WorldWideScience

Sample records for reveal electronic structure

  1. 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography

    Science.gov (United States)

    Nicastro, Daniela; McIntosh, J. Richard; Baumeister, Wolfgang

    2005-01-01

    We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ. PMID:16246999

  2. A personal view of nucleon structure as revealed by electron scattering

    International Nuclear Information System (INIS)

    Hofstadter, R.

    1989-01-01

    In this article the author charts his scientific career from graduation in 1935. His work on the No I (T1) scintillator detector developed a widely used tool for particle physicists. He later used these detectors in experiments to study nucleon structure via inelastic electron scattering, working mainly with deuterium, alpha particles and beryllium. Proton and neutron ''size'' were early successes of the fifties, with nucleon form factors following after several years' more work. (UK)

  3. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    Science.gov (United States)

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Modification of graphite structure by irradiation, revealed by thermal oxidation. Examination by electronic microscopy

    International Nuclear Information System (INIS)

    Rouaud, Michel

    1969-01-01

    Based on the analysis of images obtained by electronic microscopy, this document reports the comparative study of the action of neutrons on three different graphites: a natural one (Ticonderoga) and two pyrolytic ones (Carbone-Lorraine and Raytheon). The approach is based on the modification of features of thermal oxidation of graphites by dry air after irradiation. Different corrosion features are identified. The author states that there seems to be a relationship between the number and shape of these features, and defects existing on the irradiated graphite before oxidation. For low doses, the feature aspect varies with depth at which oxidation occurs. For higher doses, the aspect remains the same [fr

  5. Morphology and structure of lipoproteins revealed by an optimized negative-staining protocol of electron microscopy[S

    Science.gov (United States)

    Zhang, Lei; Song, James; Cavigiolio, Giorgio; Ishida, Brian Y.; Zhang, Shengli; Kane, John P.; Weisgraber, Karl H.; Oda, Michael N.; Rye, Kerry-Anne; Pownall, Henry J.; Ren, Gang

    2011-01-01

    Plasma lipoprotein levels are predictors of risk for coronary artery disease. Lipoprotein structure-function relationships provide important clues that help identify the role of lipoproteins in cardiovascular disease. The compositional and conformational heterogeneity of lipoproteins are major barriers to the identification of their structures, as discovered using traditional approaches. Although electron microscopy (EM) is an alternative approach, conventional negative staining (NS) produces rouleau artifacts. In a previous study of apolipoprotein (apo)E4-containing reconstituted HDL (rHDL) particles, we optimized the NS method in a way that eliminated rouleaux. Here we report that phosphotungstic acid at high buffer salt concentrations plays a key role in rouleau formation. We also validate our protocol for analyzing the major plasma lipoprotein classes HDL, LDL, IDL, and VLDL, as well as homogeneously prepared apoA-I-containing rHDL. High-contrast EM images revealed morphology and detailed structures of lipoproteins, especially apoA-I-containing rHDL, that are amenable to three-dimensional reconstruction by single-particle analysis and electron tomography. PMID:20978167

  6. Revealing energy level structure of individual quantum dots by tunneling rate measured by single-electron sensitive electrostatic force spectroscopy.

    Science.gov (United States)

    Roy-Gobeil, Antoine; Miyahara, Yoichi; Grutter, Peter

    2015-04-08

    We present theoretical and experimental studies of the effect of the density of states of a quantum dot (QD) on the rate of single-electron tunneling that can be directly measured by electrostatic force microscopy (e-EFM) experiments. In e-EFM, the motion of a biased atomic force microscope cantilever tip modulates the charge state of a QD in the Coulomb blockade regime. The charge dynamics of the dot, which is detected through its back-action on the capacitavely coupled cantilever, depends on the tunneling rate of the QD to a back-electrode. The density of states of the QD can therefore be measured through its effect on the energy dependence of tunneling rate. We present experimental data on individual 5 nm colloidal gold nanoparticles that exhibit a near continuous density of state at 77 K. In contrast, our analysis of already published data on self-assembled InAs QDs at 4 K clearly reveals discrete degenerate energy levels.

  7. Interfacial electronic structures revealed at the rubrene/CH3NH3PbI3 interface.

    Science.gov (United States)

    Ji, Gengwu; Zheng, Guanhaojie; Zhao, Bin; Song, Fei; Zhang, Xiaonan; Shen, Kongchao; Yang, Yingguo; Xiong, Yimin; Gao, Xingyu; Cao, Liang; Qi, Dong-Chen

    2017-03-01

    The electronic structures of rubrene films deposited on CH 3 NH 3 PbI 3 perovskite have been investigated using in situ ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). It was found that rubrene molecules interacted weakly with the perovskite substrate. Due to charge redistribution at their interface, a downward 'band bending'-like energy shift of ∼0.3 eV and an upward band bending of ∼0.1 eV were identified at the upper rubrene side and the CH 3 NH 3 PbI 3 substrate side, respectively. After the energy level alignment was established at the rubrene/CH 3 NH 3 PbI 3 interface, its highest occupied molecular orbital (HOMO)-valence band maximum (VBM) offset was found to be as low as ∼0.1 eV favoring the hole extraction with its lowest unoccupied molecular orbital (LUMO)-conduction band minimum (CBM) offset as large as ∼1.4 eV effectively blocking the undesired electron transfer from perovskite to rubrene. As a demonstration, simple inverted planar solar cell devices incorporating rubrene and rubrene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layers (HTLs) were fabricated in this work and yielded a champion power conversion efficiency of 8.76% and 13.52%, respectively. Thus, the present work suggests that a rubrene thin film could serve as a promising hole transport layer for efficient perovskite-based solar cells.

  8. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra.

    Science.gov (United States)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-05

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pK a '. The determination of pK a ' is performed for various ionic strengths, which reveals the thermodynamic acid constant (pK a =7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of -1 and the blue form that of -2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra

    Science.gov (United States)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-01

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pKa‧. The determination of pKa‧ is performed for various ionic strengths, which reveals the thermodynamic acid constant (pKa = 7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of - 1 and the blue form that of - 2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed.

  10. Solid-support Electron Paramagnetic Resonance (EPR) Studies of Aβ40 Monomers Reveal a Structured State with Three Ordered Segments*

    Science.gov (United States)

    Gu, Lei; Ngo, Sam; Guo, Zhefeng

    2012-01-01

    Alzheimer disease is associated with the pathological accumulation of amyloid-β peptide (Aβ) in the brain. Soluble Aβ oligomers formed during early aggregation process are believed to be neurotoxins and causative agents in Alzheimer disease. Aβ monomer is the building block for amyloid assemblies. A comprehensive understanding of the structural features of Aβ monomer is crucial for delineating the mechanism of Aβ oligomerization. Here we investigated the structures of Aβ40 monomer using a solid-support approach, in which Aβ40 monomers are tethered on the solid support via an N-terminal His tag to prevent further aggregation. EPR spectra of tethered Aβ40 with spin labels at 18 different positions show that Aβ40 monomers adopt a completely disordered structure under denaturing conditions. Under native conditions, however, EPR spectra suggest that Aβ40 monomers adopt both a disordered state and a structured state. The structured state of Aβ40 monomer has three more ordered segments at 14–18, 29–30, and 38–40. Interactions between these segments may stabilize the structured state, which likely plays an important role in Aβ aggregation. PMID:22277652

  11. Structures of Astromaterials Revealed by EBSD

    Science.gov (United States)

    Zolensky, M.

    2018-01-01

    Groups at the Johnson Space Center and the University of Tokyo have been using electron back-scattered diffraction (EBSD) to reveal the crystal structures of extraterrestrial minerals for many years. Even though we also routinely use transmission electron microscopy, synchrotron X-ray diffraction (SXRD), and conventional electron diffraction, we find that EBSD is the most powerful technique for crystal structure elucidation in many instances. In this talk I describe a few of the cases where we have found EBSD to provide crucial, unique information. See attachment.

  12. Electronic structure of silicene

    International Nuclear Information System (INIS)

    Voon, L. C. Lew Yan

    2015-01-01

    In this topical review, we discuss the electronic structure of free-standing silicene by comparing results obtained using different theoretical methods. Silicene is a single atomic layer of silicon similar to graphene. The interest in silicene is the same as for graphene, in being two-dimensional and possessing a Dirac cone. One advantage of silicene is due to its compatibility with current silicon electronics. Both empirical and first-principles techniques have been used to study the electronic properties of silicene. We will provide a brief overview of the parameter space for first-principles calculations. However, since the theory is standard, no extensive discussion will be included. Instead, we will emphasize what empirical methods can provide to such investigations and the current state of these theories. Finally, we will review the properties computed using both types of theories for free-standing silicene, with emphasis on areas where we have contributed. Comparisons to graphene is provided throughout. (topical review)

  13. Electronic band structure

    International Nuclear Information System (INIS)

    Grosso, G.

    1986-01-01

    The aim of this chapter is to present, in detail, some theoretical methods used to calculate electronic band structures in crystals. The basic strategies employed to attack the problem of electronic-structure calculations are presented. Successive sections present the basic formulations of the tight-binding, orthogonalized-plane-wave, Green'sfunction, and pseudopotential methods with a discussion of their application to perfect solids. Exemplifications in the case of a few selected problems provide further insight by the author into the physical aspects of the different methods and are a guide to the use of their mathematical techniques. A discussion is offered of completely a priori Hartree-Fock calculations and attempts to extend them. Special aspects of the different methods are also discussed in light of recently published related work

  14. The electronic structures of solids

    CERN Document Server

    Coles, B R

    2013-01-01

    The Electronic Structures of Solids aims to provide students of solid state physics with the essential concepts they will need in considering properties of solids that depend on their electronic structures and idea of the electronic character of particular materials and groups of materials. The book first discusses the electronic structure of atoms, including hydrogen atom and many-electron atom. The text also underscores bonding between atoms and electrons in metals. Discussions focus on bonding energies and structures in the solid elements, eigenstates of free-electron gas, and electrical co

  15. Electronic structure of superlattices

    International Nuclear Information System (INIS)

    Altarelli, M.

    1987-01-01

    Calculations of electronic states in semiconductor superlattices are briefly reviewed, with emphasis on the envelope-function method and on comparison with experiments. The energy levels in presence of external magnetic fields are discussed and compared to magneto-optical experiments. (author) [pt

  16. Electronic structure of alloys

    International Nuclear Information System (INIS)

    Ehrenreich, H.; Schwartz, L.M.

    1976-01-01

    The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references

  17. Electronics for Piezoelectric Smart Structures

    Science.gov (United States)

    Warkentin, D. J.; Tani, J.

    1997-01-01

    This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.

  18. Electronic dipole moment and tunneling state of hydrogen atom in hydrogen-bond materials revealed by neutron and X-ray structure analyses

    International Nuclear Information System (INIS)

    Kiyanagi, Ryoji; Noda, Yukio; Mochida, Tomoyuki; Sugawara, Tadashi

    2007-01-01

    The isolated hydrogen-bonded materials, 5-methyl-9-hydroxyphenalenone (MeHPLN) and 5-bromo-9-hydroxyphenalenone (Br-HPLN), were studied by means of X-ray and neutron diffraction methods. It was found that the position of the nucleus of the hydrogen atom in the hydrogen-bond region does not agree with the center of mass of the electron cloud of the hydrogen atom. This leads to a local electronic dipole moment in the hydrogen-bond region. Using the experimentally obtained dipole moment, phase transition temperatures for MeHPLN and BrHPLN were calculated based on a tunneling model. Result shows good agreement with the ones obtained by a dielectric measurement. (author)

  19. Intrinsic spin polarized electronic structure of CrO2 epitaxial film revealed by bulk-sensitive spin-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Fujiwara, Hirokazu; Sunagawa, Masanori; Kittaka, Tomoko; Terashima, Kensei; Wakita, Takanori; Muraoka, Yuji; Yokoya, Takayoshi

    2015-01-01

    We have performed bulk-sensitive spin-resolved photoemission spectroscopy in order to clarify the intrinsic spin-resolved electronic states of half-metallic ferromagnet CrO 2 . We used CrO 2 epitaxial films on TiO 2 (100), which shows a peak at 1 eV with a clear Fermi edge, consistent with the bulk-sensitive PES spectrum for CrO 2 . In spin-resolved spectra at 40 K, while the Fermi edge was observed in the spin up (majority spin) state, no states at the Fermi level (E F ) with an energy gap of 0.5 eV below E F were observed in the spin down (minority spin) state. At 300 K, the gap in the spin down state closes. These results are consistent with resistivity measurements and magnetic hysteresis curves of the fabricated CrO 2 film, constituting spectroscopic evidence for the half-metallicity of CrO 2 at low temperature and reducing the spin polarization at room temperature. We also discuss the electron correlation effects of Cr 3d

  20. Electronic structure of silicon superlattices

    International Nuclear Information System (INIS)

    Krishnamurthy, S.; Moriarty, J.A.

    1984-01-01

    Utilizing a new complex-band-structure technique, the electronic structure of model Si-Si/sub 1-x/Ge/sub x/ and MOS superlattices has been obtained over a wide range of layer thickness d (11 less than or equal to d less than or equal to 110 A). For d greater than or equal to 44 A, it is found that these systems exhibit a direct fundamental band gap. Further calculations of band-edge effective masses and impurity scattering rates suggest the possibility of a band-structure-driven enhancement in electron mobility over bulk silicon

  1. Electronic Structure of Eu6C60

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Xiong; LI Hong-Nian; XU Ya-Bo; WANG Peng; ZHANG Wen-Hua; XU Fa-Qiang

    2009-01-01

    We study the valence band of Eu-intercalated C60 by synchrotron radiation photoelectron spectroscopy to un-derstand the ferromagnetism (FM) and the giant magnetoresistance (GMR) of Eu6C60. The results reveal the semiconducting property and the remarkable 5d6s-π hybridization. Eu-C60 bonding has both ionic and covalent contributions. No more than half the 5d6s electrons transfer from Eu to the LUMO derived band of C60, and the LUMO+1 derived band is not filled. The remaining valence electrons of Eu, together with some π (LUMO, HOMO and HOMO-1) electrons, constitute the covalent bond. The electronic structure implies that the magnetic coupling in Eu6C60 should be through the intra-atomic f-sd exchange and the medium of the π electrons. The possibility of the GMR being tunnelling magnetoresistance is ruled out.

  2. Electronic structure and correlation effects in actinides

    International Nuclear Information System (INIS)

    Albers, R.C.

    1998-01-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related

  3. Ballistic transport and electronic structure

    NARCIS (Netherlands)

    Schep, Kees M.; Kelly, Paul J.; Bauer, Gerrit E.W.

    1998-01-01

    The role of the electronic structure in determining the transport properties of ballistic point contacts is studied. The conductance in the ballistic regime is related to simple geometrical projections of the Fermi surface. The essential physics is first clarified for simple models. For real

  4. The Electronic Structure of Calcium

    DEFF Research Database (Denmark)

    Jan, J.-P.; Skriver, Hans Lomholt

    1981-01-01

    The electronic structure of calcium under pressure is re-examined by means of self-consistent energy band calculations based on the local density approximation and using the linear muffin-tin orbitals (LMTO) method with corrections to the atomic sphere approximation included. At zero pressure...

  5. Electronic structure of metal clusters

    International Nuclear Information System (INIS)

    Wertheim, G.K.

    1989-01-01

    Photoemission spectra of valence electrons in metal clusters, together with threshold ionization potential measurements, provide a coherent picture of the development of the electronic structure from the isolated atom to the large metallic cluster. An insulator-metal transition occurs at an intermediate cluster size, which serves to define the boundary between small and large clusters. Although the outer electrons may be delocalized over the entire cluster, a small cluster remains insulating until the density of states near the Fermi level exceeds 1/kT. In large clusters, with increasing cluster size, the band structure approaches that of the bulk metal. However, the bands remain significantly narrowed even in a 1000-atom cluster, giving an indication of the importance of long-range order. The core-electron binding-energy shifts of supported metal clusters depend on changes in the band structure in the initial state, as well as on various final-state effects, including changes in core hole screening and the coulomb energy of the final-state charge. For cluster supported on amorphous carbon, this macroscopic coulomb shift is often dominant, as evidenced by the parallel shifts of the core-electron binding energy and the Fermi edge. Auger data confirm that final-state effects dominate in cluster of Sn and some other metals. Surface atom core-level shifts provide a valuable guide to the contributions of initial-state changes in band structure to cluster core-electron binding energy shifts, especially for Au and Pt. The available data indicate that the shift observed in supported, metallic clusters arise largely from the charge left on the cluster by photoemission. As the metal-insulator transition is approached from above, metallic screening is suppressed and the shift is determined by the local environment. (orig.)

  6. Electronic structure of lanthanide scandates

    Science.gov (United States)

    Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.

    2018-02-01

    X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.

  7. Electron scattering and nuclear structure

    International Nuclear Information System (INIS)

    Frois, B.

    1987-01-01

    The search for the appropriate degrees of freedom to describe nuclei is the central focus of nuclear physics today. Therefore the authors explore in this review their current understanding of nuclear structure as defined by electromagnetic data. The precision of the electromagnetic probe allows us to define accurately the limits of present theoretical descriptions. The authors review here a broad range of subjects that have been addressed by recent experiments, from the study of meson exchange currents and single-particle distributions to collective excitations in heavy nuclei. However, they do not discuss elastic magnetic scattering, inelastic excitation of discrete states, or single-nucleon knockout reactions since these reactions were recently reviewed. The principal aim of this review is to offer a fresh perspective on nuclear structure, based on the new generation of electron scattering data presented here and in the above-mentioned articles

  8. Electronic structure of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha-Dasgupta, Tanusri

    2016-04-15

    Highlights: • We review the theoretical modeling of quantum spin systems. • We apply the Nth order muffin-tin orbital electronic structure method. • The method shows the importance of chemistry in the modeling. • CuTe{sub 2}O{sub 5} showed a 2-dimensional coupled spin dimer behavior. • Ti substituted Zn{sub 2}VO(PO{sub 4}){sub 2} showed spin gap behavior. - Abstract: Low-dimensional quantum spin systems, characterized by their unconventional magnetic properties, have attracted much attention. Synthesis of materials appropriate to various classes within these systems has made this field very attractive and a site of many activities. The experimental results like susceptibility data are fitted with the theoretical model to derive the underlying spin Hamiltonian. However, often such a fitting procedure which requires correct guess of the assumed spin Hamiltonian leads to ambiguity in deciding the representative model. In this review article, we will describe how electronic structure calculation within the framework of Nth order muffin-tin orbital (NMTO) based Wannier function technique can be utilized to identify the underlying spin model for a large number of such compounds. We will show examples from compounds belonging to vanadates and cuprates.

  9. Cryo-electron Microscopy Reconstruction and Stability Studies of the Wild Type and the R432A Variant of Adeno-associated Virus Type 2 Reveal that Capsid Structural Stability Is a Major Factor in Genome Packaging.

    Science.gov (United States)

    Drouin, Lauren M; Lins, Bridget; Janssen, Maria; Bennett, Antonette; Chipman, Paul; McKenna, Robert; Chen, Weijun; Muzyczka, Nicholas; Cardone, Giovanni; Baker, Timothy S; Agbandje-McKenna, Mavis

    2016-10-01

    The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid

  10. Unoccupied surface electronic structure of Gd(0001)

    International Nuclear Information System (INIS)

    Li, D.; Dowben, P.A.; Ortega, J.E.; Himpsel, F.J.

    1994-01-01

    The unoccupied surface electronic structure of Gd(0001) was investigated with high-resolution inverse-photoemission spectroscopy. An empty surface state near E F is observed at bar Γ. Two other surface-sensitive features are also revealed at 1.2 and 3.1 eV above the Fermi level. Hydrogen adsorption on Gd surfaces was used to distinguish the surface-sensitive features from the bulk features. The unoccupied bulk-band critical points are determined to be Γ 3 + at 1.9 eV and A 1 at 0.8 eV

  11. Phase stability and electronic structure of transition-metal aluminides

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll 2 -DO 22 competition in Al 3 T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al 12 W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior

  12. Structure and Novel Biomineralization of Mnemiopsis Leidyi and Beroe Ovata Lithocyte Concretions (lcs) as Revealed by Polarization Lc-Pol Scanning Electron Microscopy (sem) and Electron Dispersion Spectroscopy (eds)

    Science.gov (United States)

    Moss, A.

    2016-02-01

    Ctenophore statocysts have multicellular statoliths borne on the tips of balancer compound cilia (Curr. Biol. 24:R951; Biol. Bull. 227:7). Lithocyte concretions (LCs) were prepared by three methods: 1) statocysts were microsurgically collected and washed w/0.2 µm filtered sea water (FSW), followed by 5 diH2O rinses in a deep well dish (DWD); 2) statocysts were treated with 50% Chlorox/FSW to release the statolith/LCs; 3) statocysts were fixed in 2.5% glutaraldehyde or 1% paraformaldehyde-2.5% glutaraldehyde in 10 mM pH 7.8 HEPES-buffered FSW, and statoliths and LCs microsurgically released. LCs for SEM were glued to stubs, C-stabilized and Pt-coated to a thickness of 8 nm and viewed at 10 kVe. LCs for EDS were applied to carbon tape on aluminum stubs and analyzed by EDS at 3 and 10 kVe. SEM and EDS were performed on a Zeiss Supra 40 VP equipped with an EDS detector controlled by INCA software (Oxford). Results were compared against compounds of known elemental composition. LCs examined by LC-POL revealed no birefringence (BR). LCs viewed by SEM were either a lumpy mass (M. leidyi) or smooth ellipsoid (B. ovata). LCs on carbon tape typically shattered and released overlapping, layered, multi-oriented crystals. EDS of LC crystals from both species collected by all methods lacked Ca, Mn and Mg. Predominant elements were Na, K, O and S in ratios suggesting that LCs contain mixed sodium/potassium sulfates. The unique composition of ctenophore statoliths may have been critical for the 600+ million years persistence of these organisms (J. exp. Biol. 218:592) including survival through multiple global extinctions and related ocean acidifications. Thanks to L. Kerr, R. Oldenbourg, S. Mehta, A. Verma, M. Tran, A. Kuzirian and S. Tamm for stimulating discussion and technical advice. EDS stds compounds were curtesy of L. Amaral-Zettler, J. Huber and K. Gribble (Bay Paul Center/MBL). Funding: AU PIL Program, NSF-EPS-1158862.

  13. Electronic band structures of binary skutterudites

    International Nuclear Information System (INIS)

    Khan, Banaras; Aliabad, H.A. Rahnamaye; Saifullah; Jalali-Asadabadi, S.; Khan, Imad; Ahmad, Iftikhar

    2015-01-01

    The electronic properties of complex binary skutterudites, MX 3 (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures

  14. Electronic band structures of binary skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)

    2015-10-25

    The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.

  15. Electronic structure of semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F

    1983-02-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered.

  16. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    Herman, F.

    1983-01-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author) [pt

  17. A Survey of Electronic Serials Managers Reveals Diversity in Practice

    Directory of Open Access Journals (Sweden)

    Laura Costello

    2014-09-01

    Full Text Available A Review of: Branscome, B. A. (2013. Management of electronic serials in academic libraries: The results of an online survey. Serials Review, 39(4, 216-226. http://dx.doi.org/10.1016/j.serrev.2013.10.004 Abstract Objective – To examine industry standards for the management of electronic serials and measure the adoption of electronic serials over print. Design – Survey questionnaire. Setting – Email lists aimed at academic librarians working in serials management. Subjects – 195 self-selected subscribers to serials email lists. Methods – The author created a 20 question survey that consisted primarily of closed-ended questions pertaining to the collection demographics, staff, budget, and tools of serials management groups in academic libraries. The survey was conducted via Survey Monkey and examined using the analytical features of the tool. Participants remained anonymous and the survey questions did not ask them to reveal identifiable information about their libraries. Main Results – Collection demographics questions revealed that 78% of surveyed librarians estimated that print-only collections represented 40% or fewer of their serials holdings. The author observed diversity in the factors that influence print to digital transitions in academic libraries. However 71.5% of participants indicated that publisher technology support like IP authentication was required before adopting digital subscriptions. A lack of standardization also marked serials workflows, department responsibilities, and department titles. The author did not find a correlation between serials budget and the enrollment size of the institution. Participants reported that they used tools from popular serials management vendors like Serials Solutions, Innovative Interfaces, EBSCO, and Ex Libris, but most indicated that they used more than one tool for serials management. Participants specified 52 unique serials management products used in their libraries. Conclusion

  18. Electronic structure and optical properties of solid C60

    International Nuclear Information System (INIS)

    Mattesini, M.; Ahuja, R.; Sa, L.; Hugosson, H.W.; Johansson, B.; Eriksson, O.

    2009-01-01

    The electronic structure and the optical properties of face-centered-cubic C 60 have been investigated by using an all-electron full-potential method. Our ab initio results show that the imaginary dielectric function for high-energy values looks very similar to that of graphite, revealing close electronic structure similarities between the two systems. We have also identified the origin of different peaks in the dielectric function of fullerene by means of the calculated electronic density of states. The computed optical spectrum compares fairly well with the available experimental data for the Vis-UV absorption spectrum of solid C 60 .

  19. Revealing the hidden structural phases of FeRh

    Science.gov (United States)

    Kim, Jinwoong; Ramesh, R.; Kioussis, Nicholas

    2016-11-01

    Ab initio electronic structure calculations reveal that tetragonal distortion has a dramatic effect on the relative stability of the various magnetic structures (C-, A-, G-, A'-AFM, and FM) of FeRh giving rise to a wide range of novel stable/metastable structures and magnetic phase transitions between these states. We predict that the cubic G-AFM structure, which was believed thus far to be the ground state, is metastable and that the tetragonally expanded G-AFM is the stable structure. The low energy barrier separating these states suggests phase coexistence at room temperature. We propose an A'-AFM phase to be the global ground state among all magnetic phases which arises from the strain-induced tuning of the exchange interactions. The results elucidate the underlying mechanism for the recent experimental findings of electric-field control of magnetic phase transition driven via tetragonal strain. The magnetic phase transitions open interesting prospects for exploiting strain engineering for the next-generation memory devices.

  20. Extraordinary electronic properties in uncommon structure types

    Science.gov (United States)

    Ali, Mazhar Nawaz

    In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in

  1. Hydrogen positions in single nanocrystals revealed by electron diffraction

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš; Brázda, Petr; Boullay, P.; Pérez, O.; Klementová, Mariana; Petit, S.; Eigner, Václav; Zaarour, M.; Mintova, S.

    2017-01-01

    Roč. 355, č. 6321 (2017), s. 166-169 ISSN 0036-8075 R&D Projects: GA ČR GA16-10035S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : hydrogen atoms * crystal structure * electron diffraction tomography * nanocrystalline materials Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 37.205, year: 2016

  2. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Tsuyoshi [Joint ALMA Office, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Hasegawa, Tetsuo [NAOJ Chile Observatory, Joaquin Montero 3000 Oficina 702, Vitacura, Santiago 763-0409 (Chile); Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  3. Structural stability, electronic structure and mechanical properties of actinide carbides AnC (An = U, Np)

    International Nuclear Information System (INIS)

    Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.

  4. Electronic structure studies of fullerites and fullerides

    International Nuclear Information System (INIS)

    Merkel, M.; Sohmen, E.; Masaki, A.; Romberg, H.; Alexander, M.; Knupfer, M.; Golden, M.S.; Adelmann, P.; Renker, B.; Fink, J.

    1993-01-01

    The electronic structure of fullerites and fullerides has been investigated by high-resolution photoemission and by high-energy electron energy-loss spectroscopy in transmission. Information on the occupied Π and σ bands, on the unoccupied Π * and σ * bands, and on the joint density of states has been obtained. In particular, we report on the changes of the electronic structure of fullerides as a function of dopant concentration. (orig.)

  5. Solvated electron structure in glassy matrices

    International Nuclear Information System (INIS)

    Kevan, L.

    1981-01-01

    Current knowledge of the detailed geometrical structure of solvated electrons in aqueous and organic media is summarized. The geometry of solvated electrons in glassy methanol, ethanol, and 2-methyltetrahydrofuran is discussed. Advanced electron magnetic resonance methods and development of new methods of analysis of electron spin echo modulation patterns, second moment line shapes, and forbidden photon spin-flip transitions for paramagnetic species in these disordered systems are discussed. 66 references are cited

  6. Electronic structure and tautomerism of thioamides

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); McGlynn, Sean P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)

    2016-05-15

    Highlights: • Electronic structure of thioamide group and its relation to Lewis basicity. • Tautomerism of the (thio)amide groups. • Substituent effects on the electronic structure of (thio)amide group. - Abstract: The electronic structures of several thioamides have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of thioamide derivatives are discussed. The predominant tautomers in the gas phase are of keto–(thio)keto form. The addition of cyclohexanone moiety to the thioamide group enhances the Lewis base character of the sulfur atom. The addition of phenyl group to the (thio)amide group significantly affects its electronic structure.

  7. Special analyses reveal coke-deposit structure

    International Nuclear Information System (INIS)

    Albright, L.F.

    1988-01-01

    A scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX) have been used to obtain information that clarifies the three mechanisms of coke formation in ethylene furnaces, and to analyze the metal condition at the exit of furnace. The results can be used to examine furnace operations and develop improved ethylene plant practices. In this first of four articles on the analyses of coke and metal samples, the coking mechanisms and coke deposits in a section of tube from an actual ethylene furnace (Furnace A) from a plant on the Texas Gulf Coast are discussed. The second articles in the series will analyze the condition of the tube metal in the same furnace. To show how coke deposition and metal condition dependent on the operating parameters of an ethylene furnace, the third article in the series will show the coke deposition in a Texas Gulf Coast furnace tube (Furnace B) that operated at shorter residence time. The fourth article discusses the metal condition in that furnace. Some recommendations, based on the analyses and findings, are offered in the fourth article that could help extend the life of ethylene furnace tubes, and also improve overall ethylene plant operations

  8. Electron scattering and nuclear structure

    International Nuclear Information System (INIS)

    Wolynec, E.

    1985-01-01

    A review of the historical development and the theory necessary to the interpretation of the experimental results is made. Some measurement techniques, experimental results and the technique of analysis of these data are presented. Future perspectives, due to the appearence of continous electron current accelerators, in this field of study are discussed. (L.C.) [pt

  9. Electron gun controlled smart structure

    Science.gov (United States)

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  10. STRUCTURAL STABILITY AND ELECTRONIC STRUCTURE OF ...

    African Journals Online (AJOL)

    2012-12-31

    Dec 31, 2012 ... may be applications at high temperature strength and corrosion ... B2 structure, like that found in cesium-chloride (CsCl) and chemical formula RM, where R denotes a rare - earth element and M denotes a late transition metal ...

  11. Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale

    Science.gov (United States)

    Hauptmann, Nadine; Dupé, Melanie; Hung, Tzu-Chao; Lemmens, Alexander K.; Wegner, Daniel; Dupé, Bertrand; Khajetoorians, Alexander A.

    2018-03-01

    We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin-spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with spin-polarized scanning tunneling microscopy alone. Using density functional theory, we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.

  12. Electronic structure of metallic glasses

    International Nuclear Information System (INIS)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (ΔH) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides

  13. Electronic structure and tautomerism of aryl ketones

    International Nuclear Information System (INIS)

    Novak, Igor; Klasinc, Leo; Šket, Boris; McGlynn, S.P.

    2015-01-01

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed

  14. Phenomenology of the electron structure function

    International Nuclear Information System (INIS)

    Slominski, W.; Szwed, J.

    2001-01-01

    The advantages of introducing the electron structure function (ESF) in electron induced processes are demonstrated. Contrary to the photon structure function it is directly measured in such processes. At present energies, a simultaneous analysis of both the electron and the photon structure functions gives an important test of the experimentally applied methods. Estimates of the ESF at LEP momenta are given. At very high momenta contributions from W and Z bosons together with γ-Z interference can be observed. Predictions for the next generation of experiments are given. (orig.)

  15. Electronic structure and tautomerism of aryl ketones

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); Šket, Boris, E-mail: Boris.Sket@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 (Slovenia); McGlynn, S.P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)

    2015-07-15

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed.

  16. Epitaxial graphene electronic structure and transport

    International Nuclear Information System (INIS)

    De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N; Stroscio, Joseph A; Haddon, Robert; Piot, Benjamin; Faugeras, Clement; Potemski, Marek; Moon, Jeong-Sun

    2010-01-01

    Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.

  17. Instructional Approach to Molecular Electronic Structure Theory

    Science.gov (United States)

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  18. Complex (Nonstandard) Six-Layer Polytypes of Lizardite Revealed from Oblique-Texture Electron Diffraction Patterns

    International Nuclear Information System (INIS)

    Zhukhlistov, A.P.; Zinchuk, N.N.; Kotel'nikov, D.D.

    2004-01-01

    Association of simple (1T and 3R) and two complex (nonstandard) orthogonal polytypes of the serpentine mineral lizardite from the Catoca kimberlite pipe (West Africa) association is revealed from oblique-texture electron diffraction patterns. A six-layer polytype with an ordered superposition of equally oriented layers (notation 3 2 3 2 3 4 3 4 3 6 3 6 or ++ - -00) belonging to the structural group A and a three-layer (336 or I,I,II) or a six-layer (336366 or I,I,II,I,II,II) polytype with alternating oppositely oriented layers and semi-disordered structure are identified using polytype analysis

  19. Atomic and electronic structures of divacancy in graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei Jianwei [School of Mathematics and Physics, Chongqing University of Technology, Chongqing 400054 (China)

    2012-01-15

    First principles calculations have been performed to investigate the electronic structures and transport properties of defective graphene nanoribbons (GNRs) in the presence of pentagon-octagon-pentagon (5-8-5) defects. Electronic band structure results reveal that 5-8-5 defects in the defective zigzag graphene nanoribbon (ZGNR) is unfavorable for electronic transport. However, such defects in the defective armchair graphene nanoribbon (AGNR) give rise to smaller band gap than that in the pristine AGNR, and eventually results in semiconductor to metal-like transition. The distinct roles of 5-8-5 defects in two kinds of edged-GNR are attributed to the different coupling between {pi}{sup Low-Asterisk} and {pi} subbands influenced by the defects. Our findings indicate the possibility of a new route to improve the electronic transport properties of graphene nanoribbons via tailoring the atomic structures by ion irradiation.

  20. Electron conductance in curved quantum structures

    DEFF Research Database (Denmark)

    Willatzen, Morten; Gravesen, Jens

    2010-01-01

    is computationally fast and provides direct (geometrical) parameter insight as regards the determination of the electron transmission coefficient. We present, as a case study, calculations of the electron conductivity of a helically shaped quantum-wire structure and discuss the influence of the quantum......A differential-geometry analysis is employed to investigate the transmission of electrons through a curved quantum-wire structure. Although the problem is a three-dimensional spatial problem, the Schrodinger equation can be separated into three general coordinates. Hence, the proposed method...

  1. Nano-structured thin films : a Lorentz transmission electron microscopy and electron holography study

    NARCIS (Netherlands)

    Hosson, J.Th.M. de; Raedt, H.A. De; Zhong, ZY; Saka, H; Kim, TH; Holm, EA; Han, YF; Xie, XS

    2005-01-01

    This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the

  2. A study of the deep structure of the energy landscape of glassy polystyrene: the exponential distribution of the energy barriers revealed by high-field electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Bercu, V; Martinelli, M; Massa, C A; Pardi, L A; Leporini, D

    2004-01-01

    The reorientation of one small paramagnetic molecule (spin probe) in glassy polystyrene (PS) is studied by high-field electron spin resonance spectroscopy at two different Larmor frequencies (190 and 285 GHz). The exponential distribution of the energy barriers for the rotational motion of the spin probe is unambiguously evidenced at both 240 and 270 K. The same shape for the distribution of the energy barriers of PS was evidenced by the master curves provided by previous mechanical and light scattering studies. The breadth of the energy barrier distribution of the spin probe is in the range of the estimates of the breadth of the PS energy barrier distribution. The evidence that the deep structure of the energy landscape of PS exhibits the exponential shape of the energy barrier distribution agrees with the results from extreme-value statistics (Bouchaud and Mezard 1997 J. Phys. A: Math. Gen. 30 7997) and the trap model by Bouchaud and co-workers (1996 J. Phys. A: Math. Gen. 29 3847, 2001 Phys. Rev. B 64 104417). (letter to the editor)

  3. Overview of nuclear structure with electrons

    International Nuclear Information System (INIS)

    Geesaman, D. F.

