigh, Daniel P; Royer, Catherine A

    2016-11-23

    Understanding protein folding mechanisms and their sequence dependence requires the determination of residue-specific apparent kinetic rate constants for the folding and unfolding reactions. Conventional two-dimensional NMR, such as HSQC experiments, can provide residue-specific information for proteins. However, folding is generally too fast for such experiments. ZZ-exchange NMR spectroscopy allows determination of folding and unfolding rates on much faster time scales, yet even this regime is not fast enough for many protein folding reactions. The application of high hydrostatic pressure slows folding by orders of magnitude due to positive activation volumes for the folding reaction. We combined high pressure perturbation with ZZ-exchange spectroscopy on two autonomously folding protein domains derived from the ribosomal protein, L9. We obtained residue-specific apparent rates at 2500 bar for the N-terminal domain of L9 (NTL9), and rates at atmospheric pressure for a mutant of the C-terminal domain (CTL9) from pressure dependent ZZ-exchange measurements. Our results revealed that NTL9 folding is almost perfectly two-state, while small deviations from two-state behavior were observed for CTL9. Both domains exhibited large positive activation volumes for folding. The volumetric properties of these domains reveal that their transition states contain most of the internal solvent excluded voids that are found in the hydrophobic cores of the respective native states. These results demonstrate that by coupling it with high pressure, ZZ-exchange can be extended to investigate a large number of protein conformational transitions.

  12. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.

    Science.gov (United States)

    Asara, John M; Schweitzer, Mary H; Freimark, Lisa M; Phillips, Matthew; Cantley, Lewis C

    2007-04-13

    Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon (Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic sequences are unlikely to be obtained.

  13. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system.

    Science.gov (United States)

    Meng, Guoliang; Zhao, Shuang; Xie, Liping; Han, Yi; Ji, Yong

    2018-04-01

    Hydrogen sulfide (H 2 S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H 2 S was not clear. Recently, a novel post-translational modification induced by H 2 S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H 2 S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H 2 S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca 2+ channels, transient receptor potential channels and ATP-sensitive K + channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H 2 S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H 2 S-related drugs in the future. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.

  14. Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida.

    Science.gov (United States)

    Li, Junhui; Zhang, Yue; Song, Yanzhai; Zhang, Hui; Fan, Jiangbo; Li, Qun; Zhang, Dongfen; Xue, Yongbiao

    2017-01-01

    Self-incompatibility (SI) is a self/non-self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S-locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S-locus encodes a single S-RNase and a cluster of S-locus F-box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of 'like charges repel and unlike charges attract' between SLFs and S-RNases in Petunia hybrida. Strikingly, the alteration of a single C-terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S-RNases, providing a mechanistic insight into the self/non-self discrimination between cytosolic proteins in angiosperms. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  15. Extraction methods and test techniques for detection of vegetable proteins in meat products. I. Qualitative detection of soya derivatives.

    Science.gov (United States)

    Hyslop, N S

    1976-06-01

    Extracts of 3 soya bean preparations, used commercially in certain countries to replace part of the meat in popular meat products, were made by treatment with (i) sodium dodecyl sulphate, (ii) Triton-X100 or (iii) n-Butanol. Similar extracts were made from beef and pork. All extracts were examined by electrophoretic and immunological techniques. Stained polyacrylamide gels revealed distinctive protein bands after electrophoresis. The migration rates of corresponding bands differed between beef and pork extracts. However, the migration rates of vegetable bands revealed certain similarities, but differed very greatly from those of animal origin. Characteristic fast-migrating S-bands were distinguishable only in extracts of vegetable protein. Immunodiffusion tests, using antisera produced in rabbits against each extract, revealed varying degrees of similarity between extracts of vegetable origin, but the antisera were specific for either vegetable or animal protein.

  16. Eric Stahlberg Named to FCW’s Federal 100 | FNLCR Staging

    Science.gov (United States)

    Eric Stahlberg, Ph.D., director of high-performance computing at the Frederick National Lab, has been named one of FCW‘s Federal 100 for his work in predictive oncology and his role in the collaboration between the National Cancer Institute and the

  17. HitPredict version 4: comprehensive reliability scoring of physical protein-protein interactions from more than 100 species.

    Science.gov (United States)

    López, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein-protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein-protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of physical, genetic and predicted interactions. Automated integration of interactions is further complicated by varying levels of accuracy of database content and lack of adherence to standard formats. To address these issues, the latest version of HitPredict provides a manually curated dataset of 398 696 physical associations between 70 808 proteins from 105 species. Manual confirmation was used to resolve all issues encountered during data integration. For improved reliability assessment, this version combines a new score derived from the experimental information of the interactions with the original score based on the features of the interacting proteins. The combined interaction score performs better than either of the individual scores in HitPredict as well as the reliability score of another similar database. HitPredict provides a web interface to search proteins and visualize their interactions, and the data can be downloaded for offline analysis. Data usability has been enhanced by mapping protein identifiers across multiple reference databases. Thus, the latest version of HitPredict provides a significantly larger, more reliable and usable dataset of protein-protein interactions from several species for the study of gene groups. Database URL: http://hintdb.hgc.jp/htp. © The Author(s) 2015. Published by Oxford University Press.

  18. Vaginal epithelial cell-derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis.

    Science.gov (United States)

    Yano, Junko; Palmer, Glen E; Eberle, Karen E; Peters, Brian M; Vogl, Thomas; McKenzie, Andrew N; Fidel, Paul L

    2014-02-01

    Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects women worldwide. Animal and clinical studies suggest that the immunopathogenic inflammatory condition of VVC is initiated by S100 alarmins in response to C. albicans, which stimulate polymorphonuclear neutrophil (PMN) migration to the vagina. The purpose of this study was to extend previous in vitro data and determine the requirement for the alarmin S100A8 in the PMN response and to evaluate pattern recognition receptors (PRRs) that initiate the response. For the former, PMN migration was evaluated in vitro or in vivo in the presence or absence of S100 alarmins initiated by several approaches. For the latter, vaginal epithelial cells were evaluated for PRR expression and C. albicans-induced S100A8 and S100A9 mRNAs, followed by evaluation of the PMN response in inoculated PRR-deficient mice. Results revealed that, consistent with previously reported in vitro data, eukaryote-derived S100A8, but not prokaryote-derived recombinant S100A8, induced significant PMN chemotaxis in vivo. Conversely, a lack of biologically active S100A8 alarmin, achieved by antibody neutralization or by using S100A9(-/-) mice, had no effect on the PMN response in vivo. In PRR analyses, whereas Toll-like receptor 4 (TLR4)- and SIGNR1-deficient vaginal epithelial cells showed a dramatic reduction in C. albicans-induced S100A8/S100A9 mRNAs in vitro, inoculated mice deficient in these PRRs showed PMN migration similar to that in wild-type controls. These results suggest that S100A8 alarmin is sufficient, but not necessary, to induce PMN migration during VVC and that the vaginal PMN response to C. albicans involves PRRs in addition to SIGNR1 and TLR4, or other induction pathways.

  19. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells

    DEFF Research Database (Denmark)

    Grankowski, N; Gasior, E; Issinger, O G

    1993-01-01

    Kinetic studies on the 60S protein kinase were conducted with synthetic peptides and ribosomal proteins as substrate. Peptide RRREEESDDD proved to be the best synthetic substrate for this enzyme. The peptide has a sequence of amino acids which most closely resembles the structure of potential...... phosphorylation sites in natural substrates, i.e., acidic ribosomal proteins. The superiority of certain kinetic parameters for 60S kinase obtained with the native whole 80S ribosomes over those of the isolated fraction of acidic ribosomal proteins indicates that the affinity of 60S kinase to the specific protein...

  20. Oral Uncaria rhynchophylla (UR) reduces kainic acid-induced epileptic seizures and neuronal death accompanied by attenuating glial cell proliferation and S100B proteins in rats.

    Science.gov (United States)

    Lin, Yi-Wen; Hsieh, Ching-Liang

    2011-05-17

    Epilepsy is a common clinical syndrome with recurrent neuronal discharges in cerebral cortex and hippocampus. Here we aim to determine the protective role of Uncaria rhynchophylla (UR), an herbal drug belong to Traditional Chinese Medicine (TCM), on epileptic rats. To address this issue, we tested the effect of UR on kainic acid (KA)-induced epileptic seizures and further investigate the underlying mechanisms. Oral UR successfully decreased neuronal death and discharges in hippocampal CA1 pyramidal neurons. The population spikes (PSs) were decreased from 4.1 ± 0.4 mV to 2.1 ± 0.3 mV in KA-induced epileptic seizures and UR-treated groups, respectively. Oral UR protected animals from neuronal death induced by KA treatment (from 34 ± 4.6 to 191.7 ± 48.6 neurons/field) through attenuating glial cell proliferation and S100B protein expression but not GABAA and TRPV1 receptors. The above results provide detail mechanisms underlying the neuroprotective action of UR on KA-induced epileptic seizure in hippocampal CA1 neurons. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Effect of N:S ratio on the corporation of 35S into the thioamino acids of the microbial protein in an in vitro rumen system

    International Nuclear Information System (INIS)

    Walli, T.K.; Mudgal, V.D.

    1978-01-01

    Three fistulated Tharparkar cows and three fistulated Murrah buffaloes, fed with three isonitrogenous urea based concentrate mixtures with nitrogen : sulphur ratio of 20:1, 10:1 and 5:1, alongwith wheat straw, were used as donors of rumen inoculum for an in vitro experiment. The incubation vessels contained either of the three urea based purified substrates of N:S ratios (20:1, 10:1 and 5:1). Three μCi of 35 S labelled Na 2 SO 4 was added to each incubation vessel. At the end of 24 h incubation, the proteins were precipitated with TCA. The proteins were further hydrolysed for the estimation of thio-amino acids, namely cystine and methionine. 35 S radioactivity in the protein precipitate and also in the cystine and methionine fraction was measured by liquid scintillation. From the present studies it could be suggested that the dietary nitrogen: sulphur ratio of 10:1 is optimum for the maximum protein and thioamino acid synthesis in the rumen. The studies further revealed that the buffalo rumen microbes synthesise more cystine and methionine and consequently more proteins than the microbes in cow rumen. (author)

  2. Cholinergic regulation of protein phosphorylation in bovine adrenal chromaffin cells

    International Nuclear Information System (INIS)

    Haycock, J.W.; Browning, M.D.; Greengard, P.

    1988-01-01

    Chromaffin cells were isolated from bovine adrenal medullae and maintained in primary culture. After prelabeling with 32 PO 4 , exposure of the chromaffin cells to acetylcholine increased the phosphorylation of a M/sub r/ ≅ 100,000 protein and a M/sub r/ ≅ 60,000 protein (tyrosine hydroxylase), visualized after separation of total cellular proteins in NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with antibodies to three known phosphoproteins (100-kDa, 87-kDa, and protein III) revealed an acetylcholine-dependent phosphorylation of these proteins. These three proteins were also shown to be present in bovine adrenal chromaffin cells by immunolabeling techniques. 100-kDa is a M/sub r/ ≅ 100,000 protein selectively phosphorylated by calcium/calmodulin-dependent protein kinase III, 87-kDa is a M/sub r/ ≅ 87,000 protein selectively phosphorylated by protein kinase C, and protein III is a phosphoprotein doublet of M/sub r/ ≅ 74,000 (IIIa) and M/sub r/ ≅ 55,000 (IIIb) phosphorylated by cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase I. The data demonstrate that cholinergic activation of chromaffin cells increases the phosphorylation of several proteins and that several protein kinase systems may be involved in these effects

  3. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  4. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes.

    Science.gov (United States)

    Biedka, Stephanie; Micic, Jelena; Wilson, Daniel; Brown, Hailey; Diorio-Toth, Luke; Woolford, John L

    2018-04-24

    Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C 2 site of 27SB pre-rRNA. C 2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C 2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C 2 cleavage and interpreted these results using cryo-electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C 2 cleavage. Interestingly, when C 2 cleavage is directly blocked by depleting or inactivating the C 2 endonuclease, assembly progresses through all other subsequent steps. © 2018 Biedka et al.

  5. S100A4 and BMP-2 Co-Dependently Induce Vascular Smooth Muscle Cell Migration via pERK and Chloride Intracellular Channel 4 (CLIC4)

    Science.gov (United States)

    Spiekerkoetter, Edda; Guignabert, Christophe; de Jesus Perez, Vinicio; Alastalo, Tero-Pekka; Powers, Janine M; Wang, Lingli; Lawrie, Allan; Ambartsumian, Noona; Schmidt, Ann-Marie; Berryman, Mark; Ashley, Richard H; Rabinovitch, Marlene

    2009-01-01

    Rationale S100A4/Mts1 is implicated in motility of human pulmonary artery smooth muscle cells (hPASMC), through an interaction with the receptor for advanced glycation end products (RAGE). Objective We hypothesized that S100A4/Mts1-mediated hPASMC motility might be enhanced by loss of function of bone morphogenetic protein (BMP) receptor (R) II, observed in pulmonary arterial hypertension (PAH). Methods and Results Both S100A4/Mts1 (500ng/ml) and BMP-2 (10ng/ml) induce migration of hPASMCS in a novel co-dependent manner, in that the response to either ligand is lost with anti-RAGE or BMPRII siRNA. Phosphorylation of ERK is induced by both ligands and is required for motility by inducing MMP2 activity, but phosphoERK1/2 is blocked by anti-RAGE and not by BMPRII siRNA. In contrast, BMPRII siRNA, but not anti-RAGE, reduces expression of intracellular chloride channel 4 (CLIC4), a scaffolding molecule necessary for motility in response to S100A4/Mts1 or BMP-2. Reduced CLIC4 expression does not interfere with S100A4/Mts1 internalization or its interaction with myosin heavy chain IIA (MHCIIA), but does alter alignment of MHCIIA and actin filaments creating the appearance of vacuoles. This abnormality is associated with reduced peripheral distribution and/or delayed activation of RhoA and Rac1, small GTPases required for retraction and extension of lamellipodiae in motile cells. Conclusions Our studies demonstrate how a single ligand (BMP-2 or S100A4/Mts1) can recruit multiple cell surface receptors to relay signals that coordinate events culminating in a functional response, i.e., cell motility. We speculate that this carefully controlled process limits signals from multiple ligands, but could be subverted in disease. PMID:19713532

  6. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer

    International Nuclear Information System (INIS)

    Huber, J.G.

    1996-01-01

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an α helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S γ -C β -H β )Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven instrumental in affording new

  7. Altered gravity influences rDNA and NopA100 localization in nucleoli

    Science.gov (United States)

    Sobol, M. A.; Kordyum, E. L.

    Fundamental discovery of gravisensitivity of cells no specified to gravity perception focused increasing attention on an elucidation of the mechanisms involved in altered gravity effects at the cellular and subcellular levels. The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts with ribosomal and nonribosomal proteins. The mechanisms inducing the changes in the subcomponents of the nucleolus that is morphologically defined yet highly dynamic structure are still unknown in detail. To understand the functional organization of the nucleolus as in the control as under altered gravity conditions it is essential to determine both the precise location of rDNA and the proteins playing the key role in rRNA processing. Lepidium sativum seeds were germinated in 1% agar medium on the slow horizontal clinostat (2 rpm) and in the stationary conditions. We investigated the root meristematic cells dissected from the seedlings grown in darkness for two days. The investigations were carried out with anti-DNA and anti-NopA100 antibodies labeling as well as with TdT procedure, and immunogold electron microscopy. In the stationary growth conditions, the anti-DNA antibody as well TdT procedure were capable of detecting fibrillar centers (FCs) and the dense fibrillar component (DFC) in the nucleolus. In FCs, gold particles were revealed on the condensed chromatin inclusions, internal fibrils of decondensed rDNA and the transition zone FC-DFC. Quantitatively, FCs appeared 1,5 times more densely labeled than DFC. NopA100 was localized in FCs and in DFC. In FCs, the most of protein was revealed in the transition zone FC-DFC. After a quantitative study, FCs and the transition zone FC-DFC appeared to contain NopA100 1,7 times more than DFC. Under the conditions of altered gravity, quantitative data clearly showed a redistribution of nucleolar DNA and NopA100 between FCs and DFC in comparison with the control. In

  8. Protein Profiling Reveals Novel Proteins in Pollen and Pistil of W22 (ga1; Ga1 in Maize

    Directory of Open Access Journals (Sweden)

    Jin Yu

    2014-05-01

    Full Text Available Gametophytic factors mediate pollen-pistil interactions in maize (Zea mays L. and play active roles in limiting gene flow among maize populations and between maize and teosinte. This study was carried out to identify proteins and investigate the mechanism of gametophytic factors using protein analysis. W22 (ga1; which did not carry a gametophytic factor and W22 (Ga1, a near iso-genic line, were used for the proteome investigation. SDS-PAGE was executed to investigate proteins in the pollen and pistil of W22 (ga1 and W22 (Ga1. A total of 44 differentially expressed proteins were identified in the pollen and pistil on SDS-PAGE using LTQ-FTICR MS. Among the 44 proteins, a total of 24 proteins were identified in the pollen of W22 (ga1 and W22 (Ga1 whereas 20 differentially expressed proteins were identified from the pistil of W22 (ga1 and W22 (Ga1. However, in pollen, 2 proteins were identified only in the W22 (ga1 and 12 proteins only in the W22 (Ga1 whereas 10 proteins were confirmed from the both of W22 (ga1 and W22 (Ga1. In contrary, 10 proteins were appeared only in the pistil of W22 (ga1 and 7 proteins from W22 (Ga1 while 3 proteins confirmed in the both of W22 (ga1 and W22 (Ga1. Moreover, the identified proteins were generally involved in hydrolase activity, nucleic acid binding and nucleotide binding. These results help to reveal the mechanism of gametophytic factors and provide a valuable clue for the pollen and pistil research in maize.

