WorldWideScience

Sample records for reveal strong aggregations

  1. Modelling of strongly coupled particle growth and aggregation

    International Nuclear Information System (INIS)

    Gruy, F; Touboul, E

    2013-01-01

    The mathematical modelling of the dynamics of particle suspension is based on the population balance equation (PBE). PBE is an integro-differential equation for the population density that is a function of time t, space coordinates and internal parameters. Usually, the particle is characterized by a unique parameter, e.g. the matter volume v. PBE consists of several terms: for instance, the growth rate and the aggregation rate. So, the growth rate is a function of v and t. In classical modelling, the growth and the aggregation are independently considered, i.e. they are not coupled. However, current applications occur where the growth and the aggregation are coupled, i.e. the change of the particle volume with time is depending on its initial value v 0 , that in turn is related to an aggregation event. As a consequence, the dynamics of the suspension does not obey the classical Von Smoluchowski equation. This paper revisits this problem by proposing a new modelling by using a bivariate PBE (with two internal variables: v and v 0 ) and by solving the PBE by means of a numerical method and Monte Carlo simulations. This is applied to a physicochemical system with a simple growth law and a constant aggregation kernel.

  2. Diversity and aggregation patterns of plant species in a grass community

    Directory of Open Access Journals (Sweden)

    Ran Li

    2014-09-01

    Full Text Available Both composition and aggregation patterns of species in a community are the outcome of community self-organizing. In this paper we conducted analysis on species diversity and aggregation patterns of plant species in a grass community, Zhuhai, China. According to the sampling survey, in total of 47 plant species, belonging to 16 families, were found. Compositae had 10 species (21.3%, seconded by Gramineae (9 species, 19.1%, Leguminosae (6 species, 12.8%, Cyperaceae (4 species, 8.5%, and Malvaceae (3 species, 6.4%. The results revealed that the means of aggregation indices Iδ, I and m*/m were 21.71, 15.71 and 19.89 respectively and thus individuals of most of plant species strongly followed aggregative distribution. Iwao analysis indicated that both individuals of all species and clumps of all individuals of all species followed aggregative distribution. Taylor's power law indicated that individuals of all species followed aggregative distribution and aggregation intensity strengthened as the increase of mean density. We held that the strong aggregation intensity of a species has been resulted from the strong adaptation ability to the environment, the strong interspecific competition ability and the earlier establishment of the species. Fitting goodness of the mean, I, Iδ, m*/m with probability distributions demonstrated that the mean (density, I, Iδ, and m*/m over all species followed Weibull distribution rather than normal distribution. Lophatherum gracile, Paederia scandens (Lour. Merr., Eleusine indica, and Alternanthera philoxeroides (Mart. Griseb. were mostly aggregative, and Oxalis sp., Eleocharis plantagineiformis, Vernonia cinerea (L. Less., and Sapium sebiferum (L. Roxb, were mostly uniform in the spatial distribution. Importance values (IV showed that Cynodon dactylon was the most important species, seconded by Desmodium triflorum (L. DC., Cajanus scarabaeoides (L. Benth., Paspalum scrobiculatum L., and Rhynchelytrum repens. Oxalis

  3. Microbial Ecology of Soil Aggregation in Agroecosystems

    Science.gov (United States)

    Hofmockel, K. S.; Bell, S.; Tfailly, M.; Thompson, A.; Callister, S.

    2017-12-01

    Crop selection and soil texture influence the physicochemical attributes of the soil, which structures microbial communities and influences soil C cycling storage. At the molecular scale, microbial metabolites and necromass alter the soil environment, which creates feedbacks that influence ecosystem functions, including soil C accumulation. By integrating lab to field studies we aim to identify the molecules, organisms and metabolic pathways that control carbon cycling and stabilization in bioenergy soils. We investigated the relative influence of plants, microbes, and minerals on soil aggregate ecology at the Great Lakes Bioenergy Research experiment. Sites in WI and MI, USA have been in corn and switchgrass cropping systems for a decade. By comparing soil aggregate ecology across sites and cropping systems we are able to test the relative importance of plant, microbe, mineral influences on soil aggregate dynamics. Soil microbial communities (16S) differ in diversity and phylogeny among sites and cropping systems. FT-ICR MS revealed differences in the molecular composition of water-soluble fraction of soil organic matter for cropping systems and soil origin for both relative abundance of assigned formulas and biogeochemical classes of compounds. We found the degree of aggregation, measured by mean weighted diameter of aggregate fractions, is influenced by plant-soil interactions. Similarly, the proportion of soil aggregate fractions varied by both soil and plant factors. Differences in aggregation were reflected in differences in bacterial, but not fungal community composition across aggregate fractions, within each soil. Scanning electron microscopy revealed stark differences in mineral-organic interactions that influence the microbial niche and the accessibility of substrates within the soil. The clay soils show greater surface heterogeneity, enabling interactions with organic fraction of the soil. This is consistent with molecular data that reveal differences

  4. Mesoporous TiO{sub 2} aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunhui; Luo, Yanhong; Guo, Xiaozhi; Li, Dongmei [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Mi, Jianli; So, Lasse; Hald, Peter [Center for Materials Crystallography, Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus (Denmark); Meng, Qingbo, E-mail: qbmeng@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Iversen, Bo B., E-mail: bo@chem.au.dk [Center for Materials Crystallography, Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus (Denmark)

    2012-12-15

    Phase-pure anatase TiO{sub 2} nanocrystallite aggregates synthesized by a continuous supercritical fluid process have been first used for fabricating mesoporous photoanodes of dye-sensitized solar cells (DSCs). Due to the small size (11 nm) of the TiO{sub 2} nanocrystallites in the aggregates, the mesoporous photoanode provides a high specific surface area, 80 m{sup 2}/g, which ensures high dye loading. At the same time, the submicrometer-sized aggregates endow the mesoporous photoanode with strong light scattering effect. Therefore, the light harvesting efficiency of the photoanode is increased. With an improved short-circuit current density, a high overall power conversion efficiency of 8.65% (100 mW/cm{sup 2}, AM 1.5) is achieved without additional scattering layers, 12% enhanced compared with the DSCs fabricated from commercial Degussa P25 with exactly the same procedures. In addition, this supercritical fluid process is scalable and rapid (less than one minute) for TiO{sub 2} aggregates synthesis, which will push the commercialization of DSCs in the future. - Graphical abstract: Due to the special morphology and structure, the photoanode of DSCs provides high specific surface area and strong light scattering at the same time, which results in high conversion efficiencies of the DSCs. Table of contents: Thanks to the synchronous realization of high specific surface area and strong light scattering, a high efficiency of 8.65% was achieved based on a novel mesoporous TiO{sub 2} aggregates photoanode for DSCs. Highlights: Black-Right-Pointing-Pointer The TiO{sub 2} aggregate photoanode provides a possible route for highly efficient DSCs. Black-Right-Pointing-Pointer Photoanode with high dye loading and light scattering is successfully fabricated. Black-Right-Pointing-Pointer TiO{sub 2} synthesized by a supercritical fluid process is first applied to DSCs. Black-Right-Pointing-Pointer The synthesis method and high efficiency will push the commercialization of DSCs.

  5. Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Abramavicius, Vytautas, E-mail: vytautas.ab@gmail.com; Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Faculty of Physics, Department of Theoretical Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius (Lithuania)

    2014-02-14

    We derive the stochastic Schrödinger equation for the system wave vector and use it to describe the excitation energy transfer dynamics in molecular aggregates. We suggest a quantum-measurement based method of estimating the excitation transfer time. Adequacy of the proposed approach is demonstrated by performing calculations on a model system. The theory is then applied to study the excitation transfer dynamics in a photosynthetic pigment-protein Fenna-Matthews-Olson (FMO) aggregate using both the Debye spectral density and the spectral density obtained from earlier molecular dynamics simulations containing strong vibrational high-frequency modes. The obtained results show that the excitation transfer times in the FMO system are affected by the presence of the vibrational modes; however, the transfer pathways remain the same.

  6. Aeolian comminution experiments revealing surprising sandball mineral aggregates

    Science.gov (United States)

    Nørnberg, P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Iversen, J. J.; Jensen, S. Knak; Merrison, J. P.

    2014-06-01

    We have undertaken a set of wind erosion experiments on a simple and well defined mineral, quartz. In these experiments wind action is simulated by end over end tumbling of quartz grains in a sealed quartz flask. The tumbling induces collisions among the quartz grains and the walls of the flask. This process simulates wind action impact speed of ∼1.2 m/s. After several months of tumbling we observed the formation of a large number of spherical sand aggregates, which resemble small snowballs under optical microscopy. Upon mechanical load the aggregates are seen to be more elastic than quartz and their mechanical strength is comparable, though slightly lower than that of sintered silica aerogels. Aggregates of this kind have not been reported from field sites or from closed circulation systems. However, sparse occurrence might explain this, or in nature the concentration of the aggregate building particles is so low that they never meet and just appear as the most fine grained tail of the sediment particle size distribution.

  7. Monte Carlo simulation of aggregate morphology for simultaneous coagulation and sintering

    International Nuclear Information System (INIS)

    Schmid, Hans-Joachim; Tejwani, Saurabh; Artelt, Christian; Peukert, Wolfgang

    2004-01-01

    A model for simulation of the three-dimensional morphology of nano-structured aggregates formed by concurrent coagulation and sintering is presented. Diffusion controlled cluster-cluster aggregation is assumed to be the prevailing coagulation mechanism which is implemented using a Monte-Carlo algorithm. Sintering is modeled as a successive overlapping of spherical primary particles, which are allowed to grow as to preserve overall mass. Simulations are characterized by individual ratios τ of characteristic collision to fusion time. A number of resulting aggregate-structures is displayed and reveals structure formation by coagulation and sintering for different values of τ. These aggregates are described qualitatively and quantitatively by their mass fractal dimension D f and radius of gyration. The fractal dimension increases from 1.86 for pure aggregation to ∼ 2.75 for equal characteristic time scales. As sintering turns out to be more and more relevant, increasingly compact aggregates start to form and the radius of gyration decreases significantly. The simulation results clearly reveal a strong dependence of the fractal dimension on the kinetics of the concurrent coagulation and sintering processes. Considering appropriate values of D f in aerosol process simulations may therefore be important in many cases

  8. The effect of carbohydrates and lipids on the radiation-induced aggregation of proteins

    International Nuclear Information System (INIS)

    Delincee, H.; Jakubick, V.

    1977-01-01

    Myoglobin, ovalbumin and serum albumin have been irradiated in aqueous solution in the presence of varying amounts of carbohydrates and lipids, simulating a model food. Gel chromatography revealed the induction of protein aggregates, the formation of which depended strongly on protein concentration. The addition of carbohydrates (trehalose, starch) greatly reduced the amount of radiation-induced aggregates, whereas the addition of lipids (sunflower oil) had practically no effect on aggregate formation. However, if both carbohydrates and lipids were added, the decrease in aggregation caused by the carbohydrate addition was counteracted by the addition of the lipid; as increasing amounts of lipid were added, the effect of carbohydrate addition became smaller. (author)

  9. Simultaneous measurement of amyloid fibril formation by dynamic light scattering and fluorescence reveals complex aggregation kinetics.

    Directory of Open Access Journals (Sweden)

    Aaron M Streets

    Full Text Available An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation.

  10. Rh-Catalyzed annulations of N-methoxybenzamides with ketenimines: synthesis of 3-aminoisoindolinones and 3-diarylmethyleneisoindolinones with strong aggregation induced emission properties.

    Science.gov (United States)

    Zhou, Xiaorong; Peng, Zhixing; Zhao, Hongyang; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2016-08-23

    Rhodium-catalyzed C-H activation/annulation reactions of ketenimines with N-methoxybenzamides furnished 3-aminoisoindolin-1-ones and 3-(diarylmethylene)isoindolin-1-ones. The synthesized 3-(diarylmethylene)isoindolin-1-ones exhibited aggregation induced emissions in aqueous tetrahydrofuran solution and strong green-yellow emissions in solids.

  11. Conductivity-Dependent Flow Field-Flow Fractionation of Fulvic and Humic Acid Aggregates

    Directory of Open Access Journals (Sweden)

    Martha J. M. Wells

    2015-09-01

    Full Text Available Fulvic (FAs and humic acids (HAs are chemically fascinating. In water, they have a strong propensity to aggregate, but this research reveals that tendency is regulated by ionic strength. In the environment, conductivity extremes occur naturally—freshwater to seawater—warranting consideration at low and high values. The flow field flow fractionation (flow FFF of FAs and HAs is observed to be concentration dependent in low ionic strength solutions whereas the corresponding flow FFF fractograms in high ionic strength solutions are concentration independent. Dynamic light scattering (DLS also reveals insight into the conductivity-dependent behavior of humic substances (HSs. Four particle size ranges for FAs and humic acid aggregates are examined: (1 <10 nm; (2 10 nm–6 µm; (3 6–100 µm; and (4 >100 µm. Representative components of the different size ranges are observed to dynamically coexist in solution. The character of the various aggregates observed—such as random-extended-coiled macromolecules, hydrogels, supramolecular, and micellar—as influenced by electrolytic conductivity, is discussed. The disaggregation/aggregation of HSs is proposed to be a dynamic equilibrium process for which the rate of aggregate formation is controlled by the electrolytic conductivity of the solution.

  12. Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces

    Science.gov (United States)

    Khokhlova, Maria D.; Lyubin, Eugeny V.; Zhdanov, Alexander G.; Rykova, Sophia Yu.; Sokolova, Irina A.; Fedyanin, Andrey A.

    2012-02-01

    Direct measurements of aggregation forces in piconewton range between two red blood cells in pair rouleau are performed under physiological conditions using double trap optical tweezers. Aggregation and disaggregation properties of healthy and pathologic (system lupus erythematosis) blood samples are analyzed. Strong difference in aggregation speed and behavior is revealed using the offered method which is proposed to be a promising tool for SLE monitoring at single cell level.

  13. Nanomolar oligomerization and selective co-aggregation of α-synuclein pathogenic mutants revealed by single-molecule fluorescence

    Science.gov (United States)

    Sierecki, Emma; Giles, Nichole; Bowden, Quill; Polinkovsky, Mark E.; Steinbeck, Janina; Arrioti, Nicholas; Rahman, Diya; Bhumkar, Akshay; Nicovich, Philip R.; Ross, Ian; Parton, Robert G.; Böcking, Till; Gambin, Yann

    2016-01-01

    Protein aggregation is a hallmark of many neurodegenerative diseases, notably Alzheimer’s and Parkinson’s disease. Parkinson’s disease is characterized by the presence of Lewy bodies, abnormal aggregates mainly composed of α-synuclein. Moreover, cases of familial Parkinson’s disease have been linked to mutations in α-synuclein. In this study, we compared the behavior of wild-type (WT) α-synuclein and five of its pathological mutants (A30P, E46K, H50Q, G51D and A53T). To this end, single-molecule fluorescence detection was coupled to cell-free protein expression to measure precisely the oligomerization of proteins without purification, denaturation or labelling steps. In these conditions, we could detect the formation of oligomeric and pre-fibrillar species at very short time scale and low micromolar concentrations. The pathogenic mutants surprisingly segregated into two classes: one group forming large aggregates and fibrils while the other tending to form mostly oligomers. Strikingly, co-expression experiments reveal that members from the different groups do not generally interact with each other, both at the fibril and monomer levels. Together, this data paints a completely different picture of α-synuclein aggregation, with two possible pathways leading to the development of fibrils. PMID:27892477

  14. Universal timescales in the rheology of spheroid cell aggregates

    Science.gov (United States)

    Yu, Miao; Mahtabfar, Aria; Beleen, Paul; Foty, Ramsey; Zahn, Jeffrey; Shreiber, David; Liu, Liping; Lin, Hao

    2017-11-01

    The rheological properties of tissue play important roles in key biological processes including embryogenesis, cancer metastasis, and wound healing. Spheroid cell aggregate is a particularly interesting model system for the study of these phenomena. In the long time, they behave like drops with a surface tension. In the short, viscoelasticity also needs to be considered. In this work, we discover two coupled and universal timescales for spheroid aggregates. A total of 12 aggregate types (total aggregate number n =290) derived from L and GBM (glioblastoma multiforme) cells are studied with microtensiometer to obtain their surface tension. They are also allowed to relax upon release of the compression forces. The two timescales are observed during the relaxation process; their values do not depend on compression time nor the degree of deformation, and are consistent among all 12 types. Following prior work (Yu et al., Phys. Rev. Lett., 115:128303; Liu et al., J. Mech. Phys. Solids, 98:309-329) we use a rigorous mathematical theory to interpret the results, which reveals intriguing properties of the aggregates on both tissue and cellular levels. The mechanics of multicellular organization reflects both complexity and regularity due to strong active regulation.

  15. Amorphous Calcium Phosphate Formation and Aggregation Process Revealed by Light Scattering Techniques

    Directory of Open Access Journals (Sweden)

    Vida Čadež

    2018-06-01

    Full Text Available Amorphous calcium phosphate (ACP attracts attention as a precursor of crystalline calcium phosphates (CaPs formation in vitro and in vivo as well as due to its excellent biological properties. Its formation can be considered to be an aggregation process. Although aggregation of ACP is of interest for both gaining a fundamental understanding of biominerals formation and in the synthesis of novel materials, it has still not been investigated in detail. In this work, the ACP aggregation was followed by two widely applied techniques suitable for following nanoparticles aggregation in general: dynamic light scattering (DLS and laser diffraction (LD. In addition, the ACP formation was followed by potentiometric measurements and formed precipitates were characterized by Fourier transform infrared spectroscopy (FTIR, powder X-ray diffraction (PXRD, transmission electron microscopy (TEM, and atomic force microscopy (AFM. The results showed that aggregation of ACP particles is a process which from the earliest stages simultaneously takes place at wide length scales, from nanometers to micrometers, leading to a highly polydisperse precipitation system, with polydispersity and vol. % of larger aggregates increasing with concentration. Obtained results provide insight into developing a way of regulating ACP and consequently CaP formation by controlling aggregation on the scale of interest.

  16. Dynamic and structural evidence of mesoscopic aggregation in phosphonium ionic liquids

    Science.gov (United States)

    Cosby, T.; Vicars, Z.; Heres, M.; Tsunashima, K.; Sangoro, J.

    2018-05-01

    Mesoscopic aggregation in aprotic ionic liquids due to the microphase separation of polar and non-polar components is expected to correlate strongly with the physicochemical properties of ionic liquids and therefore their potential applications. The most commonly cited experimental evidence of such aggregation is the observation of a low-q pre-peak in the x-ray and neutron scattering profiles, attributed to the polarity alternation of polar and apolar phases. In this work, a homologous series of phosphonium ionic liquids with the bis(trifluoromethylsulfonyl)imide anion and systematically varying alkyl chain lengths on the phosphonium cation are investigated by small and wide-angle x-ray scattering, dynamic-mechanical spectroscopy, and broadband dielectric spectroscopy. A comparison of the real space correlation distance corresponding to the pre-peak and the presence or absence of the slow sub-α dielectric relaxation previously associated with the motion of mesoscale aggregates reveals a disruption of mesoscale aggregates with increasing symmetry of the quaternary phosphonium cation. These findings contribute to the broader understanding of the interplay of molecular structures, mesoscale aggregation, and physicochemical properties in aprotic ionic liquids.

  17. Molecular dynamics simulations of interfacial interactions between small nanoparticles during diffusion-limited aggregation

    International Nuclear Information System (INIS)

    Lu, Jing; Liu, Dongmei; Yang, Xiaonan; Zhao, Ying; Liu, Haixing; Tang, Huan; Cui, Fuyi

    2015-01-01

    Graphical abstract: - Highlights: • Diffusion-limited aggregation is analyzed using molecular dynamic simulations. • The aggregation processand aggregate structure vary with particle size. • Particle-particle interaction and surface diffusion result in direct bonding. • Water-mediated interaction is responsible for the separation betweennanoparticles. - Abstract: Due to the limitations of experimental methods at the atomic level, research on the aggregation of small nanoparticles (D < 5 nm) in aqueous solutions is quite rare. The aggregation of small nanoparticles in aqueous solutions is very different than that of normal sized nanoparticles. The interfacial interactions play a dominant role in the aggregation of small nanoparticles. In this paper, molecular dynamics simulations, which can explore the microscopic behavior of nanoparticles during the diffusion-limited aggregation at an atomic level, were employed to reveal the aggregation mechanism of small nanoparticles in aqueous solutions. First, the aggregation processes and aggregate structure were depicted. Second, the particle–particle interaction and surface diffusion of nanoparticles during aggregation were investigated. Third, the water-mediated interactions during aggregation were ascertained. The results indicate that the aggregation of nanoparticle in aqueous solutions is affected by particle size. The strong particle–particle interaction and high surface diffusion result in the formation of particle–particle bonds of 2 nm TiO 2 nanoparticles, and the water-mediated interaction plays an important role in the aggregation process of 3 and 4 nm TiO 2 nanoparticles.

  18. Do chemical gradients within soil aggregates reflect plant/soil interactions?

    Science.gov (United States)

    Krüger, Jaane; Hallas, Till; Kinsch, Lena; Stahr, Simon; Prietzel, Jörg; Lang, Friederike

    2016-04-01

    -specific: On P-rich study sites the results reveal a significant depletion of citric acid-extractable PO4 and P on aggregate surfaces in subsoil horizons, while at the other study sites a slight enrichment at the aggregate surfaces could be observed. Total P concentrations show no distinct gradients within topsoil aggregates, but a slight P enrichment at the surface of subsoil aggregates at the P-rich site. A strong correlation with the total Al concentrations may indicate a P speciation change within aggregates (e.g., due to acidification processes). These results were also confirmed by P K-edge XANES spectra of aggregate core and shell samples of the P-rich site: In the aggregate shells of topsoil as well as subsoil aggregates, organic P forms are most dominant (82 and 80 %, respectively) than in the aggregate interior (54 and 66%, respectively). Moreover, P in the shell seems to be completely associated to Al, whereas some of the P in the aggregate interior is bound to Fe and/or Ca. Overall, our results show that plant/soil interactions impact on small-scale distribution and bioavailability of nutrients by root uptake and root-induced aggregate engineering.

  19. Photo-induced reorganization of molecular packing of amphi-PIC J-aggregates (single J-aggregate spectroscopy)

    International Nuclear Information System (INIS)

    Malyukin, Yu.V.; Sorokin, A.V.; Yefimova, S.L.; Lebedenko, A.N.

    2005-01-01

    Confocal luminescence microscopy has been used to excite and collect luminescence from single amphi-PIC J-aggregate. Two types of J-aggregates have been revealed in the luminescence image: bead-like J-aggregates, which diameter is less than 1 μm and rod-like ones, which length is about 3 μm and diameter is less than 1 μm. It has been found that single rod-like and bead-like J-aggregates exhibit different luminescence bands with different decay parameters. At the off-resonance blue tail excitation, the J-aggregate exciton luminescence disappeared within a certain time period and a new band appeared, which cannot be attributed to the monomer emission. The luminescence image shows that the J-aggregate is not destroyed. However, J-aggregate storage in darkness does not recover its exciton luminescence

  20. Influence of granitic aggregates from Northeast Brazil on the alkali-aggregate reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Neto, David de Paiva; Santana, Rodrigo Soares de; Barreto, Ledjane Silva, E-mail: pvgomes@uol.com.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Ciencias dos Materiais e Engenharia; Conceicao, Herbert; Lisboa, Vinicios Anselmo Carvalho [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Geologia

    2014-08-15

    The alkali-aggregate reaction (AAR) in concrete structures is a problem that has concerned engineers and researchers for decades. This reaction occurs when silicates in the aggregates react with the alkalis, forming an expanded gel that can cause cracks in the concrete and reduce its lifespan. The aim of this study was to characterize three coarse granitic aggregates employed in concrete production in northeastern Brazil, correlating petrographic analysis with the kinetics of silica dissolution and the evolution of expansions in mortar bars, assisted by SEM/EDS, XRD, and EDX. The presence of grains showing recrystallization into individual microcrystalline quartz subgrains was associated with faster dissolution of silica and greater expansion in mortar bars. Aggregates showing substantial deformation, such as stretched grains of quartz with strong undulatory extinction, experienced slower dissolution, with reaction and expansion occurring over longer periods that could not be detected using accelerated tests with mortar bars. (author)

  1. Expression of organophosphorus-degradation gene ( opd) in aggregating and non-aggregating filamentous nitrogen-fixing cyanobacteria

    Science.gov (United States)

    Li, Qiong; Tang, Qing; Xu, Xudong; Gao, Hong

    2010-11-01

    Genetic engineering in filamentous N2-fixing cyanobacteria usually involves Anabaena sp. PCC 7120 and several other non-aggregating species. Mass culture and harvest of such species are more energy consuming relative to aggregating species. To establish a gene transfer system for aggregating species, we tested many species of Anabaena and Nostoc, and identified Nostoc muscorum FACHB244 as a species that can be genetically manipulated using the conjugative gene transfer system. To promote biodegradation of organophosphorus pollutants in aquatic environments, we introduced a plasmid containing the organophosphorus-degradation gene ( opd) into Anabaena sp. PCC 7120 and Nostoc muscorum FACHB244 by conjugation. The opd gene was driven by a strong promoter, P psbA . From both species, we obtained transgenic strains having organophosphorus-degradation activities. At 25°C, the whole-cell activities of the transgenic Anabaena and Nostoc strains were 0.163±0.001 and 0.289±0.042 unit/μg Chl a, respectively. However, most colonies resulting from the gene transfer showed no activity. PCR and DNA sequencing revealed deletions or rearrangements in the plasmid in some of the colonies. Expression of the green fluorescent protein gene from the same promoter in Anabaena sp. PCC 7120 showed similar results. These results suggest that there is the potential to promote the degradation of organophosphorus pollutants with transgenic cyanobacteria and that selection of high-expression transgenic colonies is important for genetic engineering of Anabaena and Nostoc species. For the first time, we established a gene transfer and expression system in an aggregating filamentous N2-fixing cyanobacterium. The genetic manipulation system of Nostoc muscorum FACHB244 could be utilized in the elimination of pollutants and large-scale production of valuable proteins or metabolites.

  2. Creep and shrinkage behaviour of concrete with mixed recycled aggregates

    NARCIS (Netherlands)

    Hordijk, D.A.; Uijl, J. den

    1999-01-01

    For environmental reasons the interest in possibilities to use recycled aggregates in concrete is strongly increasing. World-wide, most attention with respect to recycled aggregates is paid to the quality of the aggregates. Still only limited information is available for the mechanica! properties of

  3. The Mechanisms of Aberrant Protein Aggregation

    Science.gov (United States)

    Cohen, Samuel; Vendruscolo, Michele; Dobson, Chris; Knowles, Tuomas

    2012-02-01

    We discuss the development of a kinetic theory for understanding the aberrant loss of solubility of proteins. The failure to maintain protein solubility results often in the assembly of organized linear structures, commonly known as amyloid fibrils, the formation of which is associated with over 50 clinical disorders including Alzheimer's and Parkinson's diseases. A true microscopic understanding of the mechanisms that drive these aggregation processes has proved difficult to achieve. To address this challenge, we apply the methodologies of chemical kinetics to the biomolecular self-assembly pathways related to protein aggregation. We discuss the relevant master equation and analytical approaches to studying it. In particular, we derive the underlying rate laws in closed-form using a self-consistent solution scheme; the solutions that we obtain reveal scaling behaviors that are very generally present in systems of growing linear aggregates, and, moreover, provide a general route through which to relate experimental measurements to mechanistic information. We conclude by outlining a study of the aggregation of the Alzheimer's amyloid-beta peptide. The study identifies the dominant microscopic mechanism of aggregation and reveals previously unidentified therapeutic strategies.

  4. Can strong correlations be experimentally revealed for Ҡ -mesons?

    Directory of Open Access Journals (Sweden)

    Hiesmayr Beatrix C.

    2014-01-01

    Full Text Available In 1964 the physicists John St. Bell working at CERN took the 1935-idea of Einstein-Podolsky-Rosen seriously and found that all theories based on local realism have to satisfy a certain inequality, nowadays dubbed Bell’s inequality. Experiments with ordinary matter systems or light show violations of Bell’s inequality favouring the quantum theory though a loophole free experiment has not yet been performed. This contribution presents an experimentally feasible Bell inequality for systems at higher energy scales, i.e. entangled neutral Ҡ -meson pairs that are typically produced in Φ -mesons decays or proton-antiproton annihilation processes. Strong requirements have to be overcome in order to achieve a conclusive tests, such a proposal was recently published. Surprisingly, this new Bell inequality reveals new features for weakly decaying particles, in particular, a strong sensitivity to the combined charge-conjugation-parity (CP symmetry. Here-with, a puzzling relation between a symmetry breaking for mesons and Bell’s inequality—which is a necessary and sufficient condition for the security of quantum cryptography protocols— is established. This becomes the more important since CP symmetry is related to the cosmological question why the antimatter disappeared after the Big Bang.

  5. Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes.

    Science.gov (United States)

    Castillo, Virginia; Graña-Montes, Ricardo; Sabate, Raimon; Ventura, Salvador

    2011-06-01

    In the cell, protein folding into stable globular conformations is in competition with aggregation into non-functional and usually toxic structures, since the biophysical properties that promote folding also tend to favor intermolecular contacts, leading to the formation of β-sheet-enriched insoluble assemblies. The formation of protein deposits is linked to at least 20 different human disorders, ranging from dementia to diabetes. Furthermore, protein deposition inside cells represents a major obstacle for the biotechnological production of polypeptides. Importantly, the aggregation behavior of polypeptides appears to be strongly influenced by the intrinsic properties encoded in their sequences and specifically by the presence of selective short regions with high aggregation propensity. This allows computational methods to be used to analyze the aggregation properties of proteins without the previous requirement for structural information. Applications range from the identification of individual amyloidogenic regions in disease-linked polypeptides to the analysis of the aggregation properties of complete proteomes. Herein, we review these theoretical approaches and illustrate how they have become important and useful tools in understanding the molecular mechanisms underlying protein aggregation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly

    International Nuclear Information System (INIS)

    Belfield, Kevin D.; Bondar, Mykhailo V.; Hernandez, Florencio E.; Przhonska, Olga V.; Yao, Sheng

    2006-01-01

    Linear spectral properties, including excitation anisotropy, of pseudoisocyanine or 1,1'-diethyl-2,2'-cyanine iodide (PIC) J-aggregates in aqueous solutions with J-band position at 573 nm were investigated. Two-photon absorption of PIC J-aggregates and monomer molecules was studied using an open aperture Z-scan technique. A strong enhancement of the two-photon absorption cross-section of PIC in the supramolecular J-aggregate assembly was observed in aqueous solution. This enhancement is attributed to a strong coupling of the molecular transition dipoles. No two-photon absorption at the peak of the J-band was detected

  7. Quantitative analysis of liquid penetration kinetics and slaking of aggregates as related to solid-liquid interfacial properties

    Science.gov (United States)

    Goebel, Marc-O.; Woche, Susanne K.; Bachmann, Jörg

    2012-06-01

    SummaryAggregate stability is frequently shown to be enhanced by strong soil water repellency, however, there is limited systematic evidence on this effect for moderately (subcritically) water repellent soils. This study aimed to investigate the specific effects of interfacial properties on the liquid penetration kinetics in relation to the stability of subcritically water repellent aggregates (4-6.3 mm) from various arable and forest soils against breakdown by slaking. In contrast to many other studies, where aggregate stability was determined by wet sieving, we here assessed the stability by immersion of air-dry aggregates in water-ethanol solutions with surface tensions ranging from 30 to 70 mN m-1. This approach allowed a highly sensitive discrimination of different stability levels and the determination of breakdown kinetics also for less stable aggregates. Interfacial properties were characterized in terms of contact angle measured on crushed aggregates, θc, and calculated for intact aggregates, θi, based on infiltration measurements with water and ethanol. Aggregate stability turned out to be higher in forest soils compared to arable soils with topsoil aggregates generally found to be more stable than subsoil aggregates. For water repellent aggregates, characterized by contact angles >40° and low water infiltration rates (aggregates after 30 s of immersion was generally below 10%, whereas in case of the more wettable aggregates, characterized by contact angles 0.25 mm3 s-0.5) more than 80% of the aggregates were disrupted. In accordance, we found a close relationship between aggregate stability and wettability with differences between θc and θi being generally small. In addition, aggregate stability turned out to be related to organic carbon content. However, correlation analysis revealed that both persistence of aggregate stability and kinetics of aggregate breakdown were more strongly affected by the contact angle, θc (r = 0.90 and r = -0

  8. Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement

    Science.gov (United States)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Sumandi, Khairul Azwa Syafiq Mohd; Mazenan, Puteri Natasya

    2017-10-01

    Many construction and development activities today consume large amounts of concrete. The amount of construction waste is also increasing because of the demolition process. Much of this waste can be recycled to produce new products and increase the sustainability of construction projects. As recyclable construction wastes, concrete and ceramic can replace the natural aggregate in concrete because of their hard and strong physical properties. This research used 25%, 35%, and 45% recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate in producing concrete. Several tests, such as concrete cube compression and splitting tensile tests, were also performed to determine and compare the mechanical properties of the recycled concrete with those of the normal concrete that contains 100% natural aggregate. The concrete containing 35% RCA and 35% ceramic waste showed the best properties compared with the normal concrete.

  9. Large scale aggregate microarray analysis reveals three distinct molecular subclasses of human preeclampsia.

    Science.gov (United States)

    Leavey, Katherine; Bainbridge, Shannon A; Cox, Brian J

    2015-01-01

    Preeclampsia (PE) is a life-threatening hypertensive pathology of pregnancy affecting 3-5% of all pregnancies. To date, PE has no cure, early detection markers, or effective treatments short of the removal of what is thought to be the causative organ, the placenta, which may necessitate a preterm delivery. Additionally, numerous small placental microarray studies attempting to identify "PE-specific" genes have yielded inconsistent results. We therefore hypothesize that preeclampsia is a multifactorial disease encompassing several pathology subclasses, and that large cohort placental gene expression analysis will reveal these groups. To address our hypothesis, we utilized known bioinformatic methods to aggregate 7 microarray data sets across multiple platforms in order to generate a large data set of 173 patient samples, including 77 with preeclampsia. Unsupervised clustering of these patient samples revealed three distinct molecular subclasses of PE. This included a "canonical" PE subclass demonstrating elevated expression of known PE markers and genes associated with poor oxygenation and increased secretion, as well as two other subclasses potentially representing a poor maternal response to pregnancy and an immunological presentation of preeclampsia. Our analysis sheds new light on the heterogeneity of PE patients, and offers up additional avenues for future investigation. Hopefully, our subclassification of preeclampsia based on molecular diversity will finally lead to the development of robust diagnostics and patient-based treatments for this disorder.

  10. Pore structure of natural and regenerated soil aggregates

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2014-01-01

    Quantitative characterization of aggregate pore structure can reveal the evolution of aggregates under different land use and management practices and their effects on soil processes and functions. Advances in X-ray Computed Tomography (CT) provide powerful means to conduct such characterization....... This study examined aggregate pore structure of three differently managed same textured Danish soils (mixed forage cropping, MFC; mixed cash cropping, MCC; cereal cash cropping, CCC) for (i) natural aggregates, and (ii) aggregates regenerated after 20 months of incubation. In total, 27 aggregates (8-16 mm...... pore diameter of 200 and 170 Hm, respectively. Pore shape analysis indicated that CCC and MFC aggregates had an abundance of rounded and elongated pores, respectively, and those of MCC were in-between CCC and MFC. Aggregate pore structure development in the lysimeters was nearly similar irrespective...

  11. Unto the third generation: evidence for strong familial aggregation of physicians, psychologists, and psychotherapists among first-year medical and psychology students in a nationwide Austrian cohort census.

    Science.gov (United States)

    Tran, Ulrich S; Berger, Nina; Arendasy, Martin E; Greitemeyer, Tobias; Himmelbauer, Monika; Hutzler, Florian; Kraft, Hans-Georg; Oettl, Karl; Papousek, Ilona; Vitouch, Oliver; Voracek, Martin

    2017-05-03

    Medical students present higher numbers of physician relatives than expectable from the total population prevalence of physicians. Evidence for such a familial aggregation effect of physicians has emerged in investigations from the Anglo-American, Scandinavian, and German-speaking areas. In particular, past data from Austria suggest a familial aggregation of the medical, as well as of the psychological and psychotherapeutic, professions among medical and psychology undergraduates alike. Here, we extend prior related studies by examining (1) the extent to which familial aggregation effects apply to the whole nation-wide student census of all relevant (eight) public universities in Austria; (2) whether effects are comparable for medical and psychology students; (3) and whether these effects generalize to relatives of three interrelated health professions (medicine, psychology, and psychotherapy). We investigated the familial aggregation of physicians, psychologists, and psychotherapists, based on an entire cohort census of first-year medical and psychology students (n = 881 and 920) in Austria with generalized linear mixed models. For both disciplines, we found strong familial aggregation of physicians, psychologists, and psychotherapists. As compared with previous results, directionally opposite time trends within disciplines emerged: familial aggregation of physicians among medical students has decreased, whilst familial aggregation of psychologists among psychology students has increased. Further, there were sex-of-relative effects (i.e., more male than female physician relatives), but no substantial sex-of-student effects (i.e., male and female students overall reported similar numbers of relatives for all three professions of interest). In addition, there were age-benefit effects, i.e., students with a relative in the medical or the psychotherapeutic profession were younger than students without, thus suggesting earlier career decisions. The familial

  12. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    Directory of Open Access Journals (Sweden)

    Feinan Hu

    Full Text Available Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+ at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.

  13. Quantitative Characterization of Non-Classic Polarization of Cations on Clay Aggregate Stability

    Science.gov (United States)

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10−5 to 10−1 mol L−1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation–surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864

  14. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    Energy Technology Data Exchange (ETDEWEB)

    Jiemsakul, Thanakorn [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120 (Thailand); Manakasettharn, Supone, E-mail: supone@nanotec.or.th [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120 (Thailand); Kanharattanachai, Sivakorn; Wanna, Yongyuth [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand); Wangsuya, Sujint [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand); Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand); Pratontep, Sirapat [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand)

    2017-01-15

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO{sub 2} laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs. - Highlights: • We demonstrate microfluidic switching valves based on aggregates of magnetic particles. • Maximum flow rate that the aggregate can withstand scales with the square of the external magnetic flux density. • Aggregates with smaller magnetic nanoparticle size can withstand higher flow rate. • Aggregate length exhibits a linear dependence with flow resistance of a viscous fluid.

  15. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.

    Science.gov (United States)

    Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani

    2017-10-14

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  16. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.

    Science.gov (United States)

    Chong, Song-Ho; Ham, Sihyun

    2015-04-21

    Protein aggregation in aqueous cellular environments is linked to diverse human diseases. Protein aggregation proceeds through a multistep process initiated by conformational transitions, called protein misfolding, of monomer species toward aggregation-prone structures. Various forms of aggregate species are generated through the association of misfolded monomers including soluble oligomers and amyloid fibrils. Elucidating the molecular mechanisms and driving forces involved in the misfolding and subsequent association has been a central issue for understanding and preventing protein aggregation diseases such as Alzheimer's, Parkinson's, and type II diabetes. In this Account, we provide a thermodynamic perspective of the misfolding and aggregation of the amyloid-beta (Aβ) protein implicated in Alzheimer's disease through the application of fluctuating thermodynamics. This approach "dissects" the conventional thermodynamic characterization of the end states into the one of the fluctuating processes connecting them, and enables one to analyze variations in the thermodynamic functions that occur during the course of protein conformational changes. The central quantity in this approach is the solvent-averaged effective energy, f = Eu + Gsolv, comprising the protein potential energy (Eu) and the solvation free energy (Gsolv), whose time variation reflects the protein dynamics on the free energy landscape. Protein configurational entropy is quantified by the magnitude of fluctuations in f. We find that misfolding of the Aβ monomer when released from a membrane environment to an aqueous phase is driven by favorable changes in protein potential energy and configurational entropy, but it is also accompanied by an unfavorable increase in solvation free energy. The subsequent dimerization of the misfolded Aβ monomers occurs in two steps. The first step, where two widely separated monomers come into contact distance, is driven by water-mediated attraction, that is, by a

  17. Slow aggregation of lysozyme in alkaline pH monitored in real time employing the fluorescence anisotropy of covalently labelled dansyl probe.

    Science.gov (United States)

    Homchaudhuri, Lopamudra; Kumar, Satish; Swaminathan, Rajaram

    2006-04-03

    The onset of hen egg white lysozyme aggregation on exposure to alkaline pH of 12.2 and subsequent slow growth of soluble lysozyme aggregates (at 298 K) was directly monitored by steady-state and time-resolved fluorescence anisotropy of covalently attached dansyl probe over a period of 24 h. The rotational correlation time accounting for tumbling of lysozyme in solution (40 microM) increased from approximately 3.6 ns (in pH 7) to approximately 40ns on exposure to pH 12.2 over a period of 6 h and remained stable thereafter. The growth of aggregates was strongly concentration dependent, irreversible after 60 min and inhibited by the presence of 0.9 M l-arginine in the medium. The day old aggregates were resistant to denaturation by 6 M guanidine.HCl. Our results reveal slow segmental motion of the dansyl probe in day old aggregates in the absence of L-arginine (0.9 M), but a much faster motion in its presence, when growth of aggregates is halted.

  18. Parameters for assessing recycled aggregate and their correlation.

    Science.gov (United States)

    Tam, Vivian W Y; Tam, C M

    2009-02-01

    Construction and demolition (C&D) waste has consumed a large portion of the landfill areas in Hong Kong. Among them, concrete occupies more than 70% of the total C&D waste by volume. Thus it is necessary to recycle concrete waste to preserve landfill areas. Various governmental departments of the Hong Kong Special Administrative Region (HKSAR) are encouraging the use of recycled aggregate (RA) in the Hong Kong construction industry by issuing various guidelines and specifications. Owing to uncertainty in their properties, however, practitioners are sceptical in using it as a substitute. In this study, an attempt has been made to look at relations among six main parameters that describe the behaviour of RA: (1) particle size distribution; (2) particle density; (3) porosity and absorption; (4) particle shape; (5) strength and toughness; and (6) chloride and sulphate contents. RA samples were obtained from nine demolition sites with service lives ranging from 10 to 40 years and another set of samples was collected from the Tuen Mun Area 38 recycling plant. The behaviour of these samples was compared with that of normal aggregate samples. This study revealed that there is a strong correlation among various parameters, and by measuring three of them: either 'particle density' or 'porosity and absorption' or 'particle shape', and 'strength and toughness', and 'chloride and sulphate contents', it is possible to assess the behaviour of RA. This can significantly help by reducing RA testing time and cost before using it as recycled aggregate concrete.

  19. Anti-Platelet Aggregation and Vasorelaxing Effects of the Constituents of the Rhizomes of Zingiber officinale

    Directory of Open Access Journals (Sweden)

    Tian-Shung Wu

    2012-07-01

    Full Text Available In the present study, the chemical investigation of the bioactive fractions of the rhizomes of Zingiber officinale has resulted in the identification of twenty-nine compounds including one new compound, O-methyldehydrogingerol (<strong>1strong>. Some of the isolates were subjected into the evaluation of their antiplatelet aggregation and vasorelaxing bioactivities. Among the tested compounds, [6]-gingerol (<strong>13strong> and [6]-shogaol (<strong>17strong> exhibited potent anti-platelet aggregation bioactivity. In addition, [10]-gingerol (<strong>15strong> inhibited the Ca2+-dependent contractions in high K+ medium. According to the results in the present research, the bioactivity of ginger could be related to the anti-platelet aggregation and vasorelaxing mechanism.

  20. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise.

    Science.gov (United States)

    Che-Castaldo, Christian; Jenouvrier, Stephanie; Youngflesh, Casey; Shoemaker, Kevin T; Humphries, Grant; McDowall, Philip; Landrum, Laura; Holland, Marika M; Li, Yun; Ji, Rubao; Lynch, Heather J

    2017-10-10

    Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982-2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide "year effects" strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.Adélie penguins are a key Antarctic indicator species, but data patchiness has challenged efforts to link population dynamics to key drivers. Che-Castaldo et al. resolve this issue using a pan-Antarctic Bayesian model to infer missing data, and show that spatial aggregation leads to more robust inference regarding dynamics.

  1. Convective Self-Aggregation in Numerical Simulations: A Review

    Science.gov (United States)

    Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline

    Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is ``self-aggregation,'' in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.

  2. The alkali-aggregate reaction - concrete microstructure evolution

    International Nuclear Information System (INIS)

    Regourd, M.; Hornain, H.; Poitevin, P.

    1981-01-01

    The alkali-aggregate reaction has been studied by scanning electron microscopy and energy dispersive X-ray analysis, electron probe microanalysis, and X-ray diffraction in concretes containing glass aggregates or hornfels and greywacke aggregates. The surface reaction of the natural aggregates in alkaline solutions has been analysed by X-ray photo-electron spectrometry. The study of concretes with glass aggregates stored at 20 degrees Celcius and 100 percent relative humidity has revealed, irrespective of alkali content and type of cement, the formation of a gel containing SiO 2 , Na 2 O, CaO, MgO and Al 2 O 3 . Under heat and pressure (210 degrees Celcius at MPa for 48 hours), the gel crystallizes and yields silicates not very different from tobermorite found in autoclaved normal concretes but cotaining Na and K in solid solutions. The alkali reaction in two natural aggregate concretes, is also shown by the formation of gels and silicate crystals. The progressive structuring of the gels in silicate crystals is promoted by an increase in temperature. Ettringite and Ca(OH) 2 reinforce the alkali-aggregate reaction which may be looked upon as a hydration reaction, partially of the pozzolanic type

  3. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hestand, Nicholas J.; Spano, Frank C. [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-12-28

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  4. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    International Nuclear Information System (INIS)

    Hestand, Nicholas J.; Spano, Frank C.

    2015-01-01

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t e ) and hole (t h ) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t e t h and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems

  5. Commercial Building Tenant Energy Usage Aggregation and Privacy

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

    2014-10-31

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

  6. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    International Nuclear Information System (INIS)

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-01-01

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly

  7. SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE

    Directory of Open Access Journals (Sweden)

    Huan He

    2016-12-01

    Full Text Available Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed digital image analysis systems are employed as the main approaches for the purpose. Some other technical methods, e.g. sieve test, laser diffraction method are also used for the comparable references. Shape characteristics of fine aggregates with different origins but in similar size ranges are revealed by this study. Compared with coarse aggregate, fine grains of different origins generally have similar shape differences. These differences are more significant in surface texture properties, which can be easily identified by an advanced shape parameter: bluntness. The new image analysis method is then approved to be efficient for the shape characterization of fine aggregate in concrete.

  8. Impact of morphology on the radiative properties of fractal soot aggregates

    International Nuclear Information System (INIS)

    Doner, Nimeti; Liu, Fengshan

    2017-01-01

    The impact of morphology on the radiative properties of fractal soot aggregates was investigated using the discrete dipole approximation (DDA). The optical properties of four different types of aggregates of freshly emitted soot with a fractal dimension D f =1.65 and a fractal pre-factor k f =1.76 were calculated. The four types of aggregates investigated are formed by uniform primary particles in point-touch, by uniform but overlapping primary particles, by uniform but enlarged primary particles in point-touch, and formed by point-touch and polydisperse primary particles. The radiative properties of aggregates consisting of N=20, 56 and 103 primary particles were numerically evaluated for a given refractive index at 0.532 and 1.064 μm. The radiative properties of soot aggregates vary strongly with the volume equivalent radius a eff and wavelength. The accuracy of DDA was evaluated in the first and fourth cases against the generalized multi-sphere Mie (GMM) solution in terms of the vertical–vertical differential scattering cross section (C vv ). The model predicted the average relative deviations from the base case to be within 15–25% for C vv , depending on the number of particles for the aggregate. The scattering cross sections are only slightly affected by the overlapping but more significantly influenced by primary particle polydispersity. It was also found that the enlargement of primary particles by 20% has a strong effect on soot aggregate radiative properties. - Highlights: • The radiative properties of aggregates of N=20, 56 and 103 primary particles were investigated. • Four different cases, formed by point-touch, overlapping, aggregate expansion and polydispersion, were studied. • The effects of overlapping and aggregate expansion on morphology are found to be the same.

  9. Contrasting self-aggregation over land and ocean surfaces

    Science.gov (United States)

    Inda Diaz, H. A.; O'Brien, T. A.

    2017-12-01

    The spontaneous organization of convection into clusters, or self-aggregation, demonstrably changes the nature and statistics of precipitation. While there has been much recent progress in this area, the processes that control self-aggregation are still poorly understood. Most of the work to date has focused on self-aggregation over ocean-like surfaces, but it is particularly pressing to understand what controls convective aggregation over land, since the associated change in precipitation statistics—between non-aggregated and aggregated convection—could have huge impacts on society and infrastructure. Radiative-convective equilibrium (RCE), has been extensively used as an idealized framework to study the tropical atmosphere. Self-aggregation manifests in numerous numerical models of RCE, nevertheless, there is still a lack of understanding in how it relates to convective organization in the observed world. Numerous studies have examined self-aggregation using idealized Cloud Resolving Models (CRMs) and General Circulation Models over the ocean, however very little work has been done on RCE and self-aggregation over land. Idealized models of RCE over ocean have shown that aggregation is sensitive to sea surface temperature (SST), more intense precipitation occurs in aggregated systems, and a variety of feedbacks—such as surface flux, cloud radiative, and upgradient moisture transport— contribute to the maintenance of aggregation, however it is not clear if these results apply over land. Progress in this area could help relate understanding of self-aggregation in idealized simulations to observations. In order to explore the behavior of self-aggregation over land, we use a CRM to simulate idealized RCE over land. In particular, we examine the aggregation of convection and how it compares with aggregation over ocean. Based on previous studies, where a variety of different CRMs exhibit a SST threshold below which self-aggregation does not occur, we hypothesize

  10. The role of alginate in Azotobacter vinelandii aggregation in submerged culture

    Directory of Open Access Journals (Sweden)

    Edith Coronado

    2008-01-01

    Full Text Available The culture of strain LA21, a non-mucoid strain of Azotobacter vinelandii derivative of ATCC 9046, revealed that alginate is not necessary for aggregate formation. In fact, the non-mucoid strain LA21 developed aggregates significantly larger than those of the mucoid strain (ATCC 9046, which suggests that alginate has a detrimental effect on the aggregate size, due to its properties as a surface active agent. Treating the aggregates with a protease caused a decrease in the equivalent diameter of the structures, suggesting the participation of extracellular proteins in the aggregation. Key words: Aggregation; Azotobacter vinelandii; alginate; mutant strain; mucoid.

  11. Temperature dependence of erythrocyte aggregation in vitro by backscattering nephelometry

    Science.gov (United States)

    Sirko, Igor V.; Firsov, Nikolai N.; Ryaboshapka, Olga M.; Priezzhev, Alexander V.

    1997-05-01

    We apply backscattering nephelometry technique to register the alterations of the scattering signal from a whole blood sample due to appearance or disappearance of different types of erythrocyte aggregates in stasis and under controlled shear stress. The measured parameters are: the characteristic times of linear and 3D aggregates formation, and the strength of aggregates of different types. These parameters depend on the sample temperature in the range of 2 divided by 50 degrees C. Temporal parameters of the aggregation process strongly increase at temperature 45 degrees C. For samples of normal blood the aggregates strength parameters do not significantly depend on the sample temperature, whereas for blood samples from patients suffering Sjogren syndrome we observe high increase of the strength of 3D and linear aggregates and decrease of time of linear aggregates formation at low temperature of the sample. This combination of parameters is opposite to that observed in the samples of pathological blood at room temperature. Possible reasons of this behavior of aggregation state of blood and explanation of the observed effects will be discussed.

  12. Aggregation patterns of fetal rat brain cells following exposure to X-irradiation

    International Nuclear Information System (INIS)

    Shoji, R.; Suzuki, K.; Lee, I.P.

    1980-01-01

    In our search for a simplified in vitro test system to assess the teratogenic effects of physical factors, we studied the effects of total maternal body X-irradiation on aggregation patterns of enzymatically isolated fetal rat brain cells and on ultrastructural aggregate changes. The fetal brain cells were derived from day 14 gestation fetuses of pregnant Sprague-Dawley (CD strain) rats exposed to X-irradiation (25 - 200 R) one hour prior to sacrifice. Notable changes in the cell aggregates following X-irradiation included a reduction in cell aggregate size and an increase in number. The frequency of cell aggregates was higher in the treated than in the control group, and the mean diameter of cell aggregates was inversely related to increasing X-irradiation doses. Transmission electron microscopy revealed in isolated cells features of degenerative process which were similar to those found in intact fetal brain lesions caused by maternal X-irradiation. Furthermore, scanning electron microscopy revealed that inhibition of cell aggregation following X-irradiation could probably be attributed to inhibition of membrane filopodia development and a consequent failure of cell aggregates to fuse into a greater cell aggregate mass. These results suggest that the membrane factors which influence cell aggregation may be a useful parameter to assess early effects of X-irradiation-induced brain deformity. Presently, the cell aggregation culture system is being further evaluated as a short term test system for environmental teratogens

  13. Aggregated particles caused by instrument artifact

    Directory of Open Access Journals (Sweden)

    A. M. Pierce

    2018-04-01

    Full Text Available Previous studies have indicated that superaggregates, clusters of aggregates of soot primary particles, can be formed in large-scale turbulent fires. Due to lower effective densities, higher porosity, and lower aerodynamic diameters, superaggregates may pass through inlets designed to remove particles  <  2.5 µm in aerodynamic diameter (PM2.5. Ambient particulate matter samples were collected at Peavine Peak, NV, USA (2515 m northwest of Reno, NV, USA from June to November 2014. The Teledyne Advanced Pollution Instrumentation (TAPI 602 BetaPlus particulate monitor was used to collect PM2.5 on two filter types. During this time, aggregated particles  >  2.5 µm in aerodynamic diameter were collected on 36 out of 158 sample days. On preliminary analysis, it was thought that these aggregated particles were superaggregates, depositing past PM10 (particles  <  10 µm in aerodynamic diameter pre-impactors and PM2.5 cyclones. However, further analysis revealed that these aggregated particles were dissimilar to superaggregates observed in previous studies, both in morphology and in elemental composition. To determine if the aggregated particles were superaggregates or an instrument artifact, samples were investigated for the presence of certain elements, the occurrence of fires, high relative humidity and wind speeds, as well as the use of generators on site. Samples with aggregated particles, referred to as aggregates, were analyzed using a scanning electron microscope for size and shape and energy dispersive X-ray spectroscopy was used for elemental analysis. It was determined, based on the high amounts of aluminum present in the aggregate samples, that a sampling artifact associated with the sample inlet and prolonged, high wind events was the probable reason for the observed aggregates.

  14. Aggregation in charged nanoparticles solutions induced by different interactions

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, S.; Kumar, Sugam; Aswal, V. K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2016-05-23

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  15. Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes

    OpenAIRE

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter

    2010-01-01

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...

  16. Prevention of H-Aggregates Formation in Cy5 Labeled Macromolecules

    Directory of Open Access Journals (Sweden)

    Jing Kang

    2010-01-01

    Full Text Available H-aggregates of the cyanine dye Cy5 are formed during covalent linkage to the cationic macromolecule Poly(allylamine (PAH. The nonfluorescent H-aggregates strongly restrict the usage of the dye for analytical purposes and prevent a quantitative determination of the labeled macromolecules. The behavior of the H-aggregates has been studied by investigation of the absorption and fluorescence spectra of the dye polymer in dependence on solvent, label degree and additional sulfonate groups. H-aggregate formation is caused by an inhomogeneous distribution of the Cy5 molecules on the polymer chain. The H-aggregates can be destroyed by conformational changes of the PAH induced by interactions with polyanions or in organic solvents. It has been found that the polymer labeling process in high content of organic solvents can prevent the formation of H-aggregates. The results offer a better understanding and improvement of the use of the Cy5 dye for labeling purposes in fluorescence detection of macromolecules.

  17. Co-existence of free and self-trapped excitons in J-aggregates

    International Nuclear Information System (INIS)

    Malyukin, Yu.V.; Lebedenko, A.N.; Sorokin, A.V.; Yefimova, S.L.

    2005-01-01

    Nature of excited electronic states of amphi-PIC J-aggregates, which are the source of the self-trapping states, have been investigated using low-temperature site-selective, time-resolved spectroscopy techniques. The self-trapping states are shown to evolve from the delocalized exciton states within the J-band. The strongly localized electronic states located on the low-frequency edge of the J-band, are not able to form polaronic states and, hence, the polaronic relaxation process is particularly collective one. The exciton self-trapping is more effective in J-aggregates with strong disorder, requires overcoming a self-trapping barrier

  18. Aggregation Potentials for Buildings - Business Models of Demand Response and Virtual Power Plants

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Jørgensen, Bo Nørregaard

    2017-01-01

    programs, national regulations and energy market structures strongly influence buildings’ participation in the aggregation market. Under the current Nordic market regulation, business model one is the most feasible one, and business model two faces more challenges due to regulation barriers and limited...... aggregation market with unclear incentives is still a challenge for buildings to participate in the aggregation market. However, few studies have investigated business models for building participation in the aggregation market. Therefore, this paper develops four business models for buildings to participate...

  19. Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine beta-lactoglobulin

    NARCIS (Netherlands)

    Arnaudov, L.N.; Vries, de R.J.

    2006-01-01

    We investigate the effect of ionic strength on the kinetics of heat-induced fibrilar aggregation of bovine -lactoglobulin at pH 2.0. Using in situ light scattering we find an apparent critical protein concentration below which there is no significant fibril formation for all ionic strengths studied.

  20. The effect of pH profiles in methanogenic aggregates on the kinetics of acetate conversion

    NARCIS (Netherlands)

    Beer, de D.; Huisman, J.W.; Heuvel, van den J.C.; Ottengraf, S.P.P.

    1993-01-01

    Due to the conversion of acetic acid into the weaker carbonic acid and CH4, the pH inside methanogenic aggregates is higher than in the bulk liq. The pH profiles in aggregates were measured with pH microelectrodes. These profiles strongly det. the macro-kinetics of the aggregate, by their influence

  1. Petrography study on altered flint aggregate by alkali-silica reaction

    International Nuclear Information System (INIS)

    Bulteel, D.; Rafai, N.; Degrugilliers, P.; Garcia-Diaz, E.

    2004-01-01

    The aim of our study is to improve our understanding of an alkali-silica reaction (ASR) via petrography. We used a chemical concrete subsystem: flint aggregate, portlandite and KOH. The altered flint aggregate is followed by optical microscopy and scanning electron microscopy (SEM) before and after acid treatment at different intervals. After acid treatment, the observations showed an increase in aggregate porosity and revealed internal degradation of the aggregate. This degradation created amorphous zones. Before acid treatment, the analyses on polished sections by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS) enabled visualization of K + and Ca 2+ penetration into the aggregate. The appearance of amorphous zones and penetration of positive ions into the aggregate are correlated with the increase in the molar fraction of silanol sites. This degradation is specific to the alkali-silica reaction

  2. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation

    Science.gov (United States)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2015-10-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested highaccuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm-3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (aggregate stability and release of soil organic matter upon aggregate breakdown.

  3. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation**

    Science.gov (United States)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2016-01-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested high-accuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm−3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (aggregate stability and release of soil organic matter upon aggregate breakdown. PMID:27099408

  4. J-aggregation, its impact on excited state dynamics and unique solvent effects on macroscopic assembly of a core-substituted naphthalenediimide

    KAUST Repository

    Kar, Haridas; Gehrig, Dominik W.; Laquai, Fré dé ric; Ghosh, Suhrit

    2015-01-01

    Herein we reveal a straightforward supramolecular design for the H-bonding driven J-aggregation of an amine-substituted cNDI in aliphatic hydrocarbons. Transient absorption spectroscopy reveals sub-ps intramolecular electron transfer in isolated NDI molecules in a THF solution followed by a fast recombination process, while a remarkable extension of the excited state lifetime by more than one order of magnitude occurred in methylcyclohexane likely owing to an increased charge-separation as a result of better delocalization of the charge-separated states in J-aggregates. We also describe unique solvent-effects on the macroscopic structure and morphology. While J-aggregation with similar photophysical characteristics was noticed in all the tested aliphatic hydrocarbons, the morphology strongly depends on the “structure” of the solvents. In linear hydrocarbons (n-hexane, n-octane, n-decane or n-dodecane), formation of an entangled fibrillar network leads to macroscopic gelation while in cyclic hydrocarbons (methylcyclohexane or cyclohexane) although having a similar polarity, the cNDI exhibits nanoscale spherical particles. These unprecedented solvent effects were rationalized by establishing structure-dependent specific interactions of the solvent molecules with the cNDI which may serve as a general guideline for solvent-induced morphology-control of structurally related self-assembled materials.