    1999-01-01

    Following a broad summary of the author's view of nuclear structure in 1974, he will discuss the key elements they have learned in the past 25 years from the research at the M.I.T. Bates Linear Accelerator center and its sister electron accelerator laboratories. Electron scattering has provided the essential measurements for most of the progress. The future is bright for nuclear structure research as their ability to realistically calculate nuclear structure observables has dramatically advanced and they are increasingly able to incorporate an understanding of quantum chromodynamics into their picture of the nucleus

  4. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  5. DNA markers reveal genetic structure and localized diversity of ...

    African Journals Online (AJOL)

    uqhdesma

    2016-10-12

    Oct 12, 2016 ... STRUCTURE analysis revealed 4 clusters of genetically ..... 10000 cycles and 50000 Markov Chain Monte Carlo (MCMC) iterations and 10 replicate runs performed for each K value to ..... WL, Lee M, Porter K (2000). Genetic ...

  6. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    International Nuclear Information System (INIS)

    Donius, Amalie E.; Obbard, Rachel W.; Burger, Joan N.; Hunger, Philipp M.; Baker, Ian; Doherty, Roger D.; Wegst, Ulrike G.K.

    2014-01-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment

  7. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Donius, Amalie E., E-mail: amalie.donius@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Obbard, Rachel W., E-mail: Rachel.W.Obbard@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Burger, Joan N., E-mail: ridge.of.the.ancients@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hunger, Philipp M., E-mail: philipp.m.hunger@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Baker, Ian, E-mail: Ian.Baker@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Doherty, Roger D., E-mail: dohertrd@drexel.edu [Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Wegst, Ulrike G.K., E-mail: ulrike.wegst@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States)

    2014-07-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment.

  8. Extremely large magnetoresistance and electronic structure of TmSb

    Science.gov (United States)

    Wang, Yi-Yan; Zhang, Hongyun; Lu, Xiao-Qin; Sun, Lin-Lin; Xu, Sheng; Lu, Zhong-Yi; Liu, Kai; Zhou, Shuyun; Xia, Tian-Long

    2018-02-01

    We report the magnetotransport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at the X point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.

  9. Chemical modulation of electronic structure at the excited state

    Science.gov (United States)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  10. Two-dimensional spectra of electron collisions with acrylonitrile and methacrylonitrile reveal nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Regeta, K., E-mail: khrystyna.regeta@unifr.ch; Allan, M., E-mail: michael.allan@unifr.ch [Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg (Switzerland)

    2015-05-14

    Detailed experimental information on the motion of a nuclear packet on a complex (resonant) anion potential surface is obtained by measuring 2-dimensional (2D) electron energy loss spectra. The cross section is plotted as a function of incident electron energy, which determines which resonant anion state is populated, i.e., along which normal coordinate the wave packet is launched, and of the electron energy loss, which reveals into which final states each specific resonant state decays. The 2D spectra are presented for acrylonitrile and methacrylonitrile, at the incident energy range 0.095-1.0 eV, where the incoming electron is temporarily captured in the lowest π{sup ∗} orbital. The 2D spectra reveal selectivity patterns with respect to which vibrations are excited in the attachment and de-excited in the detachment. Further insight is gained by recording 1D spectra measured along horizontal, vertical, and diagonal cuts of the 2D spectrum. The methyl group in methacrylonitrile increases the resonance width 7 times. This converts the sharp resonances of acrylonitrile into boomerang structures but preserves the essence of the selectivity patterns. Selectivity of vibrational excitation by higher-lying shape resonances up to 8 eV is also reported.

  11. Atomic and electronic structures of novel silicon surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  12. Structural changes induced by electron irradiation

    International Nuclear Information System (INIS)

    Koike, J.; Pedraza, D.F.

    1993-01-01

    Highly oriented pyrolytic graphite was irradiated at room temperature with 300 kV electrons. Transmission electron microscopy and electron energy loss spectroscopy were employed to study the structural changes produced by irradiation. The occurrence of a continuous ring intensity in the selected area diffraction (SAD) pattern obtained on a specimen irradiated with the electron beam parallel to the c-crystallographic axis indicated that microstructural changes had occurred. However, from the SAD pattern obtained for the specimens tilted relative to the irradiation direction, it was found that up to a fluence of 1.1x10 27 e/m 2 graphite remained crystalline. An SAD pattern of a specimen irradiated with the electron beam perpendicular to the c-axis confirmed the persistence of crystalline order. High resolution electron microscopy showed that ordering along the c-axis direction remained. A density reduction of 8.9% due to irradiation was determined from the plasmon frequency shift. A qualitative model is proposed to explain these observations. A new determination of the threshold displacement energy, Ed, of carbon atoms in graphite was done by examining the appearance of a continuous ring in the SAD pattern at various electron energies. A value of 30 eV was obtained whether the incident electron beam was parallel or perpendicular to the c-axis, demonstrating that Ed is independent of the displacement direction

  13. Structural stability and electronic structure of YCu ductile ...

    African Journals Online (AJOL)

    We investigate the structural, elastic and electronic properties of cubic YCu intermetallic compound. Which crystallize in the CsCl- B2 type structure, the investigated using the first principle full potential linearized augmented plane wave method (FP-LAPW) within density functional Theory (DFT). We used generalized ...

  14. Electron acoustic nonlinear structures in planetary magnetospheres

    Science.gov (United States)

    Shah, K. H.; Qureshi, M. N. S.; Masood, W.; Shah, H. A.

    2018-04-01

    In this paper, we have studied linear and nonlinear propagation of electron acoustic waves (EAWs) comprising cold and hot populations in which the ions form the neutralizing background. The hot electrons have been assumed to follow the generalized ( r , q ) distribution which has the advantage that it mimics most of the distribution functions observed in space plasmas. Interestingly, it has been found that unlike Maxwellian and kappa distributions, the electron acoustic waves admit not only rarefactive structures but also allow the formation of compressive solitary structures for generalized ( r , q ) distribution. It has been found that the flatness parameter r , tail parameter q , and the nonlinear propagation velocity u affect the propagation characteristics of nonlinear EAWs. Using the plasmas parameters, typically found in Saturn's magnetosphere and the Earth's auroral region, where two populations of electrons and electron acoustic solitary waves (EASWs) have been observed, we have given an estimate of the scale lengths over which these nonlinear waves are expected to form and how the size of these structures would vary with the change in the shape of the distribution function and with the change of the plasma parameters.

  15. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  16. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  17. Structure of conduction electrons on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tsuneki [Hokkaido Univ., Sapporo (Japan); Kumagai, Jun

    1998-10-01

    The orbital structures of conduction electrons on permethylated oligosilane, Si{sub 2n}(CH{sub 3}){sub 2n+2}(n = 2 - 8), and poly(cyclohexylmethylsilane) have been determined by the electron spin-echo envelope modulation signals of the radical anions of these silanes in a deuterated rigid matrix at 77 K. The conduction electron on permethylated oligosilane is delocalized over the entire main chain, whereas that on poly(cyclohexylmethylsilane) is localized on a part of the main chain composed of about six Si atoms. Quantum-chemical calculations suggest that Anderson localization due to fluctuation of {sigma} conjugation by conformational disorder of the main chain is responsible for the localization of both the conduction electron and the hole. (author)

  18. Electronic structure of MgB2

    Indian Academy of Sciences (India)

    Abstract. Results of ab initio electronic structure calculations on the compound MgB2 using the. FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, c/a ratio and the bulk modulus, all of which are in excellent ...

  19. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Abstract. Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant ...

  20. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    2015-05-29

    May 29, 2015 ... Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the ...

  1. Electronic structure of MgB 2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound MgB2 using the FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  2. The electronic structure of antiferromagnetic chromium

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1981-01-01

    The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...

  3. Electronic structure calculations of calcium silicate hydrates

    International Nuclear Information System (INIS)

    Sterne, P.A.; Meike, A.

    1995-11-01

    Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases

  4. Electronic structure and electron dynamics at Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Max-Born-Institut, Berlin (Germany); Kutschera, M.; Schmidt, R.; Orth, C.; Fauster, T. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Rohlfing, M. [International University Bremen, School of Engineering and Science, P.O. Box 750 561, Bremen (Germany)

    2005-02-01

    The electronic structure and electron dynamics at a Si(100) surface is studied by two-photon photoemission (2PPE). At 90 K the occupied D{sub up} dangling-bond state is located 150{+-}50 meV below the valence-band maximum (VBM) at the center of the surface Brillouin zone anti {gamma} and exhibits an effective hole mass of (0.5{+-}0.15)m{sub e}. The unoccupied D{sub down} band has a local minimum at anti {gamma} at 650{+-}50 meV above the VBM and shows strong dispersion along the dimer rows of the c(4 x 2) reconstructed surface. At 300 K the D{sub down} position shifts comparable to the Si conduction-band minimum by 40 meV to lower energies but the dispersion of the dangling-bond states is independent of temperature. The surface band bending for p-doped silicon is less than 30 meV, while acceptor-type defects cause significant and preparation-dependent band bending on n-doped samples. 2PPE spectra of Si(100) are dominated by interband transitions between the occupied and unoccupied surface states and emission out of transiently and permanently charged surface defects. Including electron-hole interaction in many-body calculations of the quasi-particle band structure leads us to assign a dangling-bond split-off state to a quasi-one-dimensional surface exciton with a binding energy of 130 meV. Electrons resonantly excited to the unoccupied D{sub down} dangling-bond band with an excess energy of about 350 meV need 1.5{+-}0.2 ps to scatter via phonon emission to the band bottom at anti {gamma} and relax within 5 ps with an excited hole in the occupied surface band to form an exciton living for nanoseconds. (orig.)

  5. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  6. Diamond surface: atomic and electronic structure

    International Nuclear Information System (INIS)

    Pate, B.B.

    1984-01-01

    Experimental studies of the diamond surface (with primary emphasis on the (111) surface) are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy (both the total electron yield (TEY) and Auger electron yield (AEY) techniques) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy (in collaboration with Waclawski, Pierce, Swanson, and Celotta at the National Bureau of Standards) and photon stimulated ion desorption (PSID) yield at photon energies near the carbon k-edge (hv greater than or equal to 280 eV). Both EELS and PSID verify that the mechanically polished 1 x 1 surface is hydrogen terminated and also that the reconstructed surface is hydrogen free. The (111) 2 x 2/2 x 1 reconstructed surface is obtained from the hydrogenated (111) 1 x 1:H surface by annealing to approx. = 1000 0 C. We observe occupied intrinsic surface states and a surface chemical shift (0.95 +- 0.1 eV) to lower binding energy of the carbon 1s level on the hydrogen-free reconstructed surface. Atomic hydrogen is found to be reactive with the reconstructed surface, while molecular hydrogen is relatively inert. Exposure of the reconstructed surface to atomic hydrogen results in chemisorption of hydrogen and removal of the intrinsic surface state emission in and near the band gap region

  7. Electronic structure and electron momentum density in TiSi

    Energy Technology Data Exchange (ETDEWEB)

    Ghaleb, A.M. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq); Mohammad, F.M. [Department of Physics, College of Science, University of Tikreet, Tikreet (Iraq); Sahariya, Jagrati [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Sharma, Mukesh [Physics Division, Forensic Science Laboratory, Jaipur, Rajasthan (India); Ahuja, B.L., E-mail: blahuja@yahoo.com [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India)

    2013-03-01

    We report the electron momentum density in titanium monosilicide using {sup 241}Am Compton spectrometer. Experimental Compton profile has been compared with the theoretical profiles computed using linear combination of atomic orbitals (LCAO). The energy bands, density of states and Fermi surface structures of TiSi are reported using the LCAO and the full potential linearized augmented plane wave methods. Theoretical anisotropies in directional Compton profiles are interpreted in terms of energy bands. To confirm the conducting behavior, we also report the real space analysis of experimental Compton profile of TiSi.

  8. Revealing electronic open quantum systems with subsystem TDDFT

    Science.gov (United States)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-01

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  9. Revealing electronic open quantum systems with subsystem TDDFT.

    Science.gov (United States)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  10. Structure defects in malachite revealed by positron annihilation

    International Nuclear Information System (INIS)

    Geffroy, B.; Diallo, I.; Paulin, R.

    1984-01-01

    Positron lifetime is measured between 77 and 400 K in two malachite samples with different mineralogical structures. The complex spectrum found in zoned malachite reveals a microporosity which remains stable in this range of temperature. Besides, above 200 K, equilibrium defects appear. Their formation energy is estimated to be Esub(f) = 0.27 +- 0.02 eV [fr

  11. Structure defects in malachite revealed by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Geffroy, B; Diallo, I; Paulin, R [Institut National des Sciences et Techniques Nucleaires, CEN/Saclay, 91 - Gif-sur-Yvette (France)

    1984-01-01

    Positron lifetime is measured between 77 and 400 K in two malachite samples with different mineralogical structures. The complex spectrum found in zoned malachite reveals a microporosity which remains stable in this range of temperature. Besides, above 200 K, equilibrium defects appear. Their formation energy is estimated to be Esub(f) = 0.27 +- 0.02 eV.

  12. 3D Printed structural electronics: embedding and connecting electronic components into freeform electronic devices

    NARCIS (Netherlands)

    Maalderink, H.H.H.; Bruning, F.B.J.; Schipper, M.M.R. de; Werff, J.J.J. van der; Germs, W.W.C.; Remmers, J.J.C.; Meinders, E.R.

    2018-01-01

    The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the

  13. 3D Printed structural electronics : embedding and connecting electronic components into freeform electronic devices

    NARCIS (Netherlands)

    Maalderink, H.H.; Bruning, F.B.J.; de Schipper, M.R.; van der Werff, J.J.; Germs, W.C.; Remmers, J.J.C.; Meinders, E.R.

    2018-01-01

    The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the

  14. Electronic structure of super heavy atoms revisited

    International Nuclear Information System (INIS)

    Gitman, D M; Levin, A D; Tyutin, I V; Voronov, B L

    2013-01-01

    The electronic structure of an atom with Z ⩽ Z c = 137 can be described by the Dirac equation with the Coulomb field of a point charge Ze. It was believed that the Dirac equation with Z > Z c poses difficulties because the formula for the lower energy level of the Dirac Hamiltonian formally gives imaginary eigenvalues. But a strict mathematical consideration shows that difficulties with the electronic spectrum for Z > Z c do not arise if the Dirac Hamiltonian is correctly defined as a self-adjoint operator. In this paper, we briefly summarize the main physical results of that consideration in a form suitable for physicists with some additional new details and numerical calculations of the electronic spectra. (comment)

  15. Electronic Structure of Strongly Correlated Materials

    CERN Document Server

    Anisimov, Vladimir

    2010-01-01

    Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

  16. Surface morphology and electronic structure of Ni/Ag(100)

    International Nuclear Information System (INIS)

    Hite, D. A.; Kizilkaya, O.; Sprunger, P. T.; Howard, M. M.; Ventrice, C. A. Jr.; Geisler, H.; Zehner, D. M.

    2000-01-01

    The growth morphology and electronic structure of Ni on Ag(100) has been studied with scanning tunneling microscopy (STM) and synchrotron based angle resolved photoemission spectroscopy. At deposition temperatures at or below 300 K, STM reveals Ni cluster growth on the surface along with some subsurface growth. Upon annealing to 420 K, virtually all Ni segregates into the subsurface region forming embedded nanoclusters. The electronic structure of Ni d bands in the unannealed surface shows dispersion only perpendicular to the surface whereas the annealed surface has Ni d bands that exhibit a three-dimensional-like structure. This is a result of the increased Ni d-Ag sp hybridization bonding and increased coordination of the embedded Ni nanoclusters. (c) 2000 American Vacuum Society

  17. Electronic structure of Pu carbides: photoelectron spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Gouder, T.; Havela, L.; Shick, Alexander; Huber, F.

    2008-01-01

    Roč. 403, č. 5-9 (2008), s. 852-853 ISSN 0921-4526 R&D Projects: GA AV ČR(CZ) IAA100100530 Grant - others:EU(XE) RITA -CT-2006-026176 Institutional research plan: CEZ:AV0Z10100520 Keywords : photoemission * electronic structure * plutonium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.822, year: 2008

  18. Structural and electronic properties of thallium compounds

    International Nuclear Information System (INIS)

    Paliwal, Neetu; Srivastava, Vipul

    2016-01-01

    The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a_0), bulk modulus (B_0), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.

  19. Structural and electronic properties of thallium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Neetu, E-mail: neetumanish@gmail.com [Department of Physics, AISECT University Bhopal, 464993 (India); Srivastava, Vipul [Department of Engineering Physics, NRI Institute of Research & Technology, Raisen Road, Bhopal, 462021 (India)

    2016-05-06

    The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.

  20. Structural dynamics of electronic and photonic systems

    CERN Document Server

    Suhir, Ephraim; Steinberg, David S

    2011-01-01

    The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.)  In-depth discussion from a mechanical engineer's viewpoint will be conducte

  1. Correlated electronic structure of CeN

    Energy Technology Data Exchange (ETDEWEB)

    Panda, S.K., E-mail: swarup.panda@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Di Marco, I. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Delin, A. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); KTH Royal Institute of Technology, School of Information and Communication Technology, Department of Materials and Nano Physics, Electrum 229, SE-164 40 Kista (Sweden); KTH Royal Institute of Technology, Swedish e-Science Research Center (SeRC), SE-100 44 Stockholm (Sweden); Eriksson, O., E-mail: olle.eriksson@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden)

    2016-04-15

    Highlights: • The electronic structure of CeN is studied within the GGA+DMFT approach using SPTF and Hubbard I approximation. • 4f spectral functions from SPTF and Hubbard I are coupled to explain the various spectroscopic manifestations of CeN. • The calculated XPS and BIS spectra show good agreement with the corresponding experimental spectra. • The contribution of the various l-states and the importance of cross-sections for the photoemission process are analyzed. - Abstract: We have studied in detail the electronic structure of CeN including spin orbit coupling (SOC) and electron–electron interaction, within the dynamical mean-field theory combined with density-functional theory in generalized gradient approximation (GGA+DMFT). The effective impurity problem has been solved through the spin-polarized T-matrix fluctuation-exchange (SPTF) solver and the Hubbard I approximation (HIA). The calculated l-projected atomic partial densities of states and the converged potential were used to obtain the X-ray-photoemission-spectra (XPS) and Bremstrahlung Isochromat spectra (BIS). Following the spirit of Gunnarsson–Schonhammer model, we have coupled the SPTF and HIA 4f spectral functions to explain the various spectroscopic manifestations of CeN. Our computed spectra in such a coupled scheme explain the experimental data remarkably well, establishing the validity of our theoretical model in analyzing the electronic structure of CeN. The contribution of the various l-states in the total spectra and the importance of cross sections are also analyzed in detail.

  2. Electronic structure theory of the superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Eliav, Ephraim, E-mail: ephraim@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel); Fritzsche, Stephan, E-mail: s.fritzsche@gsi.de [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena (Germany); Kaldor, Uzi, E-mail: kaldor@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel)

    2015-12-15

    High-accuracy calculations of atomic properties of the superheavy elements (SHE) up to element 122 are reviewed. The properties discussed include ionization potentials, electron affinities and excitation energies, which are associated with the spectroscopic and chemical behavior of these elements, and are therefore of considerable interest. Accurate predictions of these quantities require high-order inclusion of relativity and electron correlation, as well as large, converged basis sets. The Dirac–Coulomb–Breit Hamiltonian, which includes all terms up to second order in the fine-structure constant α, serves as the framework for the treatment; higher-order Lamb shift terms are considered in some selected cases. Electron correlation is treated by either the multiconfiguration self-consistent-field approach or by Fock-space coupled cluster theory. The latter is enhanced by the intermediate Hamiltonian scheme, allowing the use of larger model (P) spaces. The quality of the calculations is assessed by applying the same methods to lighter homologs of the SHEs and comparing with available experimental information. Very good agreement is obtained, within a few hundredths of an eV, and similar accuracy is expected for the SHEs. Many of the properties predicted for the SHEs differ significantly from what may be expected by straightforward extrapolation of lighter homologs, demonstrating that the structure and chemistry of SHEs are strongly affected by relativity. The major scientific challenge of the calculations is to find the electronic structure and basic atomic properties of the SHE and assign its proper place in the periodic table. Significant recent developments include joint experimental–computational studies of the excitation spectrum of Fm and the ionization energy of Lr, with excellent agreement of experiment and theory, auguring well for the future of research in the field.

  3. Spectral-Product Methods for Electronic Structure Calculations (Preprint)

    National Research Council Canada - National Science Library

    Langhoff, P. W; Mills, J. E; Boatz, J. A

    2006-01-01

    .... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...

  4. Spectral-Product Methods for Electronic Structure Calculations (Postprint)

    National Research Council Canada - National Science Library

    Langhoff, P. W; Hinde, R. J; Mills, J. D; Boatz, J. A

    2007-01-01

    .... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...

  5. Electronic structure and superconductivity of europium

    International Nuclear Information System (INIS)

    Nixon, Lane W.; Papaconstantopoulos, D.A.

    2010-01-01

    We have calculated the electronic structure of Eu for the bcc, hcp, and fcc crystal structures for volumes near equilibrium up to a calculated 90 GPa pressure using the augmented-plane-wave method in the local-density approximation. The frozen-core approximation was used with a semi-empirical shift of the f-states energies in the radial Schroedinger equation to move the occupied 4f valence states below the Γ 1 energy and into the core. This shift of the highly localized f-states yields the correct europium phase ordering with lattice parameters and bulk moduli in good agreement with experimental data. The calculated superconductivity properties under pressure for the bcc and hcp structures are also found to agree with and follow a T c trend similar to recent measurement by Debessai et al.

  6. Electromagnetic Radiation of Electrons in Periodic Structures

    CERN Document Server

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation a...

  7. Boson structure functions from inelastic electron scattering

    International Nuclear Information System (INIS)

    De Jager, C.W.

    1986-01-01

    The even /sup 104-110/Pd isotopes and /sup 196/Pt have been investigated at NIKHEF-K by high-resolution inelastic electron scattering. A new IBA-2 calculation has been performed for the Pd isotopes, in which the ratio of the proton and neutron coupling constants is taken from pion scattering. One set of boson structure functions sufficed for the description of the first and second E2-excitations in all Pd isotopes. The data showed no sensitivity for different structure functions for proton and neutron bosons. A preliminary analysis of a number of negative parity states (3/sup -/,5/sup -/ and 7/sup -/), observed in /sup 196/Pt, was performed through the introduction of an f-boson. The first E4-excitation in the palladium isotopes can be reasonably described with a β-structure function, but all other E4-excitations require the introduction of g-boson admixtures

  8. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  9. Electronic Structures of LNA Phosphorothioate Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Henrik G. Bohr

    2017-09-01

    Full Text Available Important oligonucleotides in anti-sense research have been investigated in silico and experimentally. This involves quantum mechanical (QM calculations and chromatography experiments on locked nucleic acid (LNA phosphorothioate (PS oligonucleotides. iso-potential electrostatic surfaces are essential in this study and have been calculated from the wave functions derived from the QM calculations that provide binding information and other properties of these molecules. The QM calculations give details of the electronic structures in terms of e.g., energy and bonding, which make them distinguish or differentiate between the individual PS diastereoisomers determined by the position of sulfur atoms. Rules are derived from the electronic calculations of these molecules and include the effects of the phosphorothioate chirality and formation of electrostatic potential surfaces. Physical and electrochemical descriptors of the PS oligonucleotides are compared to the experiments in which chiral states on these molecules can be distinguished. The calculations demonstrate that electronic structure, electrostatic potential, and topology are highly sensitive to single PS configuration changes and can give a lead to understanding the activity of the molecules. Keywords: LNA phosphorothioate, DNA/LNA oligonucleotide, diastereoisomers, Hartree-Fock calculations, iso-potential surface, anion chromatograms

  10. Projected quasiparticle theory for molecular electronic structure

    Science.gov (United States)

    Scuseria, Gustavo E.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Samanta, Kousik; Ellis, Jason K.

    2011-09-01

    We derive and implement symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations and apply them to the molecular electronic structure problem. All symmetries (particle number, spin, spatial, and complex conjugation) are deliberately broken and restored in a self-consistent variation-after-projection approach. We show that the resulting method yields a comprehensive black-box treatment of static correlations with effective one-electron (mean-field) computational cost. The ensuing wave function is of multireference character and permeates the entire Hilbert space of the problem. The energy expression is different from regular HFB theory but remains a functional of an independent quasiparticle density matrix. All reduced density matrices are expressible as an integration of transition density matrices over a gauge grid. We present several proof-of-principle examples demonstrating the compelling power of projected quasiparticle theory for quantum chemistry.

  11. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Swarts, C.A.

    1979-01-01

    The results of various theories for the angular distribution of electrons photoemitted from the outermost p-shell of rare gas atoms are compared. The theories compared are the local density theories of Slater (X/sub α/) and of Hohenberg, Kohn and Sham, the pseudopotential method, Hartree-Fock theory as evaluated by Kennedy and Manson, and Amusia's random phase approximation with exchange (RPAE). Extended Huekel theory is applied to GaAs, GaP, and to the nitrogen isoelectronic trap in GaAs and GaP. The computer perfect crystal band structures are found to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are calculated using a cluster model. By means of model calculations for an independent electron metal, exact lineshapes are obtained for the photon absorption, emission and photoemission spectra of deep core states. 97 references

  12. Site-specific electronic structure analysis by channeling EELS and first-principles calculations.

    Science.gov (United States)

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Yamamoto, Yu; Ikeno, Hirokazu; Yoshioka, Satoru; Tanaka, Isao

    2006-01-01

    Site-specific electronic structures were investigated by electron energy loss spectroscopy (EELS) under electron channeling conditions. The Al-K and Mn-L(2,3) electron energy loss near-edge structure (ELNES) of, respectively, NiAl2O4 and Mn3O4 were measured. Deconvolution of the raw spectra with the instrumental resolution function restored the blunt and hidden fine features, which allowed us to interpret the experimental spectral features by comparing with theoretical spectra obtained by first-principles calculations. The present method successfully revealed the electronic structures specific to the differently coordinated cationic sites.

  13. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy† †Electronic supplementary information (ESI) available: Synthesis schemes, experimental methods, NMR spectra, X-ray crystallographic information, emission spectra, cyclic voltammetry, electronic structure calculations, data analysis and numerical methods, and other additional figures. CCDC 1561879. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04055e

    Science.gov (United States)

    Kohler, Lars; Hadt, Ryan G.; Zhang, Xiaoyi; Liu, Cunming

    2017-01-01

    The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(i) bis(phenanthroline)/ruthenium(ii) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(i)–Ru(ii) analogs of the homodinuclear Cu(i)–Cu(i) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations. PMID:29629153

  14. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Miller, D.L.

    1979-01-01

    KLL Auger transition rates for helium are computed using simple atomic orbital wavefunctions which take into account the difference in average electron--electron repulsion of initial and final states. The results are consistent with transition rates computed by other authors using a variety of many-electron techniques. It is suggested that wavefunctions determined in the manner described provide a useful representation of the autoionizing state within the first Bohr radius. A method for extracting atomic pseudopotentials from photoelectron angular distributions is described and applied photoionization of the outermost p shells of Ar, Kr, and Xe and to the 4d shell of Xe. The pseudopotentials obtained reproduce the data, and also predict accurate cross sections and phase shifts for photoelectron energies up to 100 eV. It is suggested that the pseudopotentials aptly mimic the effects of intrashell electron--electron correlations in the photoionization process. The extended Hueckel theory is applied to the nitrogen trap in GaAs and GaP. Perfect crystal band structures are computed and are shown to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are computed using an extended Hueckel cluster model. In each case the model predicts two states within the band gap, in contrast to experiment which detects one impurity state in GaP and none in GaAs. It is suggested that the choice of cluster used unrealistically concentrates states near the conduction band edge on the central atom

  15. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Miller, D.L.

    1979-01-01

    KLL Auger transition rates for helium are computed using simple atomic orbital wavefunctions which take into account the difference in average electron-electron repulsion of initial and final states. The results are consistent with transition rates computed by other authors using a variety of many-electron techniques. It is suggested that wavefunctions determined in the manner described provide a useful representation of the autoionizing state within the first Bohr radius. A method for extracting atomic psuedopotentials from photoelectron angular distributions is described and applied photoionization of the outermost p shells of Ar, Kr, and Xe and to the 4d shell of Xe. The pseudopotentials obtained reproduce the data, and also predict accurate cross sections and phase shifts for photoelectron energies up to 100 eV. It is suggested that the pseudopotentials aptly mimic the effects of intrashell electron-electron correlations in the photoionization process. The extended Hueckel theory is applied to the nitrogen trap in GaAs and GaP. Perfect crystal band structures are computed and are shown to be in reasonable agreement with those computed with empirical psuedopotentials. Nitrogen impurity levles in GaAs and GaP are computed using an extended Hueckel cluster model. In each case the model predicts two states within the band gap, in contrast to experiment which detects one impurity state in GaP and none in GaAs. It is suggested that the choice of cluster used unrealistically concentrates states near the conduction band edge on the central atom

  16. Recent research directions in Fribourg: nuclear dynamics in resonances revealed by 2-dimensional EEL spectra, electron collisions with ionic liquids and electronic excitation of pyrimidine

    International Nuclear Information System (INIS)

    Allan, M.; Regeta, K.; Gorfinkiel, J.D.; Masin, Z.; Grimme, S.; Bannwarth, C.

    2016-01-01

    The article briefly reviews three subjects recently investigated in Fribourg: 1) electron collisions with surfaces of ionic liquids, 2) two-dimensional (2D) electron energy loss spectra and 3) resonances in absolute cross sections for electronic excitation of unsaturated compounds. Electron energy loss spectra of four ionic liquids revealed a number of excited states, including triplet states. A solution of a dye in an ionic liquid showed an energy-loss band of the solute, but not in all ionic liquids. 2D spectra reveal state-to-state information (given resonance to given final state) and are shown to be an interesting means to gain insight into dynamics of nuclear motion in resonances. Absolute cross sections for pyrimidine are reported as a function of scattering angle and as a function of electron energy. They reveal resonant structure which was reproduced very nicely by R-matrix calculations. The calculation provided an assignment of the resonances which reveals common patterns in compounds containing double bonds. (authors)

  17. Limitations of superfluid helium droplets as host system revealed by electronic spectroscopy of embedded molecules

    Energy Technology Data Exchange (ETDEWEB)

    Premke, Tobias

    2016-02-19

    Superfluid helium nanodroplets serve a unique cryogenic host system ideal to prepare cold molecules and clusters. Structures as well as dynamic processes can be examined by means of high resolution spectroscopy. Dopant spectra are accompanied by helium-induced spectroscopic features which reveal information on the dopant to helium interaction. For this reason the experimental research focuses on the investigation of such helium-induced effects in order to provide new information on the microsolvation inside the droplets. Since the quantitative understanding of helium-induced spectral features is essential to interpret molecular spectra recorded in helium droplets, this study contributes further experimental details on microsolvation in superfluid helium droplets. For this purpose two contrary systems were examined by means of high resolution electronic spectroscopy. The first one, phthalocyanine (Pc), is a planar organic molecule offering a huge and planar surface to the helium atoms and thus, the non-superfluid helium solvation layer can form different structures. The second system is iodine and in contrast to Pc it is of simple molecular shape. That means that in this case different complex structures of the non-superfluid helium solvation layer and the dopant can be expected to be avoided. Thus, both molecules should show clear differences in their microsolvation behavior. In this work a detailed examination of different spectroscopic properties of phthalocyanine is given by means of fluorescence excitation and dispersed emission spectroscopy. It raises legitimate doubts about the assignment of experimentally observed signals to features predicted by the model of the microsolvation. Even though there are no experimental observations which disprove the empirical model for the solvation in helium droplets, an unambiguous assignment of the helium-induced spectroscopic structures is often not possible. In the second part of this work, the investigation of the

  18. Electronic structure of defects in semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Haussy, Bernard; Ganghoffer, Jean Francois

    2002-01-01

    Full text.heterojunctions and semiconductors and superlattices are well known and well used by people interested in optoelectronics communications. Components based on the use of heterojunctions are interesting for confinement of light and increase of quantum efficiency. An heterojunction is the contact zone between two different semiconductors, for example GaAs and Ga 1-x Al x As. Superlattices are a succession of heterojunctions (up to 10 or 20). These systems have been the subjects of many experiments ao analyse the contact between semiconductors. They also have been theoretically studied by different types of approach. The main result of those studies is the prediciton of band discontinuities. Defects in heterojunctions are real traps for charge carriers; they can affect the efficiency of the component decreasing the currents and the fluxes in it. the knowledge of their electronic structure is important, a great density of defects deeply modifies the electronic structure of the whole material creating real new bands of energy in the band structure of the component. in the first part of this work, we will describe the heterostructure and the defect in terms of quantum wells and discrete levels. This approach allows us to show the role of the width of the quantum well describing the structure but induces specific behaviours due to the one dimensional modelling. Then a perturbative treatment is proposed using the Green's functions formalism. We build atomic chains with different types of atoms featuring the heterostructure and the defect. Densities of states of a structure with a defect and levels associated to the defect are obtained. Results are comparable with the free electrons work, but the modelling do not induce problems due to a one dimensional approach. To extend our modelling, a three dimensions approach, based on a cavity model, is investigated. The influence of the defect, - of hydrogenoid type - introduced in the structure, is described by a cavity

  19. Syntheses and electronic structures of decamethylmetallocenes

    International Nuclear Information System (INIS)

    Robbins, J.L.

    1981-04-01

    The synthesis of decamethylmanganocene [(eta-C 5 (CH 3 ) 5 ) 2 Mn or (Me 5 Cp) 2 Mn)] is described. Magnetic susceptibility and electron paramagnetic resonance (EPR) studies show that (Me 5 Cp) 2 Mn is a low-spin, 17-electron compound with an orbitally degenerate, 2 E/sub 2g/ [e/sub 2g/ 3 a/sub 1g/ 2 ] ground state. An x-ray crystallographic study of (Me 5 Cp) 2 Mn shows that it is a monomeric, D/sub 5d/ decamethylmetallocene with metal to ring carbon distances that are about 0.3 A shorter than those determined for high-spin manganocenes. The syntheses of new (Me 5 Cp) 2 M (M = Mg,V,Cr,Co, and Ni) and [(Me 5 Cp) 2 M]PF 6 (M = Cr,Co, and Ni) compounds are described. In addition, a preparative route to a novel, dicationic decamethylmetallocene, [(Me 5 Cp) 2 Ni](PF 6 ) 2 is reported. Infrared, nuclear magnetic resonance, magnetic susceptibility, and/or x-ray crystallographic studies indicate that all the above compounds are D/sub 5d/ or D/sub 5h/ decamethylmetallocenes with low-spin electronic configurations. Cyclic voltammetry studies verify the reversibility and the one-electron nature of the (Me 5 Cp) 2 M → [(Me 5 Cp) 2 M] + (M = Cr,Mn,Fe,Co,Ni), [(Me 5 Cp) 2 Mn] - → (Me 5 Cp) 2 Mn and [(Me 5 Cp) 2 Ni] + → [Me 5 Cp) 2 Ni] 2+ redox reactions. These studies reveal that the neutral decamethylmetallocenes are much more easily oxidized than their metallocene counterparts. This result attests to the electron-donating properties of the ten substituent methyl groups. Proton and carbon-13 NMR data are reported for the diamagnetic Mg(II), Mn(I), Fe(II), Co(III), and Ni(IV) decamethylmetallocenes and for [(Me 5 Cp) 2 V(CO) 2 ] + . The uv-visible absorption spectra of the 15-, 18- and 20- electron decamethylmetallocenes are also reported

  20. Syntheses and electronic structures of decamethylmetallocenes

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, J.L.