  9. Two-photon polarization microscopy reveals protein structure and function

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Bondar, Alexey; Timr, S.; Firestein, S. J.

    2011-01-01

    Roč. 8, č. 8 (2011), s. 684-U120 ISSN 1548-7091 Institutional research plan: CEZ:AV0Z60870520 Keywords : green fluorescent proteins * living cells * in-vivo * indicators * anisotropy * activacion * dissociation * orientation * calmodulin * membranes Subject RIV: CE - Biochemistry Impact factor: 19.276, year: 2011

  10. Hsp100/ClpB Chaperone Function and Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Vierling, Elizabeth [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Biochemistry and Molecular Biology

    2015-01-27

    The supported research investigated the mechanism of action of a unique class of molecular chaperones in higher plants, the Hsp100/ClpB proteins, with the ultimate goal of defining how these chaperones influence plant growth, development, stress tolerance and productivity. Molecular chaperones are essential effectors of cellular “protein quality control”, which comprises processes that ensure the proper folding, localization, activation and turnover of proteins. Hsp100/ClpB proteins are required for temperature acclimation in plants, optimal seed yield, and proper chloroplast development. The model plant Arabidopsis thaliana and genetic and molecular approaches were used to investigate two of the three members of the Hsp100/ClpB proteins in plants, cytosolic AtHsp101 and chloroplast-localized AtClpB-p. Investigating the chaperone activity of the Hsp100/ClpB proteins addresses DOE goals in that this activity impacts how “plants generate and assemble components” as well as “allowing for their self repair”. Additionally, Hsp100/ClpB protein function in plants is directly required for optimal “utilization of biological energy” and is involved in “mechanisms that control the architecture of energy transduction systems”.

  11. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.

    Directory of Open Access Journals (Sweden)

    Robert Kalescky

    2016-04-01

    Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.

  12. A plasma coagulation assay for an activated protein C-independent anticoagulant activity of protein S

    NARCIS (Netherlands)

    van Wijnen, M.; van 't Veer, C.; Meijers, J. C.; Bertina, R. M.; Bouma, B. N.

    1998-01-01

    To study the physiological importance of the activated protein C (APC)-independent anticoagulant activity of protein S, we developed an assay specific for this activity. The ability of protein S to prolong the clotting time in an APC-independent way was expressed as the ratio of the clotting time in

  13. Curcumin upregulates S100 expression and improves regeneration of the sciatic nerve following its complete amputation in mice

    Directory of Open Access Journals (Sweden)

    Guo-min Liu

    2016-01-01

    Full Text Available The repair of peripheral nerve injury after complete amputation is difficult, and even with anastomosis, the rapid recovery of nerve function remains challenging. Curcumin, extracted from plants of the genus Curcuma, has been shown to have anti-oxidant and anti-inflammatory properties and to improve sciatic nerve crush injury in rats. Here, we determined whether curcumin had neuroprotective effects following complete peripheral nerve amputation injury. BALB/c mice underwent complete sciatic nerve amputation, followed by an immediate epineurium anastomosis. Mice were intragastrically administered curcumin at doses of 40 (high, 20 (moderate, and 10 mg/kg/d (low for 1 week. We found that myelin in the mice of the high- and moderate-dose curcumin groups appeared with regular shape, uniform thickness, clear boundary, and little hyperplasia surrounding the myelin. High and moderate doses of curcumin markedly improved both action potential amplitude of the sciatic nerves and the conduction velocity of the corresponding motor neurons, and upregulated mRNA and protein expression of S100, a marker for Schwann cell proliferation, in L4–6 spinal cord segments. These results suggest that curcumin is effective in promoting the repair of complete sciatic nerve amputation injury and that the underlying mechanism may be associated with upregulation of S100 expression.

  14. Proteomic investigation of aphid honeydew reveals an unexpected diversity of proteins.

    Directory of Open Access Journals (Sweden)

    Ahmed Sabri

    Full Text Available Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional Differential in-Gel Electrophoresis (2D-Dige approach, more than 140 spots were isolated, demonstrating that aphid honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora. Interestingly, our experiments also allowed to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu, and flagellin that might act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid ecology perspective.

  15. Structure of the cold-shock domain protein from Neisseria meningitidis reveals a strand-exchanged dimer

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jingshan [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Nettleship, Joanne E.; Sainsbury, Sarah [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2008-04-01

    The X-ray crystal structure of the cold-shock domain protein from N. meningitidis reveals a strand-exchanged dimer. The structure of the cold-shock domain protein from Neisseria meningitidis has been solved to 2.6 Å resolution and shown to comprise a dimer formed by the exchange of two β-strands between protein monomers. The overall fold of the monomer closely resembles those of other bacterial cold-shock proteins. The neisserial protein behaved as a monomer in solution and was shown to bind to a hexathymidine oligonucleotide with a stoichiometry of 1:1 and a K{sub d} of 1.25 µM.

  16. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.

    Science.gov (United States)

    De Marchis, Francesca; Bellucci, Michele; Pompa, Andrea

    2016-02-01

    Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. The chromosomal constitution of fish hybrid lineage revealed by 5S rDNA FISH.

    Science.gov (United States)

    Zhang, Chun; Ye, Lihai; Chen, Yiyi; Xiao, Jun; Wu, Yanhong; Tao, Min; Xiao, Yamei; Liu, Shaojun

    2015-12-03

    The establishment of the bisexual fertile fish hybrid lineage including the allodiploid and allotetraploid hybrids, from interspecific hybridization of red crucian carp (Carassius auratus red var. 2n = 100, 2n = AA) (♀) × common carp (Cyprinus carpio L. 2n = 100, 2n = BB) (♂), provided a good platform to investigate genetic relationship between the parents and their hybrid progenies. The chromosomal inheritance of diploid and allotetraploid hybrid progenies in successive generations, was studied by applying 5S rDNA fluorescence in situ hybridization. Signals of 5S rDNA distinguished the chromosomal constitution of common carp (B-genome) from red crucian carp (A-genome), in which two strong signals were observed on the first submetacentric chromosome, while no major signal was found in common carp. After fish hybridization, one strong signal of 5S rDNA was detected in the same locus on the chromosome of diploid hybrids. As expected, two strong signals were observed in 4nF3 tetraploid hybrids offspring and it is worth mentioning that two strong signals were detected in a separating bivalent of a primary spermatocyte in 4nF3. Furthermore, the mitosis of heterozygous chromosomes was shown normal and stable with blastular tissue histological studies. We revealed that 5S rDNA signal can be applied to discern A-genome from B-genome, and that 5S rDNA bearing chromosomes can be stably passed down in successive generations. Our work provided a significant method in fish breeding and this is important for studies in fish evolutionary biology.

  18. Identification and characterization of small molecule inhibitors of the calcium-dependent S100B-p53 tumor suppressor interaction.

    Science.gov (United States)

    Markowitz, Joseph; Chen, Ijen; Gitti, Rossi; Baldisseri, Donna M; Pan, Yongping; Udan, Ryan; Carrier, France; MacKerell, Alexander D; Weber, David J

    2004-10-07

    The binding of S100B to p53 down-regulates wild-type p53 tumor suppressor activity in cancer cells such as malignant melanoma, so a search for small molecules that bind S100B and prevent S100B-p53 complex formation was undertaken. Chemical databases were computationally searched for potential inhibitors of S100B, and 60 compounds were selected for testing on the basis of energy scoring, commercial availability, and chemical similarity clustering. Seven of these compounds bound to S100B as determined by steady state fluorescence spectroscopy (1.0 microM model of one such inhibitor, pentamidine, bound to Ca(2+)-loaded S100B was calculated using intermolecular NOE data between S100B and the drug, and indicates that pentamidine binds into the p53 binding site on S100B defined by helices 3 and 4 and loop 2 (termed the hinge region).

  19. G1/S-regulated E2F-containing protein complexes bind to the mouse thymidine kinase gene promoter

    DEFF Research Database (Denmark)

    Dou, Q P; Zhao, S; Levin, A H

    1994-01-01

    report that MT2 includes an E2F-like binding site (GTTCGCGGGCAAA), as shown by the following evidence. (i) MT2 bound specifically to an affinity-purified fusion human E2F protein. (ii) Both MT2 and an authentic E2F site (TTTCGCGCGCTTT) bound specifically to similar or identical nuclear protein complexes...... complexes were also investigated. Studies using specific antibodies revealed that p107, a retinoblastoma-like protein, was present in both E2F-G0/G1 and E2F.S, whereas cyclin E.cyclin A.cdk2 were only present in E2F.S complex(es). These data suggest that removal of the p107-containing E2F.G0/G1 complex...

  20. Cross-linking of L5 protein to 5 S RNA in rat liver 60-S subunits by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Terao, K.; Uchiumi, T.; Ogata, K.

    1980-01-01

    After rat liver 60-S ribosomal subunits were irradiated with ultraviolet light at 254 nm, they were treated with EDTA and then subjected to sucrose density-gradient centrifugation to isolate 5 S RNA-protein complex. When 5 S RNA-protein was analyzed by SDS-acrylamide gel electrophoresis which dissociated noncovalent 5 S RNA-protein, two protein bands were observed. The one showed a slower mobility than the protein band (L5) of 5 S RNA-protein from non-irradiated 60 S subunit and the other showed the same mobility as L5 protein. Since the former band was shown to be specific to ultraviolet-irradiation, it was considered as cross-linked 5 S RNA-protein. After the two protein bands were iodinated with 125 I, labeled protein was extracted and treated with RNAase. Thereafter, it was analyzed by two-dimensional acrylamide gel electrophoresis, followed by autoradiography. The results indicate that the protein component of cross-linked 5 S RNA-protein is L5 protein (ribosomal protein); these proteins are designated according to the proposed uniform nomenclature. (Auth.)

  1. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane.

    Science.gov (United States)

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-29

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.

  2. Revealing Abrupt and Spontaneous Ruptures of Protein Native Structure under picoNewton Compressive Force Manipulation.

    Science.gov (United States)

    Chowdhury, S Roy; Cao, Jin; He, Yufan; Lu, H Peter

    2018-03-27

    Manipulating protein conformations for exploring protein structure-function relationship has shown great promise. Although protein conformational changes under pulling force manipulation have been extensively studied, protein conformation changes under a compressive force have not been explored quantitatively. The latter is even more biologically significant and relevant in revealing protein functions in living cells associated with protein crowdedness, distribution fluctuations, and cell osmotic stress. Here we report our experimental observations on abrupt ruptures of protein native structures under compressive force, demonstrated and studied by single-molecule AFM-FRET spectroscopic nanoscopy. Our results show that the protein ruptures are abrupt and spontaneous events occurred when the compressive force reaches a threshold of 12-75 pN, a force amplitude accessible from thermal fluctuations in a living cell. The abrupt ruptures are sensitive to local environment, likely a general and important pathway of protein unfolding in living cells.

  3. Characterization of the regions from E. coli 16 S RNA covalently linked to ribosomal proteins S4 and S20 after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Ehresmann, B.; Backendorf, C.; Ehresmann, C.; Ebel, J.P.

    1977-01-01

    The use of ultraviolet irradiation to form photochemical covalent bonds between the 16 S RNA and a ribosomal protein is a reliable method to check RNA regions which are interacting with the protein. This technique was successfully used to covalently link RNA or DNA and specific proteins in several cases. In the case of ribosome, it has been shown that the irradiation of 30 S and 50 S subunits using high doses of ultraviolet light allowed the covalent binding of almost all of the ribosomal proteins to the 16 S or 23 S RNAs. Using mild conditions, only proteins S7 and L4 could be covalently linked to the 16 S and 23 S RNAs, respectively, and the 16 S RNA region linked to protein S7 has now been characterized. The specificity of the photoreaction was demonstrated earlier and the tryptic peptides from proteins S4 and S7, photochemically linked to the 16 S RNA complexes, were identified. A report is presented on the sequences of the RNA regions which can be photochemically linked to proteins S4 and S7 after ultraviolet irradiation of the specific S4-16 S RNA and 20 S-16 S RNA complexes

  4. Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein

    Directory of Open Access Journals (Sweden)

    Frazzon Jeverson

    2009-02-01

    Full Text Available Abstract Background Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein. Results BLAST searches of the Enterococcus genome revealed a series of genes with sequence similarity to the Escherichia coli SUF machinery of [Fe-S] cluster biosynthesis, namely sufB, sufC, sufD and SufS. In addition, the E. coli IscU ortholog SufU was found to be the scaffold protein of Enterococcus spp., containing all features considered essential for its biological activity, including conserved amino acid residues involved in substrate and/or co-factor binding (Cys50,76,138 and Asp52 and, phylogenetic analyses showed a close relationship with orthologues from other Gram-positive bacteria. Molecular dynamics for structural determinations and molecular modeling using E. faecalis SufU primary sequence protein over the PDB:1su0 crystallographic model from Streptococcus pyogenes were carried out with a subsequent 50 ns molecular dynamic trajectory. This presented a stable model, showing secondary structure modifications near the active site and conserved cysteine residues. Molecular modeling using Haemophilus influenzae IscU primary sequence over the PDB:1su0 crystal followed by a MD

  5. S100ß and fibroblast growth factor-2 are present in cultured Schwann cells and may exert paracrine actions on the peripheral nerve injury S100ß e fator de crescimento de fibroblasto-2 estão presentes nas células de Schwann cultivadas e exercem ações parácrinas na lesão do nervo

    Directory of Open Access Journals (Sweden)

    Tatiana Duobles

    2008-12-01

    Full Text Available PURPOSE: The neurotrophic factor fibroblast growth factor-2 (FGF-2, bFGF and Ca++ binding protein S100ß are expressed by the Schwann cells of the peripheral nerves and by the satellite cells of the dorsal root ganglia (DRG. Recent studies have pointed out the importance of the molecules in the paracrine mechanisms related to neuronal maintenance and plasticity of lesioned motor and sensory peripheral neurons. Moreover, cultured Schwann cells have been employed experimentally in the treatment of central nervous system lesions, in special the spinal cord injury, a procedure that triggers an enhanced sensorymotor function. Those cells have been proposed to repair long gap nerve injury. METHODS: Here we used double labeling immunohistochemistry and Western blot to better characterize in vitro and in vivo the presence of the proteins in the Schwann cells and in the satellite cells of the DRG as well as their regulation in those cells after a crush of the rat sciatic nerve. RESULTS: FGF-2 and S100ß are present in the Schwann cells of the sciatic nerve and in the satellite cells of the DRG. S100ß positive satellite cells showed increased size of the axotomized DRG and possessed elevated amount of FGF-2 immunoreactivity. Reactive satellite cells with increased FGF-2 labeling formed a ring-like structure surrounding DRG neuronal cell bodies.Reactive S100ß positive Schwann cells of proximal stump of axotomized sciatic nerve also expressed higher amounts of FGF-2. CONCLUSION: Reactive peripheral glial cells synthesizing FGF-2 and S100ß may be important in wound repair and restorative events in the lesioned peripheral nerves.OBJETIVO: O fator neurotrófico fator de crescimento de fibroblastos-2 (FGF-2, bFGF e a proteína ligante de Ca++ S100ß são expressos pelas células de Schwann dos nervos e por células satélites do gânglio da raiz dorsal (GRD. Estudos recentes indicam a importância das moléculas nos mecanismos parácrinos relacionados

  6. S-Glutathionylation and Redox Protein Signaling in Drug Addiction.

    Science.gov (United States)

    Womersley, Jacqueline S; Uys, Joachim D

    2016-01-01

    Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin. Copyright © 2016. Published by Elsevier Inc.