  5. J-aggregation, its impact on excited state dynamics and unique solvent effects on macroscopic assembly of a core-substituted naphthalenediimide

    KAUST Repository

    Kar, Haridas

    2015-03-12

    Herein we reveal a straightforward supramolecular design for the H-bonding driven J-aggregation of an amine-substituted cNDI in aliphatic hydrocarbons. Transient absorption spectroscopy reveals sub-ps intramolecular electron transfer in isolated NDI molecules in a THF solution followed by a fast recombination process, while a remarkable extension of the excited state lifetime by more than one order of magnitude occurred in methylcyclohexane likely owing to an increased charge-separation as a result of better delocalization of the charge-separated states in J-aggregates. We also describe unique solvent-effects on the macroscopic structure and morphology. While J-aggregation with similar photophysical characteristics was noticed in all the tested aliphatic hydrocarbons, the morphology strongly depends on the “structure” of the solvents. In linear hydrocarbons (n-hexane, n-octane, n-decane or n-dodecane), formation of an entangled fibrillar network leads to macroscopic gelation while in cyclic hydrocarbons (methylcyclohexane or cyclohexane) although having a similar polarity, the cNDI exhibits nanoscale spherical particles. These unprecedented solvent effects were rationalized by establishing structure-dependent specific interactions of the solvent molecules with the cNDI which may serve as a general guideline for solvent-induced morphology-control of structurally related self-assembled materials.

  6. Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation

    DEFF Research Database (Denmark)

    Betzer, Cristine; Lassen, Louise Berkhoudt; Olsen, Anders

    2018-01-01

    Aggregation of α-synuclein is a hallmark of Parkinson's disease and dementia with Lewy bodies. We here investigate the relationship between cytosolic Ca2+and α-synuclein aggregation. Analyses of cell lines and primary culture models of α-synuclein cytopathology reveal an early phase with reduced ...

  7. The proteome of neurofilament-containing protein aggregates in blood

    Directory of Open Access Journals (Sweden)

    Rocco Adiutori

    2018-07-01

    Full Text Available Protein aggregation in biofluids is a poorly understood phenomenon. Under normal physiological conditions, fluid-borne aggregates may contain plasma or cell proteins prone to aggregation. Recent observations suggest that neurofilaments (Nf, the building blocks of neurons and a biomarker of neurodegeneration, are included in high molecular weight complexes in circulation. The composition of these Nf-containing hetero-aggregates (NCH may change in systemic or organ-specific pathologies, providing the basis to develop novel disease biomarkers. We have tested ultracentrifugation (UC and a commercially available protein aggregate binder, Seprion PAD-Beads (SEP, for the enrichment of NCH from plasma of healthy individuals, and then characterised the Nf content of the aggregate fractions using gel electrophoresis and their proteome by mass spectrometry (MS. Western blot analysis of fractions obtained by UC showed that among Nf isoforms, neurofilament heavy chain (NfH was found within SDS-stable high molecular weight aggregates. Shotgun proteomics of aggregates obtained with both extraction techniques identified mostly cell structural and to a lesser extent extra-cellular matrix proteins, while functional analysis revealed pathways involved in inflammatory response, phagosome and prion-like protein behaviour. UC aggregates were specifically enriched with proteins involved in endocrine, metabolic and cell-signalling regulation. We describe the proteome of neurofilament-containing aggregates isolated from healthy individuals biofluids using different extraction methods.

  8. Synthetic food additive dye "Tartrazine" triggers amorphous aggregation in cationic myoglobin.

    Science.gov (United States)

    Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Khan, Mohd Shahnawaz; Ali, Mohd Sajid; Al-Senaidy, Abdulrahman M; Alsenaidy, Mohammad A; Husain, Fohad Mabood; Al-Lohedan, Hamad A

    2017-05-01

    Protein aggregation, a characteristic of several neurodegenerative diseases, displays vast conformational diversity from amorphous to amyloid-like aggregates. In this study, we have explored the interaction of tartrazine with myoglobin protein at two different pHs (7.4 and 2.0). We have utilized various spectroscopic techniques (turbidity, Rayleigh light scattering (RLS), intrinsic fluorescence, Congo Red and far-UV CD) along with microscopy techniques i.e. atomic force microscopy (AFM) and transmission electron microscopy (TEM) to characterize the tartrazine-induced aggregation in myoglobin. The results showed that higher concentrations of tartrazine (2.0-10.0mM) induced amorphous aggregation in myoglobin at pH 2.0 via electrostatic interactions. However, tartrazine was not able to induce aggregation in myoglobin at pH 7.4; because of strong electrostatic repulsion between myoglobin and tartrazine at this pH. The tartrazine-induced amorphous aggregation process is kinetically very fast, and aggregation occurred without the formation of a nucleus. These results proposed that the electrostatic interaction is responsible for tartrazine-induced amorphous aggregation. This study may help in the understanding of mechanistic insight of aggregation by tartrazine. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Communication: Strong laser alignment of solvent-solute aggregates in the gas-phase

    Science.gov (United States)

    Trippel, Sebastian; Wiese, Joss; Mullins, Terry; Küpper, Jochen

    2018-03-01

    Strong quasi-adiabatic laser alignment of the indole-water-dimer clusters, an amino-acid chromophore bound to a single water molecule through a hydrogen bond, was experimentally realized. The alignment was visualized through ion and electron imaging following strong-field ionization. Molecular-frame photoelectron angular distributions showed a clear suppression of the electron yield in the plane of the ionizing laser's polarization, which was analyzed as strong alignment of the molecular cluster with ⟨cos2 θ2D⟩ ≥ 0.9.

  10. Acceleration of tropical cyclogenesis by self-aggregation feedbacks.

    Science.gov (United States)

    Muller, Caroline J; Romps, David M

    2018-03-20

    Idealized simulations of tropical moist convection have revealed that clouds can spontaneously clump together in a process called self-aggregation. This results in a state where a moist cloudy region with intense deep convection is surrounded by extremely dry subsiding air devoid of deep convection. Because of the idealized settings of the simulations where it was discovered, the relevance of self-aggregation to the real world is still debated. Here, we show that self-aggregation feedbacks play a leading-order role in the spontaneous genesis of tropical cyclones in cloud-resolving simulations. Those feedbacks accelerate the cyclogenesis process by a factor of 2, and the feedbacks contributing to the cyclone formation show qualitative and quantitative agreement with the self-aggregation process. Once the cyclone is formed, wind-induced surface heat exchange (WISHE) effects dominate, although we find that self-aggregation feedbacks have a small but nonnegligible contribution to the maintenance of the mature cyclone. Our results suggest that self-aggregation, and the framework developed for its study, can help shed more light into the physical processes leading to cyclogenesis and cyclone intensification. In particular, our results point out the importance of the longwave radiative cooling outside the cyclone.

  11. Historical spatial reconstruction of a spawning-aggregation fishery.

    Science.gov (United States)

    Buckley, Sarah M; Thurstan, Ruth H; Tobin, Andrew; Pandolfi, John M

    2017-12-01

    Aggregations of individual animals that form for breeding purposes are a critical ecological process for many species, yet these aggregations are inherently vulnerable to exploitation. Studies of the decline of exploited populations that form breeding aggregations tend to focus on catch rate and thus often overlook reductions in geographic range. We tested the hypothesis that catch rate and site occupancy of exploited fish-spawning aggregations (FSAs) decline in synchrony over time. We used the Spanish mackerel (Scomberomorus commerson) spawning-aggregation fishery in the Great Barrier Reef as a case study. Data were compiled from historical newspaper archives, fisher knowledge, and contemporary fishery logbooks to reconstruct catch rates and exploitation trends from the inception of the fishery. Our fine-scale analysis of catch and effort data spanned 103 years (1911-2013) and revealed a spatial expansion of fishing effort. Effort shifted offshore at a rate of 9.4 nm/decade, and 2.9 newly targeted FSAs were reported/decade. Spatial expansion of effort masked the sequential exploitation, commercial extinction, and loss of 70% of exploited FSAs. After standardizing for improvements in technological innovations, average catch rates declined by 90.5% from 1934 to 2011 (from 119.4 to 11.41 fish/vessel/trip). Mean catch rate of Spanish mackerel and occupancy of exploited mackerel FSAs were not significantly related. Our study revealed a special kind of shifting spatial baseline in which a contraction in exploited FSAs occurred undetected. Knowledge of temporally and spatially explicit information on FSAs can be relevant for the conservation and management of FSA species. © 2017 Society for Conservation Biology.

  12. Determination of the dynamic elastic constants of recycled aggregate concrete

    Science.gov (United States)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Nowadays, construction and demolition waste constitutes a major portion of the total solid waste production in the world. Due to both environmental and economical reasons, an increasing interest concerning the use of recycled aggregate to replace aggregate from natural sources is generated. This paper presents an investigation on the properties of recycled aggregate concrete. Concrete mixes are prepared using recycled aggregates at a substitution level between 0 and 100% of the total coarse aggregate. The influence of this replacement on strengthened concrete's properties is being investigated. The properties estimated are: density and dynamic modulus of elasticity at the age of both 7 and 28 days. Also, flexural strength of 28 days specimens is estimated. The determination of the dynamic elastic modulus was made using the ultrasonic pulse velocity method. The results reveal that the existence of recycled aggregates affects the properties of concrete negatively; however, in low levels of substitution the influence of using recycled aggregates is almost negligible. Concluding, the controlled use of recycled aggregates in concrete production may help solve a vital environmental issue apart from being a solution to the problem of inadequate concrete aggregates.

  13. Long-run relationship between sectoral productivity and energy consumption in Malaysia: An aggregated and disaggregated viewpoint

    International Nuclear Information System (INIS)

    Rahman, Md Saifur; Junsheng, Ha; Shahari, Farihana; Aslam, Mohamed; Masud, Muhammad Mehedi; Banna, Hasanul; Liya, Ma

    2015-01-01

    This paper investigates the causal relationship between energy consumption and economic productivity in Malaysia at both aggregated and disaggregated levels. The investigation utilises total and sectoral (industrial and manufacturing) productivity growth during the 1971–2012 period using the modified Granger causality test proposed by Toda and Yamamoto [1] within a multivariate framework. The economy of Malaysia was found to be energy dependent at aggregated and disaggregated levels of national and sectoral economic growth. However, at disaggregate level, inefficient energy use is particularly identified with electricity and coal consumption patterns and their Granger caused negative effects upon GDP (Gross Domestic Product) and manufacturing growth. These findings suggest that policies should focus more on improving energy efficiency and energy saving. Furthermore, since emissions are found to have a close relationship to economic output at national and sectoral levels green technologies are of a highest necessity. - Highlights: • At aggregate level, energy consumption significantly influences GDP (Gross Domestic Product). • At disaggregate level, electricity & coal consumption does not help output growth. • Mineral and waste are found to positively Granger cause GDP. • The results reveal strong interactions between emissions and economic growth

  14. Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering.

    Science.gov (United States)

    Ho, Tuan Anh; Greathouse, Jeffery A; Wang, Yifeng; Criscenti, Louise J

    2017-11-10

    The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of the aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.

  15. A cost-based empirical model of the aggregate price determination for the Turkish economy: A multivariate cointegration approach

    Directory of Open Access Journals (Sweden)

    Zeren Fatma

    2010-01-01

    Full Text Available This paper tries to examine the long run relationships between the aggregate consumer prices and some cost-based components for the Turkish economy. Based on a simple economic model of the macro-scaled price formation, multivariate cointegration techniques have been applied to test whether the real data support the a priori model construction. The results reveal that all of the factors, related to the price determination, have a positive impact on the consumer prices as expected. We find that the most significant component contributing to the price setting is the nominal exchange rate depreciation. We also cannot reject the linear homogeneity of the sum of all the price data as to the domestic inflation. The paper concludes that the Turkish consumer prices have in fact a strong cost-push component that contributes to the aggregate pricing.

  16. Catanionic aggregates stability and structure

    International Nuclear Information System (INIS)

    Vautrin, Claire

    2004-01-01

    The catanionic system cetyl-trimethyl-ammonium hydroxide - myristic acid - water studied here has the advantage to produce aggregates with controlled charge. So, the ternary phase diagram presents some interesting aggregates (micelle, vesicle, disc, lamellar phase). The study of the CMC put in evidence some strong interactions between monomers: the interaction parameter is equal to -10 kT. On a microscopic point of view, the alkyl chains packing is hexagonal and we proved by WAXS and WANS that the head groups are liquid ordered. Moreover, the hydrogen bonds participate to the bilayer cohesion. The mechanical properties of the catanionic membrane are similar to the properties of phospholipids. We estimated the Young modulus to 100 MPa by compressibility measurements (acoustic propagation and Langmuir trough). The thermodynamic properties studied by DSC showed that the chain melting transition depends on the sample composition. (author) [fr

  17. Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates

    Science.gov (United States)

    Castello, Fabio; Paredes, Jose M.; Ruedas-Rama, Maria J.; Martin, Miguel; Roldan, Mar; Casares, Salvador; Orte, Angel

    2017-01-01

    The self-assembly of proteins into fibrillar structures called amyloid fibrils underlies the onset and symptoms of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. However, the molecular basis and mechanism of amyloid aggregation are not completely understood. For many amyloidogenic proteins, certain oligomeric intermediates that form in the early aggregation phase appear to be the principal cause of cellular toxicity. Recent computational studies have suggested the importance of nonspecific interactions for the initiation of the oligomerization process prior to the structural conversion steps and template seeding, particularly at low protein concentrations. Here, using advanced single-molecule fluorescence spectroscopy and imaging of a model SH3 domain, we obtained direct evidence that nonspecific aggregates are required in a two-step nucleation mechanism of amyloid aggregation. We identified three different oligomeric types according to their sizes and compactness and performed a full mechanistic study that revealed a mandatory rate-limiting conformational conversion step. We also identified the most cytotoxic species, which may be possible targets for inhibiting and preventing amyloid aggregation.

  18. SHAPE CHARACTERIZATION OF CONCRETE AGGREGATE

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2011-05-01

    Full Text Available As a composite material, the performance of concrete materials can be expected to depend on the properties of the interfaces between its two major components, aggregate and cement paste. The microstructure at the interfacial transition zone (ITZ is assumed to be different from the bulk material. In general, properties of conventional concrete have been found favoured by optimum packing density of the aggregate. Particle size is a common denominator in such studies. Size segregation in the ITZ among the binder particles in the fresh state, observed in simulation studies by concurrent algorithm-based SPACE system, additionally governs density as well as physical bonding capacity inside these shell-like zones around aggregate particles. These characteristics have been demonstrated qualitatively pertaining also after maturation of the concrete. Such properties of the ITZs have direct impact on composite properties. Despite experimental approaches revealed effects of aggregate grain shape on different features of material structure (among which density, and as a consequence on mechanical properties, it is still an underrated factor in laboratory studies, probably due to the general feeling that a suitable methodology for shape characterization is not available. A scientific argument hindering progress is the interconnected nature of size and shape. Presently, a practical problem preventing shape effects to be emphasized is the limitation of most computer simulation systems in concrete technology to spherical particles. New developments at Delft University of Technology will make it possible in the near future to generate jammed states, or other high-density fresh particle mixtures of non-spherical particles, which thereupon can be subjected to hydration algorithms. This paper will sketch the outlines of a methodological approach for shape assessment of loose (non-embedded aggregate grains, and demonstrate its use for two types of aggregate, allowing

  19. Acoustic emission monitoring of recycled aggregate concrete under bending

    Science.gov (United States)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  20. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation

    International Nuclear Information System (INIS)

    Brown, Keith A.; Vassiliou, Christophoros C.; Issadore, David; Berezovsky, Jesse; Cima, Michael J.; Westervelt, R.M.

    2010-01-01

    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T 2 CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T 2 CP and details of the aggregate. We find that in the motional averaging regime T 2 CP scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T 2 CP ∝Ν -0.44 for aggregates with d=2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T 2 CP is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times.

  1. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joe Tien

    Full Text Available This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.

  2. Effect of protein-surfactant interactions on aggregation of β-lactoglobulin.

    Science.gov (United States)

    Hansted, Jon G; Wejse, Peter L; Bertelsen, Hans; Otzen, Daniel E

    2011-05-01

    The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Demography and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon along the open coast of southern California, USA

    Science.gov (United States)

    Nosal, D.C.; Cartamil, D.C.; Long, J.W.; Luhrmann, M.; Wegner, N.C.; Graham, J.B.

    2013-01-01

    The demography, spatial distribution, and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon in La Jolla, California, USA, were investigated to resolve the causal explanations for this and similar shark aggregations. All sharks sampled from the aggregation site (n=140) were sexually mature and 97.1 % were female. Aerial photographs taken during tethered balloon surveys revealed high densities of milling sharks of up to 5470 sharks ha-1. Eight sharks were each tagged with a continuous acoustic transmitter and manually tracked without interruption for up to 48 h. Sharks exhibited strong site-fidelity and were generally confined to a divergence (shadow) zone of low wave energy, which results from wave refraction over the steep bathymetric contours of the submarine canyon. Within this divergence zone, the movements of sharks were strongly localized over the seismically active Rose Canyon Fault. Tracked sharks spent most of their time in shallow water (≤2 m for 71.0 % and ≤10 m for 95.9 % of time), with some dispersing to deeper (max: 53.9 m) and cooler (min: 12.7 °C) water after sunset, subsequently returning by sunrise. These findings suggest multiple functions of this aggregation and that the mechanism controlling its formation, maintenance, and dissolution is complex and rooted in the sharks' variable response to numerous confounding environmental factors.

  4. Aggregate formation affects ultrasonic disruption of microalgal cells.

    Science.gov (United States)

    Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Protein aggregation in food models: effect of γ-irradiation and lipid oxidation

    International Nuclear Information System (INIS)

    Delincee, H.; Paul, P.

    1981-01-01

    Myoglobin and serum albumin have been irradiated in aqueous solution in the presence of varying amounts of carbohydrates and lipids, and the yield of protein aggregates has been determined by gel filtration. With myoglobin the formation of aggregates evolving from the reaction with oxidizing lipids was observed, which was not found for serum albumin. The production of protein-lipid complexes, in which lipid material was occluded in the high-molecular aggregates by physical forces was demonstrated. Gel filtration and gel electrophoresis, both in the presence of SDS, and thin-layer isoelectric focusing revealed distinct structural differenes between the protein aggregates induced by irradiation and the aggregates formed by interaction with oxidizing lipids

  6. Aggregation process, application to nuclear multifragmentation

    International Nuclear Information System (INIS)

    Garcia, Jean-Baptiste

    1995-01-01

    It is depicted an aggregation model (applied to nuclear multifragmentation) which I have elaborated and validated. This model contains an aggregation procedure, allowing one to determine the aggregation state of a given system. It takes into account spatial and kinetic nucleonic information, as well as in-medium effects. It is made of several energetic linkage criterions, all based on a single quantity: the energy of a system computed in its center of mass frame. This procedure has been applied to nuclear physics, assuming nucleus as a mix of two Fermi gas, interacting via the Yukawa potential (plus Coulomb in between protons) and obeying to a classical exclusion principle. The general trends of the model match with those of nuclear physics. Moreover, two comparisons between the model and nuclear multifragmentation experiments (ALADIN, then FOPI) exhibit nice agreements. The FOPI one, shows that fragments are bound to be formed at the beginning of the expansion phase (Au + Au at 150 MeV/nuc, for central collisions). This work ends with a study of the main ingredients included in the model. It reveals that in-medium effects, exclusion principle as well as the shape of the potential have a non negligible influence on the studied nuclear aggregation process. (author) [fr

  7. Familial Aggregation of Insomnia.

    Science.gov (United States)

    Jarrin, Denise C; Morin, Charles M; Rochefort, Amélie; Ivers, Hans; Dauvilliers, Yves A; Savard, Josée; LeBlanc, Mélanie; Merette, Chantal

    2017-02-01

    There is little information about familial aggregation of insomnia; however, this type of information is important to (1) improve our understanding of insomnia risk factors and (2) to design more effective treatment and prevention programs. This study aimed to investigate evidence of familial aggregation of insomnia among first-degree relatives of probands with and without insomnia. Cases (n = 134) and controls (n = 145) enrolled in a larger epidemiological study were solicited to invite their first-degree relatives and spouses to complete a standardized sleep/insomnia survey. In total, 371 first-degree relatives (Mage = 51.9 years, SD = 18.0; 34.3% male) and 138 spouses (Mage = 55.5 years, SD = 12.2; 68.1% male) completed the survey assessing the nature, severity, and frequency of sleep disturbances. The dependent variable was insomnia in first-degree relatives and spouses. Familial aggregation was claimed if the risk of insomnia was significantly higher in the exposed (relatives of cases) compared to the unexposed cohort (relatives of controls). The risk of insomnia was also compared between spouses in the exposed (spouses of cases) and unexposed cohort (spouses of controls). The risk of insomnia in exposed and unexposed biological relatives was 18.6% and 10.4%, respectively, yielding a relative risk (RR) of 1.80 (p = .04) after controlling for age and sex. The risk of insomnia in exposed and unexposed spouses was 9.1% and 4.2%, respectively; however, corresponding RR of 2.13 (p = .28) did not differ significantly. Results demonstrate evidence of strong familial aggregation of insomnia. Additional research is warranted to further clarify and disentangle the relative contribution of genetic and environmental factors in insomnia. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  8. Aggregate development in C 60/N-methyl-2-pyrrolidone solution and its mixture with water as revealed by extraction and mass spectroscopy

    Science.gov (United States)

    Kyzyma, O. A.; Korobov, M. V.; Avdeev, M. V.; Garamus, V. M.; Snegir, S. V.; Petrenko, V. I.; Aksenov, V. L.; Bulavin, L. A.

    2010-06-01

    The aggregate development in C 60/N-methyl-2-pyrrolidone (C 60/NMP) solution with time is studied by the extraction (hexane) and mass spectroscopy. It is shown that only molecular C 60 in NMP is extracted in hexane, which makes it possible to follow a change in the concentration of non-aggregated fullerene in C 60/NMP during the aggregate growth. It is concluded that almost all fullerene dissolved in NMP is in the aggregates after one month. The reorganization of the aggregates is detected when water is added to the aggregated solution C 60/NMP. Both methods prove that in this case individual fullerene molecules are detached from the aggregates, which contradicts somewhat to complete insolubility of C 60 in water.

  9. Energy efficient structure-free data aggregation and delivery in WSN

    Directory of Open Access Journals (Sweden)

    Prabhudutta Mohanty

    2016-11-01

    Full Text Available In Wireless Sensor Networks (WSNs, the energy consumption due to the sensed data transmission is more than processing data locally within the sensor node. The data aggregation is one of the techniques to conserve energy by eliminating the redundant data transmission in dense WSNs. In this paper, we propose an energy efficient structure-free data aggregation and delivery (ESDAD protocol, which aggregates the redundant data in the intermediate nodes. In the proposed protocol, waiting time for packets at each intermediate node is calculated very sensibly so that data can be aggregated efficiently in the routing path. The sensed data packets are transmitted judicially to the aggregation point for data aggregation. The ESDAD protocol computes a cost function for structure-free, next-hop node selection and performs near source data aggregation. The buffer of each node is partitioned to maintain different types of flows for fair and efficient data delivery. The transmission rates of the sources and intermediate nodes are adjusted during congestion. The performance of the proposed protocol is evaluated through extensive simulations. The simulation results reveal that it outperforms the existing structure-free protocols in terms of energy efficiency, reliability and on-time delivery ratio.

  10. Photophysics of aggregated 9-methylthiacarbocyanine bound to polyanions

    Science.gov (United States)

    Chibisov, Alexander K.; Görner, Helmut

    2002-05-01

    The photophysical properties of 3,3 '-diethyl-9-methylthiacarbocyanine (DTC) were studied in the presence of polystyrene sulfonate (PSS), polyacrylic acid (PAA) and polymethacrylic acid (PMA). The absorption spectra reflect a monomer/dimer equilibrium in neat aqueous solution and a shift towards bound H-aggregates, bound dimers and bound monomers on increasing the ratio of polyanion residue to dye concentrations ( r). These equilibria also determine the photodeactivation modes of DTC. The fluorescence intensity is reduced, when dimers and aggregates are present and strongly enhanced for low dye loading ( r=10 4). In contrast, the quantum yield of intersystem crossing is enhanced for bound dimers ( r=10 3).

  11. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    al-Swaidani Aref M.

    2015-11-01

    Full Text Available The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction. Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289 and accelerated mortar bar test (ASTM C1260 have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida’a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  12. Aggregation and sampling in deterministic chaos: implications for chaos identification in hydrological processes

    Directory of Open Access Journals (Sweden)

    J. D. Salas

    2005-01-01

    Full Text Available A review of the literature reveals conflicting results regarding the existence and inherent nature of chaos in hydrological processes such as precipitation and streamflow, i.e. whether they are low dimensional chaotic or stochastic. This issue is examined further in this paper, particularly the effect that certain types of transformations, such as aggregation and sampling, may have on the identification of the dynamics of the underlying system. First, we investigate the dynamics of daily streamflows for two rivers in Florida, one with strong surface and groundwater storage contributions and the other with a lesser basin storage contribution. Based on estimates of the delay time, the delay time window, and the correlation integral, our results suggest that the river with the stronger basin storage contribution departs significantly from the behavior of a chaotic system, while the departure is less significant for the river with the smaller basin storage contribution. We pose the hypothesis that the chaotic behavior depicted on continuous precipitation fields or small time-step precipitation series becomes less identifiable as the aggregation (or sampling time step increases. Similarly, because streamflows result from a complex transformation of precipitation that involves accumulating and routing excess rainfall throughout the basin and adding surface and groundwater flows, the end result may be that streamflows at the outlet of the basin depart from low dimensional chaotic behavior. We also investigate the effect of aggregation and sampling using series derived from the Lorenz equations and show that, as the aggregation and sampling scales increase, the chaotic behavior deteriorates and eventually ceases to show evidence of low dimensional determinism.

  13. Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates

    KAUST Repository

    Zhao, Kui

    2016-07-13

    We demonstrate that local and long range orders of poly(3-hexylthiophene) (P3HT) semicrystalline films can be synergistically improved by combining chemical functionalization of the dielectric surface with solution-state disentanglement and pre-aggregation of P3HT in a theta solvent, leading to a very significant enhancement of the field effect carrier mobility. The pre-aggregation and surface functionalization effects combine to enhance the carrier mobility nearly 100-fold as compared with standard film preparation by spin-coating, and nearly 10-fold increase over the benefits of pre-aggregation alone. In situ quartz crystal microbalance with dissipation (QCM-D) experiments reveal enhanced deposition of pre-aggregates on surfaces modified with an alkyl-terminated self-assembled monolayer (SAM) in comparison to un-aggregated polymer chains. Additional investigations reveal the combined pre-aggregation and surface functionalization significantly enhances local order of the conjugated polymer through planarization and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining complementary routes, such as well-known pre-aggregation with substrate chemical functionalization, to enhance the polymer self-assembly and improve its interfacial order with benefits for transport properties.

  14. Rydberg aggregates

    Science.gov (United States)

    Wüster, S.; Rost, J.-M.

    2018-02-01

    We review Rydberg aggregates, assemblies of a few Rydberg atoms exhibiting energy transport through collective eigenstates, considering isolated atoms or assemblies embedded within clouds of cold ground-state atoms. We classify Rydberg aggregates, and provide an overview of their possible applications as quantum simulators for phenomena from chemical or biological physics. Our main focus is on flexible Rydberg aggregates, in which atomic motion is an essential feature. In these, simultaneous control over Rydberg-Rydberg interactions, external trapping and electronic energies, allows Born-Oppenheimer surfaces for the motion of the entire aggregate to be tailored as desired. This is illustrated with theory proposals towards the demonstration of joint motion and excitation transport, conical intersections and non-adiabatic effects. Additional flexibility for quantum simulations is enabled by the use of dressed dipole-dipole interactions or the embedding of the aggregate in a cold gas or Bose-Einstein condensate environment. Finally we provide some guidance regarding the parameter regimes that are most suitable for the realization of either static or flexible Rydberg aggregates based on Li or Rb atoms. The current status of experimental progress towards enabling Rydberg aggregates is also reviewed.

  15. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer.

    Science.gov (United States)

    Pedrote, Murilo M; de Oliveira, Guilherme A P; Felix, Adriani L; Mota, Michelle F; Marques, Mayra de A; Soares, Iaci N; Iqbal, Anwar; Norberto, Douglas R; Gomes, Andre M O; Gratton, Enrico; Cino, Elio A; Silva, Jerson L

    2018-05-31

    The functionality of the tumor suppressor p53 is altered in more than 50% of human cancers, and many individuals with cancer exhibit amyloid-like buildups of aggregated p53. An understanding of what triggers the pathogenic amyloid conversion of p53 is required for the further development of cancer therapies. Here, perturbation of the p53 core domain (p53C) with sub-denaturing concentrations of guanidine hydrochloride and high hydrostatic pressure revealed native-like molten globule (MG) states, a subset of which were highly prone to amyloidogenic aggregation. We found that MG conformers of p53C, likely representing population-weighted averages of multiple states, have different volumetric properties, as determined by pressure perturbation and size-exclusion chromatography. We also found that they bind the fluorescent dye 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and have a native-like tertiary structure that occludes the single Trp residue in p53. Fluorescence experiments revealed conformational changes of the single Trp and Tyr residues before p53 unfolding and the presence of MG conformers, some of which were highly prone to aggregation. P53C exhibited marginal unfolding cooperativity, which could be modulated from unfolding to aggregation pathways with chemical or physical forces. We conclude that trapping amyloid precursor states in solution is a promising approach for understanding p53 aggregation in cancer. Our findings support the use of single-Trp fluorescence as a probe for evaluating p53 stability, effects of mutations, and the efficacy of therapeutics designed to stabilize p53. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Feasibility Assessment of the Use of Recycled Aggregates for Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    F. C. G. Martinho

    2018-05-01

    Full Text Available The use of recycled aggregates, manufactured from several by-products, to replace virgin aggregates in the production of pavement asphalt mixtures needs to be encouraged. Nevertheless, there are some concerns and uncertainties about the actual environmental, economic and mechanical performance resulting from the incorporation of recycled aggregates in asphalt mixtures. Therefore, this paper has the goal of discussing important features to help decision makers to select recycled aggregates as raw materials for asphalt mixtures. Based on the literature review carried out and the own previous experience of the authors, the article’s main findings reveal that incorporating some of the most common recycled aggregates into asphalt mixtures is feasible, even in a life-cycle analysis perspective. Although some specific technical operations are sometimes necessary when using recycled aggregates in asphalt mixtures, some benefits in terms of environmental impacts, energy use and costs are likely to be achieved, as well as in what concerns the mechanical performance of the asphalt mixtures.

  17. Fundamentals of unfolding, refolding and aggregation of food proteins

    NARCIS (Netherlands)

    Broersen, K.

    2005-01-01

    Protein functionality in food products strongly relies on the fact that proteins can undergo intermolecular interactions, called aggregation. It was found that very subtle dynamics inherent to the protein of interest can have consequences for the functional properties of proteins. The aim of this

  18. Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Reshmi [School; Thomas, Anoop [School; Pullanchery, Saranya [School; Joseph, Linta [School; Somasundaran, Sanoop Mambully [School; Swathi, Rotti Srinivasamurthy [School; Gray, Stephen K. [Center; Thomas, K. George [School

    2018-01-05

    Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.

  19. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Directory of Open Access Journals (Sweden)

    Elien Gevaert

    Full Text Available The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  20. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Science.gov (United States)

    Gevaert, Elien; Dollé, Laurent; Billiet, Thomas; Dubruel, Peter; van Grunsven, Leo; van Apeldoorn, Aart; Cornelissen, Ria

    2014-01-01

    The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  1. Mineral trioxide aggregate: part 2 - a review of the material aspects.

    Science.gov (United States)

    Malhotra, Neeraj; Agarwal, Antara; Mala, Kundabala

    2013-03-01

    The purpose of this two-part series is to review the composition, properties, and products of mineral trioxide aggregate (MTA) materials. PubMed and MedLine electronic databases were used to identify scientific papers from January 1991 to May 2010. Based on the selected inclusion criteria, citations were referenced from the scientific peer-reviewed dental literature. Mineral trioxide aggregate is a refined form of the parent compound, Portland cement (PC), and demonstrates a strong biocompatibility due to the high pH level and the material's ability to form hydroxyapatite. Mineral trioxide aggregate materials provide better microleakage protection than traditional endodontic materials as observed in findings from dye-leakage, fluid-filtration, protein-leakage, and bacterial penetration-leakage studies and has been recognized as a bioactive material. Various MTA commercial products are available, including gray mineral trioxide aggregate (GMTA), white mineral trioxide aggregate (WMTA), and mineral trioxide aggregate-Angelus (AMTA). Although these materials are indicated for various dental uses and applications, long-term in-vivo clinical studies are needed. Part 1 of this article highlighted and discussed the composition and characteristics of the material. Part 2 provides an overview of commercially available MTA materials.

  2. Short-lived, transitory cell-cell interactions foster migration-dependent aggregation.

    Directory of Open Access Journals (Sweden)

    Melissa D Pope

    Full Text Available During embryonic development, motile cells aggregate into cohesive groups, which give rise to tissues and organs. The role of cell migration in regulating aggregation is unclear. The current paradigm for aggregation is based on an equilibrium model of differential cell adhesivity to neighboring cells versus the underlying substratum. In many biological contexts, however, dynamics is critical. Here, we provide evidence that multicellular aggregation dynamics involves both local adhesive interactions and transport by cell migration. Using time-lapse video microscopy, we quantified the duration of cell-cell contacts among migrating cells that collided and adhered to another cell. This lifetime of cell-cell interactions exhibited a monotonic decreasing dependence on substratum adhesivity. Parallel quantitative measurements of cell migration speed revealed that across the tested range of adhesive substrata, the mean time needed for cells to migrate and encounter another cell was greater than the mean adhesion lifetime, suggesting that aggregation dynamics may depend on cell motility instead of the local differential adhesivity of cells. Consistent with this hypothesis, aggregate size exhibited a biphasic dependence on substratum adhesivity, matching the trend we observed for cell migration speed. Our findings suggest a new role for cell motility, alongside differential adhesion, in regulating developmental aggregation events and motivate new design principles for tuning aggregation dynamics in tissue engineering applications.

  3. Acid resistance of quaternary blended recycled aggregate concrete

    Directory of Open Access Journals (Sweden)

    K Jagannadha Rao

    2018-06-01

    Full Text Available The possibility of reusing the aggregate from demolished structures in fresh concrete, in order to reduce the CO2 impact on the environment [23] and to preserve natural resources, was explored worldwide and it is established that recycled aggregates can be used as a partial replacement of natural aggregates. Due to its potential to be used in eco-friendly structures and shortage of supply of natural aggregates in some parts of the world, there is an increasing interest in using the recycled aggregate. The durability aspects are also of equal concern along with the strength and economy of any material to be used in the construction. Studies reveal that the behaviour of ternary and quaternary blended concretes is superior from durability point of view compared to conventional concrete. Therefore a study is conducted to assess the acid resistance of recycled aggregate based Quaternary Blended Cement Concrete (QBCC of two grades M40 and M60. Fly ash and silica fume are fixed at 20% and 10% respectively from the previous studies while two percentages of Nano silica (2 and 3% were used along with the cement to obtain QBCC. Three percentages of recycled aggregates as partial replacement of conventional aggregate (0%, 50% and 75% were used in this study. Two different acids (HCL and H2SO4 with different concentrations (3 and 5% were used in this study. Acid resistance of QBCC with Recycled Concrete Aggregate (RCA is assessed in terms of visual appearance, weight loss, and compressive strength loss by destructive and non-destructive tests at regular intervals for a period of 56 days. The test results showed marginal weight loss and strength loss in both M40 and M60 grades of concretes. The Ultrasonic Pulse Velocity (UPV results show that the quality of QBCC is good even after being subjected to acid exposure. Keywords: Recycled concrete aggregate (RCA, Quaternary blended cement concrete (QBCC, Acid resistance, Ultrasonic pulse velocity (UPV, Mineral

  4. Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation

    Science.gov (United States)

    Meng, Guoyu; Spahich, Nicole; Kenjale, Roma; Waksman, Gabriel; St Geme, Joseph W

    2011-01-01

    Bacterial biofilms are complex microbial communities that are common in nature and are being recognized increasingly as an important determinant of bacterial virulence. However, the structural determinants of bacterial aggregation and eventual biofilm formation have been poorly defined. In Gram-negative bacteria, a major subgroup of extracellular proteins called self-associating autotransporters (SAATs) can mediate cell–cell adhesion and facilitate biofilm formation. In this study, we used the Haemophilus influenzae Hap autotransporter as a prototype SAAT to understand how bacteria associate with each other. The crystal structure of the H. influenzae HapS passenger domain (harbouring the SAAT domain) was determined to 2.2 Å by X-ray crystallography, revealing an unprecedented intercellular oligomerization mechanism for cell–cell interaction. The C-terminal SAAT domain folds into a triangular-prism-like structure that can mediate Hap–Hap dimerization and higher degrees of multimerization through its F1–F2 edge and F2 face. The intercellular multimerization can give rise to massive buried surfaces that are required for overcoming the repulsive force between cells, leading to bacterial cell–cell interaction and formation of complex microcolonies. PMID:21841773

  5. Computational study of energy transfer in two-dimensional J-aggregates

    International Nuclear Information System (INIS)

    Gallos, Lazaros K.; Argyrakis, Panos; Lobanov, A.; Vitukhnovsky, A.

    2004-01-01

    We perform a computational analysis of the intra- and interband energy transfer in two-dimensional J-aggregates. Each aggregate is represented as a two-dimensional array (LB-film or self-assembled film) of two kinds of cyanine dyes. We consider the J-aggregate whose J-band is located at a shorter wavelength to be a donor and an aggregate or a small impurity with longer wavelength to be an acceptor. Light absorption in the blue wing of the donor aggregate gives rise to the population of its excitonic states. The depopulation of these states is possible by (a) radiative transfer to the ground state (b) intraband energy transfer, and (c) interband energy transfer to the acceptor. We study the dependence of energy transfer on properties such as the energy gap, the diagonal disorder, and the exciton-phonon interaction strength. Experimentally observable parameters, such as the position and form of luminescence spectrum, and results of the kinetic spectroscopy measurements strongly depend upon the density of states in excitonic bands, rates of energy exchange between states and oscillator strengths for luminescent transitions originating from these states

  6. Synthesis, crystal structure and aggregation-induced emission of a new pyrene-based compound, 3,3-diphenyl-2-[4-(pyren-1-ylphenyl]acrylonitrile

    Directory of Open Access Journals (Sweden)

    Bao-Xi Miao

    2018-05-01

    Full Text Available The title organic compound, C37H23N, crystallizing in the triclinic space group P\\overline{1}, has been designed, synthesized and characterized by single-crystal X-ray diffaction, MS, NMR and elemental analysis. There are alternating relatively strong and weak intermolecular π–π interactions between adjacent pyrene ring systems, forming a one-dimensional supramolecular structure. The compound is weakly fluorescent in THF solution, but it is highly emissive in the condensed phase, revealing distinct aggregation-induced emission (AIE characteristics.

  7. Spontaneous and Induced Platelet Aggregation during Pregnancy and Labor

    Directory of Open Access Journals (Sweden)

    T. P. Bondar

    2016-01-01

    Full Text Available Objective: to evaluate changes in characteristics of spontaneous platelet (Pt aggregation in patients with obstetric complications associated with hereditary thrombophilia.Materials and methods. Blood samples were taken from 52 recently confined women on the first day after labor; at that, ethic regulations for the preanalytical phase were followed. Determination of PlA1/ PlA2 polymorphism enotype was performed by means of amplificationrestriction analysis. Geometrical characteristics of patients' peripheral blood Pt aggregation were studied by means of AFM Integra Prima. The degree of confidence of the parameters under test was determined using the ttest, and the significance level was considered valid at P<0.05.Results. A statistical analysis of the findings demonstrated that the length of Pt aggregates in healthy pregnant women was significantly higher than that in healthy nonpregnant women at all study phases. Patients with the P1A1/P1A2 polymorphism in the GP IIb/IIIa Pt receptor gene demonstrated increased widthm height, and density of Pt aggregates. The changes were most significant during the incubation phase lasting for 15 and 30 minutes. The study of geometric parameters of different exposures demonstrated the following: the longer the incubation period, the greater the difference between geometric parameters of the aggregates (e.g. height, length, and width. Conclusion. The analysis of obtained data demonstrated that the presence of P1A1/P1A2 polymorphism in GP IIb/IIIa Pt gene receptor contributes to the decrease in the platelet response threshold and enhances the spontaneous Pt aggregation. The imaging of aggregates provides strong evidence for the accelerated growth of the aggregates in thrombotic complications of pregnancy.

  8. Properties of cold-bonded lightweight artificial aggregate containing bottom ash with different curing regime

    Science.gov (United States)

    Mohamad Ibrahim, Norlia; Nizar Ismail, Khairul; Che Amat, Roshazita; Mohamad Ghazali, Mohamad Iqbal

    2018-03-01

    Cold-bonded pelletizing technique is frequently used in aggregate manufacturing process as it can minimise the energy consumption. It has contributed to both economical and environmental advantages because it helps to reduce the gas emissions problems. Bottom ash collected from municipal solid waste incineration (MSWI) plant was selected as raw material in this study and was utilised as a partial replacement for cement for artificial aggregate production. Several percentage of ash replacement was selected ranged from 10 to 50%. Aggregate pellets were subjected to different types of curing condition which is room-water (RW), room-room (RR), oven-room (OR) and oven-water (OW) condition. Properties of aggregate pellets were examined to obtain its density, water absorption, aggregate impact value (AIV) and specific gravity (SG). The results indicated that the most efficient curing regime is by exposing the aggregate in RW condition. The optimum aggregate was selected at 20% where it has satisfied the required density of 739.5kg/m3, and classified as strong aggregate with AIV 14. However, the water absorption of aggregate increased proportionately with the increment of ash content.

  9. Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis.

    Science.gov (United States)

    Tam, Vivian W Y; Wang, K; Tam, C M

    2008-04-01

    Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and strength of their RAC using regression analysis. Ten samples collected from demolition sites are examined. The results show strong correlation among the DC samples, properties of RA and RAC. It should be highlighted that inferior quality of DC will lower the quality of RA and thus their RAC. Prediction of RAC strength is also formulated from the DC characteristics and the RA properties. From that, the RAC performance from DC and RA can be estimated. In addition, RAC design requirements can also be developed at the initial stage of concrete demolition. Recommendations are also given to improve the future concreting practice.

  10. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters

    DEFF Research Database (Denmark)

    Seghezzi, Nicolas; Amar, Patrick; Købmann, Brian

    2011-01-01

    Streptomyces are bacteria of industrial interest whose genome contains more than 73% of bases GC. In order to define, in these GC-rich bacteria, specific sequence features of strong promoters, a library of synthetic promoters of various sequence composition was constructed in Streptomyces. To do so...... cloned into the promoter-probe plasmid pIJ487 just upstream of the promoter-less aphII gene that confers resistance to neomycin. This synthetic promoter library was transformed into Streptomyces lividans, and the resulting transformants were screened for their ability to grow in the presence of different...... projects. Thirty-eight promoters were sequenced, and the sequences of the 14 weakest and 14 strongest promoters were compared using the WebLogo software with small sample correction. This comparison revealed that the −10 box, the −10 extended motif as well as the spacer of the strong Streptomyces promoters...

  11. Lightweight concrete with Algerian limestone dust: Part I: Study on 30% replacement to normal aggregate at early age

    Directory of Open Access Journals (Sweden)

    S. Kitouni

    2013-12-01

    Full Text Available The mechanical characteristics of the lightweight aggregate concretes (LWAC strongly depend on the proportions of aggregates in the formulation. In particular, because of their strong porosity, the lightweight aggregates are much more deformable than the cementations matrix and their influence on concrete strength is complex. This paper focuses on studying the physical performance of concrete formulated with substitution of 30% of coarse aggregates by limestone dust. In this article an attempt is made to provide information on the elastic properties of lightweight concrete (LWC from tests carried out under uniaxial compression conditions. The results of Young modulus, Poisson's ratio, and compressive and flexural tensile strength tests on concrete are presented. The concretes obtained present good mechanical performances reaching 34.99 MPa compressive strength, 6.39 MPa flexural tensile strength and in front of 36 MPa Young modulus.

  12. Plains zebra (Equus quagga) adrenocortical activity increases during times of large aggregations in the Serengeti ecosystem.

    Science.gov (United States)

    Seeber, P A; Franz, M; Dehnhard, M; Ganswindt, A; Greenwood, A D; East, M L

    2018-04-20

    Adverse environmental stimuli (stressors) activate the hypothalamic-pituitary-adrenal axis and contribute to allostatic load. This study investigates the contribution of environmental stressors and life history stage to allostatic load in a migratory population of plains zebras (Equus quagga) in the Serengeti ecosystem, in Tanzania, which experiences large local variations in aggregation. We expected higher fGCM response to the environmental stressors of feeding competition, predation pressure and unpredictable social relationships in larger than in smaller aggregations, and in animals at energetically costly life history stages. As the study was conducted during the 2016 El Niño, we did not expect food quality of forage or a lack of water to strongly affect fGCM responses in the dry season. We measured fecal glucocorticoid metabolite (fGCM) concentrations using an enzyme immunoassay (EIA) targeting 11β-hydroxyetiocholanolone and validated its reliability in captive plains zebras. Our results revealed significantly higher fGCM concentrations 1) in large aggregations than in smaller groupings, and 2) in band stallions than in bachelor males. Concentrations of fGCM were not significantly higher in females at the energetically costly life stage of late pregnancy/lactation. The higher allostatic load of stallions associated with females, than bachelor males is likely caused by social stressors. In conclusion, migratory zebras have elevated allostatic loads in large aggregations that probably result from their combined responses to increased feeding competition, predation pressure and various social stressors. Further research is required to disentangle the contribution of these stressors to allostatic load in migratory populations. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Evaluation of the use of steelmaking slag as an aggregate in concrete mix: A factorial design approach

    Directory of Open Access Journals (Sweden)

    Aljbour Salah H.

    2017-01-01

    Full Text Available Slag is investigated towards its potential use as an aggregate in concrete mix production. Full factorial design methodology is applied to study the effect of two process input variables, namely: slag as coarse aggregate and slag as medium aggregate on the properties of concrete mix. Additionally, the interaction between input variables is also examined. Incorporating steel slag aggregate in the concrete mix affected its compressive strength. Enhanced compressive strength concrete mix was obtained with 70 wt.% coarse slag aggregate and 70 wt.% medium slag aggregate. Under these proportions, the 28-days compressive strength was higher than the 28-days compressive strength of a concrete mix prepared from normal aggregate. Strong interaction effect exists between slag aggregate size on the compressive strength at 7-days curing. Lower compressive strength for the concrete mix might be obtained if improper proportions of mixed medium and coarse slag aggregate were employed.

  14. Effect of molecular aggregation on the photo-induced anisotropy in amorphous polymethacrylate bearing an aminonitroazobenzene moiety

    CERN Document Server

    Kim, B J; Choi, D H

    2001-01-01

    We investigated H-type molecular aggregation in a simply spin-coated amorphous homopolymer film of polymethacrylate containing push-pull azobenzene moieties. It was found that the aggregate formation was strongly influenced by thermal treatment and that the aggregate created in the polymer film could be easily disrupted by irradiation of a linearly polarized light. In the first writing cycle of aggregated polymer film, photo-induced birefringence showed a steep increase to the highest value followed by a gradual decrease to the certain asymptotic value under longer irradiation of linearly polarized light. This unique behavior could be attributed to the cooperative motion and the disruption of the aggregated molecules under continuous irradiation of light.

  15. Effect of molecular aggregation on the photo-induced anisotropy in amorphous polymethacrylate bearing an aminonitroazobenzene moiety

    International Nuclear Information System (INIS)

    Kim, Beom Jun; Park, Soo Young; Choi, Dong Hoon

    2001-01-01

    We investigated H-type molecular aggregation in a simply spin-coated amorphous homopolymer film of polymethacrylate containing push-pull azobenzene moieties. It was found that the aggregate formation was strongly influenced by thermal treatment and that the aggregate created in the polymer film could be easily disrupted by irradiation of a linearly polarized light. In the first writing cycle of aggregated polymer film, photo-induced birefringence showed a steep increase to the highest value followed by a gradual decrease to the certain asymptotic value under longer irradiation of linearly polarized light. This unique behavior could be attributed to the cooperative motion and the disruption of the aggregated molecules under continuous irradiation of light

  16. Thermodynamic description of polymorphism in Q- and N-rich peptide aggregates revealed by atomistic simulation.

    Science.gov (United States)

    Berryman, Joshua T; Radford, Sheena E; Harris, Sarah A

    2009-07-08

    Amyloid fibrils are long, helically symmetric protein aggregates that can display substantial variation (polymorphism), including alterations in twist and structure at the beta-strand and protofilament levels, even when grown under the same experimental conditions. The structural and thermodynamic origins of this behavior are not yet understood. We performed molecular-dynamics simulations to determine the thermodynamic properties of different polymorphs of the peptide GNNQQNY, modeling fibrils containing different numbers of protofilaments based on the structure of amyloid-like cross-beta crystals of this peptide. We also modeled fibrils with new orientations of the side chains, as well as a de novo designed structure based on antiparallel beta-strands. The simulations show that these polymorphs are approximately isoenergetic under a range of conditions. Structural analysis reveals a dynamic reorganization of electrostatics and hydrogen bonding in the main and side chains of the Gln and Asn residues that characterize this peptide sequence. Q/N-rich stretches are found in several amyloidogenic proteins and peptides, including the yeast prions Sup35-N and Ure2p, as well as in the human poly-Q disease proteins, including the ataxins and huntingtin. Based on our results, we propose that these residues imbue a unique structural plasticity to the amyloid fibrils that they comprise, rationalizing the ability of proteins enriched in these amino acids to form prion strains with heritable and different phenotypic traits.

  17. Marine Synechococcus Aggregation

    Science.gov (United States)

    Neuer, S.; Deng, W.; Cruz, B. N.; Monks, L.

    2016-02-01

    Cyanobacteria are considered to play an important role in the oceanic biological carbon pump, especially in oligotrophic regions. But as single cells are too small to sink, their carbon export has to be mediated by aggregate formation and possible consumption by zooplankton producing sinking fecal pellets. Here we report results on the aggregation of the ubiquitous marine pico-cyanobacterium Synechococcus as a model organism. We first investigated the mechanism behind such aggregation by studying the potential role of transparent exopolymeric particles (TEP) and the effects of nutrient (nitrogen or phosphorus) limitation on the TEP production and aggregate formation of these pico-cyanobacteria. We further studied the aggregation and subsequent settling in roller tanks and investigated the effects of the clays kaolinite and bentonite in a series of concentrations. Our results show that despite of the lowered growth rates, Synechococcus in nutrient limited cultures had larger cell-normalized TEP production, formed a greater volume of aggregates, and resulted in higher settling velocities compared to results from replete cultures. In addition, we found that despite their small size and lack of natural ballasting minerals, Synechococcus cells could still form aggregates and sink at measureable velocities in seawater. Clay minerals increased the number and reduced the size of aggregates, and their ballasting effects increased the sinking velocity and carbon export potential of aggregates. In comparison with the Synechococcus, we will also present results of the aggregation of the pico-cyanobacterium Prochlorococcus in roller tanks. These results contribute to our understanding in the physiology of marine Synechococcus as well as their role in the ecology and biogeochemistry in oligotrophic oceans.

  18. Silencing the Odorant Binding Protein RferOBP1768 Reduces the Strong Preference of Palm Weevil for the Major Aggregation Pheromone Compound Ferrugineol

    Directory of Open Access Journals (Sweden)

    Binu Antony

    2018-03-01

    Full Text Available In insects, perception of the environment—food, mates, and prey—is mainly guided by chemical signals. The dynamic process of signal perception involves transport to odorant receptors (ORs by soluble secretory proteins, odorant binding proteins (OBPs, which form the first stage in the process of olfactory recognition and are analogous to lipocalin family proteins in vertebrates. Although OBPs involved in the transport of pheromones to ORs have been functionally identified in insects, there is to date no report for Coleoptera. Furthermore, there is a lack of information on olfactory perception and the molecular mechanism by which OBPs participate in the transport of aggregation pheromones. We focus on the red palm weevil (RPW Rhynchophorus ferrugineus, the most devastating quarantine pest of palm trees worldwide. In this work, we constructed libraries of all OBPs and selected antenna-specific and highly expressed OBPs for silencing through RNA interference. Aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol and 4-methyl-5-nonanone (ferruginone, and a kairomone, ethyl acetate, were then sequentially presented to individual RPWs. The results showed that antenna-specific RferOBP1768 aids in the capture and transport of ferrugineol to ORs. Silencing of RferOBP1768, which is responsible for pheromone binding, significantly disrupted pheromone communication. Study of odorant perception in palm weevil is important because the availability of literature regarding the nature and role of olfactory signaling in this insect may reveal likely candidates representative of animal olfaction and, more generally, of molecular recognition. Knowledge of OBPs recognizing the specific pheromone ferrugineol will allow for designing biosensors for the detection of this key compound in weevil monitoring in date palm fields.

  19. Aluminum induces lipid peroxidation and aggregation of human blood platelets

    Directory of Open Access Journals (Sweden)

    T.J.C. Neiva

    1997-05-01

    Full Text Available Aluminum (Al3+ intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al3+-induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 µM stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA (100 µM and n-propyl gallate (NPG (100 µM, inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA (100 µM, an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation

  20. Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates.

    Directory of Open Access Journals (Sweden)

    Jumpei F Yamagishi

    2016-10-01

    Full Text Available As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of

  1. Bacteria dialog with Santa Rosalia: Are aggregations of cosmopolitan bacteria mainly explained by habitat filtering or by ecological interactions?

    Science.gov (United States)

    Pascual-García, Alberto; Tamames, Javier; Bastolla, Ugo

    2014-12-04

    Since the landmark Santa Rosalia paper by Hutchinson, niche theory addresses the determinants of biodiversity in terms of both environmental and biological aspects. Disentangling the role of habitat filtering and interactions with other species is critical for understanding microbial ecology. Macroscopic biogeography explores hypothetical ecological interactions through the analysis of species associations. These methods have started to be incorporated into microbial ecology relatively recently, due to the inherent experimental difficulties and the coarse grained nature of the data. Here we investigate the influence of environmental preferences and ecological interactions in the tendency of bacterial taxa to either aggregate or segregate, using a comprehensive dataset of bacterial taxa observed in a wide variety of environments. We assess significance of taxa associations through a null model that takes into account habitat preferences and the global distribution of taxa across samples. The analysis of these associations reveals a surprisingly large number of significant aggregations between taxa, with a marked community structure and a strong propensity to aggregate for cosmopolitan taxa. Due to the coarse grained nature of our data we cannot conclusively reject the hypothesis that many of these aggregations are due to environmental preferences that the null model fails to reproduce. Nevertheless, some observations are better explained by ecological interactions than by habitat filtering. In particular, most pairs of aggregating taxa co-occur in very different environments, which makes it unlikely that these associations are due to habitat preferences, and many are formed by cosmopolitan taxa without well defined habitat preferences. Moreover, known cooperative interactions are retrieved as aggregating pairs of taxa. As observed in similar studies, we also found that phylogenetically related taxa are much more prone to aggregate than to segregate, an observation

  2. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Nonnative disulfide bonds have been observed among protein aggregates in several diseases like amyotrophic lateral sclerosis, cataract and so on. The molecular mechanism by which formation of such bonds promotes protein aggregation is poorly understood. Here in this work we employ previously well characterized aggregation of hen eggwhite lysozyme (HEWL at alkaline pH to dissect the molecular role of nonnative disulfide bonds on growth of HEWL aggregates. We employed time-resolved fluorescence anisotropy, atomic force microscopy and single-molecule force spectroscopy to quantify the size, morphology and non-covalent interaction forces among the aggregates, respectively. These measurements were performed under conditions when disulfide bond formation was allowed (control and alternatively when it was prevented by alkylation of free thiols using iodoacetamide. Blocking disulfide bond formation affected growth but not growth kinetics of aggregates which were ∼50% reduced in volume, flatter in vertical dimension and non-fibrillar in comparison to control. Interestingly, single-molecule force spectroscopy data revealed that preventing disulfide bond formation weakened the non-covalent interaction forces among monomers in the aggregate by at least ten fold, thereby stalling their growth and yielding smaller aggregates in comparison to control. We conclude that while constrained protein chain dynamics in correctly disulfide bonded amyloidogenic proteins may protect them from venturing into partial folded conformations that can trigger entry into aggregation pathways, aberrant disulfide bonds in non-amyloidogenic proteins (like HEWL on the other hand, may strengthen non-covalent intermolecular forces among monomers and promote their aggregation.

  3. Aggregate Uncertainty, Money and Banking

    OpenAIRE

    Hongfei Sun

    2006-01-01

    This paper studies the problem of monitoring the monitor in a model of money and banking with aggregate uncertainty. It shows that when inside money is required as a means of bank loan repayment, a market of inside money is entailed at the repayment stage and generates information-revealing prices that perfectly discipline the bank. The incentive problem of a bank is costlessly overcome simply by involving inside money in repayment. Inside money distinguishes itself from outside money by its ...

  4. Self-aggregation of bio-surfactants within ionic liquid 1-ethyl-3-methylimidazolium bromide: A comparative study and potential application in antidepressants drug aggregation

    Science.gov (United States)

    Banjare, Manoj Kumar; Behera, Kamalakanta; Kurrey, Ramsingh; Banjare, Ramesh Kumar; Satnami, Manmohan L.; Pandey, Siddharth; Ghosh, Kallol K.

    2018-06-01

    Aggregation behavior of bio-surfactants (BS) sodium cholate (NaC) and sodium deoxycholate (NaDC) within aqueous solution of ionic liquid (IL) 1-ethyl-3-methylimidazolium bromide [Emim][Br] has been investigated using surface tension, conductivity, steady state fluorescence, FT-IR and dynamic light scattering (DLS) techniques. Various interfacial and thermodynamic parameters are determined in the presence of different wt% of IL [Emim][Br]. Information regarding the local microenvironment and size of the aggregates is obtained from fluorescence and DLS, respectively. FT-IR spectral response is used to reveal the interactions taking place within aqueous NaC/NaDC micellar solutions. It is noteworthy to mention that increasing wt% of [Emim][Br] results in an increase in the spontaneity of micelle formation and the hydrophilic IL shows more affinity for NaC as compared to NaDC. Further, the micellar solutions of BS-[Emim][Br] are utilized for studying the aggregation of antidepressants drug promazine hydrochloride (pH). UV-vis spectroscopic investigation reveals interesting outcomes and the results show changes in spectral absorbance of PH drug on the addition of micellar solution (BS-[Emim][Br]). Highest binding affinity and most promising activity are shown for NaC as compared to NaDC.

  5. Transcriptomic landscape of acute promyelocytic leukemia reveals aberrant surface expression of the platelet aggregation agonist Podoplanin.

    Science.gov (United States)

    Lavallée, Vincent-Philippe; Chagraoui, Jalila; MacRae, Tara; Marquis, Miriam; Bonnefoy, Arnaud; Krosl, Jana; Lemieux, Sébastien; Marinier, Anne; Pabst, Caroline; Rivard, Georges-Étienne; Hébert, Josée; Sauvageau, Guy

    2018-02-23

    Acute promyelocytic leukemia (APL) is a medical emergency because of associated lethal early bleeding, a condition preventable by prompt diagnosis and therapeutic intervention. The mechanisms underlying the hemostatic anomalies of APL are not completely elucidated. RNA-sequencing-based characterization of APL (n = 30) was performed and compared to that of other acute myeloid leukemia (n = 400) samples and normal promyelocytes. Perturbations in the transcriptome of coagulation and fibrinolysis-related genes in APL extend beyond known culprits and now include Thrombin, Factor X and Urokinase Receptor. Most intriguingly, the Podoplanin (PDPN) gene, involved in platelet aggregation, is aberrantly expressed in APL promyelocytes and is the most distinctive transcript for this disease. Using an antibody panel optimized for AML diagnosis by flow cytometry, we also found that PDPN was the most specific surface marker for APL, and that all-trans retinoic acid therapy rapidly decreases its expression. Functional studies showed that engineered overexpression of this gene in human leukemic cells causes aberrant platelet binding, activation and aggregation. PDPN-expressing primary APL cells, but not PDPN-negative primary leukemias, specifically induce platelet binding, activation and aggregation. Finally, PDPN expression on leukemia cells in a xenograft model was associated with thrombocytopenia and prolonged bleeding time in vivo. Together our results suggest that PDPN may contribute to the hemostatic perturbations found in APL.