    1981-04-01

    The synthesis of decamethylmanganocene ((eta-C/sub 5/(CH/sub 3/)/sub 5/)/sub 2/Mn or (Me/sub 5/Cp)/sub 2/Mn)) is described. Magnetic susceptibility and electron paramagnetic resonance (EPR) studies show that (Me/sub 5/Cp)/sub 2/Mn is a low-spin, 17-electron compound with an orbitally degenerate, /sup 2/E/sub 2g/ (e/sub 2g//sup 3/ a/sub 1g//sup 2/) ground state. An x-ray crystallographic study of (Me/sub 5/Cp)/sub 2/Mn shows that it is a monomeric, D/sub 5d/ decamethylmetallocene with metal to ring carbon distances that are about 0.3 A shorter than those determined for high-spin manganocenes. The syntheses of new (Me/sub 5/Cp)/sub 2/M (M = Mg,V,Cr,Co, and Ni) and ((Me/sub 5/Cp)/sub 2/M)PF/sub 6/ (M = Cr,Co, and Ni) compounds are described. In addition, a preparative route to a novel, dicationic decamethylmetallocene, ((Me/sub 5/Cp)/sub 2/Ni)(PF/sub 6/)/sub 2/ is reported. Infrared, nuclear magnetic resonance, magnetic susceptibility, and/or x-ray crystallographic studies indicate that all the above compounds are D/sub 5d/ or D/sub 5h/ decamethylmetallocenes with low-spin electronic configurations. Cyclic voltammetry studies verify the reversibility and the one-electron nature of the (Me/sub 5/Cp)/sub 2/M ..-->.. ((Me/sub 5/Cp)/sub 2/M)/sup +/ (M = Cr,Mn,Fe,Co,Ni), ((Me/sub 5/Cp)/sub 2/Mn)/sup -/ ..-->.. (Me/sub 5/Cp)/sub 2/Mn and ((Me/sub 5/Cp)/sub 2/Ni)/sup +/ ..-->.. (Me/sub 5/Cp)/sub 2/Ni)/sup 2 +/ redox reactions. These studies reveal that the neutral decamethylmetallocenes are much more easily oxidized than their metallocene counterparts. This result attests to the electron-donating properties of the ten substituent methyl groups. Proton and carbon-13 NMR data are reported for the diamagnetic Mg(II), Mn(I), Fe(II), Co(III), and Ni(IV) decamethylmetallocenes and for ((Me/sub 5/Cp)/sub 2/V(CO)/sub 2/)/sup +/. The uv-visible absorption spectra of the 15-, 18- and 20- electron decamethylmetallocenes are also reported.

  1. Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays

    DEFF Research Database (Denmark)

    Keller, Adrian; Rackwitz, Jenny; Cauët, Emilie

    2014-01-01

    The electronic structure of DNA is determined by its nucleotide sequence, which is for instance exploited in molecular electronics. Here we demonstrate that also the DNA strand breakage induced by low-energy electrons (18 eV) depends on the nucleotide sequence. To determine the absolute cross sec...

  2. Atomic Reference Data for Electronic Structure Calculations

    CERN Document Server

    Kotochigova, S; Shirley, E L

    We have generated data for atomic electronic structure calculations, to provide a standard reference for results of specified accuracy under commonly used approximations. Results are presented here for total energies and orbital energy eigenvalues for all atoms from H to U, at microHartree accuracy in the total energy, as computed in the local-density approximation (LDA) the local-spin-density approximation (LSD); the relativistic local-density approximation (RLDA); and scalar-relativistic local-density approximation (ScRLDA).

  3. The electronic structure of impurities in semiconductors

    CERN Multimedia

    Nylandsted larsen, A; Svane, A

    2002-01-01

    The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\

  4. Cobalamins uncovered by modern electronic structure calculations

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta; Ryde, Ulf

    2009-01-01

    electronic-structure calculations, in particular density functional methods, the understanding of the molecular mechanism of cobalamins has changed dramatically, going from a dominating view of trans-steric strain effects to a much more complex view involving an arsenal of catalytic strategies. Among...... these are cis-steric distortions, electrostatic stabilization of radical products, the realization that nucleotide units can serve as polar handles, and the careful design of the active sites, with polar residues in the radical enzymes and non-polar residues in the transferases. Together, these strategies...

  5. Electronic golden structure of the periodic chart

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Leonard J. [Interdisciplinary Research Club, Monroeville, PA (United States)], E-mail: LJMalinowski@gmail.com

    2009-11-15

    The golden ratio has been studied since the ancient Greeks due to its inherent symmetry and aesthetic beauty, especially in the five Platonic Solids. The golden mean is now established as a pillar of El Naschie's E infinity where it achieves the physical manifestation of 0.618 034 MeV. The largest atomic electron orbital total energies average to the golden mean energy. This paper examines the golden ratio in order to expand upon a century old attempt to produce a relatively static, visual, geometric model of atomic structure.

  6. Electronic golden structure of the periodic chart

    International Nuclear Information System (INIS)

    Malinowski, Leonard J.

    2009-01-01

    The golden ratio has been studied since the ancient Greeks due to its inherent symmetry and aesthetic beauty, especially in the five Platonic Solids. The golden mean is now established as a pillar of El Naschie's E infinity where it achieves the physical manifestation of 0.618 034 MeV. The largest atomic electron orbital total energies average to the golden mean energy. This paper examines the golden ratio in order to expand upon a century old attempt to produce a relatively static, visual, geometric model of atomic structure.

  7. Electronic structure of A15 compounds

    International Nuclear Information System (INIS)

    Pickett, W.E.

    1980-01-01

    For the past twenty-five years compounds with the A15 crystal structure have dominated the class of high temperature superconductors. The crystal structure of an A15 compound A 3 B is cubic (space group O/sub h/ 3 ). However, the site symmetry (D/sub 2d/) of the A atoms is much lower than cubic, an unusual occurrence in cubic binary compounds. Variations on this theme have supplied the basis of many theoretical models of the anomalous temperature (T) dependence of normal state properties and the low temperature cubic reversible tetragonal structural transformations which accompany high values of T/sub c/ in A15 compounds. In this paper results of self-consistent pseudopotential band structure calculations are used to assess some important aspects of the unique and unusual behavior in A15 compounds: (1) the role of the B atom in determining the overall electronic structure will be shown to be important; (2) the effect of the low site symmetry of the A atom on the charge density and potential will be assessed; and (3) the bonding will be shown to be metallic-covalent with no significant A-B charge transfer

  8. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    Bruneval, Fabien

    2014-01-01

    This 'Habilitation a diriger des Recherches' memoir presents most of my scientific activities during the past 7 years, in the field of electronic structure calculations of defects in solids. Point defects (vacancies, interstitials, impurities) in functional materials are a key parameter to determine if these materials will actually fill the role they have been assigned or not. Indeed, the presence of defects cannot be avoided when the temperature is increased or when the material is subjected to external stresses, such as irradiation in the nuclear reactors and in artificial satellites with solar radiations. However, in many cases, defects are introduced in the materials on purpose to tune the electronic transport, optical or even magnetic properties. This procedure is called the doping of semiconductors, which is the foundation technique for transistors, diodes, or photovoltaic cells. However, doping is not always straightforward and unexpected features may occur, such as doping asymmetry or Fermi level pinning, which can only be explained by complex phenomena involving different types of defects or complexes of defects. In this context, the calculations of electronic structure ab initio is an ideal tool to complement the experimental observations, to gain the understanding of phenomena at the atomic level, and even to predict the properties of defects. The power of the ab initio calculations comes from their ability to describe any system of electrons and nuclei without any specific adjustment. But although there is a strong need for numerical simulations in this field, the ab initio calculations for defects are still under development as of today. The work presented in this memoir summarizes my contributions to methodological developments on this subject. These developments have followed two main tracks. The first topic is the better understanding of the unavoidable finite size effects. Indeed, defects in semiconductors or insulators are generally present in

  9. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    Science.gov (United States)

    Mishra, P.; Lohani, H.; Kundu, A. K.; Patel, R.; Solanki, G. K.; Menon, Krishnakumar S. R.; Sekhar, B. R.

    2015-07-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ-Z, Γ-Y and Γ-T symmetry directions. The valence band maximum occurs nearly midway along the Γ-Z direction, at a binding energy of -0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ-T direction. Detailed electronic structure analysis reveals the significance of the cation-anion 4p orbitals hybridization in the valence band dispersion of IV-VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis.

  10. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    International Nuclear Information System (INIS)

    Mishra, P; Lohani, H; Sekhar, B R; Kundu, A K; Menon, Krishnakumar S R; Patel, R; Solanki, G K

    2015-01-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ–Z, Γ–Y and Γ–T symmetry directions. The valence band maximum occurs nearly midway along the Γ–Z direction, at a binding energy of −0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4p z orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ–T direction. Detailed electronic structure analysis reveals the significance of the cation–anion 4p orbitals hybridization in the valence band dispersion of IV–VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis. (paper)

  11. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... of hybridization, relativistic band shifts, and spin-orbit coupling by the example of Os. By making use of parameters derived from the muffin-tin potential, we discuss trends in the positions and widths of the energy bands, especially the d bands, as a function of the location in the periodic table. The densities...... of states of the four metals are presented, and the calculated heat capacities compared with experiment. The Fermi surfaces of both Ru and Os are found to be in excellent quantitative agreement with de Haas-van Alphen measurements, indicating that the calculated d-band position is misplaced by less than 10...

  12. Electronic structure of multi-walled carbon fullerenes

    International Nuclear Information System (INIS)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V; Kidd, Tim E; Stollenwerk, Andrew J

    2017-01-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures. (paper)

  13. Experimental Benchmarking of Pu Electronic Structure

    International Nuclear Information System (INIS)

    Tobin, J.G.; Moore, K.T.; Chung, B.W.; Wall, M.A.; Schwartz, A.J.; Ebbinghaus, B.B.; Butterfield, M.T.; Teslich, N.E. Jr.; Bliss, R.A.; Morton, S.A.; Yu, S.W.; Komesu, T.; Waddill, G.D.; van der Laan, G.; Kutepov, A.L.

    2008-01-01

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy, x-ray absorption spectroscopy, electron energy loss spectroscopy, Fano Effect measurements, and Bremstrahlung Isochromat Spectroscopy, including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples.

  14. Deep learning and the electronic structure problem

    Science.gov (United States)

    Mills, Kyle; Spanner, Michael; Tamblyn, Isaac

    In the past decade, the fields of artificial intelligence and computer vision have progressed remarkably. Supported by the enthusiasm of large tech companies, as well as significant hardware advances and the utilization of graphical processing units to accelerate computations, deep neural networks (DNN) are gaining momentum as a robust choice for many diverse machine learning applications. We have demonstrated the ability of a DNN to solve a quantum mechanical eigenvalue equation directly, without the need to compute a wavefunction, and without knowledge of the underlying physics. We have trained a convolutional neural network to predict the total energy of an electron in a confining, 2-dimensional electrostatic potential. We numerically solved the one-electron Schrödinger equation for millions of electrostatic potentials, and used this as training data for our neural network. Four classes of potentials were assessed: the canonical cases of the harmonic oscillator and infinite well, and two types of randomly generated potentials for which no analytic solution is known. We compare the performance of the neural network and consider how these results could lead to future advances in electronic structure theory.

  15. Structure and navigation for electronic publishing

    Science.gov (United States)

    Tillinghast, John; Beretta, Giordano B.

    1998-01-01

    The sudden explosion of the World Wide Web as a new publication medium has given a dramatic boost to the electronic publishing industry, which previously was a limited market centered around CD-ROMs and on-line databases. While the phenomenon has parallels to the advent of the tabloid press in the middle of last century, the electronic nature of the medium brings with it the typical characteristic of 4th wave media, namely the acceleration in its propagation speed and the volume of information. Consequently, e-publications are even flatter than print media; Shakespeare's Romeo and Juliet share the same computer screen with a home-made plagiarized copy of Deep Throat. The most touted tool for locating useful information on the World Wide Web is the search engine. However, due to the medium's flatness, sought information is drowned in a sea of useless information. A better solution is to build tools that allow authors to structure information so that it can easily be navigated. We experimented with the use of ontologies as a tool to formulate structures for information about a specific topic, so that related concepts are placed in adjacent locations and can easily be navigated using simple and ergonomic user models. We describe our effort in building a World Wide Web based photo album that is shared among a small network of people.

  16. Electronic structure and superconductivity of fcc Cr

    International Nuclear Information System (INIS)

    Xu, J.; Freeman, A.J.; Jarlborg, T.; Brodsky, M.B.

    1984-01-01

    Results of self-consistent electronic structure calculations are reported for metastable fcc Cr metal. Unlike the case of bcc Cr which has E/sub F/ at a minimum in the density of states (DOS), the DOS at E/sub F/ in fcc Cr is at a peak making this one of the higher-DOS metals with the fcc structure (e.g., comparable with that of Ni and Pt). A calculated Stoner factor of 0.82 indicates that ferromagnetic ordering is not expected. Calculations of the electron-phonon coupling parameter lambda and superconducting transition temperature T/sub c/ were made using the rigid-ion approximation and strong-coupling theory with various estimates of the (unknown) phonon contribution. We conclude that T/sub c/'sroughly-equal2.5 K are reasonable, although they are substantially smaller than the T/sub c/roughly-equal10 K derived from measurements on Au-Cr-Au sandwiches

  17. Electron Tomography Reveals the Active Phase–Support Interaction in Sulfidic Hydroprocessing Catalysts

    NARCIS (Netherlands)

    Eijsbouts, Sonja; Li, Xuang; Juan-Alcaniz, Jana; van den Oetelaar, Leon C A; Bergwerff, Jaap; Loos, Joachim; Carlsson, Anna; Vogt, E.T.C.

    2017-01-01

    Conventional two-dimensional (2D) transmission electron microscopy of sulfidic hydroprocessing catalysts can be deceiving and give the impression that parts of the support are overloaded with active phase. High-angle annular dark field scanning transmission electron microscopy tomography reveals

  18. Electronic structure of Ca, Sr, and Ba under pressure.

    Science.gov (United States)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  19. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    Science.gov (United States)

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-03

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Science.gov (United States)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  1. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    Science.gov (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  2. Electronic structure of MnSi : The role of electron-electron interactions

    NARCIS (Netherlands)

    Carbone, F; Zangrando, M; Brinkman, A; Nicolaou, A; Bondino, F; Magnano, E; Nugroho, A. A.; Parmigiani, F; Jarlborg, T; van der Marel, D

    We present an experimental study of the electronic structure of MnSi. Using x-ray absorption spectroscopy (XAS), x-ray photoemission, and x-ray fluorescence, we provide experimental evidence that MnSi has a mixed valence ground state. We show that self-consistent local density approximation

  3. Electronic structure of MnSi: The role of electron-electron interactions

    NARCIS (Netherlands)

    Carbone, F.; Zangrando, M.; Brinkman, Alexander; Nicolaou, A.; Bondino, F.; Magnano, E.; Nugroho, A.A.; Parmigiani, F.; Jarlborg, Th.; van der Marel, D.

    2006-01-01

    We present an experimental study of the electronic structure of MnSi. Using x-ray absorption spectroscopy (XAS), x-ray photoemission, and x-ray fluorescence, we provide experimental evidence that MnSi has a mixed valence ground state. We show that self-consistent local density approximation

  4. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy

    Directory of Open Access Journals (Sweden)

    Johanna L. Höög

    2015-11-01

    Full Text Available Human ejaculates contain extracellular vesicles (EVs, that to a large extent are considered to originate from the prostate gland, and are often denominated “prostasomes.” These EVs are important for human fertility, for example by promoting sperm motility and by inducing immune tolerance of the female immune system to the spermatozoa. So far, the EVs present in human ejaculate have not been studied in their native state, inside the seminal fluid without prior purification and isolation procedures. Using cryo-electron microscopy and tomography, we performed a comprehensive inventory of human ejaculate EVs. The sample was neither centrifuged, fixed, filtered or sectioned, nor were heavy metals added. Approximately 1,500 extracellular structures were imaged and categorized. The extracellular environment of human ejaculate was found to be diverse, with 5 major subcategories of EVs and 6 subcategories of extracellular membrane compartments, including lamellar bodies. Furthermore, 3 morphological features, including electron density, double membrane bilayers and coated surface, are described in all subcategories. This study reveals that the extracellular environment in human ejaculate is multifaceted. Several novel morphological EV subcategories are identified and clues to their cellular origin may be found in their morphology. This inventory is therefore important for developing future experimental approaches, and to interpret previously published data to understand the role of EVs for human male fertility.

  5. Fingerprint-based structure retrieval using electron density.

    Science.gov (United States)

    Yin, Shuangye; Dokholyan, Nikolay V

    2011-03-01

    We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.

  6. Electromagnetic radiation of electrons in periodic structures

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation and the Smith-Purcell effect. Characteristics of such radiation sources and perspectives of their usage are discussed. The recent experimental results as well as their interpretation are presented. (orig.)

  7. Nicotinamide riboside kinase structures reveal new pathways to NAD+.

    Directory of Open Access Journals (Sweden)

    Wolfram Tempel

    2007-10-01

    Full Text Available The eukaryotic nicotinamide riboside kinase (Nrk pathway, which is induced in response to nerve damage and promotes replicative life span in yeast, converts nicotinamide riboside to nicotinamide adenine dinucleotide (NAD+ by phosphorylation and adenylylation. Crystal structures of human Nrk1 bound to nucleoside and nucleotide substrates and products revealed an enzyme structurally similar to Rossmann fold metabolite kinases and allowed the identification of active site residues, which were shown to be essential for human Nrk1 and Nrk2 activity in vivo. Although the structures account for the 500-fold discrimination between nicotinamide riboside and pyrimidine nucleosides, no enzyme feature was identified to recognize the distinctive carboxamide group of nicotinamide riboside. Indeed, nicotinic acid riboside is a specific substrate of human Nrk enzymes and is utilized in yeast in a novel biosynthetic pathway that depends on Nrk and NAD+ synthetase. Additionally, nicotinic acid riboside is utilized in vivo by Urh1, Pnp1, and Preiss-Handler salvage. Thus, crystal structures of Nrk1 led to the identification of new pathways to NAD+.

  8. Towards revealing the structure of bacterial inclusion bodies.

    Science.gov (United States)

    Wang, Lei

    2009-01-01

    Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6-12 nm, they are comprised of residue-specific cross-beta structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies.

  9. Electron Liquids in Semiconductor Quantum Structures

    International Nuclear Information System (INIS)

    Pinczuk, Aron

    2009-01-01

    The groups led by Stormer and Pinczuk have focused this project on goals that seek the elucidation of novel many-particle effects that emerge in two-dimensional electron systems (2DES) as the result from fundamental quantum interactions. This experimental research is conducted under extreme conditions of temperature and magnetic field. From the materials point of view, the ultra-high mobility systems in GaAs/AlGaAs quantum structures continue to be at the forefront of this research. The newcomer materials are based on graphene, a single atomic layer of graphite. The graphene research is attracting enormous attention from many communities involved in condensed matter research. The investigated many-particle phenomena include the integer and fractional quantum Hall effect, composite fermions, and Dirac fermions, and a diverse group of electron solid and liquid crystal phases. The Stormer group performed magneto-transport experiments and far-infrared spectroscopy, while the Pinczuk group explores manifestations of such phases in optical spectra.

  10. Electrons and photons in periodic structures

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor

    . In particular, the modulation leads to the emergence of band gaps, which are accompanied by a strongly modified density of states near and within the band gap. The main focus is on two applications of such modified densities of states. Firstly, the intentional introduction of defects in an otherwise perfectly...... periodic modulation of an electron gas leads to the emergence of localized defect states with energies within the band gap, where no propagating modes exist. Secondly, the divergence of the photonic density of states near a photonic band gap leads to strongly modified light-matter interactions, which has...... of the density of states near the band gap edge. Using a perturbative approach, we demonstrate certain limits of the attainable slow down factors due to broadening of electromagnetic modes. We discuss the effect of damping due to a finite conductivity as well as structural disorder, and provide a common...

  11. Electronic structure of single crystal C60

    International Nuclear Information System (INIS)

    Wu, J.; Shen, Z.X.; Dessau, D.S.; Cao, R.; Marshall, D.S.; Pianetta, P.; Lindau, I.; Yang, X.; Terry, J.; King, D.M.; Wells, B.O.; Elloway, D.; Wendt, H.R.; Brown, C.A.; Hunziker, H.; Vries, M.S. de

    1992-01-01

    We report angle-resolved photoemission data from single crystals of C 60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C 60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C 60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C 60 . We assert that the width of the photoemission peak of C 60 does not reflect the intrinsic band width because it is broadened by the non 0-0 transitions via the Franck-Condon principle. Our view point provides a possible reconciliation between these photoemission data and those measured by other techniques. (orig.)

  12. Multilevel domain decomposition for electronic structure calculations

    International Nuclear Information System (INIS)

    Barrault, M.; Cances, E.; Hager, W.W.; Le Bris, C.

    2007-01-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure

  13. Electronic structure classifications using scanning tunneling microscopy conductance imaging

    International Nuclear Information System (INIS)

    Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.

    1998-01-01

    The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics

  14. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S M

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed by a

  15. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  16. Electronic structure of PPP@ZnO from all-electron quasiarticle calculations

    Science.gov (United States)

    Höffling, Benjamin; Nabok, Dimitri; Draxl, Claudia; Condensed Matter Theory Group, Humboldt University Berlin Team

    We investigate the electronic properties of poly(para-phenylene) (PPP) adsorbed on the non-polar (001) surface of rocksalt (rs) ZnO using all-electron density functional theory (DFT) as well as quasiparticle (QP) calculations within the GW approach. A particular focus is put on the electronic band discontinuities at the interface, where we investigate the impact of quantum confinement, molecular polarization, and charge rearrangement. For our prototypical system, PPP@ZnO, we find a type-I heterostructure. Comparison of the band offsets derived from a QP-treatment of the hybrid system with predictions based on mesoscopic methods, like the Shockley-Anderson model or alignment via the electrostatic potential, reveals the inadequacy of these simple approaches for the prediction of the electronic structure of such inorganic/organic heterosystems. Finally, we explore the optical excitations of the interface compared to the features of the pristine components and discuss the methodological implications for the ab-initio treatment of interface electronics.

  17. Characterization of dermal plates from armored catfish Pterygoplichthys pardalis reveals sandwich-like nanocomposite structure.

    Science.gov (United States)

    Ebenstein, Donna; Calderon, Carlos; Troncoso, Omar P; Torres, Fernando G

    2015-05-01

    Dermal plates from armored catfish are bony structures that cover their body. In this paper we characterized structural, chemical, and nanomechanical properties of the dermal plates from the Amazonian fish Pterygoplichthys pardalis. Analysis of the morphology of the plates using scanning electron microscopy (SEM) revealed that the dermal plates have a sandwich-like structure composed of an inner porous matrix surrounded by two external dense layers. This is different from the plywood-like laminated structure of elasmoid fish scales but similar to the structure of osteoderms found in the dermal armour of some reptiles and mammals. Chemical analysis performed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed similarities between the composition of P. pardalis plates and the elasmoid fish scales of Arapaima gigas. Reduced moduli of P. pardalis plates measured using nanoindentation were also consistent with reported values for A. gigas scales, but further revealed that the dermal plate is an anisotropic and heterogeneous material, similar to many other fish scales and osteoderms. It is postulated that the sandwich-like structure of the dermal plates provides a lightweight and tough protective layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Wetland Microtopographic Structure is Revealed with Terrestrial Laser Scanning

    Science.gov (United States)

    Diamond, J.; Stovall, A. E.; Mclaughlin, D. L.; Slesak, R.

    2017-12-01

    Wetland microtopographic structure and its function has been the subject of research for decades, and several investigations suggest that microtopography is generated by autogenic ecohydrologic processes. But due to the difficulty of capturing the true spatial variability of wetland microtopography, many of the hypotheses for self-organization have remained elusive to test. We employ a novel method of Terrestrial Laser Scanning (TLS) that reveals an unprecedented high-resolution (structure of wetland microtopography in 10 black ash (Fraxinus nigra) stands of northern Minnesota, USA. Here we present the first efforts to synthesize this information and show that TLS provides a good representation of real microtopographic structure, where TLS accurately measured hummock height, but occlusion of low points led to a slight negative bias. We further show that TLS can accurately locate microtopographic high points (hummocks), as well as estimate their height and area. Using these new data, we estimate distributions in both microtopographic elevation and hummock area in each wetland and relate these to monitored hydrologic regime; in doing so, we test hypotheses linking emergent microtopographic patterns to putative hydrologic controls. Finally, we discuss future efforts to enumerate consequent influences of microtopography on wetland systems (soil properties and vegetation composition).

  19. Electronic structure of semiconductor quantum films

    International Nuclear Information System (INIS)

    Zhang, S.B.; Yeh, C.; Zunger, A.

    1993-01-01

    The electronic structure of thin (≤30 A) free-standing ideal films of Si(001), Si(110), and GaAs(110) is calculated using a plane-wave pseudopotential description. Unlike the expectation based on the simple effective-mass model, we find the following. (i) The band gaps of (001) quantum films exhibit even-odd oscillation as a function of the number N of monolayers. (ii) In addition to sine-type envelope functions which vanish at the film boundaries, some states have cosine envelope functions with extrema at boundaries. (iii) Even-layer Si(001) films exhibit at the valence-band maximum a state whose energy does not vary with the film thickness. Such zero confinement states have constant envelope throughout the film. (iv) Optical transitions in films exhibit boundary-imposed selection rules. Furthermore, oscillator strengths for pseudodirect transitions in the vicinity of forbidden direct transitions can be enhanced by several orders of magnitude. These findings, obtained in direct supercell calculations, can be explained in terms of a truncated crystal (TC) analysis. In this approach the film's wave functions are expanded in terms of pairs of bulk wave functions exhibiting a destructive interference at the boundaries. This maps the eigenvalue spectra of a film onto the bulk band structure evaluated at special k points which satisfy the boundary conditions. We find that the TC representation reproduces accurately the above-mentioned results of direct diagonalization of the film's Hamiltonian. This provides a simple alternative to the effective-mass model and relates the properties of quantum structures to those of the bulk material

  20. Atomistic simulations of divacancy defects in armchair graphene nanoribbons: Stability, electronic structure, and electron transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng, Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Li, Biao; Xu, Dahai [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China)

    2014-01-17

    Using the first principles calculations associated with nonequilibrium Green's function, we have studied the electronic structures and quantum transport properties of defective armchair graphene nanoribbon (AGNR) in the presence of divacancy defects. The triple pentagon–triple heptagon (555–777) defect in the defective AGNR is energetically more favorable than the pentagon–octagon–pentagon (5–8–5) defect. Our calculated results reveal that both 5–8–5-like defect and 555–777-like defect in AGNR could improve the electron transport. It is anticipated that defective AGNRs can exhibit large range variations in transport behaviors, which are strongly dependent on the distributions of the divacancy defect.

  1. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Swarts, C.A.

    1979-01-01

    Chapter I: Here the results of various theories for the angular distribution of electrons photoemitted from the outermost p-shell of rare gas atoms are compared. The theories compared are (I) the local density theories of Slater (X/sub α/) and of Hohenberg, Kohn and Sham, (II) the pseudopotential method, (III) Hartree-Fock theory as evaluated by Kennedy and Manson, and (IV) Amusia's Random Phase Approximation with Exchange (RPAE). It is shown that the local density theories, although simple, generally fail to produce reliable cross section; the more complicated Hartree-Fock method is no more reliable; the a priori RPAE method is most reliable, but tedious; and the phenomenological pseudopotential method offers a good combination of reliability and simplicity. The muffin-tin approximation, widely used in molecular and condensed matter physics, is examined and found to be adequate. Chapter II: Extended Hueckel theory is applied to GaAs, GaP and to the nitrogen isoelectronic trap in GaAs and GaP. The computed perfect crystal band structures are found to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are calculated using a cluster model. Chapter III: By means of model calculations for an independent electron metal, we obtain exact lineshapes for the photon absorption, emission and photoemission spectra of deep core states. We find in each case an X-ray edge anomaly as pedicted by Nozieres and De Dominicis. Sumrules are used as a general check on the calculations and to explain the deviations of the exact theory from the exciton theory away from threshold

  2. Nonlinearity in structural and electronic materials

    International Nuclear Information System (INIS)

    Bishop, A.R.; Beardmore, K.M.; Ben-Naim, E.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project strengthens a nonlinear technology base relevant to a variety of problems arising in condensed matter and materials science, and applies this technology to those problems. In this way the controlled synthesis of, and experiments on, novel electronic and structural materials provide an important focus for nonlinear science, while nonlinear techniques help advance the understanding of the scientific principles underlying the control of microstructure and dynamics in complex materials. This research is primarily focused on four topics: (1) materials microstructure: growth and evolution, and porous media; (2) textures in elastic/martensitic materials; (3) electro- and photo-active polymers; and (4) ultrafast photophysics in complex electronic materials. Accomplishments included the following: organization of a ''Nonlinear Materials'' seminar series and international conferences including ''Fracture, Friction and Deformation,'' ''Nonequilibrium Phase Transitions,'' and ''Landscape Paradigms in Physics and Biology''; invited talks at international conference on ''Synthetic Metals,'' ''Quantum Phase Transitions,'' ''1996 CECAM Euroconference,'' and the 1995 Fall Meeting of the Materials Research Society; large-scale simulations and microscopic modeling of nonlinear coherent energy storage at crack tips and sliding interfaces; large-scale simulation and microscopic elasticity theory for precursor microstructure and dynamics at solid-solid diffusionless phase transformations; large-scale simulation of self-assembling organic thin films on inorganic substrates; analysis and simulation of smoothing of rough atomic surfaces; and modeling and analysis of flux pattern formation in equilibrium and nonequilibrium Josephson junction arrays and layered superconductors

  3. Effects of Topography in Nano-Structured Thin Films : A Lorentz Transmission Electron Microscopy and Electron Holography Study

    NARCIS (Netherlands)

    Hosson, Jeff Th.M. De; Raedt, Hans A. De

    2003-01-01

    This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the

  4. Artemin Crystal Structure Reveals Insights into Heparan Sulfate Binding

    Energy Technology Data Exchange (ETDEWEB)

    Silvian,L.; Jin, P.; Carmillo, P.; Boriack-Sjodin, P.; Pelletier, C.; Rushe, M.; Gong, B.; Sah, D.; Pepinsky, B.; Rossomando, A.

    2006-01-01

    Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFR{alpha}3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.

  5. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  6. Memory functions reveal structural properties of gene regulatory networks

    Science.gov (United States)

    Perez-Carrasco, Ruben

    2018-01-01

    Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these models mean that their behaviour is not always intuitive and the underlying mechanisms can be difficult to decipher. For this reason, methods that simplify and aid exploration of complex networks are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projection. By first converting a thermodynamic state ensemble model of gene regulation into mass action reactions we derive a general method that produces a set of time evolution equations for a subset of components of a network. The influence of the rest of the network, the bulk, is captured by memory functions that describe how the subnetwork reacts to its own past state via components in the bulk. These memory functions provide probes of near-steady state dynamics, revealing information not easily accessible otherwise. We illustrate the method on a simple cross-repressive transcriptional motif to show that memory functions not only simplify the analysis of the subnetwork but also have a natural interpretation. We then apply the approach to a GRN from the vertebrate neural tube, a well characterised developmental transcriptional network composed of four interacting transcription factors. The memory functions reveal the function of specific links within the neural tube network and identify features of the regulatory structure that specifically increase the robustness of the network to initial conditions. Taken together, the study provides evidence that Zwanzig-Mori projections offer powerful and effective tools for simplifying and exploring the behaviour of GRNs. PMID:29470492

  7. Revealing the Microscopic Real-Space Excursion of a Laser-Driven Electron

    Directory of Open Access Journals (Sweden)

    Heiko G. Kurz

    2016-08-01

    Full Text Available High-order harmonic spectroscopy allows one to extract information on fundamental quantum processes, such as the exit time in the tunneling of an electron through a barrier with attosecond time resolution and molecular structure with angstrom spatial resolution. Here, we study the spatial motion of the electron during high-order harmonic generation in an in situ pump-probe measurement using high-density liquid water droplets as a target. We show that molecules adjacent to the emitting electron-ion pair can disrupt the electron’s trajectory when positioned within the range of the maximum electronic excursion distance. This allows us to use the parent ion and the neighboring molecules as boundaries for the electronic motion to measure the maximum electronic excursion distance during the high-order harmonic generation process. Our analysis of the process is relevant for optimizing high-harmonic yields in dense media.

  8. Pathogen–host reorganization during Chlamydia invasion revealed by cryo-electron tomography

    Science.gov (United States)

    Nans, Andrea; Saibil, Helen R; Hayward, Richard D

    2014-01-01

    Invasion of host cells is a key early event during bacterial infection, but the underlying pathogen–host interactions are yet to be fully visualized in three-dimensional detail. We have captured snapshots of the early stages of bacterial-mediated endocytosis in situ by exploiting the small size of chlamydial elementary bodies (EBs) for whole-cell cryo-electron tomography. Chlamydiae are obligate intracellular bacteria that infect eukaryotic cells and cause sexually transmitted infections and trachoma, the leading cause of preventable blindness. We demonstrate that Chlamydia trachomatis LGV2 EBs are intrinsically polarized. One pole is characterized by a tubular inner membrane invagination, while the other exhibits asymmetric periplasmic expansion to accommodate an array of type III secretion systems (T3SSs). Strikingly, EBs orient with their T3SS-containing pole facing target cells, enabling the T3SSs to directly contact the cellular plasma membrane. This contact induces enveloping macropinosomes, actin-rich filopodia and phagocytic cups to zipper tightly around the internalizing bacteria. Once encapsulated into tight early vacuoles, EB polarity and the T3SSs are lost. Our findings reveal previously undescribed structural transitions in both pathogen and host during the initial steps of chlamydial invasion. PMID:24809274

  9. Graph-based linear scaling electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  10. Structural defects in multiferroic BiMnO3 studied by transmission electron microscopy and electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Yang, H.; Chi, Z. H.; Yao, L. D.; Zhang, W.; Li, F. Y.; Jin, C. Q.; Yu, R. C.