  7. Thermal-Stability and Reconstitution Ability of Listeria Phages P100 and A511

    Directory of Open Access Journals (Sweden)

    Hanie Ahmadi

    2017-12-01

    Full Text Available The study evaluated the thermal-stability of Listeria phages P100 and A511 at temperatures simulating the preparation of ready-to-eat meats. The phage infectivity after heating to 71°C and holding for a minimum of 30 s, before eventually cooling to 4°C were examined. Higher temperatures of 75, 80, and 85°C were also tested to evaluate their effect on phages thermal-stability. This study found that despite minor differences in the amino acid sequences of their structural proteins, the two phages responded differently to high temperatures. P100 activity declined at least 10 log (PFU mL-1 with exposure to 71°C (30 s and falling below the limit of detection (1 log PFU mL-1 while, A511 dropped from 108 to 105 PFU mL-1. Cooling resulted in partial reconstitution of P100 phage particles to 103 PFU mL-1. Exposure to 75°C (30 s abolished A511 activity (8 log PFU mL-1 and both phages showed reconstitution during cooling phase after exposure to 75°C. P100 exhibited reconstitution after treatment at 80°C (30 s, conversely A511 showed no reconstitution activity. Heating P100 to 85°C abolished the reconstitution potential. Substantial differences were found in thermal-stability and reconstitution of the examined phages showing A511 to be more thermo-stable than P100, while P100 exhibited reconstitution during cooling after treatment at 80°C which was absent in A511. The differences in predicted melting temperatures of structural proteins of P100 and A511 were consistent with the observed differences in thermal stability and morphological changes observed with transmission electron microscopy.

  8. S100A7 (Psoriasin), highly expressed in Ductal Carcinoma In Situ (DCIS), is regulated by IFN-gamma in mammary epithelial cells

    International Nuclear Information System (INIS)

    Petersson, Stina; Bylander, Anna; Yhr, Maria; Enerbäck, Charlotta

    2007-01-01

    The aim of the present work was to explore signal transduction pathways used in the regulation of S100A7 (psoriasin). Members of the S100 gene family participate in many important cellular functions. Psoriasin, S100A8 (calgranulin A) and S100A9 (calgranulin B) are expressed in ductal carcinoma in situ (DCIS), as well as in the hyperproliferative skin disease, psoriasis. In the latter condition, a disturbance in the STAT pathway has recently been reported. This pathway is implicated in the regulation of IFN-gamma, widely recognized as a key cytokine in psoriasis. IFN-gamma also exerts anti-tumor action in a number of tumor cell types, including breast cancer. We therefore examined the effect of IFN-gamma and STAT-signaling on the psoriasin expression. We established a TAC2 mouse mammary epithelial cell line with tetracycline-inducible psoriasin expression (Tet-Off). Viability in cell culture was estimated using MTS assay. Protein and gene expression were evaluated by Western blotting and quantitative real-time PCR. Statistical analyses were assessed using a one-tailed, paired t-test. We report the downregulation of psoriasin by IFN-gamma in the MDA-MB-468 breast cancer cell line, as well as the downregulation of psoriasin induced by anoikis in cell lines derived from different epithelial tissues. In contrast, IFN-gamma had no suppressive effect on calgranulin A or calgranulin B. IFN-gamma is an important activator of the STAT1 pathway and we confirmed an active signaling pathway in the cell lines that responded to IFN-gamma treatment. In contrast, in the SUM190 breast carcinoma cell line, IFN-gamma did not suppress the expression of endogenous psoriasin. Moreover, a reduced phosphorylation of the STAT1 protein was observed. We showed that IFN-gamma treatment and the inhibition of the transcription factor NFkappaB had a synergistic effect on psoriasin levels. Finally, in TAC2 cells with tetracycline-induced psoriasin expression, we observed the increased viability of

  9. Comparison of hippocampal G protein activation by 5-HT(1A) receptor agonists and the atypical antipsychotics clozapine and S16924.

    Science.gov (United States)

    Newman-Tancredi, A; Rivet, J-M; Cussac, D; Touzard, M; Chaput, C; Marini, L; Millan, M J

    2003-09-01

    This study employed [(35)S]guanosine 5'- O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding to compare the actions of antipsychotic agents known to stimulate cloned, human 5-HT(1A) receptors with those of reference agonists at postsynaptic 5-HT(1A) receptors. In rat hippocampal membranes, the following order of efficacy was observed (maximum efficacy, E(max), values relative to 5-HT=100): (+)8-OH-DPAT (85), flesinoxan (62), eltoprazine (60), S14506 (59), S16924 (48), buspirone (41), S15535 (22), clozapine (22), ziprasidone (21), pindolol (7), p-MPPI (0), WAY100,635 (0), spiperone (0). Despite differences in species and tissue source, the efficacy and potency (pEC(50)) of agonists (with the exception of clozapine) correlated well with those determined previously at human 5-HT(1A) receptors expressed in Chinese hamster ovary (CHO) cells. In contrast, clozapine was more potent at hippocampal membranes. The selective antagonists p-MPPI and WAY100,635 abolished stimulation of binding by (+)8-OH-DPAT, clozapine and S16924 (p-MPPI), indicating that these actions were mediated specifically by 5-HT(1A) receptors. Clozapine and S16924 also attenuated 5-HT- and (+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding, consistent with partial agonist properties. In [(35)S]GTPgammaS autoradiographic studies, 5-HT-induced stimulation, mediated through 5-HT(1A) receptors, was more potent in the septum (pEC(50) approximately 6.5) than in the dentate gyrus of the hippocampus (pEC(50) approximately 5) suggesting potential differences in coupling efficiency or G protein expression. Though clozapine (30 and 100 microM) did not enhance [(35)S]GTPgammaS labelling in any structure, S16924 (10 micro M) modestly increased [(35)S]GTPgammaS labelling in the dentate gyrus. On the other hand, both these antipsychotic agents attenuated 5-HT (10 microM)-stimulated [(35)S]GTPgammaS binding in the dentate gyrus and septum. In conclusion, clozapine, S16924 and ziprasidone act as partial agonists for G

  10. A DNA-Encoded Library of Chemical Compounds Based on Common Scaffolding Structures Reveals the Impact of Ligand Geometry on Protein Recognition.

    Science.gov (United States)

    Favalli, Nicholas; Biendl, Stefan; Hartmann, Marco; Piazzi, Jacopo; Sladojevich, Filippo; Gräslund, Susanne; Brown, Peter J; Näreoja, Katja; Schüler, Herwig; Scheuermann, Jörg; Franzini, Raphael; Neri, Dario

    2018-06-01

    A DNA-encoded chemical library (DECL) with 1.2 million compounds was synthesized by combinatorial reaction of seven central scaffolds with two sets of 343×492 building blocks. Library screening by affinity capture revealed that for some target proteins, the chemical nature of building blocks dominated the selection results, whereas for other proteins, the central scaffold also crucially contributed to ligand affinity. Molecules based on a 3,5-bis(aminomethyl)benzoic acid core structure were found to bind human serum albumin with a K d value of 6 nm, while compounds with the same substituents on an equidistant but flexible l-lysine scaffold showed 140-fold lower affinity. A 18 nm tankyrase-1 binder featured l-lysine as linking moiety, while molecules based on d-Lysine or (2S,4S)-amino-l-proline showed no detectable binding to the target. This work suggests that central scaffolds which predispose the orientation of chemical building blocks toward the protein target may enhance the screening productivity of encoded libraries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structure of a conserved hypothetical protein SA1388 from S. aureus reveals a capped hexameric toroid with two PII domain lids and a dinuclear metal center

    Directory of Open Access Journals (Sweden)

    Leybourne Matthew

    2006-12-01

    Full Text Available Abstract Background The protein encoded by the SA1388 gene from Staphylococcus aureus was chosen for structure determination to elucidate its domain organization and confirm our earlier remote homology based prediction that it housed a nitrogen regulatory PII protein-like domain. SA1388 was predicted to contain a central PII-like domain and two flanking regions, which together belong to the NIF3-like protein family. Proteins like SA1388 remain a poorly studied group and their structural characterization could guide future investigations aimed at understanding their function. Results The structure of SA1388 has been solved to 2.0Å resolution by single wavelength anomalous dispersion phasing method using selenium anomalous signals. It reveals a canonical NIF3-like fold containing two domains with a PII-like domain inserted in the middle of the polypeptide. The N and C terminal halves of the NIF3-like domains are involved in dimerization, while the PII domain forms trimeric contacts with symmetry related monomers. Overall, the NIF3-like domains of SA1388 are organized as a hexameric toroid similar to its homologs, E. coli ybgI and the hypothetical protein SP1609 from Streptococcus pneumoniae. The openings on either side of the toroid are partially covered by trimeric "lids" formed by the PII domains. The junction of the two NIF3 domains has two zinc ions bound at what appears to be a histidine rich active site. A well-defined electron density corresponding to an endogenously bound ligand of unknown identity is observed in close proximity to the metal site. Conclusion SA1388 is the third member of the NIF3-like family of proteins to be structurally characterized, the other two also being hypothetical proteins of unknown function. The structure of SA1388 confirms our earlier prediction that the inserted domain that separates the two NIF3 domains adopts a PII-like fold and reveals an overall capped toroidal arrangement for the protein hexamer. The

  12. Protein-phosphotyrosine proteome profiling by superbinder-SH2 domain affinity purification mass spectrometry, sSH2-AP-MS.

    Science.gov (United States)

    Tong, Jiefei; Cao, Biyin; Martyn, Gregory D; Krieger, Jonathan R; Taylor, Paul; Yates, Bradley; Sidhu, Sachdev S; Li, Shawn S C; Mao, Xinliang; Moran, Michael F

    2017-03-01

    Recently, "superbinder" SH2 domain variants with three amino acid substitutions (sSH2) were reported to have 100-fold or greater affinity for protein-phosphotyrosine (pY) than natural SH2 domains. Here we report a protocol in which His-tagged Src sSH2 efficiently captures pY-peptides from protease-digested HeLa cell total protein extracts. Affinity purification of pY-peptides by this method shows little bias for pY-proximal amino acid sequences, comparable to that achieved by using antibodies to pY, but with equal or higher yield. Superbinder-SH2 affinity purification mass spectrometry (sSH2-AP-MS) therefore provides an efficient and economical approach for unbiased pY-directed phospho-proteome profiling without the use of antibodies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [S100A7 promotes the metastasis and epithelial-mesenchymal transition on HeLa and CaSki cells].

    Science.gov (United States)

    Tian, T; Hua, Z; Wang, L Z; Wang, X Y; Chen, H Y; Liu, Z H; Cui, Z M

    2018-02-25

    Objective: To elucidate the impact of over-expression of S100A7 on migration, invasion, proliferation, cell cycle, and epithelial-mesenchymal transition (EMT) in human cervical cancer HeLa and CaSki cells. Methods: (1) Immunohistochemistry of SP was used to examine the expression of S100A7 in 40 cases of squamous cervical cancer tissues and 20 cases of normal cervical tissues. (2) The vectors of pLVX-IRES-Neo-S100A7 and pLVX-IRES-Neo were used to transfect human cervical cancer HeLa and CaSki cells, and the positive clones were screened and identified. Next, transwell migration assay, cell counting kit-8 (CCK-8) assay and fluorescence activating cell sorter (FACS) were used to detect the effect of S100A7-overexpression on the migration, invasion, proliferation and cell cycle of cervical cancer cells. Furthermore, western blot was performed to observe the expression of epithelial marker (E-cadherin) and mesenchymal markers (N-cadherin, vimentin, and fibronectin) of EMT. Results: (1) S100A7 expression was significantly higher in cervical squamous cancer tissues (median 91.6) than that in normal cervical tissues (median 52.1; Z=- 2.948, P= 0.003) . (2) Stable S100A7-overexpressed cells were established using lentiviral-mediated gene delivery in HeLa and CaSki cells. S100A7 was detected by real-time quantitative reverse transcription PCR, S100A7 mRNA of S100A7-overexpressed cells were 119±3 and 177±16, increased significantly compared with control groups of median ( Pcells, the number of S100A7-overexpressed HeLa and CaSki cells that passed the transwell membrane assay were increased significanatly (572±51 vs 337±25, PHeLa and CaSki cells that passed the transwell membrane were respectively 441±15 and 110±14, elevated significantly compared with control cells (156±21 and 59±7; Pcell cycle progression of HeLa and CaSki cells ( P> 0.05) . Expression of E-cadherin was dramatically decreased, while N-cadherin, vimentin, and fibronectin increased in S100A7

  14. H(2s) excitation in 10-100 keV H+ - H collisions

    International Nuclear Information System (INIS)

    Higgins, D.P.; Geddes, J.; Gilbody, H.B.

    1996-01-01

    The authors have used a crossed beam technique to determine cross sections for 2s excitation of H atoms in 10-100 keV collisions. The results extend their previous 4-26 keV measurements to intermediate energies where theoretical predictions based on close coupling methods are known to be strongly dependent on the choice of the expansion basis. The 4-100 keV cross sections exhibit an undulatory structure similar to that predicted by some of the many close coupling calculations but good quantitative agreement is shown to be very limited. Close coupling calculations which employ large basis sets at the expense of target states are shown to agree less satisfactorily with experiment than those which include only the dominant 1s capture channel

  15. Evaluation of oxidant, antioxidant, and S100B levels in patients with conversion disorder.

    Science.gov (United States)

    Büyükaslan, Hasan; Kandemir, Sultan Basmacı; Asoğlu, Mehmet; Kaya, Halil; Gökdemir, Mehmet Tahir; Karababa, İbrahim Fatih; Güngörmez, Fatih; Kılıçaslan, Fethiye; Şavik, Emin

    2016-01-01

    Various psychodynamic, neurobiological, genetic, and sociocultural factors are believed to be involved in the etiology of conversion disorder (CD). Oxidative metabolism has been shown to deteriorate in association with many health problems and psychiatric disorders. We evaluated oxidative metabolism and S100B levels in the context of this multifactorial disease. Thirty-seven patients with CD (25 females and 12 males) and 42 healthy volunteers (21 females and 21 males), all matched for age and sex, were included in this study. The total oxidant status, total antioxidant status, oxidative stress index, and S100B levels were compared between the two groups. The total oxidant status, oxidative stress index, and S100B levels were significantly higher in patients with CD than in the control group, whereas the total antioxidant status was significantly lower. CD is associated with deterioration of oxidative metabolism and increased neuronal damage.

  16. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.

    Science.gov (United States)

    Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E

    2017-01-01

    Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.

  17. Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation.

    Science.gov (United States)

    Hansen, Fernanda; Battú, Cíntia Eickhoff; Dutra, Márcio Ferreira; Galland, Fabiana; Lirio, Franciane; Broetto, Núbia; Nardin, Patrícia; Gonçalves, Carlos-Alberto

    2016-02-01

    Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and L-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients.

  18. S100B increases in cyanotic versus noncyanotic infants undergoing heart surgery and cardiopulmonary bypass (CPB).

    Science.gov (United States)

    Varrica, Alessandro; Satriano, Angela; Gavilanes, Antonio D W; Zimmermann, Luc J; Vles, Hans J S; Pluchinotta, Francesca; Anastasia, Luigi; Giamberti, Alessandro; Baryshnikova, Ekaterina; Gazzolo, Diego

    2017-11-28

    S100B has been proposed as a consolidated marker of brain damage in infants with congenital heart disease (CHD) undergoing cardiac surgery and cardiopulmonary bypass (CPB). The present study aimed to investigate whether S100B blood levels in the perioperative period differed in infants complicated or not by cyanotic CHD (CHDc) and correlated with oxygenation status (PaO 2 ). We conducted a case-control study of 48 CHD infants without pre-existing neurological disorders undergoing surgical repair and CPB. 24 infants were CHDc and 24 were CHD controls. Blood samples for S100B assessment were collected at six monitoring time-points: before the surgical procedure (T0), after sternotomy but before CPB (T1), at the end of the cross-clamp CPB phase (T2), at the end of CPB (T3), at the end of the surgical procedure (T4), at 24 h postsurgery (T5). In the CHDc group, S100B multiples of median (MoM) were significantly higher (p  .05, for all) were found at T2, T3, T5. Linear regression analysis showed a positive correlation between S100B MoM at T3 and PaO 2 (R = 0.84; p < .001). The present data showing higher hypoxia/hyperoxia-mediated S100B concentrations in CHDc infants suggest that CHDc are more prone to perioperative brain stress/damage and suggest the usefulness of further investigations to detect the "optimal" PaO 2 target in order to avoid the side effects associated with reoxygenation during CPB.

  19. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    Science.gov (United States)

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  20. Distribution of protein and RNA in the 30S ribosomal subunit

    International Nuclear Information System (INIS)

    Ramakrishnan, V.