  6. Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae)

    Science.gov (United States)

    Slone, D.H.; Gruner, Susan V.

    2007-01-01

    The growth and development of carrion-feeding calliphorid (Diptera Calliphoridae) larvae, or maggots, is of great interest to forensic sciences, especially for estimation of a postmortem interval (PMI). The development rate of calliphorid larvae is influenced by the temperature of their immediate environment. Heat generation in larval feeding aggregations (=maggot masses) is a well-known phenomenon, but it has not been quantitatively described. Calculated development rates that do not include internally generated temperatures will result in overestimation of PMI. Over a period of 2.5 yr, 80 pig, Sus scrofa L., carcasses were placed out at study sites in north central Florida and northwestern Indiana. Once larval aggregations started to form, multiple internal and external temperatures, and weather observations were taken daily or every few days between 1400 and 1800 hours until pupation of the larvae. Volume of each aggregation was determined by measuring surface area and average depth. Live and preserved samples of larvae were taken for species identification. The four most common species collected were Lucilia coeruleiviridis (=Phaenicia) (Macquart) (77%), Cochliomyia macellaria (F.) (8.3%), Chrysomya rufifaces (Macquart) (7.7%), and Phormia regina (Meigen) (5.5%). Statistical analyses showed that 1) volume of a larval mass had a strong influence on its temperature, 2) internal temperatures of masses on the ground were influenced by soil temperature and mass volume, 3) internal temperatures of masses smaller than 20 cm3 were influenced by ambient air temperature and mass volume, and 4) masses larger than 20 cm3 on the carcass had strongly regulated internal temperatures determined only by the volume of the mass, with larger volumes associated with higher temperatures. Nonsignificant factors included presence of rain or clouds, shape of the aggregation, weight of the carcass, species composition of the aggregation, time since death, or season.

  7. Defining and systematic analyses of aggregation indices to evaluate degree of calcium oxalate crystal aggregation

    Science.gov (United States)

    Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2017-12-01

    Crystal aggregation is one of the most crucial steps in kidney stone pathogenesis. However, previous studies of crystal aggregation were rarely done and quantitative analysis of aggregation degree was handicapped by a lack of the standard measurement. We thus performed an in vitro assay to generate aggregation of calcium oxalate monohydrate (COM) crystals with various concentrations (25-800 µg/ml) in saturated aggregation buffer. The crystal aggregates were analyzed by microscopic examination, UV-visible spectrophotometry, and GraphPad Prism6 software to define a total of 12 aggregation indices (including number of aggregates, aggregated mass index, optical density, aggregation coefficient, span, number of aggregates at plateau time-point, aggregated area index, aggregated diameter index, aggregated symmetry index, time constant, half-life, and rate constant). The data showed linear correlation between crystal concentration and almost all of these indices, except only for rate constant. Among these, number of aggregates provided the greatest regression coefficient (r=0.997; pr=0.993; pr=‑0.993; pr=0.991; p<0.001 for both). These five indices are thus recommended as the most appropriate indices for quantitative analysis of COM crystal aggregation in vitro.

  8. Electrostatic interactions drive native-like aggregation of human alanine:glyoxylate aminostransferase.

    Science.gov (United States)

    Dindo, Mirco; Conter, Carolina; Cellini, Barbara

    2017-11-01

    Protein aggregate formation is the basis of several misfolding diseases, including those displaying loss-of-function pathogenesis. Although aggregation is often attributed to the population of intermediates exposing hydrophobic surfaces, the contribution of electrostatic forces has recently gained attention. Here, we combined computational and in vitro studies to investigate the aggregation process of human peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme involved in glyoxylate detoxification. We demonstrated that AGT is susceptible to electrostatic aggregation due to its peculiar surface charge anisotropy and that PLP binding counteracts the self-association process. The two polymorphic mutations P11L and I340M exert opposite effects. The P11L substitution enhances the aggregation tendency, probably by increasing surface charge anisotropy, while I340M plays a stabilizing role. In light of these results, we examined the effects of the most common missense mutations leading to primary hyperoxaluria type I (PH1), a rare genetic disorder associated with abnormal calcium oxalate precipitation in the urinary tract. All of them endow AGT with a strong electrostatic aggregation propensity. Moreover, we predicted that pathogenic mutations of surface residues could alter charge distribution, thus inducing aggregation under physiological conditions. A global model describing the AGT aggregation process is provided. Overall, the results indicate that the contribution of electrostatic interactions in determining the fate of proteins and the effect of amino acid substitutions should not be underestimated and provide the basis for the development of new therapeutic strategies for PH1 aimed at increasing AGT stability. © 2017 Federation of European Biochemical Societies.

  9. Development of Ecoefficient Engineered Cementitious Composites Using Supplementary Cementitious Materials as a Binder and Bottom Ash Aggregate as Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Jin Wook Bang

    2015-01-01

    Full Text Available The purpose of this study is to develop ecoefficient engineered cementitious composites (ECC using supplementary cementitious materials (SCMs, including fly ash (FA and blast furnace slag (SL as a binder material. The cement content of the ECC mixtures was replaced by FA and SL with a replacement rate of 25%. In addition, the fine aggregate of the ECC was replaced by bottom ash aggregate (BA with a substitution rate of 10%, 20%, and 30%. The influences of ecofriendly aggregates on fresh concrete properties and on mechanical properties were experimentally investigated. The test results revealed that the substitution of SCMs has an advantageous effect on fresh concrete’s properties; however, the increased water absorption and the irregular shape of the BA can potentially affect the fresh concrete’s properties. The substitution of FA and SL in ECC led to an increase in frictional bond at the interface between PVA fibers and matrix, improved the fiber dispersion, and showed a tensile strain capacity ranging from 3.3% to 3.5%. It is suggested that the combination of SCMs (12.5% FA and 12.5% SL and the BA aggregate with the substitution rate of 10% can be effectively used in ECC preparation.

  10. Solid-state 13C NMR experiments reveal effects of aggregate size on the chemical composition of particulate organic matter in grazed steppe soils

    Science.gov (United States)

    Steffens, M.; Kölbl, A.; Kögel-Knabner, I.

    2009-04-01

    Grazing is one of the most important factors that may reduce soil organic matter (SOM) stocks and subsequently deteriorate aggregate stability in grassland topsoils. Land use management and grazing reduction are assumed to increase the input of OM, improve the soil aggregation and change species composition of vegetation (changes depth of OM input). Many studies have evaluated the impact of grazing cessation on SOM quantity. But until today little is known about the impact of grazing cessation on the chemical quality of SOM in density fractions, aggregate size classes and different horizons. The central aim of this study was to analyse the quality of SOM fractions in differently sized aggregates and horizons as affected by increased inputs of organic matter due to grazing exclusion. We applied a combined aggregate size, density and particle size fractionation procedure to sandy steppe topsoils with different organic matter inputs due to different grazing intensities (continuously grazed = Cg, winter grazing = Wg, ungrazed since 1999 = Ug99, ungrazed since 1979 = Ug79). Three different particulate organic matter (POM; free POM, in aggregate occluded POM and small in aggregate occluded POM) and seven mineral-associated organic matter fractions were separated for each of three aggregate size classes (coarse = 2000-6300 m, medium = 630-2000 m and fine =

  11. Myofibrillar protein oxidation affects filament charges, aggregation and water-holding

    NARCIS (Netherlands)

    Bao, Yulong; Boeren, Sjef; Ertbjerg, Per

    2018-01-01

    Hypochlorous acid (HClO) is a strong oxidant that is able to mediate protein oxidation. In order to study the effect of oxidation on charges, aggregation and water-holding of myofibrillar proteins, extracted myofibrils were oxidized by incubation with different concentrations of HClO (0, 1, 5,

  12. On the characterization of intermediates in the isodesmic aggregation pathway of hen lysozyme at alkaline pH.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Protein aggregation leading to formation of amyloid fibrils is a symptom of several diseases like Alzheimer's, type 2 diabetes and so on. Elucidating the poorly understood mechanism of such phenomena entails the difficult task of characterizing the species involved at each of the multiple steps in the aggregation pathway. It was previously shown by us that spontaneous aggregation of hen-eggwhite lysozyme (HEWL at room temperature in pH 12.2 is a good model to study aggregation. Here in this paper we investigate the growth kinetics, structure, function and dynamics of multiple intermediate species populating the aggregation pathway of HEWL at pH 12.2. The different intermediates were isolated by varying the HEWL monomer concentration in the 300 nM-0.12 mM range. The intermediates were characterized using techniques like steady-state and nanosecond time-resolved fluorescence, atomic force microscopy and dynamic light scattering. Growth kinetics of non-fibrillar HEWL aggregates were fitted to the von Bertalanffy equation to yield a HEWL concentration independent rate constant (k = (6.6 ± 0.6 × 10(-5 s(-1. Our results reveal stepwise changes in size, molecular packing and enzymatic activity among growing HEWL aggregates consistent with an isodesmic aggregation model. Formation of disulphide bonds that crosslink the monomers in the aggregate appear as a unique feature of this aggregation. AFM images of multiple amyloid fibrils emanating radially from amorphous aggregates directly confirmed that on-pathway fibril formation was feasible under isodesmic polymerization. The isolated HEWL aggregates are revealed as polycationic protein nanoparticles that are robust at neutral pH with ability to take up non-polar molecules like ANS.

  13. Electrochemical sensors and biosensors based on less aggregated graphene.

    Science.gov (United States)

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Sustainable aggregates production : green applications for aggregate by-products.

    Science.gov (United States)

    2015-06-01

    Increased emphasis in the construction industry on sustainability and recycling requires production of : aggregate gradations with lower dust (cleaner aggregates) and smaller maximum sizeshence, increased : amount of quarry by-products (QBs). QBs ...

  15. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  16. ROCKY PLANETESIMAL FORMATION VIA FLUFFY AGGREGATES OF NANOGRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Sota; Nakamoto, Taishi, E-mail: arakawa.s.ac@m.titech.ac.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)

    2016-12-01

    Several pieces of evidence suggest that silicate grains in primitive meteorites are not interstellar grains but condensates formed in the early solar system. Moreover, the size distribution of matrix grains in chondrites implies that these condensates might be formed as nanometer-sized grains. Therefore, we propose a novel scenario for rocky planetesimal formation in which nanometer-sized silicate grains are produced by evaporation and recondensation events in early solar nebula, and rocky planetesimals are formed via aggregation of these nanograins. We reveal that silicate nanograins can grow into rocky planetesimals via direct aggregation without catastrophic fragmentation and serious radial drift, and our results provide a suitable condition for protoplanet formation in our solar system.

  17. Regulating Molecular Aggregations of Polymers via Ternary Copolymerization Strategy for Efficient Solar Cells.

    Science.gov (United States)

    Wang, Qian; Wang, Yingying; Zheng, Wei; Shahid, Bilal; Qiu, Meng; Wang, Di; Zhu, Dangqiang; Yang, Renqiang

    2017-09-20

    For many high-performance photovoltaic materials in polymer solar cells (PSCs), the active layers usually need to be spin-coated at high temperature due to the strong intermolecular aggregation of donor polymers, which is unfavorable in device repeatability and large-scale PSC printing. In this work, we adopted a ternary copolymerization strategy to regulate polymer solubility and molecular aggregation. A series of D-A 1 -D-A 2 random polymers based on different acceptors, strong electron-withdrawing unit ester substituted thieno[3,4-b]thiophene (TT-E), and highly planar dithiazole linked TT-E (DTzTT) were constructed to realize the regulation of molecular aggregation and simplification of device fabrication. The results showed that as the relative proportion of TT-E segment in the backbone increased, the absorption evidently red-shifted with a gradually decreased aggregation in solution, eventually leading to the active layers that can be fabricated at low temperature. Furthermore, due to the excellent phase separation and low recombination, the optimized solar cells based on the terpolymer P1 containing 30% of TT-E segment exhibit high power conversion efficiency (PCE) of 9.09% with a significantly enhanced fill factor up to 72.86%. Encouragingly, the photovoltaic performance is insensitive to the fabrication temperature of the active layer, and it still could maintain high PCE of 8.82%, even at room temperature. This work not only develops the highly efficient photovoltaic materials for low temperature processed PSCs through ternary copolymerization strategy but also preliminarily constructs the relationship between aggregation and photovoltaic performance.

  18. Utilisation of Waste Marble Dust as Fine Aggregate in Concrete

    Science.gov (United States)

    Vigneshpandian, G. V.; Aparna Shruthi, E.; Venkatasubramanian, C.; Muthu, D.

    2017-07-01

    Concrete is the important construction material and it is used in the construction industry due to its high compressive strength and its durability. Now a day’s various studies have been conducted to make concrete with waste material with the intention of reducing cost and unavailability of conventional materials. This paper investigates the strength properties of concrete specimens cast using waste marble dust as replacement of fine aggregate. The marble pieces are finely crushed to powdered and the gradation is compared with conventional fine aggregate. Concrete specimen were cast using wmd in the laboratory with different proportion (25%, 50% and 100%) by weight of cement and from the studies it reveals that addition of waste marble dust as a replacement of fine aggregate marginally improves compressive, tensile and flexural strength in concrete.

  19. Influence of Aggregate Wettability with Different Lithology Aggregates on Concrete Drying Shrinkage

    Directory of Open Access Journals (Sweden)

    Yuanchen Guo

    2015-01-01

    Full Text Available The correlation of the wettability of different lithology aggregates and the drying shrinkage of concrete materials is studied, and some influential factors such as wettability and wetting angle are analyzed. A mercury porosimeter is used to measure the porosities of different lithology aggregates accurately, and the pore size ranges that significantly affect the drying shrinkage of different lithology aggregate concretes are confirmed. The pore distribution curve of the different coarse aggregates is also measured through a statistical method, and the contact angle of different coarse aggregates and concrete is calculated according to the linear fitting relationship. Research shows that concrete strength is determined by aggregate strength. Aggregate wettability is not directly correlated with concrete strength, but wettability significantly affects concrete drying shrinkage. In all types’ pores, the greatest impacts on wettability are capillary pores and gel pores, especially for the pores of the size locating 2.5–50 nm and 50–100 nm two ranges.

  20. RELATIONSHIPS BETWEEN SOIL MICROBIAL BIOMASS, AGGREGATE STABILITY AND AGGREGATE ASSOCIATED-C: A MECHANISTIC APPROACH

    Directory of Open Access Journals (Sweden)

    Patrizia Guidi

    2014-01-01

    Full Text Available For the identification of C pools involved in soil aggregation, a physically-based aggregate fractionation was proposed, and  additional pretreatments were used in the measurement of the 1-2 mm aggregate stability in order to elucidate the relevance of the role of soil microorganisms with respect to the different aggregate breakdown mechanisms. The study was carried out on three clay loam Regosols, developed on calcareous shales, known history of organic cultivation.Our results showed that the soil C pool controlling the process of stabilisation of aggregates was related to the microbial community. We identified the resistance to fast wetting as the major mechanism of aggregate stability driven by microorganims. The plausible hypothesis is that organic farming promotes fungi growth, improving water repellency of soil aggregates by fungal hydrophobic substances. By contrast, we failed in the identification of C pools controlling the formation of aggregates, probably because of the disturbance of mechanical tillage which contributes to the breakdown of soil aggregates.The physically-based aggregate fractionation proposed in this study resulted useful in the  mechanistically understanding of the role of microorganisms in soil aggregation and it might be suggested for studying the impact of management on C pools, aggregates properties and their relationships in agricultural soils.

  1. Facilitated aggregation of FG nucleoporins under molecular crowding conditions.

    Science.gov (United States)

    Milles, Sigrid; Huy Bui, Khanh; Koehler, Christine; Eltsov, Mikhail; Beck, Martin; Lemke, Edward A

    2013-02-01

    Intrinsically disordered and phenylalanine-glycine-rich nucleoporins (FG Nups) form a crowded and selective transport conduit inside the NPC that can only be transited with the help of nuclear transport receptors (NTRs). It has been shown in vitro that FG Nups can assemble into two distinct appearances, amyloids and hydrogels. If and how these phenomena are linked and if they have a physiological role still remains unclear. Using a variety of high-resolution fluorescence and electron microscopic (EM) tools, we reveal that crowding conditions mimicking the NPC environment can accelerate the aggregation and amyloid formation speed of yeast and human FG Nups by orders of magnitude. Aggregation can be inhibited by NTRs, providing a rationale on how the cell might control amyloid formation of FG Nups. The superb spatial resolving power of EM also reveals that hydrogels are enlaced amyloid fibres, and these findings have implications for existing transport models and for NPC assembly.

  2. Application of orthogonal test method in mix proportion design of recycled lightweight aggregate concrete

    Science.gov (United States)

    Zhao, Zhanshan; An, Le; Zhang, Yijing; Yuan, Jie

    2017-03-01

    Recycled lightweight aggregate concrete was made with construction waste and ceramsite brick mainly including brick. Using the orthogonal test method, the mix proportion of recycled lightweight aggregate concrete was studied, and the Influence regularity and significance of water binder ratio, fly ash, sand ratio, the amount of recycled aggregate proportion on the compressive strength of concrete, the strong influence of mass ratio, slump expansion degree was studied. Through the mean and range analysis of the test results, the results show that the water binder ratio has the greatest influence on the 28d intensity of recycled lightweight aggregate concrete. Secondly, the fly ash content, the recycled aggregate replacement rate and the sand ratio have little influence. For the factors of expansion: the proportion of fly ash = water binder ratio sand >sand rate> recycled aggregate replacement rate. When the content of fly ash is about 30%, the expanded degree of recycled lightweight aggregate concrete is the highest, and the workability of that is better and the strength of concrete with 28d and 56d are the highest. When the content of brickbat is about 40% brick particles, the strength of concrete reaches the highest.

  3. Monoclonal Antibodies Follow Distinct Aggregation Pathways During Production-Relevant Acidic Incubation and Neutralization

    DEFF Research Database (Denmark)

    Pedersen, Thomas Skamris; Tian, Xinsheng; Thorolfsson, Matthias

    2016-01-01

    and orthogonal analytical methods, including small-angle X-ray scattering and dynamic light scattering and supplemented the experimental data with crystal structure-based spatial aggregation propensity (SAP) calculations. RESULTS: We revealed distinct solution behaviors between the three mAb models: At acidic p......PURPOSE: Aggregation aspects of therapeutic monoclonal antibodies (mAbs) are of common concern to the pharmaceutical industry. Low pH treatment is applied during affinity purification and to inactivate endogenous retroviruses, directing interest to the mechanisms of acid-induced antibody...... distinguish between reversible and irreversible mAb aggregation pathways at early stages of acidic treatment....

  4. Why Huddle? Ecological Drivers of Chick Aggregations in Gentoo Penguins, Pygoscelis papua, across Latitudes

    Science.gov (United States)

    Collen, Ben; Johnston, Daniel

    2016-01-01

    Aggregations of young animals are common in a range of endothermic and ectothermic species, yet the adaptive behavior may depend on social circumstance and local conditions. In penguins, many species form aggregations (aka. crèches) for a variety of purposes, whilst others have never been observed exhibiting this behavior. Those that do form aggregations do so for three known benefits: 1) reduced thermoregulatory requirements, 2) avoidance of unrelated-adult aggression, and 3) lower predation risk. In gentoo penguins, Pygoscelis papua, chick aggregations are known to form during the post-guard period, yet the cause of these aggregations is poorly understood. Here, for the first time, we study aggregation behavior in gentoo penguins, examining four study sites along a latitudinal gradient using time-lapse cameras to examine the adaptive benefit of aggregations to chicks. Our results support the idea that aggregations of gentoo chicks decrease an individual’s energetic expenditure when wet, cold conditions are present. However, we found significant differences in aggregation behavior between the lowest latitude site, Maiviken, South Georgia, and two of the higher latitude sites on the Antarctic Peninsula, suggesting this behavior may be colony specific. We provide strong evidence that more chicks aggregate and a larger number of aggregations occur on South Georgia, while the opposite occurs at Petermann Island in Antarctica. Future studies should evaluate multiple seabird colonies within one species before generalizing behaviors based on one location, and past studies may need to be re-evaluated to determine whether chick aggregation and other behaviors are in fact exhibited species-wide. PMID:26840252

  5. Why Huddle? Ecological Drivers of Chick Aggregations in Gentoo Penguins, Pygoscelis papua, across Latitudes.

    Science.gov (United States)

    Black, Caitlin; Collen, Ben; Johnston, Daniel; Hart, Tom

    2016-01-01

    Aggregations of young animals are common in a range of endothermic and ectothermic species, yet the adaptive behavior may depend on social circumstance and local conditions. In penguins, many species form aggregations (aka. crèches) for a variety of purposes, whilst others have never been observed exhibiting this behavior. Those that do form aggregations do so for three known benefits: 1) reduced thermoregulatory requirements, 2) avoidance of unrelated-adult aggression, and 3) lower predation risk. In gentoo penguins, Pygoscelis papua, chick aggregations are known to form during the post-guard period, yet the cause of these aggregations is poorly understood. Here, for the first time, we study aggregation behavior in gentoo penguins, examining four study sites along a latitudinal gradient using time-lapse cameras to examine the adaptive benefit of aggregations to chicks. Our results support the idea that aggregations of gentoo chicks decrease an individual's energetic expenditure when wet, cold conditions are present. However, we found significant differences in aggregation behavior between the lowest latitude site, Maiviken, South Georgia, and two of the higher latitude sites on the Antarctic Peninsula, suggesting this behavior may be colony specific. We provide strong evidence that more chicks aggregate and a larger number of aggregations occur on South Georgia, while the opposite occurs at Petermann Island in Antarctica. Future studies should evaluate multiple seabird colonies within one species before generalizing behaviors based on one location, and past studies may need to be re-evaluated to determine whether chick aggregation and other behaviors are in fact exhibited species-wide.

  6. Amplification of Chirality through Self-Replication of Micellar Aggregates in Water

    KAUST Repository

    Bukhriakov, Konstantin

    2015-03-17

    We describe a system in which the self-replication of micellar aggregates results in a spontaneous amplification of chirality in the reaction products. In this system, amphiphiles are synthesized from two "clickable" fragments: a water-soluble "head" and a hydrophobic "tail". Under biphasic conditions, the reaction is autocatalytic, as aggregates facilitate the transfer of hydrophobic molecules to the aqueous phase. When chiral, partially enantioenriched surfactant heads are used, a strong nonlinear induction of chirality in the reaction products is observed. Preseeding the reaction mixture with an amphiphile of one chirality results in the amplification of this product and therefore information transfer between generations of self-replicating aggregates. Because our amphiphiles are capable of catalysis, information transfer, and self-assembly into bounded structures, they present a plausible model for prenucleic acid "lipid world" entities. © 2015 American Chemical Society.

  7. High speed ink aggregates are ejected from tattoos during Q-switched Nd:YAG laser treatments.

    Science.gov (United States)

    Murphy, Michael J

    2018-03-25

    Dark material has been observed embedded within glass slides following Q-switched Nd:YAG laser treatment of tattoos. It appears that these fragments are ejected at high speed from the skin during the treatment. Light microscopic analysis of the slides reveals aggregates of dark fragmented material, presumably tattoo ink, with evidence of fractured/melted glass. Photomicrographs reveal that the sizes of these aggregates are in the range 12 μm to 0.5 mm. Tattoo ink fragments were clearly observed on the surface and embedded within glass slides. Surface aggregates were observed as a fine dust and were easily washed off while deeper fragments remained in situ. The embedded fragments were not visible to the unaided eye. Some fragments appeared to have melted yielding an "insect-like" appearance. These were found to be located between approximately 0.2 and 1 mm deep in the glass. Given the particle masses and kinetic energies attained by some of these aggregates their velocities, when leaving the skin, may be hundreds to thousands of metres per second. However, the masses of the aggregates are minuscule meaning that laser operators may be subjected to these high-speed aggregates without their knowledge. These high-speed fragments of ink may pose a contamination risk to laser operators. Lasers Surg. Med. 9999:1-7, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. Market distortions and aggregate productivity: Evidence from Chinese energy enterprises

    International Nuclear Information System (INIS)

    Dai, Xiaoyong; Cheng, Liwei

    2016-01-01

    Market distortions can generate resource misallocations across heterogeneous firms and reduce aggregate productivity. This paper measures market distortions and aggregate productivity growth in China's energy sector. We use the wedge between output elasticities and factor shares in revenues to recover a measure of firm-level market distortions. Using data on a large sample of Chinese energy enterprises from 1999 to 2007, our estimations provide strong evidence of the existence of both factor and product market distortions within and across China's various energy industries. The productivity aggregation and decomposition results demonstrate that the estimated aggregate productivity growth (APG) is, on average, 2.595% points per year, of which technological change, resource reallocation, and firm entries and exits account for 1.981, 0.068, and 0.546% points, respectively. The weak contributions of resource reallocation and firm turnover to APG are also found in energy sub-industries, except in the coal industry. Our research suggests that China's energy sector has major potential for productivity gains from resource reallocation through the reduction of market distortions. - Highlights: •We estimate market distortions and productivity growth of China's energy sector. •We use a large sample of Chinese energy enterprises. •There are evidences of the existence of factor and product market distortions. •Aggregate productivity growth is largely driven by firm-level technological change. •China's energy sector can realize productivity gains from resource reallocations.

  9. Structural insights into mechanisms for inhibiting amyloid β42 aggregation by non-catechol-type flavonoids.

    Science.gov (United States)

    Hanaki, Mizuho; Murakami, Kazuma; Akagi, Ken-ichi; Irie, Kazuhiro

    2016-01-15

    The prevention of 42-mer amyloid β-protein (Aβ42) aggregation is promising for the treatment of Alzheimer's disease. We previously described the site-specific inhibitory mechanism for Aβ42 aggregation by a catechol-type flavonoid, (+)-taxifolin, targeting Lys16,28 after its autoxidation. In contrast, non-catechol-type flavonoids (morin, datiscetin, and kaempferol) inhibited Aβ42 aggregation without targeting Lys16,28 with almost similar potencies to that of (+)-taxifolin. We herein provided structural insights into their mechanisms for inhibiting Aβ42 aggregation. Physicochemical analyses revealed that their inhibition did not require autoxidation. The (1)H-(15)N SOFAST-HMQC NMR of Aβ42 in the presence of morin and datiscetin revealed the significant perturbation of chemical shifts of His13,14 and Gln15, which were close to the intermolecular β-sheet region, Gln15-Ala21. His13,14 also played a role in radical formation at Tyr10, thereby inducing the oxidation of Met35, which has been implicated in Aβ42 aggregation. These results suggest the direct interaction of morin and datiscetin with the Aβ42 monomer. Although only kaempferol was oxidatively-degraded during incubation, its degradation products as well as kaempferol itself suppressed Aβ42 aggregation. However, neither kaempferol nor its decomposed products perturbed the chemical shifts of the Aβ42 monomer. Aggregation experiments using 1,1,1,3,3,3-hexafluoro-2-propanol-treated Aβ42 demonstrated that kaempferol and its degradation products inhibited the elongation rather than nucleation phase, implying that they interacted with small aggregates of Aβ42, but not with the monomer. In contrast, morin and datiscetin inhibited both phases. The position and number of hydroxyl groups on the B-ring of non-catechol-type flavonoids could be important for their inhibitory potencies and mechanisms against Aβ42 aggregation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation of the effects of several zoanthamine-type alkaloids on the aggregation of human platelets.

    Science.gov (United States)

    Villar, Rosa M; Gil-Longo, José; Daranas, Antonio H; Souto, María L; Fernández, José J; Peixinho, Solange; Barral, Miguel A; Santafé, Gilmar; Rodríguez, Jaime; Jiménez, Carlos

    2003-05-15

    Ten zoanthamine-type alkaloids from two marine zoanthids belonging to the Zoanthus genus (Zoanthus nymphaeus and Zoanthus sp.) along with one semisynthetic derivative were evaluated for their antiplatelet activities on human platelet aggregation induced by several stimulating agents. 11-Hydroxyzoanthamine (11) and a synthetic derivative of norzoanthamine (16) showed strong inhibition against thrombin-, collagen- and arachidonic acid-induced aggregation, zoanthenol (15) displayed a selective inhibitory activity induced by collagen, while zoanthaminone (10) behaved as a potent aggregant agent. These evaluations allowed us to deduce several structure-activity relationships and suggest some mechanisms of action for this type of compounds.

  11. Patterns of [PSI+] aggregation allow insights into cellular organization of yeast prion aggregates

    Science.gov (United States)

    Tyedmers, Jens

    2012-01-01

    The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI+] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates. PMID:22449721

  12. Rheology of three-dimensional packings of aggregates: microstructure and effects of nonconvexity.

    Science.gov (United States)

    Azéma, Emilien; Radjaï, Farhang; Saint-Cyr, Baptiste; Delenne, Jean-Yves; Sornay, Philippe

    2013-05-01

    We use three-dimensional contact dynamics simulations to analyze the rheological properties of granular materials composed of rigid aggregates. The aggregates are made from four overlapping spheres and described by a nonconvexity parameter depending on the relative positions of the spheres. The macroscopic and microstructural properties of several sheared packings are analyzed as a function of the degree of nonconvexity of the aggregates. We find that the internal angle of friction increases with the nonconvexity. In contrast, the packing fraction first increases to a maximum value but declines as the nonconvexity increases further. At a high level of nonconvexity, the packings are looser but show a higher shear strength. At the microscopic scale, the fabric and force anisotropy, as well as the friction mobilization, are enhanced by multiple contacts between aggregates and interlocking, thus revealings the mechanical and geometrical origins of shear strength.

  13. Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation.

    Science.gov (United States)

    Pilkington, Emily H; Lai, May; Ge, Xinwei; Stanley, William J; Wang, Bo; Wang, Miaoyi; Kakinen, Aleksandr; Sani, Marc-Antonie; Whittaker, Michael R; Gurzov, Esteban N; Ding, Feng; Quinn, John F; Davis, Thomas P; Ke, Pu Chun

    2017-12-11

    Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.

  14. Real-time amyloid aggregation monitoring with a photonic crystal-based approach.

    Science.gov (United States)

    Santi, Sara; Musi, Valeria; Descrovi, Emiliano; Paeder, Vincent; Di Francesco, Joab; Hvozdara, Lubos; van der Wal, Peter; Lashuel, Hilal A; Pastore, Annalisa; Neier, Reinhard; Herzig, Hans Peter

    2013-10-21

    We propose the application of a new label-free optical technique based on photonic nanostructures to real-time monitor the amyloid-beta 1-42 (Aβ(1-42)) fibrillization, including the early stages of the aggregation process, which are related to the onset of the Alzheimer's Disease (AD). The aggregation of Aβ peptides into amyloid fibrils has commonly been associated with neuronal death, which culminates in the clinical features of the incurable degenerative AD. Recent studies revealed that cell toxicity is determined by the formation of soluble oligomeric forms of Aβ peptides in the early stages of aggregation. At this phase, classical amyloid detection techniques lack in sensitivity. Upon a chemical passivation of the sensing surface by means of polyethylene glycol, the proposed approach allows an accurate, real-time monitoring of the refractive index variation of the solution, wherein Aβ(1-42) peptides are aggregating. This measurement is directly related to the aggregation state of the peptide throughout oligomerization and subsequent fibrillization. Our findings open new perspectives in the understanding of the dynamics of amyloid formation, and validate this approach as a new and powerful method to screen aggregation at early stages. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Aggregation of montmorillonite and organic matter in aqueous media containing artificial seawater

    Directory of Open Access Journals (Sweden)

    Kim Jinwook

    2009-01-01

    Full Text Available Abstract Background The dispersion-aggregation behaviors of suspended colloids in rivers and estuaries are affected by the compositions of suspended materials (i.e., clay minerals vs. organic macromolecules and salinity. Laboratory experiments were conducted to investigate the dispersion and aggregation mechanisms of suspended particles under simulated river and estuarine conditions. The average hydrodynamic diameters of suspended particles (representing degree of aggregation and zeta potential (representing the electrokinetic properties of suspended colloids and aggregates were determined for systems containing suspended montmorillonite, humic acid, and/or chitin at the circumneutral pH over a range of salinity (0 – 7.2 psu. Results The montmorillonite-only system increased the degree of aggregation with salinity increase, as would be expected for suspended colloids whose dispersion-aggregation behavior is largely controlled by the surface electrostatic properties and van der Waals forces. When montmorillonite is combined with humic acid or chitin, the aggregation of montmorillonite was effectively inhibited. The surface interaction energy model calculations reveal that the steric repulsion, rather than the increase in electronegativity, is the primary cause for the inhibition of aggregation by the addition of humic acid or chitin. Conclusion These results help explain the range of dispersion-aggregation behaviors observed in natural river and estuarine systems. It is postulated that the composition of suspended particles, specifically the availability of steric polymers such as those contained in humic acid, determine whether the river suspension is rapidly aggregated and settled or remains dispersed in suspension when it encounters increasingly saline environments of estuaries and oceans.

  16. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    Science.gov (United States)

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  17. Halogenated salicylaldehyde azines: The heavy atom effect on aggregation-induced emission enhancement properties

    International Nuclear Information System (INIS)

    Chen, Xiao-tong; Tong, Ai-jun

    2014-01-01

    This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. For this purpose, a series of halogenated salicylaldehyde azine derivatives, namely, chloro-salicylaldehyde azine (1), bromo-salicylaldehyde azine (2) and iodo-salicylaldehyde azine (3) are synthesized. 1 and 2 display typical AIEE characteristics of salicylaldehyde azine compounds; whereas for the iodo-substituent in 3, is found to be effective “external” heavy atom quenchers to salicylaldehyde azine fluorescence in aggregated state. Based on its weak fluorescence in aggregated state and relative strong fluorescence in dispersed state, 3 can also be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction. -- Highlights: • This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. • Chloro- and bromo-salicylaldehyde display typical AIEE properties of salicylaldehyde azine, whereas the iodo-substitute quenches AIEE in aggregated state. • Iodo-salicylaldehyde can be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction

  18. Effect of aggregate graining compositions on skid resistance of Exposed Aggregate Concrete pavement

    Science.gov (United States)

    Wasilewska, Marta; Gardziejczyk, Wladysław; Gierasimiuk, Pawel

    2018-05-01

    The paper presents the evaluation of skid resistance of EAC (Exposed Aggregate Concrete) pavements which differ in aggregate graining compositions. The tests were carried out on concrete mixes with a maximum aggregate size of 8 mm. Three types of coarse aggregates were selected depending on their resistance to polishing which was determined on the basis of the PSV (Polished Stone Value). Basalt (PSV 48), gabbro (PSV 50) and trachybasalt (PSV 52) aggregates were chosen. For each type of aggregate three graining compositions were designed, which differed in the content of coarse aggregate > 4mm. Their content for each series was as follows: A - 38%, B - 50% and C - 68%. Evaluation of the skid resistance has been performed using the FAP (Friction After Polishing) test equipment also known as the Wehner/Schulze machine. Laboratory method enables to compare the skid resistance of different types of wearing course under specified conditions simulating polishing processes. In addition, macrotexture measurements were made on the surface of each specimen using the Elatexure laser profile. Analysis of variance showed that at significance level α = 0.05, aggregate graining compositions as well as the PSV have a significant influence on the obtained values of the friction coefficient μm of the tested EAC pavements. The highest values of the μm have been obtained for EAC with the lowest amount of coarse aggregates (compositions A). In these cases the resistance to polishing of the aggregate does not significantly affect the friction coefficients. This is related to the large areas of cement mortar between the exposed coarse grains. Based on the analysis of microscope images, it was observed that the coarse aggregates were not sufficiently exposed. It has been proved that PSV significantly affected the coefficient of friction in the case of compositions B and C. This is caused by large areas of exposed coarse aggregate. The best parameters were achieved for the EAC pavements

  19. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  20. Graph Aggregation

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.

    Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference

  1. The Platelet Aggregation-Inducing Factor Aggrus/Podoplanin Promotes Pulmonary Metastasis

    Science.gov (United States)

    Kunita, Akiko; Kashima, Takeshi G.; Morishita, Yasuyuki; Fukayama, Masashi; Kato, Yukinari; Tsuruo, Takashi; Fujita, Naoya

    2007-01-01

    Tumor cell-induced platelet aggregation has been reported to facilitate hematogenous metastasis. Aggrus/podoplanin is a platelet aggregation-inducing factor that is up-regulated in a number of human cancers and has been implicated in tumor progression. We studied herein the role of Aggrus in tumor growth, metastasis, and survival in vivo. Aggrus expression in Chinese hamster ovary cells promoted pulmonary metastasis in both an experimental and a spontaneous mouse model. No differences in the size of metastatic foci or in primary tumor growth were found in either set of mice. Aggrus-expressing cells, which were covered with platelets, arrested in the lung microvasculature 30 minutes after injection. In addition, lung metastasis resulting from Aggrus expression decreased the survival of the mice. By generating several Aggrus point mutants, we revealed that point mutation at the platelet aggregation-stimulating domain of Aggrus (Thr34 and Thr52) obliterated both platelet aggregation and metastasis. Furthermore, administration of aspirin to mice reduced the number of metastatic foci. These results indicate that Aggrus contributes to the establishment of metastasis by promoting platelet aggregation without affecting subsequent growth. Thus, Aggrus could serve as an ideal therapeutic target for drug development to block metastasis. PMID:17392172

  2. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53.

    Directory of Open Access Journals (Sweden)

    Karolyn J Forget

    Full Text Available Prion diseases are unique pathologies in which the infectious particles are prions, a protein aggregate. The prion protein has many particular features, such as spontaneous aggregation, conformation transmission to other native PrP proteins and transmission from an individual to another. Protein aggregation is now frequently associated to many human diseases, for example Alzheimer's disease, Parkinson's disease or type 2 diabetes. A few proteins associated to these conformational diseases are part of a new category of proteins, called prionoids: proteins that share some, but not all, of the characteristics associated with prions. The p53 protein, a transcription factor that plays a major role in cancer, has recently been suggested to be a possible prionoid. The protein has been shown to accumulate in multiple cancer cell types, and its aggregation has also been reproduced in vitro by many independent groups. These observations suggest a role for p53 aggregates in cancer development. This study aims to test the «prion-like» features of p53. Our results show in vitro aggregation of the full length and N-terminally truncated protein (p53C, and penetration of these aggregates into cells. According to our findings, the aggregates enter cells using macropinocytosis, a non-specific pathway of entry. Lastly, we also show that once internalized by the cell, p53C aggregates can co-aggregate with endogenous p53 protein. Together, these findings suggest prion-like characteristics for p53 protein, based on the fact that p53 can spontaneously aggregate, these aggregates can penetrate cells and co-aggregate with cellular p53.

  3. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.

    Science.gov (United States)

    Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao

    2016-05-01

    In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in aluminium oxides maybe more important for stability of micro-aggregates.

  4. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions

    Science.gov (United States)

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-01

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  5. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions.

    Science.gov (United States)

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-20

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  6. Aggregative stability of fungicidal nanomodifier based on zinc hydrosilicates

    Science.gov (United States)

    Grishina, Anna; Korolev, Evgeniy

    2018-03-01

    Currently, there is a strong need of high performance multi functional materials in high-rise construction. Obviously, such materials should be characterized by high strength; but for interior rooms biosafety is important as well. The promising direction to obtain both high strength and maintain biosafety in buildings and structures is to manage the structure of mineral binders by means of fungicidal nanomodifier based on zinc hydrosilicates. In the present work the aggregative stability of colloidal solutions of zinc hydrosilicates after one year of storage was studied. It has been established that the concentration of iron (III) hydroxide used to prepare the precursor of zinc hydrosilicates has a significant effect on the long-term aggregative stability: as the concentration of iron (III) hydroxide increases, the resistance of the fungicidal nanomodifier increases. It was found that, despite the minimal concentration of nano-sized zinc hydrosilicates (0.028%), the colloidal solution possesses a low long-term aggregative stability; while in the initial period (not less than 14 days) the colloidal solution of the nanomodifier is aggregatively stable. It is shown that when the ratio in the colloidal solution of the amount of the substance CH3COOH / SiO2 = 0.43 is reached, an increase in the polymerization rate is observed, which is the main cause of low aggregative stability. Colloidal solutions containing zinc hydrosilicates synthesized at a concentration of iron (III) hydroxide used to produce a precursor equal to 0.7% have a long-term aggregative stability and do not significantly change the reduced particle. Such compositions are to be expediently used for the nanomodifying of building composites in order to control their structure formation and to create conditions that impede the development of various mycelial fungi.

  7. Information Aggregation in Organizations

    OpenAIRE

    Schulte, Elisabeth

    2006-01-01

    This dissertation contributes to the analysis of information aggregation procedures within organizations. Facing uncertainty about the consequences of a collective decision, information has to be aggregated before making a choice. Two main questions are addressed. Firstly, how well is an organization suited for the aggregation of decision-relevant information? Secondly, how should an organization be designed in order to aggregate information efficiently? The main part deals with information a...

  8. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    Science.gov (United States)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  9. Influence of plankton community structure on the sinking velocity of marine aggregates

    Science.gov (United States)

    Bach, L. T.; Boxhammer, T.; Larsen, A.; Hildebrandt, N.; Schulz, K. G.; Riebesell, U.

    2016-08-01

    About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities every year. Part of this organic matter is reprocessed within the plankton community to form aggregates which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we moored nine 25 m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community structure affects material properties and sinking velocities of aggregates (Ø 80-400 µm) collected in the mesocosms' sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates. Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2-2 µm) fraction of the phytoplankton biomass increased. Thus, picoautotroph-dominated communities may be indicative for food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms of the coccolithophore Emiliania huxleyi revealed that cell concentrations of 1500 cells/mL accelerate sinking by about 35-40%, which we estimate (by one-dimensional modeling) to elevate organic matter transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are influenced by the complex interplay between the availability of ballast minerals and aggregate packaging; both of which are controlled by plankton community structure.

  10. Microstructure and mechanical properties of recycled aggregate concrete in seawater environment.

    Science.gov (United States)

    Yue, Pengjun; Tan, Zhuoying; Guo, Zhiying

    2013-01-01

    This study aims to conduct research about the microstructure and basic properties of recycled aggregate concrete under seawater corrosion. Concrete specimens were fabricated and tested with different replacement percentages of 0%, 30%, and 60% after immersing in seawater for 4, 8, 12, and 16 months, respectively. The basic properties of recycled aggregate concrete (RAC) including the compressive strength, the elastic modulus, and chloride penetration depth were explicitly investigated. And the microstructure of recycled concrete aggregate (RCA) was revealed to find the seawater corrosion by using scanning electron microscope (SEM). The results showed that higher amount of the RCA means more porosity and less strength, which could lower both the compressive strength and resistance to chloride penetration. This research could be a guide in theoretical and numerical analysis for the design of RAC structures.

  11. Eco-friendly porous concrete using bottom ash aggregate for marine ranch application.

    Science.gov (United States)

    Lee, Byung Jae; Prabhu, G Ganesh; Lee, Bong Chun; Kim, Yun Yong

    2016-03-01

    This article presents the test results of an investigation carried out on the reuse of coal bottom ash aggregate as a substitute material for coarse aggregate in porous concrete production for marine ranch applications. The experimental parameters were the rate of bottom ash aggregate substitution (30%, 50% and 100%) and the target void ratio (15%, 20% and 25%). The cement-coated granular fertiliser was substituted into a bottom ash aggregate concrete mixture to improve marine ranch applications. The results of leaching tests revealed that the bottom ash aggregate has only a negligible amount of the ten deleterious substances specified in the Ministry of Environment - Enforcement Regulation of the Waste Management Act of Republic Korea. The large amount of bubbles/air gaps in the bottom ash aggregate increased the voids of the concrete mixtures in all target void ratios, and decreased the compressive strength of the porous concrete mixture; however, the mixture substituted with 30% and 10% of bottom ash aggregate and granular fertiliser, respectively, showed an equal strength to the control mixture. The sea water resistibility of the bottom ash aggregate substituted mixture was relatively equal to that of the control mixture, and also showed a great deal of improvement in the degree of marine organism adhesion compared with the control mixture. No fatality of fish was observed in the fish toxicity test, which suggested that bottom ash aggregate was a harmless material and that the combination of bottom ash aggregate and granular fertiliser with substitution rates of 30% and 10%, respectively, can be effectively used in porous concrete production for marine ranch application. © The Author(s) 2015.

  12. Anaerobic Nitrogen Turnover by Sinking Diatom Aggregates at Varying Ambient Oxygen Levels

    Directory of Open Access Journals (Sweden)

    Peter eStief

    2016-02-01

    Full Text Available In the world’s oceans, even relatively low oxygen (O2 levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here we show that sinking diatom aggregates can host anaerobic nitrogen cycling at ambient O2 levels well above the hypoxic threshold. Aggregates were produced from the ubiquitous diatom Skeletonema marinoi and the natural microbial community of seawater. Microsensor profiling through the center of sinking aggregates revealed internal anoxia at ambient 40% air saturation (~100 µmol O2 L-1 and below. Accordingly, anaerobic nitrate turnover inside the aggregates was evident within this range of ambient O2 levels. In incubations with 15N-labeled nitrate, individual Skeletonema aggregates produced NO2- (up to 10.7 nmol N h-1 per aggregate, N2 (up to 7.1 nmol N h-1, NH4+ (up to 2.0 nmol N h-1, and N2O (up to 0.2 nmol N h-1. Intriguingly, nitrate stored inside the diatom cells served as an additional, internal nitrate source for N2 production, which may partially uncouple anaerobic nitrate turnover by diatom aggregates from direct ambient nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient O2 levels. Depending on the extent of intracellular nitrate consumption during the sinking process, diatom aggregates may also be involved in the long-distance export of nitrate to the deep ocean.

  13. LandScape: a simple method to aggregate p--Values and other stochastic variables without a priori grouping

    DEFF Research Database (Denmark)

    Wiuf, Carsten; Pallesen, Jonatan; Foldager, Leslie

    2016-01-01

    variables without assuming a priori defined groups. We provide different ways to evaluate the significance of the aggregated variables based on theoretical considerations and resampling techniques, and show that under certain assumptions the FWER is controlled in the strong sense. Validity of the method...... and the results might depend on the chosen criteria. Methods that summarize, or aggregate, test statistics or p-values, without relying on a priori criteria, are therefore desirable. We present a simple method to aggregate a sequence of stochastic variables, such as test statistics or p-values, into fewer...

  14. Regime of aggregate structures and magneto-rheological characteristics of a magnetic rod-like particle suspension: Monte Carlo and Brownian dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kazuya [School of Akita Prefectural University, Yurihonjo (Japan); Satoh, Akira, E-mail: asatoh@akita-pu.ac.jp [Department of Machine Intelligence and System Engineering, Akita Prefectural University, Yurihonjo (Japan)

    2017-09-01

    Highlights: • Monte Carlo simulations have been employed for the aggregate structures. • Brownian dynamics simulations have been employed for the magneto-rheology. • Even a weak shear flow induces a significant regime change in the aggregates. • A strong external magnetic field drastically changes the aggregates. • The dependence of the viscosity on these factors is governed in a complex manner. - Abstract: In the present study, we address a suspension composed ferromagnetic rod-like particles to elucidate a regime change in the aggregate structures and the magneto-rheological characteristics. Monte Carlo simulations have been employed for investigating the aggregate structures in thermodynamic equilibrium, and Brownian dynamics simulations for magneto-rheological features in a simple shear flow. The main results obtained here are summarized as follows. For the case of thermodynamic equilibrium, the rod-like particles aggregate to form thick chain-like clusters and the neighboring clusters incline in opposite directions. If the external magnetic field is increased, the thick chain-like clusters in the magnetic field direction grow thicker by adsorbing the neighboring clusters that incline in the opposite direction. Hence, a significant phase change in the particle aggregates is not induced by an increase in the magnetic field strength. For the case of a simple shear flow, even a weak shear flow induces a significant regime change from the thick chain-like clusters of thermodynamic equilibrium into wall-like aggregates composed of short raft-like clusters. A strong external magnetic field drastically changes these aggregates into wall-like aggregates composed of thick chain-like clusters rather than the short raft-like clusters. The internal structure of these aggregates is not strongly influenced by a shear flow, and the formation of the short raft-like clusters is maintained inside the aggregates. The main contribution to the net viscosity is the

  15. Fluorescent aggregates in naphthalene containing poly(urethane-urea)s

    International Nuclear Information System (INIS)

    Simas, E.R.; Akcelrud, Leni

    2003-01-01

    A series of segmented poly(urethane-urea)s containing naphthalene in the hard block and hexamethylene spacers in the soft block was prepared. The hard to soft segment ratio was varied systematically, to afford a series of polymers with various chromophore concentrations and a constant length of the chromophoric block, using a three-step synthetic procedure. The absorption, fluorescence and fluorescence-excitation spectra of solutions and films of the block copolymers provide strong evidence for aggregation. A red-shifted fluorescence spectrum peaking at 420 nm gains in intensity as the naphthalene concentration is increased. The excitation spectrum of this new emission is well to the red of the normal naphthalene absorption spectrum, consistent with the UV spectrum. Formation of a fluorescent ground state dimer (or higher aggregate) is proposed to account for these observations

  16. Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway.

    Science.gov (United States)

    Thapa, Arjun; Jett, Stephen D; Chi, Eva Y

    2016-01-20

    The abnormal misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet enriched insoluble deposits initiates a cascade of events leading to pathological processes and culminating in cognitive decline in Alzheimer's disease (AD). In particular, soluble oligomeric/prefibrillar Aβ have been shown to be potent neurotoxins. The naturally occurring polyphenol curcumin has been shown to exert a neuroprotective effect against age-related neurodegenerative diseases such as AD. However, its protective mechanism remains unclear. In this study, we investigated the effects of curcumin on the aggregation of Aβ40 as well as Aβ40 aggregate induced neurotoxicity. Our results show that the curcumin does not inhibit Aβ fibril formation, but rather enriches the population of "off-pathway" soluble oligomers and prefibrillar aggregates that were nontoxic. Curcumin also exerted a nonspecific neuroprotective effect, reducing toxicities induced by a range of Aβ conformers, including monomeric, oligomeric, prefibrillar, and fibrillar Aβ. The neuroprotective effect is possibly membrane-mediated, as curcumin reduced the extent of cell membrane permeabilization induced by Aβ aggregates. Taken together, our study shows that curcumin exerts its neuroprotective effect against Aβ induced toxicity through at least two concerted pathways, modifying the Aβ aggregation pathway toward the formation of nontoxic aggregates and ameliorating Aβ-induced toxicity possibly through a nonspecific pathway.

  17. Mechanical Performance Evaluation of Self-Compacting Concrete with Fine and Coarse Recycled Aggregates from the Precast Industry.

    Science.gov (United States)

    Santos, Sara A; da Silva, Pedro R; de Brito, Jorge

    2017-08-04

    This paper intends to evaluate the feasibility of reintroducing recycled concrete aggregates in the precast industry. The mechanical properties of self-compacting concrete (SCC) with incorporation of recycled aggregates (RA) (coarse recycled aggregates (CRA) and fine recycled aggregates (FRA)) from crushed precast elements were evaluated. The goal was to evaluate the ability of producing SCC with a minimum pre-established performance in terms of mechanical strength, incorporating variable ratios of RA (FRA/CRA%: 0/0%, 25/25%, 50/50%, 0/100% and 100/0%) produced from precast source concretes with similar target performances. This replication in SCC was made for two strength classes (45 MPa and 65 MPa), with the intention of obtaining as final result concrete with recycled aggregates whose characteristics are compatible with those of a SCC with natural aggregates in terms of workability and mechanical strength. The results enabled conclusions to be established regarding the SCC's produced with fine and coarse recycled aggregates from the precast industry, based on its mechanical properties. The properties studied are strongly affected by the type and content of recycled aggregates. The potential demonstrated, mainly in the hardened state, by the joint use of fine and coarse recycled aggregate is emphasized.

  18. Recycled aggregates concrete: aggregate and mix properties

    Directory of Open Access Journals (Sweden)

    González-Fonteboa, B.

    2005-09-01

    Full Text Available This study of structural concrete made with recycled concrete aggregate focuses on two issues: 1. The characterization of such aggregate on the Spanish market. This involved conducting standard tests to determine density, water absorption, grading, shape, flakiness and hardness. The results obtained show that, despite the considerable differences with respect to density and water absorption between these and natural aggregates, on the whole recycled aggregate is apt for use in concrete production. 2. Testing to determine the values of basic concrete properties: mix design parameters were established for structural concrete in non-aggressive environments. These parameters were used to produce conventional concrete, and then adjusted to manufacture recycled concrete aggregate (RCA concrete, in which 50% of the coarse aggregate was replaced by the recycled material. Tests were conducted to determine the physical (density of the fresh and hardened material, water absorption and mechanical (compressive strength, splitting tensile strength and modulus of elasticity properties. The results showed that, from the standpoint of its physical and mechanical properties, concrete in which RCA accounted for 50% of the coarse aggregate compared favourably to conventional concrete.

    Se aborda el estudio de hormigones estructurales fabricados con áridos reciclados procedentes de hormigón, incidiéndose en dos aspectos: 1. Caracterización de tales áridos, procedentes del mercado español. Para ello se llevan a cabo ensayos de densidad, absorción, granulometría, coeficiente de forma, índice de lajas y dureza. Los resultados obtenidos han puesto de manifiesto que, a pesar de que existen diferencias notables (sobre todo en cuanto a densidad y absorción con los áridos naturales, las características de los áridos hacen posible la fabricación de hormigones. 2. Ensayos sobre propiedades básicas de los hormigones: se establecen parámetros de dosificaci

  19. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-01-01

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications. PMID:28788372

  20. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing.

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-10-31

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  1. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-10-01

    Full Text Available Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS supplied by the Italian electric utility company (ENEL have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  2. Towards General Temporal Aggregation

    DEFF Research Database (Denmark)

    Boehlen, Michael H.; Gamper, Johann; Jensen, Christian Søndergaard

    2008-01-01

    associated with the management of temporal data. Indeed, temporal aggregation is complex and among the most difficult, and thus interesting, temporal functionality to support. This paper presents a general framework for temporal aggregation that accommodates existing kinds of aggregation, and it identifies...

  3. The molecular aggregation of pyronin Y in natural bentonite clay suspension

    International Nuclear Information System (INIS)

    Meral, Kadem; Yilmaz, Nuray; Kaya, Mehmet; Tabak, Ahmet; Onganer, Yavuz

    2011-01-01

    The molecular aggregation and spectroscopic properties of Pyronin Y (PyY) in the suspension containing natural bentonite clay were studied using molecular absorption, steady-state and time-resolved fluorescence spectroscopy techniques. Interaction between the clay particles and the cationic dye compounds in aqueous solution resulted in significant changes in spectral properties of PyY compared to its molecular behavior in deionized water at the same concentration. These changes were due to the formation of dimer and aggregate of PyY in the clay suspension as well as the presence of the dye monomer. The H-type aggregates of PyY in the clay suspension were identified by the observation of a blue-shifted absorption band of the dye compared to that of its monomer. In spite of diluted dye concentrations, the H-aggregate of PyY in the clay suspension was formed. The intensive aggregation in the clay suspension attributed to the localized high dye concentration on the negatively charged clay surfaces. Adsorption sites of PyY on the clay particles were discussed by deconvulated absorption and excitation spectra. Fluorescence spectroscopy studies revealed that the fluorescence intensity of PyY in the clay suspension is decreased by H-aggregates drastically. Moreover, the presence of H-aggregates in the clay suspension resulted in the decrease of fluorescence lifetime and quantum yield of PyY compared to those in deionized water. - Highlights: → Molecular behavior of PyY adsorbed on clay surface was followed spectroscopically. → H-aggregates of PyY in the clay suspension were formed at very low dye concentrations. → The intensive H-aggregate structure drastically reduced the fluorescence intensity of PyY. → The fluorescence lifetime and quantum yield of PyY in the clay suspension was discussed.

  4. Aggregation Operator Based Fuzzy Pattern Classifier Design

    DEFF Research Database (Denmark)

    Mönks, Uwe; Larsen, Henrik Legind; Lohweg, Volker

    2009-01-01

    This paper presents a novel modular fuzzy pattern classifier design framework for intelligent automation systems, developed on the base of the established Modified Fuzzy Pattern Classifier (MFPC) and allows designing novel classifier models which are hardware-efficiently implementable....... The performances of novel classifiers using substitutes of MFPC's geometric mean aggregator are benchmarked in the scope of an image processing application against the MFPC to reveal classification improvement potentials for obtaining higher classification rates....

  5. Influence of caffeine on blood pressure and platelet aggregation

    Directory of Open Access Journals (Sweden)

    José Wilson S. Cavalcante

    2000-08-01

    Full Text Available OBJECTIVE: Studies have demonstrated that methylxanthines, such as caffeine, are A1 and A2 adenosine receptor antagonists found in the brain, heart, lungs, peripheral vessels, and platelets. Considering the high consumption of products with caffeine in their composition, in Brazil and throughout the rest of the world, the authors proposed to observe the effects of this substance on blood pressure and platelet aggregation. METHODS: Thirteen young adults, ranging from 21 to 27 years of age, participated in this study. Each individual took 750mg/day of caffeine (250mg tid, over a period of seven days. The effects on blood pressure were analyzed through the pressor test with handgrip, and platelet aggregation was analyzed using adenosine diphosphate, collagen, and adrenaline. RESULTS: Diastolic pressure showed a significant increase 24 hours after the first intake (p<0.05. This effect, however, disappeared in the subsequent days. The platelet aggregation tests did not reveal statistically significant alterations, at any time during the study. CONCLUSION: The data suggest that caffeine increases diastolic blood pressure at the beginning of caffeine intake. This hypertensive effect disappears with chronic use. The absence of alterations in platelet aggregation indicates the need for larger randomized studies.

  6. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders.

    Science.gov (United States)

    Caughey, Byron; Lansbury, Peter T

    2003-01-01

    Many neurodegenerative diseases, including Alzheimer's and Parkinson's and the transmissible spongiform encephalopathies (prion diseases), are characterized at autopsy by neuronal loss and protein aggregates that are typically fibrillar. A convergence of evidence strongly suggests that protein aggregation is neurotoxic and not a product of cell death. However, the identity of the neurotoxic aggregate and the mechanism by which it disables and eventually kills a neuron are unknown. Both biophysical studies aimed at elucidating the precise mechanism of in vitro aggregation and animal modeling studies support the emerging notion that an ordered prefibrillar oligomer, or protofibril, may be responsible for cell death and that the fibrillar form that is typically observed at autopsy may actually be neuroprotective. A subpopulation of protofibrils may function as pathogenic amyloid pores. An analogous mechanism may explain the neurotoxicity of the prion protein; recent data demonstrates that the disease-associated, infectious form of the prion protein differs from the neurotoxic species. This review focuses on recent experimental studies aimed at identification and characterization of the neurotoxic protein aggregates.

  7. Proteins aggregation and human diseases

    International Nuclear Information System (INIS)

    Hu, Chin-Kun

    2015-01-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease. (paper)

  8. Proteins aggregation and human diseases

    Science.gov (United States)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  9. Compressive Strength of Concrete made from Natural Fine Aggregate Sources in Minna, Nigeria

    Directory of Open Access Journals (Sweden)

    M. Abdullahi

    2017-12-01

    Full Text Available This work presented an investigation of concrete developed from five fine aggregate sources in Minna, Niger state, Nigeria. Tests conducted on the fine aggregate samples included specific gravity, sieve analysis, bulk density and moisture content. The concrete mix design was done using absolute volume method at various mix proportion of 1:2:4, 1:2:3 and 1:1:2 and water-cement ratios of 0.4, 0.45, 0.5, 0.55 and 0.6. The compressive strengths of concrete were determined at 28-day curing age. Test results revealed that the specific gravities of the aggregate were between 2.60 to 2.70, compacted bulk densities also ranged from 1505.18 to 1701.15kg/m3, loose bulk densities ranged from 1379.32 to 1478.17kg/m3, and moisture content ranged from 0.93 to 2.47%. All the fine aggregate samples satisfied the overall and medium grading limits for natural fine aggregates. The coarse aggregate used fairly followed the grading limit for aggregate size of 20 to 5 mm. The compressive strength of the concrete obtained using the aggregate samples A, B, C, D, and Eall within the ranges of 18.97 to 34.98 N/mm2. Statistical models were developed for the compressive strength of concrete as a function of water-cement ratio for various fine aggregate sources and mix proportions. The models were found to have good predictive the capabilities of the compressive strength of concrete for given water-cement ratio. The properties of fine aggregates and the resulting concrete characteristics showed that all the fine aggregate samples are suitable to be used for concrete production.