    2006-01-01

    The multiferroic material BiMnO 3 synthesized under high pressure has been systematically studied by transmission electron microscopy and electron energy-loss spectroscopy, and some important structural defects are revealed in this multiferroic material. The frequently observed defects are characterized to be Σ3(111) twin boundaries, Ruddlesden-Popper [Acta Crystallogr. 11, 54 (1958)] antiphase boundaries, and a p p superdislocations connected with a small segment of Ruddlesden-Popper defect. These defects are present initially in the as-synthesized sample. In addition, we find that ordered voids (oxygen vacancies) are easily introduced into the multiferroic BiMnO 3 by electron-beam irradiation

  11. Statistical universals reveal the structures and functions of human music.

    Science.gov (United States)

    Savage, Patrick E; Brown, Steven; Sakai, Emi; Currie, Thomas E

    2015-07-21

    Music has been called "the universal language of mankind." Although contemporary theories of music evolution often invoke various musical universals, the existence of such universals has been disputed for decades and has never been empirically demonstrated. Here we combine a music-classification scheme with statistical analyses, including phylogenetic comparative methods, to examine a well-sampled global set of 304 music recordings. Our analyses reveal no absolute universals but strong support for many statistical universals that are consistent across all nine geographic regions sampled. These universals include 18 musical features that are common individually as well as a network of 10 features that are commonly associated with one another. They span not only features related to pitch and rhythm that are often cited as putative universals but also rarely cited domains including performance style and social context. These cross-cultural structural regularities of human music may relate to roles in facilitating group coordination and cohesion, as exemplified by the universal tendency to sing, play percussion instruments, and dance to simple, repetitive music in groups. Our findings highlight the need for scientists studying music evolution to expand the range of musical cultures and musical features under consideration. The statistical universals we identified represent important candidates for future investigation.

  12. Fine-scaled human genetic structure revealed by SNP microarrays.

    Science.gov (United States)

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  13. Electronic structure and chemical properties of superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Pershina, V [Gesellschaft fuer Schwerionenforschung (GSI), Helmholtzzentrum fuer Schwerionenforschung Gmbh (Germany)

    2009-12-31

    Relativistic electronic structure calculations of superheavy elements (Z>=104) are analyzed. Preference is given to those related to experimental research. The role of relativistic effects is discussed.

  14. Automatic Segmentation and Quantification of Filamentous Structures in Electron Tomography.

    Science.gov (United States)

    Loss, Leandro A; Bebis, George; Chang, Hang; Auer, Manfred; Sarkar, Purbasha; Parvin, Bahram

    2012-10-01

    Electron tomography is a promising technology for imaging ultrastructures at nanoscale resolutions. However, image and quantitative analyses are often hindered by high levels of noise, staining heterogeneity, and material damage either as a result of the electron beam or sample preparation. We have developed and built a framework that allows for automatic segmentation and quantification of filamentous objects in 3D electron tomography. Our approach consists of three steps: (i) local enhancement of filaments by Hessian filtering; (ii) detection and completion (e.g., gap filling) of filamentous structures through tensor voting; and (iii) delineation of the filamentous networks. Our approach allows for quantification of filamentous networks in terms of their compositional and morphological features. We first validate our approach using a set of specifically designed synthetic data. We then apply our segmentation framework to tomograms of plant cell walls that have undergone different chemical treatments for polysaccharide extraction. The subsequent compositional and morphological analyses of the plant cell walls reveal their organizational characteristics and the effects of the different chemical protocols on specific polysaccharides.

  15. Electronic structure of shandite Co3Sn2S2

    Science.gov (United States)

    Dedkov, Y. S.; Holder, M.; Molodtsov, S. L.; Rosner, H.

    2008-03-01

    The electronic structure of shandite Co3Sn2S2 was determined by photoelectron spectroscopy and compared with ab initio band structure calculations. Presented results give evidence that this compound has half-metallic ferromagnetic properties.

  16. Electronic conductance of quantum wire with serial periodic potential structures

    International Nuclear Information System (INIS)

    Fayad, Hisham M.; Shabat, Mohammed M.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-08-01

    A theory based on the total transfer matrix is presented to investigate the electronic conductance in a quantum wire with serial periodic potentials. We apply the formalism in computation of the electronic conductance in a wire with different physical parameters of the wire structure. The numerical results could be used in designing some future quantum electronic devices. (author)

  17. A structure development in electron-irradiated type Ia diamond

    International Nuclear Information System (INIS)

    Novikov, N.V.; Ositinskaya, T.D.; Tkach, V.N.

    1998-01-01

    A type Ia diamond crystal with nitrogen impurity in different forms was irradiated by 3.5 MeV electrons with increasing doses 5 centre dot 10 16 , 2 centre dot 10 17 , 4 centre dot 10 17 , 2 centre dot 10 18 e/cm 2 and investigated before and after each dose by positron annihilation, EPR, and optical spectroscopy. After irradiation with the highest dose, the effect of development of a visible defective structure of the crystal is revealed. A description of this effect and data of EPR and IR-measurements depending on irradiation doses are presented. First results of cathodoluminescence (CL) studies in the form CL-topograms and CL-spectra for difference zones of the crystal are also given

  18. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  19. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    International Nuclear Information System (INIS)

    Zhou, X.J.

    2010-01-01

    In addition to the record high superconducting transition temperature (T c ), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T c , and anomalous normal state properties above T c . In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T c . As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T c superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not thought possible

  20. Three-dimensional structural analysis of eukaryotic flagella/cilia by electron cryo-tomography

    International Nuclear Information System (INIS)

    Bui, Khanh Huy; Pigino, Gaia; Ishikawa, Takashi

    2011-01-01

    Based on the molecular architecture revealed by electron cryo-tomography, the mechanism of the bending motion of eukaryotic flagella/cilia is discussed. Electron cryo-tomography is a potential approach to analyzing the three-dimensional conformation of frozen hydrated biological macromolecules using electron microscopy. Since projections of each individual object illuminated from different orientations are merged, electron tomography is capable of structural analysis of such heterogeneous environments as in vivo or with polymorphism, although radiation damage and the missing wedge are severe problems. Here, recent results on the structure of eukaryotic flagella, which is an ATP-driven bending organelle, from green algae Chlamydomonas are presented. Tomographic analysis reveals asymmetric molecular arrangements, especially that of the dynein motor proteins, in flagella, giving insight into the mechanism of planar asymmetric bending motion. Methodological challenges to obtaining higher-resolution structures from this technique are also discussed

  1. Structure of liquid alkali metals as electron-ion plasmas

    International Nuclear Information System (INIS)

    Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.

    1980-08-01

    The static structure factor of liquid alkali metals near freezing, and its dependence on temperature and pressure, are evaluated in an electron-ion plasma model from an accurate theoretical determination of the structure factor of the one-component classical plasma and electron-screening theory. Very good agreement is obtained with the available experimental data. (author)

  2. Parainfluenza virus type 5 (PIV-5) morphology revealed by cryo-electron microscopy.

    Science.gov (United States)

    Terrier, Olivier; Rolland, Jean-Paul; Rosa-Calatrava, Manuel; Lina, Bruno; Thomas, Daniel; Moules, Vincent

    2009-06-01

    The knowledge of parainfluenza type 5 (PIV-5) virion morphology is essentially based on the observation of negatively stained preparations in conventional transmission electron microscopy (CTEM). In this study, the ultrastructure of frozen-hydrated intact PIV-5 was examined by cryo-electron microscopy (cryo-EM). Cryo-EM revealed a majority of spherical virions (70%), with a lower pleiomorphy than originally observed in CTEM. Phospholipid bilayer thickness, spike length and glycoprotein spikes density were measured. About 2000 glycoprotein spikes were present in an average-sized spherical virion. Altogether, these data depict a more precise view of PIV-5 morphology.

  3. Electronic structure of Mo and W investigated with positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Dutschke, Markus [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Sekania, Michael [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Andronikashvili Institute of Physics, Tbilisi (Georgia); Benea, Diana [Faculty of Physics, Babes-Bolyai University, Cluj-Napoca (Romania); Department of Chemistry, Ludwig Maximilian University of Munich (Germany); Ceeh, Hubert; Weber, Joseph A.; Hugenschmidt, Christoph [FRM II, Technische Universitaet Muenchen, Garching (Germany); Chioncel, Liviu [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Augsburg Center for Innovative Technologies, University of Augsburg (Germany)

    2016-07-01

    We perform electronic structure calculations to analyze the momentum distribution of the transition metals molybdenum and tungsten. We study the influence of positron-electron and the electron-electron interactions on the shape of the two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) spectra. Our analysis is performed within the framework of the combined Density Functional (DFT) and Dynamical Mean-Field Theory (DMFT). Computed spectra are compared with recent experimental investigations.

  4. Electronic structures of elements according to ionization energies.

    Science.gov (United States)

    Zadeh, Dariush H

    2017-11-28

    The electronic structures of elements in the periodic table were analyzed using available experimental ionization energies. Two new parameters were defined to carry out the study. The first parameter-apparent nuclear charge (ANC)-quantified the overall charge of the nucleus and inner electrons observed by an outer electron during the ionization process. This parameter was utilized to define a second parameter, which presented the shielding ability of an electron against the nuclear charge. This second parameter-electron shielding effect (ESE)-provided an insight into the electronic structure of atoms. This article avoids any sort of approximation, interpolation or extrapolation. First experimental ionization energies were used to obtain the two aforementioned parameters. The second parameter (ESE) was then graphed against the electron number of each element, and was used to read the corresponding electronic structure. The ESE showed spikes/peaks at the end of each electronic shell, providing insight into when an electronic shell closes and a new one starts. The electronic structures of elements in the periodic table were mapped using this methodology. These graphs did not show complete agreement with the previously known "Aufbau" filling rule. A new filling rule was suggested based on the present observations. Finally, a new way to organize elements in the periodic table is suggested. Two earlier topics of effective nuclear charge, and shielding factor were also briefly discussed and compared numerically to demonstrate the capability of the new approach.

  5. Correct Brillouin zone and electronic structure of BiPd

    Science.gov (United States)

    Yaresko, Alexander; Schnyder, Andreas P.; Benia, Hadj M.; Yim, Chi-Ming; Levy, Giorgio; Damascelli, Andrea; Ast, Christian R.; Peets, Darren C.; Wahl, Peter

    2018-02-01

    A promising route to the realization of Majorana fermions is in noncentrosymmetric superconductors, in which spin-orbit coupling lifts the spin degeneracy of both bulk and surface bands. A detailed assessment of the electronic structure is critical to evaluate their suitability for this through establishing the topological properties of the electronic structure. This requires correct identification of the time-reversal-invariant momenta. One such material is BiPd, a recently rediscovered noncentrosymmetric superconductor which can be grown in large, high-quality single crystals and has been studied by several groups using angular resolved photoemission to establish its surface electronic structure. Many of the published electronic structure studies on this material are based on a reciprocal unit cell which is not the actual Brillouin zone of the material. We show here the consequences of this for the electronic structures and show how the inferred topological nature of the material is affected.

  6. Valence electron structure of cast iron and graphltization behaviour criterion of elements

    Institute of Scientific and Technical Information of China (English)

    刘志林; 李志林; 孙振国; 杨晓平; 陈敏

    1995-01-01

    The valence electron structure of common alloy elements in phases of cast iron is calculated- The relationship between the electron structure of alloy elements and equilibrium, non-equilibrium solidification and graphitization is revealed by defining the bond energy of the strongest bond in a phase as structure formation factor S. A criterion of graphitization behaviour of elements is advanced with the critical value of the structure formation factor of graphite and the n of the strongest covalent bond in cementite. It is found that this theory conforms to practice very well when the criterion is applied to the common alloy elements.

  7. Transmission electron-microscopic studies of structural changes in polycrystalline graphite after high temperature irradiation

    International Nuclear Information System (INIS)

    Platonov, P.A.; Gurovich, B.A.; Shtrombakh, Ya.I.; Karpukhin, V.I.

    1985-01-01

    Transmission electron-microscopic investigation of polycrystalline graphite before and after irradiation is carried out. The direct use of graphite samples after ion thinning, as an inquiry subject is the basic peculiarity of the work. Main structural components of MPG-6 graphite before and after irradiation are revealed, the structural mechanism of the reactor graphite destruction under irradiation is demonstrated. The mean values of L αm and L cm crystallite dimensions are determined. Radiation defects, occuring in some crystallites after irradiation are revealed by the dark-field electron microscopy method

  8. DAMPING OF ELECTRON DENSITY STRUCTURES AND IMPLICATIONS FOR INTERSTELLAR SCINTILLATION

    International Nuclear Information System (INIS)

    Smith, K. W.; Terry, P. W.

    2011-01-01

    The forms of electron density structures in kinetic Alfven wave (KAW) turbulence are studied in connection with scintillation. The focus is on small scales L ∼ 10 8 -10 10 cm where the KAW regime is active in the interstellar medium, principally within turbulent H II regions. Scales at 10 times the ion gyroradius and smaller are inferred to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying KAW turbulence model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian, more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is not obvious, yet it suggests that modest density fluctuations may yield large scintillation events during pulsar signal propagation. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear formation of long, highly non-Gaussian tails.

  9. Electronic structure of hybrid interfaces for polymer-based electronics

    International Nuclear Information System (INIS)

    Fahlman, M; Crispin, A; Crispin, X; Henze, S K M; Jong, M P de; Osikowicz, W; Tengstedt, C; Salaneck, W R

    2007-01-01

    The fundamentals of the energy level alignment at anode and cathode electrodes in organic electronics are described. We focus on two different models that treat weakly interacting organic/metal (and organic/organic) interfaces: the induced density of interfacial states model and the so-called integer charge transfer model. The two models are compared and evaluated, mainly using photoelectron spectroscopy data of the energy level alignment of conjugated polymers and molecules at various organic/metal and organic/organic interfaces. We show that two different alignment regimes are generally observed: (i) vacuum level alignment, which corresponds to the lack of vacuum level offsets (Schottky-Mott limit) and hence the lack of charge transfer across the interface, and (ii) Fermi level pinning where the resulting work function of an organic/metal and organic/organic bilayer is independent of the substrate work function and an interface dipole is formed due to charge transfer across the interface. We argue that the experimental results are best described by the integer charge transfer model which predicts the vacuum level alignment when the substrate work function is above the positive charge transfer level and below the negative charge transfer level of the conjugated material. The model further predicts Fermi level pinning to the positive (negative) charge transfer level when the substrate work function is below (above) the positive (negative) charge transfer level. The nature of the integer charge transfer levels depend on the materials system: for conjugated large molecules and polymers, the integer charge transfer states are polarons or bipolarons; for small molecules' highest occupied and lowest unoccupied molecular orbitals and for crystalline systems, the relevant levels are the valence and conduction band edges. Finally, limits and further improvements to the integer charge transfer model are discussed as well as the impact on device design. (topical review)

  10. The electronic structure of core states under extreme compressions

    International Nuclear Information System (INIS)

    Straub, G.K.

    1992-01-01

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W l and the center of gravity of the band C l are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the ability to analytically determine the density dependence of the band widths and positions. The process whereby core states interact with one another is best viewed as the formation of narrow electron bands formed from atomic states. As the core-core overlap increases, the bands increase in width and mean energy. In Sec.3 this picture is further developed and from the ASM one obtains the analytic dependence on density of the relative motion of the different bands. Also in Sec. 3 is a discussion of the transition to free electron bands

  11. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Directory of Open Access Journals (Sweden)

    Shenping Wu

    2010-09-01

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  12. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    International Nuclear Information System (INIS)

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-01-01

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77 o /12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127 o range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from

  13. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A., E-mail: guirado@ifisica.uaslp.mx [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Gámez-Corrales, R. [Departamento de Física, Universidad de Sonora, Apartado Postal 5-088, 83190, Hermosillo, Sonora (Mexico)

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  14. Insight into mitochondrial structure and function from electron tomography.

    Science.gov (United States)

    Frey, T G; Renken, C W; Perkins, G A

    2002-09-10

    In recent years, electron tomography has provided detailed three-dimensional models of mitochondria that have redefined our concept of mitochondrial structure. The models reveal an inner membrane consisting of two components, the inner boundary membrane (IBM) closely apposed to the outer membrane and the cristae membrane that projects into the matrix compartment. These two components are connected by tubular structures of relatively uniform size called crista junctions. The distribution of crista junction sizes and shapes is predicted by a thermodynamic model based upon the energy of membrane bending, but proteins likely also play a role in determining the conformation of the inner membrane. Results of structural studies of mitochondria during apoptosis demonstrate that cytochrome c is released without detectable disruption of the outer membrane or extensive swelling of the mitochondrial matrix, suggesting the formation of an outer membrane pore large enough to allow passage of holo-cytochrome c. The possible compartmentation of inner membrane function between the IBM and the cristae membrane is also discussed.

  15. Orbital Models and Electronic Structure Theory

    DEFF Research Database (Denmark)

    Linderberg, Jan

    2012-01-01

    This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules...

  16. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  17. Electronic structure of charge carriers in a polysilane quantum wire

    International Nuclear Information System (INIS)

    Kumagai, J.; Yoshida, H.; Ichikawa, T.

    1997-01-01

    The ESR, ESEEM and spectrophotometric studies on polysilane radical ions revealed that charge carriers, hole and conducting electrons, are not delocalized all over the Si-Si main chain but confined to a part of the chain composed of only six Si atoms, probably near the branch on the main chain. Comparison of the ESR spectra of the radical cations and anions revealed that the hole can migrate from the main chain to an adjacent polymer chain via the side chains, whereas the conducting electron can not migrate since the side chains act as good intermolecular insulators for the electron. (author)

  18. Photon echo spectroscopy reveals structure-dynamics relationships in carotenoids

    Czech Academy of Sciences Publication Activity Database

    Christensson, N.; Polívka, Tomáš; Yartsev, A.; Pullerits, T.

    2009-01-01

    Roč. 79, č. 24 (2009), s. 1-14 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z50510513 Keywords : electron correlations * energy gap * excited states * carotenoids Subject RIV: BO - Biophysics Impact factor: 3.475, year: 2009

  19. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  20. Complex band structure and electronic transmission eigenchannels

    DEFF Research Database (Denmark)

    Jensen, Anders; Strange, Mikkel; Smidstrup, Soren

    2017-01-01

    and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two...

  1. Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Liu, Bin; Song, Shidong; Xu, Wu; Zhang, Ji-Guang; Wang, Chongmin

    2017-03-27

    The capacity, Coulombic efficiency, rate, and cyclability of a Li-O2 battery critically depend on the electrode reaction mechanism and the structure/morphology of the reaction product as well as their spatial and temporal evolution1-8, which are all further complicated by the choice of different electrolyte. For the case of aprotic cell, the discharge product, Li2O2, is formed through solution and surface mechanisms9,10, but little is known on the formation mechanism of the perplexing morphology of the reaction product11-15. For the case of Li-O2 battery using solid electrolyte, neither electrode reaction mechanism nor the nature of the reaction production is known. Herein, we reveal the full cycle reaction pathway for Li-O2 batteries and its correlation with the nature of the reaction product. Using an aberration-corrected environmental TEM under oxygen environment, we captured, for the first time, the morphology and phase evolution on the carbon nanotube (CNT) cathode of a working solid-state Li-O2 nano-battery16 and directly correlated these features with electrochemical reaction. We found that the oxygen reduction reaction on CNTs initially produces LiO2, which subsequently evolves to Li2O2 and O2 through disproportionation reaction. Surprisingly it is just the releasing of O2 that inflates the particles to a hollow structure with a Li2O outer surface layer and Li2O2 inner-shell, demonstrating that, in general, accommodation of the released O2 coupled with the Li+ ion diffusion and electron transport paths across both spatial and temporal scales critically governs the morphology of the discharging/charging product in Li-O2 system. We anticipate that the direct observation of Li-O2 reaction mechanisms and their correlation with the morphology of the reaction product set foundation for quantitative understanding/modeling of the electrochemical processes in the Li-O2 system, enabling rational design of both solid-state and aprotic Li-O2 batteries.

  2. Electronic structure of fractionally nuclear charged atoms

    International Nuclear Information System (INIS)

    Pavao, Antonio C.; Bastos, Cristiano C.; Ferreira, Joacy V.

    2008-01-01

    Different properties of quark chemistry are studied by performing accurate ab initio Hartree- Fock calculations on fractionally nuclear charged atoms. Ground and first excited states of sodium atoms with quarks attached to the nucleus are obtained using CI calculations. It is suggested that the sodium 2 P -> 2 S electronic transition can be used as a guide in searching for unconfined quarks. Also, the variation of the binding electronic energy with nuclear charge in the isoelectronic series of fractionally nuclear charged atoms A ±2/3 and A ±1/3 (A = H, Li, Na, P and Ca) is analyzed. The present calculations suggest that unconfined colored particles have large appetite for heavy nuclei and that quark-antiquark pairs could be stabilized in presence of the atomic matter. (author)

  3. Tailoring electronic structure of polyazomethines thin films

    OpenAIRE

    J. Weszka; B. Hajduk; M. Domański; M. Chwastek; J. Jurusik; B. Jarząbek; H. Bednarski; P. Jarka

    2010-01-01

    Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD) can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic ...

  4. Electronic structure and formation energy of a vacancy in aluminum

    International Nuclear Information System (INIS)

    Chakraborty, B.; Siegel, R.W.

    1981-11-01

    The electronic structure of a vacancy in Al was calculated self-consistently using norm-conserving ionic pseudopotentials obtained from ab initio atomic calculations. A 27-atom-site supercell containing 1 vacancy and 26 atoms was used to simulate the environment of the vacancy. A vacancy formation energy of 1.5 eV was also calculated (cf. the experimental value of 0.66 eV). The effects of the supercell and the nature of the ionic potential on the resulting electronic structure and formation energy are discussed. Results for the electronic structure of a divacancy are also presented. 3 figures

  5. One-Electron Theory of Metals. Cohesive and Structural Properties

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    The work described in the report r.nd the 16 accompanying publications is based upon a one-electron theory obtained within the local approximation to density-functional theory, and deals with the ground state of metals as obtained from selfconsistent electronic-structure calculations performed...... by means of the Linear Muffin-Tin Orbital (LMTO) method. It has been the goal of the work to establish how well this one-electron approach describes physical properties such as the crystal structures of the transition metals, the structural phase transitions in the alkali, alkaline earth, and rare earth...

  6. Structure and electron-ion correlation in liquid Mg

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Shuta [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Fujii, Hiroyuki [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yokota, Yukinobu [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan)]. E-mail: takeda@rc.kyushu-u.ac.jp

    2006-11-15

    For liquid Mg at 700 deg. C, structure factors were obtained from both neutron and X-ray diffraction measurements. The bond angle and coordination number distributions were derived from the reverse Monte Carlo analysis. By a combination of both structure factors, charge density function and electron-ion partial structure factor were deduced.

  7. Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative......-dimensional Hubbard model for the low-energy spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction....

  8. Hurricane Inner-Core Structure as Revealed by GPS Dropwindsondes

    National Research Council Canada - National Science Library

    Leejoice, Robert

    2000-01-01

    New high-resolution information of the vertical thermodynamic and kinematic structure of the hurricane inner-core is now available from aircraft released Global Positioning System (GPS) dropwindsondes...

  9. Structural and electronic parameters of ferroelectric KWOF

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.

    2010-11-01

    The low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 oxyfluoride is formed by chemical synthesis. The electronic parameters of G2-K 3WO 3F 3 have been measured by X-ray photoelectron spectroscopy under excitation with Al Kα radiation (1486.6 eV). Detailed spectra have been recorded for all element core levels and Auger lines. The chemical bonding effects in the WO 3F 3 and WO 6 octahedrons are considered by using the binding energy difference ΔBE(O-W)=BE(O 1s)-BE(W 4f).

  10. Nodal Structure of the Electronic Wigner Function

    DEFF Research Database (Denmark)

    Schmider, Hartmut; Dahl, Jens Peder

    1996-01-01

    On the example of several atomic and small molecular systems, the regular behavior of nodal patterns in the electronic one-particle reduced Wigner function is demonstrated. An expression found earlier relates the nodal pattern solely to the dot-product of the position and the momentum vector......, if both arguments are large. An argument analogous to the ``bond-oscillatory principle'' for momentum densities links the nuclear framework in a molecule to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic...

  11. Electronic structure of the light actinides

    International Nuclear Information System (INIS)

    Dunlap, B.D.

    1976-01-01

    In the last few years, considerable advances have been made in our understanding of the properties of the light actinides. Although these are 5f transition elements formally equivalent to the lanthanide (4f) elements, these materials show a much more varied behavior due to the larger spatial extent and ionizability of the 5f electrons. A review is given of some areas of current interest, especially where hyperfine measurements have played an active role. These include studies of a variety of magnetic phenomena, systematics of isomer shift measurements, and studies of paramagnetic relaxation

  12. Electron beam crosslinked PVC : structure property relationships

    International Nuclear Information System (INIS)

    Gupta, Neeraj K.; Sabharwal, Sunil

    2001-01-01

    PVC is used extensively for its insulating properties for the manufacture of wires and cables and for other applications. Its gradual degradation, oxidation and even dehydro chlorination restricts use for long lasting period in installations such as high temperature zones, underground cables, communication systems, electro-nuclear facilities, etc. The technological properties and performance characteristics of PVC based insulation can be improved via crosslinking by high-energy electrons. PVC is however a polymer, which on irradiation predominantly undergoes degradation. To avoid degradation, it needs to be compounded with sensitizing agents or multifunctional monomers so that crosslinking is the predominant reaction. Radiation cross linkable formulations are complex mixtures of resin and various additives incorporated for achieving desired technological and performance characteristics, ease of processing and improving quality. The proper choice of additives and sensitizing agents enable low dose requirements for efficient crosslinking and improvements in various technological properties. The purposes of this work was to investigate the effect of using a binary sensitizer blend of a trifunctional monomer and a rubber in PVC, and develop suitable electron beam cross linkable formulations for wire insulation. This paper presents some aspects of the investigations and development of insulation demonstrated at industrial scale

  13. Electronic structure and isomer shifts of Sn halides

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1988-01-01

    The all-electron first-principles Discrete Variational method was employed to study the electronic structure of SnF 4 , SnCl 4 , SnBr 4 and SnI 4 . Values of the electronic density at the Sn nucleus were derived and related to 119 Sn Isomer Shifts to obtain the nuclear constant Δ 2 >. Differences in values of ρ(o) area discussed in terms of the chemical bonding between Sn and halogen atoms. (author) [pt

  14. Electronic structure of graphene beyond the linear dispersion regime

    OpenAIRE

    POWER, STEPHEN; FERREIRA, MAURO

    2011-01-01

    PUBLISHED Among the many interesting features displayed by graphene, one of the most attractive is the simplicity with which its electronic structure can be described. The study of its physical properties is significantly simplified by the linear dispersion relation of electrons in a narrow range around the Fermi level. Unfortunately, the mathematical simplicity of graphene electrons is limited only to this narrow energy region and is not very practical when dealing with problems that invo...

  15. Electronic structure of filled tetrahedral semiconductors

    NARCIS (Netherlands)

    Wood, D.M.; Zunger, Alex; Groot, R. de

    1985-01-01

    We discuss the susceptibility of zinc-blende semiconductors to band-structure modification by insertion of small atoms at their tetrahedral interstitial states. GaP is found to become a direct-gap semiconductor with two He atoms present at its interstitial sites; Si does not. Analysis of the factors

  16. Electronic Band Structure of Helical Polyisocyanides.

    Science.gov (United States)

    Champagne, Benoît; Liégeois, Vincent; Fripiat, Joseph G; Harris, Frank E

    2017-10-19

    Restricted Hartree-Fock computations are reported for a methyl isocyanide polymer (repeating unit -C═N-CH 3 ), whose most stable conformation is expected to be a helical chain. The computations used a standard contracted Gaussian orbital set at the computational levels STO-3G, 3-21G, 6-31G, and 6-31G**, and studies were made for two line-group configurations motivated by earlier work and by studies of space-filling molecular models: (1) A structure of line-group symmetry L9 5 , containing a 9-fold screw axis with atoms displaced in the axial direction by 5/9 times the lattice constant, and (2) a structure of symmetry L4 1 that had been proposed, containing a 4-fold screw axis with translation by 1/4 of the lattice constant. Full use of the line-group symmetry was employed to cause most of the computational complexity to depend only on the size of the asymmetric repeating unit. Data reported include computed bond properties, atomic charge distribution, longitudinal polarizability, band structure, and the convoluted density of states. Most features of the description were found to be insensitive to the level of computational approximation. The work also illustrates the importance of exploiting line-group symmetry to extend the range of polymer structural problems that can be treated computationally.

  17. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Shalendra; Song, T.K.; Gautam, Sanjeev; Chae, K.H.; Kim, S.S.; Jang, K.W.

    2015-01-01

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L 3,2 NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L 3,2 edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles

  18. Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets

    Science.gov (United States)

    Sharma, Aditya; Varshney, Mayora; Nanda, Sitansu Sekhar; Shin, Hyun Joon; Kim, Namdong; Yi, Dong Kee; Chae, Keun-Hwa; Ok Won, Sung

    2018-04-01

    Correlation between the structural/electronic structure properties and bio-activity of graphene-based materials need to be thoroughly evaluated before their commercial implementation in the health and environment precincts. To better investigate the local hybridization of sp2/sp3 orbitals of the functional groups of graphene-oxide (GO) and their execution in the antimicrobial mechanism, we exemplify the antibacterial activity of GO sheets towards the Escherichia coli bacteria (E. coli) by applying the field-emission scanning electron microscopy (FESEM), near edge X-ray absorption fine structure (NEXAFS) and scanning transmission X-ray microscope (STXM) techniques. C K-edge and O K-edge NEXAFS spectra have revealed lesser sp2 carbon atoms in the aromatic ring and attachment of functional oxygen groups at GO sheets. Entrapment of E. coli bacteria by GO sheets is evidenced by FESEM investigations and has also been corroborated by nano-scale imaging of bacteria using the STXM. Spectroscopy evidence of functional oxygen moieties with GO sheets and physiochemical entrapment of E. coli bacteria have assisted us to elaborate the mechanism of cellular oxidative stress-induced disruption of bacterial membrane.

  19. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, whi...

  20. On the electronic structure of high Tc superconductors

    International Nuclear Information System (INIS)

    Fink, J.; Nuecker, N.; Romberg, H.; Alexander, M.; Knupfer, M.; Mante, J.; Claessen, R.; Buslaps, T.; Harm, S.; Manzke, R.; Skibowski, M.

    1992-01-01

    Studies of the electronic structure of high-T c superconductors and related compounds by high-energy spectroscopies are reviewed. In particular, we report on investigations by electron energy-loss, angle-resolved photoemission, and inverse angle-resolved photoemission spectroscopy. Information on the symmetry and the character of states close to the Fermi level has been obtained. 25 refs., 8 figs

  1. Electronic structure and equilibrium properties of hcp titanium

    Indian Academy of Sciences (India)

    The electronic structures of hexagonal-close-packed divalent titanium (3-d) and zirconium (4-d) transition metals are studied by using a non-local model potential method. From the present calculation of energy bands, Fermi energy, density of states and the electronic heat capacity of these two metals are determined and ...

  2. Weiss oscillations in the electronic structure of modulated graphene

    International Nuclear Information System (INIS)

    Tahir, M; Sabeeh, K; MacKinnon, A

    2007-01-01

    We present a theoretical study of the electronic structure of modulated graphene in the presence of a perpendicular magnetic field. The density of states and the bandwidth for the Dirac electrons in this system are determined. The appearance of unusual Weiss oscillations in the bandwidth and density of states is the main focus of this work

  3. Electronic Structure of Au25 Clusters: Between Discrete and Continuous

    KAUST Repository

    Katsiev, Khabiboulakh

    2016-07-15

    Here, an approach based on synchrotron resonant photoemission is emplyed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states at the vicinity of the Fermi level. These observations are supported by DFT studies.

  4. Electronic Structure of Au25 Clusters: Between Discrete and Continuous

    KAUST Repository

    Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Katla, Saikrishna; Li, Ruipeng; Mei, Wai Ning; Skrabalak, Sara; Challa, Challa; Losovyj, Yaroslav

    2016-01-01

    Here, an approach based on synchrotron resonant photoemission is emplyed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states at the vicinity of the Fermi level. These observations are supported by DFT studies.

  5. Electronic Structure of Cdse Nanowires Terminated With Gold ...

    African Journals Online (AJOL)

    Bheema

    Owing to their unusual electronic and structural properties, SC clusters have received considerable attention ... performing molecular dynamics simulations. A similar .... Analysis of the charge density, gap, corresponding to states with energies ...

  6. Structures and electronics of buried and unburied semiconductor interfaces

    International Nuclear Information System (INIS)

    Kamiya, Itaru

    2011-01-01

    The structure of interfaces plays an important role in determining the electronic properties of semiconductor nanostructures. Here, such examples are shown and discussed using semiconductor nanostructures prepared by molecular beam epitaxy and colloidal synthesis.

  7. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jiwuer, Jilili

    2016-01-01

    Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors

  8. Structure and electron-ion correlation of liquid germanium

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)]. E-mail: kawakita@rc.kyushu-u.ac.jp; Fujita, S. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Hyogo 679-5198 (Japan); Ohshima, K. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Yokota, Y. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)

    2005-08-15

    Structure factor of liquid germanium (Ge) has a shoulder at {theta} = 3.2 A{sup -1} in the high-momentum-transfer region of the first peak. To investigate the origin of such a non-simplicity in the structure, high energy X-ray diffraction measurements have been performed using 113.26 keV incident X-ray, at BL04B2 beamline of SPring-8. By a combination of the obtained structure factor with the reported neutron diffraction data, charge density function and electron-ion partial structure factor have been deduced. The peak position of the charge distribution is located at about 1 A, rather smaller r value than the half value of nearest neighbor distance ({approx}2.7 A), which suggests that valence electrons of liquid Ge play a role of screening electrons around a metallic ion rather than covalently bonding electrons.

  9. Structure functions in electron-nucleon deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-E-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1982-06-26

    The phenomenological expressions for the structure functions in electron-nucleon deep inelastic scattering are proposed and are shown to satisfy the experimental data as well as a number of sum rules.

  10. First-principle calculations of structural, electronic, optical, elastic ...

    Indian Academy of Sciences (India)

    S CHEDDADI

    2017-11-28

    Nov 28, 2017 ... First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite ... The Kohn–Sham equations were solved using the ... RMTKmax = 7 was used for all the investigated systems,.

  11. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jilili, Jiwuer

    2016-07-13

    Perovskite oxides have the general chemical formula ABO3, where A is a rare-earth or alkali-metal cation and B is a transition metal cation. Perovskite oxides can be formed with a variety of constituent elements and exhibit a wide range of properties ranging from insulators, metals to even superconductors. With the development of growth and characterization techniques, more information on their physical and chemical properties has been revealed, which diversified their technological applications. Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors and spintronics. There is not only the technological importance but also the need to understand the fundamental mechanisms of the unusual magnetic and transport properties that drive enormous attention. Manganites combined with other perovskite oxides are gaining interest due to novel properties especially at the interface, such as interfacial ferromagnetism, exchange bias, interfacial conductivity. Doped manganites exhibit diverse electrical properties as compared to the parent compounds. For instance, hole doped La0.7Sr0.3MnO3 is a ferromagnetic metal, whereas LaMnO3 is an antiferromagnetic insulator. Since manganites are strongly correlated systems, heterojunctions composed of manganites and other perovskite oxides are sunject to complex coupling of the spin, orbit, charge, and lattice degrees of freedom and exhibit unique electronic, magnetic, and transport properties. Electronic reconstructions, O defects, doping, intersite disorder, magnetic proximity, magnetic exchange, and polar catastrophe are some effects to explain these interfacial phenomena. In our work we use first-principles calculations to study the structural, electronic, and magnetic properties of manganite based superlattices. Firstly, we investigate the electronic

  12. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  13. Probing of RNA structures in a positive sense RNA virus reveals selection pressures for structural elements

    Science.gov (United States)

    Watters, Kyle E; Choudhary, Krishna; Aviran, Sharon; Perry, Keith L

    2018-01-01

    Abstract In single stranded (+)-sense RNA viruses, RNA structural elements (SEs) play essential roles in the infection process from replication to encapsidation. Using selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) and covariation analysis, we explore the structural features of the third genome segment of cucumber mosaic virus (CMV), RNA3 (2216 nt), both in vitro and in plant cell lysates. Comparing SHAPE-Seq and covariation analysis results revealed multiple SEs in the coat protein open reading frame and 3′ untranslated region. Four of these SEs were mutated and serially passaged in Nicotiana tabacum plants to identify biologically selected changes to the original mutated sequences. After passaging, loop mutants showed partial reversion to their wild-type sequence and SEs that were structurally disrupted by mutations were restored to wild-type-like structures via synonymous mutations in planta. These results support the existence and selection of virus open reading frame SEs in the host organism and provide a framework for further studies on the role of RNA structure in viral infection. Additionally, this work demonstrates the applicability of high-throughput chemical probing in plant cell lysates and presents a new method for calculating SHAPE reactivities from overlapping reverse transcriptase priming sites. PMID:29294088

  14. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    Science.gov (United States)

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean-Christophe; Even, Jacky; Mohite, Aditya D.; Sfeir, Matthew Y.