    1986-01-01

    In Escherichia coli, the small ribosomal subunit has a sedimentation coefficient of 30S, and consists of a 16S RNA molecule of 1541 nucleotides complexed with 21 proteins. Over the last few years, a controversy has emerged regarding the spatial distribution of RNA and protein in the 30S subunit. Contrast variation with neutron scattering was used to suggest that the RNA was located in a central core of the subunit and the proteins mainly in the periphery, with virtually no separation between the centers of mass of protein and RNA. However, these findings are incompatible with the results of efforts to locate individual ribosomal proteins by immune electron microscopy and triangulation with interprotein distance measurements. The conflict between these two views is resolved in this report of small-angle neutron scattering measurements on 30S subunits with and without protein S1, and on subunits reconstituted from deuterated 16S RNA and unlabeled proteins. The results show that (i) the proteins and RNA are intermingled, with neither component dominating at the core or the periphery, and (ii) the spatial distribution of protein and RNA is asymmetrical, with a separation between their centers of mass of about 25 angstroms

  1. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica

    International Nuclear Information System (INIS)

    Schneider, Sabine; Paoli, Massimo

    2005-01-01

    The haem binding protein HemS from Y. enterocolitica has been crystallized in complex with its ligand. The crystals diffracted X-rays to 2.6 Å in-house. Bacteria have evolved strategies to acquire iron from their environment. Pathogenic microbes rely on specialized proteins to ‘steal’ haem from their host and use it as an iron source. HemS is the ultimate recipient of a molecular-relay system for haem uptake in Gram-negative species, functioning as the cytosolic carrier of haem. Soluble expression and high-quality diffraction crystals were obtained for HemS from Yersinia enterocolitica. Crystals belong to the orthorhombic space group I222, with unit-cell parameters a = 74.86, b = 77.45, c = 114.09 Å, and diffract X-rays to 2.6 Å spacing in-house. Determination of the structure of the haem–HemS complex will reveal the molecular basis of haem binding

  2. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sabine; Paoli, Massimo, E-mail: max.paoli@nottingham.ac.uk [School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2005-08-01

    The haem binding protein HemS from Y. enterocolitica has been crystallized in complex with its ligand. The crystals diffracted X-rays to 2.6 Å in-house. Bacteria have evolved strategies to acquire iron from their environment. Pathogenic microbes rely on specialized proteins to ‘steal’ haem from their host and use it as an iron source. HemS is the ultimate recipient of a molecular-relay system for haem uptake in Gram-negative species, functioning as the cytosolic carrier of haem. Soluble expression and high-quality diffraction crystals were obtained for HemS from Yersinia enterocolitica. Crystals belong to the orthorhombic space group I222, with unit-cell parameters a = 74.86, b = 77.45, c = 114.09 Å, and diffract X-rays to 2.6 Å spacing in-house. Determination of the structure of the haem–HemS complex will reveal the molecular basis of haem binding.

  3. Translational regulation of ribosomal protein S15 drives characteristic patterns of protein-mRNA epistasis.

    Science.gov (United States)

    Mallik, Saurav; Basu, Sudipto; Hait, Suman; Kundu, Sudip

    2018-04-21

    Do coding and regulatory segments of a gene co-evolve with each-other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15-rpsO and S1-rpsO recognition, S15-mediated rpsO structural rearrangement, and S1-mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence-space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue-level epistasis-not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein. © 2018 Wiley Periodicals, Inc.

  4. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Olivier Poupel

    Full Text Available The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their

  5. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus.

    Science.gov (United States)

    Poupel, Olivier; Moyat, Mati; Groizeleau, Julie; Antunes, Luísa C S; Gribaldo, Simonetta; Msadek, Tarek; Dubrac, Sarah

    2016-01-01

    The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene

  6. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans

    OpenAIRE

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo

    2012-01-01

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed...

  7. Eesti esinaivisti 100. sünniaastapäev / Tiiu Männiste

    Index Scriptorium Estoniae

    Männiste, Tiiu, 1959-

    2000-01-01

    Paul Kondase 100. sünniaastapäeva puhul tema maalide näitus Viljandi kunstisaalis. Avamisel demonstreeris Mark Soosaar oma filmi "Pühapäevamaalijad". Kilpkonna galeriis näitusel "Veel naiviste" Joan (?Joann) Sõstra (1913-1992) (puuskulptuurid), Osvald Raba (1909-1996) ja Arnold Vihmandi (1912) looming.

  8. Structural and functional implications in the eubacterial ribosome as revealed by protein-rRNA and antibiotic contact sites.

    Science.gov (United States)

    Wittmann-Liebold, B; Uhlein, M; Urlaub, H; Müller, E C; Otto, A; Bischof, O

    1995-01-01

    Contact sites between protein and rRNA in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus were investigated at the molecular level using UV and 2-iminothiolane as cross-linkers. Thirteen ribosomal proteins (S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29, and L36) from these organisms were cross-linked in direct contact with the RNAs, and the peptide stretches as well as amino acids involved were identified. Further, the binding sites of puromycin and spiramycin were established at the peptide level in several proteins that were found to constitute the antibiotic-binding sites. Peptide stretches of puromycin binding were identified from proteins S7, S14, S18, L18, AND L29; those of spiramycin attachment were derived from proteins S12, S14, L17, L18, L27, and L35. Comparison of the RNA-peptide contact sites with the peptides identified for antibiotic binding and with those altered in antibiotic-resistant mutants clearly showed identical peptide areas to be involved and, hence, demonstrated the functional importance of these peptides. Further evidence for a functional implication of ribosomal proteins in the translational process came from complementation experiments in which protein L2 from Halobacterium marismortui was incorporated into the E. coli ribosomes that were active. The incorporated protein was present in 50S subunits and 70S particles, in disomes, and in higher polysomes. These results clearly demonstrate the functional implication of protein L2 in protein biosynthesis. Incorporation studies with a mutant of HmaL2 with a replacement of histidine-229 by glycine completely abolished the functional activity of the ribosome. Accordingly, protein L2 with histidine-229 is a crucial element of the translational machinery.

  9. REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment

    Directory of Open Access Journals (Sweden)

    Hao Yang

    2018-01-01

    Full Text Available Bryostatin 1 (henceforth bryostatin is in clinical trials for the treatment of Alzheimer’s disease and for HIV/AIDS eradication. It is also a preclinical lead for cancer immunotherapy and other therapeutic indications. Yet nothing is known about the conformation of bryostatin bound to its protein kinase C (PKC target in a membrane microenvironment. As a result, efforts to design more efficacious, better tolerated, or more synthetically accessible ligands have been limited to structures that do not include PKC or membrane effects known to influence PKC–ligand binding. This problem extends more generally to many membrane-associated proteins in the human proteome. Here, we use rotational-echo double-resonance (REDOR solid-state NMR to determine the conformations of PKC modulators bound to the PKCδ-C1b domain in the presence of phospholipid vesicles. The conformationally limited PKC modulator phorbol diacetate (PDAc is used as an initial test substrate. While unanticipated partitioning of PDAc between an immobilized protein-bound state and a mobile state in the phospholipid assembly was observed, a single conformation in the bound state was identified. In striking contrast, a bryostatin analogue (bryolog was found to exist exclusively in a protein-bound state, but adopts a distribution of conformations as defined by three independent distance measurements. The detection of multiple PKCδ-C1b-bound bryolog conformers in a functionally relevant phospholipid complex reveals the inherent dynamic nature of cellular systems that is not captured with single-conformation static structures. These results indicate that binding, selectivity, and function of PKC modulators, as well as the design of new modulators, are best addressed using a dynamic multistate model, an analysis potentially applicable to other membrane-associated proteins.

  10. Protein Secondary Structures (α-helix and β-sheet) at a Cellular Level and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the α-helix and β-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of β-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution (∼10 μm). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of α-helixes and β-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of α-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the

  11. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    Energy Technology Data Exchange (ETDEWEB)

    Yu,P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S

  12. How does extracerebral trauma affect the clinical value of S100B measurements?

    DEFF Research Database (Denmark)

    Ohrt-Nissen, Søren; Friis-Hansen, Lennart; Dahl, Benny

    2011-01-01

    with head injury (MTHI), or no head injury (NHI). The primary aim was to assess if a significant difference in serum levels of S100B could be found between IHI and MTHI patients. Methods Patients (233) were primarily admitted to the trauma centre. Serum samples were drawn on admission and 6 h after...... trauma and then stored at -80°C until analysed. Variables included Abbreviated Injury Scale (AIS) for head trauma, Injury Severity Score (ISS) and 30-day survival. Results Two patients could not be classified. IHI occurred in 28, MTHI in 102 and NHI was found in 101. The median S100B concentrations...

  13. A novel RNA-recognition-motif protein is required for premeiotic G1/S-phase transition in rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Nonomura

    2011-01-01

    Full Text Available The molecular mechanism for meiotic entry remains largely elusive in flowering plants. Only Arabidopsis SWI1/DYAD and maize AM1, both of which are the coiled-coil protein, are known to be required for the initiation of plant meiosis. The mechanism underlying the synchrony of male meiosis, characteristic to flowering plants, has also been unclear in the plant kingdom. In other eukaryotes, RNA-recognition-motif (RRM proteins are known to play essential roles in germ-cell development and meiosis progression. Rice MEL2 protein discovered in this study shows partial similarity with human proline-rich RRM protein, deleted in Azoospermia-Associated Protein1 (DAZAP1, though MEL2 also possesses ankyrin repeats and a RING finger motif. Expression analyses of several cell-cycle markers revealed that, in mel2 mutant anthers, most germ cells failed to enter premeiotic S-phase and meiosis, and a part escaped from the defect and underwent meiosis with a significant delay or continued mitotic cycles. Immunofluorescent detection revealed that T7 peptide-tagged MEL2 localized at cytoplasmic perinuclear region of germ cells during premeiotic interphase in transgenic rice plants. This study is the first report of the plant RRM protein, which is required for regulating the premeiotic G1/S-phase transition of male and female germ cells and also establishing synchrony of male meiosis. This study will contribute to elucidation of similarities and diversities in reproduction system between plants and other species.

  14. Novel protein–protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J. Venkatesh, E-mail: jvpratap@cdri.res.in

    2015-01-09

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.

  15. Translational analysis of mouse and human placental protein and mRNA reveals distinct molecular pathologies in human preeclampsia.

    Science.gov (United States)

    Cox, Brian; Sharma, Parveen; Evangelou, Andreas I; Whiteley, Kathie; Ignatchenko, Vladimir; Ignatchenko, Alex; Baczyk, Dora; Czikk, Marie; Kingdom, John; Rossant, Janet; Gramolini, Anthony O; Adamson, S Lee; Kislinger, Thomas

    2011-12-01

    Preeclampsia (PE) adversely impacts ~5% of pregnancies. Despite extensive research, no consistent biomarkers or cures have emerged, suggesting that different molecular mechanisms may cause clinically similar disease. To address this, we undertook a proteomics study with three main goals: (1) to identify a panel of cell surface markers that distinguish the trophoblast and endothelial cells of the placenta in the mouse; (2) to translate this marker set to human via the Human Protein Atlas database; and (3) to utilize the validated human trophoblast markers to identify subgroups of human preeclampsia. To achieve these goals, plasma membrane proteins at the blood tissue interfaces were extracted from placentas using intravascular silica-bead perfusion, and then identified using shotgun proteomics. We identified 1181 plasma membrane proteins, of which 171 were enriched at the maternal blood-trophoblast interface and 192 at the fetal endothelial interface with a 70% conservation of expression in humans. Three distinct molecular subgroups of human preeclampsia were identified in existing human microarray data by using expression patterns of trophoblast-enriched proteins. Analysis of all misexpressed genes revealed divergent dysfunctions including angiogenesis (subgroup 1), MAPK signaling (subgroup 2), and hormone biosynthesis and metabolism (subgroup 3). Subgroup 2 lacked expected changes in known preeclampsia markers (sFLT1, sENG) and uniquely overexpressed GNA12. In an independent set of 40 banked placental specimens, GNA12 was overexpressed during preeclampsia when co-incident with chronic hypertension. In the current study we used a novel translational analysis to integrate mouse and human trophoblast protein expression with human microarray data. This strategy identified distinct molecular pathologies in human preeclampsia. We conclude that clinically similar preeclampsia patients exhibit divergent placental gene expression profiles thus implicating divergent

  16. ANALISIS PROFIL PROTEIN DARAH ANAK KAMBING PERANAKAN ETAWAH DENGAN PEMBERIAN PAKAN SUBSTITUSI SUSU SAPI

    Directory of Open Access Journals (Sweden)

    Teguh Wicaksono

    2017-08-01

    Full Text Available The objective of this study is to determine the protein profile of pre-weaning kids fed with cow's milk as a substitute for dam’s milk. The materials used were 18 Etawah Descendant (PE kids born the twin at the age of 5-13 days from 3-4-year-old dams. This experimental design was a completely randomized design with three treatments with six replications per treatment, namely the control (T0 fed 100% goat’s milk, treatment 1 (T1 fed 50% goat’s milk and 50% cow’s milk, treatment 2 (T2 fed 100% cow’s milk. The protein profile serum was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE method, 12,5% of the resolving gel and 3% of the stacking gel were used. The protein profile of the 5-14 days old PE kids were 19 protein bands with the molecular weight ranging from 15-160 kDa. The kids fed with 100% goat milk (T0 and those substituted by 50% cow's milk (T1, it was produced 19 protein bands with molecular weights ranging from 15 kDa to 155 kDa, while those fed with 100 % cow's milk (T2, it was produced 17 protein bands with molecular weights ranging from 13 kDa to 160 kDa. It can be concluded that the dam's milk substitute using cow's milk at the 50% level does not affect the blood protein profile of goat kids, while the 100% substitute produces the different number and types of protein

  17. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli.

    Science.gov (United States)

    Khademi, Farzad; Yousefi-Avarvand, Arshid; Derakhshan, Mohammad; Meshkat, Zahra; Tafaghodi, Mohsen; Ghazvini, Kiarash; Aryan, Ehsan; Sankian, Mojtaba

    2017-10-01

    The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.

  18. Membrane-surfactant interactions. The role of surfactant in mitochondrial complex III-phospholipid-Triton X-100 mixed micelles

    International Nuclear Information System (INIS)

    Valpuesta, J.M.; Arrondo, J.L.; Barbero, M.C.; Pons, M.; Goni, F.M.

    1986-01-01

    Complex III (ubiquinol-cytochrome c reductase) was purified from beef heart mitochondria in the form of protein-phospholipid-Triton X-100 mixed micelles (about 1:80:100 molar ratio). Detergent may be totally removed by sucrose density gradient centrifugation, and the resulting lipoprotein complexes retain full enzyme activity. In order to understand the role of surfactant in the mixed micelles, and the interaction of Triton X-100 with integral membrane proteins and phospholipid bilayers, both the protein-lipid-surfactant mixed micelles and the detergent-free lipoprotein system were examined from the point of view of particle size and ultrastructure, enzyme activity, tryptophan fluorescence quenching, 31P NMR, and Fourier transform infrared spectroscopy. The NMR and IR spectroscopic studies show that surfactant withdrawal induces a profound change in phospholipid architecture, from a micellar to a lamellar-like phase. However, electron microscopic observations fail to reveal the existence of lipid bilayers in the absence of detergent. We suggest that, under these conditions, the lipid:protein molar ratio (80:1) is too low to permit the formation of lipid bilayer planes, but the relative orientation and mobility of phospholipids with respect to proteins is similar to that of the lamellar phase. Protein conformational changes are also detected as a consequence of surfactant removal. Fourier transform infrared spectroscopy indicates an increase of peptide beta-structure in the absence of Triton X-100; changes in the amide II/amide I intensity ratio are also detected, although the precise meaning of these observations is unclear

  19. Insights into the Structure of the Vip3Aa Insecticidal Protein by Protease Digestion Analysis

    Directory of Open Access Journals (Sweden)

    Yolanda Bel

    2017-04-01

    Full Text Available Vip3 proteins are secretable proteins from Bacillus thuringiensis whose mode of action is still poorly understood. In this study, the activation process for Vip3 proteins was closely examined in order to better understand the Vip3Aa protein stability and to shed light on its structure. The Vip3Aa protoxin (of 89 kDa was treated with trypsin at concentrations from 1:100 to 120:100 (trypsin:Vip3A, w:w. If the action of trypsin was not properly neutralized, the results of SDS-PAGE analysis (as well as those with Agrotis ipsilon midgut juice equivocally indicated that the protoxin could be completely processed. However, when the proteolytic reaction was efficiently stopped, it was revealed that the protoxin was only cleaved at a primary cleavage site, regardless of the amount of trypsin used. The 66 kDa and the 19 kDa peptides generated by the proteases co-eluted after gel filtration chromatography, indicating that they remain together after cleavage. The 66 kDa fragment was found to be extremely resistant to proteases. The trypsin treatment of the protoxin in the presence of SDS revealed the presence of secondary cleavage sites at S-509, and presumably at T-466 and V-372, rendering C-terminal fragments of approximately 29, 32, and 42 kDa, respectively. The fact that the predicted secondary structure of the Vip3Aa protein shows a cluster of beta sheets in the C-terminal region of the protein might be the reason behind the higher stability to proteases compared to the rest of the protein, which is mainly composed of alpha helices.