  10. Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil.

    Science.gov (United States)

    Hamamoto, Shoichiro; Seki, Katsutoshi; Miyazaki, Tsuyoshi

    2009-07-15

    The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.

  11. Tuning the thermal diffusivity of silver based nanofluids by controlling nanoparticle aggregation

    International Nuclear Information System (INIS)

    Agresti, Filippo; Barison, Simona; Battiston, Simone; Pagura, Cesare; Fabrizio, Monica; Colla, Laura; Fedele, Laura

    2013-01-01

    With the aim of preparing stable nanofluids for heat exchange applications and to study the effect of surfactant on the aggregation of nanoparticles and thermal diffusivity, stable silver colloids were synthesized in water by a green method, reducing AgNO 3 with fructose in the presence of poly-vinylpyrollidone (PVP) of various molecular weights. A silver nanopowder was precipitated from the colloids and re-dispersed at 4 vol% in deionized water. The Ag colloids were characterized by UV–visible spectroscopy, combined dynamic light scattering and ζ-potential measurements, and laser flash thermal diffusivity. The Ag nanopowders were characterized by scanning electron microscopy and thermal gravimetric analysis. It was found that the molecular weight of PVP strongly affects the ζ-potential and the aggregation of nanoparticles, thereby affecting the thermal diffusivity of the obtained colloids. In particular, it was observed that on increasing the molecular weight of PVP the absolute value of the ζ-potential is reduced, leading to increased aggregation of nanoparticles. A clear relation was identified between thermal diffusivity and aggregation, showing higher thermal diffusivity for nanofluids having higher aggregation. A maximum improvement of thermal diffusivity by about 12% was found for nanofluids prepared with PVP having higher molecular weight. (paper)

  12. The suitability of concrete using recycled aggregates (RAs) for high-performance concrete (HPC)

    OpenAIRE

    Torgal, Fernando Pacheco; Ding, Y.; Miraldo, Sérgio; Abdollahnejad, Zahra; Labrincha, J. A.

    2013-01-01

    Most studies related to concrete made with recycled aggregates (RA) use uncontaminated aggregates produced in the laboratory, revealing the potential to re-use as much as 100%. However, industrially produced RA contain a certain level of impurities that can be deleterious for Portland cement concrete, thus making it difficult for the concrete industry to use such investigations unless uncontaminated RA are used. This chapter reviews current knowledge on concrete made with RA, with a focus on ...

  13. Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation.

    Science.gov (United States)

    Kempf, Claudia; Lengeler, Klaus; Wendland, Jürgen

    2017-07-01

    Proteotoxic stress may occur upon exposure of yeast cells to different stress conditions. The induction of stress response mechanisms is important for cells to adapt to changes in the environment and ensure survival. For example, during exposure to elevated temperatures the expression of heat shock proteins such as Hsp104 is induced in yeast. Hsp104 extracts misfolded proteins from aggregates to promote their refolding. We used an Hsp104-GFP reporter to analyze the stress profiles of Saccharomyces species hybrids. To this end a haploid S. cerevisiae strain, harboring a chromosomal HSP104-GFP under control of its endogenous promoter, was mated with stable haploids of S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. uvarum. Stress response behaviors in these hybrids were followed over time by monitoring the appearance and dissolution of Hsp104-GFP foci upon heat shock. General stress tolerance of these hybrids was related to the growth rate detected during exposure to e.g. ethanol and oxidizing agents. We observed that hybrids were generally more resistant to high temperature and ethanol stress compared to their parental strains. Amongst the hybrids differential responses regarding the appearance of Hsp104-foci and the time required for dissolving these aggregates were observed. The S. cerevisiae/S. paradoxus hybrid, combining the two most closely related strains, performed best under these conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. 17-AAG induces cytoplasmic alpha-synuclein aggregate clearance by induction of autophagy.

    Science.gov (United States)

    Riedel, Michael; Goldbaum, Olaf; Schwarz, Lisa; Schmitt, Sebastian; Richter-Landsberg, Christiane

    2010-01-18

    The accumulation and aggregation of alpha-synuclein in nerve cells and glia are characteristic features of a number of neurodegenerative diseases termed synucleinopathies. alpha-Synuclein is a highly soluble protein which in a nucleation dependent process is capable of self-aggregation. The causes underlying aggregate formation are not yet understood, impairment of the proteolytic degradation systems might be involved. In the present study the possible aggregate clearing effects of the geldanamycin analogue 17-AAG (17-(Allylamino)-17-demethoxygeldanamycin) was investigated. Towards this, an oligodendroglial cell line (OLN-93 cells), stably expressing human alpha-synuclein (A53T mutation) was used. In these cells small punctate aggregates, not staining with thioflavine S, representing prefibrillary aggregates, occur characteristically. Our data demonstrate that 17-AAG attenuated the formation of alpha-synuclein aggregates by stimulating macroautophagy. By blocking the lysosomal compartment with NH(4)Cl the aggregate clearing effects of 17-AAG were abolished and alpha-synuclein deposits were enlarged. Analysis of LC3-II immunoreactivity, which is an indicator of autophagosome formation, further revealed that 17-AAG led to the recruitment of LC3-II and to the formation of LC3 positive puncta. This effect was also observed in cultured oligodendrocytes derived from the brains of newborn rats. Inhibition of macroautophagy by 3-methyladenine prevented 17-AAG induced occurrence of LC3 positive puncta as well as the removal of alpha-synuclein aggregates in OLN-A53T cells. Our data demonstrate for the first time that 17-AAG not only causes the upregulation of heat shock proteins, but also is an effective inducer of the autophagic pathway by which alpha-synuclein can be removed. Hence geldanamycin derivatives may provide a means to modulate autophagy in neural cells, thereby ameliorating pathogenic aggregate formation and protecting the cells during disease and aging.

  15. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices

    Science.gov (United States)

    Chen, Po-Cheng; Li, Yu-Chi; Ma, Jia-Yin; Huang, Jia-Yu; Chen, Chien-Fu; Chang, Huan-Tsung

    2016-04-01

    Polystyrene sulfonate (PSS), a strong polyelectrolyte, was used to prepare red photoluminescent PSS-penicillamine (PA) copper (Cu) nanoclusters (NC) aggregates, which displayed high selectivity and sensitivity to the detection of hydrogen sulfide (H2S). The size of the PSS-PA-Cu NC aggregates could be readily controlled from 5.5 μm to 173 nm using different concentrations of PSS, which enabled better dispersity and higher sensitivity towards H2S. PSS-PA-Cu NC aggregates provided rapid H2S detection by using the strong Cu-S interaction to quench NC photoluminescence as a sensing mechanism. As a result, a detection limit of 650 nM, which is lower than the maximum level permitted in drinking water by the World Health Organization, was achieved for the analysis of H2S in spring-water samples. Moreover, highly dispersed PSS-PA-Cu NC aggregates could be incorporated into a plate-format paper-based analytical device which enables ultra-low sample volumes (5 μL) and feature shorter analysis times (30 min) compared to conventional solution-based methods. The advantages of low reagent consumption, rapid result readout, limited equipment, and long-term storage make this platform sensitive and simple enough to use without specialized training in resource constrained settings.

  16. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste.

    Science.gov (United States)

    Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V

    2015-06-01

    The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete. © The Author(s) 2015.

  17. Aggregate effects on γ-ray shielding characteristics and compressive strength on concrete

    International Nuclear Information System (INIS)

    Oh, Jeong Hwan; Choi, Soo Seok; Mun, Young Bun; Lee, Jae Hyung; Choi, Hyun Kook

    2016-01-01

    We observed the γ-ray shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of 0.371 cm-1 from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a γ-ray of "1"3"7Cs, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of 3,175 kg·m"-"3. Although the unit weight of the concrete with OSS and OSG was 3,052 kg·m"-"3, which was lower than the maximum unit weight condition by 123 kg·m"-"3, its attenuation coefficient was improved by 0.012 cm-1. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced γ-ray shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing

  18. Aggregate effects on γ-ray shielding characteristics and compressive strength on concrete

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jeong Hwan; Choi, Soo Seok [Jeju National University, Jeju (Korea, Republic of); Mun, Young Bun; Lee, Jae Hyung; Choi, Hyun Kook [Sungshin Cement Co., Ltd, Sejong (Korea, Republic of)

    2016-12-15

    We observed the γ-ray shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of 0.371 cm-1 from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a γ-ray of {sup 137}Cs, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of 3,175 kg·m{sup -3}. Although the unit weight of the concrete with OSS and OSG was 3,052 kg·m{sup -3}, which was lower than the maximum unit weight condition by 123 kg·m{sup -3}, its attenuation coefficient was improved by 0.012 cm-1. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced γ-ray shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing.

  19. Denitrification in Soil Aggregate Analogues-Effect of Aggregate Size and Oxygen Diffusion

    Directory of Open Access Journals (Sweden)

    Steffen Schlüter

    2018-04-01

    Full Text Available Soil-borne nitrous oxide (N2O emissions have a high spatial and temporal variability which is commonly attributed to the occurrence of hotspots and hot moments for microbial activity in aggregated soil. Yet there is only limited information about the biophysical processes that regulate the production and consumption of N2O on microscopic scales in undisturbed soil. In this study, we introduce an experimental framework relying on simplified porous media that circumvents some of the complexities occuring in natural soils while fully accounting for physical constraints believed to control microbial activity in general and denitrification in particular. We used this framework to explore the impact of aggregate size and external oxygen concentration on the kinetics of O2 consumption, as well as CO2 and N2O production. Model aggregates of different sizes (3.5 vs. 7 mm diameter composed of porous, sintered glass were saturated with a defined growth medium containing roughly 109 cells ml−1 of the facultative anaerobic, nosZ-deficient denitrifier Agrobacterium tumefaciens with N2O as final denitrification product and incubated at five different oxygen levels (0–13 vol-%. We demonstrate that the onset of denitrification depends on the amount of external oxygen and the size of aggregates. Smaller aggregates were better supplied with oxygen due to a larger surface-to-volume ratio, which resulted in faster growth and an earlier onset of denitrification. In larger aggregates, the onset of denitrification was more gradual, but with comparably higher N2O production rates once the anoxic aggregate centers were fully developed. The normalized electron flow from the reduced carbon substrate to N-oxyanions (edenit-/etotal- ratio could be solely described as a function of initial oxygen concentration in the headspace with a simple, hyperbolic model, for which the two empirical parameters changed with aggregate size in a consistent way. These findings confirm the

  20. Effect of the Aggregate Size on Strength Properties of Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Ma Kang

    2018-01-01

    Full Text Available The study on preparation technology of recycled concrete with economical and technical feasibility has gained more serious attention in each country due to its involvement and effect on the environment protection and the sustainable development of human society. In this study, we conducted a control variable test to investigate and assess the influence of the aggregate size on the strength characteristics of concrete with different diameters of recycled aggregates. Concrete with recycled aggregates of 5∼15 mm (A, 15∼20 mm (B, 20∼30 mm (C, and their combinations were subjected to a series of unconfined pressure tests after curing for 28 days. Based on the results obtained from the tests, an effort was made to study the relationship between the mechanical characteristics of recycled aggregate concrete and aggregate particle size. Also, a regression model of recycled concrete was proposed to predict the elasticity modulus and to adjust the design of mixture proportion. It is believed that these experiment results would contribute to adjust the remediation mixture for recycling plants by considering the influence of recycled aggregate size.

  1. Oil-Price Shocks: Beyond Standard Aggregate Demand/Aggregate Supply Analysis.

    Science.gov (United States)

    Elwood, S. Kirk

    2001-01-01

    Explores the problems of portraying oil-price shocks using the aggregate demand/aggregate supply model. Presents a simple modification of the model that differentiates between production and absorption of goods, which enables it to better reflect the effects of oil-price shocks on open economies. (RLH)

  2. Studies on recycled aggregates-based concrete.

    Science.gov (United States)

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  3. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    Science.gov (United States)

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.

  4. Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy.

    Science.gov (United States)

    Connell, Jodi L; Kim, Jiyeon; Shear, Jason B; Bard, Allen J; Whiteley, Marvin

    2014-12-23

    Microbes frequently live in nature as small, densely packed aggregates containing ∼10(1)-10(5) cells. These aggregates not only display distinct phenotypes, including resistance to antibiotics, but also, serve as building blocks for larger biofilm communities. Aggregates within these larger communities display nonrandom spatial organization, and recent evidence indicates that this spatial organization is critical for fitness. Studying single aggregates as well as spatially organized aggregates remains challenging because of the technical difficulties associated with manipulating small populations. Micro-3D printing is a lithographic technique capable of creating aggregates in situ by printing protein-based walls around individual cells or small populations. This 3D-printing strategy can organize bacteria in complex arrangements to investigate how spatial and environmental parameters influence social behaviors. Here, we combined micro-3D printing and scanning electrochemical microscopy (SECM) to probe quorum sensing (QS)-mediated communication in the bacterium Pseudomonas aeruginosa. Our results reveal that QS-dependent behaviors are observed within aggregates as small as 500 cells; however, aggregates larger than 2,000 bacteria are required to stimulate QS in neighboring aggregates positioned 8 μm away. These studies provide a powerful system to analyze the impact of spatial organization and aggregate size on microbial behaviors.

  5. Inhibitory Activities of Antioxidant Flavonoids from Tamarix gallica on Amyloid Aggregation Related to Alzheimer's and Type 2 Diabetes Diseases.

    Science.gov (United States)

    Ben Hmidene, Asma; Hanaki, Mizuho; Murakami, Kazuma; Irie, Kazuhiro; Isoda, Hiroko; Shigemori, Hideyuki

    2017-01-01

    The prevention of amyloid aggregation is promising for the treatment of age-related diseases such as Alzheimer's (AD) and type 2 diabetes (T2D). Ten antioxidant flavonoids isolated from the medicinal halophyte Tamarix gallica were tested for their amyloid aggregation inhibition potential. Glucuronosylated flavonoids show relatively strong inhibitory activity of Amyloid β (Aβ) and human islet amyloid polypeptide (hIAPP) aggregation compared to their aglycone analogs. Structure-activity relationship of the flavonoids suggests that the catechol moiety is important for amyloid aggregation inhibition, while the methylation of the carboxyl group in the glucuronide moiety and of the hydroxyl group in the aglycone flavonoids decreased it.

  6. Aggregation work at polydisperse micellization: ideal solution and "dressed micelle" models comparing to molecular dynamics simulations.

    Science.gov (United States)

    Burov, S V; Shchekin, A K

    2010-12-28

    General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.

  7. Identification of the aggregation pheromone of the melon thrips, Thrips palmi.

    Science.gov (United States)

    Akella, Sudhakar V S; Kirk, William D J; Lu, Yao-bin; Murai, Tamotsu; Walters, Keith F A; Hamilton, James G C

    2014-01-01

    The objective of this study was to identify the aggregation pheromone of the melon thrips Thrips palmi, a major pest of vegetable and ornamental plants around the world. The species causes damage both through feeding activities and as a vector of tospoviruses, and is a threat to world trade and European horticulture. Improved methods of detecting and controlling this species are needed and the identification of an aggregation pheromone will contribute to this requirement. Bioassays with a Y-tube olfactometer showed that virgin female T. palmi were attracted to the odour of live males, but not to that of live females, and that mixed-age adults of both sexes were attracted to the odour of live males, indicating the presence of a male-produced aggregation pheromone. Examination of the headspace volatiles of adult male T. palmi revealed only one compound that was not found in adult females. It was identified by comparison of its mass spectrum and chromatographic details with those of similar compounds. This compound had a structure like that of the previously identified male-produced aggregation pheromone of the western flower thrips Frankliniella occidentalis. The compound was synthesised and tested in eggplant crops infested with T. palmi in Japan. Significantly greater numbers of both males and females were attracted to traps baited with the putative aggregation pheromone compared to unbaited traps. The aggregation pheromone of T. palmi is thus identified as (R)-lavandulyl 3-methyl-3-butenoate by spectroscopic, chromatographic and behavioural analysis.

  8. Characterization and Solubilization of Pyrrole–Imidazole Polyamide Aggregates

    OpenAIRE

    Hargrove, Amanda E.; Raskatov, Jevgenij A.; Meier, Jordan L.; Montgomery, David C.; Dervan, Peter B.

    2012-01-01

    To optimize the biological activity of pyrrole–imidazole polyamide DNA-binding molecules, we characterized the aggregation propensity of these compounds through dynamic light scattering and fractional solubility analysis. Nearly all studied polyamides were found to form measurable particles 50–500 nm in size under biologically relevant conditions, while HPLC-based analyses revealed solubility trends in both core sequences and peripheral substituents that did not correlate with overall ionic c...

  9. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon; Røpke, Stefan

    Aggregating formulations is a powerful approach for problems to take on tractable forms. Aggregation may lead to loss of information, i.e. the aggregated formulation may be an approximation of the original problem. In branch-and-bound context, aggregation can also complicate branching, e.g. when...... optimality cannot be guaranteed by branching on aggregated variables. We present a generic exact solution method to remedy the drawbacks of aggregation. It combines the original and aggregated formulations and applies Benders' decomposition. We apply the method to the Split Delivery Vehicle Routing Problem....

  10. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.

    Science.gov (United States)

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  11. Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions.

    Science.gov (United States)

    Hall, Damien; Zhao, Ran; Dehlsen, Ian; Bloomfield, Nathaniel; Williams, Steven R; Arisaka, Fumio; Goto, Yuji; Carver, John A

    2016-04-01

    Due to their colloidal nature, all protein aggregates scatter light in the visible wavelength region when formed in aqueous solution. This phenomenon makes solution turbidity, a quantity proportional to the relative loss in forward intensity of scattered light, a convenient method for monitoring protein aggregation in biochemical assays. Although turbidity is often taken to be a linear descriptor of the progress of aggregation reactions, this assumption is usually made without performing the necessary checks to provide it with a firm underlying basis. In this article, we outline utilitarian methods for simulating the turbidity generated by homogeneous and mixed-protein aggregation reactions containing fibrous, amorphous, and crystalline structures. The approach is based on a combination of Rayleigh-Gans-Debye theory and approximate forms of the Mie scattering equations. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  12. Aggregates from mineral wastes

    Directory of Open Access Journals (Sweden)

    Baic Ireneusz

    2016-01-01

    Full Text Available The problem concerning the growing demand for natural aggregates and the need to limit costs, including transportation from remote deposits, cause the increase in growth of interest in aggregates from mineral wastes as well as in technologies of their production and recovery. The paper presents the issue related to the group of aggregates other than natural. A common name is proposed for such material: “alternative aggregates”. The name seems to be fully justified due to adequacy of this term because of this raw materials origin and role, in comparison to the meaning of natural aggregates based on gravel and sand as well as crushed stones. The paper presents characteristics of the market and basic application of aggregates produced from mineral wastes, generated in the mining, power and metallurgical industries as well as material from demolished objects.

  13. Aggregated Computational Toxicology Online Resource

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aggregated Computational Toxicology Online Resource (AcTOR) is EPA's online aggregator of all the public sources of chemical toxicity data. ACToR aggregates data...

  14. New microsatellites revealed strong gene flow among populations of a new outbreak pest, Athetis lepigone (Möschler).

    Science.gov (United States)

    Zhu, W-C; Sun, J-T; Dai, J; Huang, J-R; Chen, L; Hong, X-Y

    2017-11-27

    Athetis lepigone (Möschler) (Lepidoptera: Noctuidae) is a new outbreak pest in China. Consequently, it is unclear whether the emergence and spread of the outbreak of this pest are triggered by rapid in situ population size increases in each outbreak area, or by immigrants from a potential source area in China. In order to explore the outbreak process of this pest through a population genetics approach, we developed ten novel polymorphic expressed sequence tags (EST)-derived microsatellites. These new microsatellites had moderately high levels of polymorphism in the tested population. The number of alleles per locus ranged from 3 to 19, with an average of 8.6, and the expected heterozygosity ranged from 0.269 to 0.783. A preliminary population genetic analysis using these new microsatellites revealed a lack of population genetic structure in natural populations of A. lepigone. The estimates of recent migration rate revealed strong gene flow among populations. In conclusion, our study developed the first set of EST-microsatellite markers and shed a new light on the population genetic structure of this pest in China.

  15. Aggregation and pH-temperature phase behavior for aggregates of an IgG2 antibody.

    Science.gov (United States)

    Sahin, Erinc; Weiss, William F; Kroetsch, Andrew M; King, Kevin R; Kessler, R Kendall; Das, Tapan K; Roberts, Christopher J

    2012-05-01

    Monomer unfolding and thermally accelerated aggregation kinetics to produce soluble oligomers or insoluble macroscopic aggregates were characterized as a function of pH for an IgG2 antibody using differential scanning calorimetry (DSC) and size-exclusion chromatography (SEC). Aggregate size was quantified via laser light scattering, and aggregate solubility via turbidity and visual inspection. Interestingly, nonnative oligomers were soluble at pH 5.5 above approximately 15°C, but converted reversibly to visible/insoluble particles at lower temperatures. Lower pH values yielded only soluble aggregates, whereas higher pH resulted in insoluble aggregates, regardless of the solution temperature. Unlike the growing body of literature that supports the three-endotherm model of IgG1 unfolding in DSC, the results here also illustrate limitations of that model for other monoclonal antibodies. Comparison of DSC with monomer loss (via SEC) from samples during thermal scanning indicates that the least conformationally stable domain is not the most aggregation prone, and that a number of the domains remain intact within the constituent monomers of the resulting aggregates. This highlights continued challenges with predicting a priori which domain(s) or thermal transition(s) is(are) most relevant for product stability with respect to aggregation. Copyright © 2012 Wiley Periodicals, Inc.

  16. Material dynamics in polluted soils with different structures - comparative investigations of general soil and aggregates

    International Nuclear Information System (INIS)

    Taubner, H.

    1992-01-01

    In structured soils, a small-scale heterogeneity of physical and chemical properties will develop which results in a reduced availability of the reaction sites of the soil matrix. In view of the lack of knowledge on the conditions within the individual aggregates were carried out for characterizing the aggregates and comparing them with the soil in, general soil samples were taken from natural structure of a podzolic soil and a podazolic brown earth from two sites in the Fichtelgebirge mountains as well as a parabraun earth from East Holstein. The horizons differed with regard to their texture and structure; silty material tends to have a subpolyhedral structure and calyey material a polyhedral structure. The general soil samples and aggregate samples from the three B horizons were subjected, with comparable experimental conditions, to percolation experiments inducing a multiple acid load. The soil solution from the secondary pore system and aggregate pore system is more heterogeneus for the higher-structured subpolyhedral texture of the perdzolic soil than for the less strongly aggregated subpolyhedral structured of the podzolic brown earth. (orig.) [de

  17. Flavonoids purified from parsley inhibit human blood platelet aggregation and adhesion to collagen under flow.

    Science.gov (United States)

    Gadi, Dounia; Bnouham, Mohamed; Aziz, Mohammed; Ziyyat, Abderrahim; Legssyer, Abdelkhaleq; Bruel, Arlette; Berrabah, Mohamed; Legrand, Chantal; Fauvel-Lafeve, Françoise; Mekhfi, Hassane

    2012-08-10

    Blood platelets are directly involved in both haemostatic and pathologic thrombotic processes, through their adhesion, secretion and aggregation. In this study, we investigated the effect of genins (aglycone flavonoids without sugar group) isolated from parsley (Petroselinum crispum) leaves in vitro on human platelet aggregation and adhesion to a collagen-coated surface under physiologic flow conditions. The aggregation and adhesion studies were monitored after pre-incubation of platelets with genins. Genins inhibited dose dependently aggregation induced by thrombin, ADP and collagen. The strongest effect was observed in collagen induced aggregation (IC50 = 0.08 ± 0.01 mg/ml). The HPLC identification of genins compounds revealed the presence of keampferol, apigenin and other not identified compounds. The aggregation tests showed that these compounds have anti-aggregating activity. In addition, adhesion of human platelets to collagen was greatly decreased (over 75 %) by genins (0.3 mg/ml). While the mechanism by which genins act is unclear, we suggest that these compounds may interfere with a multiple target step in the haemostasis process. These results show that genins isolated from parsley has a potent antiplatelet activity. It may be an important source of beneficial antiplatelet compounds that decrease thrombosis and cardiovascular diseases.

  18. Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete

    International Nuclear Information System (INIS)

    Khan, M.S.H.; Castel, Arnaud; Akbarnezhad, A.; Foster, Stephen J.; Smith, Marc

    2016-01-01

    This paper evaluates the performance of steel furnace slag (SFS) coarse aggregate in blended slag and low calcium fly ash geopolymer concrete (GPC). The geopolymer binder is composed of 90% of low calcium fly ash and 10% of ground granulated blast furnace slag (GGBFS). Mechanical and physical properties, shrinkage, and detailed microstructure analysis were carried out. The results showed that geopolymer concrete with SFS aggregate offered higher compressive strength, surface resistivity and pulse velocity than that of GPC with traditional aggregate. The shrinkage results showed no expansion or swelling due to delayed calcium oxide (CaO) hydration after 320 days. No traditional porous interfacial transition zone (ITZ) was detected using scanning electron microscopy, indicating a better bond between SFS aggregate and geopolymer matrix. Energy dispersive spectroscopy results further revealed calcium (Ca) diffusion at the vicinity of ITZ. Raman spectroscopy results showed no new crystalline phase formed due to Ca diffusion. X-ray fluorescence result showed Mg diffusion from SFS aggregate towards geopolymer matrix. The incorporation of Ca and Mg into the geopolymer structure and better bond between SFS aggregate and geopolymer matrix are the most likely reasons for the higher compressive strength observed in GPC with SFS aggregate.

  19. Durability and Shrinkage Characteristics of Self-Compacting Concretes Containing Recycled Coarse and/or Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Mehmet Gesoglu

    2015-01-01

    Full Text Available This paper addresses durability and shrinkage performance of the self-compacting concretes (SCCs in which natural coarse aggregate (NCA and/or natural fine aggregate (NFA were replaced by recycled coarse aggregate (RCA and/or recycled fine aggregate (RFA, respectively. A total of 16 SCCs were produced and classified into four series, each of which included four mixes designed with two water to binder (w/b ratios of 0.3 and 0.43 and two silica fume replacement levels of 0 and 10%. Durability properties of SCCs were tested for rapid chloride penetration, water sorptivity, gas permeability, and water permeability at 56 days. Also, drying shrinkage accompanied by the water loss and restrained shrinkage of SCCs were monitored over 56 days of drying period. Test results revealed that incorporating recycled coarse and/or fine aggregates aggravated the durability properties of SCCs tested in this study. The drying shrinkage and restrained shrinkage cracking of recycled aggregate (RA concretes had significantly poorer performance than natural aggregate (NA concretes. The time of cracking greatly prolonged as the RAs were used along with the increase in water/binder ratio.

  20. Aggregation is a critical cause of poor transfer into the brain tissue of intravenously administered cationic PAMAM dendrimer nanoparticles

    Science.gov (United States)

    Kurokawa, Yoshika; Sone, Hideko; Win-Shwe, Tin-Tin; Zeng, Yang; Kimura, Hiroyuki; Koyama, Yosuke; Yagi, Yusuke; Matsui, Yasuto; Yamazaki, Masashi; Hirano, Seishiro

    2017-01-01

    Dendrimers have been expected as excellent nanodevices for brain medication. An amine-terminated polyamidoamine dendrimer (PD), an unmodified plain type of PD, has the obvious disadvantage of cytotoxicity, but still serves as an attractive molecule because it easily adheres to the cell surface, facilitating easy cellular uptake. Single-photon emission computed tomographic imaging of a mouse following intravenous injection of a radiolabeled PD failed to reveal any signal in the intracranial region. Furthermore, examination of the permeability of PD particles across the blood–brain barrier (BBB) in vitro using a commercially available kit revealed poor permeability of the nanoparticles, which was suppressed by an inhibitor of caveolae-mediated endocytosis, but not by an inhibitor of macropinocytosis. Physicochemical analysis of the PD revealed that cationic PDs are likely to aggregate promptly upon mixing with body fluids and that this prompt aggregation is probably driven by non-Derjaguin–Landau– Verwey–Overbeek attractive forces originating from the surrounding divalent ions. Atomic force microscopy observation of a freshly cleaved mica plate soaked in dendrimer suspension (culture media) confirmed prompt aggregation. Our study revealed poor transfer of intravenously administered cationic PDs into the intracranial nervous tissue, and the results of our analysis suggested that this was largely attributable to the reduced BBB permeability arising from the propensity of the particles to promptly aggregate upon mixing with body fluids. PMID:28579780

  1. Effect of electrostatics on aggregation of prion protein Sup35 peptide

    International Nuclear Information System (INIS)

    Portillo, Alexander M; Krasnoslobodtsev, Alexey V; Lyubchenko, Yuri L

    2012-01-01

    Self-assembly of misfolded proteins into ordered fibrillar structures is a fundamental property of a wide range of proteins and peptides. This property is also linked with the development of various neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Environmental conditions modulate the misfolding and aggregation processes. We used a peptide, CGNNQQNY, from yeast prion protein Sup35, as a model system to address effects of environmental conditions on aggregate formation. The GNNQQNY peptide self-assembles in fibrils with structural features that are similar to amyloidogenic proteins. Atomic force microscopy (AFM) and thioflavin T (ThT) fluorescence assay were employed to follow the aggregation process at various pHs and ionic strengths. We also used single molecule AFM force spectroscopy to probe interactions between the peptides under various conditions. The ThT fluorescence data showed that the peptide aggregates fast at pH values approaching the peptide isoelectric point (pI = 5.3) and the kinetics is 10 times slower at acidic pH (pH 2.0), suggesting that electrostatic interactions contribute to the peptide self-assembly into aggregates. This hypothesis was tested by experiments performed at low (11 mM) and high (150 mM) ionic strengths. Indeed, the aggregation lag time measured at pH 2 at low ionic strength (11 mM) is 195 h, whereas the lag time decreases ∼5 times when the ionic strength is increased to 150 mM. At conditions close to the pI value, pH 5.6, the aggregation lag time is 12 ± 6 h under low ionic strength, and there is minimal change to the lag time at 150 mM NaCl. The ionic strength also influences the morphology of aggregates visualized with AFM. In pH 2.0 and at high ionic strength, the aggregates are twofold taller than those formed at low ionic strength. In parallel, AFM force spectroscopy studies revealed minimal contribution of electrostatics to dissociation of transient peptide dimers. (paper)

  2. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    Science.gov (United States)

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B.

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA. PMID:26161440

  3. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    Directory of Open Access Journals (Sweden)

    Gideon Siringi

    2015-01-01

    Full Text Available Tire derived aggregate (TDA has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  4. Self-organization observed in either fusion or strongly coupled plasmas

    International Nuclear Information System (INIS)

    Himura, Haruhiko; Sanpei, Akio

    2011-01-01

    If self-organization happens in the fusion plasma, the plasma alters its shape by weakening the confining magnetic field. The self-organized plasma is stable and robust, so its configuration is conserved even during transport in asymmetric magnetic fields. The self-organization of the plasma is driven by an electrostatic potential. Examples of the plasma that has such strong potential are non-neutral plasmas of pure ions or electrons and dusty plasmas. In the present paper, characteristic phenomena of strongly coupled plasmas such as particle aggregation and formation of the ordered structure are discussed. (T.I.)

  5. Consequential secondary structure alterations and aggregation during prolonged casein glycation.

    Science.gov (United States)

    Jindal, Supriya; Naeem, Aabgeena

    2013-05-01

    Non-enzymatic glycosylation (glycation) of casein is a process used not just to ameliorate the quality of dairy products but also to increase the shelf life of canned foods, including baby milk supplements. Incubation of κ-casein with reducing sugars for 15 days at physiological temperature showed the formation of a molten globule state at day 9 and 12 during fructation and glucation respectively. This state exhibits substantial secondary structure and maximum ANS binding. Later on, glycation resulted in the formation of aggregates at day 12 in presence of fructose and day 15 in presence of glucose. Aggregates possess extensive β-sheet structure as revealed by far-UV CD and FTIR. These aggregates showed altered tryptophan environment, decrease ANS binding relative to molten globule state and increase in Thioflavin T fluorescence. Aggregates were also accompanied by the accumulation of AGEs, indicative of structural damage to the protein and formation of potentially harmful species at the physiological level. Fructose was more reactive than glucose and thus caused early and significant changes in the protein. From our studies, we conclude that controlling the extent of the Maillard reaction in the food industry is essential to counter its negative effects and expand its safety spectrum.

  6. Macro Expectations, Aggregate Uncertainty, and Expected Term Premia

    DEFF Research Database (Denmark)

    Dick, Christian D.; Schmeling, Maik; Schrimpf, Andreas

    2013-01-01

    as well as aggregate macroeconomic uncertainty at the level of individual forecasters. We find that expected term premia are (i) time-varying and reasonably persistent, (ii) strongly related to expectations about future output growth, and (iii) positively affected by uncertainty about future output growth...... and in ation rates. Expectations about real macroeconomic variables seem to matter more than expectations about nominal factors. Additional findings on term structure factors suggest that the level and slope factor capture information related to uncertainty about real and nominal macroeconomic prospects...

  7. Aggregation modes of anionic oxacarbocyanines with polycations in solution and in ESAMs

    Directory of Open Access Journals (Sweden)

    Andrea Lodi

    2006-01-01

    Full Text Available Interaction of oxacarbocyanines D-G with three polycations in aqueous solutions results in the formation of two types of likely small, distorted aggregates rather than the classical J aggregates. On the contrary, the latter are extensively and almost exclusively obtained in electrostatically self-assembled multilayers (ESAMs prepared by alternate polycation/dye adsorption on quartz substrates. The J-aggregate growth on supported polycations is qualitatively shared by the four cyanines, a fact that reveals the crucial role of the double anionic substitutions on the dyes. On the other hand, films with D and E, which are known to have a stronger tendency to give dimers in water, exhibit higher J-band intensities and stability upon drying relative to those with F and G. Based on these observations, we suggest that energetic factors associated with cofacial dye/dye van der Waals interactions, ultimately related with the degree of planarity of the conjugated chromophores, may still play a major role in controlling aggregation equilibria in these complex systems.

  8. Conformation and Aggregation of LKα14 Peptide in Bulk Water and at the Air/Water Interface.

    Science.gov (United States)

    Dalgicdir, Cahit; Sayar, Mehmet

    2015-12-10

    Historically, the protein folding problem has mainly been associated with understanding the relationship between amino acid sequence and structure. However, it is known that both the conformation of individual molecules and their aggregation strongly depend on the environmental conditions. Here, we study the aggregation behavior of the model peptide LKα14 (with amino acid sequence LKKLLKLLKKLLKL) in bulk water and at the air/water interface. We start by a quantitative analysis of the conformational space of a single LKα14 in bulk water. Next, in order to analyze the aggregation tendency of LKα14, by using the umbrella sampling technique we calculate the potential of mean force for pulling a single peptide from an n-molecule aggregate. In agreement with the experimental results, our calculations yield the optimal aggregate size as four. This equilibrium state is achieved by two opposing forces: Coulomb repulsion between the lysine side chains and the reduction of solvent accessible hydrophobic surface area upon aggregation. At the vacuum/water interface, however, even dimers of LKα14 become marginally stable, and any larger aggregate falls apart instantaneously. Our results indicate that even though the interface is highly influential in stabilizing the α-helix conformation for a single molecule, it significantly reduces the attraction between two LKα14 peptides, along with their aggregation tendency.

  9. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.

    Science.gov (United States)

    Taghavy, Amir; Pennell, Kurt D; Abriola, Linda M

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Coquel

    2013-04-01

    Full Text Available Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian. Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of "soft" intracellular structuring (based on

  11. Kinetics of aggregation with choice.

    Science.gov (United States)

    Ben-Naim, E; Krapivsky, P L

    2016-12-01

    We generalize the ordinary aggregation process to allow for choice. In ordinary aggregation, two random clusters merge and form a larger aggregate. In our implementation of choice, a target cluster and two candidate clusters are randomly selected and the target cluster merges with the larger of the two candidate clusters. We study the long-time asymptotic behavior and find that as in ordinary aggregation, the size density adheres to the standard scaling form. However, aggregation with choice exhibits a number of different features. First, the density of the smallest clusters exhibits anomalous scaling. Second, both the small-size and the large-size tails of the density are overpopulated, at the expense of the density of moderate-size clusters. We also study the complementary case where the smaller candidate cluster participates in the aggregation process and find an abundance of moderate clusters at the expense of small and large clusters. Additionally, we investigate aggregation processes with choice among multiple candidate clusters and a symmetric implementation where the choice is between two pairs of clusters.

  12. Kinetic Behaviors of Catalysis-Driven Growth of Three-Species Aggregates on Base of Exchange-Driven Aggregations

    International Nuclear Information System (INIS)

    Sun Yunfei; Chen Dan; Lin Zhenquan; Ke Jianhong

    2009-01-01

    We propose a solvable aggregation model to mimic the evolution of population A, asset B, and the quantifiable resource C in a society. In this system, the population and asset aggregates themselves grow through self-exchanges with the rate kernels K 1 (k, j) = K 1 kj and K 2 (k, j) = K 2 kj, respectively. The actions of the population and asset aggregations on the aggregation evolution of resource aggregates are described by the population-catalyzed monomer death of resource aggregates and asset-catalyzed monomer birth of resource aggregates with the rate kernels J 1 (k, j) = J 1 k and J 2 (k, j) = J 2 k, respectively. Meanwhile, the asset and resource aggregates conjunctly catalyze the monomer birth of population aggregates with the rate kernel I 1 (k, i, j) = I 1 ki μ j η , and population and resource aggregates conjunctly catalyze the monomer birth of asset aggregates with the rate kernel I 2 (k, i, j) = I 2 ki v j η . The kinetic behaviors of species A, B, and C are investigated by means of the mean-field rate equation approach. The effects of the population-catalyzed death and asset-catalyzed birth on the evolution of resource aggregates based on the self-exchanges of population and asset appear in effective forms. The coefficients of the effective population-catalyzed death and the asset-catalyzed birth are expressed as J 1e = J 1 /K 1 and J 2e = J 2 /K 2 , respectively. The aggregate size distribution of C species is found to be crucially dominated by the competition between the effective death and the effective birth. It satisfies the conventional scaling form, generalized scaling form, and modified scaling form in the cases of J 1e 2e , J 1e = J 2e , and J 1e > J 2e , respectively. Meanwhile, we also find the aggregate size distributions of populations and assets both fall into two distinct categories for different parameters μ, ν, and η: (i) When μ = ν = η = 0 and μ = ν = 0, η = 1, the population and asset aggregates obey the generalized

  13. Familial aggregation and heritability of pyloric stenosis

    DEFF Research Database (Denmark)

    Krogh, Camilla; Fischer, Thea K; Skotte, Line

    2010-01-01

    stenosis from monozygotic twins to fourth-generation relatives according to sex and maternal and paternal contributions and to estimate disease heritability. DESIGN, SETTING, AND PATIENTS: Population-based cohort study of 1,999,738 children born in Denmark between 1977 and 2008 and followed up.......51-4.99) for half-cousins. We found no difference in rate ratios for maternal and paternal relatives of children with pyloric stenosis and no difference according to sex of cohort member or sex of relative. The heritability of pyloric stenosis was 87%. CONCLUSION: Pyloric stenosis in Danish children shows strong...... familial aggregation and heritability....

  14. Identification of the aggregation pheromone of the melon thrips, Thrips palmi.

    Directory of Open Access Journals (Sweden)

    Sudhakar V S Akella

    Full Text Available The objective of this study was to identify the aggregation pheromone of the melon thrips Thrips palmi, a major pest of vegetable and ornamental plants around the world. The species causes damage both through feeding activities and as a vector of tospoviruses, and is a threat to world trade and European horticulture. Improved methods of detecting and controlling this species are needed and the identification of an aggregation pheromone will contribute to this requirement. Bioassays with a Y-tube olfactometer showed that virgin female T. palmi were attracted to the odour of live males, but not to that of live females, and that mixed-age adults of both sexes were attracted to the odour of live males, indicating the presence of a male-produced aggregation pheromone. Examination of the headspace volatiles of adult male T. palmi revealed only one compound that was not found in adult females. It was identified by comparison of its mass spectrum and chromatographic details with those of similar compounds. This compound had a structure like that of the previously identified male-produced aggregation pheromone of the western flower thrips Frankliniella occidentalis. The compound was synthesised and tested in eggplant crops infested with T. palmi in Japan. Significantly greater numbers of both males and females were attracted to traps baited with the putative aggregation pheromone compared to unbaited traps. The aggregation pheromone of T. palmi is thus identified as (R-lavandulyl 3-methyl-3-butenoate by spectroscopic, chromatographic and behavioural analysis.

  15. Mechanical and radiation shielding properties of mortars with additive fine aggregate mine waste

    International Nuclear Information System (INIS)

    Gallala, Wissem; Hayouni, Yousra; Gaied, Mohamed Essghaier; Fusco, Michael; Alsaied, Jasmin; Bailey, Kathryn; Bourham, Mohamed

    2017-01-01

    Highlights: • Effectiveness of mine waste as additive fine aggregate has been investigated. • Experimental results are verified by computationally from composition of synthesized samples. • Work focuses on shielding materials for nuclear systems including spent fuel storage and drycasks. - Abstract: Incorporation of barite-fluorspar mine waste (BFMW) as a fine aggregate additive has been investigated for its effect on the mechanical and shielding properties of cement mortar. Several mortar mixtures were prepared with different proportions of BFMW ranging from 0% to 30% as fine aggregate replacement. Cement mortar mixtures were evaluated for density, compressive and tensile strengths, and gamma ray radiation shielding. The results revealed that the mortar mixes containing 25% BFMW reaches the highest compressive strength values, which exceeded 50 MPa. Evaluation of gamma-ray attenuation was both measured by experimental tests and computationally calculated using MicroShield software package, and results have shown that using BFMW aggregates increases attenuation coefficient by about 20%. These findings have demonstrated that the mine waste can be suitably used as partial replacement aggregate to improve radiation shielding as well as to reduce the mortar and concrete costs.

  16. Research on Judgment Aggregation Based on Logic

    Directory of Open Access Journals (Sweden)

    Li Dai

    2014-05-01

    Full Text Available Preference aggregation and judgment aggregation are two basic research models of group decision making. And preference aggregation has been deeply studied in social choice theory. However, researches of social choice theory gradually focus on judgment aggregation which appears recently. Judgment aggregation focuses on how to aggregate many consistent logical formulas into one, from the perspective of logic. We try to start with judgment aggregation model based on logic and then explore different solutions to problem of judgment aggregation.

  17. The embodiment of cockroach aggregation behavior in a group of micro-robots.

    Science.gov (United States)

    Garnier, Simon; Jost, Christian; Gautrais, Jacques; Asadpour, Masoud; Caprari, Gilles; Jeanson, Raphaël; Grimal, Anne; Theraulaz, Guy

    2008-01-01

    We report the faithful reproduction of the self-organized aggregation behavior of the German cockroach Blattella germanica with a group of robots. We describe the implementation of the biological model provided by Jeanson et al. in Alice robots, and we compare the behaviors of the cockroaches and the robots using the same experimental and analytical methodology. We show that the aggregation behavior of the German cockroach was successfully transferred to the Alice robot despite strong differences between robots and animals at the perceptual, actuatorial, and computational levels. This article highlights some of the major constraints one may encounter during such a work and proposes general principles to ensure that the behavioral model is accurately transferred to the artificial agents.

  18. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae.

    Science.gov (United States)

    Brown, Lindsey R; Caulkins, Rachel C; Schartel, Tyler E; Rosch, Jason W; Honsa, Erin S; Schultz-Cherry, Stacey; Meliopoulos, Victoria A; Cherry, Sean; Thornton, Justin A

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H 2 O 2 . Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.

  19. Fabrication of fluorescent silica nanoparticles with aggregation-induced emission luminogens for cell imaging.

    Science.gov (United States)

    Chen, Sijie; Lam, Jacky W Y; Tang, Ben Zhong

    2013-01-01

    Fluorescence-based techniques have found wide applications in life science. Among various luminogenic materials, fluorescent nanoparticles have attracted much attention due to their fabulous emission properties and potential applications as sensors. Here, we describe the fabrication of fluorescent silica nanoparticles (FSNPs) containing aggregation-induced emission (AIE) luminogens. By employing surfactant-free sol-gel reaction, FSNPs with uniform size and high surface charge and colloidal stability are generated. The FSNPs emit strong light upon photoexcitation, due to the AIE characteristic of the silole -aggregates in the hybrid nanoparticles. The FSNPs are cytocompatible and can be utilized as fluorescent visualizer for intracellular imaging for HeLa cells.

  20. Heating of Porous Icy Dust Aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Sirono, Sin-iti [Earth and Environmental Sciences, Nagoya University, Tikusa-ku, Furo-cho, Nagoya 464-8601 (Japan)

    2017-06-10

    At the beginning of planetary formation, highly porous dust aggregates are formed through coagulation of dust grains. Outside the snowline, the main component of an aggregate is H{sub 2}O ice. Because H{sub 2}O ice is formed in amorphous form, its thermal conductivity is extremely small. Therefore, the thermal conductivity of an icy dust aggregate is low. There is a possibility of heating inside an aggregate owing to the decay of radionuclides. It is shown that the temperature increases substantially inside an aggregate, leading to crystallization of amorphous ice. During the crystallization, the temperature further increases sufficiently to continue sintering. The mechanical properties of icy dust aggregates change, and the collisional evolution of dust aggregates is affected by the sintering.

  1. Like Father, like Son? Familial Aggregation of Physicians among Medical and Psychology Students

    Science.gov (United States)

    Voracek, Martin; Tran, Ulrich S.; Fischer-Kern, Melitta; Formann, Anton K.; Springer-Kremser, Marianne

    2010-01-01

    Various research findings, mostly from Anglo-American countries, evidence the medical profession to be strongly familial and further suggest that a medical family background may be associated with study success in medical undergraduates. This study explored the familial aggregation of the medical profession among 1-year cohort samples of medical…

  2. Functional and structural effects of amyloid-β aggregate on Xenopus laevis oocytes.

    Science.gov (United States)

    Parodi, Jorge; Ochoa-de la Paz, Lenin; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2012-10-01

    Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of "spontaneous" blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca(2+) was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca(2+)-dependent Cl(-) currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (T(out)) and the serum-activated, oscillatory Cl(-) currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca(2+)-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication.

  3. Features of exciton dynamics in molecular nanoclusters (J-aggregates): Exciton self-trapping (Review Article)

    Science.gov (United States)

    Malyukin, Yu. V.; Sorokin, A. V.; Semynozhenko, V. P.

    2016-06-01

    We present thoroughly analyzed experimental results that demonstrate the anomalous manifestation of the exciton self-trapping effect, which is already well-known in bulk crystals, in ordered molecular nanoclusters called J-aggregates. Weakly-coupled one-dimensional (1D) molecular chains are the main structural feature of J-aggregates, wherein the electron excitations are manifested as 1D Frenkel excitons. According to the continuum theory of Rashba-Toyozawa, J-aggregates can have only self-trapped excitons, because 1D excitons must adhere to barrier-free self-trapping at any exciton-phonon coupling constant g = ɛLR/2β, wherein ɛLR is the lattice relaxation energy, and 2β is the half-width of the exciton band. In contrast, very often only the luminescence of free, mobile excitons would manifest in experiments involving J-aggregates. Using the Urbach rule in order to analyze the low-frequency region of the low-temperature exciton absorption spectra has shown that J-aggregates can have both a weak (g 1) exciton-phonon coupling. Moreover, it is experimentally demonstrated that under certain conditions, the J-aggregate excited state can have both free and self-trapped excitons, i.e., we establish the existence of a self-trapping barrier for 1D Frenkel excitons. We demonstrate and analyze the reasons behind the anomalous existence of both free and self-trapped excitons in J-aggregates, and demonstrate how exciton-self trapping efficiency can be managed in J-aggregates by varying the values of g, which is fundamentally impossible in bulk crystals. We discuss how the exciton-self trapping phenomenon can be used as an alternate interpretation of the wide band emission of some J-aggregates, which has thus far been explained by the strongly localized exciton model.

  4. GENERAL: Kinetic Behaviors of Catalysis-Driven Growth of Three-Species Aggregates on Base of Exchange-Driven Aggregations

    Science.gov (United States)

    Sun, Yun-Fei; Chen, Dan; Lin, Zhen-Quan; Ke, Jian-Hong

    2009-06-01

    We propose a solvable aggregation model to mimic the evolution of population A, asset B, and the quantifiable resource C in a society. In this system, the population and asset aggregates themselves grow through self-exchanges with the rate kernels K1(k, j) = K1kj and K2(k, j) = K2kj, respectively. The actions of the population and asset aggregations on the aggregation evolution of resource aggregates are described by the population-catalyzed monomer death of resource aggregates and asset-catalyzed monomer birth of resource aggregates with the rate kernels J1(k, j) = J1k and J2(k, j) = J2k, respectively. Meanwhile, the asset and resource aggregates conjunctly catalyze the monomer birth of population aggregates with the rate kernel I1(k, i, j) = I1kiμjη, and population and resource aggregates conjunctly catalyze the monomer birth of asset aggregates with the rate kernel I2(k, i, j) = I2kivjη. The kinetic behaviors of species A, B, and C are investigated by means of the mean-field rate equation approach. The effects of the population-catalyzed death and asset-catalyzed birth on the evolution of resource aggregates based on the self-exchanges of population and asset appear in effective forms. The coefficients of the effective population-catalyzed death and the asset-catalyzed birth are expressed as J1e = J1/K1 and J2e = J2/K2, respectively. The aggregate size distribution of C species is found to be crucially dominated by the competition between the effective death and the effective birth. It satisfies the conventional scaling form, generalized scaling form, and modified scaling form in the cases of J1e J2e, respectively. Meanwhile, we also find the aggregate size distributions of populations and assets both fall into two distinct categories for different parameters μ, ν, and η: (i) When μ = ν = η = 0 and μ = ν = 0, η = 1, the population and asset aggregates obey the generalized scaling forms; and (ii) When μ = ν = 1, η = 0, and μ = ν = η = 1, the

  5. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  6. A comparative study on the aggregating effects of guanidine thiocyanate, guanidine hydrochloride and urea on lysozyme aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Emadi, Saeed, E-mail: emadi@iasbs.ac.ir; Behzadi, Maliheh

    2014-08-08

    Highlights: • Lysozyme aggregated in guanidine thiocyanate (1.0 and 2.0 M). • Lysozyme aggregated in guanidine hydrochloride (4 and 5 M). • Lysozyme did not aggregated at any concentration (0.5–5 M) of urea. • Unfolding pathway is more important than unfolding per se in aggregation. - Abstract: Protein aggregation and its subsequent deposition in different tissues culminate in a diverse range of diseases collectively known as amyloidoses. Aggregation of hen or human lysozyme depends on certain conditions, namely acidic pH or the presence of additives. In the present study, the effects on the aggregation of hen egg-white lysozyme via incubation in concentrated solutions of three different chaotropic agents namely guanidine thiocyanate, guanidine hydrochloride and urea were investigated. Here we used three different methods for the detection of the aggregates, thioflavin T fluorescence, circular dichroism spectroscopy and atomic force microscopy. Our results showed that upon incubation with different concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 5.0 M) of the chemical denaturants, lysozyme was aggregated at low concentrations of guanidine thiocyanate (1.0 and 2.0 M) and at high concentrations of guanidine hydrochloride (4 and 5 M), although no fibril formation was detected. In the case of urea, no aggregation was observed at any concentration.

  7. Effect of aggregation form on bioavailability of zeaxanthin in humans: a randomised cross-over study.

    Science.gov (United States)

    Hempel, Judith; Fischer, Anja; Fischer, Monique; Högel, Josef; Bosy-Westphal, Anja; Carle, Reinhold; Schweiggert, Ralf M

    2017-11-01

    Carotenoid bioavailability from plant and animal food is highly variable depending on numerous factors such as the physical deposition form of carotenoids. As the carotenoid zeaxanthin is believed to play an important role in eye and brain health, we sought to compare the human bioavailability of an H-aggregated with that of a J-aggregated deposition form of zeaxanthin encapsulated into identical formulation matrices. A randomised two-way cross-over study with sixteen participants was designed to compare the post-prandial bioavailability of an H-aggregated zeaxanthin and a J-aggregated zeaxanthin dipalmitate formulation, both delivering 10 mg of free zeaxanthin. Carotenoid levels in TAG-rich lipoprotein fractions were analysed over 9·5 h after test meal consumption. Bioavailability from the J-aggregated formulation (AUC=55·9 nmol h/l) was 23 % higher than from the H-aggregated one (AUC=45·5 nmol h/l), although being only marginally significant (P=0·064). Furthermore, the same formulations were subjected to an internationally recognised in vitro digestion protocol to reveal potential strengths and weaknesses of simulated digestions. In agreement with our human study, liberation of zeaxanthin from the J-aggregated formulation into the simulated duodenal fluids was superior to that from the H-aggregated form. However, micellization rate (bioaccessibility) of the J-aggregated zeaxanthin dipalmitate was lower than that of the H-aggregated zeaxanthin, being contradictory to our in vivo results. An insufficient ester cleavage during simulated digestion was suggested to be the root cause for these observations. In brief, combining our in vitro and in vivo observations, the effect of the different aggregation forms on human bioavailability was lower than expected.

  8. Inhibition of Alzheimer amyloid {beta} aggregation by polyvalent trehalose

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yoshiko; You, Chouga [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Ohnishi, Reiko [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)], E-mail: miuray@jaist.ac.jp

    2008-04-15

    A glycopolymer carrying trehalose was found to suppress the formation of amyloid fibrils from the amyloid {beta} peptide (1-42) (A{beta}), as evaluated by thioflavin T assay and atomic force microscopy. Glycopolymers carrying sugar alcohols also changed the aggregation properties of A{beta}, and the inhibitory effect depended on the type of sugar and alkyl side chain. Neutralization activity was confirmed by in vitro assay using HeLa cells. The glycopolymer carrying trehalose strongly inhibited amyloid formation and neutralized cytotoxicity.

  9. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol-gel approach

    Science.gov (United States)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-09-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi3.25La0.75Ti3O12, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol-gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi3+, La3+ and Ti4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol-gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil-water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles.

  10. Noncovalent pegylation by dansyl-poly(ethylene glycol)s as a new means against aggregation of salmon calcitonin.

    Science.gov (United States)

    Mueller, Claudia; Capelle, Martinus A H; Arvinte, Tudor; Seyrek, Emek; Borchard, Gerrit

    2011-05-01

    During all stages of protein drug development, aggregation is one of the most often encountered problems. Covalent conjugation of poly(ethylene glycol) (PEG), also called PEGylation, to proteins has been shown to reduce aggregation of proteins. In this paper, new excipients based on PEG are presented that are able to reduce aggregation of salmon calcitonin (sCT). Several PEG polymers consisting of a hydrophobic dansyl-headgroup attached to PEGs of different molecular weights have been synthesized and characterized physicochemically. After addition of dansyl-methoxypoly(ethylene glycol) (mPEG) 2 kDa to a 40 times molar excess of sCT resulted in an increase in dansyl-fluorescence and a decrease in 90° light scatter suggesting possible interactions. The aggregation of sCT in different buffer systems in presence or absence of the different dansyl-PEGs was measured by changes in Nile red fluorescence and turbidity. Dansyl-mPEG 2 kDa in a 1:1 molar ratio to sCT strongly reduced aggregation. Reduction of sCT aggregation was also measured for the bivalent dansyl-PEG 3 kDa in a 1:1 molar ratio. Dansyl-mPEG 5 kDa deteriorated sCT aggregation. Potential cytotoxicity and hemolysis were investigated. This paper shows that dansyl-PEGs are efficacious in reducing aggregation of sCT. Copyright © 2010 Wiley-Liss, Inc.

  11. A Comparative Study of Spatial Aggregation Methodologies under the BioEarth Framework

    Science.gov (United States)

    Chandrasekharan, B.; Rajagopalan, K.; Malek, K.; Stockle, C. O.; Adam, J. C.; Brady, M.

    2014-12-01

    The increasing probability of water resource scarcity due to climate change has highlighted the need for adopting an economic focus in modelling water resource uses. Hydro-economic models, developed by integrating economic optimization with biophysical crop models, are driven by the economic value of water, revealing it's most efficient uses and helping policymakers evaluate different water management strategies. One of the challenges in integrating biophysical models with economic models is the difference in the spatial scales in which they operate. Biophysical models that provide crop production functions typically run at smaller scale than economic models, and substantial spatial aggregation is required. However, any aggregation introduces a bias, i.e., a discrepancy between the functional value at the higher spatial scale and the value at the spatial scale of the aggregated units. The objective of this work is to study the sensitivity of net economic benefits in the Yakima River basin (YRB) to different spatial aggregation methods for crop production functions. The spatial aggregation methodologies that we compare involve agro-ecological zones (AEZs) and aggregation levels that reflect water management regimes (e.g. irrigation districts). Aggregation bias can distort the underlying data and result in extreme solutions. In order to avoid this we use an economic optimization model that incorporates the synthetic and historical crop mixes approach (Onal & Chen, 2012). This restricts the solutions between the weighted averages of historical and simulated feasible planting decisions, with the weights associated with crop mixes being treated as endogenous variables. This study is focused on 5 major irrigation districts of the YRB in the Pacific Northwest US. The biophysical modeling framework we use, BioEarth, includes the coupled hydrology and crop growth model, VIC-Cropsyst and an economic optimization model. Preliminary findings indicate that the standard approach

  12. Fractal Aggregates in Tennis Ball Systems

    Science.gov (United States)

    Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.

    2009-01-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…

  13. A Functional Reference Architecture for Aggregators

    DEFF Research Database (Denmark)

    Bondy, Daniel Esteban Morales; Heussen, Kai; Gehrke, Oliver

    2015-01-01

    Aggregators are considered to be a key enabling technology for harvesting power system services from distributed energy resources (DER). As a precondition for more widespread use of aggregators in power systems, methods for comparing and validating aggregator designs must be established. This paper...... proposes a functional reference architecture for aggregators to address this requirement....

  14. Study on photophysical and aggregation induced emission recognition of 1,8-naphthalimide probe for casein by spectroscopic method

    Science.gov (United States)

    Sun, Yang; Liu, Zhen; Liang, Xuhua; Fan, Jun; Han, Quan

    2013-05-01

    A novel water-soluble 1,8-naphthalimide derivative 1, bearing two acetic carboxylic groups, exhibited fluorescent turn-on recognition for casein based on the aggregation induced emission (AIE) character. The photophysical properties of 1 consisting of donor and acceptor units were investigated in different solutions. The fluorescence intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT) and self-association emission with increasing solvent polarity. Moreover, the spectral red-shift and intensity quench in protic solvents were caused by the excited-state hydrogen bond strengthening effect. Density Functional Theory (DFT) calculations revealed that 1 exhibited a strong TICT character. The AIE mechanism of 1 with casein was due to 1 docked in the hydrophobic cavity between sub-micelles and bound with Tyr and Trp residues, resulting in the aggregation of 1 on the casein surface and emission enhancement. Based on this, a novel casein assay method was developed. The proposed exhibited a good linear range from 0.1 to 22 μg mL-1, with the detection limit of 2.8 ng mL-1. Satisfactory reproducibility, reversibility and a short response time were realized. This method was applied to the determination of casein in milk powder samples and the results were in good agreement with the result of Biuret method.

  15. Aggregation server for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett

    2015-05-26

    Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregated EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.

  16. Sand Cement Brick Containing Recycled Concrete Aggregate as Fine-Aggregate Replacement

    Directory of Open Access Journals (Sweden)

    Sheikh Khalid Faisal

    2017-01-01

    Full Text Available Nowadays, the usage amount of the concrete is increasing drastically. The construction industry is a huge consumer of natural consumer. It is also producing the huge wastage products. The usage of concrete has been charged to be not environmentally friendly due to depletion of reserve natural resources, high energy consumption and disposal issues. The conservation of natural resources and reduction of disposal site by reuse and recycling waste material was interest possibilites. The aim of this study is to determine the physical and mechanical properties of sand cement brick containing recycled concrete aggregate and to determine the optimum mix ratio containing recycled concrete aggregate. An experiment done by comparing the result of control specimen using 100% natural sand with recycled concrete aggregate replacement specimen by weight for 55%, 65%, and 75%. The sample was tested under density, compressive strength, flexural strength and water absorption to study the effect of using recycled concrete aggregate on the physical and mechanical properties of bricks. The result shows that the replacement of natural sand by recycled concrete aggregate at the level of 55% provide the highest compressive and flexural strength compared to other percentage and control specimen. However, if the replacement higher than 55%, the strength of brick was decreased for compressive and flexural strength, respectively. The relationship of compressive-flexural strength is determined from statistical analysis and the predicted result can be obtained by using equation ff,RCA = 0.5375 (fc0.3272.