    2017-11-01

    Connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered C H3N H3 + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R - and M -point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.

  15. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination

    International Nuclear Information System (INIS)

    Avilov, A.; Kuligin, K.; Nicolopoulos, S.; Nickolskiy, M.; Boulahya, K.; Portillo, J.; Lepeshov, G.; Sobolev, B.; Collette, J.P.; Martin, N.; Robins, A.C.; Fischione, P.

    2007-01-01

    We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession 'Spinning Star' system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF 2 as revealed for the first time by precise electron diffractometry

  16. Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue

    International Nuclear Information System (INIS)

    Konovalov, Sergey; Alsaraeva, Krestina; Gromov, Victor; Semina, Olga; Ivanov, Yurii

    2015-01-01

    By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed

  17. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    Science.gov (United States)

    Bestembayeva, Aizhan; Kramer, Armin; Labokha, Aksana A.; Osmanović, Dino; Liashkovich, Ivan; Orlova, Elena V.; Ford, Ian J.; Charras, Guillaume; Fassati, Ariberto; Hoogenboom, Bart W.

    2015-01-01

    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins, and is therefore not well understood. Here, we show that stiffness topography with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel.

  18. Cocaine Hydrochloride Structure in Solution Revealed by Three Chiroptical Methods

    Czech Academy of Sciences Publication Activity Database

    Fagan, P.; Kocourková, L.; Tatarkovič, M.; Králík, F.; Kuchař, M.; Setnička, V.; Bouř, Petr

    2017-01-01

    Roč. 18, č. 16 (2017), s. 2258-2265 ISSN 1439-4235 R&D Projects: GA ČR(CZ) GA16-05935S; GA MŠk(CZ) LTC17012 Institutional support: RVO:61388963 Keywords : analytical methods * circular dichroism * density functional calculations * Raman spectroscopy * structure elucidation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.075, year: 2016

  19. Structure of Drosophila Oskar reveals a novel RNA binding protein

    Science.gov (United States)

    Yang, Na; Yu, Zhenyu; Hu, Menglong; Wang, Mingzhu; Lehmann, Ruth; Xu, Rui-Ming

    2015-01-01

    Oskar (Osk) protein plays critical roles during Drosophila germ cell development, yet its functions in germ-line formation and body patterning remain poorly understood. This situation contrasts sharply with the vast knowledge about the function and mechanism of osk mRNA localization. Osk is predicted to have an N-terminal LOTUS domain (Osk-N), which has been suggested to bind RNA, and a C-terminal hydrolase-like domain (Osk-C) of unknown function. Here, we report the crystal structures of Osk-N and Osk-C. Osk-N shows a homodimer of winged-helix–fold modules, but without detectable RNA-binding activity. Osk-C has a lipase-fold structure but lacks critical catalytic residues at the putative active site. Surprisingly, we found that Osk-C binds the 3′UTRs of osk and nanos mRNA in vitro. Mutational studies identified a region of Osk-C important for mRNA binding. These results suggest possible functions of Osk in the regulation of stability, regulation of translation, and localization of relevant mRNAs through direct interaction with their 3′UTRs, and provide structural insights into a novel protein–RNA interaction motif involving a hydrolase-related domain. PMID:26324911

  20. Electronic structure of UCl5: A reexamination

    International Nuclear Information System (INIS)

    Soule, E.; Edelstein, N.

    1980-01-01

    On the basis of the absorption spectrum of UCl 5 recorded at 4.2 K, Leung and Poon attempted a determination of both the spin-orbit coupling constant and the crystal field parameters. Their parameters, however, led to a calculated g-tensor at variance with the position of the electron paramagnetic resonance line observed by Miyake et al. It was therefore attempted to simultaneously interpret both spectra (absorption and EPR), assuming the validity of the Newman superposition model, and taking the point symmetry group on each uranium of the (UCl 5 ) 2 dimer as C 2 sub(v). We obtain one and only one satisfactory solution, namely a set of parameters that reasonably reproduce the observed absorption peaks, and lead to the following principal values of the g-tensor: gx = 0.226 (unobservable); gy = 1.187; gz = 1.186. Therefore the paradox stemming from the apparent isotropy of the EPR signal for a species of low point symmetry is resolved. (orig.)

  1. Electronic structure of metal overlayers on rhodium

    International Nuclear Information System (INIS)

    Feibelman, P.J.; Hamann, D.R.

    1983-01-01

    We have evaluated work functions, surface core-level shifts, and surface band dispersions for clean, Ag-covered, and Pd-covered Rh(100) surfaces, and for clean and Ag-covered Rh(111). The calculations were performed self-consistently, using the surface-linearized augmented-plane-wave method. As expected from the Pauling electronegativities, Ag adsorption lowers the work function from the clean Rh value, by several tenths of an eV, while Pd has an almost negligible effect. The values calculated for the core-level shifts of various films are shown to correspond to expectations based on surface band narrowing and layerwise charge neutrality. Using the core-level shifts, we predict heat-of-adsorption differences (for Ag on Pd vs Ag on Rh, etc.) that are in quite good agreement with the empirical predictions of Miedema and Dorleijn. Finally, the chemical inactivity of the Ag-covered Rh surface is associated with the fact that, for that system, the outer-layer local density of states is essentially that of Ag, with a characteristically low value at the Fermi energy. On the other hand, the Pd-covered Rh surface should behave much like clean Rh with an extra electron per surface atom. The surface band dispersions for the Pd-covered and clean Rh surfaces are closely similar. This result contrasts sharply with the case of Pd-covered Nb, for which, because of the appreciable electronegativity difference, the Pd overlayer is effectively ''noble.''

  2. Electronic structure properties of UO2 as a Mott insulator

    Science.gov (United States)

    Sheykhi, Samira; Payami, Mahmoud

    2018-06-01

    In this work using the density functional theory (DFT), we have studied the structural, electronic and magnetic properties of uranium dioxide with antiferromagnetic 1k-, 2k-, and 3k-order structures. Ordinary approximations in DFT, such as the local density approximation (LDA) or generalized gradient approximation (GGA), usually predict incorrect metallic behaviors for this strongly correlated electron system. Using Hubbard term correction for f-electrons, LDA+U method, as well as using the screened Heyd-Scuseria-Ernzerhof (HSE) hybrid functional for the exchange-correlation (XC), we have obtained the correct ground-state behavior as an insulator, with band gaps in good agreement with experiment.

  3. New Insight into Carbon Nanotube Electronic Structure Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Jiang, Deen [ORNL

    2009-01-01

    The fundamental role of aryl diazonium salts for post synthesis selectivity of carbon nanotubes is investigated using extensive electronic structure calculations. The resulting understanding for diazonium salt based selective separation of conducting and semiconducting carbon nanotubes shows how the primary contributions come from the interplay between the intrinsic electronic structure of the carbon nanotubes and that of the anion of the salt. We demonstrate how the electronic transport properties change upon the formation of charge transfer complexes and upon their conversion into covalently attached functional groups. Our results are found to correlate well with experiments and provide for the first time an atomistic description for diazonium salt based chemical separation of carbon nanotubes

  4. Electronic structure of the copper oxides

    International Nuclear Information System (INIS)

    Pickett, W.E.; Cohen, R.E.; Singh, D.; Krakauer, H.

    1989-01-01

    Since the discovery of the high temperature superconducting copper oxides a great deal has been learned from experiment about their behavior. From the theoretical side, there continues to be developments both within the band picture and from the model Hamiltonian viewpoint emphasizing correlations. In this paper the authors discuss these complementary viewpoints in relation to some of the experimental data. Due to their background in the band structure area, they approach the discussion by evaluating which phenomena can be (or has been) accounted for by the standard band approach, and point out which properties appear to require more intricate treatments of correlation

  5. Electronic and geometric structures of calcium metaborates

    International Nuclear Information System (INIS)

    Baranovskij, V.I.; Lopatin, S.I.; Sizov, V.V.

    2000-01-01

    Calculations of geometric structure, vibration frequencies, ionization potentials and atomization energies of CaBO 2 and CaB 2 O 4 molecules were made. It is shown that linear conformations of the molecules are the most stable ones. In the metaborates studied calcium atom coordination with oxygen is a monodentate one, meanwhile CaB 2 O 4 can be considered as a Ca 2+ compound, whereas CaBO 2 - as a Ca + compound, which explains similarity of the molecule (from the viewpoint of its geometry, spectral and energy characteristics) to alkaline metal metaborates [ru

  6. Equilibrium and nonequilibrium solvation and solute electronic structure

    International Nuclear Information System (INIS)

    Kim, H.J.; Hynes, J.T.

    1990-01-01

    When a molecular solute is immersed in a polar and polarizable solvent, the electronic wave function of the solute system is altered compared to its vacuum value; the solute electronic structure is thus solvent-dependent. Further, the wave function will be altered depending upon whether the polarization of the solvent is or is not in equilibrium with the solute charge distribution. More precisely, while the solvent electronic polarization should be in equilibrium with the solute electronic wave function, the much more sluggish solvent orientational polarization need not be. We call this last situation non-equilibrium solvation. We outline a nonlinear Schroedinger equation approach to these issues

  7. Structure and electronic properties of azadirachtin.

    Science.gov (United States)

    de Castro, Elton A S; de Oliveira, Daniel A B; Farias, Sergio A S; Gargano, Ricardo; Martins, João B L

    2014-02-01

    We performed a combined DFT and Monte Carlo (13)C NMR chemical-shift study of azadirachtin A, a triterpenoid that acts as a natural insect antifeedant. A conformational search using a Monte Carlo technique based on the RM1 semiempirical method was carried out in order to establish its preferred structure. The B3LYP/6-311++G(d,p), wB97XD/6-311++G(d,p), M06/6-311++G(d,p), M06-2X/6-311++G(d,p), and CAM-B3LYP/6-311++G(d,p) levels of theory were used to predict NMR chemical shifts. A Monte Carlo population-weighted average spectrum was produced based on the predicted Boltzmann contributions. In general, good agreement between experimental and theoretical data was obtained using both methods, and the (13)C NMR chemical shifts were predicted highly accurately. The geometry was optimized at the semiempirical level and used to calculate the NMR chemical shifts at the DFT level, and these shifts showed only minor deviations from those obtained following structural optimization at the DFT level, and incurred a much lower computational cost. The theoretical ultraviolet spectrum showed a maximum absorption peak that was mainly contributed by the tiglate group.

  8. Structural complexities in the active layers of organic electronics.

    Science.gov (United States)

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  9. Electronic structure of a graphene superlattice with massive Dirac fermions

    International Nuclear Information System (INIS)

    Lima, Jonas R. F.

    2015-01-01

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E g can be tuned in the range 0 ≤ E g  ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems

  10. Effects of Structural Correlations on Electronic Properties

    International Nuclear Information System (INIS)

    Pastawski, H.M.; Weisz, J.F.

    1984-01-01

    A one dimensional alloy model is treated in the nearest neighbour tight binding approximation in which the correlation of the atoms can be adjusted. The correlation can be changed from a situation in which there is a tendency for atoms to alternate to a situation in which the atoms are randomly located, consistent with a fixed concentration c for A c B 1-c . The results show that when there is short range order, at certain energies there is a tendency for localized states and formation of structure induced minimum in the density of states. The results for the ordered case are similar to those of Charge Density Wave (CDW). A smooth transition is carried out between this case and the randomly disordered case which behaves like the Anderson model for uncorrelated disorder. (M.W.O.) [pt

  11. The surface electronic structure of Y(0001)

    International Nuclear Information System (INIS)

    Searle, C.

    1998-12-01

    Yttrium has been grown epitaxially on W(110). The growth was monitored by using photoemission spectroscopy with a synchrotron radiation source. The film thickness has been gauged by the attenuation of the W 4f 7/2 bulk component. The films have been grown reproducibly and show a prominent surface state which is indicative of good order and low contamination. Angle-Resolved Ultra-Violet Photoemission Spectroscopy has been used to examine the valence band of these ultra-thin films. The films show a very different structure to the valence band of a bulk crystal of yttrium. The differences have been investigated by a series of model calculations using the LMASA-46 tight-binding LMTO program. The calculations suggest that the ultra-thin film surface state may be hybridised with a tungsten orbital having (x 2 - y 2 ) character. (author)

  12. Predator-guided sampling reveals biotic structure in the bathypelagic.

    Science.gov (United States)

    Benoit-Bird, Kelly J; Southall, Brandon L; Moline, Mark A

    2016-02-24

    We targeted a habitat used differentially by deep-diving, air-breathing predators to empirically sample their prey's distributions off southern California. Fine-scale measurements of the spatial variability of potential prey animals from the surface to 1,200 m were obtained using conventional fisheries echosounders aboard a surface ship and uniquely integrated into a deep-diving autonomous vehicle. Significant spatial variability in the size, composition, total biomass, and spatial organization of biota was evident over all spatial scales examined and was consistent with the general distribution patterns of foraging Cuvier's beaked whales (Ziphius cavirostris) observed in separate studies. Striking differences found in prey characteristics between regions at depth, however, did not reflect differences observed in surface layers. These differences in deep pelagic structure horizontally and relative to surface structure, absent clear physical differences, change our long-held views of this habitat as uniform. The revelation that animals deep in the water column are so spatially heterogeneous at scales from 10 m to 50 km critically affects our understanding of the processes driving predator-prey interactions, energy transfer, biogeochemical cycling, and other ecological processes in the deep sea, and the connections between the productive surface mixed layer and the deep-water column. © 2016 The Author(s).

  13. The interior structure of Ceres as revealed by surface topography

    Science.gov (United States)

    Fu, Roger R.; Ermakov, Anton; Marchi, Simone; Castillo-Rogez, Julie C.; Raymond, Carol A.; Hager, Bradford; Zuber, Maria; King, Scott D.; Bland, Michael T.; De Sanctis, Maria Cristina; Preusker, Frank; Park, Ryan S.; Russell, Christopher T.

    2017-01-01

    Ceres, the largest body in the asteroid belt (940 km diameter), provides a unique opportunity to study the interior structure of a volatile-rich dwarf planet. Variations in a planetary body's subsurface rheology and density affect the rate of topographic relaxation. Preferential attenuation of long wavelength topography (≥150 km) on Ceres suggests that the viscosity of its crust decreases with increasing depth. We present finite element (FE) geodynamical simulations of Ceres to identify the internal structures and compositions that best reproduce its topography as observed by the NASA Dawn mission. We infer that Ceres has a mechanically strong crust with maximum effective viscosity ∼1025 Pa s. Combined with density constraints, this rheology suggests a crustal composition of carbonates or phyllosilicates, water ice, and at least 30 volume percent (vol.%) low-density, high-strength phases most consistent with salt and/or clathrate hydrates. The inference of these crustal materials supports the past existence of a global ocean, consistent with the observed surface composition. Meanwhile, we infer that the uppermost ≥60 km of the silicate-rich mantle is mechanically weak with viscosity <1021 Pa s, suggesting the presence of liquid pore fluids in this region and a low temperature history that avoided igneous differentiation due to late accretion or efficient heat loss through hydrothermal processes.

  14. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

    OpenAIRE

    Lobato, I.; Rojas, J.; Landauro, C. V.; Torres, J.

    2008-01-01

    The structural evolution and dynamics of silver nanodrops Ag${}_{2896}$ (4.4 nm in diameter) during rapid cooling conditions has been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modeled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique is applied to reveal the structural transition in the process of solidifica...

  15. Structure and electronic properties of mixed (a + c) dislocation cores in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Horton, M. K., E-mail: m.horton11@imperial.ac.uk [Department Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Rhode, S. L. [Department Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moram, M. A. [Department Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2014-08-14

    Classical atomistic models and atomic-resolution scanning transmission electron microscopy studies of GaN films reveal that mixed (a + c)-type dislocations have multiple different core structures, including a dissociated structure consisting of a planar fault on one of the (12{sup ¯}10) planes terminated by two different partial dislocations. Density functional theory calculations show that all cores introduce localized states into the band gap, which affects device performance.

  16. Structure and electronic properties of mixed (a + c) dislocation cores in GaN

    International Nuclear Information System (INIS)

    Horton, M. K.; Rhode, S. L.; Moram, M. A.

    2014-01-01

    Classical atomistic models and atomic-resolution scanning transmission electron microscopy studies of GaN films reveal that mixed (a + c)-type dislocations have multiple different core structures, including a dissociated structure consisting of a planar fault on one of the (12 ¯ 10) planes terminated by two different partial dislocations. Density functional theory calculations show that all cores introduce localized states into the band gap, which affects device performance

  17. Structural, electronic, superconducting and mechanical properties of ReC and TcC

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.; Priyanga, G. Sudha; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com; Santhosh, M. [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India)

    2015-06-24

    The structural, electronic, superconducting and mechanical properties of ReC and TcC are investigated using density functional theory calculations. The lattice constants, bulk modulus, and the density of states are obtained. The calculated lattice parameters are in good agreement with the available results. The density of states reveals that ReC and TcC exhibit metallic behavior at ambient condition. A pressure-induced structural phase transition is observed in both materials.

  18. Electronic properties in a quantum well structure of Weyl semimetal

    International Nuclear Information System (INIS)

    You, Wen-Long; Zhou, Jiao-Jiao; Wang, Xue-Feng; Oleś, Andrzej M.

    2016-01-01

    We investigate the confined states and transport of three-dimensional Weyl electrons around a one-dimensional external rectangular electrostatic potential. The confined states with finite transverse wave vector exist at energies higher than the half well depth or lower than the half barrier height. The rectangular potential appears completely transparent to the normal incident electrons but not otherwise. The tunneling transmission coefficient is sensitive to their incident angle and shows resonant peaks when their energy coincides with the confined spectra. In addition, for the electrons in the conduction (valence) band through a potential barrier (well), the transmission spectrum has a gap of width increasing with the incident angle. Interestingly, the electron linear zero-temperature conductance over the potential can approach zero when the Fermi energy is aligned to the top and bottom energies of the potential, when only electron beams normal to the potential interfaces can pass through. The considered structure can be used to collimate the Weyl electron beams.

  19. Effect of electron emission on an ion sheath structure

    International Nuclear Information System (INIS)

    Mishra, M K; Phukan, A; Chakraborty, M

    2014-01-01

    This article reports on the variations of ion sheath structures due to the emission of both hot and cold electrons in the target plasma region of a double plasma device. The ion sheath is produced in front of a negatively biased plate. The plasma is produced by hot filament discharge in the source region, and no discharge is created in the target region of the device. The plate is placed in the target (diffused plasma) region where cold electron emitting filaments are present. These cold electrons are free from maintenance of discharge, which is sustained in the source region. The hot ionizing electrons are present in the source region. Three important parameters are changed by both hot and cold electrons i.e. plasma density, plasma potential and electron temperature. The decrease in plasma potential and the increase in plasma density lead to the contraction of the sheath. (paper)

  20. Shared memories reveal shared structure in neural activity across individuals

    Science.gov (United States)

    Chen, J.; Leong, Y.C.; Honey, C.J.; Yong, C.H.; Norman, K.A.; Hasson, U.

    2016-01-01

    Our lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? Participants viewed a fifty-minute movie, then verbally described the events during functional MRI, producing unguided detailed descriptions lasting up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated in default-network, medial-temporal, and high-level visual areas. Individual event patterns were both highly discriminable from one another and similar between people, suggesting consistent spatial organization. In many high-order areas, patterns were more similar between people recalling the same event than between recall and perception, indicating systematic reshaping of percept into memory. These results reveal the existence of a common spatial organization for memories in high-level cortical areas, where encoded information is largely abstracted beyond sensory constraints; and that neural patterns during perception are altered systematically across people into shared memory representations for real-life events. PMID:27918531

  1. Revealing the structure of the world airline network

    Science.gov (United States)

    Verma, T.; Araújo, N. A. M.; Herrmann, H. J.

    2014-07-01

    Resilience of most critical infrastructures against failure of elements that appear insignificant is usually taken for granted. The World Airline Network (WAN) is an infrastructure that reduces the geographical gap between societies, both small and large, and brings forth economic gains. With the extensive use of a publicly maintained data set that contains information about airports and alternative connections between these airports, we empirically reveal that the WAN is a redundant and resilient network for long distance air travel, but otherwise breaks down completely due to removal of short and apparently insignificant connections. These short range connections with moderate number of passengers and alternate flights are the connections that keep remote parts of the world accessible. It is surprising, insofar as there exists a highly resilient and strongly connected core consisting of a small fraction of airports (around 2.3%) together with an extremely fragile star-like periphery. Yet, in spite of their relevance, more than 90% of the world airports are still interconnected upon removal of this core. With standard and unconventional removal measures we compare both empirical and topological perceptions for the fragmentation of the world. We identify how the WAN is organized into different classes of clusters based on the physical proximity of airports and analyze the consequence of this fragmentation.

  2. Role of electron correlation and long range magnetic order in the electronic structure of Ca(Sr)RuO3

    International Nuclear Information System (INIS)

    Singh, Ravi Shankar; Medicherla, V.R.R.; Maiti, Kalobaran

    2008-01-01

    The room temperature photoemission spectra collected at different surface sensitivities reveal qualitatively different surface and bulk electronic structures in CaRuO 3 and SrRuO 3 . The extracted bulk spectra are dominated by the coherent feature intensity with a weak correlation induced feature at higher binding energies. The First principle calculations provide a wonderful representation of the bulk spectra for the effective electron correlation strength, U/W∼0.2 as expected for highly extended 4d systems. This resolves a long-standing issue that arose due to the prediction of large U/W similar to 3d systems. Photoemission spectra across the magnetic phase transition reveal unusual evolution exhibiting a large reduction in the coherent feature intensity in the bulk spectrum of SrRuO 3 , while the bulk spectrum in CaRuO 3 remains almost the same down to the lowest temperature studied

  3. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  4. Electronic and chemical properties of graphene-based structures:

    DEFF Research Database (Denmark)

    Vanin, Marco

    In the present thesis several aspects of graphene-based structures have been investigated using density functional theory calculations to solve the electronic structure problem. A review of the implementation of a localized basis-set within the projector augmented wave method - the way of describ...... are attractive candidates although issues regarding the poisoning of the active site remain to be addressed....

  5. Electronic structure of palladium and its relation to uv spectroscopy

    DEFF Research Database (Denmark)

    Christensen, N.E.

    1976-01-01

    The electronic-energy-band structure of palladium has been calculated by means of the relativistic augmented-plane-wave method covering energies up to 30 eV above the Fermi level. The optical interband transitions producing structure in the dielectric function up to photon energies of 25 eV have ...

  6. The electron irradiation effects in different structures of diodes

    International Nuclear Information System (INIS)

    Li Quanfen; Wang Jiaxu

    1993-01-01

    This paper describes the different electron irradiation effects in different structures of diodes and the different results produced by different irradiation ways. From this work, we can know how to choose proper manufacture arts and comprehensive factors according to the structures of diodes and the irradiation conditions

  7. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  8. Electronic structure, elasticity, bonding features and mechanical behaviour of zinc intermetallics: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Fatima, Bushra, E-mail: bushrafatima25@gmail.com; Acharya, Nikita; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    The structural stability, electronic structure, elastic and mechanical properties of TiZn and ZrZn intermetallics have been studied using ab-initio full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation for exchange and correlation potentials. The various structural parameters, such as lattice constant (a{sub 0}), bulk modulus (B), and its pressure derivative (B’) are analysed and compared. The investigation of elastic constants affirm that both TiZn and ZrZn are elastically stable in CsCl (B{sub 2} phase) structure. The electronic structures have been analysed quantitatively from the band structure which reveals the metallic nature of these compounds. To better illustrate the nature of bonding and charge transfer, we have also studied the Fermi surfaces. The three well known criterion of ductility namely Pugh’s rule, Cauchy’s pressure and Frantsevich rule elucidate the ductile nature of these compounds.

  9. Orbital approach to the electronic structure of solids

    CERN Document Server

    Canadell, Enric; Iung, Christophe

    2012-01-01

    This book provides an intuitive yet sound understanding of how structure and properties of solids may be related. The natural link is provided by the band theory approach to the electronic structure of solids. The chemically insightful concept of orbital interaction and the essential machinery of band theory are used throughout the book to build links between the crystal and electronic structure of periodic systems. In such a way, it is shown how important tools for understandingproperties of solids like the density of states, the Fermi surface etc. can be qualitatively sketched and used to ei

  10. Design Considerations for Optimized Lateral Spring Structures for Wearable Electronics

    KAUST Repository

    Hussain, Aftab M.

    2016-03-07

    The market for wearable electronics has been gaining momentum in the recent years. For completely electronic wearable textiles with integrated sensors, actuators, computing units and communication circuitry, it is important that there is significant stretchability. This stretchability can be obtained by introducing periodic stretchable structures between the electronic circuits. In this work, we derive the equations and constraints governing the stretchability in horseshoe lateral spring structures. We have derived the optimum design and the parameters therein, to help develop the best spring structures for a given stretchability. We have also developed a figure of merit, called area efficiency of stretchability, to compare all twodimensional stretchable systems. Finally, we experimentally verify the validity of our equations by fabricating a metal/polymer bilayer thin film based stretchable horseshoe lateral spring structures. We obtain a stretchability of 1.875 which is comparable to the theoretical maxima of 2.01 for the given parameters.

  11. Design Considerations for Optimized Lateral Spring Structures for Wearable Electronics

    KAUST Repository

    Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2016-01-01

    The market for wearable electronics has been gaining momentum in the recent years. For completely electronic wearable textiles with integrated sensors, actuators, computing units and communication circuitry, it is important that there is significant stretchability. This stretchability can be obtained by introducing periodic stretchable structures between the electronic circuits. In this work, we derive the equations and constraints governing the stretchability in horseshoe lateral spring structures. We have derived the optimum design and the parameters therein, to help develop the best spring structures for a given stretchability. We have also developed a figure of merit, called area efficiency of stretchability, to compare all twodimensional stretchable systems. Finally, we experimentally verify the validity of our equations by fabricating a metal/polymer bilayer thin film based stretchable horseshoe lateral spring structures. We obtain a stretchability of 1.875 which is comparable to the theoretical maxima of 2.01 for the given parameters.

  12. Studies on electronic structure of GaN(0001) surface

    CERN Document Server

    Xie Chang Kun; Xu Fa Qiang; Deng Rui; Liu Feng; Yibulaxin, K

    2002-01-01

    An electronic structure investigation on GaN(0001) is reported. The authors employ a full-potential linearized augmented plane-wave (FPLAPW) approach to calculate the partial density of state, which is in agreement with previous experimental results. The effects of the Ga3d semi-core levels on the electronic structure of GaN are discussed. The valence-electronic structure of the wurtzite GaN(0001) surface is investigated using synchrotron radiation excited angle-resolved photoemission spectroscopy. The bulk bands dispersion along GAMMA A direction in the Brillouin zones is measured using normal-emission spectra by changing photon-energy. The band structure derived from authors' experimental data is compared well with the results of authors' FPLAPW calculation. Furthermore, off-normal emission spectra are also measured along the GAMMA K and GAMMA M directions. Two surface states are identified, and their dispersions are characterized

  13. Peculiarities of electronic structure of silicon-on-insulator structures and their interaction with synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Vladimir A. Terekhov

    2015-09-01

    Full Text Available SOI (silicon-on-insulator structures with strained and unstrained silicon layers were studied by ultrasoft X-ray emission spectroscopy and X-ray absorption near edge structure spectroscopy with the use of synchrotron radiation techniques. Analysis of X-ray data has shown a noticeable transformation of the electron energy spectrum and local partial density of states distribution in valence and conduction bands in the strained silicon layer of the SOI structure. USXES Si L2,3 spectra analysis revealed a decrease of the distance between the L2v′ и L1v points in the valence band of the strained silicon layer as well as a shift of the first two maxima of the XANES first derivation spectra to the higher energies with respect to conduction band bottom Ec. At the same time the X-ray standing waves of synchrotron radiation (λ~12–20 nm are formed in the silicon-on-insulator structure with and without strains of the silicon layer. Moreover changing the synchrotron radiation grazing angle θ by 2° leads to a change of the electromagnetic field phase to the opposite.

  14. Electronic structure of the high-temperature oxide superconductors

    International Nuclear Information System (INIS)

    Pickett, W.E.

    1989-01-01

    Since the discovery of superconductivity above 30 K by Bednorz and Mueller in the La copper oxide system, the critical temperature has been raised to 90 K in YBa 2 Cu 3 O 7 and to 110 and 125 K in Bi-based and Tl-based copper oxides, respectively. In the two years since this Nobel-prize-winning discovery, a large number of electronic structure calculations have been carried out as a first step in understanding the electronic properties of these materials. In this paper these calculations (mostly of the density-functional type) are gathered and reviewed, and their results are compared with the relevant experimental data. The picture that emerges is one in which the important electronic states are dominated by the copper d and oxygen p orbitals, with strong hybridization between them. Photon, electron, and positron spectroscopies provide important information about the electronic states, and comparison with electronic structure calculations indicates that, while many features can be interpreted in terms of existing calculations, self-energy corrections (''correlations'') are important for a more detailed understanding. The antiferromagnetism that occurs in some regions of the phase diagram poses a particularly challenging problem for any detailed theory. The study of structural stability, lattice dynamics, and electron-phonon coupling in the copper oxides is also discussed. Finally, a brief review is given of the attempts so far to identify interaction constants appropriate for a model Hamiltonian treatment of many-body interactions in these materials

  15. Electric field effect on the electronic structure of 2D Y2C electride

    Science.gov (United States)

    Oh, Youngtek; Lee, Junsu; Park, Jongho; Kwon, Hyeokshin; Jeon, Insu; Wng Kim, Sung; Kim, Gunn; Park, Seongjun; Hwang, Sung Woo

    2018-07-01

    Electrides are ionic compounds in which electrons confined in the interstitial spaces serve as anions and are attractive owing to their exotic physical and chemical properties in terms of their low work function and efficient charge-transfer characteristics. Depending on the topology of the anionic electrons, the surface electronic structures of electrides can be significantly altered. In particular, the electronic structures of two-dimensional (2D) electride surfaces are of interest because the localized anionic electrons at the interlayer space can be naturally exposed to cleaved surfaces. In this paper, we report the electronic structure of 2D Y2C electride surface using scanning tunneling microscopy (STM) and first-principles calculations, which reveals that anionic electrons at a cleaved surface are absorbed by the surface and subsequently resurged onto the surface due to an applied electric field. We highlight that the estranged anionic electrons caused by the electric field occupy the slightly shifted crystallographic site compared with a bulk Y2C electride. We also measure the work function of the Y2C single crystal, and it shows a slightly lower value than the calculated one, which appears to be due to the electric field from the STM junction.

  16. Standardized structure of electronic records for information exchange

    International Nuclear Information System (INIS)

    Galabova, Sevdalina; Trencheva, Tereza; Trenchev, Ivan

    2009-01-01

    In the paper is presented the structure of the electronic record whose form is standardized in ISO 2709:2008. This International Standard describes a generalized structure, a framework designed specially for communications between data processing systems and not for use as a processing format within systems.Basic terms are defined as follows: character, data field, directory, directory map, field, field separator etc. It’s presented the general structure of a record. The application analysis of this structure shows the effective information exchange in the widest range.The purpose of this research is to find out advantages and structure of the information exchange format standardized in ISO 2709:2008. Key words: Standardized structure, electronic records, exchange formats, data field, directory, directory map, indicators, identifiers

  17. The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons

    Science.gov (United States)

    Yang, Huihui; Chen, Hongshan

    2017-07-01

    The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9

  18. Electronic shell structure in multiply charged silver clusters

    International Nuclear Information System (INIS)

    Kandler, O.; Athanassenas, K.; Echt, O.; Kreisle, D.; Leisner, T.; Recknagel, E.

    1991-01-01

    Silver clusters are generated by standard laser vaporization technique and ionized via multiphoton ionization. Time-of-flight mass spectrometry reveals singly, doubly and triply charged clusters, Ag n z+ (z=1, 2, 3). The spectra show, for all charge states, intensity variations, indicating enhanced stabilities for cluster sizes with closed electronic configurations in accord with the spherical jellium model. (orig.)

  19. On electronic structure of polymer-derived amorphous silicon carbide ceramics

    Science.gov (United States)

    Wang, Kewei; Li, Xuqin; Ma, Baisheng; Wang, Yiguang; Zhang, Ligong; An, Linan

    2014-06-01

    The electronic structure of polymer-derived amorphous silicon carbide ceramics was studied by combining measurements of temperature-dependent conductivity and optical absorption. By comparing the experimental results to theoretical models, electronic structure was constructed for a carbon-rich amorphous silicon carbide, which revealed several unique features, such as deep defect energy level, wide band-tail band, and overlap between the band-tail band and defect level. These unique features were discussed in terms of the microstructure of the material and used to explain the electric behavior.

  20. Priming paradigm reveals harmonic structure processing in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Gosselin, Nathalie; Bigand, Emmanuel; Peretz, Isabelle

    2012-09-01

    Deficits for pitch structure processing in congenital amusia has been mostly reported for melodic stimuli and explicit judgments. The present study investigated congenital amusia with harmonic stimuli and a priming task. Amusic and control participants performed a speeded phoneme discrimination task on sung chord sequences. The target phoneme was sung either on a functionally important chord (tonic chord, referred to as "related target") or a less important one (subdominant chord, referred to as "less-related target"). Correct response times were faster when the target phoneme was sung on tonic chords rather than on subdominant chords, and this effect was less pronounced, albeit significant, in amusic participants. These data report for the first time a deficit in congenital amusia for chord processing, but also provide evidence that, despite this deficit, amusic individuals have internalized sophisticated syntactic-like functions of chords in the Western tonal musical system. This finding suggests that thanks to this musical knowledge, amusic individuals could develop expectancies for musical events, and, presumably, follow the tension-relaxation schemas in Western tonal music, which also influence emotional responses to music. Copyright © 2012 Elsevier Srl. All rights reserved.

  1. Probabilistic diffusion tractography reveals improvement of structural network in musicians.

    Directory of Open Access Journals (Sweden)

    Jianfu Li

    Full Text Available PURPOSE: Musicians experience a large amount of information transfer and integration of complex sensory, motor, and auditory processes when training and playing musical instruments. Therefore, musicians are a useful model in which to investigate neural adaptations in the brain. METHODS: Here, based on diffusion-weighted imaging, probabilistic tractography was used to determine the architecture of white matter anatomical networks in musicians and non-musicians. Furthermore, the features of the white matter networks were analyzed using graph theory. RESULTS: Small-world properties of the white matter network were observed in both groups. Compared with non-musicians, the musicians exhibited significantly increased connectivity strength in the left and right supplementary motor areas, the left calcarine fissure and surrounding cortex and the right caudate nucleus, as well as a significantly larger weighted clustering coefficient in the right olfactory cortex, the left medial superior frontal gyrus, the right gyrus rectus, the left lingual gyrus, the left supramarginal gyrus, and the right pallidum. Furthermore, there were differences in the node betweenness centrality in several regions. However, no significant differences in topological properties were observed at a global level. CONCLUSIONS: We illustrated preliminary findings to extend the network level understanding of white matter plasticity in musicians who have had long-term musical training. These structural, network-based findings may indicate that musicians have enhanced information transmission efficiencies in local white matter networks that are related to musical training.