  20. Tissue-specific posttranscriptional downregulation of expression of the S100A4(mts1) gene in transgenic animals

    DEFF Research Database (Denmark)

    Ambartsumian, N; Klingelhöfer, Jörg; Grigorian, M

    1998-01-01

    The S100A4(mts1) is a gene associated with generation of metastatic disease. In order to analyze the consequences of alteration of the pattern of expression of the S100A4(mts1) gene we obtained strains of transgenic mice bearing the S100A4(mts1) gene under the control of a ubiquitous and constitu....../or posttranslational degradation....

  1. Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines.

    Directory of Open Access Journals (Sweden)

    Michael Reidy

    2014-10-01

    Full Text Available Hsp100 family chaperones of microorganisms and plants cooperate with the Hsp70/Hsp40/NEF system to resolubilize and reactivate stress-denatured proteins. In yeast this machinery also promotes propagation of prions by fragmenting prion polymers. We previously showed the bacterial Hsp100 machinery cooperates with the yeast Hsp40 Ydj1 to support yeast thermotolerance and with the yeast Hsp40 Sis1 to propagate [PSI+] prions. Here we find these Hsp40s similarly directed specific activities of the yeast Hsp104-based machinery. By assessing the ability of Ydj1-Sis1 hybrid proteins to complement Ydj1 and Sis1 functions we show their C-terminal substrate-binding domains determined distinctions in these and other cellular functions of Ydj1 and Sis1. We find propagation of [URE3] prions was acutely sensitive to alterations in Sis1 activity, while that of [PIN+] prions was less sensitive than [URE3], but more sensitive than [PSI+]. These findings support the ideas that overexpressing Ydj1 cures [URE3] by competing with Sis1 for interaction with the Hsp104-based disaggregation machine, and that different prions rely differently on activity of this machinery, which can explain the various ways they respond to alterations in chaperone function.

  2. A 10-bit 100 MSamples/s BiCMOS D/A Converter

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger; Tunheim, Svein Anders

    1997-01-01

    This paper presents a 10-bit Digital-to-Analogue Converter (DAC) based on the current steering principle. The DAC is processed in a 0.8 micron BiCMOS process and is designed to operate at a sampling rate of 100MSamples/s. The DAC is intended for applications using direct digital synthesis...

  3. Identification of herpesvirus proteins that contribute to G1/S arrest.

    Science.gov (United States)

    Paladino, Patrick; Marcon, Edyta; Greenblatt, Jack; Frappier, Lori

    2014-04-01

    Lytic infection by herpesviruses induces cell cycle arrest at the G1/S transition. This appears to be a function of multiple herpesvirus proteins, but only a minority of herpesvirus proteins have been examined for cell cycle effects. To gain a more comprehensive understanding of the viral proteins that contribute to G1/S arrest, we screened a library of over 200 proteins from herpes simplex virus type 1, human cytomegalovirus, and Epstein-Barr virus (EBV) for effects on the G1/S interface, using HeLa fluorescent, ubiquitination-based cell cycle indicator (Fucci) cells in which G1/S can be detected colorimetrically. Proteins from each virus were identified that induce accumulation of G1/S cells, predominantly tegument, early, and capsid proteins. The identification of several capsid proteins in this screen suggests that incoming viral capsids may function to modulate cellular processes. The cell cycle effects of selected EBV proteins were further verified and examined for effects on p53 and p21 as regulators of the G1/S transition. Two EBV replication proteins (BORF2 and BMRF1) were found to induce p53 but not p21, while a previously uncharacterized tegument protein (BGLF2) was found to induce p21 protein levels in a p53-independent manner. Proteomic analyses of BGLF2-interacting proteins identified interactions with the NIMA-related protein kinase (NEK9) and GEM-interacting protein (GMIP). Silencing of either NEK9 or GMIP induced p21 without affecting p53 and abrogated the ability of BGLF2 to further induce p21. Collectively, these results suggest multiple viral proteins contribute to G1/S arrest, including BGLF2, which induces p21 levels likely by interfering with the functions of NEK9 and GMIP. Most people are infected with multiple herpesviruses, whose proteins alter the infected cells in several ways. During lytic infection, the viral proteins block cell proliferation just before the cellular DNA replicates. We used a novel screening method to identify proteins

  4. Proton receptor GPR68 expression in dendritic-cell-like S100β-positive cells of rat anterior pituitary gland: GPR68 induces interleukin-6 gene expression in extracellular acidification.

    Science.gov (United States)

    Horiguchi, Kotaro; Higuchi, Masashi; Yoshida, Saishu; Nakakura, Takashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Kato, Takako; Kato, Yukio

    2014-11-01

    S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. Recently, we succeeded in separating S100β-positive cells into round-cell (dendritic-cell-like) and process-cell types. We also found the characteristic expression of anti-inflammatory factors (interleukin-6, Il-6) and membrane receptors (integrin β-6) in the round type. Here, we further investigate the function of the subpopulation of S100β-positive cells. Since IL-6 is also a paracrine factor that regulates hormone producing-cells, we examine whether a correlation exists among extracellular acid stress, IL-6 and hormone production by using primary cultures of anterior pituitary cells. Dendritic-cell-like S100β-positive cells notably expressed Gpr68 (proton receptor) and Il-6. Furthermore, the expression of Il-6 and proopiomelanocortin (Pomc) was up-regulated by extracellular acidification. The functional role of IL-6 and GPR68 in the gene expression of Pomc during extracellular acidification was also examined. Small interfering RNA for Il-6 up-regulated Pomc expression and that for Gpr68 reversed the down-regulation of Il-6 and up-regulated Pomc expression by extracellular acidification. Thus, S100β-positive dendritic-like cells can sense an increase in extracellular protons via GPR68 and respond by the production of IL-6 in order to suppress the up-regulation of Pomc expression.

  5. Nitrosylation of Nitric-Oxide-Sensing Regulatory Proteins Containing [4Fe-4S] Clusters Gives Rise to Multiple Iron-Nitrosyl Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Pauline N. [Department of Chemistry, University of California, Davis CA 95616 USA; Wang, Hongxin [Department of Chemistry, University of California, Davis CA 95616 USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Crack, Jason C. [Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park Norwich NR4 7TJ UK; Prior, Christopher [Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park Norwich NR4 7TJ UK; Hutchings, Matthew I. [School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ UK; Thomson, Andrew J. [Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park Norwich NR4 7TJ UK; Kamali, Saeed [University of Tennessee Space Institute, Tullahome TN 37388-9700 USA; Yoda, Yoshitaka [Research and Utilization Division, SPring-8/JASRI, 1-1-1 Kouto, Sayo Hyogo 679-5198 Japan; Zhao, Jiyong [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Hu, Michael Y. [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Alp, Ercan E. [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Oganesyan, Vasily S. [Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park Norwich NR4 7TJ UK; Le Brun, Nick E. [Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park Norwich NR4 7TJ UK; Cramer, Stephen P. [Department of Chemistry, University of California, Davis CA 95616 USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA

    2016-10-25

    The reaction of protein-bound iron–sulfur (Fe-S) clusters with nitric oxide (NO) plays key roles in NO-mediated toxicity and signaling. Elucidation of the mechanism of the reaction of NO with DNA regulatory proteins that contain Fe-S clusters has been hampered by a lack of information about the nature of the iron-nitrosyl products formed. Herein, we report nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations that identify NO reaction products in WhiD and NsrR, regulatory proteins that use a [4Fe-4S] cluster to sense NO. This work reveals that nitrosylation yields multiple products structurally related to Roussin's Red Ester (RRE, [Fe2(NO)4(Cys)2]) and Roussin's Black Salt (RBS, [Fe4(NO)7S3]. In the latter case, the absence of 32S/34S shifts in the Fe-S region of the NRVS spectra suggest that a new species, Roussin's Black Ester (RBE), may be formed, in which one or more of the sulfide ligands is replaced by Cys thiolates.

  6. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    International Nuclear Information System (INIS)

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M.

    1989-01-01

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using 125 I-labeled melatonin ( 125 I-Mel), a potent melatonin agonist. 125 I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K d of 2.3 ± 1.0 x 10 -11 M and 2.06 ± 0.43 x 10 -10 M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5'-[γ-thio]triphosphate (GTP[γS]), significantly reduced the number of high-affinity receptors and increased the dissociation rate of 125 I-Mel from its receptor. Furthermore, GTP[γS] treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of 125 I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M r > 400,000 and M r ca. 110,000. This elution profile was markedly altered by pretreatment with GTP[γS] before solubilization; only the M r 110,000 peak was present in GTP[γS]-pretreated membranes. The results strongly suggest that 125 I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000

  7. The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and[2Fe-2S

    NARCIS (Netherlands)

    Berg, van den W.A.M.; Hagen, W.R.; Dongen, van W.M.A.M.

    2000-01-01

    Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state

  8. Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene

    DEFF Research Database (Denmark)

    Grum-Schwensen, Birgitte; Klingelhofer, Jörg; Berg, Christian Hededam

    2005-01-01

    distribution of host-derived stroma cells. Coinjection of CSML100 cells with immortalized S100A4(+/+) fibroblasts partially restored the dynamics of tumor development and the ability to form metastasis. These fibroblasts were characterized by an enhanced motility and invasiveness in comparison with S100A4...

  9. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study

    International Nuclear Information System (INIS)

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-01

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the 'leg' of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the 'leg' protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.

  10. MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data

    Science.gov (United States)

    Spraggins, Jeffrey M.; Rizzo, David G.; Moore, Jessica L.; Rose, Kristie L.; Hammer, Neal D.; Skaar, Eric P.; Caprioli, Richard M.

    2015-06-01

    MALDI imaging mass spectrometry is a highly sensitive and selective tool used to visualize biomolecules in tissue. However, identification of detected proteins remains a difficult task. Indirect identification strategies have been limited by insufficient mass accuracy to confidently link ion images to proteomics data. Here, we demonstrate the capabilities of MALDI FTICR MS for imaging intact proteins. MALDI FTICR IMS provides an unprecedented combination of mass resolving power (~75,000 at m/z 5000) and accuracy (differentiate a series of oxidation products of S100A8 ( m/z 10,164.03, -2.1ppm), a subunit of the heterodimer calprotectin, in kidney tissue from mice infected with Staphylococcus aureus. S100A8 - M37O/C42O3 ( m/z 10228.00, -2.6ppm) was found to co-localize with bacterial microcolonies at the center of infectious foci. The ability of MALDI FTICR IMS to distinguish S100A8 modifications is critical to understanding calprotectin's roll in nutritional immunity.

  11. Cdc20 mediates D-box-dependent degradation of Sp100

    International Nuclear Information System (INIS)

    Wang, Ran; Li, Ke-min; Zhou, Cai-hong; Xue, Jing-lun; Ji, Chao-neng; Chen, Jin-zhong

    2011-01-01

    Highlights: ► Cdc20 is a co-activator of APC/C complex. ► Cdc20 recruits Sp100 and mediates its degradation. ► The D-box of Sp100 is required for Cdc20-mediated degradation. ► Sp100 expresses consistently at both the mRNA and protein levels in cell cycle. -- Abstract: Cdc20 is a co-activator of the anaphase-promoting complex/cyclosome (APC/C complex), which recruits substrates at particular phases of the cell cycle and mediates their degradation. Sp100 is a PML-NB scaffold protein, which localizes to nuclear particles during interphase and disperses from them during mitosis, participates in viral resistance, transcriptional regulation, and apoptosis. However, its metabolism during the cell cycle has not yet been fully characterized. We found a putative D-box in Sp100 using the Eukaryotic Linear Motif (ELM) predictor database. The putative D-box of Sp100 was verified by mutational analysis. Overexpression of Cdc20 resulted in decreased levels of both endogenous Sp100 protein and overexpressed Sp100 mRNA in HEK 293 cells. Only an overexpressed D-box deletion mutant of Sp100 accumulated in HEK293 cells that also overexpressed Cdc20. Cdc20 knockdown by cdc20 specific siRNA resulted in increased Sp100 protein levels in cells. Furthermore, we discovered that the Cdc20 mediated degradation of Sp100 is diminished by the proteasome inhibitor MG132, which suggests that the ubiquitination pathway is involved in this process. However, unlike the other Cdc20 substrates, which display oscillating protein levels, the level of Sp100 protein remains constant throughout the cell cycle. Additionally, both overexpression and knockdown of endogenous Sp100 had no effect on the cell cycle. Our results suggested that sp100 is a novel substrate of Cdc20 and it is degraded by the ubiquitination pathway. The intact D-box of Sp100 was necessary for this process. These findings expand our knowledge of both Sp100 and Cdc20 as well as their role in ubiquitination.

  12. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum.

    Science.gov (United States)

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Vinay; Singh, Harikesh Bahadur

    2015-06-15

    Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. 11 CFR 100.14 - State committee, subordinate committee, district, or local committee (2 U.S.C. 431(15)).

    Science.gov (United States)

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false State committee, subordinate committee, district, or local committee (2 U.S.C. 431(15)). 100.14 Section 100.14 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) General Definitions § 100.14 State committee...

  14. Eesti Draamateater tähistas maja 100. sünnipäeva / Tiiu Laks

    Index Scriptorium Estoniae

    Laks, Tiiu, 1984-

    2010-01-01

    18. septembril tähistati avatud uste päevaga Eesti Draamateater hoone 100. sünnipäeva. Õhtul sai teatrihoone fassaadilt vaadata Taavet Janseni, Taavi Varmi ja Andres Tenusaare videoinstallatsiooni. Esitleti raamatut "Eesti Draamateatri maja 100" (autorid Karin Hallas-Murula, Kristel Pappel, Haldja Jalajas). Avati Peeter Lauritsa fotonäitus "Pahempidi"

  15. Kaks teksti Juhan Torgilt : Eesti laste intelligents. 100 aastat Peeter Põllu sünnist / Juhan Tork

    Index Scriptorium Estoniae

    Tork, Juhan

    2000-01-01

    Artiklid "Eesti laste intelligents" ja "100 aastat Peeter Põllu sünnist" pärinevad J. Torgi raamatust "Juhan Tork. Seisata, rändur! Kanada, 1993". "Eesti laste intelligents" on tagasivaade J. Torgi monograafiale, mis oli ühtlasi tema doktoriväitekiri. "100 aastat Peeter Põllu sünnist" heidab valgust kahe suurmehe koostööle

  16. Beneficial Immune Effects of Myeloid-Related Proteins in Kidney Transplant Rejection

    NARCIS (Netherlands)

    Rekers, N. V.; Bajema, I. M.; Mallat, M. J. K.; Petersen, B.; Anholts, J. D. H.; Swings, G. M. J. S.; van Miert, P. P. M. C.; Kerkhoff, C.; Roth, J.; Popp, D.; van Groningen, M. C.; Baeten, D.; Goemaere, N.; Kraaij, M. D.; Zandbergen, M.; Heidt, S.; van Kooten, C.; de Fijter, J. W.; Claas, F. H. J.; Eikmans, M.

    2016-01-01

    Acute rejection is a risk factor for inferior long-term kidney transplant survival. Although T cell immunity is considered the main effector in clinical acute rejection, the role of myeloid cells is less clear. Expression of S100 calcium-binding protein A8 (S100A8) and S100A9 was evaluated in 303

  17. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure α-helices, β-sheets, and others such as β-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted α-helices, β-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm -1 , the results show that barley protein consisted of approximately 18-34% of α-helices, 14-25% of β-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P 0.05). The ratio of α-helices to others (0.3 to 1.0, P < 0.05) and that of β-sheets to others (0.2 to 0.8, P < 0.05) were different among the barley varieties. It needs to be pointed out that using a multi-peak modeling for protein structure analysis is only for making relative estimates and not exact determinations and only for the comparison purpose between varieties. The principal component analysis showed that protein amide I Fourier

  18. PROTEIN ENRICHMENT OF SPENT SORGHUM RESIDUE USING ...

    African Journals Online (AJOL)

    BSN

    The optimum concentration of spent sorghum for protein enrichment with S. cerevisiae was 7.Sg/100 ml. Th.: protein ... production of single sell protein using Candida utilis and cassava starch effluem as substrate. ... wastes as substrates, Kluyveromyces fragilis and milk whey coconut water as substrate (Rahmat et al.,. 1995 ...

  19. Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution.