  17. Effects of heparin on platelet aggregation and release and thromboxane A2 production

    International Nuclear Information System (INIS)

    Mohammad, S.F.; Anderson, W.H.; Smith, J.B.; Chuang, H.Y.; Mason, R.G.

    1981-01-01

    Heparin, when added to citrated platelet-rich plasma (PRP), caused potentiation of platelet aggregation and the release reaction induced by the aggregating agents adenosine diphosphate (ADP), arachidonic acid, collagen, and epinephrine. At low concentrations (4.7 x 10(-5) M) arachidonic acid failed to cause aggregation of platelets in citrated PRP. However, in the presence of heparin, the same concentration of arachidonic acid caused aggregation. Examination of PRP for the presence of thromboxane A2 (TxA2) by use of a bioassay revealed that heparin also stimulated release of TxA2. This finding indicated that platelets released more TxA2 when they were challenged by low concentrations of arachidonic acid in the presence of heparin than in its absence. Platelets were labeled with 3 H-arachidonic acid and 14 C-serotonin, and attempts were made to determine whether heparin stimulated the platelet release reaction first with subsequent increased production of TxA2, or alternatively, whether heparin stimulated TxA2 production first with subsequent enhancement of the release reaction. In view of the demonstrated simultaneous release of 14 C-serotonin and 3 H-arachidonic acid metabolites, it appeared that either release of 14 C and 3 H occurs concurrently or, even if one of these events is dependent on the other, both events take place in rapid succession. Timed sequential studies revealed that in the presence of arachidonic acid, the addition of heparin hastened the apparently simultaneous release of both 14 C and 3 H

  18. Arbuscular mycorrhizal fungi make a complex contribution to soil aggregation

    Science.gov (United States)

    McGee, Peter; Daynes, Cathal; Damien, Field

    2013-04-01

    Soil aggregates contain solid and fluid components. Aggregates develop as a consequence of the organic materials, plants and hyphae of arbuscular mycorrhizal (AM) fungi acting on the solid phase. Various correlative studies indicate hyphae of AM fungi enmesh soil particles, but their impact on the pore space is poorly understood. Hyphae may penetrate between particles, remove water from interstitial spaces, and otherwise re-arrange the solid phase. Thus we might predict that AM fungi also change the pore architecture of aggregates. Direct observations of pore architecture of soil, such as by computer-aided tomography (CT), is difficult. The refractive natures of solid and biological material are similar. The plant-available water in various treatments allows us to infer changes in pore architecture. Our experimental studies indicate AM fungi have a complex role in the formation and development of aggregates. Soils formed from compost and coarse subsoil materials were planted with mycorrhizal or non-mycorrhizal seedlings and the resultant soils compared after 6 or 14 months in separate experiments. As well as enmeshing particles, AM fungi were associated with the development of a complex pore space and greater pore volume. Even though AM fungi add organic matter to soil, the modification of pore space is not correlated with organic carbon. In a separate study, we visualised hyphae of AM fungi in a coarse material using CT. In this study, hyphae appeared to grow close to the surfaces of particles with limited ramification across the pore spaces. Hyphae of AM fungi appear to utilise soil moisture for their growth and development of mycelium. The strong correlation between moisture and hyphae has profound implications for soil aggregation, plant utilisation of soil water, and the distribution of water as water availability declines.

  19. Determination of critical nucleation number for a single nucleation amyloid-β aggregation model.

    Science.gov (United States)

    Ghosh, Preetam; Vaidya, Ashwin; Kumar, Amit; Rangachari, Vijayaraghavan

    2016-03-01

    Aggregates of amyloid-β (Aβ) peptide are known to be the key pathological agents in Alzheimer disease (AD). Aβ aggregates to form large, insoluble fibrils that deposit as senile plaques in AD brains. The process of aggregation is nucleation-dependent in which the formation of a nucleus is the rate-limiting step, and controls the physiochemical fate of the aggregates formed. Therefore, understanding the properties of nucleus and pre-nucleation events will be significant in reducing the existing knowledge-gap in AD pathogenesis. In this report, we have determined the plausible range of critical nucleation number (n(*)), the number of monomers associated within the nucleus for a homogenous aggregation model with single unique nucleation event, by two independent methods: A reduced-order stability analysis and ordinary differential equation based numerical analysis, supported by experimental biophysics. The results establish that the most likely range of n(*) is between 7 and 14 and within, this range, n(*) = 12 closely supports the experimental data. These numbers are in agreement with those previously reported, and importantly, the report establishes a new modeling framework using two independent approaches towards a convergent solution in modeling complex aggregation reactions. Our model also suggests that the formation of large protofibrils is dependent on the nature of n(*), further supporting the idea that pre-nucleation events are significant in controlling the fate of larger aggregates formed. This report has re-opened an old problem with a new perspective and holds promise towards revealing the molecular events in amyloid pathologies in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Ecological and morphological profile of floating spherical Cladophora socialis aggregations in central Thailand.

    Directory of Open Access Journals (Sweden)

    Isao Tsutsui

    Full Text Available The unique beauty of spherical aggregation forming algae has attracted much attention from both the scientific and lay communities. Several aegagropilous seaweeds have been identified to date, including the plants of genus Cladophora and Chaetomorpha. However, this phenomenon remains poorly understood. In July 2013, a mass occurrence of spherical Cladophora aggregations was observed in a salt field reservoir in Central Thailand. The aims of the present study were to describe the habitat of the spherical aggregations and confirm the species. We performed a field survey, internal and external morphological observations, pyrenoid ultrastructure observations, and molecular sequence analysis. Floating spherical Cladophora aggregations (1-8 cm in diameter were observed in an area ~560 m2, on the downwind side of the reservoir where there was water movement. Individual filaments in the aggregations were entangled in each other; consequently, branches growing in different directions were observed within a clump. We suggest that water movement and morphological characteristics promote the formation of spherical aggregations in this species. The molecular sequencing results revealed that the study species was highly homologous to both C. socialis and C. coelothrix. However, the diameter of the apical cells in the study species was less than that of C. coelothrix. The pyrenoid ultrastructure was more consistent with that of C. socialis. We conclude that the study species is C. socialis. This first record of spherical aggregations in this species advances our understanding of these formations. However, further detailed physical measurements are required to fully elucidate the mechanism behind these spherical formations.

  1. Ecological and morphological profile of floating spherical Cladophora socialis aggregations in central Thailand.

    Science.gov (United States)

    Tsutsui, Isao; Miyoshi, Tatsuo; Sukchai, Halethichanok; Pinphoo, Piyarat; Aue-Umneoy, Dusit; Meeanan, Chonlada; Songphatkaew, Jaruwan; Klomkling, Sirimas; Yamaguchi, Iori; Ganmanee, Monthon; Sudo, Hiroyuki; Hamano, Kaoru

    2015-01-01

    The unique beauty of spherical aggregation forming algae has attracted much attention from both the scientific and lay communities. Several aegagropilous seaweeds have been identified to date, including the plants of genus Cladophora and Chaetomorpha. However, this phenomenon remains poorly understood. In July 2013, a mass occurrence of spherical Cladophora aggregations was observed in a salt field reservoir in Central Thailand. The aims of the present study were to describe the habitat of the spherical aggregations and confirm the species. We performed a field survey, internal and external morphological observations, pyrenoid ultrastructure observations, and molecular sequence analysis. Floating spherical Cladophora aggregations (1-8 cm in diameter) were observed in an area ~560 m2, on the downwind side of the reservoir where there was water movement. Individual filaments in the aggregations were entangled in each other; consequently, branches growing in different directions were observed within a clump. We suggest that water movement and morphological characteristics promote the formation of spherical aggregations in this species. The molecular sequencing results revealed that the study species was highly homologous to both C. socialis and C. coelothrix. However, the diameter of the apical cells in the study species was less than that of C. coelothrix. The pyrenoid ultrastructure was more consistent with that of C. socialis. We conclude that the study species is C. socialis. This first record of spherical aggregations in this species advances our understanding of these formations. However, further detailed physical measurements are required to fully elucidate the mechanism behind these spherical formations.

  2. Sulfur dioxide induced aggregation of wine thaumatin-like proteins: Role of disulfide bonds.

    Science.gov (United States)

    Chagas, Ricardo; Laia, César A T; Ferreira, Ricardo B; Ferreira, Luísa M

    2018-09-01

    Aggregation of heat unstable wine proteins is responsible for the economically and technologically detrimental problem called wine protein haze. This is caused by the aggregation of thermally unfolded proteins that can precipitate in bottled wine. To study the influence of SO 2 in this phenomenon, wine proteins were isolated and thaumatins were identified has the most prone to aggregate in the presence of this compound. Isolated wine thaumatins aggregation was followed by dynamic light scattering (DLS), circular dichroism (CD), fluorescence spectroscopy and size exclusion chromatography (SEC). Our experimental results demonstrate that protein thermal unfolding after exposure of the protein to 70 °C does not present differences whether SO 2 is present or not. Conversely, when the protein solution is cooled to 15 °C (after heat stress) significant analytical changes can be observed between samples with and without SO 2 . A remarkable change of circular dichroism spectra in the region 220-230 nm is observed (which can be related to S-S torsion angles), as well as an increase in tryptophan fluorescence intensity (absence of fluorescence quenching by S-S bonds). Formation of covalently-linked dimeric and tetrameric protein species were also detected by SEC. The ability to dissolve the aggregates with 8 M urea seems to indicate that hydrophobic interactions are prevalent in the formed aggregates. Also, the reduction of these aggregates with tris (2-carboxyethyl) phosphine (TCEP) to only monomeric species reveals the presence of intermolecular S-S bonds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Opportunistic tri-band carrier aggregation in licensed spectrum for multi-operator 5G hetnet

    Science.gov (United States)

    Maksymuk, Taras; Kyryk, Maryan; Klymash, Mykhailo; Jo, Minho; Romaniuk, Ryszard; Kotyra, Andrzej; Zhanpeisova, Aizhan; Kozbekova, Ainur

    2017-08-01

    Increasing capacity of mobile networks is a real challenge due to rapid increasing of traffic demands and spectrum scarcity. Carrier aggregation technology is aimed to increase the user data rate by combining the throughput of few spectrum bands, even if they are not physically collocated. Utilization of unlicensed Wi-Fi 5 GHz band for mobile transmission opens new perspectives for carrier aggregation due to vast amount of spectrum range, which can be available for aggregation to supplement data rates for end users. There are many solutions proposed to enable mobile data transmission in unlicensed band without disturbing interference for the existing Wi-Fi users. The paper presents a new approach for opportunistic carrier aggregation in licensed and unlicensed band for multi-operator 5G network. It allows multiple network operators to utilize unlicensed spectrum opportunistically if it is not currently used by Wi-Fi or other mobile network operators. Performance of the proposed approach has been simulated in case of two competing operators. Simulation results reveal that applying the proposed method ensures achieving satisfactory performance of carrier aggregation for the case of two network operators.

  4. A Tale of Two Aggregations: Kinship and Population Genetics of Whale Sharks (Rhincodon typus) at Shib Habil, Saudi Arabia, and Mafia Island, Tanzania.

    KAUST Repository

    Hardenstine, Royale

    2015-01-01

    the Mafia Island, Tanzania, aggregation was not part of the study. Both aggregations have unique aspects with the Saudi Arabian individuals showing sexual parity with no segregation, while recent acoustic results have revealed cryptic residency at Mafia

  5. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  6. Intracellular Nitrate of Marine Diatoms as a Driver of Anaerobic Nitrogen Cycling in Sinking Aggregates

    Directory of Open Access Journals (Sweden)

    Anja Kamp

    2016-11-01

    Full Text Available Diatom-bacteria aggregates are key for the vertical transport of organic carbon in the ocean. Sinking aggregates also represent pelagic microniches with intensified microbial activity, oxygen depletion in the center, and anaerobic nitrogen cycling. Since some of the aggregate-forming diatom species store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly in concentrations > 60 mmol L-1 both as free-living cells and associated to aggregates. Intracellular nitrate concentrations exceeded extracellular concentrations by three orders of magnitude. Intracellular nitrate was used up within 2-3 days after shifting diatom-bacteria aggregates to dark and anoxic conditions. Thirty-one percent of the diatom-derived nitrate was converted to nitrogen gas, indicating that a substantial fraction of the intracellular nitrate pool of S. marinoi becomes available to the aggregate-associated bacterial community. Only 5% of the intracellular nitrate was reduced to ammonium, while 59% was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before the aggregates have settled onto the seafloor could fuel benthic nitrogen transformations.

  7. Physical mechanism for biopolymers to aggregate and maintain in non-equilibrium states.

    Science.gov (United States)

    Ma, Wen-Jong; Hu, Chin-Kun

    2017-06-08

    Many human or animal diseases are related to aggregation of proteins. A viable biological organism should maintain in non-equilibrium states. How protein aggregate and why biological organisms can maintain in non-equilibrium states are not well understood. As a first step to understand such complex systems problems, we consider simple model systems containing polymer chains and solvent particles. The strength of the spring to connect two neighboring monomers in a polymer chain is controlled by a parameter s with s → ∞ for rigid-bond. The strengths of bending and torsion angle dependent interactions are controlled by a parameter s A with s A  → -∞ corresponding to no bending and torsion angle dependent interactions. We find that for very small s A , polymer chains tend to aggregate spontaneously and the trend is independent of the strength of spring. For strong springs, the speed distribution of monomers in the parallel (along the direction of the spring to connect two neighboring monomers) and perpendicular directions have different effective temperatures and such systems are in non-equilibrium states.

  8. What favors convective aggregation and why?

    Science.gov (United States)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  9. Privacy friendly aggregation of smart meter readings, even when meters crash

    NARCIS (Netherlands)

    Hoepman, J.H.

    2017-01-01

    A well studied privacy problem in the area of smart grids is the question of how to aggregate the sum of a set of smart meter readings in a privacy friendly manner, i.e., in such a way that individual meter readings are not revealed to the adversary. Much less well studied is how to deal with

  10. Shortening of the Lactobacillus paracasei subsp. paracasei BGNJ1-64 AggLb protein switches its activity from auto-aggregation to biofilm formation

    Directory of Open Access Journals (Sweden)

    Marija Miljković

    2016-09-01

    Full Text Available AggLb is the largest (318.6 kDa aggregation-promoting protein of Lactobacillus paracasei subsp. paracasei BGNJ1-64 responsible for forming large cell aggregates, which causes auto-aggregation, collagen binding and pathogen exclusion in vitro. It contains an N-terminus leader peptide, followed by six successive collagen binding domains, 20 successive repeats (CnaB-like domains and an LPXTG sorting signal at the C-terminus for cell wall anchoring. Experimental information about the roles of the domains of AggLb is currently unknown. To define the domain that confers cell aggregation and the key domains for interactions of specific affinity between AggLb and components of the extracellular matrix (ECM, we constructed a series of variants of the aggLb gene and expressed them in Lactococcus lactis subsp. lactis BGKP1-20 using a lactococcal promoter. All of the variants contained a leader peptide, an inter collagen binding-CnaB domain region (used to raise an anti-AggLb antibody, an anchor domain and a different number of collagen binding and CnaB-like domains. The role of the collagen binding repeats of the N-terminus in auto-aggregation and binding to collagen and fibronectin was confirmed. Deletion of the collagen binding repeats II, III and IV resulted in a loss of the strong auto-aggregation, collagen and fibronectin binding abilities whereas the biofilm formation capability was increased. The strong auto-aggregation, collagen and fibronectin binding abilities of AggLb were negatively correlated to biofilm formation.

  11. Covalent α-synuclein dimers: chemico-physical and aggregation properties.

    Directory of Open Access Journals (Sweden)

    Micaela Pivato

    Full Text Available The aggregation of α-synuclein into amyloid fibrils constitutes a key step in the onset of Parkinson's disease. Amyloid fibrils of α-synuclein are the major component of Lewy bodies, histological hallmarks of the disease. Little is known about the mechanism of aggregation of α-synuclein. During this process, α-synuclein forms transient intermediates that are considered to be toxic species. The dimerization of α-synuclein could represent a rate-limiting step in the aggregation of the protein. Here, we analyzed four covalent dimers of α-synuclein, obtained by covalent link of the N-terms, C-terms, tandem cloning of two sequences and tandem juxtaposition in one protein of the 1-104 and 29-140 sequences. Their biophysical properties in solution were determined by CD, FT-IR and NMR spectroscopies. SDS-induced folding was also studied. The fibrils formation was analyzed by ThT and polarization fluorescence assays. Their morphology was investigated by TEM and AFM-based quantitative morphometric analysis. All dimers were found to be devoid of ordered secondary structure under physiological conditions and undergo α-helical transition upon interaction with SDS. All protein species are able to form amyloid-like fibrils. The reciprocal orientation of the α-synuclein monomers in the dimeric constructs affects the kinetics of the aggregation process and a scale of relative amyloidogenic propensity was determined. Structural investigations by FT IR spectroscopy, and proteolytic mapping of the fibril core did not evidence remarkable difference among the species, whereas morphological analyses showed that fibrils formed by dimers display a lower and diversified level of organization in comparison with α-synuclein fibrils. This study demonstrates that although α-synuclein dimerization does not imply the acquisition of a preferred conformation by the participating monomers, it can strongly affect the aggregation properties of the molecules. The results

  12. Curcumin inhibits aggregation of alpha-synuclein.

    Science.gov (United States)

    Pandey, Neeraj; Strider, Jeffrey; Nolan, William C; Yan, Sherry X; Galvin, James E

    2008-04-01

    Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.

  13. Platelet activation and aggregation

    DEFF Research Database (Denmark)

    Jensen, Maria Sander; Larsen, O H; Christiansen, Kirsten

    2013-01-01

    This study introduces a new laboratory model of whole blood platelet aggregation stimulated by endogenously generated thrombin, and explores this aspect in haemophilia A in which impaired thrombin generation is a major hallmark. The method was established to measure platelet aggregation initiated...

  14. Role of Multicellular Aggregates in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kasper N. Kragh

    2016-03-01

    Full Text Available In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation.

  15. Intracellular nitrate of marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates

    DEFF Research Database (Denmark)

    Kamp, Anja; Stief, Peter; Bristow, Laura A.

    2016-01-01

    % was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before...... store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom......-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly...

  16. Pre-aggregation for Probability Distributions

    DEFF Research Database (Denmark)

    Timko, Igor; Dyreson, Curtis E.; Pedersen, Torben Bach

    Motivated by the increasing need to analyze complex uncertain multidimensional data (e.g., in order to optimize and personalize location-based services), this paper proposes novel types of {\\em probabilistic} OLAP queries that operate on aggregate values that are probability distributions...... and the techniques to process these queries. The paper also presents the methods for computing the probability distributions, which enables pre-aggregation, and for using the pre-aggregated distributions for further aggregation. In order to achieve good time and space efficiency, the methods perform approximate...... multidimensional data analysis that is considered in this paper (i.e., approximate processing of probabilistic OLAP queries over probability distributions)....

  17. J-like liquid-crystalline and crystalline states of polyaniline revealed by thin, highly crystalline, and strongly oriented films

    Czech Academy of Sciences Publication Activity Database

    Gospodinova, Natalia; Tomšík, Elena; Omelchenko, Olga

    2014-01-01

    Roč. 118, č. 29 (2014), s. 8901-8904 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : J-aggregates * organic semiconductors * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.302, year: 2014

  18. Echicetin coated polystyrene beads: a novel tool to investigate GPIb-specific platelet activation and aggregation.

    Directory of Open Access Journals (Sweden)

    Alexey Navdaev

    Full Text Available von Willebrand factor/ristocetin (vWF/R induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways.

  19. Echicetin Coated Polystyrene Beads: A Novel Tool to Investigate GPIb-Specific Platelet Activation and Aggregation

    Science.gov (United States)

    Petunin, Alexey; Clemetson, Kenneth J.; Gambaryan, Stepan; Walter, Ulrich

    2014-01-01

    von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways. PMID:24705415

  20. Radiocesium distribution in aggregate-size fractions of cropland and forest soils affected by the Fukushima nuclear accident.

    Science.gov (United States)

    Koarashi, Jun; Nishimura, Syusaku; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya

    2018-08-01

    The Fukushima Daiichi nuclear power plant accident caused serious radiocesium ( 137 Cs) contamination in soils in a range of terrestrial ecosystems. It is well documented that the interaction of 137 Cs with soil constituents, particularly clay minerals, in surface soil layers exerts strong control on the behavior of this radionuclide in the environment; however, there is little understanding of how soil aggregation-the binding of soil particles together into aggregates-can affect the mobility and bioavailability of 137 Cs in soils. To explore this, soil samples were collected at seven sites under different land-use conditions in Fukushima and were separated into four aggregate-size fractions: clay-sized (fractions were then analyzed for 137 Cs content and extractability and mineral composition. In forest soils, aggregate formation was significant, and 69%-83% of 137 Cs was associated with macroaggregates and sand-sized aggregates. In contrast, there was less aggregation in agricultural field soils, and approximately 80% of 137 Cs was in the clay- and silt-sized fractions. Across all sites, the 137 Cs extractability was higher in the sand-sized aggregate fractions than in the clay-sized fractions. Mineralogical analysis showed that, in most soils, clay minerals (vermiculite and kaolinite) were present even in the larger-sized aggregate fractions. These results demonstrate that larger-sized aggregates are a significant reservoir of potentially mobile and bioavailable 137 Cs in organic-rich (forest and orchard) soils. Our study suggests that soil aggregation reduces the mobility of particle-associated 137 Cs through erosion and resuspension and also enhances the bioavailability of 137 Cs in soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Discrete stochastic charging of aggregate grains

    Science.gov (United States)

    Matthews, Lorin S.; Shotorban, Babak; Hyde, Truell W.

    2018-05-01

    Dust particles immersed in a plasma environment become charged through the collection of electrons and ions at random times, causing the dust charge to fluctuate about an equilibrium value. Small grains (with radii less than 1 μm) or grains in a tenuous plasma environment are sensitive to single additions of electrons or ions. Here we present a numerical model that allows examination of discrete stochastic charge fluctuations on the surface of aggregate grains and determines the effect of these fluctuations on the dynamics of grain aggregation. We show that the mean and standard deviation of charge on aggregate grains follow the same trends as those predicted for spheres having an equivalent radius, though aggregates exhibit larger variations from the predicted values. In some plasma environments, these charge fluctuations occur on timescales which are relevant for dynamics of aggregate growth. Coupled dynamics and charging models show that charge fluctuations tend to produce aggregates which are much more linear or filamentary than aggregates formed in an environment where the charge is stationary.

  2. Characterization and testing of rock aggregates of the Santa Marta Batholith, (Colombia

    Directory of Open Access Journals (Sweden)

    Nancy Paola Figueroa Madero

    2014-12-01

    Full Text Available Aggregates of intrusive rocks are the major source of crushed fine and coarse aggregates for use in concrete in several countries and they have to meet a number of specifications relating to strength and durability. This research reports the evaluation of aggregates of granitoids and associated rocks of Santa Marta Batholith, Sierra Nevada de Santa Marta Massif, Colombia, based on petrographic analysis and mechanical and chemical acceptance tests. The strength and durability of a particular rock type depends on its intrinsic characteristic, thus petrographic analysis is very important to understand its mechanical and chemical properties. Numerous standard tests used to ensure aggregates meet the appropriate specifications; however, petrographic analysis represents the most valuable test for predicting the overall performance of concrete aggregates in any control test. Aggregates were analyzed to determine their petrographic, physical, mechanical and chemical properties. Samples were categorized as hornblendite, gabbro, quartzmonzodiorite, monzodiorite and monzonite groups. Among these, of the quartzmonzodiorite was the dominant group. Specific gravity indicates values in the range 2673-2956kg/m3. Water absorption values are in the range 0.908-1.194%. Aggregate impact values of samples (37.82 to 61.36% showed good soundness only for one of the aggregates, which are considered acceptable for use in the preparation of a good quality concrete. Values of Methylene Blue Adsorption reveal the organic matter content is below the threshold. Magnesium sulphate values ranged between 0.11 and 4.75% suggesting good resistance against chemical atmospheric agents. The compressive strength test shows values in the range 35.22-59.45MPa indicating that the geomechanical behavior of rock cylinders is satisfactory. The geomechanical behavior of rock tablets under flexion is also satisfactory for SMA-2 sample (16.53MPa, although not for SMA-6 and SMA-8 samples

  3. Aggregation of the protein TRIOBP-1 and its potential relevance to schizophrenia.

    Directory of Open Access Journals (Sweden)

    Nicholas J Bradshaw

    Full Text Available We have previously proposed that specific proteins may form insoluble aggregates as a response to an illness-specific proteostatic dysbalance in a subset of brains from individuals with mental illness, as is the case for other chronic brain conditions. So far, established risk factors DISC1 and dysbindin were seen to specifically aggregate in a subset of such patients, as was a novel schizophrenia-related protein, CRMP1, identified through a condition-specific epitope discovery approach. In this process, antibodies are raised against the pooled insoluble protein fractions (aggregomes of post mortem brain samples from schizophrenia patients, followed by epitope identification and confirmation using additional techniques. Pursuing this epitope discovery paradigm further, we reveal TRIO binding protein (TRIOBP to be a major substrate of a monoclonal antibody with a high specificity to brain aggregomes from patients with chronic mental illness. TRIOBP is a gene previously associated with deafness which encodes for several distinct protein species, each involved in actin cytoskeletal dynamics. The 3' splice variant TRIOBP-1 is found to be the antibody substrate and has a high aggregation propensity when over-expressed in neuroblastoma cells, while the major 5' splice variant, TRIOBP-4, does not. Endogenous TRIOBP-1 can also spontaneously aggregate, doing so to a greater extent in cell cultures which are post-mitotic, consistent with aggregated TRIOBP-1 being able to accumulate in the differentiated neurons of the brain. Finally, upon expression in Neuroscreen-1 cells, aggregated TRIOBP-1 affects cell morphology, indicating that TRIOBP-1 aggregates may directly affect cell development, as opposed to simply being a by-product of other processes involved in major mental illness. While further experiments in clinical samples are required to clarify their relevance to chronic mental illness in the general population, TRIOBP-1 aggregates are thus

  4. Effects of chlorpyrifos on soil carboxylesterase activity at an aggregate-size scale.

    Science.gov (United States)

    Sanchez-Hernandez, Juan C; Sandoval, Marco

    2017-08-01

    The impact of pesticides on extracellular enzyme activity has been mostly studied on the bulk soil scale, and our understanding of the impact on an aggregate-size scale remains limited. Because microbial processes, and their extracellular enzyme production, are dependent on the size of soil aggregates, we hypothesized that the effect of pesticides on enzyme activities is aggregate-size specific. We performed three experiments using an Andisol to test the interaction between carboxylesterase (CbE) activity and the organophosphorus (OP) chlorpyrifos. First, we compared esterase activity among aggregates of different size spiked with chlorpyrifos (10mgkg -1 wet soil). Next, we examined the inhibition of CbE activity by chlorpyrifos and its metabolite chlorpyrifos-oxon in vitro to explore the aggregate size-dependent affinity of the pesticides for the active site of the enzyme. Lastly, we assessed the capability of CbEs to alleviate chlorpyrifos toxicity upon soil microorganisms. Our principal findings were: 1) CbE activity was significantly inhibited (30-67% of controls) in the microaggregates (1.0mm) compared with the corresponding controls (i.e., pesticide-free aggregates), 2) chlorpyrifos-oxon was a more potent CbE inhibitor than chlorpyrifos; however, no significant differences in the CbE inhibition were found between micro- and macroaggregates, and 3) dose-response relationships between CbE activity and chlorpyrifos concentrations revealed the capability of the enzyme to bind chlorpyrifos-oxon, which was dependent on the time of exposure. This chemical interaction resulted in a safeguarding mechanism against chlorpyrifos-oxon toxicity on soil microbial activity, as evidenced by the unchanged activity of dehydrogenase and related extracellular enzymes in the pesticide-treated aggregates. Taken together, these results suggest that environmental risk assessments of OP-polluted soils should consider the fractionation of soil in aggregates of different size to measure

  5. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    International Nuclear Information System (INIS)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-01-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi 3.25 La 0.75 Ti 3 O 12 , BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi 3+ , La 3+ and Ti 4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi 3.25 La 0.75 Ti 3 O 12 ) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization

  6. Understanding curcumin-induced modulation of protein aggregation.

    Science.gov (United States)

    Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P

    2017-07-01

    Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Runoff and Sediment Production under the Similar Rainfall Events in Different Aggregate Sizes of an Agricultural Soil

    Directory of Open Access Journals (Sweden)

    S. F. Eslami

    2016-09-01

    Full Text Available Introduction: Soil erosion by water is the most serious form of land degradation throughout the world, particularly in arid and semi-arid regions. In these areas, soils are weakly structured and are easily disrupted by raindrop impacts. Soil erosion is strongly affected by different factors such as rainfall characteristics, slope properties, vegetation cover, conservation practices, and soil erodibility. Different physicochemical soil properties such texture, structure, infiltration rate, organic matter, lime and exchangeable sodium percentage can affect the soil erodibility as well as soil erosion. Soil structure is one of the most important properties influencing runoff and soil loss because it determines the susceptibility of the aggregates to detach by either raindrop impacts or runoff shear stress. Many soil properties such as particle size distribution, organic matter, lime, gypsum, and exchangeable sodium percentage (ESP can affect the soil aggregation and the stability. Aggregates size distribution and their stability can be changed considerably because of agricultural practices. Information about variations of runoff and sediment in the rainfall events can be effective in modeling runoff as well as sediment. Thus, the study was conducted to determine runoff and sediment production of different aggregate sizes in the rainfall event scales. Materials and Methods: Toward the objective of the study, five aggregate classes consist of 0.25-2, 2-4.75, 4.75-5.6, 5.6-9.75, and 9.75-12.7 mm were collected from an agricultural sandy clay loam (0-30 cm using the related sieves in the field. Physicochemical soil analyses were performed in the aggregate samples using conventional methods in the lab. The aggregate samples were separately filed into fifteen flumes with a dimension of 50 cm × 100 cm and 15-cm in depth. The aggregate flumes were fixed on a steel plate with 9% slope and were exposed to the simulated rainfalls for investigating runoff and

  8. Time-course assessment of the aggregation and metabolization of magnetic nanoparticles.

    Science.gov (United States)

    Rojas, José M; Gavilán, Helena; Del Dedo, Vanesa; Lorente-Sorolla, Eduardo; Sanz-Ortega, Laura; da Silva, Gustavo B; Costo, Rocío; Perez-Yagüe, Sonia; Talelli, Marina; Marciello, Marzia; Morales, M Puerto; Barber, Domingo F; Gutiérrez, Lucía

    2017-08-01

    To successfully develop biomedical applications for magnetic nanoparticles, it is imperative that these nanoreagents maintain their magnetic properties in vivo and that their by-products are safely metabolized. When placed in biological milieu or internalized into cells, nanoparticle aggregation degree can increase which could affect magnetic properties and metabolization. To evaluate these aggregation effects, we synthesized citric acid-coated iron oxide nanoparticles whose magnetic susceptibility can be modified by aggregation in agar dilutions and dextran-layered counterparts that maintain their magnetic properties unchanged. Macrophage models were used for in vitro uptake and metabolization studies, as these cells control iron homeostasis in the organism. Electron microscopy and magnetic susceptibility studies revealed a cellular mechanism of nanoparticle degradation, in which a small fraction of the particles is rapidly degraded while the remaining ones maintain their size. Both nanoparticle types produced similar iron metabolic profiles but these profiles differed in each macrophage model. Thus, nanoparticles induced iron responses that depended on macrophage programming. In vivo studies showed that nanoparticles susceptible to changes in magnetic properties through aggregation effects had different behavior in lungs, liver and spleen. Liver ferritin levels increased in these animals showing that nanoparticles are degraded and their by-products incorporated into normal metabolic routes. These data show that nanoparticle iron metabolization depends on cell type and highlight the necessity to assess nanoparticle aggregation in complex biological systems to develop effective in vivo biomedical applications. Magnetic iron oxide nanoparticles have great potential for biomedical applications. It is however imperative that these nanoreagents preserve their magnetic properties once inoculated, and that their degradation products can be eliminated. When placed in a

  9. Customer Aggregation: An Opportunity for Green Power?

    Energy Technology Data Exchange (ETDEWEB)

    Holt, E.; Bird, L.

    2001-02-26

    We undertook research into the experience of aggregation groups to determine whether customer aggregation offers an opportunity to bring green power choices to more customers. The objectives of this report, therefore, are to (1) identify the different types of aggregation that are occurring today, (2) learn whether aggregation offers an opportunity to advance sales of green power, and (3) share these concepts and approaches with potential aggregators and green power advocates.

  10. Identification of aggregates for Tennessee bituminous surface courses

    Science.gov (United States)

    Sauter, Heather Jean

    Tennessee road construction is a major venue for federal and state spending. Tax dollars each year go to the maintenance and construction of roads. One aspect of highway construction that affects the public is the safety of its state roads. There are many factors that affect the safety of a given road. One factor that was focused on in this research was the polish resistance capabilities of aggregates. Several pre-evaluation methods have been used in the laboratory to predict what will happen in a field situation. A new pre-evaluation method was invented that utilized AASHTO T 304 procedure upscaled to accommodate surface bituminous aggregates. This new method, called the Tennessee Terminal Textural Condition Method (T3CM), was approved by Tennessee Department of Transportation to be used as a pre-evaluation method on bituminous surface courses. It was proven to be operator insensitive, repeatable, and an accurate indication of particle shape and texture. Further research was needed to correlate pre-evaluation methods to the current field method, ASTM E 274-85 Locked Wheel Skid Trailer. In this research, twenty-five in-place bituminous projects and eight source evaluations were investigated. The information gathered would further validate the T3CM and find the pre-evaluation method that best predicted the field method. In addition, new sources of aggregates for bituminous surface courses were revealed. The results of this research have shown T3CM to be highly repeatable with an overall coefficient of variation of 0.26% for an eight sample repeatability test. It was the best correlated pre-evaluation method with the locked wheel skid trailer method giving an R2 value of 0.3946 and a Pearson coefficient of 0.710. Being able to predict field performance of aggregates prior to construction is a powerful tool capable of saving time, money, labor, and possibly lives.

  11. Transportation and utilization of aggregates for road construction

    Science.gov (United States)

    Fladvad, Marit; Wigum, Børge Johannes; Aurstad, Joralf

    2017-04-01

    Road construction relies on non-renewable aggregate resources as the main construction material. Sources for high-quality aggregate resources are scattered, and requirements for aggregate quality can cause long transport distances between quarry and road construction site. In European countries, the average aggregate consumption per capita is 5 tonnes per year (European Aggregates Association, 2016), while the corresponding figure for Norway is 11 tonnes (Neeb, 2015). Half the Norwegian aggregate production (sand, gravel and crushed rock) is used for road construction. In Norway, aggregate resources have been considered abundant. However, stricter requirement for aggregate quality, and increased concern for sustainability and environmental issues have spurred focus on reduction of transport lengths through better utilization of local aggregate materials. In this research project, information about pavement design and aggregate quality requirements were gathered from a questionnaire sent to selected experts from the World Road Organization (PIARC), European Committee for Standardization (CEN), and Nordic Road Association (NVF). The gathered data was compared to identify differences and similarities for aggregate use in the participating countries. Further, the data was compared to known data from Norway regarding: - amount of aggregates required for a road structure - aggregate transport lengths and related costs A total of 18 countries participated in the survey, represented by either road authorities, research institutions, or contractors. There are large variations in practice for aggregate use among the represented countries, and the selection of countries is sufficient to illustrate a variety in pavement designs, aggregate sizes, and quality requirements for road construction. There are considerable differences in both pavement thickness and aggregate sizes used in the studied countries. Total thicknesses for pavement structures varies from 220 mm to 2400 mm

  12. Reusing recycled aggregates in structural concrete

    Science.gov (United States)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  13. Effects of Pedogenic Fe Oxides on Soil Aggregate-Associated Carbon

    Science.gov (United States)

    Asefaw Berhe, A.; Jin, L.

    2017-12-01

    Carbon sequestration is intimately related to the soil structure, mainly soil aggregate dynamics. Carbon storage in soil aggregates has been recognized as an important carbon stabilization mechanism in soils. Organic matter and pedogenic Fe oxides are major binding agents that facilitate soil aggregate formation and stability. However, few studies have investigated how different forms of pedogenic Fe oxides can affect soil carbon distribution in different aggregate-size fractions. We investigated sequentially extracted pedogenic Fe oxides (in the order of organically complexed Fe extracted with sodium pyrophosphate, poorly-crystalline Fe oxides extracted with hydroxylamine hydrochloride, and crystalline Fe oxides extracted with dithionite hydrochloride) and determined the amount and nature of C in macroaggregates (2-0.25mm), microaggregates (0.25-0.053mm), and two silt and clay fractions (0.053-0.02mm, and soil from Sierra Nevada mountain in California. We also determined how pedogenic Fe oxides affect soil carbon distribution along soil depth gradients. Findings of our study revealed that the proportion of organic matter complexed Fe decreased, but the proportion of crystalline Fe increased with increasing soil depths. Poorly crystalline Fe oxides (e.g. ferrihydrite) was identified as a major Fe oxide in surface soil, whereas crystalline Fe oxides (e.g. goethite) were found in deeper soil layers. These results suggest that high concentration of organic matter in surface soil suppressed Fe crystallization. Calcium cation was closely related to the pyrophosphate extractable Fe and C, which indicates that calcium may be a major cation that contribute to the organic matter complexed Fe and C pool. Increasing concentrations of extractable Fe and C with decreasing aggregate size fractions also suggests that Fe oxides play an important role in formation and stability of silt and clay fractions, and leading to further stabilization of carbon in soil. Our findings provide

  14. Aggregated particles caused by instrument artifact

    Science.gov (United States)

    Pierce, Ashley M.; Loría-Salazar, S. Marcela; Arnott, W. Patrick; Edwards, Grant C.; Miller, Matthieu B.; Gustin, Mae S.

    2018-04-01

    Previous studies have indicated that superaggregates, clusters of aggregates of soot primary particles, can be formed in large-scale turbulent fires. Due to lower effective densities, higher porosity, and lower aerodynamic diameters, superaggregates may pass through inlets designed to remove particles 2.5 µm in aerodynamic diameter were collected on 36 out of 158 sample days. On preliminary analysis, it was thought that these aggregated particles were superaggregates, depositing past PM10 (particles wind speeds, as well as the use of generators on site. Samples with aggregated particles, referred to as aggregates, were analyzed using a scanning electron microscope for size and shape and energy dispersive X-ray spectroscopy was used for elemental analysis. It was determined, based on the high amounts of aluminum present in the aggregate samples, that a sampling artifact associated with the sample inlet and prolonged, high wind events was the probable reason for the observed aggregates.

  15. The alkali–aggregate reaction for various aggregates used in concrete

    Directory of Open Access Journals (Sweden)

    Calderón, V.

    2010-09-01

    Full Text Available The aim of this work is to contribute to the knowledge of the interactions between aggregates and the components of the interstitial phase of concrete and to determine whether those aggregates that are subsequently used in the manufacture of concrete are reagents and are therefore likely to undergo a progressive deterioration of their initial properties. An initial petrographic study of each aggregate is performed in order to be able to determine its subsequent behaviour and reactivity under the influence of various factors. The potential reactivity of different silicaceous aggregates (slates, gneiss, hornfels, granites, quartzite and serpentine is then determined by a chemical method for evaluating the potential reactivity of aggregates and an accelerated method in mortar specimens, and finally the surface reactivity is investigated. The results of these studies suggest that some aggregates are able to react with the components of the interstitial phase of concrete. The existence of this kind of interaction is confirmed by the results of the surface investigations before and after the basic reaction.

    Este trabajo pretende contribuir al conocimiento de las reacciones de interacción entre los áridos y los componentes de la fase intersticial del hormigón y determinar si estos áridos, empleados posteriormente en la fabricación del hormigón, son reactivos y por tanto susceptibles de provocar una disminución progresiva de sus propiedades iniciales. Para la caracterización de cada árido se ha realizado un estudio petrográfico, fundamental a la hora de determinar su posterior comportamiento en términos de reactividad frente a diversos factores. Seguidamente, se ha analizado la reactividad potencial de diferentes áridos silicatados (pizarras, gneis, corneanas, granitos, cuarcita y serpentina mediante los dos métodos normalizados existentes: el método químico para la determinación de la reactividad potencial de áridos y

  16. Influence of the extracted solute on the aggregation of malonamide extractant in organic phases: Consequences for phase stability

    International Nuclear Information System (INIS)

    Berthon, L.; Martinet, L.; Testard, F.; Madic, Ch.; Zem, Th.

    2010-01-01

    Due to their amphiphilic properties, malonamide molecules in alkane are organized in reverse micelle type aggregates, composed of a polar core formed by the malonamide polar heads and the extracted solutes, and surrounded by a hydrophobic shell made up of the extractant alkyl chains. The aggregates interact with one another through an attractive potential, leading to the formation of a third phase. This occurs with the splitting of the organic phase into a light phase composed mostly of diluent, and a heavy third phase containing highly concentrated extractant and solutes. In this article, we show that the aggregation (monomer concentration, domain of stability, and attractive potential between micelles) greatly depends on the nature of the extracted solute, whereas the size of aggregate (aggregation number) is only slightly influenced by this. We describe the extraction of water, nitric acid, neodymium nitrate and uranyl nitrate. Strongly polarizable species induce consistently large attraction potentials and a small stability domain for the dispersion of nano-droplets in the solvent. Highly polarizable ions such as lanthanides or uranyl induce more long-range attractive interactions than do protons. (authors)

  17. ENDOTHELIUM LESION MARKERS AND THROMBOCYTE AGGREGATION IN CHRONIC HEPATITIS AND HEPATIC CIRRHOSIS

    Directory of Open Access Journals (Sweden)

    A. P. Shchekotova

    2012-01-01

    Full Text Available Aim — to estimate endothelium lesion, quantity and thrombocyte aggregation function correlation in viral chronic hepatitis C (CHC and hepatic cirrhosis (HC.Materials and methods. 50 CHC patients and 28 HC patients were examined. Using IFA method the total nitric oxide, endothelin‑1, vasculoendothelial growth factor levels, Willebrand factor (vWF activity were investigated, blood plasma desquamated endotheliocyte (DEC number was calculated with Hladovec method, 1978, thrombocyte aggregation (TA with ADP, collagen, ristocetine was determined.Results. DEC and vWF demonstrated correlation in CHC (p = 0.014 and HC (p = 0.000004. In HC patients reliable correlation of all the investigated indices of endothelium lesion with the thrombocyte number and TA was detected, but in CHC patients no correlations were revealed. Thus, significant elevation of TA with ristocetine was noted only in CHC. Decrease in thrombocyte amount among CHC patients and,especially in HC, and heightened vWF activity could change true TA indices. The corrected TA, whose indices in hepatic diseases significantlyincreased, was calculated taking into account the correction factor vWF / thrombocytes that in CHC did not differ from that of healthy patients and in HC was essentially higher.Conclusion. Endothelium dysfunction markers in CH and HC demonstrate correlation with thrombocyte reduction and TA elevation. Determinationof corrected TA permits to reveal disturbances of thrombocyte hemostasis in the form of elevated aggregation in all CHC and HC patients.

  18. Information Aggregation and Investment Decisions

    OpenAIRE

    Christian Hellwig; Aleh Tsyvinski; Elias Albagli

    2010-01-01

    This paper studies an environment in which information aggregation interacts with investment decisions. The first contribution of the paper is to develop a tractable model of such interactions. The second contribution is to solve the model in closed form and derive a series of implications that result from the interplay between information aggregation and the value of market information for the firms' decision problem. We show that the model generates an information aggregation wedge between ...

  19. A New Platelet-Aggregation-Inhibiting Factor Isolated from Bothrops moojeni Snake Venom

    Directory of Open Access Journals (Sweden)

    Bruna Barbosa de Sousa

    2017-01-01

    Full Text Available This work reports the purification and functional characterization of BmooPAi, a platelet-aggregation-inhibiting factor from Bothrops moojeni snake venom. The toxin was purified by a combination of three chromatographic steps (ion-exchange on DEAE-Sephacel, molecular exclusion on Sephadex G-75, and affinity chromatography on HiTrap™ Heparin HP. BmooPAi was found to be a single-chain protein with an apparent molecular mass of 32 kDa on 14% SDS-PAGE, under reducing conditions. Sequencing of BmooPAi by Edman degradation revealed the amino acid sequence LGPDIVPPNELLEVM. The toxin was devoid of proteolytic, haemorrhagic, defibrinating, or coagulant activities and induced no significant oedema or hyperalgesia. BmooPAi showed a rather specific inhibitory effect on ristocetin-induced platelet aggregation in human platelet-rich plasma, whereas it had little or no effect on platelet aggregation induced by collagen and adenosine diphosphate. The results presented in this work suggest that BmooPAi is a toxin comprised of disintegrin-like and cysteine-rich domains, originating from autolysis/proteolysis of PIII SVMPs from B. moojeni snake venom. This toxin may be of medical interest because it is a platelet aggregation inhibitor, which could potentially be developed as a novel therapeutic agent to prevent and/or treat patients with thrombotic disorders.

  20. Production of lightweight aggregates from washing aggregate sludge and fly ash

    Science.gov (United States)

    González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodas, Magdalena

    2010-05-01

    Increasing generation of wastes is one of the main environmental problems in industrialised countries. Heat treatment at high temperatures can convert some types of wastes into ceramic products with a wide range of microstructural features and properties (Bethanis et al., 2004). A lightweight aggregate (LWA) is a granular material with a bulk density (bd) not exceeding 1.20 g/cm3 or with a particle density not exceeding 2.00 g/cm3 (UNE-EN-13055-1, 2003). They have become a focus of interest because the low particle density and the low bulk density entail a decrease in the load transmitted to the ground, and less work and effort are required to transport them (De' Gennaro et al., 2004). The benefits associated with these low densities, which are due to the formation of voids and pores, are very good thermal and acoustic insulation and materials with a good resistance to fire (Benbow, 1987; Fakhfakh et al., 2007). The objective was to recycle fly ash, used motor oil from cars and mineral wastes from washing aggregate sludge, in order to obtain a usable material such as lightweight aggregates, and also to ensure that they are of good quality for different applications. Raw materials have been physically, chemically and mineralogically characterized. On the basis of the results obtained, they were mixed, milled to a grain size of less than 200 μm (Yasuda, 1991), formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150°C, 1175°C, 1200°C and 1225°C for 10 and 15 min at each temperature (Theating). Effects of raw material characteristics, heating temperature and dwell time on the following LWAs properties were determined: loss on ignition (LOI), bloating index (BI), loose bulk density (bd), apparent and dry particle density (ad, dd), voids (H), water absorption (WA24h) and compressive strength (S). The products obtained were lightweight aggregates in accordance with norm UNE-EN-13055-1 (bd ≤1.20 g/cm3 or particle density ≤2.00 g/cm3). LWAs

  1. Internal water curing with Liapor aggregates

    DEFF Research Database (Denmark)

    Lura, Pietro

    2005-01-01

    Internal water curing is a very efficient way to counteract self-desiccation and autogenous shrinkage in high performance concrete, thereby reducing the likelihood of early-age cracking. This paper deals with early-age volume changes and moisture transport in lightweight aggregate concrete realized...... with wet lightweight aggregates. Lightweight aggregate concrete mixtures with different degree of saturation and different particle size of the lightweight aggregates were studied and compared to normal weight concrete. Autogenous deformations, selfinduced stresses in fully restrained conditions, elastic...

  2. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  3. Optimization of Packing Density of M30 Concrete With Steel Slag As Coarse Aggregate Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Arivoli M.

    2017-09-01

    Full Text Available Concrete plays a vital role in the design and construction of the infrastructure. To meet the global demand of concrete in future, it is becoming a challenging task to find suitable alternatives to natural aggregates. Steel slag is a by-product of steel making process. The steel slag aggregates are characterized by studying particle size and shape, physical and chemical properties, and mechanical properties as per IS: 2386-1963. The characterization study reveals the better performance of steel slag aggregate over natural coarse aggregate. M30 grade of concrete is designed and natural coarse aggregate is completely replaced by steel slag aggregate. Packing density of aggregates affects the characteristics of concrete. The present paper proposes a fuzzy system for concrete mix proportioning which increases the packing density. The proposed fuzzy system have four sub fuzzy system to arrive compressive strength, water cement ratio, ideal grading curve and free water content for concrete mix proportioning. The results show, the concrete mix proportion of the given fuzzy model agrees with IS method. The comparison of results shows that both proposed fuzzy system and IS method, there is a remarkable increase in compressive strength and bulk density, with increment in the percentage replacement of steel slag.

  4. Macrophage triggering by aggregated immunoglobulins. II. Comparison of IgE and IgG aggregates or immune complexes.

    Science.gov (United States)

    Pestel, J; Dessaint, J P; Joseph, M; Bazin, H; Capron, A

    1984-01-01

    Macrophages incubated with complexed or aggregated IgE released beta-glucuronidase (beta-G) within 30 min. In contrast in the presence of aggregated or complexed IgG, macrophages liberated equivalent amount of beta-G only after 6 h incubation. In addition the rapid macrophage stimulation induced by aggregated IgE was also followed by a faster 3H-glucosamine incorporation when compared to the delayed activation caused by aggregated IgG. However, macrophages stimulated either by IgG or by IgE oligomers produced the same percentage of plasminogen activator at 24 h. In contrast, while the interaction between macrophages and aggregated IgE was only followed by a peak of cyclic GMP and a beta-G release during the first 30 min of incubation, the interaction between macrophages and IgG oligomers was accompanied by a simultaneous increase of cyclic GMP and AMP nucleotides and by an absence of beta-G exocytosis. Moreover, the beta-G release induced by aggregated IgE was increased when macrophages were preincubated with aggregated IgG. This additive effect was not observed in the reverse situation. Finally macrophages activated by IgG oligomers were demonstrated to exert a cytotoxic effect on tumour cells and to kill schistosomula in the presence of a low level of complement. Taken together these results underline the peculiar ability of aggregated or complexed IgE to trigger rapidly the macrophage activation compared to aggregated IgG and can explain the important role of complexed IgE in some macrophage dependent cytotoxicity mechanisms (i.e. in parasitic diseases). PMID:6088135

  5. Aggregation is a critical cause of poor transfer into the brain tissue of intravenously administered cationic PAMAM dendrimer nanoparticles

    Directory of Open Access Journals (Sweden)

    Kurokawa Y

    2017-05-01

    Full Text Available Yoshika Kurokawa,1 Hideko Sone,1 Tin-Tin Win-Shwe,1 Yang Zeng,1 Hiroyuki Kimura,2 Yosuke Koyama,1 Yusuke Yagi,2 Yasuto Matsui,3 Masashi Yamazaki,4 Seishiro Hirano1 1Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, 2Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 3Department of Environmental Engineering, Kyoto University Graduate School of Engineering, Kyoto, 4TIA Center Office, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan Abstract: Dendrimers have been expected as excellent nanodevices for brain medication. An amine-terminated polyamidoamine dendrimer (PD, an unmodified plain type of PD, has the obvious disadvantage of cytotoxicity, but still serves as an attractive molecule because it easily adheres to the cell surface, facilitating easy cellular uptake. Single-photon emission computed tomographic imaging of a mouse following intravenous injection of a radiolabeled PD failed to reveal any signal in the intracranial region. Furthermore, examination of the permeability of PD particles across the blood–brain barrier (BBB in vitro using a commercially available kit revealed poor permeability of the nanoparticles, which was suppressed by an inhibitor of caveolae-mediated endocytosis, but not by an inhibitor of macropinocytosis. Physicochemical analysis of the PD revealed that cationic PDs are likely to aggregate promptly upon mixing with body fluids and that this prompt aggregation is probably driven by non-Derjaguin–Landau–Verwey–Overbeek attractive forces originating from the surrounding divalent ions. Atomic force microscopy observation of a freshly cleaved mica plate soaked in dendrimer suspension (culture media confirmed prompt aggregation. Our study revealed poor transfer of intravenously administered cationic PDs into the intracranial nervous tissue, and the results of our analysis

  6. Atmospheric CO2 measurements reveal strong drought sensitivity of Amazonian carbon balance

    Science.gov (United States)

    Miller, J. B.; Gatti, L.; Gloor, M.; Doughty, C.; Malhi, Y.; Domingues, L. G.; Basso, L. S.; Martinewski, A.; Correia, C.; Borges, V.; Freitas, S. R.; Braz, R.; Anderson, L.; Rocha, H.; Grace, J.; Phillips, O.; Lloyd, J.

    2013-12-01

    Potential feedbacks between land carbon pools and climate are one of the largest sources of uncertainty for predicting future global climate, but estimates of their sensitivity to climate anomalies in the tropics and determination of underlying mechanisms are either incomplete or strongly model-based. Amazonia alone stores ~150-200 Pg of labile carbon, and has experienced an increasing trend in temperature and extreme floods and droughts over the last two decades. Here we report the first Amazon Basin-wide seasonal and annual carbon balances based on tropospheric greenhouse gas sampling, during an anomalously dry and a wet year, 2010 and 2011, providing the first whole-system assessment of sensitivity to such conditions. During 2010, the Amazon Basin lost 0.5×0.2 PgCyr-1 while in 2011 it was approximately carbon neutral (0.06×0.1 PgCyr-1). Carbon loss via fire was 0.5×0.1 PgCyr-1 in 2010 and 0.3×0.1 PgCyr-1 in 2011, as derived from Basin-wide carbon monoxide (CO) enhancements. Subtracting fire emissions from total carbon flux to derive Basin net biome exchange (NBE) reveals that in 2010 the non-fire regions of the Basin were carbon neutral; in 2011 they were a net carbon sink of -0.3×0.1 PgC yr-1, roughly consistent with a three-decade long intact-forest biomass sink of ~ -0.5×0.3 PgCyr-1 estimated from forest censuses. Altogether, our results suggest that if the recent trend of precipitation extremes persists, the Amazon region may become an increasing carbon source as a result of both emissions from fires and suppression of NBE by drought.

  7. Macroeconomic susceptibility, inflation, and aggregate supply

    Science.gov (United States)

    Hawkins, Raymond J.

    2017-03-01

    We unify aggregate-supply dynamics as a time-dependent susceptibility-mediated relationship between inflation and aggregate economic output. In addition to representing well various observations of inflation-output dynamics this parsimonious formalism provides a straightforward derivation of popular representations of aggregate-supply dynamics and a natural basis for economic-agent expectations as an element of inflation formation. Our formalism also illuminates questions of causality and time-correlation that challenge central banks for whom aggregate-supply dynamics is a key constraint in their goal of achieving macroeconomic stability.

  8. Aggregated recommendation through random forests.

    Science.gov (United States)

    Zhang, Heng-Ru; Min, Fan; He, Xu

    2014-01-01

    Aggregated recommendation refers to the process of suggesting one kind of items to a group of users. Compared to user-oriented or item-oriented approaches, it is more general and, therefore, more appropriate for cold-start recommendation. In this paper, we propose a random forest approach to create aggregated recommender systems. The approach is used to predict the rating of a group of users to a kind of items. In the preprocessing stage, we merge user, item, and rating information to construct an aggregated decision table, where rating information serves as the decision attribute. We also model the data conversion process corresponding to the new user, new item, and both new problems. In the training stage, a forest is built for the aggregated training set, where each leaf is assigned a distribution of discrete rating. In the testing stage, we present four predicting approaches to compute evaluation values based on the distribution of each tree. Experiments results on the well-known MovieLens dataset show that the aggregated approach maintains an acceptable level of accuracy.

  9. The influence of the coarse aggregates from different mineralogy on the mechanical properties of the high-performance concrete

    International Nuclear Information System (INIS)

    Magalhaes, A.G.; Calixto, J.M.; Franca, E.P.; Aguilar, M.T.P.; Vasconcelos, W.L.

    2006-01-01

    Concrete in normal conditions is a versatile and strong construction material. However under certain environmental conditions it may deteriorate in a short period of time. This fact has led researchers in recent times to develop the high-performance concrete. In this scenario, the aim of this paper is to present the effects of the different types of coarse aggregate on the mechanical properties of high performance concrete. Limestone, granite, gneiss and basalt were used as coarse aggregates. Their characterization consisted of chemical analysis, x-ray diffraction and optical microscopy. The compressive strength and the modulus of elasticity were the investigated mechanical properties. The test results indicate expressively the better performance of the concretes fabricated with basalt, granite and gneiss aggregates. (author)

  10. Microbial properties of soil aggregates created by earthworms and other factors: spherical and prismatic soil aggregates from unreclaimed post-mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Frouz, J.; Kristufek, V.; Liveckova, M.; van Loo, D.; Jacobs, P.; Van Hoorebeke, L. [Charles University of Prague, Prague (Czech Republic). Inst. of Environmental Studies

    2011-01-15

    Soil aggregates between 2 and 5 mm from 35- and 45-year-old unreclaimed post-mining sites near Sokolov (Czech Republic) were divided into two groups: spherical and prismatic. X-ray tomography indicated that prismatic aggregates consisted of fragments of claystone bonded together by amorphous clay and roots while spherical aggregates consisted of a clay matrix and organic fragments of various sizes. Prismatic aggregates were presumed to be formed by plant roots and physical processes during weathering of Tertiary mudstone, while earthworms were presumed to contribute to the formation of spherical aggregates. The effects of drying and rewetting and glucose addition on microbial respiration, microbial biomass, and counts of bacteria in these aggregates were determined. Spherical aggregates contained a greater percentage of C and N and a higher C-to-N ratio than prismatic ones. The C content of the particulate organic matter was also higher in the spherical than in the prismatic aggregates. Although spherical aggregates had a higher microbial respiration and biomass, the growth of microbial biomass in spherical aggregates was negatively correlated with initial microbial biomass, indicating competition between bacteria. Specific respiration was negatively correlated with microbial biomass. Direct counts of bacteria were higher in spherical than in prismatic aggregates. Bacterial numbers were more stable in the center than in the surface layers of the aggregates. Transmission electron microscopy indicated that bacteria often occurred as individual cells in prismatic aggregates but as small clusters of cells in spherical aggregates. Ratios of colony forming units (cultivatable bacteria) to direct counts were higher in spherical than in prismatic aggregates. Spherical aggregates also contained faster growing bacteria.

  11. {beta}-Carotene to bacteriochlorophyll c energy transfer in self-assembled aggregates mimicking chlorosomes

    Energy Technology Data Exchange (ETDEWEB)

    Alster, J. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Praha (Czech Republic); Polivka, T. [Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic); Biology Centre, Academy of Sciences of the Czech Republic, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic); Arellano, J.B. [Instituto de Recursos Naturales y Agrobiologia de Salamanca (IRNASA-CSIC), Apdo. 257, 37071 Salamanca (Spain); Chabera, P. [Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic); Vacha, F. [Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic); Biology Centre, Academy of Sciences of the Czech Republic, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic); Psencik, J., E-mail: psencik@karlov.mff.cuni.cz [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Praha (Czech Republic); Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic)

    2010-07-19

    Carotenoids are together with bacteriochlorophylls important constituents of chlorosomes, the light-harvesting antennae of green photosynthetic bacteria. Majority of bacteriochlorophyll molecules form self-assembling aggregates inside the chlorosomes. Aggregates of bacteriochlorophylls with optical properties similar to those of chlorosomes can also be prepared in non-polar organic solvents or in aqueous environments when a suitable non-polar molecule is added. In this work, the ability of {beta}-carotene to induce aggregation of bacteriochlorophyll c in aqueous buffer was studied. Excitation relaxation and energy transfer in the carotenoid-bacteriochlorophyll assemblies were measured using femtosecond and nanosecond transient absorption spectroscopy. A fast, {approx}100-fs energy transfer from the S{sub 2} state of {beta}-carotene to bacteriochlorophyll c was revealed, while no evidence for significant energy transfer from the S{sub 1} state was found. Picosecond formation of the carotenoid triplet state (T{sub 1}) was observed, which was likely generated by singlet homo-fission from the S{sub 1} state of {beta}-carotene.