  2. Microstructural differences between two Zr(C,N) coatings revealed by analytical transmission electron microscopy

    International Nuclear Information System (INIS)

    Dörfel, Ilona; Rooch, Heidemarie; Österle, Werner

    2012-01-01

    The microstructures of two samples of a Zr(C,N) coating on steel, which unexpectedly differed in their tribological properties, were investigated by analytical transmission electron microscopy. The samples were produced by a cathodic arc evaporation process in two commercial coating devices under similar coating conditions with the exception of the number of Zr targets. The source of the differing tribological properties of the samples was detected by analytical transmission electron microscopy (TEM) methods energy-dispersive X-ray spectroscopy (EDX), energy filtering TEM (EFTEM), electron diffraction, high resolution electron microscopy, and high angel annular dark field. The TEM preparation and the results of the TEM investigations are shown in detail. The origin of the unexpected behavior was determined to be a nano-scale multilayer structure that existed only in the tribologically superior specimen. EDX and EFTEM investigations indicated enrichment in oxygen at the interface between coating and steel substrate in the tribologically inferior sample. Findings of the microstructural configuration were obtained by taking a closer look at the structure and comparing the results of the several analytical TEM techniques. This allows the allocation of the concentration fluctuations in N, C, and Zr to the two thickness fractions of the nano multilayers and a local correlation of the identified minority phase Zr 3 (C,N) 4 to the higher N content in the narrower type of the multilayer fraction of the sample with the excellent tribological properties. The minority phase Zr 3 (C,N) 4 is randomly distributed in the sample with the defective tribological properties. Coating conditions are not topic of this work, but after discussion of the TEM results, the fact that one of the coating devices worked with one Zr target and the other one with two, could be identified as cause for the formation of the nano multilayer structure in the sample with the superior tribological

  3. Modeling of the atomic and electronic structures of interfaces

    International Nuclear Information System (INIS)

    Sutton, A.P.

    1988-01-01

    Recent tight binding and Car-Parrinello simulations of grain boundaries in semiconductors are reviewed. A critique is given of some models of embrittlement that are based on electronic structure considerations. The structural unit model of grain boundary structure is critically assessed using some results for mixed tilt and twist grain boundaries. A new method of characterizing interfacial structure in terms of bond angle distribution functions is described. A new formulation of thermodynamic properties of interfaces is presented which focusses on the local atomic environment. Effective, temperature dependent N-body atomic interactions are derived for studying grain boundary structure at elevated temperature

  4. First-principles study of structural & electronic properties of pyramidal silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Jariwala, Pinank; Thakor, P. B. [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Singh, Deobrat; Sonvane, Y. A., E-mail: yasonvane@gmail.com [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Gupta, Sanjeev K. [Department of Physics, St. Xavier’s College, Ahmedabad 38 0009 (India)

    2016-05-23

    We have investigated the stable structural and electronic properties of Silicon (Si) nanowires having different cross-sections with 5-7 Si atoms per unit cell. These properties of the studied Si nanowires were significantly changed from those of diamond bulk Si structure. The binding energy increases as increasing atoms number per unit cell in different SiNWs structures. All the nanowires structures are behave like metallic rather than semiconductor in bulk systems. In general, the number of conduction channels increases when the nanowire becomes thicker. The density of charge revealed delocalized metallic bonding for all studied Si nanowires.

  5. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    International Nuclear Information System (INIS)

    Fisher, I R; Shen, Z X; Degiorgi, L

    2011-01-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  6. In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ian Randal

    2012-05-08

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

  7. Electron backscatter diffraction characterization of laser-induced periodic surface structures on nickel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx, E-mail: sedao.xxx@gmail.com [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Maurice, Claire [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Garrelie, Florence; Colombier, Jean-Philippe; Reynaud, Stéphanie [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Quey, Romain; Blanc, Gilles [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Pigeon, Florent [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France)

    2014-05-01

    Graphical abstract: -- Highlight: •Lattice rotation and its distribution in laser-induced periodic surface structures (LIPSS) and the subsurface region on a nickel substrate are revealed using electron backscatter diffraction (EBSD). -- Abstract: We report on the structural investigation of laser-induced periodic surface structures (LIPSS) generated in polycrystalline nickel target after multi-shot irradiation by femtosecond laser pulses. Electron backscatter diffraction (EBSD) is used to reveal lattice rotation caused by dislocation storage during LIPSS formation. Localized crystallographic damages in the LIPSS are detected from both surface and cross-sectional EBSD studies. A surface region (up to 200 nm) with 1–3° grain disorientation is observed in localized areas from the cross-section of the LIPSS. The distribution of the local disorientation is inhomogeneous across the LIPSS and the subsurface region.

  8. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy.

    Science.gov (United States)

    Hipp, Katharina; Galani, Kyriaki; Batisse, Claire; Prinz, Simone; Böttcher, Bettina

    2012-04-01

    Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.

  9. Heme isomers substantially affect heme's electronic structure and function

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    Inspection of heme protein structures in the protein data bank reveals four isomers of heme characterized by different relative orientations of the vinyl side chains; remarkably, all these have been reported in multiple protein structures. Density functional theory computations explain this as du...

  10. Electronic Structure of Large-Scale Graphene Nanoflakes

    OpenAIRE

    Hu, Wei; Lin, Lin; Yang, Chao; Yang, Jinlong

    2014-01-01

    With the help of the recently developed SIESTA-PEXSI method [J. Phys.: Condens. Matter \\textbf{26}, 305503 (2014)], we perform Kohn-Sham density functional theory (DFT) calculations to study the stability and electronic structure of hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, HOMO-LUMO energy gap, edge states and aromaticity, depend sensitively on the type of edges (ACGNFs and ZZGNFs), size and the n...

  11. Study of electronic and structural properties of CaS

    International Nuclear Information System (INIS)

    Mirfenderski, M.; Akbarzdeh, H.; Mokhtari, A.

    2003-01-01

    The electronic and structural properties of CaS are calculated using full potential linearized augmented plane wave method within the local density approximation and generalized gradient approximation for the exchange -correlation energy. For both structures, NaCl structure (B1) and CsCl structure (B2), the obtained values for lattice parameters, bulk modulus and its pressure derivative and transition pressure are in reasonable agreement with the experimental values. For electronic properties, the obtained value for band gap is smaller than the experimental value as well as other calculated results based on density functional theory. Engel and Vosko calculated an exchange potential for some atoms within the so-called optimize-potential model and then used the virial relation and constructed a new exchange-correlation functional. We used that functional and obtained reasonable results for band gap. Finally we investigated the possibility for a third phase ( Zinc Blend structure) for this crystal

  12. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  13. Application of electron crystallography to structure characterization of ZnS nanocrystals

    Directory of Open Access Journals (Sweden)

    Jin-Gyu Kim

    2011-07-01

    Full Text Available We chracterized the structure properties of two types of ZnS nanocrystals by electron crystallography. X-ray diffraction analysis for these ZnS nanocrystals was performed to determine their initial structures. Their crystallite sizes were about 5.9 nm and 8.1 nm and their crystal systems were hexagonal and cubic, respectively. Their atomic structures, however, could not be determined because of the weak diffraction intensities as well as the unexpected intensities from impurty. To overcome these problems, the structures of ZnS nanocrystals were resolved by electron crystallography using EF-EPD (energy-filtered electron powder diffraction and HRTEM (high resolution transmission electron microscopy methods. The structrues determined by Rietveld analysis are P63mc (a = 3.8452 Å, c = 18.5453 Å and F-43m (a = 5.4356 Å, respectively. Their crystallite shapes were nanorods and quasi-nanoparticles and the nanorod crystal were grown along the [001] direction. It was revealed that the phase transformation between the cubic sphalerite to the hexagonal wurtzite structure of ZnS nanocrytals was related to their shapes and growth mechanism. Electron cryststallogrpahy, employing EF-EPD and HRTEM methods together, has advantages for structure analysis and property chracterization of nano-sized materials.

  14. Electron confinement in thin metal films. Structure, morphology and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dil, J.H.

    2006-05-15

    This thesis investigates the interplay between reduced dimensionality, electronic structure, and interface effects in ultrathin metal layers (Pb, In, Al) on a variety of substrates (Si, Cu, graphite). These layers can be grown with such a perfection that electron confinement in the direction normal to the film leads to the occurrence of quantum well states in their valence bands. These quantum well states are studied in detail, and their behaviour with film thickness, on different substrates, and other parameters of growth are used here to characterise a variety of physical properties of such nanoscale systems. The sections of the thesis deal with a determination of quantum well state energies for a large data set on different systems, the interplay between film morphology and electronic structure, and the influence of substrate electronic structure on their band shape; finally, new ground is broken by demonstrating electron localization and correlation effects, and the possibility to measure the influence of electron-phonon coupling in bulk bands. (orig.)

  15. Atomic and electronic structure of exfoliated black phosphorus

    International Nuclear Information System (INIS)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre; Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J.

    2015-01-01

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO 3 or H 3 PO 3 during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time

  16. Atomic and electronic structure of exfoliated black phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.

  17. Momentum space analysis of the electronic structure of biphenyl

    International Nuclear Information System (INIS)

    Morini, F; Shojaei, S H Reza; Deleuze, M S

    2014-01-01

    The results of a yet to come experimental study of the electronic structure of biphenyl employing electron momentum spectroscopy (EMS) have been theoretically predicted, taking into account complications such as structural mobility in the electronic ground state, electronic correlation and relaxation, and a dispersion of the inner-valence ionization intensity to electronically excited (shake-up) configurations in the cation. The main purpose of this work is to explore the current limits of EMS in unraveling details of the molecular structure, namely the torsional characteristics of large and floppy aromatic molecules. At the benchmark ADC(3)/cc-pVDZ level of theory, the influence of the twist angle between the two phenyl rings is found to be extremely limited, except for individual orbital momentum profiles corresponding to ionization lines at electron binding energies ranging from 15 to 18 eV. When taking band overlap effects into account, this influence is deceptively far too limited to allow for any experimental determination of the torsional characteristics of biphenyl by means of EMS. (paper)

  18. Quasiparticle GW calculations within the GPAW electronic structure code

    DEFF Research Database (Denmark)

    Hüser, Falco

    The GPAW electronic structure code, developed at the physics department at the Technical University of Denmark, is used today by researchers all over the world to model the structural, electronic, optical and chemical properties of materials. They address fundamental questions in material science...... and use their knowledge to design new materials for a vast range of applications. Todays hottest topics are, amongst many others, better materials for energy conversion (e.g. solar cells), energy storage (batteries) and catalysts for the removal of environmentally dangerous exhausts. The mentioned...... properties are to a large extent governed by the physics on the atomic scale, that means pure quantum mechanics. For many decades, Density Functional Theory has been the computational method of choice, since it provides a fairly easy and yet accurate way of determining electronic structures and related...

  19. A multipole acceptability criterion for electronic structure theory

    International Nuclear Information System (INIS)

    Schwegler, E.; Challacombe, M.; Head-Gordon, M.

    1998-01-01

    Accurate and computationally inexpensive estimates of multipole expansion errors are crucial to the success of several fast electronic structure methods. In this paper, a new nonempirical multipole acceptability criterion is described that is directly applicable to expansions of high order moments. Several model calculations typical of electronic structure theory are presented to demonstrate its performance. For cases involving small translation distances, accuracies are increased by up to five orders of magnitude over an empirical criterion. The new multipole acceptance criterion is on average within an order of magnitude of the exact expansion error. Use of the multipole acceptance criterion in hierarchical multipole based methods as well as in traditional electronic structure methods is discussed. copyright 1998 American Institute of Physics

  20. Structural and electronic properties of L-amino acids

    Science.gov (United States)

    Tulip, P. R.; Clark, S. J.

    2005-05-01

    The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.

  1. Electron transfer reactions in structural units of copper proteins

    International Nuclear Information System (INIS)

    Faraggi, M.

    1975-01-01

    In previous pulse radiolysis studies it was suggested that the reduction of the Cu(II) ions in copper proteins by the hydrated electron is a multi-step electron migration process. The technique has been extended to investigate the reduction of some structural units of these proteins. These studies include: the reaction of the hydrated electron with peptides, the reaction of the disulphide bridge with formate radical ion and radicals produced by the reduction of peptides, and the reaction of Cu(II)-peptide complex with esub(aq)sup(-) and CO 2 - . Using these results the reduction mechanism of copper and other proteins will be discussed. (author)

  2. Electronic structure of deep impurity centers in silicon

    International Nuclear Information System (INIS)

    Oosten, A.B. van.

    1989-01-01

    This thesis reports an experimental study of deep level impurity centers in silicon, with much attention for theoretical interpretation of the data. A detailed picture of the electronic structure of several centers was obtained by magnetic resonance techniques, such as electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR) and field scanned ENDOR (FSE). The thesis consists of two parts. The first part deals with chalcogen (sulfur, selenium and tellurium) related impurities, which are mostly double donors. The second part is about late transition metal (nickel, palladium and platinum) impurities, which are single (Pd,Pt) or double (Ni) acceptor centers. (author). 155 refs.; 51 figs.; 23 tabs

  3. Structural stability, electronic, mechanical and superconducting properties of CrC and MoC

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.; Sudha Priyanga, G. [Department of Physics, N.M.S.S.V.N College, Madurai 625019, Tamilnadu (India); Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai 625019, Tamilnadu (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai 603203, Tamilnadu (India)

    2016-02-01

    The structural, electronic, mechanical and superconducting properties of chromium carbide (CrC) and molybdenum carbide (MoC) are investigated using first principles calculations based on density functional theory (DFT). The computed ground state properties like equilibrium lattice constants and cell volume are in good agreement with available theoretical and experimental data. A pressure induced structural phase transition from tungsten carbide phase (WC) to zinc blende phase (ZB) and then zinc blende phase (ZB) to nickel arsenide phase (NiAs) are observed in both chromium and molybdenum carbides. Electronic structure reveals that these carbides are metallic at ambient condition. All the calculated elastic constants obey the Born–Huang stability criteria, suggesting that they are mechanically stable at normal and high pressure. The super conducting transition temperatures for CrC and MoC in WC phase are found to be 31.12 K and 17.14 K respectively at normal pressure. - Highlights: • Electronic and mechanical properties of CrC and MoC are investigated. • Pressure induced structural phase transition is predicted at high pressure. • Electronic structure reveals that these materials exhibit metallic behaviour. • Debye temperature values are computed for CrC and MoC. • Superconducting transition temperature values are computed.

  4. Inter-ring rotations of AAA ATPase p97 revealed by electron cryomicroscopy.

    Science.gov (United States)

    Yeung, Heidi O; Förster, Andreas; Bebeacua, Cecilia; Niwa, Hajime; Ewens, Caroline; McKeown, Ciarán; Zhang, Xiaodong; Freemont, Paul S

    2014-03-05

    The type II AAA+ protein p97 is involved in numerous cellular activities, including endoplasmic reticulum-associated degradation, transcription activation, membrane fusion and cell-cycle control. These activities are at least in part regulated by the ubiquitin system, in which p97 is thought to target ubiquitylated protein substrates within macromolecular complexes and assist in their extraction or disassembly. Although ATPase activity is essential for p97 function, little is known about how ATP binding or hydrolysis is coupled with p97 conformational changes and substrate remodelling. Here, we have used single-particle electron cryomicroscopy (cryo-EM) to study the effect of nucleotides on p97 conformation. We have identified conformational heterogeneity within the cryo-EM datasets from which we have resolved two major p97 conformations. A comparison of conformations reveals inter-ring rotations upon nucleotide binding and hydrolysis that may be linked to the remodelling of target protein complexes.

  5. Atomic-scale Ge diffusion in strained Si revealed by quantitative scanning transmission electron microscopy

    Science.gov (United States)

    Radtke, G.; Favre, L.; Couillard, M.; Amiard, G.; Berbezier, I.; Botton, G. A.

    2013-05-01

    Aberration-corrected scanning transmission electron microscopy is employed to investigate the local chemistry in the vicinity of a Si0.8Ge0.2/Si interface grown by molecular-beam epitaxy. Atomic-resolution high-angle annular dark field contrast reveals the presence of a nonuniform diffusion of Ge from the substrate into the strained Si thin film. On the basis of multislice calculations, a model is proposed to quantify the experimental contrast, showing that the Ge concentration in the thin film reaches about 4% at the interface and decreases monotonically on a typical length scale of 10 nm. Diffusion occurring during the growth process itself therefore appears as a major factor limiting the abruptness of interfaces in the Si-Ge system.

  6. Electronic structure and fine structural features of the air-grown UNxOy on nitrogen-rich uranium nitride

    Science.gov (United States)

    Long, Zhong; Zeng, Rongguang; Hu, Yin; Liu, Jing; Wang, Wenyuan; Zhao, Yawen; Luo, Zhipeng; Bai, Bin; Wang, Xiaofang; Liu, Kezhao

    2018-06-01

    Oxide formation on surface of nitrogen-rich uranium nitride film/particles was investigated using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), aberration-corrected transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with electron energy-loss spectroscopy (EELS). XPS and AES studies indicated that the oxidized layer on UN2-x film is ternary compound uranium oxynitride (UNxOy) in 5-10 nm thickness. TEM/HAADF-STEM and EELS studies revealed the UNxOy crystallizes in the FCC CaF2-type structure with the lattice parameter close to the CaF2-type UN2-x matrix. The work can provide further information to the oxidation mechanism of uranium nitride.

  7. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    Science.gov (United States)

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  8. Photoelectron spectra and electronic structure of some spiroborate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vovna, V.I.; Tikhonov, S.A.; Lvov, I.B., E-mail: lvov.ib@dvfu.ru; Osmushko, I.S.; Svistunova, I.V.; Shcheka, O.L.

    2014-12-15

    Highlights: • The electronic structure of three spiroborate complexes—boron 1,2-dioxyphenylene β-diketonates has been investigated. • UV and X-ray photoelectron spectra have been interpreted. • DFT calculations have been used for interpretation of spectral bands. • The binding energy of nonequivalent carbon and oxygen atoms were measured. • The structure of X-ray photoelectron spectra of the valence electrons is in good agreement with the energies and composition of Kohn–Sham orbitals. - Abstract: The electronic structure of the valence and core levels of three spiroborate complexes – boron 1,2-dioxyphenylene β-diketonates – has been investigated by methods of UV and X-ray photoelectron spectroscopy and quantum chemical density functional theory. The ionization energy of π- and n-orbitals of the dioxyphenylene fragment and β-diketonate ligand were measured from UV photoelectron spectra. This made it possible to determine the effect of substitution of one or two methyl groups by the phenyl in diketone on the electronic structure of complexes. The binding energy of nonequivalent carbon and oxygen atoms were measured from X-ray photoelectron spectra. The results of calculations of the energy of the valence orbitals of complexes allowed us to refer bands observed in the spectra of the valence electrons to the 2s-type levels of carbon and oxygen.

  9. Electronic structure of thiolate-covered gold nanoparticles: Au102(MBA)44.

    Science.gov (United States)

    Li, Yan; Galli, Giulia; Gygi, François

    2008-09-23

    We present first principles, density functional theory (DFT) calculations of the structural and electronic properties of thiolate-protected gold nanoparticles [Au(102)(MBA)(44) ] that have been recently crystallized and measured by X-ray diffraction. Our calculations yield structural properties in very good agreement with experiment and reveal the impact of thiolate adsorption on both the surface geometry and the electronic structure of the gold core; in particular, within DFT we observe the emergence of an energy gap of about 0.5 eV, upon MBA adsorption. Using a localized orbital analysis, we characterize the electron distribution in the nanoparticle and provide insight into the bonding of thiolates on curved gold surfaces.

  10. Transport properties of electrons in fractal magnetic-barrier structures

    Science.gov (United States)

    Sun, Lifeng; Fang, Chao; Guo, Yong

    2010-09-01

    Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.

  11. Organization of organelles within hyphae of Ashbya gossypii revealed by electron tomography.

    Science.gov (United States)

    Gibeaux, Romain; Hoepfner, Dominic; Schlatter, Ivan; Antony, Claude; Philippsen, Peter

    2013-11-01

    Ashbya gossypii grows as multinucleated and constantly elongating hyphae. Nuclei are in continuous forward and backward motion, also move during mitosis, and frequently bypass each other. Whereas these nuclear movements are well documented, comparatively little is known about the density and morphology of organelles which very likely influence these movements. To understand the three-dimensional subcellular organization of hyphae at high resolution, we performed large-scale electron tomography of the tip regions in A. gossypii. Here, we present a comprehensive space-filling model in which most membrane-limited organelles including nuclei, mitochondria, endosomes, multivesicular bodies, vacuoles, autophagosomes, peroxisomes, and vesicles are modeled. Nuclei revealed different morphologies and protrusions filled by the nucleolus. Mitochondria are very abundant and form a tubular network with a polarized spherical fraction. The organelles of the degradative pathways show a clustered organization. By analyzing vesicle-like bodies, we identified three size classes of electron-dense vesicles (∼200, ∼150, and ∼100 nm) homogeneously distributed in the cytoplasm which most likely represent peroxisomes. Finally, coated and uncoated vesicles with approximately 40-nm diameters show a polarized distribution toward the hyphal tip with the coated vesicles preferentially localizing at the hyphal periphery.

  12. Electronic structure of ordered and disordered Fe sub 3 Pt

    CERN Document Server

    Major, Z; Jarlborg, T; Bruno, E; Ginatempo, B; Staunton, J B; Poulter, J

    2003-01-01

    The electronic structure of invar alloys (i.e. materials in which the near absence of thermal expansion is observed) has been the focus of much study, owing both to the technological applications of these materials and interest in the fundamental mechanism that is responsible for the effect. Here, calculations of the magnetic Compton profiles are presented for ordered and disordered Fe sub 3 Pt alloys. Using linear muffin-tin orbital and KKR methods, the latter incorporating the coherent potential approximation to describe the substitutional disorder, the electronic band structure and measurable quantities such as the Fermi surface topology are presented.

  13. Band structure and unconventional electronic topology of CoSi

    Science.gov (United States)

    Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.

    2018-04-01

    Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \

  14. Comparison of electronic structure between monolayer silicenes on Ag (111)

    Science.gov (United States)

    Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi

    2015-08-01

    The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  15. Solving complex and disordered surface structures with electron diffraction

    International Nuclear Information System (INIS)

    Van Hove, M.A.

    1987-10-01

    The past of surface structure determination with low-energy electron diffraction (LEED) will be briefly reviewed, setting the stage for a discussion of recent and future developments. The aim of these developments is to solve complex and disordered surface structures. Some efficient solutions to the theoretical and experimental problems will be presented. Since the theoretical problems dominate, the emphasis will be on theoretical approaches to the calculation of the multiple scattering of electrons through complex and disordered surfaces. 49 refs., 13 figs., 1 tab

  16. Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Goumri-Said, Souraya; Tahir, S. A.

    2018-05-01

    Germanium mono-chalcogenides have received considerable attention for being a promising replacement for the relatively toxic and expensive chalcogenides in renewable and sustainable energy applications. In this paper, we explore the potential of the recently discovered novel cubic structured (π-phase) GeS and GeSe for thermoelectric applications in the framework of density functional theory coupled with Boltzmann transport theory. To examine the modifications in their physical properties, the across composition alloying of π-GeS and π-GeSe (such as π-GeS1-xSex for x =0, 0.25, 0.50, 0.75, and 1) has been performed that has shown important effects on the electronic band structures and effective masses of charge carriers. An increase in Se composition in π-GeS1-xSex has induced a downward shift in their conduction bands, resulting in the narrowing of their energy band gaps. The thermoelectric coefficients of π-GeS1-xSex have been accordingly influenced by the evolution of the electronic band structures and effective masses of charge carriers. π-GeS1-xSex features sufficiently larger values of Seebeck coefficients, power factors and figures of merit (ZTs), which experience further improvement with an increase in temperature, revealing their potential for high-temperature applications. The calculated results show that ZT values equivalent to unity can be achieved for π-GeS1-xSex at appropriate n-type doping levels. Our calculations for the formation enthalpies indicate that a π-GeS1-xSex alloying system is energetically stable and could be synthesized experimentally. These intriguing characteristics make π-GeS1-xSex a promising candidate for futuristic thermoelectric applications in energy harvesting devices.

  17. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)

    2017-09-10

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  18. Surface electron structure of short-period semiconductor superlattice

    International Nuclear Information System (INIS)

    Bartos, I.; Czech Academy Science, Prague,; Strasser, T.; Schattke, W.

    2004-01-01

    Full text: Semiconductor superlattices represent man-made crystals with unique physical properties. By means of the directed layer-by-layer molecular epitaxy growth their electric properties can be tailored (band structure engineering). Longer translational periodicity in the growth direction is responsible for opening of new electron energy gaps (minigaps) with surface states and resonances localized at superlattice surfaces. Similarly as for the electron structure of the bulk, a procedure enabling to modify the surface electron structure of superlattices is desirable. Short-period superlattice (GaAs) 2 (AlAs) 2 with unreconstructed (100) surface is investigated in detail. Theoretical description in terms of full eigenfunctions of individual components has to be used. The changes of electron surface state energies governed by the termination of a periodic crystalline potential, predicted on simple models, are confirmed for this system. Large surface state shifts are found in the lowest minigap of the superlattice when this is terminated in four different topmost layer configurations. The changes should be observable in angle resolved photoelectron spectroscopy as demonstrated in calculations based on the one step model of photoemission. Surface state in the center of the two dimensional Brillouin zone moves from the bottom of the minigap (for the superlattice terminated by two bilayers of GaAs) to its top (for the superlattice terminated by two bilayers of AlAs) where it becomes a resonance. No surface state/resonance is found for a termination with one bilayer of AlAs. The surface state bands behave similarly in the corresponding gaps of the k-resolved section of the electron band structure. The molecular beam epitaxy, which enables to terminate the superlattice growth with atomic layer precision, provides a way of tuning the superlattice surface electron structure by purely geometrical means. The work was supported by the Grant Agency of the Academy of Sciences

  19. Electronic structure and optical properties of AIN under high pressure

    International Nuclear Information System (INIS)

    Li Zetao; Dang Suihu; Li Chunxia

    2011-01-01

    We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)

  20. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  1. Electronic structure of nitrides PuN and UN

    Science.gov (United States)

    Lukoyanov, A. V.; Anisimov, V. I.

    2016-11-01

    The electronic structure of uranium and plutonium nitrides in ambient conditions and under pressure is investigated using the LDA + U + SO band method taking into account the spin-orbit coupling and the strong correlations of 5 f electrons of actinoid ions. The parameters of these interactions for the equilibrium cubic structure are calculated additionally. The application of pressure reduces the magnetic moment in PuN due to predominance of the f 6 configuration and the jj-type coupling. An increase in the occupancy of the 5 f state in UN leads to a decrease in the magnetic moment, which is also detected in the trigonal structure of the UN x β phase (La2O3-type structure). The theoretical results are in good agreement with the available experimental data.

  2. Study on atomic and electronic structures of ceramic materials using spectroscopy, microscopy, and first principles calculation

    International Nuclear Information System (INIS)

    Mizoguchi, Teruyasu

    2011-01-01

    In this review, following two topics are introduced: 1) experimental and theoretical electron energy loss (EEL) near edge structures (ELNES) and X-ray absorption near edge structures (XANES), and 2) atomic and electronic structure analysis of ceramic interface by combing spectroscopy, microscopy, and first principles calculation. In the ELNES/XANES calculation, it is concluded that inclusion of core-hole effect in the calculation is essential. By combining high energy resolution observation and theoretical calculation, detailed analysis of the electronic structure is achieved. In addition, overlap population (OP) diagram is used to interpret the spectrum. In the case of AlN, sharp and intense first peak of N-K edge is found to reflect narrow dispersion of the conduction band bottom. By applying ELNES and the OP diagram to Cu/Al 2 O 3 heterointerface, it is revealed that intensity of prepeak in O-K edge is inverse proportional to interface strength. The relationships between atomic structure and defect energetics at SrTiO 3 grain boundary are also investigated, and reveal that the formation behavior of Ti vacancy is sensitive to the structural distortion. In addition, by using state-of-the-art spectroscopy, microscopy, and first principles calculations, atomic scale visualization of fluorine dopant in LaFeOAs and first principles calculation of HfO 2 phase transformation are demonstrated. (author)

  3. Photoelectron spectra and electronic structure of nitrogen analogues of boron β-diketonates with aromatic substituents

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonov, Sergey A., E-mail: allser@bk.ru [Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690950 (Russian Federation); Vovna, Vitaliy I. [Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690950 (Russian Federation); Borisenko, Aleksandr V. [Vladivostok Branch of Russian Customs Academy, 16v Strelkovaya St., Vladivostok, 690034 (Russian Federation)

    2016-11-15

    Highlights: • The electronic structures of three nitrogen analogues of boron β-diketonates have been investigated. • UV photoelectron spectra have been interpreted. • The structure of the UV photoelectron spectra is in good agreement with the energies and compositions of Kohn-Sham orbitals. - Abstract: The electronic structure of three nitrogen analogoues of boron β-diketonates containing aromatic substituents was studied by the ultraviolet photoelectron spectroscopy and within the density functional theory. In order to determine effects of heteroatom substitution in the chelate ligand, a comparative analysis was carried out for the electronic structure of three model compounds. In a range of model compounds, the HOMO's nature was revealed to be the same. The HOMO-1 orbital of nitrogen containing compounds is determined by the presence of lone electron pairs of nitrogen. In a range of the complexes under study, the influence of aromatic substituents on the electronic structure was defined. In the imidoylamidinate complex, in contrast to formazanates and β-diketonates, it was found the absence of any noticeable mixing of π-orbitals of the chelate and benzene rings. It was shown that within energy range to 11 eV, the calculated results reproduce well the energy differences between the ionized states of complexes.

  4. Quantitative vs. qualitative approaches to the electronic structure of solids

    International Nuclear Information System (INIS)

    Oliva, J.M.; Llunell, Miquel; Alemany, Pere; Canadell, Enric

    2003-01-01

    The usefulness of qualitative and quantitative theoretical approaches in solid state chemistry is discussed by considering three different types of problems: (a) the distribution of boron and carbon atoms in MB 2 C 2 (M=Ca, La, etc.) phases, (b) the band structure and Fermi surface of low-dimensional transition metal oxides and bronzes, and (c) the correlation between the crystal and electronic structure of the ternary nitride Ca 2 AuN

  5. Electronic structure of binuclear acetylacetonates of boron difluoride

    Science.gov (United States)

    Tikhonov, Sergey A.; Svistunova, Irina V.; Samoilov, Ilya S.; Osmushko, Ivan S.; Borisenko, Aleksandr V.; Vovna, Vitaliy I.

    2018-05-01

    The electronic structure of boron difluoride acetylacetonate and its three derivatives was studied using photoelectron and absorption spectroscopy, as well as the density functional theory. In a series of binuclear acetylacetonate complexes containing bridge-moieties of sulfur and selenium atoms, it was found an appreciable mixing of the π3-orbital of the chelate cycle with atomic orbitals S 3p and Se 4p resulting in destabilization of the HOMO levels by 0.4-0.6 eV, in comparison with the monomer. The positively charged fragment C(CH3)-CX-C(CH3) causes the field effect, which leads to stabilization of the LUMO levels by 0.3-0.4 eV and C 1s-levels by 0.5-1.2 eV. An analysis of the research results on the electronic structure made it possible to determine the effect of substituents in the γ position on the absorption spectra, which is mainly determined by the electron density transfer from the chalcogen atoms to the chelate cycles. It is shown that the calculated energy intervals between electron levels correlate well with the structure of the photoelectron spectra of valence and core electrons.

  6. The electronic structure of C60 and its derivatives

    International Nuclear Information System (INIS)

    Lichtenberger, D.L.; Rempe, M.E.; Gruhn, N.E.; Wright, L.L.

    1993-01-01

    Molecular orbital calculations are used to examine the electronic structure of C 60 and its interaction with metals and some other atoms. The bonding capabilities of the η 5 , η 6 , and the two possible η 2 sites of C 60 to metals are probed with Fenske-Hall calculations of a silver cation bound in those positions. These results are compared to the bonding capabilities of cyclopentadiene, benzene and ethylene, respectively. It is found that the silver cation bonding to C 60 is favored at the η 2 that is shared between five-membered rings, but that the silver cation bonds more favorably to ethylene than to the η 2 site of C 60 . The electronic structure of the known platinum compound, C 60 Pt(phosphine) 2 , where the bonding is also to this η 2 site, is investigated and compared to the electronic structure of the corresponding ethylene complex. In this more electron-rich metal case, the bonding of the C 60 and ethylene are very similar. A calculation on C 60 OsO 4 (NH 3 ) 2 , where C 60 is bound to two oxygens, shows that the orbital composition correlates with the observed NMR shifts of the carbon atoms. The calculations are used to clarify the interpretations of experimental data obtained from STM, NMR, PES and reactivity. The latest results of these electronic studies will be presented

  7. Electronic structure analysis of GaN films grown on r- and a-plane sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna TC, Shibin; Aggarwal, Neha [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Vihari, Saket [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2015-10-05

    Graphical abstract: Substrate orientation induced changes in surface chemistry, band bending, hybridization states, electronic properties and surface morphology of epitaxially grown GaN were investigated via photoemission spectroscopic and Atomic Force Microscopic measurements. - Highlights: • Electronic structure and surface properties of GaN film grown on r/a-plane sapphire. • Downward band bending (0.5 eV) and high surface oxide is observed for GaN/a-sapphire. • Electron affinity and ionization energy is found to be higher for GaN/a-sapphire. - Abstract: The electronic structure and surface properties of epitaxial GaN films grown on r- and a-plane sapphire substrates were probed via spectroscopic and microscopic measurements. X-ray photoemission spectroscopic (XPS) measurements were performed to analyse the surface chemistry, band bending and valence band hybridization states. It was observed that GaN/a-sapphire display a downward band bending of 0.5 eV and possess higher amount of surface oxide compared to GaN/r-sapphire. The valence band (VB) investigation revealed that the hybridization corresponds to the interactions of Ga 4s and Ga 4p orbitals with N 2p orbital, and result in N2p–Ga4p, N2p–Ga4s{sup ∗}, mixed and N2p–Ga4s states. The energy band structure and electronic properties were measured via ultraviolet photoemission spectroscopic (UPS) experiments. The band structure analysis and electronic properties calculations divulged that the electron affinity and ionization energy of GaN/a-sapphire were 0.3 eV higher than GaN/r-sapphire film. Atomic Force Microscopic (AFM) measurements revealed faceted morphology of GaN/r-sapphire while a smooth pitted surface was observed for GaN/a-sapphire film, which is closely related to surface oxide coverage.