    Science.gov (United States)

    Shivange, Amol V; Hoeffken, Hans Wolfgang; Haefner, Stefan; Schwaneberg, Ulrich

    2016-12-01

    Protein consensus-based surface engineering (ProCoS) is a simple and efficient method for directed protein evolution combining computational analysis and molecular biology tools to engineer protein surfaces. ProCoS is based on the hypothesis that conserved residues originated from a common ancestor and that these residues are crucial for the function of a protein, whereas highly variable regions (situated on the surface of a protein) can be targeted for surface engineering to maximize performance. ProCoS comprises four main steps: ( i ) identification of conserved and highly variable regions; ( ii ) protein sequence design by substituting residues in the highly variable regions, and gene synthesis; ( iii ) in vitro DNA recombination of synthetic genes; and ( iv ) screening for active variants. ProCoS is a simple method for surface mutagenesis in which multiple sequence alignment is used for selection of surface residues based on a structural model. To demonstrate the technique's utility for directed evolution, the surface of a phytase enzyme from Yersinia mollaretii (Ymphytase) was subjected to ProCoS. Screening just 1050 clones from ProCoS engineering-guided mutant libraries yielded an enzyme with 34 amino acid substitutions. The surface-engineered Ymphytase exhibited 3.8-fold higher pH stability (at pH 2.8 for 3 h) and retained 40% of the enzyme's specific activity (400 U/mg) compared with the wild-type Ymphytase. The pH stability might be attributed to a significantly increased (20 percentage points; from 9% to 29%) number of negatively charged amino acids on the surface of the engineered phytase.

  20. Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein.

    Science.gov (United States)

    Wartenberg, Dirk; Lapp, Katrin; Jacobsen, Ilse D; Dahse, Hans-Martin; Kniemeyer, Olaf; Heinekamp, Thorsten; Brakhage, Axel A

    2011-11-01

    Surface-associated and secreted proteins represent primarily exposed components of Aspergillus fumigatus during host infection. Several secreted proteins are known to be involved in defense mechanisms or immune evasion, thus, probably contributing to pathogenicity. Furthermore, several secreted antigens were identified as possible biomarkers for the verification of diseases caused by Aspergillus species. Nevertheless, there is only limited knowledge about the composition of the secretome and about molecular functions of particular proteins. To identify secreted proteins potentially essential for virulence, the core secretome of A. fumigatus grown in minimal medium was determined. Two-dimensional gel electrophoretic separation and subsequent MALDI-TOF-MS/MS analyses resulted in the identification of 64 different proteins. Additionally, secretome analyses of A. fumigatus utilizing elastin, collagen or keratin as main carbon and nitrogen source were performed. Thereby, the alkaline serine protease Alp1 was identified as the most abundant protein and hence presumably represents an important protease during host infection. Interestingly, the Asp-hemolysin (Asp-HS), which belongs to the protein family of aegerolysins and which was often suggested to be involved in fungal virulence, was present in the secretome under all growth conditions tested. In addition, a second, non-secreted protein with an aegerolysin domain annotated as Asp-hemolysin-like (HS-like) protein can be found to be encoded in the genome of A. fumigatus. Generation and analysis of Asp-HS and HS-like deletion strains revealed no differences in phenotype compared to the corresponding wild-type strain. Furthermore, hemolysis and cytotoxicity was not altered in both single-deletion and double-deletion mutants lacking both aegerolysin genes. All mutant strains showed no attenuation in virulence in a mouse infection model for invasive pulmonary aspergillosis. Overall, this study provides a comprehensive

  1. Expression of p53 protein in Barrett’s adenocarcinoma and adenocarcinoma of the gastric cardia and antrum

    Directory of Open Access Journals (Sweden)

    Jovanović Ivan

    2005-01-01

    adenocarcinoma and in the cases of lymph node invasion revealed tendency for the greater p53 positivity compared with the early forms and lymph node-negative cases; however, this difference was not significant according to the statistical analysis. With regard to adenocarcinoma of the cardia, higher rates of p53 positivity were recorded in poorly differentiated, more advanced cases with lymph node invasion. Nevertheless, none of these differences was statistically significant. On the contrary, in the patients with adenocarcinoma of the antrum, greater p53 positivity was revealed in early forms without lymph node involvement, but the observed difference was not statistically significant. Conclusion. No significant differences in p53 protein expression in terms of sex, type (Lauren of tumor, depth of invasion, lymph node involvement, or tumor differentiation were observed in any of the analyzed groups of tumors (Barrett’s adenocarcinoma, adenocarcinoma of the cardia and adenocarcinoma of the antrum.

  2. Interaction study of rice stripe virus proteins reveals a region of the nucleocapsid protein (NP) required for NP self-interaction and nuclear localization.

    Science.gov (United States)

    Lian, Sen; Cho, Won Kyong; Jo, Yeonhwa; Kim, Sang-Min; Kim, Kook-Hyung

    2014-04-01

    Rice stripe virus (RSV), which belongs to the genus Tenuivirus, is an emergent virus problem. The RSV genome is composed of four single-strand RNAs (RNA1-RNA4) and encodes seven proteins. We investigated interactions between six of the RSV proteins by yeast-two hybrid (Y2H) assay in vitro and by bimolecular fluorescence complementation (BiFC) in planta. Y2H identified self-interaction of the nucleocapsid protein (NP) and NS3, while BiFC revealed self-interaction of NP, NS3, and NCP. To identify regions(s) and/or crucial amino acid (aa) residues required for NP self-interaction, we generated various truncated and aa substitution mutants. Y2H assay showed that the N-terminal region of NP (aa 1-56) is necessary for NP self-interaction. Further analysis with substitution mutants demonstrated that additional aa residues located at 42-47 affected their interaction with full-length NP. These results indicate that the N-terminal region (aa 1-36 and 42-47) is required for NP self-interaction. BiFC and co-localization studies showed that the region required for NP self-interaction is also required for NP localization at the nucleus. Overall, our results indicate that the N-terminal region (aa 1-47) of the NP is important for NP self-interaction and that six aa residues (42-47) are essential for both NP self-interaction and nuclear localization. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Ultrathin Nanosheet Assembled Sn0.91 Co0.19 S2 Nanocages with Exposed (100) Facets for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Bing; Gu, Peng; Zhang, Guangxun; Lu, Yao; Huang, Kesheng; Xue, Huaiguo; Pang, Huan

    2018-02-01

    Ultrathin 2D inorganic nanomaterials are good candidates for lithium-ion batteries, as well as the micro/nanocage structures with unique and tunable morphologies. Meanwhile, as a cost-effective method, chemical doping plays a vital role in manipulating physical and chemical properties of metal oxides and sulfides. Thus, the design of ultrathin, hollow, and chemical doped metal sulfides shows great promise for the application of Li-ion batteries by shortening the diffusion pathway of Li ions as well as minimizing the electrode volume change. Herein, ultrathin nanosheet assembled Sn 0.91 Co 0.19 S 2 nanocages with exposed (100) facets are first synthesized. The as-prepared electrode delivers an excellent discharge capacity of 809 mA h g -1 at a current density of 100 mA g -1 with a 91% retention after 60 discharge-charge cycles. The electrochemical performance reveals that the Li-ion batteries prepared by Sn 0.91 Co 0.19 S 2 nanocages have high capacity and great cycling stability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Protein S binding to human endothelial cells is required for expression of cofactor activity for activated protein C

    NARCIS (Netherlands)

    Hackeng, T. M.; Hessing, M.; van 't Veer, C.; Meijer-Huizinga, F.; Meijers, J. C.; de Groot, P. G.; van Mourik, J. A.; Bouma, B. N.

    1993-01-01

    An important feedback mechanism in blood coagulation is supplied by the protein C/protein S anticoagulant pathway. In this study we demonstrate that the binding of human protein S to cultured human umbilical vein endothelial cells (HUVECs) is required for the expression of cofactor activity of

  5. Characterization of a major 31-kilodalton peptidoglycan-bound protein of Legionella pneumophila

    International Nuclear Information System (INIS)

    Butler, C.A.; Hoffman, P.S.

    1990-01-01

    A 31-kilodalton (kDa) protein was solubilized from the peptidoglycan (PG) fraction of Legionella pneumophila after treatment with either N-acetylmuramidase from the fungus Chalaropsis sp. or with mutanolysin from Streptomyces globisporus. The protein exhibited a ladderlike banding pattern by autoradiography when radiolabeled [(35S]cysteine or [35S]methionine) PG material was extensively treated with hen lysozyme. The banding patterns ranging between 31 and 45 kDa and between 55 and 60 kDa resolved as a single 31-kDa protein when the material was subsequently treated with N-acetylmuramidase. Analysis of the purified 31-kDa protein for diaminopimelic acid by gas chromatography revealed 1 mol of diaminopimelic acid per mol of protein. When outer membrane PG material containing the major outer membrane porin protein was treated with N-acetylmuramidase or mutanolysin, both the 28.5-kDa major outer membrane protein and the 31-kDa protein were solubilized from the PG material under reducing conditions. In the absence of 2-mercaptoethanol, a high-molecular-mass complex (100 kDa) was resolved. The results of this study indicate that a 31-kDa PG-bound protein is a major component of the cell wall of L. pneumophila whose function may be to anchor the major outer membrane protein to PG. Finally, a survey of other Legionella species and other serogroups of L. pneumophila suggested that PG-bound proteins may be a common feature of this genus

  6. S-layer architectures : extending the morphogenetic potential of S-layer protein self-assembly

    International Nuclear Information System (INIS)

    Schuster, D.

    2013-01-01

    Self-assembly of molecular building blocks is a common principle for bottom up based building principles in nature. One example are crystalline bacterial surface layers, termed S-layers, which are the most commonly observed cell surface structures in prokaryotic organisms. They recrystallize into highly ordered, porous protein meshworks with unit cell sizes of 3 to 30 nm and pore sizes of 2 to 8 nm. In this work, S-layers were self-assembled on various three dimensional scaffolds in order to fabricate novel S-layer architectures. Exploiting the stabilizing effect of silica deposited on the S-layer protein meshwork led to the construction of hollow S-layer nano-containers derived from coated liposomes. Transmission electron microscopy (TEM) techniques and release experiments with fluorescent dyes confirmed the dissolution of the supporting lipids. Silica deposition on different spherical particles in solution, as well as on planar S-layer coated surfaces, could be monitored by measuring the ζ-potential, the decline of monosilicic acid in solution, by using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis or by quartz crystal microbalance with dissipation monitoring (QCM-D). Both, ζ-potential and release experiments showed differences between silicified plain liposomes and silicified S-layer coated liposomes. In addition, nanocapsules with calcium carbonate cores served as another template for the construction of silica supported S-layer architectures. These were investigated by SEM and fluorescence microscopy after fluorescence labeling. Additional coating with polyelectrolytes increased the stability of the nanocapsules. Their mechanical properties were characterized by atomic force microscopy (AFM). The influence of silica deposition was investigated by AFM and SEM. Further on, emulsomes and gas filled lipid supported microbubbles may serve as other templates for the design of spherical protein constructs although extraction of the

  7. Constructing a folding model for protein S6 guided by native fluctuations deduced from NMR structures

    International Nuclear Information System (INIS)

    Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor; Onuchic, José N.; Schug, Alexander

    2015-01-01

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism

  8. Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation

    Czech Academy of Sciences Publication Activity Database

    Tylečková, Jiřina; Valeková, Ivona; Žižková, Martina; Rákocyová, Michaela; Maršala, S.; Maršala, M.; Gadher, S. J.; Kovářová, Hana

    2016-01-01

    Roč. 132, č. 1 (2016), s. 13-20 ISSN 1874-3919 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell adhesion proteins * cell surface capture * neuronal differentiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.914, year: 2016

  9. Cdc20 mediates D-box-dependent degradation of Sp100

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ran; Li, Ke-min; Zhou, Cai-hong; Xue, Jing-lun [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai (China); Ji, Chao-neng, E-mail: Chnji@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai (China); Chen, Jin-zhong, E-mail: kingbellchen@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai (China)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Cdc20 is a co-activator of APC/C complex. Black-Right-Pointing-Pointer Cdc20 recruits Sp100 and mediates its degradation. Black-Right-Pointing-Pointer The D-box of Sp100 is required for Cdc20-mediated degradation. Black-Right-Pointing-Pointer Sp100 expresses consistently at both the mRNA and protein levels in cell cycle. -- Abstract: Cdc20 is a co-activator of the anaphase-promoting complex/cyclosome (APC/C complex), which recruits substrates at particular phases of the cell cycle and mediates their degradation. Sp100 is a PML-NB scaffold protein, which localizes to nuclear particles during interphase and disperses from them during mitosis, participates in viral resistance, transcriptional regulation, and apoptosis. However, its metabolism during the cell cycle has not yet been fully characterized. We found a putative D-box in Sp100 using the Eukaryotic Linear Motif (ELM) predictor database. The putative D-box of Sp100 was verified by mutational analysis. Overexpression of Cdc20 resulted in decreased levels of both endogenous Sp100 protein and overexpressed Sp100 mRNA in HEK 293 cells. Only an overexpressed D-box deletion mutant of Sp100 accumulated in HEK293 cells that also overexpressed Cdc20. Cdc20 knockdown by cdc20 specific siRNA resulted in increased Sp100 protein levels in cells. Furthermore, we discovered that the Cdc20 mediated degradation of Sp100 is diminished by the proteasome inhibitor MG132, which suggests that the ubiquitination pathway is involved in this process. However, unlike the other Cdc20 substrates, which display oscillating protein levels, the level of Sp100 protein remains constant throughout the cell cycle. Additionally, both overexpression and knockdown of endogenous Sp100 had no effect on the cell cycle. Our results suggested that sp100 is a novel substrate of Cdc20 and it is degraded by the ubiquitination pathway. The intact D-box of Sp100 was necessary for this process. These findings expand

  10. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  11. Evaluation of oxidant, antioxidant, and S100B levels in patients with conversion disorder

    Directory of Open Access Journals (Sweden)

    Büyükaslan H

    2016-07-01

    Full Text Available Hasan Büyükaslan,1 Sultan Basmacı Kandemir,2 Mehmet Asoğlu,3 Halil Kaya,4 Mehmet Tahir Gökdemir,1 İbrahim Fatih Karababa,3 Fatih Güngörmez,5 Fethiye Kılıçaslan,6 Emin Şavik7 1Department of Emergency Medicine, Faculty of Medicine, Harran University, 2Department of Psychiatry, Balıklıgöl State Hospital, 3Department of Psychiatry, Faculty of Medicine, Harran University, Sanliurfa, 4Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, 5Department of Emergency Medicine, Mehmet Akif İnan Research Hospital, 6Department of Child and Adolescent Psychiatry, 7Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey Introduction: Various psychodynamic, neurobiological, genetic, and sociocultural factors are believed to be involved in the etiology of conversion disorder (CD. Oxidative metabolism has been shown to deteriorate in association with many health problems and psychiatric disorders. We evaluated oxidative metabolism and S100B levels in the context of this multifactorial disease.Methods: Thirty-seven patients with CD (25 females and 12 males and 42 healthy volunteers (21 females and 21 males, all matched for age and sex, were included in this study. The total oxidant status, total antioxidant status, oxidative stress index, and S100B levels were compared between the two groups.Results: The total oxidant status, oxidative stress index, and S100B levels were significantly higher in patients with CD than in the control group, whereas the total antioxidant status was significantly lower.Conclusion: CD is associated with deterioration of oxidative metabolism and increased neuronal damage. Keywords: conversion disorder, oxidative stress, S100B

  12. Evidence for the association of the S100beta gene with low cognitive performance and dementia in the elderly

    DEFF Research Database (Denmark)

    Lambert, J-C; Ferreira, S; Gussekloo, J

    2007-01-01

    independent populations. Moreover, we detected a significant association of this SNP with increased risk of developing dementia or Alzheimer's disease (AD) in six independent populations, especially in women and in the oldest. Furthermore, we characterised a new primate-specific exon within intron 2 (the...... corresponding mRNA isoform was called S100beta2). S100beta2 expression was increased in AD brain compared with controls, and the rs2300403 SNP was associated with elevated levels of S100beta2 mRNA in AD brains, especially in women. Therefore, this genetic variant in S100beta increases the risk of low cognitive...

  13. Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease: Brain protein O-GlcNAcylation in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sheng [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Yang, Feng [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Petyuk, Vladislav A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Shukla, Anil K. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Gritsenko, Marina A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Rodland, Karin D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Qian, Wei-Jun [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Gong, Cheng-Xin [New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York USA; Liu, Tao [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-07-28

    Protein modification by O-linked beta-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer’s disease. Herein we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in post-mortem human brains with and without Alzheimer’s using isobaric tandem mass tags labeling, chemoenzymatic photocleavage enrichment and liquid chromatography coupled to mass spectrometry. A total of 1,850 O-GlcNAc peptides covering 1,094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. 128 O-GlcNAc peptides covering 78 proteins were altered significantly in Alzheimer’s brain as compared to controls (q<0.05). Moreover, alteration of the O-GlcNAc peptide abundance could be attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic Alzheimer’s disease.