  12. Proposing an Aggregate Production Planning Model by Goal Programming Approach, a Case Study

    Directory of Open Access Journals (Sweden)

    Mansoureh Farzam Rad

    2014-06-01

    Full Text Available Production planning is one of the most important functions in the process of production management. Production planning in the intermediate range of time is termed as aggregate production planning (APP. Aggregate production planning is an important upper level planning activity in a production management system. The present study tries to suggest an aggregate production planning model for products of Hafez tile factory during one year. Due to this fact that the director of the company seeks 3 main objectives to determine the optimal production rate, the linear goal planning method was employed. After solving the problem, in order to examine the efficiency and the distinctiveness of this method in compare to linear programming, the problem was modeled just by considering one objective then was solved by linear programming approach. The findings revealed the goal programming with multi objectives resulted more appropriate solution rather than linear programming with just one objective.

  13. Glycation precedes lens crystallin aggregation

    International Nuclear Information System (INIS)

    Swamy, M.S.; Perry, R.E.; Abraham, E.C.

    1987-01-01

    Non-enzymatic glycosylation (glycation) seems to have the potential to alter the structure of crystallins and make them susceptible to thiol oxidation leading to disulfide-linked high molecular weight (HMW) aggregate formation. They used streptozotocin diabetic rats during precataract and cataract stages and long-term cell-free glycation of bovine lens crystallins to study the relationship between glycation and lens crystallin aggregation. HMW aggregates and other protein components of the water-soluble (WS) and urea-soluble (US) fractions were separated by molecular sieve high performance liquid chromatography. Glycation was estimated by both [ 3 H]NaBH 4 reduction and phenylboronate agarose affinity chromatography. Levels of total glycated protein (GP) in the US fractions were about 2-fold higher than in the WS fractions and there was a linear increase in GP in both WS and US fractions. This increase was parallelled by a corresponding increase in HMW aggregates. Total GP extracted by the affinity method from the US fraction showed a predominance of HMW aggregates and vice versa. Cell-free glycation studies with bovine crystallins confirmed the results of the animals studies. Increasing glycation caused a corresponding increase in protein insolubilization and the insoluble fraction thus formed also contained more glycated protein. It appears that lens protein glycation, HMW aggregate formation, and protein insolubilization are interrelated

  14. Reuse of industrial sludge as construction aggregates.

    Science.gov (United States)

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  15. Silt-clay aggregates on Mars

    International Nuclear Information System (INIS)

    Greeley, R.

    1979-01-01

    Viking observations suggest abundant silt and clay particles on Mars. It is proposed that some of these particles agglomerate to form sand size aggregates that are redeposited as sandlike features such as drifts and dunes. Although the binding for the aggregates could include salt cementation or other mechanisms, electrostatic bonding is considered to be a primary force holding the aggregates together. Various laboratory experiments conducted since the 19th century, and as reported here for simulated Martian conditions, show that both the magnitude and sign of electrical charges on windblown particles are functions of particle velocity, shape and composition, atmospheric pressure, atmospheric composition, and other factors. Electrical charges have been measured for saltating particles in the wind tunnel and in the field, on the surfaces of sand dunes, and within dust clouds on earth. Similar, and perhaps even greater, charges are proposed to occur on Mars, which could form aggregates of silt and clay size particles. Electrification is proposed to occur within Martian dust clouds, generating silt-clay aggregates which would settle to the surface where they may be deposited in the form of sandlike structures. By analog, silt-clay dunes are known in many parts of the earth where silt-clay aggregated were transported by saltation and deposited as 'sand.' In these structures the binding forces were later destroyed, and the particles reassumed the physical properties of silt and clay, but the sandlike bedding structure within the 'dunes' was preserved. The bedding observed in drifts at the Viking landing site is suggested to result from a similar process involving silt-clay aggregates on Mars

  16. Effects of Polymer Hydrophobicity on Protein Structure and Aggregation Kinetics in Crowded Milieu.

    Science.gov (United States)

    Breydo, Leonid; Sales, Amanda E; Frege, Telma; Howell, Mark C; Zaslavsky, Boris Y; Uversky, Vladimir N

    2015-05-19

    We examined the effects of water-soluble polymers of various degrees of hydrophobicity on the folding and aggregation of proteins. The polymers we chose were polyethylene glycol (PEG) and UCON (1:1 copolymer of ethylene glycol and propylene glycol). The presence of additional methyl groups in UCON makes it more hydrophobic than PEG. Our earlier analysis revealed that similarly sized PEG and UCON produced different changes in the solvent properties of water in their solutions and induced morphologically different α-synuclein aggregates [Ferreira, L. A., et al. (2015) Role of solvent properties of aqueous media in macromolecular crowding effects. J. Biomol. Struct. Dyn., in press]. To improve our understanding of molecular mechanisms defining behavior of proteins in a crowded environment, we tested the effects of these polymers on secondary and tertiary structure and aromatic residue solvent accessibility of 10 proteins [five folded proteins, two hybrid proteins; i.e., protein containing ordered and disordered domains, and three intrinsically disordered proteins (IDPs)] and on the aggregation kinetics of insulin and α-synuclein. We found that effects of both polymers on secondary and tertiary structures of folded and hybrid proteins were rather limited with slight unfolding observed in some cases. Solvent accessibility of aromatic residues was significantly increased for the majority of the studied proteins in the presence of UCON but not PEG. PEG also accelerated the aggregation of protein into amyloid fibrils, whereas UCON promoted aggregation to amyloid oligomers instead. These results indicate that even a relatively small change in polymer structure leads to a significant change in the effect of this polymer on protein folding and aggregation. This is an indication that protein folding and especially aggregation are highly sensitive to the presence of other macromolecules, and an excluded volume effect is insufficient to describe their effect.

  17. Aggregating and Disaggregating Flexibility Objects

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Valsomatzis, Emmanouil; Hose, Katja

    2015-01-01

    In many scientific and commercial domains we encounter flexibility objects, i.e., objects with explicit flexibilities in a time and an amount dimension (e.g., energy or product amount). Applications of flexibility objects require novel and efficient techniques capable of handling large amounts...... and aiming at energy balancing during aggregation. In more detail, this paper considers the complete life cycle of flex-objects: aggregation, disaggregation, associated requirements, efficient incremental computation, and balance aggregation techniques. Extensive experiments based on real-world data from...

  18. CPAD, Curated Protein Aggregation Database: A Repository of Manually Curated Experimental Data on Protein and Peptide Aggregation.

    Science.gov (United States)

    Thangakani, A Mary; Nagarajan, R; Kumar, Sandeep; Sakthivel, R; Velmurugan, D; Gromiha, M Michael

    2016-01-01

    Accurate distinction between peptide sequences that can form amyloid-fibrils or amorphous β-aggregates, identification of potential aggregation prone regions in proteins, and prediction of change in aggregation rate of a protein upon mutation(s) are critical to research on protein misfolding diseases, such as Alzheimer's and Parkinson's, as well as biotechnological production of protein based therapeutics. We have developed a Curated Protein Aggregation Database (CPAD), which has collected results from experimental studies performed by scientific community aimed at understanding protein/peptide aggregation. CPAD contains more than 2300 experimentally observed aggregation rates upon mutations in known amyloidogenic proteins. Each entry includes numerical values for the following parameters: change in rate of aggregation as measured by fluorescence intensity or turbidity, name and source of the protein, Uniprot and Protein Data Bank codes, single point as well as multiple mutations, and literature citation. The data in CPAD has been supplemented with five different types of additional information: (i) Amyloid fibril forming hexa-peptides, (ii) Amorphous β-aggregating hexa-peptides, (iii) Amyloid fibril forming peptides of different lengths, (iv) Amyloid fibril forming hexa-peptides whose crystal structures are available in the Protein Data Bank (PDB) and (v) Experimentally validated aggregation prone regions found in amyloidogenic proteins. Furthermore, CPAD is linked to other related databases and resources, such as Uniprot, Protein Data Bank, PUBMED, GAP, TANGO, WALTZ etc. We have set up a web interface with different search and display options so that users have the ability to get the data in multiple ways. CPAD is freely available at http://www.iitm.ac.in/bioinfo/CPAD/. The potential applications of CPAD have also been discussed.

  19. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes

    Science.gov (United States)

    Habchi, Johnny; Chia, Sean; Galvagnion, Céline; Michaels, Thomas C. T.; Bellaiche, Mathias M. J.; Ruggeri, Francesco Simone; Sanguanini, Michele; Idini, Ilaria; Kumita, Janet R.; Sparr, Emma; Linse, Sara; Dobson, Christopher M.; Knowles, Tuomas P. J.; Vendruscolo, Michele

    2018-06-01

    Alzheimer's disease is a neurodegenerative disorder associated with the aberrant aggregation of the amyloid-β peptide. Although increasing evidence implicates cholesterol in the pathogenesis of Alzheimer's disease, the detailed mechanistic link between this lipid molecule and the disease process remains to be fully established. To address this problem, we adopt a kinetics-based strategy that reveals a specific catalytic role of cholesterol in the aggregation of Aβ42 (the 42-residue form of the amyloid-β peptide). More specifically, we demonstrate that lipid membranes containing cholesterol promote Aβ42 aggregation by enhancing its primary nucleation rate by up to 20-fold through a heterogeneous nucleation pathway. We further show that this process occurs as a result of cooperativity in the interaction of multiple cholesterol molecules with Aβ42. These results identify a specific microscopic pathway by which cholesterol dramatically enhances the onset of Aβ42 aggregation, thereby helping rationalize the link between Alzheimer's disease and the impairment of cholesterol homeostasis.

  20. Protein carbonylation, protein aggregation and neuronal cell death in a murine model of multiple sclerosis

    Science.gov (United States)

    Dasgupta, Anushka

    Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal

  1. Light-induced aggregation of microbial exopolymeric substances.

    Science.gov (United States)

    Sun, Luni; Xu, Chen; Zhang, Saijin; Lin, Peng; Schwehr, Kathleen A; Quigg, Antonietta; Chiu, Meng-Hsuen; Chin, Wei-Chun; Santschi, Peter H

    2017-08-01

    Sunlight can inhibit or disrupt the aggregation process of marine colloids via cleavage of high molecular weight compounds into smaller, less stable fragments. In contrast, some biomolecules, such as proteins excreted from bacteria can form aggregates via cross-linking due to photo-oxidation. To examine whether light-induced aggregation can occur in the marine environment, we conducted irradiation experiments on a well-characterized protein-containing exopolymeric substance (EPS) from the marine bacterium Sagitulla stellata. Our results show that after 1 h sunlight irradiation, the turbidity level of soluble EPS was 60% higher than in the dark control. Flow cytometry also confirmed that more particles of larger sized were formed by sunlight. In addition, we determined a higher mass of aggregates collected on filter in the irradiated samples. This suggests light can induce aggregation of this bacterial EPS. Reactive oxygen species hydroxyl radical and peroxide played critical roles in the photo-oxidation process, and salts assisted the aggregation process. The observation that Sagitulla stellata EPS with relatively high protein content promoted aggregation, was in contrast to the case where no significant differences were found in the aggregation of a non-protein containing phytoplankton EPS between the dark and light conditions. This, together with the evidence that protein-to-carbohydrate ratio of aggregates formed under light condition is significantly higher than that formed under dark condition suggest that proteins are likely the important component for aggregate formation. Light-induced aggregation provides new insights into polymer assembly, marine snow formation, and the fate/transport of organic carbon and nitrogen in the ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers.

    Science.gov (United States)

    Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou

    2006-11-23

    The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.

  3. The effect of electrolytes on the aggregation kinetics of titanium dioxide nanoparticle aggregates

    International Nuclear Information System (INIS)

    Shih Yanghsin; Zhuang Chengming; Tso Chihping; Lin Chenghan

    2012-01-01

    Metal oxide nanoparticles (NPs) are receiving increasing attention due to their increased industrial production and potential hazardous effect. The process of aggregation plays a key role in the fate of NPs in the environment and the resultant health risk. The aggregation of commercial titanium dioxide NP powder (25 nm) was investigated with various environmentally relevant solution chemistries containing different concentrations of monovalent (Na + , K + ) and divalent (Ca 2+ ) electrolytes. Titanium dioxide particle size increased with the increase in ion concentration. The stability of titanium dioxide also depended on the ionic composition. Titanium dioxide aggregated to a higher degree in the presence of divalent cations than monovalent ones. The attachment efficiency of NPs was constructed through aggregation kinetics data, from which the critical coagulation concentrations for the various electrolytes are determined (80, 19, and 1 meq/L for Na + , K + , and Ca 2+ , respectively). Our results suggest that titanium dioxide NP powders are relatively unstable in water and could easily be removed by adding multivalent cations so hazardous potentials decrease in aquatic environment.

  4. Concrete Waste Recycling Process for High Quality Aggregate

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-01

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  5. β-Amyloid-derived pentapeptide RIIGLa inhibits Aβ1-42 aggregation and toxicity

    International Nuclear Information System (INIS)

    Fueloep, Livia; Zarandi, Marta; Datki, Zsolt; Soos, Katalin; Penke, Botond

    2004-01-01

    Pr-IIGL a , a derivative of the tetrapeptide β-amyloid 31-34 (Aβ 31-34 ), exerts controversial effects: it is toxic in a neuroblastoma culture, but it protects glial cells from the cytotoxic action of Aβ 1-42 . For an understanding of this phenomenon, a new pentapeptide, RIIGL a was synthetized, and both compounds were studied by different physicochemical and biological methods. Transmission electron microscopic (TEM) studies revealed that Pr-IIGL a forms fibrillar aggregates, whereas RIIGL a does not form fibrils. Congo red binding studies furnished the same results. Aggregated Pr-IIGL a acts as a cytotoxic agent in neuroblastoma cultures, but RIIGL a does not display inherent toxicity. RIIGL a co-incubated with Aβ 1-42 inhibits the formation of mature amyloid fibres (TEM studies) and reduces the cytotoxic effect of fibrillar Aβ 1-42 . These results indicate that RIIGL a is an effective inhibitor of both the aggregation and the toxic effects of Aβ 1-42 and can serve as a lead compound for the design of novel neuroprotective peptidomimetics

  6. Aggregations and parental care in the Early Triassic basal cynodonts Galesaurus planiceps and Thrinaxodon liorhinus

    Directory of Open Access Journals (Sweden)

    Sandra C. Jasinoski

    2017-01-01

    Full Text Available Non-mammaliaform cynodonts gave rise to mammals but the reproductive biology of this extinct group is still poorly known. Two exceptional fossils of Galesaurus planiceps and Thrinaxodon liorhinus, consisting of juveniles closely associated with an adult, were briefly described more than 50 years ago as examples of parental care in non-mammaliaform cynodonts. However, these two Early Triassic fossils have largely been excluded from recent discussions of parental care in the fossil record. Here we re-analyse these fossils in the context of an extensive survey of other aggregations found in these two basal cynodont taxa. Our analysis revealed six other unequivocal cases of aggregations in Thrinaxodon, with examples of same-age aggregations among immature or adult individuals as well as mixed-age aggregations between subadult and adult individuals. In contrast, only one additional aggregation of Galesauruswas identified. Taking this comprehensive survey into account, the two previously described cases of parental care in Galesaurus and Thrinaxodon are substantiated. The juveniles are the smallest specimens known for each taxon, and the size difference between the adult and the two associated juveniles is the largest found for any of the aggregations. The juveniles of Thrinaxodon are approximately only 37% of the associated adult size; whereas in Galesaurus, the young are at least 60% of the associated adult size. In each case, the two juvenile individuals are similar in size, suggesting they were from the same clutch. Even though parental care was present in both Galesaurus and Thrinaxodon, intraspecific aggregations were much more common in Thrinaxodon, suggesting it regularly lived in aggregations consisting of both similar and different aged individuals.

  7. Cholesterol impairment contributes to neuroserpin aggregation

    Science.gov (United States)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-03-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.

  8. A 43-kDa TDP-43 species is present in aggregates associated with frontotemporal lobar degeneration.

    Directory of Open Access Journals (Sweden)

    Patrick J Bosque

    Full Text Available The transactive response DNA-binding protein (TDP-43 is a major component of the abnormal intracellular inclusions that occur in two common neurodegenerative diseases of humans: (1 a subtype of frontotemporal lobar degeneration and (2 amyotrophic lateral sclerosis. Genetics, experiments in cultured cells and animals, and analogy with other neurodegenerative diseases indicate that the process of TDP-43 aggregation is fundamental to the pathogenesis of these 2 diseases, but the process by which this aggregation occurs is not understood. Biochemical fractionation has revealed truncated, phosphorylated and ubiquitinated forms of TDP-43 in a detergent-insoluble fraction from diseased CNS tissue, while these forms are absent from controls. However, a large amount of the normally predominant 43-kDa form of TDP-43 is present in the detergent-insoluble fraction even from control brains, so it has not been possible to determine if this form of TDP-43 is part of pathological aggregates in frontotemporal lobe degeneration. We used semi-denaturing detergent-agarose gel electrophoresis to isolate high molecular weight aggregates containing TDP-43 that are present in the cerebral cortex of individuals with frontotemporal lobar degeneration but not that of controls. These aggregates include the same covalently modified forms of TDP-43 seen in detergent-insoluble extracts. In addition, aggregates include a 43-kDa TDP-43 species. This aggregated 43-kDa form of TDP-43 is absent or present only at low levels in controls. The presence of 43-kDa TDP-43 in aggregates raises the possibility that covalent modification is not a primary step in the pathogenic aggregation of TDP-43 associated with frontotemporal lobar degeneration and amyotrophic lateral sclerosis.

  9. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate

    Science.gov (United States)

    Zheng, Chaocan; Lou, Cong; Du, Geng; Li, Xiaozhen; Liu, Zhiwu; Li, Liqin

    2018-06-01

    This paper presents an experimental investigation on the effect of the replacement of natural coarse aggregate (NCA) with either recycled concrete aggregate (RCA) or recycled clay brick aggregate (RBA) on the compressive strengths of the hardened concrete. Two grades (C25 and C50) of concrete were investigated, which were achieved by using different water-to-cement ratios. In each grade concrete five different replacement rates, 0%, 25%, 50%, 75% and 100% were considered. In order to improve the performance of the recycled aggregates in the concrete mixes, the RCA and RBA were carefully sieved by using the optimal degradation. In this way the largest reduction in the 28-day compressive strength was found to be only 7.2% and 9.6% for C25 and C50 recycled concrete when the NCA was replaced 100% by RCA, and 11% and 13% for C25 and C50 recycled concrete when the NCA was replaced 100% by RBA. In general, the concrete with RCA has better performance than the concrete with RBA. The comparison of the present experimental results with those reported in literature for hardened concrete with either RCA or RBA demonstrates the effectiveness in improving the compressive strength by using the optimal gradation of recycled aggregates.

  10. Compressive strength improvement for recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Mohammed Dhiyaa

    2018-01-01

    Full Text Available Increasing amount of construction waste and, concrete remnants, in particular pose a serious problem. Concrete waste exist in large amounts, do not decay and need long time for disintegration. Therefore, in this work old demolished concrete is crashed and recycled to produce recycled concrete aggregate which can be reused in new concrete production. The effect of using recycled aggregate on concrete compressive strength has been experimentally investigated; silica fume admixture also is used to improve recycled concrete aggregate compressive strength. The main parameters in this study are recycled aggregate and silica fume admixture. The percent of recycled aggregate ranged from (0-100 %. While the silica fume ranged from (0-10 %. The experimental results show that the average concrete compressive strength decreases from 30.85 MPa to 17.58 MPa when the recycled aggregate percentage increased from 0% to 100%. While, when silica fume is used the concrete compressive strength increase again to 29.2 MPa for samples with 100% of recycled aggregate.

  11. Asphaltene Aggregation and Fouling Behavior

    Science.gov (United States)

    Derakhshesh, Marzie

    . Analysis of the spectra of the whole asphaltene samples in toluene indicates that the absorbance of visible light with wavelengths > 600 nm follows a lambda--4 dependence. This functional dependence is consistent with Rayleigh scattering. Rayleigh scattering provides strong evidence that the apparent absorption of visible light by asphaltenes from 600-800 nm is not a molecular absorption phenomenon but rather a scattering mechanism. Rayleigh scattering equations were combined with experimental visible spectra to estimate the average nanoaggregate sizes, which were in a very good agreement with the sizes reported in the literature. The occlusion of two polynuclear aromatic hydrocarbons (PAHs) (pyrene and phenanthrene) in asphaltene precipitates was tested by adding PAHs to the asphaltene in toluene solutions, precipitating by n-pentane and determining the amount of PAHs in precipitates using simulated distillation instrument. Pyrene and phenanthrene, which are normally soluble in the toluene-n-pentane solutions, were detected in the asphaltene precipitates at up to 6 wt% concentration. Trapping of PAHs outside of the nanoaggregates during precipitation gave 7-14 times less of the PAHs in the solid precipitate. This study shows that asphaltene aggregates can interact significantly with PAHs. The results are consistent with the presence open porous asphaltene nanoaggregates in solutions such as toluene.

  12. Environmentally-relevant concentrations of Al(III) and Fe(III) cations induce aggregation of free DNA by complexation with phosphate group.

    Science.gov (United States)

    Qin, Chao; Kang, Fuxing; Zhang, Wei; Shou, Weijun; Hu, Xiaojie; Gao, Yanzheng

    2017-10-15

    Environmental persistence of free DNA is influenced by its complexation with other chemical species and its aggregation mechanisms. However, it is not well-known how naturally-abundant metal ions, e.g., Al(III) and Fe(III), influence DNA aggregation. This study investigated aggregation behaviors of model DNA from salmon testes as influenced by metal cations, and elucidated the predominant mechanism responsible for DNA aggregation. Compared to monovalent (K + and Na + ) and divalent (Ca 2+ and Mg 2+ ) cations, Al(III) and Fe(III) species in aqueous solution caused rapid DNA aggregations. The maximal DNA aggregation occurred at 0.05 mmol/L Al(III) or 0.075 mmol/L Fe(III), respectively. A combination of atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy revealed that Al(III) and Fe(III) complexed with negatively charged phosphate groups to neutralize DNA charges, resulting in decreased electrostatic repulsion and subsequent DNA aggregation. Zeta potential measurements and molecular computation further support this mechanism. Furthermore, DNA aggregation was enhanced at higher temperature and near neutral pH. Therefore, DNA aggregation is collectively determined by many environmental factors such as ion species, temperature, and solution pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27

    International Nuclear Information System (INIS)

    Fernández González, P.; Landajo, M.; Presno, M.J.

    2014-01-01

    This paper aims at analysing the factors behind the change in aggregate energy consumption in the EU-27, also identifying differences between member states. The logarithmic-mean Divisia index method (LMDI) is applied to multiplicatively decompose, at the country level, the variation in aggregate energy consumption in the EU-27 member states for the 2001–2008 period. We also analyse the sensitivity of the results when several aggregation levels are considered, with energy intensity used as the criterion to aggregate countries. This allows us to check robustness of results, also enabling an improved understanding of both inter and intra-unit effects. Results indicate that improvements in energy efficiency in the EU-27 were not enough to overcome the pressure of European economic activity on aggregate energy consumption. Mediterranean countries, and especially former communist states, increased their energy consumptions, most of them favoured by structural change. The analysis also reveals that the impact of intra-group movements on aggregate energy consumption is partially offset when moving from higher to lower aggregation levels. - Highlights: • Increase in EU-27 aggregate energy consumption is decomposed through LMDI at 3 levels. • We present the subgroup activity effect and we demonstrate its nulls consequences. • Structural and intensity group effects lose influence when moving to a higher level. • R and D, quality energies, efficient technologies, are main tools to lower energy consumption. • Structural effect: “Green” attitudes and changes in consumer choices, also necessary

  14. Ratio-Based Gradual Aggregation of Data

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem

    2012-01-01

    cause data management and data storage issues. However, non-flexible and ineffective means of data aggregation not only reduce performance of database queries but also lead to erroneous reporting. This paper presents flexible and effective ratio-based methods for gradual data aggregation in databases....... Gradual data aggregation is a process that reduces data volume by converting the detailed data into multiple levels of summarized data as the data gets older. This paper also describes implementation strategies of the proposed methods based on standard database technology.......Majority of databases contain large amounts of data, gathered over long intervals of time. In most cases, the data is aggregated so that it can be used for analysis and reporting purposes. The other reason of data aggregation is to reduce data volume in order to avoid over-sized databases that may...

  15. Chondrogenesis and hypertrophy in response to aggregate behaviors of human mesenchymal stem cells on a dendrimer-immobilized surface.

    Science.gov (United States)

    Wongin, Sopita; Ogawa, Yuuki; Kim, Mee-Hae; Viravaidya-Pasuwat, Kwanchanok; Kino-Oka, Masahiro

    2017-08-01

    To investigate the behaviors of aggregates of human mesenchymal stem cells (hMSCs) on chondrogenesis and chondrocyte hypertrophy using spatiotemporal expression patterns of chondrogenic (type II collagen) and hypertrophic (type X collagen) markers during chondrogenesis. hMSCs were cultured on either a polystyrene surface or polyamidoamine dendrimer surface with a fifth generation (G5) dendron structure in chondrogenic medium and growth medium. At day 7, cell aggregates without stress fibers formed on the G5 surface and triggered differentiation of hMSCs toward the chondrogenic fate, as indicated by type II collagen being observed while type X collagen was undetectable. In contrast, immunostaining of hMSCs cultured on polystyrene, which exhibited abundant stress fibers and did not form aggregates, revealed no evidence of either type II and or type X collagen. At day 21, the morphological changes of the cell aggregates formed on the G5 surface were suppressed as a result of stress fiber formation. Type II collagen was observed throughout the aggregates whereas type X collagen was detected only at the basal side of the aggregates. Change of cell aggregate behaviors derived from G5 surface alone regulated chondrogenesis and hypotrophy, and this was enhanced by chondrogenic medium. Incubation of hMSCs affects the expression of type II and X collagens via effects on cell aggregate behavior and stress fiber formation.

  16. Pulp-Capping with Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Peycheva Kalina

    2015-11-01

    Full Text Available There are two considerations for direct pulp capping - accidental mechanical pulp exposure and exposure caused by caries. Mineral trioxide aggregate (MTA was used as pulp-capping material to preserve the vitality of the pulpal tissues. Follow-up examinations revealed that treatment was successful in preserving pulpal vitality and continued development of the tooth. On the basis of available information, it appears that MTA is the material of choice for some clinical applications. Material and methods: Cases 18 - 8 teeth with grey MTA, 10 teeth with white MTA; diagnose: Pulpitis chronica ulcerosa, Electro pulpal test (EOD - 30-35 μA, pre-clinical X-ray - without changes in the structures, follow ups for 4 years. Successful treatments: without clinical symptoms and changes in the X-rays: 5 teeth with grey MTA, 8 teeth with white MTA for period of 4 years. Unsuccessful treatments: Clinical symptoms and sometimes changes in the X-ray: 3 with grey MTA, 2 with white MTA. MTA is an appropriate material for pulp-capping and follow-up examinations revealed that the treatment was successful in preserving pulpal vitality.

  17. Optimal trading of plug-in electric vehicle aggregation agents in a market environment for sustainability

    International Nuclear Information System (INIS)

    Shafie-khah, M.; Heydarian-Forushani, E.; Golshan, M.E.H.; Siano, P.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; Catalão, J.P.S.

    2016-01-01

    Highlights: • Proposing a multi-stage stochastic model of a PEV aggregation agent. • Reflecting several uncertainties using a stochastic model and appropriate scenarios. • Updating bids/offers of PEV aggregation agents by taking part in the intraday market. • Taking part in Demand Response eXchange (DRX) markets. - Abstract: Ever since energy sustainability is an emergent concern, Plug-in Electric Vehicles (PEVs) significantly affect the approaching smart grids. Indeed, Demand Response (DR) brings a positive effect on the uncertainties of renewable energy sources, improving market efficiency and enhancing system reliability. This paper proposes a multi-stage stochastic model of a PEV aggregation agent to participate in day-ahead and intraday electricity markets. The stochastic model reflects several uncertainties such as the behaviour of PEV owners, electricity market prices, and activated quantity of reserve by the system operator. For this purpose, appropriate scenarios are utilized to realize the uncertain feature of the problem. Furthermore, in the proposed model, the PEV aggregation agents can update their bids/offers by taking part in the intraday market. To this end, these aggregation agents take part in Demand Response eXchange (DRX) markets designed in the intraday session by employing DR resources. The numerical results show that DR provides a perfect opportunity for PEV aggregation agents to increase the profit. In addition, the results reveal that the PEV aggregation agent not only can increase its profit by participating in the DRX market, but also can become an important player in the mentioned market.

  18. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries.

    Science.gov (United States)

    Gong, Yixiao; Lazaris, Charalampos; Sakellaropoulos, Theodore; Lozano, Aurelie; Kambadur, Prabhanjan; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis

    2018-02-07

    The metazoan genome is compartmentalized in areas of highly interacting chromatin known as topologically associating domains (TADs). TADs are demarcated by boundaries mostly conserved across cell types and even across species. However, a genome-wide characterization of TAD boundary strength in mammals is still lacking. In this study, we first use fused two-dimensional lasso as a machine learning method to improve Hi-C contact matrix reproducibility, and, subsequently, we categorize TAD boundaries based on their insulation score. We demonstrate that higher TAD boundary insulation scores are associated with elevated CTCF levels and that they may differ across cell types. Intriguingly, we observe that super-enhancers are preferentially insulated by strong boundaries. Furthermore, we demonstrate that strong TAD boundaries and super-enhancer elements are frequently co-duplicated in cancer patients. Taken together, our findings suggest that super-enhancers insulated by strong TAD boundaries may be exploited, as a functional unit, by cancer cells to promote oncogenesis.

  19. Development of Well-Preserved, Substrate-Versatile Latent Fingerprints by Aggregation-Induced Enhanced Emission-Active Conjugated Polyelectrolyte.

    Science.gov (United States)

    Malik, Akhtar Hussain; Kalita, Anamika; Iyer, Parameswar Krishnan

    2017-10-25

    The development of highly efficient latent fingerprint (LFP) technology remains extremely vital for forensic and criminal investigations. In this contribution, a straightforward, rapid, and cost-effective method has been established for the quick development of well-preserved latent fingerprint on multiple substrates, including plastic, glass, aluminum foil, metallic surfaces, and so forth, without any additional treatment, based on aggregation-induced enhanced emission-active conjugated polyelectrolyte (CPE) 3,3'-((2-(4-(1,2-diphenyl-2-(p-tolyl)vinyl)phenyl)-7-(7-methylbenzo[c][1,2,5]thiadiazol-4-yl)-9H-fluorene-9,9-diyl)bis(hexane-6,1-diyl))bis(1-methyl-1H-imidazol-3-ium) bromide, revealing clearly the third-level details (ridges, bifurcations, and pores) with high selectivity, high contrast, and no background interference even by blood stains, confirming the ability of the proposed technique for LFP detection with high resolution. The LFP development process was accomplished simply by immersing fingerprint-loaded substrate into the CPE solution for ∼1 min, followed by shaking off the residual polymer solution and then air drying. The CPE was readily transferred to the LFPs because of the strong electrostatic and hydrophobic interaction between the CPE molecules and the fingerprint components revealing distinct fluorescent images on various smooth nonporous surfaces.

  20. Nickel aggregates produced by radiolysis

    International Nuclear Information System (INIS)

    Marignier, J.L.; Belloni, J.

    1988-01-01

    Nickel aggregates with subcolloidal size and stable in water have been synthesized by inhibiting the corrosion by the medium. The protective effect of the surfactant is discussed in relation with the characteristics of various types of polyvinyl alcohol studied. The reactivity of aggregates towards oxidizing compounds, nitro blue tetrazolium, methylene blue, silver ions, oxygen, methylviologen, enables an estimation of the redox potential of nickel aggregates (E = - 04 ± 0.05 V). It has been applied to quantitative analysis of the particles in presence of nickel ions. 55 refs [fr

  1. Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro.

    Science.gov (United States)

    Rane, Jitendra Subhash; Bhaumik, Prasenjit; Panda, Dulal

    2017-01-01

    The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 μM, respectively. Molecular docking studies indicated a putative binding site of curcumin in the microtubule-binding region of tau. Using several complementary techniques, including dynamic light scattering, thioflavin S fluorescence, 90° light scattering, electron microscopy, and atomic force microscopy, curcumin was found to inhibit the aggregation of tau. The dynamic light scattering analysis and atomic force microscopic images revealed that curcumin inhibits the oligomerization of tau. Curcumin also disintegrated preformed tau oligomers. Using Far-UV circular dichroism, curcumin was found to inhibit the β-sheets formation in tau indicating that curcumin inhibits an initial step of tau aggregation. In addition, curcumin inhibited tau fibril formation. Furthermore, the effect of curcumin on the preformed tau filaments was analyzed by atomic force microscopy, transmission electron microscopy, and 90° light scattering. Curcumin treatment disintegrated preformed tau filaments. The results indicated that curcumin inhibited the oligomerization of tau and could disaggregate tau filaments.

  2. Orthogonal flexible Rydberg aggregates

    Science.gov (United States)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2016-02-01

    We study the link between atomic motion and exciton transport in flexible Rydberg aggregates, assemblies of highly excited light alkali-metal atoms, for which motion due to dipole-dipole interaction becomes relevant. In two one-dimensional atom chains crossing at a right angle adiabatic exciton transport is affected by a conical intersection of excitonic energy surfaces, which induces controllable nonadiabatic effects. A joint exciton-motion pulse that is initially governed by a single energy surface is coherently split into two modes after crossing the intersection. The modes induce strongly different atomic motion, leading to clear signatures of nonadiabatic effects in atomic density profiles. We have shown how this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains [K. Leonhardt et al., Phys. Rev. Lett. 113, 223001 (2014), 10.1103/PhysRevLett.113.223001]. In this article we discuss the underlying complex dynamics in detail, characterize the switch, and derive our isotropic interaction model from a realistic anisotropic one with the addition of a magnetic bias field.

  3. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    International Nuclear Information System (INIS)

    Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime

    2013-01-01

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy. (paper)

  4. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    Science.gov (United States)

    Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime

    2013-06-01

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy.

  5. Aggregation Algorithms in Heterogeneous Tables

    Directory of Open Access Journals (Sweden)

    Titus Felix FURTUNA

    2006-01-01

    Full Text Available The heterogeneous tables are most used in the problem of aggregation. A solution for this problem is to standardize these tables of figures. In this paper, we proposed some methods of aggregation based on the hierarchical algorithms.

  6. Small file aggregation in a parallel computing system

    Science.gov (United States)

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Grider, Gary; Zhang, Jingwang

    2014-09-02

    Techniques are provided for small file aggregation in a parallel computing system. An exemplary method for storing a plurality of files generated by a plurality of processes in a parallel computing system comprises aggregating the plurality of files into a single aggregated file; and generating metadata for the single aggregated file. The metadata comprises an offset and a length of each of the plurality of files in the single aggregated file. The metadata can be used to unpack one or more of the files from the single aggregated file.

  7. In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Egan, Garth C. [Department of Materials Science, University of Maryland, College Park, Maryland 20742 (United States); Sullivan, Kyle T.; LaGrange, Thomas; Reed, Bryan W. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Zachariah, Michael R., E-mail: mrz@umd.edu [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States); Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 (United States)

    2014-02-28

    The word “nanoparticle” nominally elicits a vision of an isolated sphere; however, the vast bulk of nanoparticulate material exists in an aggregated state. This can have significant implications for applications such as combustion, catalysis, and optical excitation, where particles are exposed to high temperature and rapid heating conditions. In such environments, particles become susceptible to morphological changes which can reduce surface area, often to the detriment of functionality. Here, we report on thermally-induced coalescence which can occur in aluminum nanoparticle aggregates subjected to rapid heating (10{sup 6}–10{sup 11} K/s). Using dynamic transmission electron microscopy, we observed morphological changes in nanoparticle aggregates occurring in as little as a few nanoseconds after the onset of heating. The time-resolved probes reveal that the morphological changes initiate within 15 ns and are completed in less than 50 ns. The morphological changes were found to have a threshold temperature of about 1300 ± 50 K, as determined by millisecond-scale experiments with a calibrated heating stage. The temperature distribution of aggregates during laser heating was modeled with various simulation approaches. The results indicate that, under rapid heating conditions, coalescence occurs at an intermediate temperature between the melting points of aluminum and the aluminum oxide shell, and proceeds rapidly once this threshold temperature is reached.

  8. Sex and aggregation pheromone transport after methyl eugenol consumption in male Bactrocera papayae

    International Nuclear Information System (INIS)

    Hee, Alvin K.W.; Tan, K.H.

    2000-01-01

    Amongst at least 52 sibling species complexes in the Oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae), B. papayae (formerly Mal B) Drew and Hancock (Drew and Hancock 1994) is beginning to emerge as an economically important insect pest which poses a severe threat to the fruit cultivation in both subtropical and tropical countries. In Malaysia, B. papayae is one of the most damaging pests which infests many commercially grown fruits (Tan and Lee 1982). Like the Oriental fruit fly and its sibling species complex, B. carambolae Drew and Hancock, B. papayae is also strongly attracted to, and compulsively feeds on, methyl eugenol (ME) (Tan 1993). Chemical analyses revealed that in B. papayae males, ME is converted to phenylpropanoids which are then selectively accumulated in the rectal gland. Of the three major volatile substances, 2-allyl-4,5-dimethoyphenol (allyl-DMP) was detected in higher quantities relative to the trans-coniferyl alcohol (4-(3-hydroxy-E-propenyl)-2-methoxyphenol) (CF) and cis-3,4-dimethoxycinnamyl alcohol (cis-DMC) (Nishida et al. 1988a, 1988b). Behavioural studies have also shown that allyl-DMP and CF function as male sex and aggregation pheromone in B. papayae (Tan and Nishida 1996, Hee and Tan 1998). Allyl-DMP was found to be the most attractive compound and cis-DMC the least attractive to the males (Tan 1996). Consumption of ME enhances the mating competitiveness of males. This is demonstrated by the strong attraction of females to conspecific ME-fed males in wind tunnel experiments (Hee and Tan 1998). In male-male mating competition for virgin females, males that fed on ME performed significantly better (Shelly and Dewire 1994, Tan and Nishida 1996). Thus it appears that ME-fed males produced signals that were more attractive. However, the characterisation and understanding of the functions of these phenylpropanoids have not been accompanied by studies of their physiological mode of transport in male flies. The current

  9. ALPHA-SYNUCLEIN STRUCTURE, AGGREGATION AND MODULATORS

    Directory of Open Access Journals (Sweden)

    Pinakin K. Makwana

    2016-06-01

    Full Text Available Alpha-synuclein is an intrinsically unstructured protein, involved in various neurodegenerative disorders. In vitro/in vivo experiments, as well as genetic mutation studies establish a direct link between alphasynuclein and synucleinopathies. Due to its natively unfolded state, alpha synuclein can adopt numerous conformations upon interaction with its partners and cellular factors, offering explanation for its diverse interactions. Aggregated form of alpha-synuclein has been observed in the brain of patients with synucleinopathies, a hallmark of neurodegeneration, and cell death has been attributed to aggregation induced toxicity. The process of aggregation involves nucleation, followed by intermediate oligomeric states, and finally the fibrillar amyloids. Of the various conformations/species that alpha-synuclein assumes before it transforms into mature amyloid fibrils, the oligomeric species is the most toxic. Thus, an effective way to limit disease progression is by modifying/slowing down protein aggregation/deposition in the brain. Various small natural products, synthetic chemicals, peptides and antibodies specific to alpha-synuclein have been designed/identified to reduce its rate of aggregation. Unfortunately, not even a handful of the molecules have cleared the clinical trials. Even today, medications available for Parkinson’s patients are mostly the drugs that adjust for loss of dopamine in the brain, and hence do not stop the progression of the disease or cure the symptoms. Thus, more molecular level studies are warranted to fully elucidate the process of alpha-synuclein aggregation, which in turn could help in identifying novel therapeutics and preventives. The present review summarizes the insights gained into the structure, in vitro aggregation and inhibitors/modulators of alpha-synuclein aggregation, that can be used to design better and effective inhibitors against the diseases.

  10. Mechanical Dissociation of Platelet Aggregates in Blood Stream

    Science.gov (United States)

    Hoore, Masoud; Fedosov, Dmitry A.; Gompper, Gerhard; Complex; Biological Fluids Group Team

    2017-11-01

    von Willebrand factor (VWF) and platelet aggregation is a key phenomenon in blood clotting. These aggregates form critically in high shear rates and dissolve reversibly in low shear rates. The emergence of a critical shear rate, beyond which aggregates form and below which they dissolve, has an interesting impact on aggregation in blood flow. As red blood cells (RBCs) migrate to the center of the vessel in blood flow, a RBC free layer (RBC-FL) is left close to the walls into which the platelets and VWFs are pushed back from the bulk flow. This margination process provides maximal VWF-platelet aggregation probability in the RBC-FL. Using mesoscale hydrodynamic simulations of aggregate dynamics in blood flow, it is shown that the aggregates form and grow in RBC-FL wherein shear rate is high for VWF stretching. By growing, the aggregates penetrate to the bulk flow and get under order of magnitude lower shear rates. Consequently, they dissolve and get back into the RBC-FL. This mechanical limitation for aggregates prohibits undesired thrombosis and vessel blockage by aggregates, while letting the VWFs and platelets to aggregate close to the walls where they are actually needed. The support by the DFG Research Unit FOR 1543 SHENC and CPU time Grant by the Julich Supercomputing Center are acknowledged.

  11. Learning about individuals' health from aggregate data.

    Science.gov (United States)

    Colbaugh, Rich; Glass, Kristin

    2017-07-01

    There is growing awareness that user-generated social media content contains valuable health-related information and is more convenient to collect than typical health data. For example, Twitter has been employed to predict aggregate-level outcomes, such as regional rates of diabetes and child poverty, and to identify individual cases of depression and food poisoning. Models which make aggregate-level inferences can be induced from aggregate data, and consequently are straightforward to build. In contrast, learning models that produce individual-level (IL) predictions, which are more informative, usually requires a large number of difficult-to-acquire labeled IL examples. This paper presents a new machine learning method which achieves the best of both worlds, enabling IL models to be learned from aggregate labels. The algorithm makes predictions by combining unsupervised feature extraction, aggregate-based modeling, and optimal integration of aggregate-level and IL information. Two case studies illustrate how to learn health-relevant IL prediction models using only aggregate labels, and show that these models perform as well as state-of-the-art models trained on hundreds or thousands of labeled individuals.

  12. Efficient clustering aggregation based on data fragments.

    Science.gov (United States)

    Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing

    2012-06-01

    Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.

  13. Customer Aggregation: An Opportunity for Green Power?; TOPICAL

    International Nuclear Information System (INIS)

    Holt, E.; Bird, L.

    2001-01-01

    We undertook research into the experience of aggregation groups to determine whether customer aggregation offers an opportunity to bring green power choices to more customers. The objectives of this report, therefore, are to (1) identify the different types of aggregation that are occurring today, (2) learn whether aggregation offers an opportunity to advance sales of green power, and (3) share these concepts and approaches with potential aggregators and green power advocates

  14. Concrete manufacture with un-graded recycled aggregates

    OpenAIRE

    Richardson, Alan; Coventry, Kathryn; Graham, Sue

    2009-01-01

    Purpose – The purpose of this paper is to investigate whether concrete that includes un-graded recycled aggregates can be manufactured to a comparable strength to concrete manufactured from virgin aggregates. \\ud \\ud Design/methodology/approach – A paired comparison test was used to evaluate the difference between concrete made with virgin aggregates (plain control) and concrete including recycled waste. Un-graded construction demolition waste and un-graded ground glass were used as aggregate...

  15. Studying the Physical Properties of Hma with Recycled Aggregate Subjected to Moisture

    Directory of Open Access Journals (Sweden)

    Ahlam K. Razzaq

    2018-01-01

    Full Text Available As being exposed to water that exists on asphalt road, HMA that is created by utilizing a certain resources may require to be made strong due to the capability of that water to stop the covering to be attached to the aggregate, consequently, asphalt road layers will not be held jointly, this will have a negative influence on the asphalt that will be damaged quickly. Such phenomenon is known as "the erosion", which requires to be dealt with by, for example, improving asphalt layers by means of specific resources that assist in existence of water. Different ways in this work are employed to calculate the strength of various mixes via using used aggregate that is exposed to  saturation times, similarly, the importance of exploiting the anti-stripping as chemical addition is determined. Three kinds of HMA were exposed in the current study, 60% of the first kind were made of used aggregate taking from crushed pavement, and 60% of the second kind were taking from using aggregate that is part of concrete mix, while the third mixture has 10% of wax used as an addition by pavement weight. These mixtures were soaked in water bath of 25o C for various intervals of time that are (3, 7, 15, 28 days. Many investigations examinations had been as well executed, and then the outcomes were contrasted against standard pavement blend subjected to similar circumstances. Number of examinations were adopted in this study, these are (Marshall Stability and flow, mass thickness, roundabout elasticity, compressive quality, affectability to temperature, flexible modulus. The study achieved a good success as it makes important outcomes, the enhanced pavement showed strength against moisture damage while taking advantage of used aggregate of preceding blends, on other hand, the wax has affective role in raising these strengths in addition to develop the characteristics of HMA. 

  16. Social aggregation in pea aphids: experiment and random walk modeling.

    Directory of Open Access Journals (Sweden)

    Christa Nilsen

    Full Text Available From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control.

  17. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions.

    Science.gov (United States)

    Kumar, Sandeep; Singh, Satish K; Wang, Xiaoling; Rup, Bonita; Gill, Davinder

    2011-05-01

    Biotherapeutics, including recombinant or plasma-derived human proteins and antibody-based molecules, have emerged as an important class of pharmaceuticals. Aggregation and immunogenicity are among the major bottlenecks during discovery and development of biotherapeutics. Computational tools that can predict aggregation prone regions as well as T- and B-cell immune epitopes from protein sequence and structure have become available recently. Here, we describe a potential coupling between aggregation and immunogenicity: T-cell and B-cell immune epitopes in therapeutic proteins may contain aggregation-prone regions. The details of biological mechanisms behind this observation remain to be understood. However, our observation opens up an exciting potential for rational design of de-immunized novel, as well as follow on biotherapeutics with reduced aggregation propensity.

  18. Colloid Release from Soil Aggregates

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Schjønning, Per

    2012-01-01

    The content of water-dispersible colloids (WDC) has a major impact on soil functions and structural stability. In addition, the presence of mobile colloids may increase the risk of colloid-facilitated transport of strongly sorbing environmental contaminants. The WDC content was measured in 39 soils......, using laser diffraction, by agitating the samples using a wet-dispersion unit. This approach eliminated the need for long sedimentation times required by the more classical end-over-end shaking approach and provided information about the time-dependent release of WDC. The total clay content of the soils...... ranged from 0.1 to 0.44 kg kg−1. The WDC content was measured on air-dry and moist 1- to 2-mm aggregates. The WDC content at a reference time was highly correlated to the total clay content (r > 0.91, P soils. Only for two sites was the WDC content correlated to the content of clay...

  19. Minimizing mixing intensity to improve the performance of rice straw anaerobic digestion via enhanced development of microbe-substrate aggregates.

    Science.gov (United States)

    Kim, Moonkyung; Kim, Byung-Chul; Choi, Yongju; Nam, Kyoungphile

    2017-12-01

    The aim of this work was to study the effect of the differential development of microbe-substrate aggregates at different mixing intensities on the performance of anaerobic digestion of rice straw. Batch and semi-continuous reactors were operated for up to 50 and 300days, respectively, under different mixing intensities. In both batch and semi-continuous reactors, minimal mixing conditions exhibited maximum methane production and lignocellulose biodegradability, which both had strong correlations with the development of microbe-substrate aggregates. The results implied that the aggregated microorganisms on the particulate substrate played a key role in rice straw hydrolysis, determining the performance of anaerobic digestion. Increasing the mixing speed from 50 to 150rpm significantly reduced the methane production rate by disintegrating the microbe-substrate aggregates in the semi-continuous reactor. A temporary stress of high-speed mixing fundamentally affected the microbial communities, increasing the possibility of chronic reactor failure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Detection of ubiquitinated huntingtin species in intracellular aggregates

    Directory of Open Access Journals (Sweden)

    Katrin eJuenemann

    2015-01-01

    Full Text Available Protein conformation diseases, including polyglutamine diseases, result from the accumulation and aggregation of misfolded proteins. Huntington’s disease is one of nine diseases caused by an expanded polyglutamine repeat within the affected protein and is hallmarked by intracellular inclusion bodies composed of aggregated N-terminal huntingtin fragments and other sequestered proteins. Fluorescence microscopy and filter trap assay are conventional methods to study protein aggregates, but cannot be used to analyze the presence and levels of post-translational modifications of aggregated huntingtin such as ubiquitination. Ubiquitination of proteins can be a signal for degradation and intracellular localization, but also affects protein activity and protein-protein interactions. The function of ubiquitination relies on its mono- and polymeric isoforms attached to protein substrates. Studying the ubiquitination pattern of aggregated huntingtin fragments offers an important possibility to understand huntingtin degradation and aggregation processes within the cell. For the identification of aggregated huntingtin and its ubiquitinated species, solubilization of the cellular aggregates is mandatory. Here we describe methods to identify post-translational modifications such as ubiquitination of aggregated mutant huntingtin. This approach is specifically described for use with mammalian cell culture and is suitable to study other disease-related proteins prone to aggregate.

  1. Microstructural characterization of concrete prepared with recycled aggregates.

    Science.gov (United States)

    Guedes, Mafalda; Evangelista, Luís; de Brito, Jorge; Ferro, Alberto C

    2013-10-01

    Several authors have reported the workability, mechanical properties, and durability of concrete produced with construction waste replacing the natural aggregate. However, a systematic microstructural characterization of recycled aggregate concrete has not been reported. This work studies the use of fine recycled aggregate to replace fine natural aggregate in the production of concrete and reports the resulting microstructures. The used raw materials were natural aggregate, recycled aggregate obtained from a standard concrete, and Portland cement. The substitution extent was 0, 10, 50, and 100 vol%; hydration was stopped at 9, 24, and 96 h and 28 days. Microscopy was focused on the cement/aggregate interfacial transition zone, enlightening the effect of incorporating recycled aggregate on the formation and morphology of the different concrete hydration products. The results show that concretes with recycled aggregates exhibit typical microstructural features of the transition zone in normal strength concrete. Although overall porosity increases with increasing replacement, the interfacial bond is apparently stronger when recycled aggregates are used. An addition of 10 vol% results in a decrease in porosity at the interface with a corresponding increase of the material hardness. This provides an opportunity for development of increased strength Portland cement concretes using controlled amounts of concrete waste.

  2. Heated probe diagnostic inside of the gas aggregation nanocluster source

    Science.gov (United States)

    Kolpakova, Anna; Shelemin, Artem; Kousal, Jaroslav; Kudrna, Pavel; Tichy, Milan; Biederman, Hynek; Surface; Plasma Science Team

    2016-09-01

    Gas aggregation cluster sources (GAS) usually operate outside common working conditions of most magnetrons and the size of nanoparticles created in GAS is below that commonly studied in dusty plasmas. Therefore, experimental data obtained inside the GAS are important for better understanding of process of nanoparticles formation. In order to study the conditions inside the gas aggregation chamber, special ``diagnostic GAS'' has been constructed. It allows simultaneous monitoring (or spatial profiling) by means of optical emission spectroscopy, mass spectrometry and probe diagnostic. Data obtained from Langmuir and heated probes map the plasma parameters in two dimensions - radial and axial. Titanium has been studied as an example of metal for which the reactive gas in the chamber starts nanoparticles production. Three basic situations were investigated: sputtering from clean titanium target in argon, sputtering from partially pre-oxidized target and sputtering with oxygen introduced into the discharge. It was found that during formation of nanoparticles the plasma parameters differ strongly from the situation without nanoparticles. These experimental data will support the efforts of more realistic modeling of the process. Czech Science Foundation 15-00863S.

  3. Purification and Characterization of BmooAi: A New Toxin from Bothrops moojeni Snake Venom That Inhibits Platelet Aggregation

    Directory of Open Access Journals (Sweden)

    Mayara Ribeiro de Queiroz

    2014-01-01

    Full Text Available In this paper, we describe the purification/characterization of BmooAi, a new toxin from Bothrops moojeni that inhibits platelet aggregation. The purification of BmooAi was carried out through three chromatographic steps (ion-exchange on a DEAE-Sephacel column, molecular exclusion on a Sephadex G-75 column, and reverse-phase HPLC chromatography on a C2/C18 column. BmooAi was homogeneous by SDS-PAGE and shown to be a single-chain protein of 15,000 Da. BmooAi was analysed by MALDI-TOF Spectrometry and revealed two major components with molecular masses 7824.4 and 7409.2 as well as a trace of protein with a molecular mass of 15,237.4 Da. Sequencing of BmooAi by Edman degradation showed two amino acid sequences: IRDFDPLTNAPENTA and ETEEGAEEGTQ, which revealed no homology to any known toxin from snake venom. BmooAi showed a rather specific inhibitory effect on platelet aggregation induced by collagen, adenosine diphosphate, or epinephrine in human platelet-rich plasma in a dose-dependent manner, whereas it had little or no effect on platelet aggregation induced by ristocetin. The effect on platelet aggregation induced by BmooAi remained active even when heated to 100°C. BmooAi could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders.

  4. In vitro model of platelet aggregation in stenotic arteries

    International Nuclear Information System (INIS)

    Morley, D.; Santamore, W.P.

    1988-01-01

    Clinical and experimental evidence suggest a strong relationship between arterial stenosis, platelet aggregation, and subsequent thrombus formation. To facilitate the study of platelet accumulation in stenotic arteries, we developed an in vitro preparation. Arterial segments were perfused with whole citrated blood. A stenosis was created by applying an external plastic constrictor to the artery. Platelet accumulation within the stenosis was assessed by scanning electron microscopy and by radioactive counts from Indium-111 labeled platelets. Utilizing this preparation, 30 carotid arterial segments from 10 mongrel dogs were perfused at 100 mmHg for 15 min. In 10 arteries without a stenosis, scanning electron microscopy and radioactive counts demonstrated little platelet accumulation. In contrast, extensive platelet aggregation was observed in 10 arteries with stenoses. Moreover, in 10 stenotic arteries exposed to the thromboxane mimetic, U46619 (Upjohn Diagnostic Group), scanning electron microscopy and radioactive counts demonstrated a significant increase in platelet deposition. Conversely, we demonstrated a dimunition of platelet accumulation in stenosed arterial segments exposed to the prostacyclin analogue platelet inhibitor, Iloprost. The in vitro preparation allows precise control of hemodynamic variables and makes it possible to perform multiple tests on segments of the same vessel from the same animal

  5. A multivariate analysis of intrinsic soil components influencing the mean-weight diameter of water-stable aggregates

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Chukwu, W.I.E.

    1994-06-01

    A knowledge of the soil properties influencing the water-stability of soil aggregates is needed for selecting those more easily-determined properties that would be useful in areas where lack of facilities makes its direct determination impossible. In this laboratory study we evaluated the main soil physical, chemical and mineralogical properties influencing the stability of macro aggregates of some Italian surface soils in water. The objective is to select a subset of soil properties which predict optimally, soil aggregate stability. The index of stability used is the mean weight diameter of water-stable aggregates whereas the method of evaluation is the principal component analysis (PCA). The range in coefficients of variation (CV) among the properties was least in the physical (12.0-61.0%), medium in the mineralogical (28.0-116.2%) and highest in the chemical (8.2-110.8%) properties. The wider the range in CV in each subset of properties, the greater the number of components extracted by the PCA. The component defining variables, i.e. those with the highest loadings on each component and therefore, provide the best relationship between the variables and aggregate stability, revealed the ratio of total sand/clay and plastic limit as the significant physical properties. The significant chemical properties are Al 2 O 3 , FeO, MgO and MnO which contribute positively to aggregate stability. Feldspar, quartz and muscovite are the significant mineralogical properties each of which is negatively related to aggregate stability. These soil components are useful for developing empirical models for estimating the stability of aggregates of these soils in water. (author). 38 refs, 7 tabs

  6. Effects of long-term fertilisation on aggregates and dynamics of soil organic carbon in a semi-arid agro-ecosystem in China

    Directory of Open Access Journals (Sweden)

    Jiaoyang Zhang

    2018-05-01

    Full Text Available Background Long-term fertilisation has a large influence on soil physical and chemical properties in agro-ecosystems. The effects on the distribution of aggregates, however, are not fully understood. We determined the dynamic change of the distribution of aggregates and soil organic carbon (SOC content over time in a long-term field experiment established in 1998 on the Loess Plateau of China and illustrated the relationship between them. Methods We determined SOC content and the distribution of aggregates in nine fertiliser treatments: manure (M; nitrogen (N; phosphorus (P; M and N; M, N, and P; M and P; N and P; bare land; and an unfertilised control. These parameters were then used for a path analysis and to analyse the fractal dimension (Dv. Results The organic fertiliser increased SOC content. The proportions of 0.1–0.25 mm microaggregates and 0.25–0.5 mm macroaggregates were higher and the proportion of the 0.01–0.05 mm size class of the silt + clay fraction was lower in the treatments receiving organic fertiliser (M, MN, MNP, and MP than that in the control, indicating that the addition of organic fertiliser promoted aggregation. The distribution of aggregates characterised by their fractal dimension (Dv, however, did not differ among the treatments. Discussion Dv was strongly correlated with the proportion of the <0.002 mm size class of the silt + clay fraction that did not differ significantly among the treatments. The change in the distribution of aggregates was strongly correlated with SOC content, which could produce organic polymer binding agents to increase the proportion of larger particles. Long-term application of organic fertiliser is thus necessary for the improvement and maintenance of soil quality in semi-arid agricultural land when residues are removed.

  7. Neutron scattering techniques in the examination of recycled aggregate concrete

    International Nuclear Information System (INIS)

    Krezel, A.; Alabaster, P.; Bakshi, E.; McManus, K.

    1999-01-01

    Full text: Researchers at Swinburne University of Technology (SUT) have undertaken a research project aiming initially at better understanding the effects of any chemical impurities in Recycled Concrete Aggregate (RCA) on the microstructure development of Recycled Aggregate Concrete (RAC). Furthermore, a porosity of RCA and RAC and its effect on the acoustic performance and mechanical properties is being investigated. A number of conventional tests have been employed to examine the porosity of the aggregate and concrete made from RCA ranging from Volume of Permeable Voids test, through nitrogen adsorption to scanning electron microscopy. These tests are performed at SUT to characterise pores structure including pore size and volume as well as their surface area. The preparation of samples differs for the various tests, and this is a main reason contributing to inconsistencies in the results from these tests. None-the-less the results indicate strong positive correlation of inherent and purposely introduced porosity in RAC to its sound absorption capacities. Some inconsistency in the results is also due to the complexity of concrete itself compounded by the use of recycled material. However, the research has been granted a Grant from Australian Institute of Nuclear Science and Engineering (AINSE) which allows to conduct RAC examination using Small Angle Neutron Scattering (SANS). This neutron scattering technique characterises pore structure in a non-destructive manner. The results from this method should augment these obtained from conventional methods

  8. Direct monitoring of erythrocytes aggregation under the effect of the low-intensity magnetic field by measuring light transmission at wavelength 800 nm

    Science.gov (United States)

    Elblbesy, Mohamed A.

    2017-12-01

    Interacting electromagnetic field with the living organisms and cells became of the great interest in the last decade. Erythrocytes are the most common types of the blood cells and have unique rheological, electrical, and magnetic properties. Aggregation is one of the important characteristics of the erythrocytes which has a great impact in some clinical cases. The present study introduces a simple method to monitor the effect of static magnetic field on erythrocytes aggregation using light transmission. Features were extracted from the time course curve of the light transmission through the whole blood under different intensities of the magnetic field. The findings of this research showed that static magnetic field could influence the size and the rate of erythrocytes aggregation. The strong correlations confirmed these results between the static magnetic field intensity and both the time of aggregation and sedimentation of erythrocytes. From this study, it can be concluded that static magnetic field can be used to modify the mechanisms of erythrocytes aggregation.

  9. A GIS analysis of suitability for construction aggregate recycling sites using regional transportation network and population density features

    Science.gov (United States)

    Robinson, G.R.; Kapo, K.E.