  8. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    Science.gov (United States)

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  9. First principle calculations of alkali hydride electronic structures

    International Nuclear Information System (INIS)

    Novakovic, N; Radisavljevic, I; Colognesi, D; Ostojic, S; Ivanovic, N

    2007-01-01

    Electronic structure, volume optimization, bulk moduli, elastic constants, and frequencies of the transversal optical vibrations in LiH, NaH, KH, RbH, and CsH are calculated using the full potential augmented plane wave method, extended with local orbitals, and the full potential linearized augmented plane wave method. The obtained results show some common features in the electronic structure of these compounds, but also clear differences, which cannot be explained using simple empirical trends. The differences are particularly prominent in the electronic distributions and interactions in various crystallographic planes. In the light of these findings we have elaborated some selected experimental results and discussed several theoretical approaches frequently used for the description of various alkali hydride properties

  10. Strontium titanate thin film deposition - structural and electronical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hanzig, Florian; Hanzig, Juliane; Stoecker, Hartmut; Mehner, Erik; Abendroth, Barbara; Meyer, Dirk C. [TU Bergakademie Freiberg, Institut fuer Experimentelle Physik (Germany); Franke, Michael [TU Bergakademie Freiberg, Institut fuer Elektronik- und Sensormaterialien (Germany)

    2012-07-01

    Strontium titanate is on the one hand a widely-used model oxide for solids which crystallize in perovskite type of structure. On the other hand, with its large band-gap energy and its mixed ionic and electronic conductivity, SrTiO{sub 3} is a promising isolating material in metal-insulator-metal (MIM) structures for resistive switching memory cells. Here, we used physical vapour deposition methods (e. g. electron-beam and sputtering) to produce strontium titanate layers. Sample thicknesses were probed with X-ray reflectometry (XRR) and spectroscopic ellipsometry (SE). Additionally, layer densities and dielectric functions were quantified with XRR and SE, respectively. Using infrared spectroscopy free electron concentrations were obtained. Phase and element composition analysis was carried out with grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. Subsequent temperature treatment of samples lead to crystallization of the initially amorphous strontium titanate.

  11. Hybrid functional calculation of electronic and phonon structure of BaSnO3

    International Nuclear Information System (INIS)

    Kim, Bog G.; Jo, J.Y.; Cheong, S.W.

    2013-01-01

    Barium stannate, BaSnO 3 (BSO), with a cubic perovskite structure, has been highlighted as a promising host material for the next generation transparent oxide electrodes. This study examined theoretically the electronic structure and phonon structure of BSO using hybrid density functional theory based on the HSE06 functional. The electronic structure results of BSO were corrected by extending the phonon calculations based on the hybrid density functional. The fundamental thermal properties were also predicted based on a hybrid functional calculation. Overall, a detailed understanding of the electronic structure, phonon modes and phonon dispersion of BSO will provide a theoretical starting-point for engineering applications of this material. - Graphical Abstract: (a) Crystal structure of BaSnO 3 . The center ball is Ba and small (red) ball on edge is oxygen and SnO 6 octahedrons are plotted as polyhedron. (b) Electronic band structure along the high symmetry point in the Brillouin zone using the HSE06 hybrid functional. (c) The phonon dispersion curve calculated using the HSE06 hybrid functional (d) Zone center lowest energy F 1u phonon mode. Highlights: ► We report the full hybrid functional calculation of not only the electronic structure but also the phonon structure for BaSnO 3 . ► The band gap calculation of HSE06 revealed an indirect gap with 2.48 eV. ► The effective mass at the conduction band minimum and valence band maximum was calculated. ► In addition, the phonon structure of BSO was calculated using the HSE06 functional. ► Finally, the heat capacity was calculated and compared with the recent experimental result.

  12. Electron Heat Flux in Pressure Balance Structures at Ulysses

    Science.gov (United States)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.

  13. The structure of spinach Photosystem I studied by electron microscopy

    NARCIS (Netherlands)

    Boekema, Egbert J.; Wynn, R. Max; Malkin, Richard

    1990-01-01

    The structure of three types of Photosystem I (PS I) complex isolated from spinach chloroplasts was studied by electron microscopy and computer image analysis. Molecular projections (top views and side views) of a native PS I complex (PSI-200), an antenna-depleted PS I complex (PSI-100) and the PS I

  14. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  15. Effects of thickness on electronic structure of titanium thin films

    Indian Academy of Sciences (India)

    using near-edge X-ray absorption fine structure (NEXAFS) technique at titanium L2,3 edge in total electron yield .... the contribution of titanium L2,3 levels to the absorption co- ... all absorption coefficient of a sample is related to the atomic.

  16. Empirical pseudo-potential studies on electronic structure

    Indian Academy of Sciences (India)

    Theoretical investigations of electronic structure of quantum dots is of current interest in nanophase materials. Empirical theories such as effective mass approximation, tight binding methods and empirical pseudo-potential method are capable of explaining the experimentally observed optical properties. We employ the ...

  17. Electronic structure and superconductivity of MgB 2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound, MgB2, using the FPLAPW method employing GGA for the exchange–correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  18. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 5. First principles calculations of structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and PbTe compounds. N Boukhris H Meradji S Amara Korba S Drablia S Ghemid F El Haj Hassan. Volume 37 Issue 5 August 2014 pp 1159-1166 ...

  19. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali ... and efficient method for the calculation of the ground-state ... Figure 2. Optimization curve (E–V) of the bi-alkali antimonides: (a) Na2KSb, (b) Na2RbSb, (c) Na2CsSb, .... ical shape of the charge distributions in the contour plots.

  20. First-principle calculations of the structural, electronic ...

    Indian Academy of Sciences (India)

    First-principle calculations were performed to study the structural, electronic, thermodynamic and thermal properties of ... functional theory (DFT) combined with the quasi-harmonic .... is consistent with Vegard's law which assumes that the lat- tice constant varies .... reflects a charge-transfer effect which is due to the different.

  1. Structural, energetic and electronic properties of intercalated boron ...

    Indian Academy of Sciences (India)

    2National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca 400 293, Romania. MS received 8 November 2010; revised 28 March 2012. Abstract. The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nano- tubes on structural, energetic and electronic properties ...

  2. Removal of Vesicle Structures from Transmission Electron Microscope Images

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian

    2015-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruct...

  3. Small round structured viruses (SRSVs) and transmission electron ...

    African Journals Online (AJOL)

    Administrator

    immune-electron microscopy (IEM) from patients' feces. They reported this virus particle as the causative agent of winter vomiting outbreaks in Norwalk (Kapikian et al.,. 1972). This is the remarkable landmark study of non- bacterial gastroenteritis viruses, especially for small round structured viruses (SRSVs). After that, many.

  4. Electronic structure and optical properties of thorium monopnictides

    Indian Academy of Sciences (India)

    Unknown

    Indian Academy of Sciences. 165. Electronic structure and optical properties of thorium monopnictides. S KUMAR* and S AULUCK†. Physics Department, Institute of Engineering and Technology, M.J.P. Rohilkhand University, Bareilly 243 006,. India. †Department of Physics, Indian Institute of Technology, Roorkee 247 667, ...

  5. Variational cellular model of the molecular and crystal electronic structure

    International Nuclear Information System (INIS)

    Ferreira, L.G.; Leite, J.R.

    1977-12-01

    A variational version of the cellular method is developed to calculate the electronic structure of molecules and crystals. Due to the simplicity of the secular equation, the method is easy to be implemented. Preliminary calculations on the hydrogen molecular ion suggest that it is also accurate and of fast convergence [pt

  6. CLOPW; a mixed basis set full potential electronic structure method

    NARCIS (Netherlands)

    Bekker, H.G.; Bekker, Hermie Gerhard

    1997-01-01

    This thesis is about the development of the full potental CLOPW package for electronic structure calculations. Chapter 1 provides the necessary background in the theory of solid state physics. It gives a short overview of the effective one particle model as commonly used in solid state physics. It

  7. The effect of oxygen exposure on pentacene electronic structure

    NARCIS (Netherlands)

    Vollmer, A; Jurchescu, OD; Arfaoui, [No Value; Salzmann, [No Value; Palstra, TTM; Rudolf, P; Niemax, J; Pflaum, J; Rabe, JP; Koch, N; Arfaoui, I.; Salzmann, I.

    We use ultraviolet photoelectron spectroscopy to investigate the effect of oxygen and air exposure on the electronic structure of pentacene single crystals and thin films. it is found that O-2 and water do not react noticeably with pentacene, whereas singlet oxygen/ozone readily oxidize the organic

  8. Electronic structures and photophysics of d8-d8 complexes

    Czech Academy of Sciences Publication Activity Database

    Gray, H. B.; Záliš, Stanislav; Vlček, Antonín

    2017-01-01

    Roč. 345, AUG 2017 (2017), s. 297-317 ISSN 0010-8545 R&D Projects: GA MŠk LH13015 Grant - others:COST(XE) CM1405 Institutional support: RVO:61388955 Keywords : excitation * electronic structures * photophysics Subject RIV: CG - Electrochemistry OBOR OECD: Physical chemistry Impact factor: 13.324, year: 2016

  9. The electronic structure of 4d and 5d silicides

    NARCIS (Netherlands)

    Speier, W.; Kumar, L.; Sarma, D.D.; Groot, R.A. de; Fuggle, J.C.

    1989-01-01

    A systematic experimental and theoretical study of the electronic structure of stoichiometric silicides with Nb, Mo, Ta and W is presented. We have employed x-ray photoemission and bremsstrahlung isochromat spectroscopy as experimental techniques and interpreted the measured data by calculation of

  10. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Administrator

    2013-07-28

    Jul 28, 2013 ... The structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and BeTe using .... results for all the systems are presented in table 1, along ... as interatomic bonding, equations of state and phonon spectra.

  12. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Baker, Erin M.; Laskin, Julia; Johnson, Grant E.

    2017-01-01

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  13. The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider

    CERN Document Server

    Moortgat-Pick, G.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, Tyler McMillan; Dreiner, H.K.; Eberl, H.; Ellis, John R.; Flottmann, K.; Fraas, H.; Franco-Sollova, F.; Franke, F.; Freitas, A.; Goodson, J.; Gray, J.; Han, A.; Heinemeyer, S.; Hesselbach, S.; Hirose, T.; Hohenwarter-Sodek, K.; Juste, A.; Kalinowski, J.; Kernreiter, T.; Kittel, O.; Kraml, S.; Langenfeld, U.; Majerotto, W.; Martinez, A.; Martyn, H.U.; Mikhailichenko, A.; Milstene, C.; Menges, W.; Meyners, N.; Monig, K.; Moffeit, K.; Moretti, S.; Nachtmann, O.; Nagel, F.; Nakanishi, T.; Nauenberg, U.; Nowak, H.; Omori, T.; Osland, P.; Pankov, A.A.; Paver, N.; Pitthan, R.; Poschl, R.; Porod, W.; Proulx, J.; Richardson, P.; Riemann, S.; Rindani, S.D.; Rizzo, T.G.; Schalicke, A.; Schuler, P.; Schwanenberger, C.; Scott, D.; Sheppard, J.; Singh, R.K.; Sopczak, A.; Spiesberger, H.; Stahl, A.; Steiner, H.; Wagner, A.; Weber, A.M.; Weiglein, G.; Wilson, G.W.; Woods, M.; Zerwas, P.; Zhang, J.; Zomer, F.

    2008-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  14. Heparin binding sites on Ross River virus revealed by electron cryo-microscopy

    International Nuclear Information System (INIS)

    Zhang Wei; Heil, Marintha; Kuhn, Richard J.; Baker, Timothy S.

    2005-01-01

    Cell surface glycosaminoglycans play important roles in cell adhesion and viral entry. Laboratory strains of two alphaviruses, Sindbis and Semliki Forest virus, have been shown to utilize heparan sulfate as an attachment receptor, whereas Ross River virus (RRV) does not significantly interact with it. However, a single amino acid substitution at residue 218 in the RRV E2 glycoprotein adapts the virus to heparan sulfate binding and expands the host range of the virus into chicken embryo fibroblasts. Structures of the RRV mutant, E2 N218R, and its complex with heparin were determined through the use of electron cryo-microscopy and image reconstruction methods. Heparin was found to bind at the distal end of the RRV spikes, in a region of the E2 glycoprotein that has been previously implicated in cell-receptor recognition and antibody binding

  15. Architecture of the Vibrio cholerae toxin-coregulated pilus machine revealed by electron cryotomography

    DEFF Research Database (Denmark)

    Chang, Yi Wei; Kjær, Andreas; Ortega, Davi R.

    2017-01-01

    ,2. T4aP are more widespread and are involved in cell motility 3, DNA transfer 4, host predation 5 and electron transfer 6. T4bP are less prevalent and are mainly found in enteropathogenic bacteria, where they play key roles in host colonization 7. Following similar work on T4aP machines 8,9, here we...... sequence homology to components of the previously analysed Myxococcus xanthus T4aP machine (T4aPM), we find that their structures are nevertheless remarkably similar. Based on homologies with components of the M. xanthus T4aPM and additional reconstructions of TCPM mutants in which the non...

  16. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification

    Science.gov (United States)

    Bertazzo, Sergio; Gentleman, Eileen; Cloyd, Kristy L.; Chester, Adrian H.; Yacoub, Magdi H.; Stevens, Molly M.

    2013-06-01

    The accumulation of calcified material in cardiovascular tissue is thought to involve cytochemical, extracellular matrix and systemic signals; however, its precise composition and nanoscale architecture remain largely unexplored. Using nano-analytical electron microscopy techniques, we examined valves, aortae and coronary arteries from patients with and without calcific cardiovascular disease and detected spherical calcium phosphate particles, regardless of the presence of calcific lesions. We also examined lesions after sectioning with a focused ion beam and found that the spherical particles are composed of highly crystalline hydroxyapatite that crystallographically and structurally differs from bone mineral. Taken together, these data suggest that mineralized spherical particles may play a fundamental role in calcific lesion formation. Their ubiquitous presence in varied cardiovascular tissues and from patients with a spectrum of diseases further suggests that lesion formation may follow a common process. Indeed, applying materials science techniques to ectopic and orthotopic calcification has great potential to lend critical insights into pathophysiological processes underlying calcific cardiovascular disease.

  17. The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G.; /CERN /Durham U., IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke,; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv

    2005-07-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  18. Revealing Fundamental Interactions: the Role of Polarized Positrons and Electrons at the Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G.; /CERN /Durham U., IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke,; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv

    2005-07-06

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  19. Revealing Fundamental Interactions: the Role of Polarized Positrons and Electrons at the Linear Collider

    International Nuclear Information System (INIS)

    Moortgat-Pick, G.; CERN, Durham U. IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.

    2005-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization

  20. Electron microscopy study of a vascular prosthesis destructed in vivo reveals fractures in Dacron fibers.

    Science.gov (United States)

    Woźniak, Witold; Olszewski, Wojciech; Górski, Grzegorz

    2016-02-01

    The genuine destruction of a synthetic prosthesis wall, as a late complication of vascular surgery, is extremely rare. We report a case of a 64-year-old male who had his 12-year-old femoropopliteal synthetic graft explanted due to two large pseudoaneurysms in the middle section of the graft. Microscopic evaluation demonstrated the areas of focal thinning along the entire prosthesis wall, with "foreign body" type reaction in the adjacent connective tissue. Transmission electron microscopy showed longitudinal fractures of Dacron fibers interposed with cellular structures, suggesting that destruction must have taken place significantly earlier. The problems of limited graft durability and graft surveillance are discussed. © The Author(s) 2015.

  1. Theoretical investigation of structural and electronic properties of ultrathin nickle nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Deobrat; Sonvane, Y. A. [Department of Applied Physics, S. V. National Institute of Technology, Surat, 395007 (India)

    2016-04-13

    We have performed first principles calculations for structural and electronic properties of ultrathin Nickle nanowire. We have systematically investigated the equilibrium structure and electronic properties of 4-Ni square, 5-Ni pentagonal, 5- Ni Pyramidal, 6- Ni pentagonal, 6-Ni Hexagonal and 7-Ni Hexagonal structure nanowires having different cross-sections with 4-7 Ni atoms per unit cell. The structural properties of the studied Ni nanowires were greatly different from those of face centered cubic bulk Ni. For each wire the equilibrium lattice constant was obtained. In the present result all the nanowires are found to be metallic. The density of charge revealed delocalized metallic bonding for all studied Ni nanowires.

  2. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography.

    Science.gov (United States)

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex.

  3. Electronic structure and high pressure phase transition in LaSb and CeSb

    International Nuclear Information System (INIS)

    Mathi Jaya, S.; Sanyal, S.P.

    1992-09-01

    The electronic structure and high pressure structural phase transition in cerium and lanthanum antimonides have been investigated using the tight binding LMTO method. The calculation of total energy reveals that the simple tetragonal structure is found to be stable at high pressures for both the compounds. In the case of LaSb, the calculated value of the equilibrium cell volume and the cell volume at which phase transition occurs are found to have a fairly good agreement with the experimental results. However, in the case of CeSb, the agreement is not as good as in LaSb. We also predicted the most favoured c/a value in the high pressure phase (simple tetragonal) for these compounds. Further we present the calculated results on the electronic structure of these systems at the equilibrium as well as at the reduced cell volumes. (author). 8 refs, 11 figs, 1 tab

  4. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  5. Electronic and atomic structure at metal-oxide heterointerfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Christoph Friedrich

    2013-07-01

    The results of a series of investigations on modern oxide materials using hard X-ray photoelectron spectroscopy (HAXPES) combined with the X-ray standing wave (XSW) method are described in this thesis. The combination of hard X-ray photoelectron spectroscopy and X-ray standing waves enables the electronic structure to be measured with a spatial resolution in the picometer range. Under suitable preparation conditions, a quasi two-dimensional electron gas (2DEG) is formed at the heterointerfaces of strontium titanate (SrTiO{sub 3}) with polar oxides, such as lanthanum aluminate (LaAlO{sub 3}) or lanthanum gallate (LaGaO{sub 3}). Samples were grown at the ESRF and in Naples and surface X-ray diffraction confirmed the excellent epitaxial quality of the films. The XSW-method was used to reconstruct images of the structure of LaAlO{sub 3} layers in real space. These images give evidence of distortions in the LaAlO{sub 3} structure which facilitate the compensation of the potential differences. Furthermore, XSW/HAXPES measurements permit the Ti and Sr,O contributions to the 2DEG close to the Fermi level to be identified unambiguously. The analysis shows that the 3d band crosses the Fermi level and that some density of states is associated with oxygen vacancies. Superlattices of SrTiO{sub 3} with polar calcium cuprate (CaCuO{sub 2}) were investigated by HAXPES. Similar to the case of SrTiO{sub 3}/LaAlO{sub 3}, the polarity of CaCuO{sub 2} should lead to a diverging surface potential. The core level spectra from Ca, Sr, and Ti show that there is a redistribution mechanism for oxygen which compensates the potential differences. When the oxygen concentration is enhanced these superstructures become superconducting (T{sub C} = 40 K). The increased oxidation of the superconducting material is revealed by the additional components in the core level spectra of the metal atoms and in the appearance of a new screening channel in Cu 2p core level spectra, which signals the hole

  6. Electronic and atomic structure at metal-oxide heterointerfaces

    International Nuclear Information System (INIS)

    Schlueter, Christoph Friedrich

    2013-01-01

    The results of a series of investigations on modern oxide materials using hard X-ray photoelectron spectroscopy (HAXPES) combined with the X-ray standing wave (XSW) method are described in this thesis. The combination of hard X-ray photoelectron spectroscopy and X-ray standing waves enables the electronic structure to be measured with a spatial resolution in the picometer range. Under suitable preparation conditions, a quasi two-dimensional electron gas (2DEG) is formed at the heterointerfaces of strontium titanate (SrTiO 3 ) with polar oxides, such as lanthanum aluminate (LaAlO 3 ) or lanthanum gallate (LaGaO 3 ). Samples were grown at the ESRF and in Naples and surface X-ray diffraction confirmed the excellent epitaxial quality of the films. The XSW-method was used to reconstruct images of the structure of LaAlO 3 layers in real space. These images give evidence of distortions in the LaAlO 3 structure which facilitate the compensation of the potential differences. Furthermore, XSW/HAXPES measurements permit the Ti and Sr,O contributions to the 2DEG close to the Fermi level to be identified unambiguously. The analysis shows that the 3d band crosses the Fermi level and that some density of states is associated with oxygen vacancies. Superlattices of SrTiO 3 with polar calcium cuprate (CaCuO 2 ) were investigated by HAXPES. Similar to the case of SrTiO 3 /LaAlO 3 , the polarity of CaCuO 2 should lead to a diverging surface potential. The core level spectra from Ca, Sr, and Ti show that there is a redistribution mechanism for oxygen which compensates the potential differences. When the oxygen concentration is enhanced these superstructures become superconducting (T C = 40 K). The increased oxidation of the superconducting material is revealed by the additional components in the core level spectra of the metal atoms and in the appearance of a new screening channel in Cu 2p core level spectra, which signals the hole doping of the CaCuO 2 blocks. Magnetoresistive

  7. Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles

    Science.gov (United States)

    Kumari, Kavita; Vij, Ankush; Hashim, Mohd.; Chae, K. H.; Kumar, Shalendra

    2018-05-01

    Nanoparticles of Ce1-xMnxO2, (x=0.0, 0.01, and 0.05) have been synthesized by using co-precipitation method, and then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy and dc magnetization measurements. XRD results clearly showed that the all the samples have single phase nature and exclude the presence of any secondary phase. The average particle size calculated using XRD TEM measurements found to decrease with increase in Mn doping in the range of 4.0 - 9.0 nm. The structural parameters such as strain, interplaner distance and lattice parameter is observed to decrease with increase in doping. The morphology of Ce1-xMnxO2 nanoparticles measured using TEM micrographs indicate that nanoparticle have spherical shape morphology. Magnetic hysteresis curve for Ce1-xMnxO2, (x = 0.0, 0.01, and 0.05) confirms the ferromagnetic ordering room temperature. The value of saturation magnetization is observed to decrease with increase in temperature from 10 K to 300 K. The NEXAFS spectra measured at Ce M4,5 edge reveals that Ce-ions are in +4 valance state.

  8. Electronic structures of azafullerene C48N12

    International Nuclear Information System (INIS)

    Brena, Barbara; Luo Yi

    2003-01-01

    Two recently proposed low-energy azafullerene C 48 N 12 isomers have been theoretically characterized using x-ray spectroscopies. The x-ray photoelectron spectroscopy, the near-edge absorption fine structure, the x-ray emission spectroscopy, and the ultraviolet photoelectron spectroscopy for both isomers have been predicted at the gradient-corrected density functional theory level. These spectroscopies together give a comprehensive insight of the electronic structure on the core, valence, and unoccupied orbitals. They have also provided a convincing way for identifying the isomer structures

  9. Analysis of the valence electronic structures and calculation of the physical properties of Fe,Co,and Ni

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The valence electronic structures of Fe, Co and Ni have been investigated with Empirical Electron Theory of Solids and Molecules. The magnetic moments, Curie temperature, cohesive energy and melting point have been calculated according to the valence electronic structure. These calculations fit the experimental data very well. Based on the calculations, the magnetic moments are proportional to the number of 3d magnetic electrons. Curie temperatures are related to the magnetic electrons and the bond lengths between magnetic atoms. Cohesive energies increase with the increase of the number of covalent electrons, and the decrease of the number of magnetic and dumb pair electrons. The melting point is mainly related to the number of covalent electron pairs distributed in the strongest bond. The contribution from the lattice electrons is very small, the dumb pair electrons weaken the melting point; however, the contribution to melting point of the magnetic electrons can be neglected. It reveals that the magnetic and thermal properties are closely related to the valence electronic structures, and the changes or transitions between the electrons obviously affect the physical properties.

  10. Electronic structure of graphene on Ni surfaces with different orientation

    International Nuclear Information System (INIS)

    Pudikov, D.A.; Zhizhin, E.V.; Rybkin, A.G.; Rybkina, A.A.; Zhukov, Y.M.; Vilkov, O. Yu.; Shikin, A.M.

    2016-01-01

    An experimental study of the graphene, synthesized by propylene cracking on Ni surfaces with different orientation: (100) and (111), using angle-resolved photoemission, has been performed. It has been shown that graphene on Ni(111) had a perfect lateral structure due to consistency of their lattices, whereas graphene/Ni(100) consisted of a lot of domains. For both systems electronic structure was quite similar and demonstrated a strong bonding of graphene to the underlying Ni surface. After Au intercalation the electronic structure of graphene in both systems was shifted to the Fermi level and became linear in the vicinity of the K point of the Brillouin zone. - Highlights: • Graphene on Ni(111) is well-ordered, whereas on Ni(100) – multi-domain. • Graphene on Ni(111) and Ni(100) is strongly bonded with substrate. • Intercalation of Au atoms restores the linearity in dispersion and makes graphene quasi-free on both Ni(100) and Ni(111).

  11. Electronic structure and optical properties of metal doped tetraphenylporphyrins

    Science.gov (United States)

    Shah, Esha V.; Roy, Debesh R.

    2018-05-01

    A density functional scrutiny on the structure, electronic and optical properties of metal doped tetraphenylporphyrins MTPP (M=Fe, Co, Ni) is performed. The structural stability of the molecules is evaluated based on the electronic parameters like HOMO-LUMO gap (HLG), chemical hardness (η) and binding energy of the central metal atom to the molecular frame etc. The computed UltraViolet-Visible (UV-Vis) optical absorption spectra for all the compounds are also compared. The molecular structures reported are the lowest energy configurations. The entire calculations are carried out with a widely reliable functional, viz. B3LYP with a popular basis set which includes a scaler relativistic effect, viz. LANL2DZ.

  12. Electronic structure of ferromagnet-insulator interfaces: Fe/MgO and Co/MgO

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.

    2007-07-11

    In this thesis the electronic structure of Fe/MgO{sub x} and Co/MgO{sub x} ferromagnet-insulator interfaces, representing material systems which are widely used in magnetic tunnel junctions, is studied by means of spin- and angle-resolved photoemission spectroscopy. The photoemission studies focus particularly on the response of the ferromagnetic electronic system in contact with MgO of varying stoichiometries, as this reflects the mechanisms of metal-oxide bonding at real ferromagnet-insulator interfaces. The correlation between chemical bonding and electronic structure formation is analyzed by combining information from core- and valence-band photoemission spectroscopy. The spectral features are compared to band structure calculations, which are performed using the SPR-KKR method. The Fe/MgO and Co/MgO systems are prepared by molecular beam epitaxy under ultrahigh vacuum conditions on well-defined (4 x 6) GaAs(001) substrates. A structural analysis by means of low-energy electron diffraction (LEED) reveals their body-centered cubic crystalline structure, whereas the chemical characterization by Auger electron spectroscopy is used to quantify the chemical environment at the sample surfaces. The magnetic analysis, using the magneto-optical Kerr effect, reveals the uniaxial anisotropy of the ferromagnetic layers. A crucial parameter is given by the MgO degree of oxidation, which is addressed by means of core-level spectroscopy and quantified by suitable fitting procedures of the Mg 2p core level. The results of the photoemission experiments show, that the electronic structure of the Fe/MgO and Co/MgO ferromagnet/insulator interfaces and, consequently, the interfacial spin polarization are sensitively controlled by the interface chemistry. In particular, three distinct scenarios are identified: the nearly stoichiometric, the oxygen-deficient and the over-oxidized ferromagnet/MgO interface. Each case is defined by innate characteristics of the electronic structure at

  13. Structure and electronic properties of boron nitride sheet with grain boundaries

    International Nuclear Information System (INIS)

    Wang Zhiguo

    2012-01-01

    Using first-principles calculations, the structure, stability, and electronic properties of BN sheets with grain boundaries (GBs) are investigated. Two types of GBs, i.e., zigzag- and armchair-oriented GBs, are considered. Simulation results reveal that the zigzag-oriented GBs are more stable than the armchair-oriented ones. The GBs induce defect levels located within the band gap, which must be taken into account when building nanoelectronic devices.

  14. Directed evolution of the periodic table: probing the electronic structure of late actinides.

    Science.gov (United States)

    Marsh, M L; Albrecht-Schmitt, T E

    2017-07-25

    Recent investigations of the coordination chemistry and physical properties of berkelium (Z = 97) and californium (Z = 98) have revealed fundamental differences between post-curium elements and lighter members of the actinide series. This review highlights these developments and chronicles key findings and concepts from the last half-century that have helped usher in a new understanding of the evolution of electronic structure in the periodic table.

  15. Electronic structure and transport of a carbon chain between graphene nanoribbon leads

    International Nuclear Information System (INIS)

    Zhang, G P; Fang, X W; Yao, Y X; Wang, C Z; Ho, K M; Ding, Z J

    2011-01-01

    The electronic structure and transport property of a carbon chain between two graphene nanoribbon leads are studied using an ab initio tight-binding (TB) model and Landauer's formalism combined with a non-equilibrium Green's function. The TB Hamiltonian and overlap matrices are extracted from first-principles density functional calculations through the quasi-atomic minimal basis orbital scheme. The accuracy of the TB model is demonstrated by comparing the electronic structure from the TB model with that from first-principles density functional theory. The results of electronic transport on a carbon atomic chain connected to armchair and zigzag graphene ribbon leads, such as different transport characters near the Fermi level and at most one quantized conductance, reveal the effect of the electronic structure of the leads and the scattering from the atomic chain. In addition, bond length alternation and an interesting transmission resonance are observed in the atomic chain connected to zigzag graphene ribbon leads. Our approach provides a promising route to quantitative investigation of both the electronic structure and transport property of large systems.

  16. Calculations of electronic structure of UF6 molecule and crystal UO2 with relativistic pseudopotential

    International Nuclear Information System (INIS)

    Ehvarestov, R.A.; Panin, A.I.; Bandura, A.V.

    2008-01-01

    Account of relativistic effects on the properties of uranium hexafluoride is testified. Detailed comparison of single electron energies spectrum revealed in nonrelativistic (by Hartree-Fock method), relativistic (by Dirac-Fock method), and scalar-relativistic (using relativistic potential of atomic uranium frame) has been conducted. Optimization procedures of atomic basis in LCAO calculations of molecules and crystals permissive taking into account distortion of atomic orbitals when chemical bonding are discussed, and optimization effect of atomic basis on the results of scalar-relativistic calculations of UF 6 molecule properties is analyzed. Calculations of electronic structure and properties of UO 2 crystal having relativistic and nonrelativistic pseudopotentials have been realized [ru

  17. Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor

    Science.gov (United States)

    Nakayama, K.; Miyata, Y.; Phan, G. N.; Sato, T.; Tanabe, Y.; Urata, T.; Tanigaki, K.; Takahashi, T.

    2014-12-01

    We have performed high-resolution angle-resolved photoemission spectroscopy on an FeSe superconductor (Tc˜8 K ), which exhibits a tetragonal-to-orthorhombic structural transition at Ts˜90 K . At low temperature, we found splitting of the energy bands as large as 50 meV at the M point in the Brillouin zone, likely caused by the formation of electronically driven nematic states. This band splitting persists up to T ˜110 K , slightly above Ts, suggesting that the structural transition is triggered by the electronic nematicity. We have also revealed that at low temperature the band splitting gives rise to a van Hove singularity within 5 meV of the Fermi energy. The present result strongly suggests that this unusual electronic state is responsible for the unconventional superconductivity in FeSe.

  18. Characterization of strained semiconductor structures using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdoel, Vasfi Burak

    2011-08-15

    Today's state-of-the-art semiconductor electronic devices utilize the charge transport within very small volumes of the active device regions. The structural, chemical and optical material properties in these small dimensions can critically affect the performance of these devices. The present thesis is focused on the nanometer scale characterization of the strain state in semiconductor structures using transmission electron microscopy (TEM). Although high-resolution TEM has shown to provide the required accuracy at the nanometer scale, optimization of imaging conditions is necessary for accurate strain measurements. An alternative HRTEM method based on strain mapping on complex-valued exit face wave functions is developed to reduce the artifacts arising from objective lens aberrations. However, a much larger field of view is crucial for mapping strain in the active regions of complex structures like latest generation metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome this, a complementary approach based on electron holography is proposed. The technique relies on the reconstruction of the phase shifts in the diffracted electron beams from a focal series of dark-field images using recently developed exit-face wave function reconstruction algorithm. Combining high spatial resolution, better than 1 nm, with a field of view of about 1 {mu}m in each dimension, simultaneous strain measurements on the array of MOSFETs are possible. Owing to the much lower electron doses used in holography experiments when compared to conventional quantitative methods, the proposed approach allows to map compositional distribution in electron beam sensitive materials such as InGaN heterostructures without alteration of the original morphology and chemical composition. Moreover, dark-field holography experiments can be performed on thicker specimens than the ones required for high-resolution TEM, which in turn reduces the thin foil relaxation. (orig.)

  19. Structure determination of modulated structures by powder X-ray diffraction and electron diffraction

    Czech Academy of Sciences Publication Activity Database

    Zhou, Z.Y.; Palatinus, Lukáš; Sun, J.L.

    2016-01-01

    Roč. 3, č. 11 (2016), s. 1351-1362 ISSN 2052-1553 Institutional support: RVO:68378271 Keywords : electron diffraction * incommensurate structure * powder diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.036, year: 2016

  20. Electronic structure of a striped nickelate studied by the exact exchange for correlated electrons (EECE) approach

    KAUST Repository

    Schwingenschlö gl, Udo; Schuster, Cosima B.; Fré sard, Raymond

    2009-01-01

    Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare

  1. Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons

    Science.gov (United States)

    Shan, Shaukat Ali; Imtiaz, Nadia

    2018-05-01

    The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.

  2. Electronic structure of divacancy-hydrogen complexes in silicon

    International Nuclear Information System (INIS)

    Coutinho, J; Torres, V J B; Jones, R; Oeberg, S; Briddon, P R

    2003-01-01

    Divacancy-hydrogen complexes (V 2 H and V 2 H 2 ) in Si are studied by ab initio modelling using large supercells. Here we pay special attention to their electronic structure, showing that these defects produce deep carrier traps. Calculated electrical gap levels indicate that V 2 H 2 is an acceptor, whereas V 2 H is amphoteric, with levels close to those of the well known divacancy. Finally our results are compared with the available data from deep level transient spectroscopy and electron paramagnetic resonance experiments

  3. Structural defects in laser- and electron-beam annealed silicon

    International Nuclear Information System (INIS)

    Narayan, J.

    1979-01-01

    Laser and electron beam pulses provide almost an ideal source of heat by which thin layers of semiconductors can be rapidly melted and solidified with heating and cooling rates exceeding 10 80 C/sec. Microstructural modifications obtained as a function of laser parameters are examined and it is shown that both laser and electron beam pulses can be used to remove displacement damage, dislocations, dislocation loops and precipitates. Annealing of defects underneath the oxide layers in silicon is possible within a narrow energy window. The formation of cellular structure provides a rather clear evidence of melting which leads to segregation and supercooling, and subsequent cell formation

  4. Synthesis, reactivity, and electronic structure of molecular uranium nitrides

    OpenAIRE

    Cleaves, Peter A.

    2016-01-01

    The study of metal-ligand multiple bonding offers insight into the electronic structure and bond of metal systems. Until recently, for uranium, such systems were limited to uranyl, and terminal chalcogenide, imide and carbene complexes. In 2012, this was extended to nitrides with the first preparation of a uranium–nitride (U≡N) species isolable under standard conditions, namely [U(TrenTIPS)(N)][Na(12C4)2] (52), which is prepared by the two-electron reduction of sodium azide with a trivalent u...

  5. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  6. Acceptors in cadmium telluride. Identification and electronic structure

    International Nuclear Information System (INIS)

    Molva, E.

    1983-11-01

    It is shown that electronic properties of CdTe are determined by impurities more than by intrinsic defects like vacancies or interstitials in Cd or Te contrary to classical theories. These results are based on annealing, diffusion, implantation and electron irradiation at 4 K. Centers appearing in treated samples are accurately identified by photoluminescence, cathodoluminescence infra-red absorption, electrical measurements and magneto-optic properties. Acceptors identified are Li, Na, Cu, Ag and Au impurities in Cd and N, P and As in Te. Energy levels of all acceptors and fine structure of excitons are determined [fr

  7. Grid-based electronic structure calculations: The tensor decomposition approach

    Energy Technology Data Exchange (ETDEWEB)

    Rakhuba, M.V., E-mail: rakhuba.m@gmail.com [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Oseledets, I.V., E-mail: i.oseledets@skoltech.ru [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina St. 8, 119333 Moscow (Russian Federation)

    2016-05-01

    We present a fully grid-based approach for solving Hartree–Fock and all-electron Kohn–Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 8192{sup 3} and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.