  14. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids.

    Directory of Open Access Journals (Sweden)

    Pitter F Huesgen

    Full Text Available In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.

  15. Lead Discovery for Alzheimer’s Disease Related Target Protein RbAp48 from Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Hung-Jin Huang

    2014-01-01

    Full Text Available Deficiency or loss of function of Retinoblastoma-associated proteins (RbAp48 is related with Alzheimer’s disease (AD, and AD disease is associated with age-related memory loss. During normal function, RbAp48 forms a complex with the peptide FOG-1 (friend of GATA-1 and has a role in gene transcription, but an unstable complex may affect the function of RbAp48. This study utilizes the world’s largest traditional Chinese medicine (TCM database and virtual screening to provide potential compounds for RbAp48 binding. A molecular dynamics (MD simulation was employed to understand the variations after protein-ligand interaction. FOG1 was found to exhibit low stability after RbAp48 binding; the peptide displayed significant movement from the initial docking position, a phenomenon which matched the docking results. The protein structure of the other TCM candidates was not variable during MD simulation and had a greater stable affinity for RbAp48 binding than FOG1. Our results reveal that the protein structure does not affect ligand binding, and the top three TCM candidates Bittersweet alkaloid II, Eicosandioic acid, and Perivine might resolve the instability of the RbAp48-FOG1 complex and thus be used in AD therapy.

  16. Intron-exon organization of the active human protein S gene PS. alpha. and its pseudogene PS. beta. : Duplication and silencing during primate evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.; Bertina, R.M. (University Hospital, Leiden (Netherlands))

    1990-08-28

    The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing of an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.

  17. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.

    1999-01-01

    structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate......The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows...

  18. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching.

    Science.gov (United States)

    Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki

    2014-01-13

    25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.

  19. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    Science.gov (United States)

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  20. Rebalance between 7S and 11S globulins in soybean seeds of differing protein content and 11SA4.

    Science.gov (United States)

    Yang, A; Yu, X; Zheng, A; James, A T

    2016-11-01

    Protein content and globulin subunit composition of soybean seeds affect the quality of soy foods. In this proteomic study, the protein profile of soybean seeds with high (∼45.5%) or low (∼38.6%) protein content and with or without the glycinin (11S) subunit 11SA4 was examined. 44 unique proteins and their homologues were identified and showed that both protein content and 11SA4 influenced the abundance of a number of proteins. The absence of 11SA4 exerted a greater impact than the protein content, and led to a decreased abundance of glycinin G2/A2B1 and G5/A5A4B3 subunits, which resulted in lower total 11S with a concomitant higher total β-conglycinin (7S). Low protein content was associated with higher glycinin G3/A1aB1b and lower glycinin G4/A5A4B3. Using the proteomic approach, it was demonstrated that 11SA4 deficiency induced compensatory accumulation of 7S globulins and led to a similar total abundance for 7S+11S irrespective of protein content or 11SA4. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Proteomic analysis reveals changes in carbohydrate and protein metabolism associated with broiler breast myopathy.

    Science.gov (United States)

    Kuttappan, Vivek A; Bottje, Walter; Ramnathan, Ranjith; Hartson, Steven D; Coon, Craig N; Kong, Byung-Whi; Owens, Casey M; Vazquez-Añon, Mercedes; Hargis, Billy M

    2017-08-01

    White Striping (WS) and Woody Breast (WB) are 2 conditions that adversely affect consumer acceptance as well as quality of poultry meat and meat products. Both WS and WB are characterized with degenerative myopathic changes. Previous studies showed that WS and WB in broiler fillets could result in higher ultimate pH, increased drip loss, and decreased marinade uptake. The main objective of the present study was to compare the proteomic profiles of muscle tissue (n = 5 per group) with either NORM (no or few minor myopathic lesions) or SEV (with severe myopathic changes). Proteins were extracted from these samples and analyzed using a hybrid LTQ-OrbitrapXL mass spectrometer (LC-MS/MS). Over 800 proteins were identified in the muscle samples, among which 141 demonstrated differential (P < 0.05) expression between NORM and SEV. The set of differentially (P < 0.05) expressed proteins was uploaded to Ingenuity Pathway Analysis® (IPA) software to determine the associated biological networks and pathways. The IPA analysis showed that eukaryotic initiation factor-2 (eIF-2) signaling, mechanistic target of rapamycin (mTOR) signaling, as well as regulation of eIF4 and p70S6K signaling were the major canonical pathways up-regulated (P < 0.05) in SEV muscle compared to NORM. The up-regulation of these pathways indicate an increase in protein synthesis which could be part of the rapid growth as well as cellular stress associated with ongoing muscle degeneration and the attempt to repair tissue damage in SEV birds. Furthermore, IPA analysis revealed that glycolysis and gluconeogenesis were the major down-regulated (P < 0.05) canonical pathways in SEV with respect to NORM muscle. Down-regulation of these pathways could be the reason for higher ultimate pH seen in SEV muscle samples indicating reduced glycolytic potential. In conclusion, comparison of proteomic profiles of NORM and SEV muscle samples showed differences in protein profile which explains some of the observed

  2. S100β-Positive Cells of Mesenchymal Origin Reside in the Anterior Lobe of the Embryonic Pituitary Gland.

    Directory of Open Access Journals (Sweden)

    Kotaro Horiguchi

    Full Text Available The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100β-positive cells, we performed immunohistochemical analysis using several markers in S100β/GFP-TG rats, which express GFP in S100β-expressing cells under control of the S100β promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100β-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis.

  3. S100β-Positive Cells of Mesenchymal Origin Reside in the Anterior Lobe of the Embryonic Pituitary Gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Yako, Hideji; Yoshida, Saishu; Fujiwara, Ken; Tsukada, Takehiro; Kanno, Naoko; Ueharu, Hiroki; Nishihara, Hiroto; Kato, Takako; Yashiro, Takashi; Kato, Yukio

    2016-01-01

    The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100β-positive cells, we performed immunohistochemical analysis using several markers in S100β/GFP-TG rats, which express GFP in S100β-expressing cells under control of the S100β promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100β-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis.

  4. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  5. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration

    Science.gov (United States)

    Schaefer, Patrick M.; von Einem, Bjoern; Walther, Paul; Calzia, Enrico; von Arnim, Christine A. F.

    2016-01-01

    One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases. PMID:28005987

  6. Electrophoretic mobility shift assay reveals a novel recognition sequence for Setaria italica NAC protein.

    Science.gov (United States)

    Puranik, Swati; Kumar, Karunesh; Srivastava, Prem S; Prasad, Manoj

    2011-10-01

    The NAC (NAM/ATAF1,2/CUC2) proteins are among the largest family of plant transcription factors. Its members have been associated with diverse plant processes and intricately regulate the expression of several genes. Inspite of this immense progress, knowledge of their DNA-binding properties are still limited. In our recent publication,1 we reported isolation of a membrane-associated NAC domain protein from Setaria italica (SiNAC). Transactivation analysis revealed that it was a functionally active transcription factor as it could stimulate expression of reporter genes in vivo. Truncations of the transmembrane region of the protein lead to its nuclear localization. Here we describe expression and purification of SiNAC DNA-binding domain. We further report identification of a novel DNA-binding site, [C/G][A/T][T/A][G/C]TC[C/G][A/T][C/G][G/C] for SiNAC by electrophoretic mobility shift assay. The SiNAC-GST protein could bind to the NAC recognition sequence in vitro as well as to sequences where some bases had been reshuffled. The results presented here contribute to our understanding of the DNA-binding specificity of SiNAC protein.

  7. Identification of Bombyx mori bidensovirus VD1-ORF4 reveals a novel protein associated with viral structural component.

    Science.gov (United States)

    Li, Guohui; Hu, Zhaoyang; Guo, Xuli; Li, Guangtian; Tang, Qi; Wang, Peng; Chen, Keping; Yao, Qin

    2013-06-01

    Bombyx mori bidensovirus (BmBDV) VD1-ORF4 (open reading frame 4, ORF4) consists of 3,318 nucleotides, which codes for a predicted 1,105-amino acid protein containing a conserved DNA polymerase motif. However, its functions in viral propagation remain unknown. In the current study, the transcription of VD1-ORF4 was examined from 6 to 96 h postinfection (p.i.) by RT-PCR, 5'-RACE revealed the transcription initiation site of BmBDV ORF4 to be -16 nucleotides upstream from the start codon, and 3'-RACE revealed the transcription termination site of VD1-ORF4 to be +7 nucleotides downstream from termination codon. Three different proteins were examined in the extracts of BmBDV-infected silkworms midguts by Western blot using raised antibodies against VD1-ORF4 deduced amino acid, and a specific protein band about 53 kDa was further detected in purified virions using the same antibodies. Taken together, BmBDV VD1-ORF4 codes for three or more proteins during the viral life cycle, one of which is a 53 kDa protein and confirmed to be a component of BmBDV virion.

  8. Involvement of proinflammatory S100A9/A8 in the atherocalcinosis of aortic valves

    Directory of Open Access Journals (Sweden)

    R. А. Moskalenko

    2017-04-01

    Full Text Available According to the results of the Euro-Heart Survey on Vascular Heart Disease the most common pathology is nonrheumatic aortic stenosis, it is also called as calcific aortic valve stenosis (CAVS, as in its pathogenesis the process of biomineralization of valve cusps and ring plays the main role. The aim of the work is the immunohistochemical study of mineralized tissue of aortic heart valves, which are affected by atherocalcinosis. Materials and methods. 30 samples of mineralized aortic valves (I group and 10 samples of aortic valve without evidence of biomineralization (II group -– control were studied. Immunohistochemical study of expression of collagen (Collagen I, CD68, myeloperoxidase (MPO, calgranulin A (S100A8, calgranulin B (S100A9, caspase 3 (Casp 3 and osteopontin (OPN was conducted in AV tissue of both groups. Results. In CAV tissues the fibrillar component (collagen I growths was found, but the quantitative and qualitative compositions of CD68+ circulating inflammatory cells are not significantly different from the control group. CAVs contain much more MPO+ -cells (p <0.001 in comparison to the group of AVs without biomineralization. Our data show a significant increase of the S100A9 and OPN expression in the mineralized tissue of AVs (p < 0.01. Also, a higher expression level of Casp3 and MPO was found in CAVs (p < 0.05. Comparing the first and the second groups of AVs connection between the expression of S100A8 was not determined. Conclusion. High Casp 3 expression confirms the increased level of cell elimination in the CAVs tissue, which is obviously connected with the impact of high local concentrations of S100A9. These facts can contribute to the development of pathological biomineralization of AV. Since osteopontin inhibits the hydroxyapatite formation by binding to the surface of the crystals, its hyperproduction is a counteracting factor against biomineralization in AV tissue.

  9. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  10. Autodegradation of 125I-labeled human epidermal cell surface proteins

    International Nuclear Information System (INIS)

    Hashimoto, K.; Singer, K.H.; Lazarus, G.S.

    1982-01-01

    Triton X-100 extracts of cultured human epidermal cells exhibited proteolytic activity as measured by the hydrolysis of [ 3 H]-casein at neutral pH. The majority of endogenous proteolytic activity was inhibited by parahydroxy mercuribenzoate and by mersalyl acid, indicating the enzyme(s) was a thiol class proteinase(s). Crude Triton X-100 extracts were prepared from epidermal cells following labeling of proteins with 125 I. Autodegradation of labeled proteins at 37 degrees C was detected as early as 1 hr and reached a plateau level by 4 hr. Degradation was inhibited by thiol class proteinase inhibitors. Among the detergent-solubilized radiolabeled proteins a polypeptide chain of Mr 155,000 was particularly sensitive to degradation by endogenous thiol proteinase(s)

  11. Direct digestion of proteins in living cells into peptides for proteomic analysis.

    Science.gov (United States)

    Chen, Qi; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2015-01-01

    To analyze the proteome of an extremely low number of cells or even a single cell, we established a new method of digesting whole cells into mass-spectrometry-identifiable peptides in a single step within 2 h. Our sampling method greatly simplified the processes of cell lysis, protein extraction, protein purification, and overnight digestion, without compromising efficiency. We used our method to digest hundred-scale cells. As far as we know, there is no report of proteome analysis starting directly with as few as 100 cells. We identified an average of 109 proteins from 100 cells, and with three replicates, the number of proteins rose to 204. Good reproducibility was achieved, showing stability and reliability of the method. Gene Ontology analysis revealed that proteins in different cellular compartments were well represented.

  12. Modeling novel back-pressure mechanisms for a 100 Gb/s switch

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2012-01-01

    In this work we evaluate the performance of novel back-pressure mechanisms in a Clos-based 100 Gb/s switch system via OPNET modeler simulations. The effectiveness of the mechanisms under different switch configurations, as well as under different traffic patterns, is presented. Our results indicate...... that the proposed back-pressure techniques can effectively reduce the requirements for buffer space in the different stages of the Clos switch....

  13. Roles of Fe-S proteins: from cofactor synthesis to iron homeostasis to protein synthesis.

    Science.gov (United States)

    Pain, Debkumar; Dancis, Andrew

    2016-06-01

    Fe-S cluster assembly is an essential process for all cells. Impairment of Fe-S cluster assembly creates diseases in diverse and surprising ways. In one scenario, the loss of function of lipoic acid synthase, an enzyme with Fe-S cluster cofactor in mitochondria, impairs activity of various lipoamide-dependent enzymes with drastic consequences for metabolism. In a second scenario, the heme biosynthetic pathway in red cell precursors is specifically targeted, and iron homeostasis is perturbed, but lipoic acid synthesis is unaffected. In a third scenario, tRNA modifications arising from action of the cysteine desulfurase and/or Fe-S cluster proteins are lost, which may lead to impaired protein synthesis. These defects can then result in cancer, neurologic dysfunction or type 2 diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Opposing Effects of Zac1 and Curcumin on AP-1-Regulated Expressions of S100A7.

    Directory of Open Access Journals (Sweden)

    Yu-Wen Chu

    Full Text Available ZAC, an encoding gene mapped at chromosome 6q24-q25 within PSORS1, was previously found over-expressed in the lower compartment of the hyperplastic epidermis in psoriatic lesions. Cytokines produced in the inflammatory dermatoses may drive AP-1 transcription factor to induce responsive gene expressions. We demonstrated that mZac1 can enhance AP-1-responsive S100A7 expression of which the encoding gene was located in PSORS4 with HaCaT keratinocytes. However, the mZac1-enhanced AP-1 transcriptional activity was suppressed by curcumin, indicating the anti-inflammatory property of this botanical agent and is exhibited by blocking the AP-1-mediated cross-talk between PSORS1 and PSORS4. Two putative AP-1-binding sites were found and demonstrated to be functionally important in the regulation of S100A7 promoter activity. Moreover, we found curcumin reduced the DNA-binding activity of AP-1 to the recognition element located in the S100A7 promoter. The S100A7 expression was found to be upregulated in the lesioned epidermis of atopic dermatitis and psoriasis, which is where this keratinocyte-derived chemoattractant engaged in the pro-inflammatory feedback loop. Understanding the regulatory mechanism of S100A7 expression will be helpful to develop therapeutic strategies for chronic inflammatory dermatoses via blocking the reciprocal stimuli between the inflammatory cells and keratinocytes.

  15. Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study.

    Science.gov (United States)

    Wang, Yongfei; Lin, Shoukai; Song, Qi; Li, Kuan; Tao, Huan; Huang, Jian; Chen, Xinhai; Que, Shufu; He, Huaqin

    2014-05-07

    Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors. In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities. Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/.

  16. D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function.

    Directory of Open Access Journals (Sweden)

    Christoph Sonderegger

    Full Text Available The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19. We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.

  17. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells.

    Science.gov (United States)

    Rusin, Scott F; Schlosser, Kate A; Adamo, Mark E; Kettenbach, Arminja N

    2015-10-13

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry-based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c-dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2-dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. Copyright © 2015, American Association for the Advancement of Science.

  18. Use of biomarker S100B for traumatic brain damage in the emergency department may change observation strategy

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Bouchelouche, Pierre Nourdine

    2014-01-01

    patients had their blood sampled for analysis. In all, 12 patients were excluded in pursuance of SNC guidelines, which left 27 patients for analysis. A total of 15 patients had abnormally high S100B levels. Using the SNC criteria, only eight of these qualified a priori for blood sampling. Furthermore...... evaluation. Using S100B as a screening tool may lead to an increase in the use of CTs of the brain. In relation to admission, measurement of S100B may contribute to the adoption of an appropriate observation strategy. FUNDING: not relevant. TRIAL REGISTRATION: not relevant....