    2004-01-01

    Aggregate is used in road and building construction to provide bulk, strength, support, and wear resistance. Reclaimed asphalt pavement (RAP) and reclaimed Portland cement concrete (RPCC) are abundant and available sources of recycled aggregate. In this paper, current aggregate production operations in Virginia, Maryland, and the District of Columbia are used to develop spatial association models for the recycled aggregate industry with regional transportation network and population density features. The cost of construction aggregate to the end user is strongly influenced by the cost of transporting processed aggregate from the production site to the construction site. More than 60% of operations recycling aggregate in the mid-Atlantic study area are located within 4.8 km (3 miles) of an interstate highway. Transportation corridors provide both sites of likely road construction where aggregate is used and an efficient means to move both materials and on-site processing equipment back and forth from various work sites to the recycling operations. Urban and developing areas provide a high market demand for aggregate and a ready source of construction debris that may be processed into recycled aggregate. Most aggregate recycling operators in the study area are sited in counties with population densities exceeding 77 people/km2 (200 people/mile 2). No aggregate recycling operations are sited in counties with less than 19 people/km2 (50 people/mile2), reflecting the lack of sufficient long-term sources of construction debris to be used as an aggregate source, as well as the lack of a sufficient market demand for aggregate in most rural areas to locate a recycling operation there or justify the required investment in the equipment to process and produce recycled aggregate. Weights of evidence analyses (WofE), measuring correlation on an area-normalized basis, and weighted logistic regression (WLR), are used to model the distribution of RAP and RPCC operations relative

  10. Multilayer Stochastic Block Models Reveal the Multilayer Structure of Complex Networks

    Directory of Open Access Journals (Sweden)

    Toni Vallès-Català

    2016-03-01

    Full Text Available In complex systems, the network of interactions we observe between systems components is the aggregate of the interactions that occur through different mechanisms or layers. Recent studies reveal that the existence of multiple interaction layers can have a dramatic impact in the dynamical processes occurring on these systems. However, these studies assume that the interactions between systems components in each one of the layers are known, while typically for real-world systems we do not have that information. Here, we address the issue of uncovering the different interaction layers from aggregate data by introducing multilayer stochastic block models (SBMs, a generalization of single-layer SBMs that considers different mechanisms of layer aggregation. First, we find the complete probabilistic solution to the problem of finding the optimal multilayer SBM for a given aggregate-observed network. Because this solution is computationally intractable, we propose an approximation that enables us to verify that multilayer SBMs are more predictive of network structure in real-world complex systems.

  11. Collective Rationality in Graph Aggregation

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.; Schaub, T.; Friedrich, G.; O'Sullivan, B.

    2014-01-01

    Suppose a number of agents each provide us with a directed graph over a common set of vertices. Graph aggregation is the problem of computing a single “collective” graph that best represents the information inherent in this profile of individual graphs. We consider this aggregation problem from the

  12. Sequence dependent aggregation of peptides and fibril formation

    Science.gov (United States)

    Hung, Nguyen Ba; Le, Duy-Manh; Hoang, Trinh X.

    2017-09-01

    Deciphering the links between amino acid sequence and amyloid fibril formation is key for understanding protein misfolding diseases. Here we use Monte Carlo simulations to study the aggregation of short peptides in a coarse-grained model with hydrophobic-polar (HP) amino acid sequences and correlated side chain orientations for hydrophobic contacts. A significant heterogeneity is observed in the aggregate structures and in the thermodynamics of aggregation for systems of different HP sequences and different numbers of peptides. Fibril-like ordered aggregates are found for several sequences that contain the common HPH pattern, while other sequences may form helix bundles or disordered aggregates. A wide variation of the aggregation transition temperatures among sequences, even among those of the same hydrophobic fraction, indicates that not all sequences undergo aggregation at a presumable physiological temperature. The transition is found to be the most cooperative for sequences forming fibril-like structures. For a fibril-prone sequence, it is shown that fibril formation follows the nucleation and growth mechanism. Interestingly, a binary mixture of peptides of an aggregation-prone and a non-aggregation-prone sequence shows the association and conversion of the latter to the fibrillar structure. Our study highlights the role of a sequence in selecting fibril-like aggregates and also the impact of a structural template on fibril formation by peptides of unrelated sequences.

  13. 21 CFR 1303.11 - Aggregate production quotas.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Aggregate production quotas. 1303.11 Section 1303.11 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE QUOTAS Aggregate Production and Procurement Quotas § 1303.11 Aggregate production quotas. (a) The Administrator shall determine...

  14. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland

    Energy Technology Data Exchange (ETDEWEB)

    Rillig, M.C.; Wright, S.F.; Shaw, M.R.; Field, C.B.

    2002-04-01

    Despite the importance of arbuscular mycorrhizae to the functioning of terrestrial ecosystems (e.g. nutrient uptake, soil aggregation), and the increasing evidence of global warming, responses of arbuscular mycorrhizal fungi (AMF) to climate warming are poorly understood. In a field experiment using infrared heaters, we found effects of warming on AMF after one growing season in an annual grassland, in the absence of any effects on measured root parameters (weight, length, average diameter). AMF soil hyphal length was increased by over 40% in the warmed plots, accompanied by a strong trend for AMF root colonization increase. In the following year, root weight was again not significantly changed, and AMF root colonization increased significantly in the warmed plots. Concentration of the soil protein glomalin, a glycoprotein produced by AMF hyphae with importance in soil aggregation, was decreased in the warmed plots. Soil aggregate water stability, measured for five diameter size classes, was also decreased significantly. In the following year, soil aggregate weight in two size classes was decreased significantly, but the effect size was very small. These results indicate that ecosystem warming may have stimulated carbon allocation to AMF. Other factors either influenced glomalin decomposition or production, hence influencing the role of these symbionts in soil aggregation. The observed small changes in soil aggregation, if widespread among terrestrial ecosystems, could have important consequences for soil carbon storage and erosion in a warmed climate, especially if there are cumulative effects of warming. (au)

  15. Isostructurality and non-isostructurality in the series of halogenated organic crystal substances. The structure of Hal-aggregates

    International Nuclear Information System (INIS)

    Grineva, O.V.; Zorkij, P.M.

    2001-01-01

    Local characteristics and the type of intermolecular Hal-aggregates (ensembles of contacting halogen atoms of adjacent molecules) present in chemically similar halogenated crystal substances, differing only in the nature of Hal atoms, are compared. 23 series of halogenated hydrocarbons, including 57 crystal structures were considered. A clearly pronounced specificity of Hal-aggregates for compounds with a low and intermediate content of halogen was revealed. It was found that, as a rule, coordination number of Hal atom by Hal adjacent atoms increases in the series F-Cl-Br-I [ru

  16. Strong monotonicity in mixed-state entanglement manipulation

    International Nuclear Information System (INIS)

    Ishizaka, Satoshi

    2006-01-01

    A strong entanglement monotone, which never increases under local operations and classical communications (LOCC), restricts quantum entanglement manipulation more strongly than the usual monotone since the usual one does not increase on average under LOCC. We propose strong monotones in mixed-state entanglement manipulation under LOCC. These are related to the decomposability and one-positivity of an operator constructed from a quantum state, and reveal geometrical characteristics of entangled states. These are lower bounded by the negativity or generalized robustness of entanglement

  17. Logic-based aggregation methods for ranking student applicants

    Directory of Open Access Journals (Sweden)

    Milošević Pavle

    2017-01-01

    Full Text Available In this paper, we present logic-based aggregation models used for ranking student applicants and we compare them with a number of existing aggregation methods, each more complex than the previous one. The proposed models aim to include depen- dencies in the data using Logical aggregation (LA. LA is a aggregation method based on interpolative Boolean algebra (IBA, a consistent multi-valued realization of Boolean algebra. This technique is used for a Boolean consistent aggregation of attributes that are logically dependent. The comparison is performed in the case of student applicants for master programs at the University of Belgrade. We have shown that LA has some advantages over other presented aggregation methods. The software realization of all applied aggregation methods is also provided. This paper may be of interest not only for student ranking, but also for similar problems of ranking people e.g. employees, team members, etc.

  18. Topics in Probabilistic Judgment Aggregation

    Science.gov (United States)

    Wang, Guanchun

    2011-01-01

    This dissertation is a compilation of several studies that are united by their relevance to probabilistic judgment aggregation. In the face of complex and uncertain events, panels of judges are frequently consulted to provide probabilistic forecasts, and aggregation of such estimates in groups often yield better results than could have been made…

  19. Thermophoretic aggregation of particles in a protoplanetary disc

    Science.gov (United States)

    Smith, Francis J.

    2018-04-01

    Thermophoresis causes particles to move down a temperature gradient to a cooler region of a neutral gas. An example is the temperature gradient in the gas around a large cold object, such as an aggregate of particles, cooled by radiation in a protoplanetary disc. Particles near this aggregate move down the temperature gradient to the aggregate, equivalent to the particles being attracted to it by an inter-particle thermophoretic force. This force is proportional to the temperature difference between gas and aggregate, to the gas density and to the cross-section of the aggregate. The force can be large. For example, calculations based on the equations of motion of the interacting particles show that it can be large enough in an optically thin environment to increase the rate of aggregation by up to six orders of magnitude when an aggregate radius lies between 0.1 μm and 1 mm. From 1 mm to about 10 cm aggregates drift inwards through the gas too quickly for the thermophoretic attraction to increase aggregation significantly; so they grow slowly, causing an observed accumulation of particles at these sizes. Particles above 10 cm move more quickly, causing aggregation due to collisions, but also causing fragmentation. However, calculations show that fragmenting particles and bouncing particles in inelastic collisions often have low enough relative velocities that thermophoresis brings them together again. This allows particles to grow above 1 m, which is otherwise difficult to explain.

  20. Aggregates in monoclonal antibody manufacturing processes.

    Science.gov (United States)

    Vázquez-Rey, María; Lang, Dietmar A

    2011-07-01

    Monoclonal antibodies have proved to be a highly successful class of therapeutic products. Large-scale manufacturing of pharmaceutical antibodies is a complex activity that requires considerable effort in both process and analytical development. If a therapeutic protein cannot be stabilized adequately, it will lose partially or totally its therapeutic properties or even cause immunogenic reactions thus potentially further endangering the patients' health. The phenomenon of protein aggregation is a common issue that compromises the quality, safety, and efficacy of antibodies and can happen at different steps of the manufacturing process, including fermentation, purification, final formulation, and storage. Aggregate levels in drug substance and final drug product are a key factor when assessing quality attributes of the molecule, since aggregation might impact biological activity of the biopharmaceutical. In this review it is analyzed how aggregates are formed during monoclonal antibody industrial production, why they have to be removed and the manufacturing process steps that are designed to either minimize or remove aggregates in the final product. Copyright © 2011 Wiley Periodicals, Inc.

  1. Towards constraint-based aggregation of energy flexibilities

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Pedersen, Torben Bach; Abello, Alberto

    2016-01-01

    present the problem of aggregating energy flexibilities taking into account grid capacity limitations and introduce a heuristic aggregation technique. We show through an experimental setup that our proposed technique, compared to a baseline approach, not only leads to a valid unit commitment result......The aggregation of energy flexibilities enables individual producers and/or consumers with small loads to directly participate in the emerging energy markets. On the other hand, aggregation of such flexibilities might also create problems to the operation of the electrical grid. In this paper, we...

  2. Effect of Coating Palm Oil Clinker Aggregate on the Engineering Properties of Normal Grade Concrete

    Directory of Open Access Journals (Sweden)

    Fuad Abutaha

    2017-10-01

    Full Text Available Palm oil clinker (POC is a waste material generated in large quantities from the palm oil industry. POC, when crushed, possesses the potential to serve as an aggregate for concrete production. Experimental investigation on the engineering properties of concrete incorporating POC as aggregate and filler material was carried out in this study. POC was partially and fully used to replace natural coarse aggregate. The volumetric replacements used were 0%, 20%, 40%, 60%, 80%, and 100%. POC, being highly porous, negatively affected the fresh and hardened concrete properties. Therefore, the particle-packing (PP method was adopted to measure the surface and inner voids of POC coarse aggregate in the mixtures at different substitution levels. In order to enhance the engineering properties of the POC concrete, palm oil clinker powder (POCP was used as a filler material to fill up and coat the surface voids of POC coarse, while the rest of the mix constituents were left as the same. Fresh and hardened properties of the POC concrete with and without coating were determined, and the results were compared with the control concrete. The results revealed that coating the surface voids of POC coarse with POCP significantly improved the engineering properties as well as the durability performance of the POC concrete. Furthermore, using POC as an aggregate and filler material may reduce the continuous exploitation of aggregates from primary sources. Also, this approach offers an environmental friendly solution to the ongoing waste problems associated with palm oil waste material.

  3. Aspects Concerning the Use of Recycled Concrete Aggregates

    Science.gov (United States)

    Robu, I.; Mazilu, C.; Deju, R.

    2016-11-01

    Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. Using recycled concrete aggregates (RCA) is a matter of high priority in the construction industry worldwide. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates.

  4. Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates

    Directory of Open Access Journals (Sweden)

    Bilal S. Hamad

    2017-12-01

    Full Text Available The paper reports on a research program that was designed at the American University of Beirut (AUB to investigate the fresh and hardened mechanical properties of a high performance concrete mix produced with partial or full substitution of crushed natural lime-stone aggregates with recycled aggregates from crushed tested cylinders in batching plants. Choosing crushed cylinders as source of recycling would result in reusing portion of the waste products of the concrete production industry. An extensive concrete batching and testing program was conducted to achieve two optimum normal and high strength concrete mixes. The variables were the nominal concrete strength (28 or 60 MPa and the percentage replacement of natural coarse aggregates with recycled aggregates from crushed tested cylinders (0, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests on the trial batches included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength.

  5. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon

    Aggregating formulations is a powerful approach for transforming problems into taking more tractable forms. Aggregated formulations can, though, have drawbacks: some information may get lost in the aggregation and { put in a branch-and-bound context { branching may become very di_cult and even....... The paper includes general considerations on types of problems for which the method is of particular interest. Furthermore, we prove the correctness of the procedure and consider how to include extensions such as cutting planes and advanced branching strategies....

  6. A microliter-scale high-throughput screening system with quantum-dot nanoprobes for amyloid-β aggregation inhibitors.

    Directory of Open Access Journals (Sweden)

    Yukako Ishigaki

    Full Text Available The aggregation of amyloid β protein (Aβ is a key step in the pathogenesis of Alzheimer's disease (AD, and therefore inhibitory substances for Aβ aggregation may have preventive and/or therapeutic potential for AD. Here we report a novel microliter-scale high-throughput screening system for Aβ aggregation inhibitors based on fluorescence microscopy-imaging technology with quantum-dot Nanoprobes. This screening system could be analyzed with a 5-µl sample volume when a 1536-well plate was used, and the inhibitory activity could be estimated as half-maximal effective concentrations (EC50. We attempted to comprehensively screen Aβ aggregation inhibitors from 52 spices using this system to assess whether this novel screening system is actually useful for screening inhibitors. Screening results indicate that approximately 90% of the ethanolic extracts from the spices showed inhibitory activity for Aβ aggregation. Interestingly, spices belonging to the Lamiaceae, the mint family, showed significantly higher activity than the average of tested spices. Furthermore, we tried to isolate the main inhibitory compound from Saturejahortensis, summer savory, a member of the Lamiaceae, using this system, and revealed that the main active compound was rosmarinic acid. These results demonstrate that this novel microliter-scale high-throughput screening system could be applied to the actual screening of Aβ aggregation inhibitors. Since this system can analyze at a microscopic scale, it is likely that further minimization of the system would easily be possible such as protein microarray technology.

  7. Single particle detection and characterization of synuclein co-aggregation

    International Nuclear Information System (INIS)

    Giese, Armin; Bader, Benedikt; Bieschke, Jan; Schaffar, Gregor; Odoy, Sabine; Kahle, Philipp J.; Haass, Christian; Kretzschmar, Hans

    2005-01-01

    Protein aggregation is the key event in a number of human diseases such as Alzheimer's and Parkinson's disease. We present a general method to quantify and characterize protein aggregates by dual-colour scanning for intensely fluorescent targets (SIFT). In addition to high sensitivity, this approach offers a unique opportunity to study co-aggregation processes. As the ratio of two fluorescently labelled components can be analysed for each aggregate separately in a homogeneous assay, the molecular composition of aggregates can be studied even in samples containing a mixture of different types of aggregates. Using this method, we could show that wild-type α-synuclein forms co-aggregates with a mutant variant found in familial Parkinson's disease. Moreover, we found a striking increase in aggregate formation at non-equimolar mixing ratios, which may have important therapeutic implications, as lowering the relative amount of aberrant protein may cause an increase of protein aggregation leading to adverse effects

  8. Live Cell Characterization of DNA Aggregation Delivered through Lipofection.

    Science.gov (United States)

    Mieruszynski, Stephen; Briggs, Candida; Digman, Michelle A; Gratton, Enrico; Jones, Mark R

    2015-05-27

    DNA trafficking phenomena, such as information on where and to what extent DNA aggregation occurs, have yet to be fully characterised in the live cell. Here we characterise the aggregation of DNA when delivered through lipofection by applying the Number and Brightness (N&B) approach. The N&B analysis demonstrates extensive aggregation throughout the live cell with DNA clusters in the extremity of the cell and peri-nuclear areas. Once within the nucleus aggregation had decreased 3-fold. In addition, we show that increasing serum concentration of cell media results in greater cytoplasmic aggregation. Further, the effects of the DNA fragment size on aggregation was explored, where larger DNA constructs exhibited less aggregation. This study demonstrates the first quantification of DNA aggregation when delivered through lipofection in live cells. In addition, this study has presents a model for alternative uses of this imaging approach, which was originally developed to study protein oligomerization and aggregation.

  9. Kinetic behaviours of aggregate growth driven by time-dependent migration, birth and death

    International Nuclear Information System (INIS)

    Zhu Shengqing; Yang Shunyou; Ke Jianhong; Lin Zhenquan

    2008-01-01

    We propose a dynamic growth model to mimic some social phenomena, such as the evolution of cities' population, in which monomer migrations occur between any two aggregates and monomer birth/death can simultaneously occur in each aggregate. Considering the fact that the rate kernels of migration, birth and death processes may change with time, we assume that the migration rate kernel is ijf(t), and the self-birth and death rate kernels are ig 1 (t) and ig 2 (t), respectively. Based on the mean-field rate equation, we obtain the exact solution of this model and then discuss semi-quantitatively the scaling behaviour of the aggregate size distribution at large times. The results show that in the long-time limit, (i) if ∫ t 0 g 1 (t') dt'/∫ t 0 g 2 (t') dt' ≥ 1 or exp{∫ t 0 [g 2 (t') - g 1 (t')] dt'}/∫ t 0 f(t') dt' → 0, the aggregate size distribution a k (t) can obey a generalized scaling form; (ii) if ∫ t 0 g 1 (t') dt'/∫ t 0 g 2 (t') dt' → 0 and exp ∫ t 0 [g 2 (t') - g 1 (t') dt'/∫ t 0 f(t') dt' → ∞, a k (t) can take a scale-free form and decay exponentially in size k; (iii) a k (t) will satisfy a modified scaling law in the remaining cases. Moreover, the total mass of aggregates depends strongly on the net birth rate g 1 (t) - g 2 (t) and evolves exponentially as exp{∫ t 0 [g 1 (t') - g 2 (t')] dt'}, which is in qualitative agreement with the evolution of the total population of a country in real world

  10. Retiring the Short-Run Aggregate Supply Curve

    Science.gov (United States)

    Elwood, S. Kirk

    2010-01-01

    The author argues that the aggregate demand/aggregate supply (AD/AS) model is significantly improved--although certainly not perfected--by trimming it of the short-run aggregate supply (SRAS) curve. Problems with the SRAS curve are shown first for the AD/AS model that casts the AD curve as identifying the equilibrium level of output associated…

  11. Assessing the strength of soil aggregates produced by two types of organic matter amendments using the ultrasonic energy

    Science.gov (United States)

    Zhu, Zhaolong; minasny, Budiman; Field, Damien; Angers, Denis

    2017-04-01

    The presence of organic matter (OM) is known to stimulate the formation of soil aggregates, but the aggregation strength may vary with different amount and type/quality of OM. Conventionally wet sieving method was used to assess the aggregates' strength. In this study, we wish to get insight of the effects of different types of C inputs on aggregate dynamics using quantifiable energy via ultrasonic agitation. A clay soil with an inherently low soil organic carbon (SOC) content, was amended with two different sources of organic matter (alfalfa, C:N = 16.7 and barley straw, C:N = 95.6) at different input levels (0, 10, 20, & 30 g C kg-1 soil). The soil's inherent macro aggregates were first destroyed via puddling. The soils were incubated in pots at moisture content 70% of field capacity for a period of 3 months. The pots were housed in a 1.2L sealed opaque plastic container. The CO2 generated during the incubation was captured by a vial of NaOH which was placed in each of the sealed containers and sampled per week. At 14, 28, 56, and 84 days, soil samples were collected and the change in aggregation was assessed using a combination of wet sieving and ultrasonic agitation. The relative strength of aggregates exposed to ultrasonic agitation was modelled using the aggregate disruption characteristic curve (ADCC) and soil dispersion characteristic curve (SDCC). Both residue quality and quantity of organic matter input influenced the amount of aggregates formed and their relative strength. The MWD of soils amended with alfalfa residues was greater than that of barley straw at lower input rates and early in the incubation. In the longer term, the use of ultrasonic energy revealed that barley straw resulted in stronger aggregates, especially at higher input rates despite showing similar MWD as alfalfa. The use of ultrasonic agitation, where we quantify the energy required to liberate and disperse aggregates allowed us to differentiate the effects of C inputs on the size of

  12. Measurement of platelet aggregation, independently of patient platelet count

    DEFF Research Database (Denmark)

    Vinholt, P J; Frederiksen, H; Hvas, A-M

    2017-01-01

    with collagen-related peptide). Platelet aggregation had a negative predictive value of 100% for a bleeding tendency among patients. Conclusion The established platelet aggregation assay was applicable for thrombocytopenic patients, and improved the identification of bleeding risk.......Essentials •Platelet function may influence bleeding risk in thrombocytopenia, but useful tests are needed. •A flow cytometric platelet aggregation test independent of the patient platelet count was made. •Platelet aggregation was reduced in thrombocytopenic patients with hematological cancer....... •High platelet aggregation ruled out bleeding tendency in thrombocytopenic patients. Summary Background Methods for testing platelet aggregation in thrombocytopenia are lacking. Objective To establish a flow-cytometric test of in vitro platelet aggregation independently of the patient's platelet count...

  13. Multiscale approach reveals that Cloudina aggregates are detritus and not in situ reef constructions

    Science.gov (United States)

    Mehra, Akshay; Maloof, Adam

    2018-03-01

    The earliest metazoans capable of biomineralization appeared during the late Ediacaran Period (635–541 Ma) in strata associated with shallow water microbial reefs. It has been suggested that some Ediacaran microbial reefs were dominated (and possibly built) by an abundant and globally distributed tubular organism known as Cloudina. If true, this interpretation implies that metazoan framework reef building—a complex behavior that is responsible for some of the largest bioconstructions and most diverse environments in modern oceans—emerged much earlier than previously thought. Here, we present 3D reconstructions of Cloudina populations, produced using an automated serial grinding and imaging system coupled with a recently developed neural network image classifier. Our reconstructions show that Cloudina aggregates are composed of transported remains while detailed field observations demonstrate that the studied reef outcrops contain only detrital Cloudina buildups, suggesting that Cloudina played a minor role in Ediacaran reef systems. These techniques have wide applicability to problems that require 3D reconstructions where physical separation is impossible and a lack of density contrast precludes tomographic imaging techniques.

  14. Environmentalism and natural aggregate mining

    Science.gov (United States)

    Drew, L.J.; Langer, W.H.; Sachs, J.S.

    2002-01-01

    Sustaining a developed economy and expanding a developing one require the use of large volumes of natural aggregate. Almost all human activity (commercial, recreational, or leisure) is transacted in or on facilities constructed from natural aggregate. In our urban and suburban worlds, we are almost totally dependent on supplies of water collected behind dams and transported through aqueducts made from concrete. Natural aggregate is essential to the facilities that produce energy-hydroelectric dams and coal-fired powerplants. Ironically, the utility created for mankind by the use of natural aggregate is rarely compared favorably with the environmental impacts of mining it. Instead, the empty quarries and pits are seen as large negative environmental consequences. At the root of this disassociation is the philosophy of environmentalism, which flavors our perceptions of the excavation, processing, and distribution of natural aggregate. The two end-member ideas in this philosophy are ecocentrism and anthropocentrism. Ecocentrism takes the position that the natural world is a organism whose arteries are the rivers-their flow must not be altered. The soil is another vital organ and must not be covered with concrete and asphalt. The motto of the ecocentrist is "man must live more lightly on the land." The anthropocentrist wants clean water and air and an uncluttered landscape for human use. Mining is allowed and even encouraged, but dust and noise from quarry and pit operations must be minimized. The large volume of truck traffic is viewed as a real menace to human life and should be regulated and isolated. The environmental problems that the producers of natural aggregate (crushed stone and sand and gravel) face today are mostly difficult social and political concerns associated with the large holes dug in the ground and the large volume of heavy truck traffic associated with quarry and pit operations. These concerns have increased in recent years as society's demand for

  15. Evaluation of Colemanite Waste as Aggregate Hot Mix Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Nihat MOROVA

    2015-09-01

    Full Text Available In this study usability of waste colemanite which is obtained after cutting block colemanite for giving proper shape to blocks as an aggregate in hot mix asphalt. For this aim asphalt concrete samples were prepared with four different aggregate groups and optimum bitumen content was determined. First of all only limestone was used as an aggregate. After that, only colemanite aggregate was used with same aggregate gradation. Then, the next step of the study, Marshall samples were produced by changing coarse and fine aggregate gradation as limestone and colemanite and Marshall test were conducted. When evaluated the results samples which produced with only limestone aggregate gave the maximum Marshall Stability value. When handled other mixture groups (Only colemanite, colemanite as coarse aggregate-limestone as fine aggregate, colemanite as fine aggregate-limestone as coarse aggregate all groups were verified specification limits. As a result, especially in areas where there is widespread colemanite waste, if transportation costs did not exceed the cost of limestone, colemanite stone waste could be used instead of limestone in asphalt concrete mixtures as fine aggregate

  16. Familial Aggregation and Heritability of Schizophrenia and Co-aggregation of Psychiatric Illnesses in Affected Families.

    Science.gov (United States)

    Chou, I-Jun; Kuo, Chang-Fu; Huang, Yu-Shu; Grainge, Matthew J; Valdes, Ana M; See, Lai-Chu; Yu, Kuang-Hui; Luo, Shue-Fen; Huang, Lu-Shuang; Tseng, Wen-Yi; Zhang, Weiya; Doherty, Michael

    2017-09-01

    Strong familial aggregation of schizophrenia has been reported but there is uncertainty concerning the degree of genetic contribution to the phenotypic variance of the disease. This study aimed to examine the familial aggregation and heritability of schizophrenia, and the relative risks (RRs) of other psychiatric diseases, in relatives of people with schizophrenia using the Taiwan National Health Insurance Database. The study population included individuals with affected first-degree or second-degree relatives identified from all beneficiaries (n = 23 422 955) registered in 2013. Diagnoses of schizophrenia made by psychiatrists were ascertained between January 1, 1996 and December 31, 2013. Having an affected co-twin, first-degree relative, second-degree relative, or spouse was associated with an adjusted RR (95% CI) of 37.86 (30.55-46.92), 6.30 (6.09-6.53), 2.44 (1.91-3.12), and 1.88 (1.64-2.15), respectively. Compared with the general population, individuals with one affected first-degree relative had a RR (95% CI) of 6.00 (5.79-6.22) and those with 2 or more had a RR (95% CI) of 14.66 (13.00-16.53) for schizophrenia. The accountability for the phenotypic variance of schizophrenia was 47.3% for genetic factors, 15.5% for shared environmental factors, and 37.2% for non-shared environmental factors. The RR (95% CI) in individuals with a first-degree relative with schizophrenia was 3.49 (3.34-3.64) for mood disorders and 3.91 (3.35-4.57) for delusional disorders. A family history of schizophrenia is therefore associated with a higher risk of developing schizophrenia, mood disorders, and delusional disorders. Heritability and environmental factors each account for half of the phenotypic variance of schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  17. Cu2+ triggers reversible aggregation of a disordered His-rich dehydrin MpDhn12 from Musa paradisiaca.

    Science.gov (United States)

    Mu, Peiqiang; Feng, Dongru; Su, Jianbin; Zhang, Yang; Dai, Jinran; Jin, Honglei; Liu, Bing; He, Yanming; Qi, Kangbiao; Wang, Hongbin; Wang, Jinfa

    2011-11-01

    Copper is an essential nutrient, but it is toxic in excess. Here, we cloned and characterized a His-rich low molecular weight dehydrin from Musa paradisiaca, MpDhn12. Analysis by circular dichroism (CD) spectra and a thermal stability assay showed that MpDhn12 is an intrinsically disordered protein, and immobilized-metal affinity chromatography (IMAC) analysis revealed that MpDhn12 can bind Cu(2+) both in vitro and in vivo. Interestingly, MpDhn12 aggregated under excess Cu(2+) conditions, and the aggregation was reversible and impaired by histidine modification with diethylpyrocarbonate (DEPC), while the disordered structure of another dehydrin ERD14 (as a control) was not changed. Furthermore, MpDhn12 could complement the copper-sensitive phenotype of yeast mutant Δsod1. These results together suggested that MpDhn12 may take part in buffering copper levels through chelation and formation of aggregates in excess Cu(2+) conditions. To the best of our knowledge, it is the first report that a dehydrin interchanged between disordered and aggregated state triggered by copper.

  18. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region

    Science.gov (United States)

    Tang, F. K.; Cui, M.; Lu, Q.; Liu, Y. G.; Guo, H. Y.; Zhou, J. X.

    2015-08-01

    Changes in soil utilization significantly affect aggregate stability and aggregate-associated soil organic carbon (SOC). A field investigation and indoor analysis were conducted in order to study the soil aggregate stability and organic carbon distribution in the water-stable aggregates (WSA) of the bare land (BL), grassland (GL), shrubland (SL), and woodland (WL) in a typical karst gorge region. The results indicated that the BL, GL, SL, and WL were dominated by particles with sizes > 5 mm under dry sieving treatment, and that the soil aggregate contents of various sizes decreased as the particle size decreased. In addition, the BL, GL, SL, and WL were predominantly comprised of WSA sieving treatment, and that the WSA contents initially increased, then decreased, and then increased again as the particle size decreased. Furthermore, at a soil depth of 0-60 cm, the mean weight diameter (MWD), geometrical mean diameter (GMD), and fractal dimensions (D) of the dry aggregates and water-stable aggregates in the different types of land were ranked, in descending order, as WL > GL > SL > BL. The contents of WSA > 0.25 mm, MWD and GMD increased significantly, in that order, and the percentage of aggregate destruction (PAD) and fractal dimensions decreased significantly as the soil aggregate stability improved. The results of this study indicated that, as the SOC contents increased after vegetation restoration, the average SOC content of WL was 2.35, 1.37, and 1.26 times greater than that in the BL, GL, and SL, respectively. The total SOC and SOC associated in WSA of various sizes were the highest at a soil depth of 0-20 cm. In addition, the SOC contents of the WSA increased as the soil aggregate sizes decreased. The SOC contents of the WSA aggregates aggregate SOC contents. The woodland and grassland facilitated WSA stability and SOC protection, thus, promoting the natural restoration of vegetation by reducing artificial disturbances could effectively restore the ecology

  19. Monoblock Obturation Technique for Non-Vital Immature Permanent Maxillary Incisors Using Mineral Trioxide Aggregate: Results from Case Series

    International Nuclear Information System (INIS)

    Iqbal, Z.; Qureshi, A. H.

    2014-01-01

    Ten patients presented with non-vital immature teeth for root canal treatment. In all these cases the pre-operative clinical examination revealed apical periodontitis with a buccal sinus tract of endodontic origin. These cases were treated by a mineral trioxide aggregate (MTA) monoblock obturation technique. Follow-up evaluations were performed at 1 - 2 years after treatment. Eight out of 10 cases were associated with periradicular healing at follow-up evaluation. Mineral trioxide aggregate Monoblock obturation technique appears to be a valid material to obtain periradicular healing in teeth with open apices and necrotic pulps. (author)

  20. Salt-induced aggregation of stiff polyelectrolytes

    International Nuclear Information System (INIS)

    Fazli, Hossein; Mohammadinejad, Sarah; Golestanian, Ramin

    2009-01-01

    Molecular dynamics simulation techniques are used to study the process of aggregation of highly charged stiff polyelectrolytes due to the presence of multivalent salt. The dominant kinetic mode of aggregation is found to be the case of one end of one polyelectrolyte meeting others at right angles, and the kinetic pathway to bundle formation is found to be similar to that of flocculation dynamics of colloids as described by Smoluchowski. The aggregation process is found to favor the formation of finite bundles of 10-11 filaments at long times. Comparing the distribution of the cluster sizes with the Smoluchowski formula suggests that the energy barrier for the aggregation process is negligible. Also, the formation of long-lived metastable structures with similarities to the raft-like structures of actin filaments is observed within a range of salt concentration.

  1. Suspensions of colloidal particles and aggregates

    CERN Document Server

    Babick, Frank

    2016-01-01

    This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between ...

  2. Modeling Soil Carbon Dynamics in Northern Forests: Effects of Spatial and Temporal Aggregation of Climatic Input Data.

    Science.gov (United States)

    Dalsgaard, Lise; Astrup, Rasmus; Antón-Fernández, Clara; Borgen, Signe Kynding; Breidenbach, Johannes; Lange, Holger; Lehtonen, Aleksi; Liski, Jari

    2016-01-01

    Boreal forests contain 30% of the global forest carbon with the majority residing in soils. While challenging to quantify, soil carbon changes comprise a significant, and potentially increasing, part of the terrestrial carbon cycle. Thus, their estimation is important when designing forest-based climate change mitigation strategies and soil carbon change estimates are required for the reporting of greenhouse gas emissions. Organic matter decomposition varies with climate in complex nonlinear ways, rendering data aggregation nontrivial. Here, we explored the effects of temporal and spatial aggregation of climatic and litter input data on regional estimates of soil organic carbon stocks and changes for upland forests. We used the soil carbon and decomposition model Yasso07 with input from the Norwegian National Forest Inventory (11275 plots, 1960-2012). Estimates were produced at three spatial and three temporal scales. Results showed that a national level average soil carbon stock estimate varied by 10% depending on the applied spatial and temporal scale of aggregation. Higher stocks were found when applying plot-level input compared to country-level input and when long-term climate was used as compared to annual or 5-year mean values. A national level estimate for soil carbon change was similar across spatial scales, but was considerably (60-70%) lower when applying annual or 5-year mean climate compared to long-term mean climate reflecting the recent climatic changes in Norway. This was particularly evident for the forest-dominated districts in the southeastern and central parts of Norway and in the far north. We concluded that the sensitivity of model estimates to spatial aggregation will depend on the region of interest. Further, that using long-term climate averages during periods with strong climatic trends results in large differences in soil carbon estimates. The largest differences in this study were observed in central and northern regions with strongly

  3. Novel Aggregative Adherence Fimbria Variant of Enteroaggregative Escherichia coli

    DEFF Research Database (Denmark)

    Jønsson, Rie; Struve, Carsten; Boisen, Nadia

    2015-01-01

    the stools of Danish adults with traveler’s diarrhea. We evaluated the presence of the aggregative adherence fimbriae (AAFs) by a multiplex PCR, targeting the four known major subunit variants as well as their usher-encoding genes. Almost one-half (49/118) of the clinical isolates did not possess any known...... AAF major fimbrial subunit, despite the presence of other AggR-related loci. Further investigation revealed the presence of an AAF-related gene encoding a yet-uncharacterized adhesin, termed agg5A. The sequence of the agg5DCBA gene cluster shared fimbrial accessory genes (usher, chaperone, and minor...

  4. Path coupling and aggregate path coupling

    CERN Document Server

    Kovchegov, Yevgeniy

    2018-01-01

    This book describes and characterizes an extension to the classical path coupling method applied to statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, the aggregate path coupling method is used to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The book shows how the parameter regions for rapid mixing for several classes of statistical mechanical models are derived using the aggregate path coupling method.

  5. Entanglement dynamics of J-aggregate systems

    Energy Technology Data Exchange (ETDEWEB)

    Thilagam, A, E-mail: Thilagam.Lohe@unisa.edu.au [Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, South Australia 5095 (Australia)

    2011-04-01

    The entanglement dynamics of one-dimensional J-aggregate systems are examined using entanglement measures such as the von Neumann entropy and Wootters concurrence. The effect of dispersion and resonance terms associated with the exciton-phonon interaction are analyzed using Green's function formalism. A probability propagator term, derived using the Markovian approximation, presents J-aggregate systems as potential channels for large scale energy propagation for a select range of parameters. We highlight the role of a critical number of coherently coupled monomer sites and two-exciton states in determining superradiance in J-aggregate systems.

  6. Strain-dependent profile of misfolded prion protein aggregates.

    Science.gov (United States)

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V; Soto, Claudio

    2016-02-15

    Prions are composed of the misfolded prion protein (PrP(Sc)) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrP(Sc) aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrP(Sc) aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrP(Sc) aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrP(Sc) aggregates and the incubation periods for the strains studied. The relative presence of PrP(Sc) in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrP(Sc) aggregates in prion-induced neurodegeneration.

  7. Balancing energy flexibilities through aggregation

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach

    2014-01-01

    One of the main goals of recent developments in the Smart Grid area is to increase the use of renewable energy sources. These sources are characterized by energy fluctuations that might lead to energy imbalances and congestions in the electricity grid. Exploiting inherent flexibilities, which exist...... in both energy production and consumption, is the key to solving these problems. Flexibilities can be expressed as flex-offers, which due to their high number need to be aggregated to reduce the complexity of energy scheduling. In this paper, we discuss balance aggregation techniques that already during...... aggregation aim at balancing flexibilities in production and consumption to reduce the probability of congestions and reduce the complexity of scheduling. We present results of our extensive experiments....

  8. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  9. Pyrene-Phosphonate Conjugate: Aggregation-Induced Enhanced Emission, and Selective Fe3+ Ions Sensing Properties

    Directory of Open Access Journals (Sweden)

    Sachin D. Padghan

    2017-08-01

    Full Text Available A new pyrene-phosphonate colorimetric receptor 1 has been designed and synthesized in a one-step process via amide bond formation between pyrene butyric acid chloride and phosphonate-appended aniline. The pyrene-phosphonate receptor 1 showed aggregation-induced enhanced emission (AIEE properties in water/acetonitrile (ACN solutions. Dynamic light scattering (DLS characterization revealed that the aggregates of receptor 1 at 80% water fraction have an average size of ≈142 nm. Field emission scanning electron microscopy (FE-SEM analysis confirmed the formation of spherical aggregates upon solvent evaporation. The sensing properties of receptor 1 were investigated by UV-vis, fluorescence emission spectroscopy, and other optical methods. Among the tested metal ions, receptor 1 is capable of recognizing the Fe3+ ion selectively. The changes in spectral measurements were explained on the basis of complex formation. The composition of receptor 1 and Fe3+ ions was determined by using Job’s plot and found to be 1:1. The receptor 1–Fe3+ complex showed a reversible UV-vis response in the presence of EDTA.

  10. Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide

    Science.gov (United States)

    Cohen, Samuel I. A.; Cukalevski, Risto; Michaels, Thomas C. T.; Šarić, Andela; Törnquist, Mattias; Vendruscolo, Michele; Dobson, Christopher M.; Buell, Alexander K.; Knowles, Tuomas P. J.; Linse, Sara

    2018-05-01

    Mapping free-energy landscapes has proved to be a powerful tool for studying reaction mechanisms. Many complex biomolecular assembly processes, however, have remained challenging to access using this approach, including the aggregation of peptides and proteins into amyloid fibrils implicated in a range of disorders. Here, we generalize the strategy used to probe free-energy landscapes in protein folding to determine the activation energies and entropies that characterize each of the molecular steps in the aggregation of the amyloid-β peptide (Aβ42), which is associated with Alzheimer's disease. Our results reveal that interactions between monomeric Aβ42 and amyloid fibrils during fibril-dependent secondary nucleation fundamentally reverse the thermodynamic signature of this process relative to primary nucleation, even though both processes generate aggregates from soluble peptides. By mapping the energetic and entropic contributions along the reaction trajectories, we show that the catalytic efficiency of Aβ42 fibril surfaces results from the enthalpic stabilization of adsorbing peptides in conformations amenable to nucleation, resulting in a dramatic lowering of the activation energy for nucleation.

  11. Soil aggregate stability as an indicator for eco-engineering effectiveness?

    Science.gov (United States)

    Graf, Frank

    2015-04-01

    have been performed in order to bridge this gap addressing partic-ularly the influence of root growth and mycorrhizal fungi on the resistance of soil aggregates against disintegration and linking it to slope stability. As superficial soil failure is often related to heavy rainstorms and, in this regard, mainly due to water satura-tion, recent investigations focused on the pore water pressure, too. Summarising main results of the different studies a positive relationship between soil aggregate stability and traditional soil mechanical shear strength parameters was found, e.g. given certain soil conditions, an increase in aggregate stability may be equated to an increase of the angle of internal friction Φ' and/or cohesion c'. In addition, almost all investigations showed a strong positive correlation between root length per soil volume and soil aggregate stability. In respect of mycorrhizal fungi, results are not yet as clear. On the one hand it was found that the use of unspecific (commercial) inoculum had no or even a negative effect on root growth within the first vegetation period and, correspondingly, on soil aggregate stability. However, the use of specific plant fungi combinations almost ever resulted in an obvious acceleration of root growth immediately with con-comitant gain of soil stability. As far as pore water pressure is concerned we did not yet find an interpretation that is fairly straightforward and not overly prone to controversy. It looks like soil aggregated by mycorrhized plants does have a higher capacity for building up pressure than such permeated by non-mycorrhized roots. Within this scope results of several studies showing these (inter-) relationships and correlations are presented and differences as well as unexpected results discussed.

  12. Self-aggregation of magnetic semiconductor EuS nanocrystals

    International Nuclear Information System (INIS)

    Tanaka, Atsushi; Hasegawa, Yasuchika; Kamikubo, Hironari; Kataoka, Mikio; Kawai, Tsuyoshi

    2009-01-01

    Controlled formation of aggregates having organized structure of cube-shaped EuS nanocrystals is reported. The EuS aggregates in liquid media (methanol) were obtained by means of van der Waals interaction between EuS nanocrystals. The packing structure of the EuS aggregates is characterized with transmission electron microscopy (TEM) and small angle X-ray scattering measurements (SAXS). TEM image indicates the EuS nanocrystals form self-aggregated 2D orthogonal lattice structure. The diffraction peak of (111) of SAXS profile shows that the cube-shaped EuS form 3D cubic superlattice. We successfully demonstrated that the aggregates of cube-shaped EuS nanocrystals formed cubic stacking structure.

  13. Aggregation and charging of sulfate and amidine latex particles in the presence of oxyanions.

    Science.gov (United States)

    Sugimoto, Takuya; Cao, Tianchi; Szilagyi, Istvan; Borkovec, Michal; Trefalt, Gregor

    2018-08-15

    Electrophoretic mobility and time resolved light scattering are used to measure the effect on charging and aggregation of amidine and sulfate latex particles of different oxyanions namely, phosphate, arsenate, sulfate, and selenate. In the case of negatively charged sulfate latex particles oxyanions represent the coions, while they represent counterions in the case of the positively charged amidine latex. Repulsive interaction between the sulfate latex surface and the coions results in weak ion specific effects on the charging and aggregation. On the other hand the interaction of oxyanions with the amidine latex surface is highly specific. The monovalent dihydrogen phosphate ion strongly adsorbs to the positively charged surface and reverses the charge of the particle. This charge reversal leads also to the restabilization of the amidine latex suspension at the intermediate phosphate concentrations. In the case of dihydrogen arsenate the adsorption to amidine latex surface is weaker and no charge reversal and restabilization occurs. Similar differences are seen between the sulfate and selenate analogues, where selenate adsorbs more strongly to the surface as compared to the sulfate ion and invokes charge reversal. The present results indicate that ion specificity is much more pronounced in the case of counterions. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Modelling The Effects of Aggregate Size on Alkali Aggregate Reaction Expansion

    Directory of Open Access Journals (Sweden)

    N. Z. Sekrane

    2014-06-01

    Full Text Available This work aims at developing models to predict the potential expansion of concrete containing alkali-reactive aggregates. The paper gives measurements in order to provide experimental data concerning the effect of particle size of an alkali-reactive siliceous limestone on mortar expansion. Results show that no expansion was measured on the mortars using small particles (0.5-1.0 mm while the particles (1.0–2.0 mm gave the largest expansions (0.217%. Two models are proposed, the first one studies the correlations between the measured expansions and the size of aggregates, the second one calculates the thickness of the porous zone necessary to take again all the volume of the gel created.

  15. Model of fractal aggregates induced by shear

    Directory of Open Access Journals (Sweden)

    Wan Zhanhong

    2013-01-01

    Full Text Available It is an undoubted fact that particle aggregates from marine, aerosol, and engineering systems have fractal structures. In this study, fractal geometry is used to describe the morphology of irregular aggregates. The mean-field theory is employed to solve coagulation kinetic equation of aggregates. The Taylor-expansion method of moments in conjunction with the self-similar fractal characteristics is used to represent the particulate field. The effect of the target fractal dimensions on zeroth-order moment, second-order moment, and geometric standard deviation of the aggregates is explored. Results show that the developed moment method is an efficient and powerful approach to solving such evolution equations.

  16. Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors

    International Nuclear Information System (INIS)

    Stephen, Damian G.; Dixon, James A.

    2011-01-01

    Research highlights: → We investigated anticipatory behaviors in response to chaotic metronomes. → We assessed multifractal structure in tap intervals and onset intervals. → Strength of multifractality in tap intervals appears to match that in onset intervals. - Abstract: Previous research on anticipatory behaviors has found that the fractal scaling of human behavior may attune to the fractal scaling of an unpredictable signal [Stephen DG, Stepp N, Dixon JA, Turvey MT. Strong anticipation: Sensitivity to long-range correlations in synchronization behavior. Physica A 2008;387:5271-8]. We propose to explain this attunement as a case of multifractal cascade dynamics [Schertzer D, Lovejoy S. Generalised scale invariance in turbulent phenomena. Physico-Chem Hydrodyn J 1985;6:623-5] in which perceptual-motor fluctuations are coordinated across multiple time scales. This account will serve to sharpen the contrast between strong and weak anticipation: whereas the former entails a sensitivity to the intermittent temporal structure of an unpredictable signal, the latter simply predicts sensitivity to an aggregate description of an unpredictable signal irrespective of actual sequence. We pursue this distinction through a reanalysis of Stephen et al.'s data by examining the relationship between the widths of singularity spectra for intertap interval time series and for each corresponding interonset interval time series. We find that the attunement of fractal scaling reported by Stephen et al. was not the trivial result of sensitivity to temporal structure in aggregate but reflected a subtle sensitivity to the coordination across multiple time scales of fluctuation in the unpredictable signal.

  17. Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo

    2009-11-01

    Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.

  18. Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure.

    Science.gov (United States)

    Caplan, Joshua S; Giménez, Daniel; Subroy, Vandana; Heck, Richard J; Prior, Stephen A; Runion, G Brett; Torbert, H Allen

    2017-04-01

    Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO 2 concentrations (eCO 2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C 4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO 2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO 2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO 2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO 2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions. © 2016 John Wiley & Sons Ltd.

  19. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  20. Cooperative structural transitions in amyloid-like aggregation

    Science.gov (United States)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  1. Aggregate formation in 3D turbulent-like flows

    NARCIS (Netherlands)

    Dominguez, A.; Aartrijk, van M.; Castello, Del L.; Clercx, H.J.H.; Geurts, B.; Clercx, H

    2006-01-01

    Aggregate formation is an important process in industrial and environ mental turbulent flows. Two examples in the environmental area, where turbulent aggregate formation takes place, are raindrop formation in clouds and Marine Snow (aggregate) formation in the upper layer in the oceans. The

  2. Engineering Performance of Polyurethane Bonded Aggregates

    Directory of Open Access Journals (Sweden)

    Haimin WU

    2017-08-01

    Full Text Available In this paper the engineering performance of polyurethane (PUR bonded aggregate were studied. The engineering performance, including compressive and flexural mechanical properties, void ratio, and coefficient of permeability were determined through laboratory tests. Moreover, the effects of two different curing conditions on the compressive strength properties of a PUR bonded aggregate were also evaluated. The compressive strengths of PUR bonded aggregates were found to be lower than that of conventional porous concrete, which is a commonly used cushion material. However, experimental results indicated a higher void ratio and coefficient of permeability, lower elasticity modulus, better toughness, and stronger adaptability to flexural deformation compared to porous concrete. Consequently, PUR bonded aggregate is a better solution than porous concrete when used as the cushion material of a geomembrane surface barrier for a high rock-fill dam.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.15798

  3. SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE

    OpenAIRE

    HE, Huan; Courard, Luc; Pirard, Eric; Michel, Frédéric

    2016-01-01

    Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed d...

  4. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    Science.gov (United States)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  5. Molten globule of hemoglobin proceeds into aggregates and advanced glycated end products.

    Directory of Open Access Journals (Sweden)

    Afshin Iram

    Full Text Available Conformational alterations of bovine hemoglobin (Hb upon sequential addition of glyoxal over a range of 0-90% v/v were investigated. At 20% v/v glyoxal, molten globule (MG state of Hb was observed by altered tryptophan fluorescence, high ANS binding, existence of intact heme, native-like secondary structure as depicted by far-UV circular dichroism (CD and ATR-FTIR spectra as well as loss in tertiary structure as confirmed by near-UV CD spectra. In addition, size exclusion chromatography analysis depicted that MG state at 20% v/v glyoxal corresponded to expanded pre-dissociated dimers. Aggregates of Hb were detected at 70% v/v glyoxal. These aggregates of Hb had altered tryptophan environment, low ANS binding, exposed heme, increased β-sheet secondary structure, loss in tertiary structure, enhanced thioflavin T (ThT fluorescence and red shifted Congo Red (CR absorbance. On incubating Hb with 30% v/v glyoxal for 0-20 days, advanced glycation end products (AGEs were detected on day 20. These AGEs were characterised by enhanced tryptophan fluorescence at 450 nm, exposure of heme, increase in intermolecular β-sheets, enhanced ThT fluorescence and red shift in CR absorbance. Comet assay revealed aggregates and AGEs to be genotoxic in nature. Scanning electron microscopy confirmed the amorphous structure of aggregates and branched fibrils of AGEs. The transformation of α-helix to β-sheet usually alters the normal protein to amyloidogenic resulting in a variety of protein conformational disorders such as diabetes, prion and Huntington's.

  6. Liver tissue engineering based on aggregate assembly: efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres

    International Nuclear Information System (INIS)

    Pang, Y; Shinohara, M; Komori, K; Sakai, Y; Montagne, K

    2012-01-01

    To realize long-term in vitro culture of hepatocytes at a high density while maintaining a high hepatic function for aggregate-based liver tissue engineering, we report here a novel culture method whereby endothelialized rat hepatocyte aggregates were formed using a PDMS microwell device and cultured in a perfusion bioreactor by introducing spacers between aggregates to improve oxygen and nutrient supply. Primary rat hepatocyte aggregates around 100 µm in diameter coated with human umbilical vein endothelial cells were spontaneously and quickly formed after 12 h of incubation, thanks to the continuous supply of oxygen by diffusion through the PDMS honeycomb microwell device. Then, the recovered endothelialized rat hepatocyte aggregates were mixed with biodegradable poly-l-lactic acid fibres in suspension and packed into a PDMS-based bioreactor. Perfusion culture of 7 days was successfully achieved with more than 73.8% cells retained in the bioreactor. As expected, the fibres acted as spacers between aggregates, which was evidenced from the enhanced albumin production and more spherical morphology compared with fibre-free packing. In summary, this study shows the advantages of using PDMS-based microwells to form heterotypic aggregates and also demonstrates the feasibility of spacing tissue elements for improving oxygen and nutrient supply to tissue engineering based on modular assembly. (paper)

  7. Aggregate formation in 3D turbulent-like flows

    NARCIS (Netherlands)

    Dominguez, A.; Clercx, H.J.H.

    2006-01-01

    Aggregate formation is an important process in industrial and environmental turbulent flows. In oceans turbulence play an important role on Marine Snow (aggregate) formation. For a proper description, the study of aggregate formation in turbulent flows requires a particle based model i.e. following

  8. Influence of velocity gradient on optimisation of the aggregation process and properties of formed aggregates. Part 2. Quantification of the influence of agitation intensity and time on the properties of formed aggregates

    Czech Academy of Sciences Publication Activity Database

    Polášek, Pavel

    2011-01-01

    Roč. 59, č. 3 (2011), s. 196-205 ISSN 0042-790X R&D Projects: GA ČR GA103/07/1016 Institutional research plan: CEZ:AV0Z20600510 Keywords : inline high density suspension (IHDS) formation process * aggregation phases * aggregate properties * compactness * relative density of aggregates Subject RIV: BK - Fluid Dynamics Impact factor: 0.340, year: 2011

  9. Soil aggregation under different management systems

    Directory of Open Access Journals (Sweden)

    Cibele Mascioli Rebello Portella

    2012-12-01

    Full Text Available Considering that the soil aggregation reflects the interaction of chemical, physical and biological soil factors, the aim of this study was evaluate alterations in aggregation, in an Oxisol under no-tillage (NT and conventional tillage (CT, since over 20 years, using as reference a native forest soil in natural state. After analysis of the soil profile (cultural profile in areas under forest management, samples were collected from the layers 0-5, 5-10, 10-20 and 20-40 cm, with six repetitions. These samples were analyzed for the aggregate stability index (ASI, mean weighted diameter (MWD, mean geometric diameter (MGD in the classes > 8, 8-4, 4-2, 2-1, 1-0.5, 0.5-0.25, and < 0.25 mm, and for physical properties (soil texture, water dispersible clay (WDC, flocculation index (FI and bulk density (Bd and chemical properties (total organic carbon - COT, total nitrogen - N, exchangeable calcium - Ca2+, and pH. The results indicated that more intense soil preparation (M < NT < PC resulted in a decrease in soil stability, confirmed by all stability indicators analyzed: MWD, MGD, ASI, aggregate class distribution, WDC and FI, indicating the validity of these indicators in aggregation analyses of the studied soil.

  10. Aggregation of natively folded proteins: a theoretical approach

    International Nuclear Information System (INIS)

    Trovato, Antonio; Maritan, Amos; Seno, Flavio

    2007-01-01

    The reliable identification of β-aggregating stretches in protein sequences is essential for the development of therapeutic agents for Alzheimer's and Parkinson's diseases, as well as other pathological conditions associated with protein deposition. While the list of aggregation related diseases is growing, it has also been shown that many proteins that are normally well behaved can be induced to aggregate in vitro. This fact suggests the existence of a unified framework that could explain both folding and aggregation. By assuming this universal behaviour, we have recently introduced an algorithm (PASTA: prediction of amyloid structure aggregation), which is based on a sequence-specific energy function derived from the propensity of two residue types to be found paired in neighbouring strands within β-sheets in globular proteins. The algorithm is able to predict the most aggregation-prone portions of several proteins initially unfolded, in excellent agreement with experimental results. Here, we apply the method to a set of proteins which are known to aggregate, but which are natively folded. The quality of the prediction is again very high, corroborating the hypothesis that the amyloid structure is stabilized by the same physico-chemical determinants as those operating in folded proteins

  11. Maternal care, mother-offspring aggregation and age-dependent coadaptation in the European earwig.

    Science.gov (United States)

    Gómez, Y; Kölliker, M

    2013-09-01

    Benefits and costs of parental care are expected to change with offspring development and lead to age-dependent coadaptation expressed as phenotypic (behavioural) matches between offspring age and parental reproductive stage. Parents and offspring interact repeatedly over time for the provision of parental care. Their behaviours should be accordingly adjusted to each other dynamically and adaptively, and the phenotypic match between offspring age and parental stage should stabilize the repeated behavioural interactions. In the European earwig (Forficula auricularia), maternal care is beneficial for offspring survival, but not vital, allowing us to investigate the extent to which the stability of mother-offspring aggregation is shaped by age-dependent coadaptation. In this study, we experimentally cross-fostered nymphs of different age classes (younger or older) between females in early or late reproductive stage to disrupt age-dependent coadaptation, thereby generating female-nymph dyads that were phenotypically matched or mismatched. The results revealed a higher stability in aggregation during the first larval instar when care is most intense, a steeper decline in aggregation tendency over developmental time and a reduced developmental rate in matched compared with mismatched families. Furthermore, nymph survival was positively correlated with female-nymph aggregation stability during the early stages when maternal care is most prevalent. These results support the hypothesis that age-related phenotypically plastic coadaptation affects family dynamics and offspring developmental rate. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  12. Protein aggregation and misfolding: good or evil?

    Science.gov (United States)

    Pastore, Annalisa; Temussi, Pierandrea

    2012-06-01

    Protein aggregation and misfolding have important implications in an increasing number of fields ranging from medicine to biology to nanotechnology and material science. The interest in understanding this field has accordingly increased steadily over the last two decades. During this time the number of publications that have been dedicated to protein aggregation has increased exponentially, tackling the problem from several different and sometime contradictory perspectives. This review is meant to summarize some of the highlights that come from these studies and introduce this topical issue on the subject. The factors that make a protein aggregate and the cellular strategies that defend from aggregation are discussed together with the perspectives that the accumulated knowledge may open.

  13. Protein aggregation and misfolding: good or evil?

    International Nuclear Information System (INIS)

    Pastore, Annalisa; Temussi, Pierandrea

    2012-01-01

    Protein aggregation and misfolding have important implications in an increasing number of fields ranging from medicine to biology to nanotechnology and material science. The interest in understanding this field has accordingly increased steadily over the last two decades. During this time the number of publications that have been dedicated to protein aggregation has increased exponentially, tackling the problem from several different and sometime contradictory perspectives. This review is meant to summarize some of the highlights that come from these studies and introduce this topical issue on the subject. The factors that make a protein aggregate and the cellular strategies that defend from aggregation are discussed together with the perspectives that the accumulated knowledge may open. (topical review)

  14. The investigation of interspecies diversity of erythrocyte aggregation properties by two different photometric methods in four animal species.

    Science.gov (United States)

    Kiss, F; Toth, E; Peto, K; Miko, I; Nemeth, N

    2015-12-01

    Among the haemorheological parameters, red blood cell (RBC) aggregation shows the largest interspecies diversity, and often controversial data can be found in the literature, besides the methodology-dependent issues. In this present investigation, we compared four experimental/laboratory animal species' RBC aggregation by two different photometric methods for better revealing the differences. Blood samples (K3-EDTA, 1.5 mg/ml) were taken from female animals: 16 inbred mice (Mus musculus, cardiac puncture), 15 outbred rats (Rattus norvegicus, caudal caval vein puncture), 15 beagle dogs (Canis canis, cephalic vein) and 23 juvenile pigs (Sus scrofa domesticus, medial saphenous vein). Haematological parameters (microcell counter) and RBC aggregation (light transmission and syllectometry-laser backscatter methods) were determined within 2 h after sampling. Describing the first 5-10 s of the aggregation process, additional parameters were calculated out of the syllectometric raw data. Standardized difference was calculated to determine the sensitivity of the two devices. Parameters describing the extent and magnitude of red blood cell aggregation showed the lowest values in the rat and the highest in the pig and canine blood. In turn, parameters describing the kinetics of aggregation showed the lowest values in the mouse and the highest in the rat. The standardized difference values for the laser backscattering method were 2-4 times larger vs. the light transmission one. The magnitude of the differences was not consequent in the aggregation parameters. These comparative results show that the laser backscattering method can detect the RBC aggregation differences between the investigated species more sensitively than the light transmission method. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  15. Characterization of fine aggregates in concrete by different experimental approaches

    OpenAIRE

    He, Huan; Courard, Luc; Pirard, Eric; Michel, Frédéric

    2011-01-01

    Being its major component, aggregate can occupy up to three-quarter of the volume of concrete. The structure of aggregate formed in hardened state impacts largely on mechanical and durability properties of concrete. On another hand, physical characteristics of aggregate are primarily assumed to be relevant to granular behavior of aggregate. Therefore, characterization of aggregate is of high relevance to concrete studies. In this study, different types of fine aggregate used in concrete, name...

  16. Efficient external memory structures for range-aggregate queries

    DEFF Research Database (Denmark)

    Agarwal, P.K.; Yang, J.; Arge, L.

    2013-01-01

    We present external memory data structures for efficiently answering range-aggregate queries. The range-aggregate problem is defined as follows: Given a set of weighted points in Rd, compute the aggregate of the weights of the points that lie inside a d-dimensional orthogonal query rectangle. The...