  19. The 'tubulin-like' S1 protein of Spirochaeta is a member of the hsp65 stress protein family

    Science.gov (United States)

    Munson, D.; Obar, R.; Tzertzinis, G.; Margulis, L.

    1993-01-01

    A 65-kDa protein (called S1) from Spirochaeta bajacaliforniensis was identified as 'tubulin-like' because it cross-reacted with at least four different antisera raised against tubulin and was isolated, with a co-polymerizing 45-kDa protein, by warm-cold cycling procedures used to purify tubulin from mammalian brain. Furthermore, at least three genera of non-cultivable symbiotic spirochetes (Pillotina, Diplocalyx, and Hollandina) that contain conspicuous 24-nm cytoplasmic tubules displayed a strong fluorescence in situ when treated with polyclonal antisera raised against tubulin. Here we summarize results that lead to the conclusion that this 65-kDa protein has no homology to tubulin. S1 is an hsp65 stress protein homologue. Hsp65 is a highly immunogenic family of hsp60 proteins which includes the 65-kDa antigens of Mycobacterium tuberculosis (an active component of Freund's complete adjuvant), Borrelia, Treponema, Chlamydia, Legionella, and Salmonella. The hsp60s, also known as chaperonins, include E. coli GroEL, mitochondrial and chloroplast chaperonins, the pea aphid 'symbionin' and many other proteins involved in protein folding and the stress response.

  20. Protocol Processing for 100 Gbit/s and Beyond - A Soft Real-Time Approach in Hardware and Software

    Science.gov (United States)

    Büchner, Steffen; Lopacinski, Lukasz; Kraemer, Rolf; Nolte, Jörg

    2017-09-01

    100 Gbit/s wireless communication protocol processing stresses all parts of a communication system until the outermost. The efficient use of upcoming 100 Gbit/s and beyond transmission technology requires the rethinking of the way protocols are processed by the communication endpoints. This paper summarizes the achievements of the project End2End100. We will present a comprehensive soft real-time stream processing approach that allows the protocol designer to develop, analyze, and plan scalable protocols for ultra high data rates of 100 Gbit/s and beyond. Furthermore, we will present an ultra-low power, adaptable, and massively parallelized FEC (Forward Error Correction) scheme that detects and corrects bit errors at line rate with an energy consumption between 1 pJ/bit and 13 pJ/bit. The evaluation results discussed in this publication show that our comprehensive approach allows end-to-end communication with a very low protocol processing overhead.

  1. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation.

    Science.gov (United States)

    Soto-Suárez, Mauricio; Serrato, Antonio J; Rojas-González, José A; Bautista, Rocío; Sahrawy, Mariam

    2016-12-01

    During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.

  2. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    International Nuclear Information System (INIS)

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.

    2005-01-01

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH 2 -terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking

  3. An Exploratory Flow Reactor Study of H2S Oxidation at 30-100 Bar

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt

    2016-01-01

    Hydrogen sulfide oxidation experiments were conducted in O2/N2 at high pressure (30 and 100 bar) under oxidizing and stoichiometric conditions. Temperatures ranged from 450 to 925 K, with residence times of 3–20 s. Under stoichiometric conditions, the oxidation of H2S was initiated at 600 K...

  4. 100 anys després, el desastre del Titànic troba nous culpables

    OpenAIRE

    Marco Soler, Enric

    2012-01-01

    100 anys després de l'enfonsament del Titànic, l'article revisa, des d'un punt de vista astronòmic, la influència de l'alineació lunisolar de gener de 1912 sobre el desastre marítim. 100 years after the sinking of the Titanic, the article reviews, from an astronomical point of view, the influence of the lunisolar alignment of January 1912 on the maritime disaster.

  5. 14-bit 100 MS/s 121 mW pipelined ADC

    International Nuclear Information System (INIS)

    Chen Yongzhen; Chen Chixiao; Feng Zemin; Ye Fan; Ren Junyan

    2015-01-01

    This paper presents a high-speed high-resolution pipelined ADC with low power and small area. The proposed ADC is designed based on the analysis of the stage scaling theory and the residual amplifiers are shared by two cascading MDACs to reduce power consumption. Shared op-amps with two split input paths are presented in this paper to eliminate the nonlinearity effects such as memory effect and crosstalk. Dynamic pre-amplified comparators are employed to decrease the static power consumption and suppress the kick-back in the comparators. This ADC is implemented in SMIC 0.18 μm CMOS process with an area of 3.1 mm 2 . With a sampling rate of 100 MS/s, spurious-free dynamic range (SFDR) and signal-to-noise plus distortion ratio (SNDR) of the ADC are 82.7 dB and 69.1 dB, respectively. For signals up to 100 MHz, the SFDR and SNDR achieve 81.4 dB and 65.8 dB. The power consumption is 121 mW with a 1.8 V supply voltage. (paper)

  6. Annexin A2 Mediates the Localization of Measles Virus Matrix Protein at the Plasma Membrane.

    Science.gov (United States)

    Koga, Ritsuko; Kubota, Marie; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji

    2018-02-28

    Annexins are a family of structurally related proteins that bind negatively charged membrane phospholipids in a Ca 2+ -dependent manner. Annexin A2 (AnxA2), a member of the family, has been implicated in a variety of cellular functions including the organization of membrane domains, vesicular trafficking and cell-cell adhesion. AnxA2 generally forms the heterotetrameric complex with a small Ca 2+ -binding protein S100A10. Measles virus (MV), a member of the family Paramyxoviridae , is an enveloped virus with a nonsegmented negative strand RNA genome. Knockdown of AnxA2 greatly reduced MV growth in cells, without affecting its entry and viral RNA production. In MV-infected, AnxA2-knockdown cells, the expression level of the matrix (M) protein, but not other viral proteins, was reduced compared with that in control cells, and the distribution of the M protein at the plasma membrane was decreased. The M protein lines the inner surface of the envelope and plays an important role in virus assembly by connecting the nucleocapsid to the envelope proteins. The M protein bound to AnxA2 independently of AnxA2's phosphorylation or its association with S100A10, and was co-localized with AnxA2 within cells. Truncation of the N-terminal 10 amino acid residues, but not the N-terminal 5 residues, compromised the ability of the M protein to interact with AnxA2 and localize at the plasma membrane. These results indicate that AnxA2 mediates the localization of the MV M protein at the plasma membrane by interacting with its N-terminal region (especially residues at positions 6-10), thereby aiding in MV assembly. IMPORTANCE Measles virus (MV) is an important human pathogen, still claiming ∼ 100,000 lives per year despite the presence of effective vaccines, and causes occasional outbreaks even in developed countries. Replication of viruses largely relies on the functions of host cells. Our study revealed that the reduction of the host protein annexin A2 compromises the replication of

  7. Ribosome•RelA structures reveal the mechanism of stringent response activation

    Science.gov (United States)

    Loveland, Anna B; Bah, Eugene; Madireddy, Rohini; Zhang, Ying; Brilot, Axel F; Grigorieff, Nikolaus; Korostelev, Andrei A

    2016-01-01

    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit 'closure', providing insights into the dynamics of high-fidelity tRNA decoding. DOI: http://dx.doi.org/10.7554/eLife.17029.001 PMID:27434674

  8. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; Dohnalkova, Alice; Smit, John; Jiao, Yongqin

    2016-09-23

    ABSTRACT

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFaand RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaFaand RsaFbare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFaand RsaFbare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFaand RsaFbled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFaand RsaFbled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFaand RsaFbin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels in

  9. State companies dominate non-U.S. OGJ100

    International Nuclear Information System (INIS)

    Beck, R.J.; Thrash, L.A.

    1991-01-01

    This paper reports on state owned oil and gas companies which dominate the OGJ100 list of major non U.S. holders of petroleum reserves. Many state companies report only production and reserves information and do not report financial data. Therefore, the companies cannot be ranked by financial data, as they are in the OGJ300. They instead are listed by region, based on location of companies' corporate headquarters. The top 20 companies in crude oil production and reserves are shown. The leading nongovernment company in both reserves and production is Royal Dutch/Shell Group - No. 11 in worldwide liquids reserves and No. 6 in liquids production. Crude oil reserves of the top 20 companies moved up less than 1% last year, increasing 401.5 billion bbl. The year before, when there were substantial reserves adjustments, the top 20 posted an increase of 139.3 billion bbl

  10. sPLA2-IIA

    Indian Academy of Sciences (India)

    67

    Recent research showed that maslinic acid interacts with sPLA2-IIA ... Further analysis revealed that sPLA2-IIA only induced modest LDL ..... MDA/mg protein) compared to native LDL (2.043 nmol MDA/mg protein) while .... to modify extracellular non-cellular lipid components such as lipoproteins, ... The main pathway for.

  11. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  12. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots.

    Science.gov (United States)

    Sylak-Glassman, Emily J; Malnoë, Alizée; De Re, Eleonora; Brooks, Matthew D; Fischer, Alexandra Lee; Niyogi, Krishna K; Fleming, Graham R

    2014-12-09

    The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurements that can detect whether the presence of these proteins alters the type of quenching that occurs. The chlorophyll fluorescence lifetime probes the excited-state chlorophyll relaxation dynamics and can be used to determine the amount of quenching as well as whether two different genotypes with the same amount of NPQ have similar dynamics of excited-state chlorophyll relaxation. We measured the fluorescence lifetimes on whole leaves of Arabidopsis thaliana throughout the induction and relaxation of NPQ for wild type and the qE mutants, npq4, which lacks PsbS; npq1, which lacks VDE and cannot convert violaxanthin to zeaxanthin; and npq1 npq4, which lacks both VDE and PsbS. These measurements show that although PsbS changes the amount of quenching and the rate at which quenching turns on, it does not affect the relaxation dynamics of excited chlorophyll during quenching. In addition, the data suggest that PsbS responds not only to ΔpH but also to the Δψ across the thylakoid membrane. In contrast, the presence of VDE, which is necessary for the accumulation of zeaxanthin, affects the excited-state chlorophyll relaxation dynamics.

  13. The utility of protein structure as a predictor of site-wise dN/dS varies widely among HIV-1 proteins.

    Science.gov (United States)

    Meyer, Austin G; Wilke, Claus O

    2015-10-06

    Protein structure acts as a general constraint on the evolution of viral proteins. One widely recognized structural constraint explaining evolutionary variation among sites is the relative solvent accessibility (RSA) of residues in the folded protein. In influenza virus, the distance from functional sites has been found to explain an additional portion of the evolutionary variation in the external antigenic proteins. However, to what extent RSA and distance from a reference site in the protein can be used more generally to explain protein adaptation in other viruses and in the different proteins of any given virus remains an open question. To address this question, we have carried out an analysis of the distribution and structural predictors of site-wise dN/dS in HIV-1. Our results indicate that the distribution of dN/dS in HIV follows a smooth gamma distribution, with no special enrichment or depletion of sites with dN/dS at or above one. The variation in dN/dS can be partially explained by RSA and distance from a reference site in the protein, but these structural constraints do not act uniformly among the different HIV-1 proteins. Structural constraints are highly predictive in just one of the three enzymes and one of three structural proteins in HIV-1. For these two proteins, the protease enzyme and the gp120 structural protein, structure explains between 30 and 40% of the variation in dN/dS. Finally, for the gp120 protein of the receptor-binding complex, we also find that glycosylation sites explain just 2% of the variation in dN/dS and do not explain gp120 evolution independently of either RSA or distance from the apical surface. © 2015 The Author(s).

  14. Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing

    Science.gov (United States)

    Shinde, Mansi Y.; Sidoli, Simone; Kulej, Katarzyna; Mallory, Michael J.; Radens, Caleb M.; Reicherter, Amanda L.; Myers, Rebecca L.; Barash, Yoseph; Lynch, Kristen W.; Garcia, Benjamin A.; Klein, Peter S.

    2017-01-01

    Glycogen synthase kinase-3 (GSK-3) is a constitutively active, ubiquitously expressed protein kinase that regulates multiple signaling pathways. In vitro kinase assays and genetic and pharmacological manipulations of GSK-3 have identified more than 100 putative GSK-3 substrates in diverse cell types. Many more have been predicted on the basis of a recurrent GSK-3 consensus motif ((pS/pT)XXX(S/T)), but this prediction has not been tested by analyzing the GSK-3 phosphoproteome. Using stable isotope labeling of amino acids in culture (SILAC) and MS techniques to analyze the repertoire of GSK-3–dependent phosphorylation in mouse embryonic stem cells (ESCs), we found that ∼2.4% of (pS/pT)XXX(S/T) sites are phosphorylated in a GSK-3–dependent manner. A comparison of WT and Gsk3a;Gsk3b knock-out (Gsk3 DKO) ESCs revealed prominent GSK-3–dependent phosphorylation of multiple splicing factors and regulators of RNA biosynthesis as well as proteins that regulate transcription, translation, and cell division. Gsk3 DKO reduced phosphorylation of the splicing factors RBM8A, SRSF9, and PSF as well as the nucleolar proteins NPM1 and PHF6, and recombinant GSK-3β phosphorylated these proteins in vitro. RNA-Seq of WT and Gsk3 DKO ESCs identified ∼190 genes that are alternatively spliced in a GSK-3–dependent manner, supporting a broad role for GSK-3 in regulating alternative splicing. The MS data also identified posttranscriptional regulation of protein abundance by GSK-3, with ∼47 proteins (1.4%) whose levels increased and ∼78 (2.4%) whose levels decreased in the absence of GSK-3. This study provides the first unbiased analysis of the GSK-3 phosphoproteome and strong evidence that GSK-3 broadly regulates alternative splicing. PMID:28916722

  15. Protein engineering of CYP105s for their industrial uses.

    Science.gov (United States)

    Yasuda, Kaori; Sugimoto, Hiroshi; Hayashi, Keiko; Takita, Teisuke; Yasukawa, Kiyoshi; Ohta, Miho; Kamakura, Masaki; Ikushiro, Shinichi; Shiro, Yoshitsugu; Sakaki, Toshiyuki

    2018-01-01

    Cytochrome P450 enzymes belonging to the CYP105 family are predominantly found in bacteria belonging to the phylum Actinobacteria and the order Actinomycetales. In this review, we focused on the protein engineering of P450s belonging to the CYP105 family for industrial use. Two Arg substitutions to Ala of CYP105A1 enhanced its vitamin D 3 25- and 1α-hydroxylation activities by 400 and 100-fold, respectively. The coupling efficiency between product formation and NADPH oxidation was largely improved by the R84A mutation. The quintuple mutant Q87W/T115A/H132L/R194W/G294D of CYP105AB3 showed a 20-fold higher activity than the wild-type enzyme. Amino acids at positions 87 and 191 were located at the substrate entrance channel, and that at position 294 was located close to the heme group. Semi-rational engineering of CYP105A3 selected the best performing mutant, T85F/T119S/V194N/N363Y, for producing pravastatin. The T119S and N363Y mutations synergistically had remarkable effects on the interaction between CYP105A3 and putidaredoxin. Although wild-type CYP105AS1 hydroxylated compactin to 6-epi-pravastatin, the quintuple mutant I95T/Q127R/A180V/L236I/A265N converted almost all compactin to pravastatin. Five amino acid substitutions by two rounds of mutagenesis almost completely changed the stereo-selectivity of CYP105AS1. These results strongly suggest that the protein engineering of CYP105 enzymes greatly increase their industrial utility. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Organization and Dynamics of Receptor Proteins in a Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Sansom, Mark S P

    2015-11-25

    The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.

  17. Design of a 10-bit 100 MSamples/s BiCMOS D/A converter

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Tunheim, S. A.

    1995-01-01

    A 10-bit 100 MSamples/s current-steering D/A converter (DAC) has been designed and processed in a 0.8 μm BiCMOS process. The DAC is intended for applications using direct digital synthesis, and focus has been set on achieving a high spurious free dynamic range (SFDR). The main part of the DAC...... current cell to steer the current. At a generated frequency of fg≈0.3·fs (fs=100 MSamples/s), the simulated SFDR is larger than 60 dB. The DAC operates at 5 V, and has a power consumption of approximately 650 mW. The area of the chip-core is 2.2 mm×2.2 mm. Furthermore a measure to estimate the SFDR...... for the DAC based on short term simulations is presented. This measure seems to correspond very well with SFDR for long term simulations...

  18. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    Science.gov (United States)

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  19. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins.

    Science.gov (United States)

    Yamamoto, Yuko; Hirai, Takaaki; Yamamoto, Eiji; Kawamura, Mayuko; Sato, Tomomi; Kitano, Hidemi; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako

    2010-11-01

    To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1(P99S) interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1(P99A) has smaller K(a) (association) and K(d) (dissociation) values for GA(4) than does wild-type GID1. This suggests that the GID1(P99A) lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1(P99A). Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants.

  20. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    Science.gov (United States)

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.