  17. Effect of fly ash on the strength of porous concrete using recycled coarse aggregate to replace low-quality natural coarse aggregate

    Science.gov (United States)

    Arifi, Eva; Cahya, Evi Nur; Christin Remayanti, N.

    2017-09-01

    The performance of porous concrete made of recycled coarse aggregate was investigated. Fly ash was used as cement partial replacement. In this study, the strength of recycled aggregate was coMPared to low quality natural coarse aggregate which has high water absorption. Compression strength and tensile splitting strength test were conducted to evaluate the performance of porous concrete using fly ash as cement replacement. Results have shown that the utilization of recycled coarse aggregate up to 75% to replace low quality natural coarse aggregate with high water absorption increases compressive strength and splitting tensile strength of porous concrete. Using fly ash up to 25% as cement replacement improves compressive strength and splitting tensile strength of porous concrete.

  18. Cellular Handling of Protein Aggregates by Disaggregation Machines.

    Science.gov (United States)

    Mogk, Axel; Bukau, Bernd; Kampinga, Harm H

    2018-01-18

    Both acute proteotoxic stresses that unfold proteins and expression of disease-causing mutant proteins that expose aggregation-prone regions can promote protein aggregation. Protein aggregates can interfere with cellular processes and deplete factors crucial for protein homeostasis. To cope with these challenges, cells are equipped with diverse folding and degradation activities to rescue or eliminate aggregated proteins. Here, we review the different chaperone disaggregation machines and their mechanisms of action. In all these machines, the coating of protein aggregates by Hsp70 chaperones represents the conserved, initializing step. In bacteria, fungi, and plants, Hsp70 recruits and activates Hsp100 disaggregases to extract aggregated proteins. In the cytosol of metazoa, Hsp70 is empowered by a specific cast of J-protein and Hsp110 co-chaperones allowing for standalone disaggregation activity. Both types of disaggregation machines are supported by small Hsps that sequester misfolded proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Signature of an aggregation-prone conformation of tau

    Science.gov (United States)

    Eschmann, Neil A.; Georgieva, Elka R.; Ganguly, Pritam; Borbat, Peter P.; Rappaport, Maxime D.; Akdogan, Yasar; Freed, Jack H.; Shea, Joan-Emma; Han, Songi

    2017-03-01

    The self-assembly of the microtubule associated tau protein into fibrillar cell inclusions is linked to a number of devastating neurodegenerative disorders collectively known as tauopathies. The mechanism by which tau self-assembles into pathological entities is a matter of much debate, largely due to the lack of direct experimental insights into the earliest stages of aggregation. We present pulsed double electron-electron resonance measurements of two key fibril-forming regions of tau, PHF6 and PHF6*, in transient as aggregation happens. By monitoring the end-to-end distance distribution of these segments as a function of aggregation time, we show that the PHF6(*) regions dramatically extend to distances commensurate with extended β-strand structures within the earliest stages of aggregation, well before fibril formation. Combined with simulations, our experiments show that the extended β-strand conformational state of PHF6(*) is readily populated under aggregating conditions, constituting a defining signature of aggregation-prone tau, and as such, a possible target for therapeutic interventions.

  20. Growth hormone aggregates in the rat adenohypophysis

    Science.gov (United States)

    Farrington, M.; Hymer, W. C.

    1990-01-01

    Although it has been known for some time that GH aggregates are contained within the rat anterior pituitary gland, the role that they might play in pituitary function is unknown. The present study examines this issue using the technique of Western blotting, which permitted visualization of 11 GH variants with apparent mol wt ranging from 14-88K. Electroelution of the higher mol wt variants from gels followed by their chemical reduction with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. With the blot procedure we found 1) that GH aggregates greater than 44K were associated with a 40,000 x g sedimentable fraction; 2) that GH aggregates were not present in glands from thyroidectomized rats, but were in glands from the thyroidectomized rats injected with T4; 3) that GH aggregates were uniquely associated with a heavily granulated somatotroph subpopulation isolated by density gradient centrifugation; and 4) that high mol wt GH forms were released from the dense somatotrophs in culture, since treatment of the culture medium with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. Taken together, the results show that high mol wt GH aggregates are contained in secretory granules of certain somatotrophs and are also released in aggregate form from these cells in vitro.

  1. Aggregate Supply and Potential Output

    OpenAIRE

    Razin, Assaf

    2004-01-01

    The New-Keynesian aggregate supply derives from micro-foundations an inflation-dynamics model very much like the tradition in the monetary literature. Inflation is primarily affected by: (i) economic slack; (ii) expectations; (iii) supply shocks; and (iv) inflation persistence. This paper extends the New Keynesian aggregate supply relationship to include also fluctuations in potential output, as an additional determinant of the relationship. Implications for monetary rules and to the estimati...

  2. Targeting Protein Aggregation for the Treatment of Degenerative Diseases

    Science.gov (United States)

    Eisele, Yvonne S.; Monteiro, Cecilia; Fearns, Colleen; Encalada, Sandra E.; Wiseman, R. Luke; Powers, Evan T.; Kelly, Jeffery W.

    2015-01-01

    The aggregation of specific proteins is hypothesized to underlie several degenerative diseases, collectively called amyloid disorders. However, the mechanistic connection between the process of protein aggregation and tissue degeneration is not yet fully understood. Here, we review current and emerging strategies to ameliorate aggregation-associated degenerative disorders, with a focus on disease-modifying strategies that prevent the formation of and/or eliminate protein aggregates. Persuasive pharmacologic and genetic evidence now support protein aggregation as the cause of post-mitotic tissue dysfunction or loss. However, a more detailed understanding of the factors that trigger and sustain aggregate formation, as well as the structure-activity relationships underlying proteotoxicity are needed to develop future disease-modifying therapies. PMID:26338154

  3. Extending Practical Pre-Aggregation in On-Line Analytical Processing

    DEFF Research Database (Denmark)

    Pedersen, Torben Bach; Jensen, Christian Søndergaard; Dyreson, Curtis E.

    On-Line Analytical Processing (OLAP) based on a dimensional view of data is being used increasingly in traditional business applications as well as in applications such as health care for the purpose of analyzing very large amounts of data. Pre-aggregation, the prior materialization of aggregate...... select combinations of aggregates and then re-use these for efficiently computing other aggregates. However, this re-use of aggregates is contingent on the dimension hierarchies and the relationships between facts and dimensions satisfying stringent constraints. This severely limits the scope...

  4. Effect of metal ions on de novo aggregation of full-length prion protein

    International Nuclear Information System (INIS)

    Giese, Armin; Levin, Johannes; Bertsch, Uwe; Kretzschmar, Hans

    2004-01-01

    It is well established that the prion protein (PrP) contains metal ion binding sites with specificity for copper. Changes in copper levels have been suggested to influence incubation time in experimental prion disease. Therefore, we studied the effect of heavy metal ions (Cu 2+ , Mn 2+ , Ni 2+ , Co 2+ , and Zn 2+ ) in vitro in a model system that utilizes changes in the concentration of SDS to induce structural conversion and aggregation of recombinant PrP. To quantify and characterize PrP aggregates, we used fluorescently labelled PrP and cross-correlation analysis as well as scanning for intensely fluorescent targets in a confocal single molecule detection system. We found a specific strong pro-aggregatory effect of Mn 2+ at low micromolar concentrations that could be blocked by nanomolar concentration of Cu 2+ . These findings suggest that metal ions such as copper and manganese may also affect PrP conversion in vivo

  5. Effects of extracts and tannins from Arbutus unedo leaves on rat platelet aggregation.

    Science.gov (United States)

    Mekhfi, Hassane; ElHaouari, Mohammed; Bnouham, Mohamed; Aziz, Mohammed; Ziyyat, Abderrahim; Legssyer, Abdelkhaleq

    2006-02-01

    Many cardiovascular diseases such as arterial hypertension are associated with an increase in blood platelet activity. Arbutus unedo (Ericaceae) is a medicinal plant reputed to treat arterial hypertension, so the present study was undertaken in order to determine the antiaggregant effect. The crude aqueous extract showed an inhibition of thrombin-induced platelet aggregation (IC50 = 1.8 +/- 0.09 g/L, n = 10). The subsequent extraction of Arbutus unedo leaves by successive solvents showed that the methanol and ethyl acetate extracts accounted for most of the antiaggregant activity (IC50 = 0.7 +/- 0.08, n = 9; 0.6 +/- 0.05; n = 9, respectively). The tannins isolated from the methanol extract exhibited a strong antiplatelet effect (% of inhibition = 75.3 +/- 1.4, n = 8) and may be the major chemical compounds responsible for this action. Our results support the traditional use of this plant in the preventive or therapeutic treatment of platelet aggregation linked to arterial hypertension. Copyright 2006 John Wiley & Sons, Ltd.

  6. Aggregate assessments support improved operational decision making

    International Nuclear Information System (INIS)

    Bauer, R.

    2003-01-01

    At Darlington Nuclear aggregate assessment of plant conditions is carried out in support of Operational Decision Making. This paper discusses how aggregate assessments have been applied to Operator Workarounds leading to improved prioritisation and alignment of work programs in different departments. As well, aggregate assessment of plant and human performance factors has been carried out to identify criteria which support conservative decision making in the main control room during unit transients. (author)

  7. Aggregated nanoplatelets: optical properties and optically induced deaggregation

    International Nuclear Information System (INIS)

    Jayabalan, J; Singh, Asha; Chari, Rama; Srivastava, Himanshu; Srivastava, A K; Mukhopadhyay, P K; Oak, S M

    2008-01-01

    A study of aggregation and laser-induced deaggregation of silver nanospheres and nanoplatelets in colloidal form is presented. Changes in the extinction spectrum caused by aggregation are explained using a two-particle approximation. In the case of platelets, controlled laser irradiation is shown to reverse the aggregation process.

  8. Aggregated nanoplatelets: optical properties and optically induced deaggregation

    Energy Technology Data Exchange (ETDEWEB)

    Jayabalan, J; Singh, Asha; Chari, Rama [Laser Physics Application Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Srivastava, Himanshu; Srivastava, A K [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Mukhopadhyay, P K; Oak, S M [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)], E-mail: jjaya@cat.ernet.in

    2008-11-05

    A study of aggregation and laser-induced deaggregation of silver nanospheres and nanoplatelets in colloidal form is presented. Changes in the extinction spectrum caused by aggregation are explained using a two-particle approximation. In the case of platelets, controlled laser irradiation is shown to reverse the aggregation process.

  9. Viral Aggregation: Impact on Virus Behavior in the Environment.

    Science.gov (United States)

    Gerba, Charles P; Betancourt, Walter Q

    2017-07-05

    Aggregates of viruses can have a significant impact on quantification and behavior of viruses in the environment. Viral aggregates may be formed in numerous ways. Viruses may form crystal like structures and aggregates in the host cell during replication or may form due to changes in environmental conditions after virus particles are released from the host cells. Aggregates tend to form near the isoelectric point of the virus, under the influence of certain salts and salt concentrations in solution, cationic polymers, and suspended organic matter. The given conditions under which aggregates form in the environment are highly dependent on the type of virus, type of salts in solution (cation, anion. monovalent, divalent) and pH. However, virus type greatly influences the conditions when aggregation/disaggregation will occur, making predictions difficult under any given set of water quality conditions. Most studies have shown that viral aggregates increase the survival of viruses in the environment and resistance to disinfectants, especially with more reactive disinfectants. The presence of viral aggregates may also result in overestimation of removal by filtration processes. Virus aggregation-disaggregation is a complex process and predicting the behavior of any individual virus is difficult under a given set of environmental circumstances without actual experimental data.

  10. A brief review of the construction aggregates market

    Science.gov (United States)

    Willett, Jason Christopher

    2012-01-01

    The U.S. Geological Survey defines the construction aggregates industry as those companies that mine and process crushed stone and/or construction sand and gravel. Aggregates have been used from the earliest times of our civilization for a variety of purposes - construction being the major use. As construction aggregates, crushed stone and construction sand and gravel are the basic raw materials used to build the foundation for modern society. The widespread use of construction aggregates is the result of their general availability throughout the country and around the world along with their relatively low cost. Although construction aggregates have a low unit value, their widespread use makes them major contributors to, and indicators of, the economic well-being of the nation.

  11. PE859, a novel tau aggregation inhibitor, reduces aggregated tau and prevents onset and progression of neural dysfunction in vivo.

    Directory of Open Access Journals (Sweden)

    Michiaki Okuda

    Full Text Available In tauopathies, a neural microtubule-associated protein tau (MAPT is abnormally aggregated and forms neurofibrillary tangle. Therefore, inhibition of the tau aggregation is one of the key approaches for the treatment of these diseases. Here, we have identified a novel tau aggregation inhibitor, PE859. An oral administration of PE859 resulted in the significant reduction of sarkosyl-insoluble aggregated tau along with the prevention of onset and progression of the motor dysfunction in JNPL3 P301L-mutated human tau transgenic mice. These results suggest that PE859 is useful for the treatment of tauopathies.

  12. Strength of masonry blocks made with recycled concrete aggregates

    Science.gov (United States)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  13. Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles

    International Nuclear Information System (INIS)

    Wang Jian; Li Yuanfang; Huang Chengzhi; Wu Tong

    2008-01-01

    A detection method of cysteine is reported in this contribution with water-soluble positively charged gold nanoparticles (Au-NPs) that were prepared by seed-mediated method and capped with cetyltrimethylammonium bromide (CTAB). In aqueous medium of pH 4.2, the CTAB-capped Au-NPs display greatly different features from those of generally prepared citrate-coated Au-NPs. It was found that in a medium of high salt concentration, the presence of cysteine could induce aggregation of CTAB-capped Au-NPs, while citrate-coated Au-NPs could get aggregation soon even if without the presence of cysteine. The cysteine-induced aggregates of CTAB-capped Au-NPs display strong plasmon resonance light scattering (PRLS) signals characterized at 566.0 nm when excited by a light beam, and the PRLS intensities of the aggregates are in proportion to the concentration of cysteine in the range of 0.01-0.40 μg mL -1 with the limit of detection (3σ) being 2.9 ng mL -1 . No amino acids in the samples interfere with the detection, and cysteine in artificial samples could be detected with the recovery between 95.3% and 105.9%, and R.S.D. is less than 3.6%

  14. The Physics of Protoplanetesimal Dust Agglomerates. IX. Mechanical Properties of Dust Aggregates Probed by a Solid-projectile Impact

    Science.gov (United States)

    Katsuragi, Hiroaki; Blum, Jürgen

    2017-12-01

    Dynamic characterization of mechanical properties of dust aggregates has been one of the most important problems to quantitatively discuss the dust growth in protoplanetary disks. We experimentally investigate the dynamic properties of dust aggregates by low-speed (≤slant 3.2 m s-1) impacts of solid projectiles. Spherical impactors made of glass, steel, or lead are dropped onto a dust aggregate with a packing fraction of ϕ = 0.35 under vacuum conditions. The impact results in cratering or fragmentation of the dust aggregate, depending on the impact energy. The crater shape can be approximated by a spherical segment and no ejecta are observed. To understand the underlying physics of impacts into dust aggregates, the motion of the solid projectile is acquired by a high-speed camera. Using the obtained position data of the impactor, we analyze the drag-force law and dynamic pressure induced by the impact. We find that there are two characteristic strengths. One is defined by the ratio between impact energy and crater volume and is ≃120 kPa. The other strength indicates the fragmentation threshold of dynamic pressure and is ≃10 kPa. The former characterizes the apparent plastic deformation and is consistent with the drag force responsible for impactor deceleration. The latter corresponds to the dynamic tensile strength to create cracks. Using these results, a simple model for the compaction and fragmentation threshold of dust aggregates is proposed. In addition, the comparison of drag-force laws for dust aggregates and loose granular matter reveals the similarities and differences between the two materials.

  15. Procedure for Validation of Aggregators Providing Demand Response

    DEFF Research Database (Denmark)

    Bondy, Daniel Esteban Morales; Gehrke, Oliver; Thavlov, Anders

    2016-01-01

    of small heterogeneous resources that are geographically distributed. Therefore, a new test procedure must be designed for the aggregator validation. This work proposes such a procedure and exemplifies is with a study case. The validation of aggregators is essential if aggregators are to be integrated...... succesfully into the power system....

  16. Highly dispersed spherical Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aijun; Zeng, Yanwei, E-mail: zengyw-njut@126.com, E-mail: stephen-zeng@njtech.edu.cn, E-mail: stephen-zeng@163.com; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie [Nanjing Tech University, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering (China)

    2015-09-15

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi{sup 3+}, La{sup 3+} and Ti{sup 4+} ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization.

  17. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  18. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing, E-mail: xuebinghu2010@gmail.com [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Yu, Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Wang, Yongqing; Zhou, Jianer [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Song, Lixin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China)

    2015-02-28

    Graphical abstract: By adding an alkaline (NaOH or KOH) solution, the unprecipitated nano graphene oxide undergoes fast aggregation from the residual strong-acid filtrate of the modified Hummers method and forms the stable floccules when the pH value of the filtrate is about 1.7. The acid–base interaction with the surface functional groups of the carbon layers plays a role in the aggregation of the unprecipitated nano graphene oxide. - Highlights: • The novel and high-efficient method for separating graphene oxide was showed. • Graphene oxide undergoes aggregation and forms the floccules when pH value is ∼1.7. • The acid–base interaction plays a role in the aggregation of graphene oxide. - Abstract: In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid–base interaction with the surface functional groups of the carbon layers.

  19. Turbulent breakage of ductile aggregates.

    Science.gov (United States)

    Marchioli, Cristian; Soldati, Alfredo

    2015-05-01

    In this paper we study breakage rate statistics of small colloidal aggregates in nonhomogeneous anisotropic turbulence. We use pseudospectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modeled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, σ>σ(cr), and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e., breakage occurs as soon as σ>σ(cr)). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.

  20. Temporal aggregation in first order cointegrated vector autoregressive

    DEFF Research Database (Denmark)

    la Cour, Lisbeth Funding; Milhøj, Anders

    2006-01-01

    We study aggregation - or sample frequencies - of time series, e.g. aggregation from weekly to monthly or quarterly time series. Aggregation usually gives shorter time series but spurious phenomena, in e.g. daily observations, can on the other hand be avoided. An important issue is the effect of ...... of aggregation on the adjustment coefficient in cointegrated systems. We study only first order vector autoregressive processes for n dimensional time series Xt, and we illustrate the theory by a two dimensional and a four dimensional model for prices of various grades of gasoline....

  1. Recycled aggregates in concrete production: engineering properties and environmental impact

    Directory of Open Access Journals (Sweden)

    Seddik Meddah Mohammed

    2017-01-01

    Full Text Available Recycled concrete aggregate is considered as the most abundant and used secondary aggregate in concrete production, other types of solid waste are also being used in concrete for specific purposes and to achieve some desired properties. Recycled aggregates and particularly, recycled concrete aggregate substantially affect the properties and mix design of concrete both at fresh and hardened states since it is known by high porosity due to the adhered layer of old mortar on the aggregate which results in a high water absorption of the recycled secondary aggregate. This leads to lower density and strength, and other durability related properties. The use of most recycled aggregate in concrete structures is still limited to low strength and non-structural applications due to important drop in strength and durability performances generated. Embedding recycled aggregates in concrete is now a current practice in many countries to enhance sustainability of concrete industry and reduce its environmental impacts. The present paper discusses the various possible recycled aggregates used in concrete production, their effect on both fresh and hardened properties as well as durability performances. The economic and environmental impacts of partially or fully substituting natural aggregates by secondary recycled aggregates are also discussed.

  2. Partitioning of red blood cell aggregates in bifurcating microscale flows

    Science.gov (United States)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2017-03-01

    Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance.

  3. Spatial aspects of tree mortality strongly differ between young and old-growth forests.

    Science.gov (United States)

    Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F

    2015-11-01

    Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.

  4. Molecular origin of polyglutamine aggregation in neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Expansion of polyglutamine (polyQ tracts in proteins results in protein aggregation and is associated with cell death in at least nine neurodegenerative diseases. Disease age of onset is correlated with the polyQ insert length above a critical value of 35-40 glutamines. The aggregation kinetics of isolated polyQ peptides in vitro also shows a similar critical-length dependence. While recent experimental work has provided considerable insights into polyQ aggregation, the molecular mechanism of aggregation is not well understood. Here, using computer simulations of isolated polyQ peptides, we show that a mechanism of aggregation is the conformational transition in a single polyQ peptide chain from random coil to a parallel beta-helix. This transition occurs selectively in peptides longer than 37 glutamines. In the beta-helices observed in simulations, all residues adopt beta-strand backbone dihedral angles, and the polypeptide chain coils around a central helical axis with 18.5 +/- 2 residues per turn. We also find that mutant polyQ peptides with proline-glycine inserts show formation of antiparallel beta-hairpins in their ground state, in agreement with experiments. The lower stability of mutant beta-helices explains their lower aggregation rates compared to wild type. Our results provide a molecular mechanism for polyQ-mediated aggregation.

  5. Red blood cell aggregation changes are depended on its initial value: Effect of long-term drug treatment and short-term cell incubation with drug.

    Science.gov (United States)

    Muravyov, A V; Tikhomirova, I A; Maimistova, A A; Bulaeva, S V; Mikhailov, P V; Kislov, N V

    2011-01-01

    This study was designed to investigate whether the red cell aggregation depends on its initial level under drug therapy or cell incubation with bioactive chemical compounds. Sixty six subjects were enrolled onto this study, and sub-divided into two groups: the first group of patients (n = 36) with cerebral atherosclerosis received pentoxifylline therapy (400 mg, thrice daily) for 4 weeks. The patients of the second group were initially treated with Epoetin beta 10,000 units subcutaneously thrice a week, for 4 weeks. The second group - adult anemic patients (n = 30) with the confirmed diagnosis of solid cancer (Hb treatment the red cell aggregation increased (p treatment with pentoxifylline reduced it markedly (p treatment 75% the anemic patients with initially high RBCA had an aggregation lowering. The drop of aggregation was about 34% (p treatment. The initially low red cell aggregation after incubation with epoetin-beta was markedly increased by 122% (p drugs depend markedly on the initial, pre-treatment aggregation status of the patients. These results demonstrate that the different red blood cell aggregation responses to the biological stimuli depend strongly on the initial, pre-treatment status of the subject and the most probably it is connected with the crosstalk between the adenylyl cyclase signaling pathway and Ca2+ regulatory mechanism.

  6. Product Aggregation Bias as a Specification Error in Demand Systems

    OpenAIRE

    George C. Davis

    1997-01-01

    Inherent in all demand studies is some form of product aggregation which can lead to product aggregation bias. This article develops a simple procedure for incorporating product aggregation bias in demand systems that permits testing of product aggregation bias with a standard likelihood ratio test. An empirical illustration of the procedure demonstrates the importance of proper product aggregation. Copyright 1997, Oxford University Press.

  7. Piecewise Polynomial Aggregation as Preprocessing for Data Numerical Modeling

    Science.gov (United States)

    Dobronets, B. S.; Popova, O. A.

    2018-05-01

    Data aggregation issues for numerical modeling are reviewed in the present study. The authors discuss data aggregation procedures as preprocessing for subsequent numerical modeling. To calculate the data aggregation, the authors propose using numerical probabilistic analysis (NPA). An important feature of this study is how the authors represent the aggregated data. The study shows that the offered approach to data aggregation can be interpreted as the frequency distribution of a variable. To study its properties, the density function is used. For this purpose, the authors propose using the piecewise polynomial models. A suitable example of such approach is the spline. The authors show that their approach to data aggregation allows reducing the level of data uncertainty and significantly increasing the efficiency of numerical calculations. To demonstrate the degree of the correspondence of the proposed methods to reality, the authors developed a theoretical framework and considered numerical examples devoted to time series aggregation.

  8. H- and J-aggregate behavior in polymeric semiconductors.

    Science.gov (United States)

    Spano, Frank C; Silva, Carlos

    2014-01-01

    Aggregates of conjugated polymers exhibit two classes of fundamental electronic interactions: those occurring within a given chain and those occurring between chains. The impact of such excitonic interactions on the photophysics of polymer films can be understood using concepts of J- and H-aggregation originally developed by Kasha and coworkers to treat aggregates of small molecules. In polymer assemblies, intrachain through-bond interactions lead to J-aggregate behavior, whereas interchain Coulombic interactions lead to H-aggregate behavior. The photophysics of common emissive conjugated polymer films are determined by a competition between intrachain, J-favoring interactions and interchain, H-favoring interactions. We review formalisms describing absorption and photoluminescence lineshapes, based on intra- and intermolecular excitonic coupling, electron-vibrational coupling, and correlated energetic disorder. Examples include regioregular polythiophenes, pheneylene-vinylenes, and polydiacetylene.

  9. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.) –Wheat (Triticum aestivum L.) Cropping System in Central China

    Science.gov (United States)

    Liu, Tian-Qi; Cao, Cou-Gui; Li, Cheng-Fang

    2016-01-01

    Investigating microbial metabolic characteristics and soil organic carbon (SOC) within aggregates and their relationships under conservation tillage may be useful in revealing the mechanism of SOC sequestration in conservation tillage systems. However, limited studies have been conducted to investigate the relationship between SOC and microbial metabolic characteristics within aggregate fractions under conservation tillage. We hypothesized that close relationships can exist between SOC and microbial metabolic characteristics within aggregates under conservation tillage. In this study, a field experiment was conducted from June 2011 to June 2013 following a split-plot design of a randomized complete block with tillage practices [conventional intensive tillage (CT) and no tillage (NT)] as main plots and straw returning methods [preceding crop residue returning (S, 2100−2500 kg C ha−1) and removal (NS, 0 kg C ha-1)] as subplots with three replications. The objective of this study was to reveal the effects of tillage practices and residue-returning methods on topsoil microbial metabolic characteristics and organic carbon (SOC) fractions within aggregates and their relationships under a rice–wheat cropping system in central China. Microbial metabolic characteristics investigated using the Biolog system was examined within two aggregate fractions (>0.25 and 0.25 aggregate, and 0.25 mm aggregate (11.3%), and 0.25 mm aggregate, and 0.25 mm aggregate, and tillage (NT and S) increased microbial metabolic activities and Shannon index in >0.25 and directly improved SOC by promoting DOC in >0.25 mm aggregate in the upper (0−5 cm) soil layer under conservation tillage systems, as well as directly and indirectly by promoting DOC and MBC in tillage increased SOC in aggregates in the topsoil by improving microbial metabolic activities. PMID:26731654

  10. Aggregate complexes of HIV-1 induced by multimeric antibodies.

    Science.gov (United States)

    Stieh, Daniel J; King, Deborah F; Klein, Katja; Liu, Pinghuang; Shen, Xiaoying; Hwang, Kwan Ki; Ferrari, Guido; Montefiori, David C; Haynes, Barton; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Michael, Nelson L; Robb, Merlin L; Kim, Jerome H; Denny, Thomas N; Tomaras, Georgia D; Shattock, Robin J

    2014-10-02

    Antibody mediated viral aggregation may impede viral transfer across mucosal surfaces by hindering viral movement in mucus, preventing transcytosis, or reducing inter-cellular penetration of epithelia thereby limiting access to susceptible mucosal CD4 T cells and dendritic cells. These functions may work together to provide effective immune exclusion of virus from mucosal tissue; however little is known about the antibody characteristics required to induce HIV aggregation. Such knowledge may be critical to the design of successful immunization strategies to facilitate viral immune exclusion at the mucosal portals of entry. The potential of neutralizing and non-neutralizing IgG and IgA monoclonals (mAbs) to induce HIV-1 aggregation was assessed by Dynamic light scattering (DLS). Although neutralizing and non-neutralizing IgG mAbs and polyclonal HIV-Ig efficiently aggregated soluble Env trimers, they were not capable of forming viral aggregates. In contrast, dimeric (but not monomeric) IgA mAbs induced stable viral aggregate populations that could be separated from uncomplexed virions. Epitope specificity influenced both the degree of aggregation and formation of higher order complexes by dIgA. IgA purified from serum of uninfected RV144 vaccine trial responders were able to efficiently opsonize viral particles in the absence of significant aggregation, reflective of monomeric IgA. These results collectively demonstrate that dIgA is capable of forming stable viral aggregates providing a plausible basis for testing the effectiveness of aggregation as a potential protection mechanism at the mucosal portals of viral entry.

  11. Optimal policies for aggregate recycling from decommissioned forest roads.

    Science.gov (United States)

    Thompson, Matthew; Sessions, John

    2008-08-01

    To mitigate the adverse environmental impact of forest roads, especially degradation of endangered salmonid habitat, many public and private land managers in the western United States are actively decommissioning roads where practical and affordable. Road decommissioning is associated with reduced long-term environmental impact. When decommissioning a road, it may be possible to recover some aggregate (crushed rock) from the road surface. Aggregate is used on many low volume forest roads to reduce wheel stresses transferred to the subgrade, reduce erosion, reduce maintenance costs, and improve driver comfort. Previous studies have demonstrated the potential for aggregate to be recovered and used elsewhere on the road network, at a reduced cost compared to purchasing aggregate from a quarry. This article investigates the potential for aggregate recycling to provide an economic incentive to decommission additional roads by reducing transport distance and aggregate procurement costs for other actively used roads. Decommissioning additional roads may, in turn, result in improved aquatic habitat. We present real-world examples of aggregate recycling and discuss the advantages of doing so. Further, we present mixed integer formulations to determine optimal levels of aggregate recycling under economic and environmental objectives. Tested on an example road network, incorporation of aggregate recycling demonstrates substantial cost-savings relative to a baseline scenario without recycling, increasing the likelihood of road decommissioning and reduced habitat degradation. We find that aggregate recycling can result in up to 24% in cost savings (economic objective) and up to 890% in additional length of roads decommissioned (environmental objective).

  12. Teaching Aggregate Demand and Supply Models

    Science.gov (United States)

    Wells, Graeme

    2010-01-01

    The author analyzes the inflation-targeting model that underlies recent textbook expositions of the aggregate demand-aggregate supply approach used in introductory courses in macroeconomics. He shows how numerical simulations of a model with inflation inertia can be used as a tool to help students understand adjustments in response to demand and…

  13. Small stress molecules inhibit aggregation and neurotoxicity of prion peptide 106-126

    International Nuclear Information System (INIS)

    Kanapathipillai, Mathumai; Ku, Sook Hee; Girigoswami, Koyeli; Park, Chan Beum

    2008-01-01

    In prion diseases, the posttranslational modification of host-encoded prion protein PrP c yields a high β-sheet content modified protein PrP sc , which further polymerizes into amyloid fibrils. PrP106-126 initiates the conformational changes leading to the conversion of PrP c to PrP sc . Molecules that can defunctionalize such peptides can serve as a potential tool in combating prion diseases. In microorganisms during stressed conditions, small stress molecules (SSMs) are formed to prevent protein denaturation and maintain protein stability and function. The effect of such SSMs on PrP106-126 amyloid formation is explored in the present study using turbidity, atomic force microscopy (AFM), and cellular toxicity assay. Turbidity and AFM studies clearly depict that the SSMs-ectoine and mannosylglyceramide (MGA) inhibit the PrP106-126 aggregation. Our study also connotes that ectoine and MGA offer strong resistance to prion peptide-induced toxicity in human neuroblastoma cells, concluding that such molecules can be potential inhibitors of prion aggregation and toxicity

  14. Effects of supplemental feeding and aggregation on fecal glucocorticoid metabolite concentrations in elk

    Science.gov (United States)

    Forristal, Victoria E.; Creel, Scott; Taper, Mark L.; Scurlock, Brandon M.; Cross, Paul C.

    2012-01-01

    Habitat modifications and supplemental feeding artificially aggregate some wildlife populations, with potential impacts upon contact and parasite transmission rates. Less well recognized, however, is how increased aggregation may affect wildlife physiology. Crowding has been shown to induce stress responses, and increased glucocorticoid (GC) concentrations can reduce immune function and increase disease susceptibility. We investigated the effects of supplemental feeding and the aggregation that it induces on behavior and fecal glucocorticoid metabolite concentrations (fGCM) in elk (Cervus elaphus) using observational and experimental approaches. We first compared fGCM levels of elk on supplemental feedgrounds to neighboring elk populations wintering in native habitats using data from 2003 to 2008. We then experimentally manipulated the distribution of supplemental food on feedgrounds to investigate whether more widely distributed food would result in lower rates of aggression and stress hormone levels. Contrary to some expectations that fed elk may be less stressed than unfed elk during the winter, we found that elk on feedgrounds had fecal GC levels at least 31% higher than non-feedground populations. Within feedgrounds, fGCM levels were strongly correlated with local measures of elk density (r2 = 0.81). Dispersing feed more broadly, however, did not have a detectable effect on fGCM levels or aggression rates. Our results suggest that increases in aggregation associated with winter feedgrounds affects elk physiology, and the resulting increases in fGCM levels are not likely to be mitigated by management efforts that distribute the feed more widely. Additional research is needed to assess whether these increases in fGCMs directly alter parasite transmission and disease dynamics.

  15. Plasminogen-induced aggregation of PANC-1 cells requires conversion to plasmin and is inhibited by endogenous plasminogen activator inhibitor-1.

    Science.gov (United States)

    Deshet, Naamit; Lupu-Meiri, Monica; Espinoza, Ingrid; Fili, Oded; Shapira, Yuval; Lupu, Ruth; Gershengorn, Marvin C; Oron, Yoram

    2008-09-01

    PANC-1 cells express proteinase-activated receptors (PARs)-1, -2, and respond to their activation by transient elevation of cytosolic [Ca(2+)] and accelerated aggregation (Wei et al., 2006, J Cell Physiol 206:322-328). We studied the effect of plasminogen (PGN), an inactive precursor of the PAR-1-activating protease, plasmin (PN) on aggregation of pancreatic adenocarcinoma (PDAC) cells. A single dose of PGN time- and dose-dependently promoted PANC-1 cells aggregation in serum-free medium, while PN did not. PANC-1 cells express urokinase plasminogen activator (uPA), which continuously converted PGN to PN. This activity and PGN-induced aggregation were inhibited by the uPA inhibitor amiloride. PGN-induced aggregation was also inhibited by alpha-antiplasmin and by the PN inhibitor epsilon-aminocaproic acid (EACA). Direct assay of uPA activity revealed very low rate, markedly enhanced in the presence of PGN. Moreover, in PGN activator inhibitor 1-deficient PANC-1 cells, uPA activity and PGN-induced aggregation were markedly potentiated. Two additional human PDAC cell lines, MiaPaCa and Colo347, were assayed for PGN-induced aggregation. Both cell lines responded by aggregation and exhibited PGN-enhanced uPA activity. We hypothesized that the continuous conversion of PGN to PN by endogenous uPA is limited by PN's degradation and negatively controlled by endogenously produced PAI-1. Indeed, we found that PANC-1 cells inactivate PN with t1/2 of approximately 7 h, while the continuous addition of PN promoted aggregation. Our data suggest that PANC-1 cells possess intrinsic, PAI-1-sensitive mechanism for promotion of aggregation and differentiation by prolonged exposure to PGN and, possibly, additional precursors of PARs agonists.

  16. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    Science.gov (United States)

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T.; Eliseeva, Svetlana V.; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analogue substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analogue demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behaviour. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  17. NMR of α-synuclein–polyamine complexes elucidates the mechanism and kinetics of induced aggregation

    Science.gov (United States)

    Fernández, Claudio O; Hoyer, Wolfgang; Zweckstetter, Markus; Jares-Erijman, Elizabeth A; Subramaniam, Vinod; Griesinger, Christian; Jovin, Thomas M

    2004-01-01

    The aggregation of α-synuclein is characteristic of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. The 140-aa protein is natively unstructured; thus, ligands binding to the monomeric form are of therapeutic interest. Biogenic polyamines promote the aggregation of α-synuclein and may constitute endogenous agents modulating the pathogenesis of PD. We characterized the complexes of natural and synthetic polyamines with α-synuclein by NMR and assigned the binding site to C-terminal residues 109–140. Dissociation constants were derived from chemical shift perturbations. Greater polyamine charge (+2 → +5) correlated with increased affinity and enhancement of fibrillation, for which we propose a simple kinetic mechanism involving a dimeric nucleation center. According to the analysis, polyamines increase the extent of nucleation by ∼104 and the rate of monomer addition ∼40-fold. Significant secondary structure is not induced in monomeric α-synuclein by polyamines at 15°C. Instead, NMR reveals changes in a region (aa 22–93) far removed from the polyamine binding site and presumed to adopt the β-sheet conformation characteristic of fibrillar α-synuclein. We conclude that the C-terminal domain acts as a regulator of α-synuclein aggregation. PMID:15103328

  18. Kinetics of a Migration-Driven Aggregation-Fragmentation Process

    Institute of Scientific and Technical Information of China (English)

    ZHUANG You-Yi; LIN Zhen-Quan; KE Jian-Hong

    2003-01-01

    We propose a reversible model of the migration-driven aggregation-fragmentation process with the sym-metric migration rate kernels K(k;j) = K'(k;j) = λkjv and the constant aggregation rates I1, I2 and fragmentationrates J1, J2. Based on the mean-field theory, we investigate the evolution behavior of the aggregate size distributions inseveral cases with different values of index v. We find that the fragmentation reaction plays a more important role in the kinetic behaviors of the system than the aggregation and migration. When J1 = 0 and J2 = 0, the aggregate sizedistributions ak(t) and bk(t) obey the conventional scaling law, while when J1 > 0 and J2 > 0, they obey the modifiedscaling law with an exponential scaling function. The total mass of either species remains conserved.

  19. Texture-contrast profile development across the prairie-forest ecotone in northern Minnesota, USA, and its relation to soil aggregation and clay dispersion.

    Science.gov (United States)

    Kasmerchak, C. S.; Mason, J. A.

    2016-12-01

    Along the prairie-forest ecotone, Alfisols with distinct clay-enriched B horizons are found under forest, established only within the past 4 ka, including outlying patches of prairie groves surrounded by prairie. Grassland soils only 5-10 km away from the vegetation boundary show much weaker texture-contrast. In order for clay to be dispersed it must first be released from aggregates upper horizons, which occurs when exposed top soil undergoes wetting and mechanical stress. The relationship between physiochemical soil characteristics and soil aggregation/clay dispersion is of particular interest in explaining texture-contrast development under forest. Soil samples were collected along a transect in northern Minnesota on gentle slopes in similar glacial sediment. Aggregate stability experiments show Mollisol A and B horizons have the most stable aggregates, while Alfisol E horizons have the weakest aggregates and disintegrate rapidly. This demonstrates the strong influence of OM and exchange chemistry on aggregation. Analysis of other physiochemical soil characteristics such as base saturation and pH follow a gradual decreasing eastward trend across the study sites, and do not abruptly change at the prairie-forest boundary like soil morphology does. Linear models show the strongest relationship between rapid aggregate disintegration and ECEC, although they only explain 47-50% of the variance. Higher surface charge enhances aggregation by allowing for greater potential of cation bridging between OM and clay particles. ECEC also represents multiple soil characteristics such as OC, clay, mineralogy, and carbonate presence, suggesting the relationship between aggregation stability and soil characteristics is not simple. Given the parent material consists of calcareous glacial sediment, abundant Ca2+ and Mg2+ from carbonates weathering also contributes to enhanced aggregation in upper horizons. Differences in the rates of bioturbation, most likely also contribute

  20. Platelet aggregation following trauma

    DEFF Research Database (Denmark)

    Windeløv, Nis A; Sørensen, Anne M; Perner, Anders

    2014-01-01

    We aimed to elucidate platelet function in trauma patients, as it is pivotal for hemostasis yet remains scarcely investigated in this population. We conducted a prospective observational study of platelet aggregation capacity in 213 adult trauma patients on admission to an emergency department (ED...... severity score (ISS) was 17; 14 (7%) patients received 10 or more units of red blood cells in the ED (massive transfusion); 24 (11%) patients died within 28 days of trauma: 17 due to cerebral injuries, four due to exsanguination, and three from other causes. No significant association was found between...... aggregation response and ISS. Higher TRAP values were associated with death due to cerebral injuries (P 

  1. Utilization of unbound aggregates for road construction

    OpenAIRE

    Fladvad, Marit

    2017-01-01

    Crushed rock aggregate is a non-renewable resource of great interest in road construction and other branches of the construction industry. To prevent resource scarcity, utilization of aggregates should be considered carefully. © 2016 Norsk Bergforening

  2. Comparative environmental assessment of natural and recycled aggregate concrete.

    Science.gov (United States)

    Marinković, S; Radonjanin, V; Malešev, M; Ignjatović, I

    2010-11-01

    Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. The ethics of aggregation and hormone replacement therapy.

    Science.gov (United States)

    Lyerly, A D; Myers, E R; Faden, R R

    2001-01-01

    The use of aggregated quality of life estimates in the formation of public policy and practice guidelines raises concerns about the moral relevance of variability in values in preferences for health care. This variability may reflect unique and deeply held beliefs that may be lost when averaged with the preferences of other individuals. Feminist moral theories which argue for attention to context and particularity underline the importance of ascertaining the extent to which differences in preferences for health states reveal information which is morally relevant to clinicians and policymakers. To facilitate these considerations, we present an empirical study of preferences for the timing and occurrence of health states associated with hormone replacement therapy (HRT). Sixteen women between the ages of 45 and 55 were enrolled in this pilot study. Their preferences regarding five health states associated with HRT (menopausal symptoms. side effects of HRT, breast cancer, myocardial infarction, and osteoporosis) were assessed in quantitative terms known as utilities. Two standard methods, the visual analog scale (VAS) and the standard gamble (SG), were used to assess utility and time preference (calculated as a discount rate). The wide variability of responses underlines the importance of tailoring health care to individual women's preferences. Policy guidelines which incorporate utility analysis must recognize the normative limitations of aggregated preferences, and the moral relevance of individual conceptions of health.

  4. An overview of aggregate resources in the United States

    Science.gov (United States)

    Langer, William H.; Scott, P.W.; Bristow, C.M.

    2002-01-01

    In 2000 the USA produced about 2.7 billion tonnes of aggregate worth about $13.7 billion. Both crushed stone and sand and gravel are produced in virtually every State, although limited quantities are available in the Gulf Coastal Plain, the Colorado Plateau , the Wyoming Basin and the Great Plains. Prices vary depending on the product and location. Most aggregates are transported by road, and minor amounts by railroad, barge on navigable inland channels, and through the Great Lake ports. Imports and exports of aggregates are very minor. A major amount f crushed stone aggregates is consumed by concrete aggregate. Recycled aggregates account for about 8% of total demand, although the amount recycled is thought to be increasing. Current issues facing the inductry unclude the differences in quality specifications between States, adjusting to the increasing concern for the impact of aggregate mining on the environmentm, health issues from particulate matter and crystalline silica, and the complexity of obtaining permits for extraction. Redcustion in the number od companies extracting aggregrates is likely to occur through acquisitions.

  5. The relationships between income inequality, welfare regimes and aggregate health: a systematic review.

    Science.gov (United States)

    Kim, Ki-Tae

    2017-06-01

    : When analysing the relationships between income inequality, welfare regimes and aggregate health at the cross-national level, previous primary articles and systematic reviews reach inconsistent conclusions. Contrary to theoretical expectations, equal societies or the Social Democratic welfare regime do not always have the best aggregate health when compared with those of other relatively unequal societies or other welfare regimes. This article will shed light on the controversial subjects with a new decomposition systematic review method. The decomposition systematic review method breaks down an individual empirical article, if necessary, into multiple findings based on an article's use of the following four components: independent variable, dependent variable, method and dataset. This decomposition method extracts 107 findings from the selected 48 articles, demonstrating the dynamics between the four components. 'The age threshold effect' is recognized over which the hypothesized relations between income inequality, welfare regimes and aggregate health reverse. The hypothesis is supported mainly for younger infant and child health indicators, but not for adult health or general health indicators such as life expectancy. Further three threshold effects (income, gender and period) have also been put forward. The negative relationship between income inequality and aggregate health, often termed as the Wilkinson Hypothesis, was not generally observed in all health indicators except for infant and child mortality. The Scandinavian welfare regime reveals worse-than-expected outcomes in all health indicators except infant and child mortality. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  6. Familial aggregation of forearm bone mineral density in Chinese

    International Nuclear Information System (INIS)

    Hong Xiumei; Niu Tianhua; Chen Changzhong; Wang Binyan; Venners, Scott A.; Fang Zhian; Xu Xiping

    2007-01-01

    Osteoporosis is a major public health concern and its prevalence can be predicted based on forearm bone mineral density (BMD). This study is to investigate the familial aggregation of forearm BMD in a population-based, cross-sectional study in Anhui, China. Information on sociodemographic and environmental variables was obtained from 1,636 subjects from 409 nuclear families (including mother, father, and their first two children) by a standardized questionnaire. The forearm BMD was measured by peripheral dual-energy X-ray absorptiometry (pDXA). Using generalized additive models with a sequential adjustment for covariates, it was clearly indicated that the forearm BMD of the mother, the father, and the first sibling each had a significant and independent relation to the forearm BMD of the second sibling. Furthermore, using multiple logistic regression, the second sibling had an odds ratio (OR) of 5.3 (95%CI: 2.0-14.5) of having an extremely low (bottom 10th percentile) proximal forearm BMD and an OR of 4.3 (95%CI: 1.6-12.0) of having an extremely low distal forearm BMD when the parental mean forearm BMD was low and the first sibling's forearm BMD was low. Our findings showing strong familial aggregation of both proximal and distal forearm BMD values suggest that genetic factors play a significant role in determining both traits

  7. A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Norie [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Department of Neurology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Kamiguchi, Kenjiro; Nakanishi, Katsuya; Sokolovskya, Alice; Hirohashi, Yoshihiko; Tamura, Yasuaki; Murai, Aiko; Yamamoto, Eri; Kanaseki, Takayuki; Tsukahara, Tomohide; Kochin, Vitaly [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Chiba, Susumu [Department of Neurology, Clinical Brain Research Laboratory, Toyokura Memorial Hall, Sapporo Yamano-ue Hospital (Japan); Shimohama, Shun [Department of Neurology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Sato, Noriyuki [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Torigoe, Toshihiko, E-mail: torigoe@sapmed.ac.jp [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan)

    2016-06-10

    Polyglutamine (polyQ) diseases comprise neurodegenerative disorders caused by expression of expanded polyQ-containing proteins. The cytotoxicity of the expanded polyQ-containing proteins is closely associated with aggregate formation. In this study, we report that a novel J-protein, DNAJ (HSP40) Homolog, Subfamily C, Member 8 (DNAJC8), suppresses the aggregation of polyQ-containing protein in a cellular model of spinocerebellar ataxia type 3 (SCA3), which is also known as Machado-Joseph disease. Overexpression of DNAJC8 in SH-SY5Y neuroblastoma cells significantly reduced the polyQ aggregation and apoptosis, and DNAJC8 was co-localized with the polyQ aggregation in the cell nucleus. Deletion mutants of DNAJC8 revealed that the C-terminal domain of DNAJC8 was essential for the suppression of polyQ aggregation, whereas the J-domain was dispensable. Furthermore, 22-mer oligopeptide derived from C-termilal domain could suppress the polyQ aggregation. These results indicate that DNAJC8 can suppress the polyQ aggregation via a distinct mechanism independent of HSP70-based chaperone machinery and have a unique protective role against the aggregation of expanded polyQ-containing proteins such as pathogenic ataxin-3 proteins.

  8. Water stability of soil aggregates in different systems of Chernozem tillage

    Directory of Open Access Journals (Sweden)

    Jaroslava Bartlová

    2011-01-01

    Full Text Available Effects of various agrotechnical measures on macrostructural changes in the ploughing layer and subsoil were studied within the period of 2008–2010. Soil macrostructure was evaluated on the base of water stability of soil aggregates. Altogether three variants of soil tillage were established, viz. ploughing to the depth of 0.22 m (Variant 1, deep soil loosening to the depth of 0.35–0.40 m (Variant 2, and shallow tillage to the depth of 0.15 m (Variant 3. Experiments were established on a field with Modal Chernozem in the locality Hrušovany nad Jevišovkou (maize-growing region, altitude of 210 m, average annual sum of precipitation 461 mm. In the first experimental year, winter rape was the cultivated crop and it was followed by winter wheat, maize and spring wheat in subsequent years. The aim of this study was to evaluate effects of different methods of tillage on water stability of soil aggregates and on yields of individual crops. An overall analysis of results revealed a positive effect of cultivation without ploughing on water stability of soil aggregates. In the variant with ploughing was found out a statistically significant decrease of this stability. At the same time it was also found out that both minimum tillage and deep soil loosening showed a positive effect on yields of crops under study (above all of maize and winter wheat.

  9. Universal scaling and nonlinearity of aggregate price impact in financial markets

    Science.gov (United States)

    Patzelt, Felix; Bouchaud, Jean-Philippe

    2018-01-01

    How and why stock prices move is a centuries-old question still not answered conclusively. More recently, attention shifted to higher frequencies, where trades are processed piecewise across different time scales. Here we reveal that price impact has a universal nonlinear shape for trades aggregated on any intraday scale. Its shape varies little across instruments, but drastically different master curves are obtained for order-volume and -sign impact. The scaling is largely determined by the relevant Hurst exponents. We further show that extreme order-flow imbalance is not associated with large returns. To the contrary, it is observed when the price is pinned to a particular level. Prices move only when there is sufficient balance in the local order flow. In fact, the probability that a trade changes the midprice falls to zero with increasing (absolute) order-sign bias along an arc-shaped curve for all intraday scales. Our findings challenge the widespread assumption of linear aggregate impact. They imply that market dynamics on all intraday time scales are shaped by correlations and bilateral adaptation in the flows of liquidity provision and taking.

  10. Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers

    International Nuclear Information System (INIS)

    Jasmine, Maria J.; Kavitha, Manniledam; Prasad, Edamana

    2009-01-01

    Solvent-induced aggregation and its effect on the intrinsic emission properties of amine, hydroxy and carboxylate terminated, poly(amidoamine) (PAMAM) dendrimers have been investigated in glycerol, ethylene glycol, methanol, ethylene diamine and water. Altering the solvent medium induces remarkable changes in the intrinsic emission properties of the PAMAM dendrimers at identical concentration. Upon excitation at 370 nm, amine terminated PAMAM dendrimer exhibits an intense emission at 470 nm in glycerol, ethylene glycol as well as glycerol-water mixtures. Conversely, weak luminescence is observed for hydroxy and carboxylate terminated PAMAM dendrimers in the same solvent systems. When the solvent is changed to ethylene diamine, hydroxy terminated PAMAM exhibits intense blue emission at 425 nm. While the emission intensity is varied when the solvent milieu is changed, excited state lifetime values of PAMAM dendrimers remain independent of the solvent used. UV-visible absorption and dynamic light scattering (DLS) experiments confirm the formation of solvent-controlled dendrimer aggregates in the systems. Comparison of the fluorescence and DLS data reveals that the size distribution of the dendrimer aggregates in each solvent system is distinct, which control the intrinsic emission intensity from PAMAM dendrimers. The experimental results suggest that intrinsic emission intensity from PAMAM dendrimers can be regulated by proper selection of solvents at neutral conditions and room temperature

  11. Understanding Aggregation and Estimating Seasonal Abundance of Chrysaora quinquecirrha Medusae from a Fixed-station Time Series in the Choptank River, Chesapeake Bay

    Science.gov (United States)

    Tay, J.; Hood, R. R.

    2016-02-01

    Although jellyfish exert strong control over marine plankton dynamics (Richardson et al. 2009, Robison et al. 2014) and negatively impact human commercial and recreational activities (Purcell et al. 2007, Purcell 2012), jellyfish biomass is not well quantified due primarily to sampling difficulties with plankton nets or fisheries trawls (Haddock 2004). As a result, some of the longest records of jellyfish are visual shore-based surveys, such as the fixed-station time series of Chrysaora quinquecirrha that began in 1960 in the Patuxent River in Chesapeake Bay, USA (Cargo and King 1990). Time series counts from fixed-station surveys capture two signals: 1) demographic change at timescales on the order of reproductive processes and 2) spatial patchiness at shorter timescales as different parcels of water move in and out of the survey area by tidal and estuarine advection and turbulent mixing (Lee and McAlice 1979). In this study, our goal was to separate these two signals using a 4-year time series of C. quinquecirrha medusa counts from a fixed-station in the Choptank River, Chesapeake Bay. Idealized modeling of tidal and estuarine advection was used to conceptualize the sampling scheme. Change point and time series analysis was used to detect demographic changes. Indices of aggregation (Negative Binomial coefficient, Taylor's Power Law coefficient, and Morisita's Index) were calculated to describe the spatial patchiness of the medusae. Abundance estimates revealed a bloom cycle that differed in duration and magnitude for each of the study years. Indices of aggregation indicated that medusae were aggregated and that patches grew in the number of individuals, and likely in size, as abundance increased. Further inference from the conceptual modeling suggested that medusae patch structure was generally homogenous over the tidal extent. This study highlights the benefits of using fixed-station shore-based surveys for understanding the biology and ecology of jellyfish.

  12. Implications Of Aggregate Demand Elasticity For The Phillips Curve

    OpenAIRE

    Ben L. Kyer; Gary E. Maggs

    2004-01-01

    While the general relationship between the aggregate supply curve and the Phillips curve is recognized, the importance of aggregate demand and, in particular, aggregate demand elasticity, for the inflation-unemployment relationship has been untreated. We believe, however, that the elasticity of aggregate demand with respect to the general price level does have some significance for the short-run Phillips curve since, on a general level, the economy's equilibrium price level, inflation rate, r...

  13. Scalable privacy-preserving big data aggregation mechanism

    Directory of Open Access Journals (Sweden)

    Dapeng Wu

    2016-08-01

    Full Text Available As the massive sensor data generated by large-scale Wireless Sensor Networks (WSNs recently become an indispensable part of ‘Big Data’, the collection, storage, transmission and analysis of the big sensor data attract considerable attention from researchers. Targeting the privacy requirements of large-scale WSNs and focusing on the energy-efficient collection of big sensor data, a Scalable Privacy-preserving Big Data Aggregation (Sca-PBDA method is proposed in this paper. Firstly, according to the pre-established gradient topology structure, sensor nodes in the network are divided into clusters. Secondly, sensor data is modified by each node according to the privacy-preserving configuration message received from the sink. Subsequently, intra- and inter-cluster data aggregation is employed during the big sensor data reporting phase to reduce energy consumption. Lastly, aggregated results are recovered by the sink to complete the privacy-preserving big data aggregation. Simulation results validate the efficacy and scalability of Sca-PBDA and show that the big sensor data generated by large-scale WSNs is efficiently aggregated to reduce network resource consumption and the sensor data privacy is effectively protected to meet the ever-growing application requirements.

  14. Effect of natural antioxidants on the aggregation and disaggregation ...

    African Journals Online (AJOL)

    Conclusion: High antioxidant activities were positively correlated with the inhibition of Aβ aggregation, although not with the disaggregation of pre-formed Aβ aggregates. Nevertheless, potent antioxidants may be helpful in treating Alzheimer's disease. Keywords: Alzheimer's disease, β-Amyloid, Aggregation, Disaggregation ...

  15. Green frame aggregation scheme for Wi-Fi networks

    KAUST Repository

    Alaslani, Maha S.

    2015-07-01

    Frame aggregation is a major enhancement in the IEEE 802.11 family to boost the network performance. The increasing awareness about energy efficiency motivates the re-think of frame aggregation design. In this paper, we propose a novel Green Frame Aggregation (GFA) scheduling scheme that optimizes the aggregate size based on channel quality in order to minimize the consumed energy. GFA selects an optimal sub-frame size that satisfies the loss constraint for real-time applications as well as the energy budget of the ideal channel. This scheme is implemented and evaluated using a testbed deployment. The experimental analysis shows that GFA outperforms the conventional frame aggregation methodology in terms of energy efficiency by about 6x in the presence of severe interference conditions. Moreover, GFA outperforms the static frame sizing method in terms of network goodput while maintaining the same end-to-end latency.

  16. Programming spiders, bots, and aggregators in Java

    CERN Document Server

    Heaton, Jeff

    2006-01-01

    The content and services available on the web continue to be accessed mostly through direct human control. But this is changing. Increasingly, users rely on automated agents that save them time and effort by programmatically retrieving content, performing complex interactions, and aggregating data from diverse sources. Programming Spiders, Bots, and Aggregators in Java teaches you how to build and deploy a wide variety of these agents-from single-purpose bots to exploratory spiders to aggregators that present a unified view of information from multiple user accounts. You will quickly build on

  17. Recycled concrete aggregate in portland cement concrete.

    Science.gov (United States)

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  18. Recycled aggregates in concrete production: engineering properties and environmental impact

    OpenAIRE

    Seddik Meddah Mohammed

    2017-01-01

    Recycled concrete aggregate is considered as the most abundant and used secondary aggregate in concrete production, other types of solid waste are also being used in concrete for specific purposes and to achieve some desired properties. Recycled aggregates and particularly, recycled concrete aggregate substantially affect the properties and mix design of concrete both at fresh and hardened states since it is known by high porosity due to the adhered layer of old mortar on the aggregate which ...

  19. Black and brown carbon fractal aggregates from combustion of two fuels widely used in Asian rituals

    International Nuclear Information System (INIS)

    Chakrabarty, Rajan K.; Arnold, Ian J.; Francisco, Dianna M.; Hatchett, Benjamin; Hosseinpour, Farnaz; Loria, Marcela; Pokharel, Ashok; Woody, Brian M.

    2013-01-01

    Incense sticks and mustard oil are the two most popular combustion fuels during rituals and social ceremonies in Asian countries. Given their widespread use in both closed and open burning activities, it is important to quantify the spectral radiative properties of aerosols emitted from the combustion of both fuels. This information is needed by climate models to assess the impact of these aerosols on radiative forcing. In this study, we used a 3-wavelength integrated photoacoustic-nephelometer – operating simultaneously at 405, 532 and 781 nm – to measure the optical coefficients of aerosols emitted from the laboratory combustion of mustard oil lamp and two types of incense sticks. From the measured optical coefficients at three wavelengths, time-varying single scattering albedo (SSA), absorption Ångström exponent (AAE), and scattering Ångström exponent (SAE) were calculated. For incense smoke particles, the time-averaged mean AAE values were found to be as high as 8.32 (between 405 and 532 nm) and 6.48 (between 532 and 781 nm). This spectrally-varying characteristic of AAE indicates that brown carbon – a class of organic carbon which strongly absorbs solar radiation in the blue and near ultraviolet – is the primary component of incense smoke aerosols. For aerosols emitted from the burning of mustard oil lamp, the time-averaged mean AAE values were ∼1.3 (between 405 and 781 nm) indicating that black carbon (BC) is the primary constituent. Scanning electron microscopy combined with image processing revealed the morphology of incense smoke aerosols to be non-coalescing and weakly-bound aggregates with a mean two-dimensional (2-d) fractal dimension (D f )=1.9±0.07, while the mustard oil smoke aerosols had typical fractal-like BC aggregate morphology with a mean 2-d D f =1.85±0.09. -- Highlights: ► Incense and mustard oil burning aerosols characterized by 3-wavelength photoacoustic spectroscopy and nephelometery, and electron microscopy. ► Brown

  20. Diarrhea-associated biofilm formed by enteroaggregative Escherichia coli and aggregative Citrobacter freundii: a consortium mediated by putative F pili

    Directory of Open Access Journals (Sweden)

    Araújo Ana CG

    2010-02-01

    Full Text Available Abstract Background Enteroaggregative Escherichia coli (EAEC are enteropathogenic strains identified by the aggregative adhesion (AA pattern that share the capability to form biofilms. Citrobacter freundii is classically considered as an indigenous intestinal species that is sporadically associated with diarrhea. Results During an epidemiologic study focusing on infantile diarrhea, aggregative C. freundii (EACF and EAEC strains were concomitantly recovered from a severe case of mucous diarrhea. Thereby, the occurrence of synergic events involving these strains was investigated. Coinfection of HeLa cells with EACF and EAEC strains showed an 8-fold increase in the overall bacterial adhesion compared with single infections (P traA were capable of forming bacterial aggregates only in the presence of EACF. Scanning electronic microscopy analyses revealed that bacterial aggregates as well as enhanced biofilms formed by EACF and traA-positive EAEC were mediated by non-bundle forming, flexible pili. Moreover, mixed biofilms formed by EACF and traA-positive EAEC strains were significantly reduced using nonlethal concentration of zinc, a specific inhibitor of F pili. In addition, EAEC strains isolated from diarrheic children frequently produced single biofilms sensitive to zinc. Conclusions Putative F pili expressed by EAEC strains boosted mixed biofilm formation when in the presence of aggregative C. freundii.