  8. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  9. Rapid increase of near atomic resolution virus capsid structures determined by cryo-electron microscopy.

    Science.gov (United States)

    Ho, Phuong T; Reddy, Vijay S

    2018-01-01

    The recent technological advances in electron microscopes, detectors, as well as image processing and reconstruction software have brought single particle cryo-electron microscopy (cryo-EM) into prominence for determining structures of bio-molecules at near atomic resolution. This has been particularly true for virus capsids, ribosomes, and other large assemblies, which have been the ideal specimens for structural studies by cryo-EM approaches. An analysis of time series metadata of virus structures on the methods of structure determination, resolution of the structures, and size of the virus particles revealed a rapid increase in the virus structures determined by cryo-EM at near atomic resolution since 2010. In addition, the data highlight the median resolution (∼3.0 Å) and size (∼310.0 Å in diameter) of the virus particles determined by X-ray crystallography while no such limits exist for cryo-EM structures, which have a median diameter of 508 Å. Notably, cryo-EM virus structures in the last four years have a median resolution of 3.9 Å. Taken together with minimal sample requirements, not needing diffraction quality crystals, and being able to achieve similar resolutions of the crystal structures makes cryo-EM the method of choice for current and future virus capsid structure determinations. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Structural Studies Reveal the Functional Modularity of the Scc2-Scc4 Cohesin Loader

    Directory of Open Access Journals (Sweden)

    William C.H. Chao

    2015-08-01

    Full Text Available The remarkable accuracy of eukaryotic cell division is partly maintained by the cohesin complex acting as a molecular glue to prevent premature sister chromatid separation. The loading of cohesin onto chromosomes is catalyzed by the Scc2-Scc4 loader complex. Here, we report the crystal structure of Scc4 bound to the N terminus of Scc2 and show that Scc4 is a tetratricopeptide repeat (TPR superhelix. The Scc2 N terminus adopts an extended conformation and is entrapped by the core of the Scc4 superhelix. Electron microscopy (EM analysis reveals that the Scc2-Scc4 loader complex comprises three domains: a head, body, and hook. Deletion studies unambiguously assign the Scc2N-Scc4 as the globular head domain, whereas in vitro cohesin loading assays show that the central body and the hook domains are sufficient to catalyze cohesin loading onto circular DNA, but not chromatinized DNA in vivo, suggesting a possible role for Scc4 as a chromatin adaptor.

  11. Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC

    Directory of Open Access Journals (Sweden)

    Jiuping Rao

    2018-03-01

    Full Text Available This paper presents the interfacial optimisation of wood plastic composites (WPC based on recycled wood flour and polyethylene by employing maleated and silane coupling agents. The effect of the incorporation of the coupling agents on the variation of chemical structure of the composites were investigated by Attenuated total reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR and Solid state 13C Nuclear Magnetic Resonance spectroscopy (NMR analyses. The results revealed the chemical reactions that occurred between the coupling agents and raw materials, which thus contributed to the enhancement of compatibility and interfacial adhesion between the constituents of WPC. NMR results also indicated that there existed the transformation of crystalline cellulose to an amorphous state during the coupling agent treatments, reflecting the inferior resonance of crystalline carbohydrates. Fluorescence Microscope (FM and Scanning Electron Microscope (SEM analyses showed the improvements of wood particle dispersion and wettability, compatibility of the constituents, and resin penetration, and impregnation of the composites after the coupling agent treatments. The optimised interface of the composites was attributed to interdiffusion, electrostatic adhesion, chemical reactions, and mechanical interlocking bonding mechanisms.

  12. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    Science.gov (United States)

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural

  13. Electronic structure and insulating gap in epitaxial VO2 polymorphs

    Directory of Open Access Journals (Sweden)

    Shinbuhm Lee

    2015-12-01

    Full Text Available Determining the origin of the insulating gap in the monoclinic V O2(M1 is a long-standing issue. The difficulty of this study arises from the simultaneous occurrence of structural and electronic transitions upon thermal cycling. Here, we compare the electronic structure of the M1 phase with that of single crystalline insulating V O2(A and V O2(B thin films to better understand the insulating phase of VO2. As these A and B phases do not undergo a structural transition upon thermal cycling, we comparatively study the origin of the gap opening in the insulating VO2 phases. By x-ray absorption and optical spectroscopy, we find that the shift of unoccupied t2g orbitals away from the Fermi level is a common feature, which plays an important role for the insulating behavior in VO2 polymorphs. The distinct splitting of the half-filled t2g orbital is observed only in the M1 phase, widening the bandgap up to ∼0.6 eV. Our approach of comparing all three insulating VO2 phases provides insight into a better understanding of the electronic structure and the origin of the insulating gap in VO2.

  14. Vertical and longitudinal electron density structures of equatorial E- and F-regions

    Directory of Open Access Journals (Sweden)

    P. S. Brahmanandam

    2011-01-01

    Full Text Available From global soundings of ionospheric electron density made with FORMOSAT 3/COSMIC satellites for September 2006–August 2009, day-night variations in vertical and longitudinal structures of the electron densities in equatorial E- and F-regions for different seasons are investigated for the first time. The results reveal that the wavenumber-3 and wavenumber-4 patterns dominated the nighttime (22:00–04:00 LT F-region longitudinal structures in solstice and in equinox seasons, respectively. In daytime (08:00–18:00 LT F-region, the wavenumber-4 patterns governed the longitudinal structures in the September equinox and December solstice, and wavenumber-3 in March equinox and June solstice respectively. A comparison of the daytime and nighttime longitudinal electron density structures indicates that they are approximately 180° out of phase with each other. It is believed that this out of phase relation is very likely the result of the opposite phase relation between daytime and nighttime nonmigrating diurnal tidal winds that modulate background E-region dynamo electric field at different places, leading to the day-night change in the locations of the equatorial plasma fountains that are responsible for the formation of the F-region longitudinal structures. Further, a good consistency between the locations of the density structures in the same seasons of the different years for both daytime and nighttime epochs has been noticed indicating that the source mechanism for these structures could be the same.

  15. Detailed Characteristics of Radiation Belt Electrons Revealed by CSSWE/REPTile Measurements

    Science.gov (United States)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D. T.; Millan, R. M.

    2016-12-01

    The outer radiation belt electrons are highly dynamic. We study the detailed characteristics of the relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit Cubesat, which transverses the radiation belt four times in one orbit ( 1.5 hr) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitations. Among the features of the relativistic electrons, we show the measured electron distribution as a function of geomagnetic activities and local magnetic field strength. Moreover, a specific precipitation band, which happened on 19 Jan 2013, is investigated based on the conjunctive measurement of CSSWE and the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL). In this precipitation band event, the net loss of the 0.58 1.63 MeV electrons (L=3.5 6) is estimated to account for 6.84% of the total electron content.

  16. Electronic structure of p type Delta doped systems

    International Nuclear Information System (INIS)

    Gaggero S, L.M.; Perez A, R.

    1998-01-01

    We summarize of the results obtained for the electronic structure of quantum wells that consist in an atomic layer doped with impurities of p type. The calculations are made within the frame worth of the wrapper function approach to independent bands and with potentials of Hartree. We study the cases reported experimentally (Be in GaAs and B in Si). We present the levels of energy, the wave functions and the rate of the electronic population between the different subbands, as well as the dependence of these magnitudes with the density of impurities in the layer. The participation of the bans of heavy holes is analysed, light and split-off band in the total electronic population. The effect of the temperature is discussed and we give a possible qualitative explanation of the experimental optical properties. (Author)

  17. Study of polysilane mainchain electronic structure by picosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Habara, H.; Saeki, A.; Kunimi, Y.; Seki, S.; Kozawa, T.; Yoshida, Y.; Tagawa, S.

    2000-01-01

    The electronic structure of a charged polysilane molecle is studied. The transient absorption spectroscopy was carried out for charged radicals of poly (methylphenylsilane): PMPS by pico-second and nanosecond pulse radiolysis technique. It was observed that the peak of the transient absorption spectra shifted to longer wavelength region within a few nsec, and an increase was observed in the optical density at 370 nm, which had been already assigned to the radical anions of PMPS. It is ascribed to inter-segment electron transfer (intra-molecular transfer) through polymer chain. The nanosecond pulse radiolysis experiments gave similar kinetic traces in near-UV and IR region. This suggests the presence of an interband level, that is, a polaron level occupied by an excess electron or a hole. (author)

  18. Anomalous electronic structure and magnetoresistance in TaAs2.

    Science.gov (United States)

    Luo, Yongkang; McDonald, R D; Rosa, P F S; Scott, B; Wakeham, N; Ghimire, N J; Bauer, E D; Thompson, J D; Ronning, F

    2016-06-07

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.

  19. Two-particle approach to the electronic structure of solids

    International Nuclear Information System (INIS)

    Gonis, A.

    2007-01-01

    Based on an extension of Hubbard's treatment of the electronic structure of correlated electrons in matter we propose a methodology that incorporates the scattering off the Coulomb interaction through the determination of a two-particle propagator. The Green function equations of motion are then used to obtain single-particle Green functions and related properties such as densities of states. The solutions of the equations of motion in two- and single-particle spaces are accomplished through applications of the coherent potential approximation. The formalism is illustrated by means of calculations for a single-band model system representing a linear arrangement of sites with nearest neighbor hopping and an one-site repulsion when two electrons of opposite spin occupy the same site in the lattice in the manner described by the so-called Hubbard Hamiltonian

  20. Effects of interfacial Fe electronic structures on magnetic and electronic transport properties in oxide/NiFe/oxide heterostructures

    International Nuclear Information System (INIS)

    Liu, Qianqian; Chen, Xi; Zhang, Jing-Yan; Yang, Meiyin; Li, Xu-Jing; Jiang, Shao-Long; Liu, Yi-Wei; Cao, Yi; Wu, Zheng-Long; Feng, Chun; Ding, Lei; Yu, Guang-Hua

    2015-01-01

    Highlights: • The magnetic and transport properties of oxide/NiFe/oxide films were studied. • The oxide (SiO 2 , MgO and HfO 2 ) has different elemental electronegativity. • Redox reaction at different NiFe/oxide interface is dependent on the oxide layer. • Different interfacial electronic structures shown by XPS influence the properties. - Abstract: We report that the magnetic and electronic transport properties in oxide/NiFe(2 nm)/oxide film (oxide = SiO 2 , MgO or HfO 2 ) are strongly influenced by the electronic structure of NiFe/oxide interface. Magnetic measurements show that there exist magnetic dead layers in the SiO 2 sandwiched film and MgO sandwiched film, whereas there is no magnetic dead layer in the HfO 2 sandwiched film. Furthermore, in the ultrathin SiO 2 sandwiched film no magnetoresistance (MR) is detected, while in the ultrathin MgO sandwiched film and HfO 2 sandwiched film the MR ratios reach 0.35% and 0.88%, respectively. The investigation by X-ray photoelectron spectroscopy reveals that the distinct interfacial redox reactions, which are dependent on the oxide layers, lead to the variation of magnetic and transport properties in different oxide/NiFe/oxide heterostructures

  1. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    Science.gov (United States)

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Carbon nanotube on Si(001): structural and electronic properties

    International Nuclear Information System (INIS)

    Orellana, W.; Fazzio, A.; Miwa, R.W.

    2003-01-01

    Full text: The promising nanoscale technology based on carbon nanotubes has attracted much attention due to the unique electronic, chemical and mechanical properties of the nanotubes. Single-wall carbon nanotubes (SWCNs) provide an ideal atomically uniform one dimensional (1D) conductors, having a strong electronic confinement around its circumference, which can be retained up to room temperature[1]. This interesting property may lead one to consider SWCNs as 1D conductors for the development of nanoscale electronic devices. In this work the structural and electronic properties of the contact between a metallic (6,6) SWCN adsorbed on a silicon (001) surface are studied from first-principles total-energy calculations. We consider two adsorption sites for the tube on the Si(001) surface: on the top of the Si-dimer rows and on the surface 'trench' between two consecutive dimer rows. Our results show a chemical bond between the nanotube and Si(001) when the tube is located along the 'trench', which corresponds to the only bound structure. We find a binding energy per tube length of 0.21 eV/angstrom. We also verified that the binding energy depends on the rotation of the tube. Typically, a rotation of 15 deg can reduce the binding energy up to 0.07 eV/angstrom. Our calculated electronic properties indicate that the most stable structure shows a subband associated to the tube/surface bond that cross the Fermi level. This result indicates an enhanced metallic behavior along the tube/surface contact characterizing a 1D quantum wire. The charge transfer between the Si surface and the tube is also discussed. [1] Z. Yao, C. Dekker, and P. Avouris in Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris Eds., (Springer, Berlin 2001), p. 147. (author)

  3. Growth and electronic structure of single-layered transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Dendzik, Maciej

    2016-01-01

    only a weak interaction between SL MoS2 and graphene, which leads to a quasi-freestanding band structure, but also to the coexistence of multiple rotational domains. Measurements of SL WS2 on Ag(111), on the other hand, reveals formation of interesting in-gap states which make WS2 metallic. Low...... different from graphene’s. For example, semiconducting TMDCs undergo an indirectdirect band gap transition when thinned to a single layer (SL); this results in greatly enhanced photoluminescence, making those materials attractive for applications in optoelectronics. Furthermore, metallic TMDCs can host......-quality SL TMDCs. We demonstrate the synthesis of SL MoS2, WS2 and TaS2 on Au(111), Ag(111) and graphene on SiC. The morphology and crystal structure of the synthesized materials is characterized by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). The electronic structure of SL...

  4. Diameter-dependence of the electronic structures of the ZnO nanorods

    International Nuclear Information System (INIS)

    Chiou, J.W.; Kumar, K.P.K.; Jan, J.C.; Tsai, H.M.; Bao, C.W.; Pong, W.F.; Tsai, M.-H.; Hong, I.-H.; Klauser, R.; Lee, J.F.; Wu, J.J.; Liu, S.C.

    2004-01-01

    Full text: O K-, Zn L3- and K-edges x-ray absorption near-edge structure (XANES) spectra and scanning photoelectron microscopy (SPEM) spectra were measured for the ZnO nanorods with various diameters to study their electronic structures. Analysis of the XANES spectra revealed that charge transfer from the O 2p to Zn 3d states is enhanced with the decrease of the nanorod diameter. The charge transfer due to O 2p-Zn 3d hybridization is found to be compensated by the Zn 4p to O 2p charge transfer due to O 2p-Zn 4p rehybridization in consistence with the Zn 3d SPEM results. The valence-band photoemission spectra show changes in the electronic structures, especially near to the Fermi level, with the decrease of the nanorod diameter due to surface effect and/or local electrostatic polarization

  5. Structural, electronic and thermal properties of super hard ternary boride, WAlB

    Science.gov (United States)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-04-01

    A first principle study of the structural, electronic and thermal properties of Tungsten Aluminum Boride (WAlB) using full-potential linearized augmented plane wave (FP-LAPW) in the frame work of density function theory (DFT) have been calculated. The calculated equilibrium structural parameters are in excellent agreement with available experimental results. The calculated electronic band structure reveals that WAlB is metallic in nature. The quasi-harmonic Debye model is applied to study of the temperature and pressure effect on volume, Debye temperature, thermal expansion coefficient and specific heat at constant volume and constant pressure. To the best of our knowledge theoretical investigation of these properties of WAlB is reported for the first time.

  6. Fast electronic structure methods for strongly correlated molecular systems

    International Nuclear Information System (INIS)

    Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung

    2005-01-01

    A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given

  7. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    International Nuclear Information System (INIS)

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L.

    1993-01-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity

  8. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    Directory of Open Access Journals (Sweden)

    Nicola Lanatà

    2015-01-01

    Full Text Available We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4f and 5f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierls effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.

  9. Relationship between electronic structure and radioprotective activity of some indazoles

    International Nuclear Information System (INIS)

    Sokolov, Yu.A.

    2000-01-01

    The quantum-chemical study of electronic structure of 29 indasoles with complete optimization of geometry and search of quantitative link between the established characteristics and radioprotective activity (RPA) was carried out through the MNDO method with application of multiple linear and nonlinear regression analysis and the basic component method. The equations of correlation relationship between the RPA and electronic characteristics are presented. 10 indasole structures, the forecasted RPA values whereof (survival rate, %) equal 50% and above, are selected. The statistic significance of the obtained correlation equations and their regression coefficients make it possible to conclude, that the established relationships are not accidental and are prospective for forecasting RPA of other close compounds of the indasole series [ru

  10. Electronic structure of C and Si fullerenes and fullerides

    International Nuclear Information System (INIS)

    Saito, S.

    1996-01-01

    Fullerenes, i.e., cage-structure clusters are now studied intensively as a building unit for a new class of materials. The electronic structure of C 60 and Si 20 fullerenes and their fullerides obtained in the framework of the density-functional theory is discussed with emphasis on the electronic as well as the geometrical hierarchy in superconducting fullerides. In both C 60 and Si 20 fullerides, the charge transfer from alkali atoms to fullerenes and the hybridization between alkaline-earth states and fullerene states are observed. Also A 3 C 60 and (Ba 3 Si 3 Na rate at Si 20 ) 2 superconductors are found to have high Fermi-level density of states, although the mechanism giving it is different in two materials. Interesting materials to be produced in the future are also discussed. (orig.)

  11. Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation

    International Nuclear Information System (INIS)

    Zhang Man-Hong

    2016-01-01

    By performing the electronic structure computation of a Si atom, we compare two iteration algorithms of Broyden electron density mixing in the literature. One was proposed by Johnson and implemented in the well-known VASP code. The other was given by Eyert. We solve the Kohn-Sham equation by using a conventional outward/inward integration of the differential equation and then connect two parts of solutions at the classical turning points, which is different from the method of the matrix eigenvalue solution as used in the VASP code. Compared to Johnson’s algorithm, the one proposed by Eyert needs fewer total iteration numbers. (paper)

  12. Electronic structure of a striped nickelate studied by the exact exchange for correlated electrons (EECE) approach

    KAUST Repository

    Schwingenschlögl, Udo

    2009-12-01

    Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare the generalized gradient approximation to the hybrid functional approach of exact exchange for correlated electrons (EECE). In contrast to the former, the latter reproduces the insulating state of the compound and the midgap states. The EECE approach, in general, appears to be appropriate for describing stripe phases in systems with orbital degrees of freedom. Copyright © EPLA, 2009.

  13. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  14. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  15. Thick-Restart Lanczos Method for Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Simon, Horst D.; Wang, L.-W.; Wu, Kesheng

    1999-01-01

    This paper describes two recent innovations related to the classic Lanczos method for eigenvalue problems, namely the thick-restart technique and dynamic restarting schemes. Combining these two new techniques we are able to implement an efficient eigenvalue problem solver. This paper will demonstrate its effectiveness on one particular class of problems for which this method is well suited: linear eigenvalue problems generated from non-self-consistent electronic structure calculations

  16. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  17. Final Technical Report: Electronic Structure Workshop (ES13)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shiwei [College of William and Mary, Williamsburg, VA (United States)

    2015-02-26

    The 25th Annual Workshop on Recent Developments in Electronic Structure Methods (ES2013) was successfully held at the College of William & Mary in Williamsburg VA on June 11-14, 2013. The workshop website is at http://es13.wm.edu/ , which contains updated information on the workshop and a permanent archive of the scientific contents. DOE's continued support has been instrumental to the success of the workshop.

  18. Formalized Medical Guidelines and a Structured Electronic Health Record.

    Czech Academy of Sciences Publication Activity Database

    Peleška, Jan; Anger, Z.; Buchtela, David; Šebesta, K.; Tomečková, Marie; Veselý, Arnošt; Zvára, K.; Zvárová, Jana

    2005-01-01

    Roč. 11, - (2005), s. 4652-4656 ISSN 1727-1983. [EMBEC'05. European Medical and Biomedical Conference /3./. Prague, 20.11.2005-25.11.2005] R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : formalization of guidelines in cardilogy * GLIF model * structure electronic health record * algorithm in cardiovascular diagnostics and treatment Subject RIV: BD - Theory of Information

  19. Dissociative recombination of interstellar ions: electronic structure calculations for HCO+

    International Nuclear Information System (INIS)

    Kraemer, W.P.; Hazi, A.U.

    1985-01-01

    The present study of the interstellar formyl ion HCO + is the first attempt to investigate dissociative recombination for a triatomic molecular ion using an entirely theoretical approach. We describe a number of fairly extensive electronic structure calculations that were performed to determine the reaction mechanism of the e-HCO + process. Similar calculations for the isoelectronic ions HOC + and HN 2 + are in progress. 60 refs

  20. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.

    2012-04-17

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  1. Structured electron beams from nano-engineered cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaramwong, A. [NICADD, DeKalb; Mihalcea, D. [NICADD, DeKalb; Andonian, G. [RadiaBeam Tech.; Piot, P. [Fermilab

    2017-03-07

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  2. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Dimoulas, Athanasios Dimoulas

    2012-01-01

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  3. An automatic chip structure optical inspection system for electronic components

    Science.gov (United States)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  4. Atomic structures and electronic properties of phosphorene grain boundaries

    International Nuclear Information System (INIS)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun; Zhang, Junfeng

    2016-01-01

    Grain boundary (GB) is one main type of defects in two-dimensional (2D) crystals, and has significant impact on the physical properties of 2D materials. Phosphorene, a recently synthesized 2D semiconductor, possesses a puckered honeycomb lattice and outstanding electronic properties. It is very interesting to know the possible GBs present in this novel material, and how their properties differ from those in the other 2D materials. Based on first-principles calculations, we explore the atomic structure, thermodynamic stability, and electronic properties of phosphorene GBs. A total of 19 GBs are predicted and found to be energetically stable with formation energies much lower than those in graphene. These GBs do not severely affect the electronic properties of phosphorene: the band gap of perfect phosphorene is preserved, and the electron mobilities are only moderately reduced in these defective systems. Our theoretical results provide vital guidance for experimental tailoring the electronic properties of phosphorene as well as the device applications using phosphorene materials. (paper)

  5. Electronic shell structure and chemisorption on gold nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Kleis, Jesper; Thygesen, Kristian Sommer

    2011-01-01

    to distort considerably, creating large band gaps at the Fermi level. For up to 200 atoms we consider structures generated with a simple EMT potential and clusters based on cuboctahedra and icosahedra. All types of cluster geometry exhibit jelliumlike electronic shell structure. We calculate adsorption...... energies of several atoms on the cuboctahedral clusters. Adsorption energies are found to vary abruptly at magic numbers. Using a Newns-Anderson model we find that the effect of magic numbers on adsorption energy can be understood from the location of adsorbate-induced states with respect to the cluster...

  6. DFTB Parameters for the Periodic Table: Part 1, Electronic Structure.

    Science.gov (United States)

    Wahiduzzaman, Mohammad; Oliveira, Augusto F; Philipsen, Pier; Zhechkov, Lyuben; van Lenthe, Erik; Witek, Henryk A; Heine, Thomas

    2013-09-10

    A parametrization scheme for the electronic part of the density-functional based tight-binding (DFTB) method that covers the periodic table is presented. A semiautomatic parametrization scheme has been developed that uses Kohn-Sham energies and band structure curvatures of real and fictitious homoatomic crystal structures as reference data. A confinement potential is used to tighten the Kohn-Sham orbitals, which includes two free parameters that are used to optimize the performance of the method. The method is tested on more than 100 systems and shows excellent overall performance.

  7. Asymptotic convergence for iterative optimization in electronic structure

    International Nuclear Information System (INIS)

    Lippert, Ross A.; Sears, Mark P.

    2000-01-01

    There have recently been a number of proposals for solving large electronic structure problems (local-density approximation, Hartree-Fock, and tight-binding methods) iteratively with a computational effort proportional to the size of the system. The effort needed to perform a single iteration in these schemes is well understood but the convergence rate has been an empirical matter. This paper will show that many of the proposed methods have a single underlying geometrical structure, which has a specific asymptotic convergence behavior, and that behavior can be understood in terms of some simple condition numbers based on the spectrum of the Hamiltonian. (c) 2000 The American Physical Society

  8. Highlighting material structure with transmission electron diffraction correlation coefficient maps

    International Nuclear Information System (INIS)

    Kiss, Ákos K.; Rauch, Edgar F.; Lábár, János L.

    2016-01-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. - Highlights: • We propose a novel technique to image the structure of polycrystalline TEM-samples. • Correlation coefficients maps highlights the evolution of the diffracting signal. • 3D views of grain boundaries are provided for nano-particles or polycrystals.

  9. Electronic structures near surfaces of perovskite type oxides

    International Nuclear Information System (INIS)

    Hara, Toru

    2005-01-01

    This work is intended to draw attention to the origin of the electronic structures near surfaces of perovskite type oxides. Deep states were observed by ultraviolet photoelectron spectroscopic measurements. The film thickness dependent electronic structures near surfaces of (Ba 0.5 Sr 0.5 )TiO 3 thin films were observed. As for the 117-308 nm thick (Ba 0.5 Sr 0.5 )TiO 3 films, deep states were lying at 0.20, 0.55, and 0.85 eV below the quasi-fermi level, respectively. However, as for the 40 nm thick (Ba 0.5 Sr 0.5 )TiO 3 film, the states were overlapped. The A-site doping affected electronic structures near surfaces of SrTiO 3 single crystals. No evolution of deep states in non-doped SrTiO 3 single crystal was observed. However, the evolution of deep states in La-doped SrTiO 3 single crystal was observed

  10. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Direct electron crystallographic determination of zeolite zonal structures

    International Nuclear Information System (INIS)

    Dorset, Douglas L.; Gilmore, Christopher J.; Jorda, Jose Luis; Nicolopoulos, Stavros

    2007-01-01

    The prospect for improving the success of ab initio zeolite structure investigations with electron diffraction data is evaluated. First of all, the quality of intensities obtained by precession electron diffraction at small hollow cone illumination angles is evaluated for seven representative materials: ITQ-1, ITQ-7, ITQ-29, ZSM-5, ZSM-10, mordenite, and MCM-68. It is clear that, for most examples, an appreciable fraction of a secondary scattering perturbation is removed by precession at small angles. In one case, ZSM-10, it can also be argued that precession diffraction produces a dramatically improved 'kinematical' data set. There seems to no real support for application of a Lorentz correction to these data and there is no reason to expect for any of these samples that a two-beam dynamical scattering relationship between structure factor amplitude and observed intensity should be valid. Removal of secondary scattering by the precession mode appears to facilitate ab initio structure analysis. Most zeolite structures investigated could be solved by maximum entropy and likelihood phasing via error-correcting codes when precession data were used. Examples include the projected structure of mordenite that could not be determined from selected area data alone. One anomaly is the case of ZSM-5, where the best structure determination in projection is made from selected area diffraction data. In a control study, the zonal structure of SSZ-48 could be determined from selected area diffraction data by either maximum entropy and likelihood or traditional direct methods. While the maximum entropy and likelihood approach enjoys some advantages over traditional direct methods (non-dependence on predicted phase invariant sums), some effort must be made to improve the figures of merit used to identify potential structure solutions

  12. Electron microscopy analysis of structural changes within white etching areas

    DEFF Research Database (Denmark)

    Diederichs, Annika Martina; Schwedt, A.; Mayer, J.

    2016-01-01

    In the present work, crack networks with white etching areas (WEAs) in cross-sections of bearings were investigated by a complementary use of SEM and TEM with the focus on the use of orientation contrast imaging and electron backscatter diffraction (EBSD). Orientation contrast imaging was used...... for the first time to give detailed insight into the microstructure of WEA. A significant difference between Nital-etched and polished WEA samples was observed. It was revealed that WEAs are composed of different areas with varying grain sizes. As a result of secondary transformation, needle-shaped grains were...

  13. Electronic structure of free and doped actinides: N and Z dependences of energy levels and electronic structure parameters

    International Nuclear Information System (INIS)

    Kulagin, N.

    2005-01-01

    Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f N and excited 5f N n'l' N' configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC +1 -AC +4 show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC +n :[L] k are compared, too

  14. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    Directory of Open Access Journals (Sweden)

    Y. N. Wu

    2017-09-01

    Full Text Available Based on the density functional theory combined with the nonequilibrium Green’s function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs and the composite of AGNRs and single walled carbon nanotubes (SWCNTs were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6 increases in the presence of the wrinkle, which is opposite to that of AGNR(5 and AGNR(7. The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  15. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    Science.gov (United States)

    Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.

    2017-09-01

    Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  16. Conformational control of cofactors in nature: The effect of methoxy group orientation on the electronic structure of ubisemiquinone

    Science.gov (United States)

    De Almeida, Wagner B.; O'Malley, Patrick J.

    2018-03-01

    Ubiquinone is the key electron and proton transfer agent in biology. Its mechanism involves the formation of its intermediate one-electron reduced form, the ubisemiquinone radical. This is formed in a protein-bound form which permits the semiquinone to vary its electronic and redox properties. This can be achieved by hydrogen bonding acceptance by one or both oxygen atoms or as we now propose by restricted orientations for the methoxy groups of the headgroup. We show how the orientation of the two methoxy groups of the quinone headgroup affects the electronic structure of the semiquinone form and demonstrate a large dependence of the ubisemiquinone spin density distribution on the orientation each methoxy group takes with respect to the headgroup ring plane. This is shown to significantly modify associated hyperfine couplings which in turn needs to be accounted for in interpreting experimental values in vivo. The study uncovers the key potential role the methoxy group orientation can play in controlling the electronic structure and spin density of ubisemiquinone and provides an electronic-level insight into the variation in electron affinity and redox potential of ubiquinone as a function of the methoxy orientation. Taken together with the already known influence of cofactor conformation on heme and chlorophyll electronic structure, it reveals a more widespread role for cofactor conformational control of electronic structure and associated electron transfer in biology.

  17. Electronic Structure Approach to Tunable Electronic Properties of Hybrid Organic-Inorganic Perovskites

    Science.gov (United States)

    Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker

    We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.

  18. The electron-electron instability in a spherical plasma structure with an intermediate double layer

    International Nuclear Information System (INIS)

    Lapuerta, V.; Ahedo, E.

    2003-01-01

    A linear dynamic model of a spherical plasma structure with an intermediate double layer is analyzed in the high-frequency range. The two ion populations tend to stay frozen in their stationary response and this prevents the displacement of the double layer. Different electron modes dominate the plasma dynamics in each quasineutral region. The electrostatic potential and the electron current are the magnitudes most perturbed. The structure develops a reactive electron-electron instability, which is made up of a countable family of eigenmodes. Space-charge effects must be included in the quasineutral regions to determine the eigenmode carrying the maximum growth rate. Except for very small Debye lengths, the fundamental eigenmode governs the instability. The growth rate for the higher harmonics approaches that of an infinite plasma. The instability modes develop mainly on the plasma at the high-potential side of the double layer. The influence of the parameters defining the stationary solution on the instability growth rate is investigated, and the parametric regions of stability are found. The comparison with a couple of experiments on plasma contactors is satisfactory

  19. Electronic structure and electron-phonon coupling in layered copper oxide superconductors

    International Nuclear Information System (INIS)

    Pickett, W.E.; Cohen, R.E.; Krakauer, H.

    1991-01-01

    Experimental data on the layered Cu-O superconductors seem more and more to reflect normal Fermi-liquid behavior and substantial correspondence with band structure predictions. Recent self-consistent, microscopic band theoretic calculations of the electronic structure, lattice instabilities, phonon frequencies, and electron-phonon coupling characteristics and strength for La 2 CuO 4 and YBa 2 Cu 3 O 7 are reviewed. A dominant feature of the coupling is a novel Madelung-like contribution which would be screened out in high density of states superconductors but survives in cuprates because of weak screening. Local density functional theory correctly predicts the instability of (La, Ba) 2 CuO 4 to both the low-temperature orthorhombic phase (below room temperature) and the lower-temperature tetragonal phase (below 50 K). (orig.)

  20. Software abstractions and computational issues in parallel structure adaptive mesh methods for electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1997-05-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.

  1. Structural and electronic properties of La C[sub 82

    Energy Technology Data Exchange (ETDEWEB)

    Laasonen, K.; Andreoni, W.; Parrinello, M. (Zurich Research Lab., Rueschlikon (Switzerland))

    1992-12-18

    The structural and electronic properties of the La C[sub 82] fullerene have been investigated by means of the Car-Parrinello method, which is based on the local density approximation of the density functional theory. The topological arrangement of the C[sub 82] cage was assumed to be a C[sub 3v] symmetry isomer. Three configurations were considered, one with the lanthanum atom at the center of the cluster, one with it along the threefold axis, and one with it at a low-symmetry, highly coordinated site. The structure was fully relaxed and it was found that the last of these configurations is energetically preferred. In this position, the lanthanum atom is nearly in a La[sup 3+] state and the unpaired electron is somewhat delocalized on the cage, in agreement with available experimental data. This arrangement suggests that the chemical shifts of the 5s and 5p lanthanum states can be used as a structural probe and as a way of further validating this picture. It is argued that this conclusion is not affected by the assumed fullerene structure.

  2. Valence band electronic structure of Pd based ternary chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2016-12-15

    Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.

  3. Atomic and electronic structures of an extremely fragile liquid.

    Science.gov (United States)

    Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi

    2014-12-18

    The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.

  4. Auger electron spectroscopy analysis of high metal content micro-structures grown by electron beam induced deposition

    International Nuclear Information System (INIS)

    Cicoira, F.; Hoffmann, P.; Olsson, C.O.A.; Xanthopoulos, N.; Mathieu, H.J.; Doppelt, P.

    2005-01-01

    An auger electron spectroscopy study was carried out on Rh-containing micro-structures grown by electron beam induced deposition (EBID) of the iso-structural and iso-electronic precursors [RhCl(PF 3 ) 2 ] 2 and [RhCl(CO) 2 ] 2 . A material containing between 55 and 60 at.% Rh was obtained from both precursors. The chemical composition of structures grown from the two different precursors indicates a similar decomposition mechanism. Deposits grown from [RhCl(PF 3 ) 2 ] 2 showed a chemical composition independent of electron energy and electron dose in the investigated range of conditions

  5. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy.

    Science.gov (United States)

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P; Nguyen, Huong T H; Dang, Andy; Tureček, František

    2018-01-16

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z 4 + H] +● fragment ion-radicals of the R-C ● H-CONH- type, initially formed by N-C α bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [ ● DAAR + H] + isomers and used to assign structures to the action spectra. The potential energy surface of [ ● DAAR + H] + isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [ ● XAAR + H] + ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone C α positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H] ● -ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.

  6. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy

    Science.gov (United States)

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P.; Nguyen, Huong T. H.; Dang, Andy; Tureček, František

    2018-01-01

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. [Figure not available: see fulltext.

  7. Structural and electronic properties of carbon nanotubes under hydrostatic pressures

    International Nuclear Information System (INIS)

    Zhang Ying; Cao Juexian; Yang Wei

    2008-01-01

    We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations. It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases. The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase. The band structure calculations show that band gap of (10, 0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa), band gap of (10, 0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover, the calculated charge density shows that a large pressure can induce an sp 2 -to-sp 3 bonding transition, which is confirmed by recent experiments on deformed carbon nanotubes

  8. Geometric and electronic structures of small GaN clusters

    Energy Technology Data Exchange (ETDEWEB)

    Song Bin; Cao Peilin

    2004-08-02

    The geometric and electronic structures of Ga{sub x}N{sub y} (x+y{<=}8) clusters have been calculated using a full-potential linear-muffin-tin-orbital method, combined with molecular dynamics and simulated annealing techniques. It is found that the structures, binding energies and HOMO-LUMO gaps of these clusters strongly depend on their size and composition. The lowest energy structures of these clusters are obtained, and the trends in the geometries are discussed. The binding energy of the cluster increases as the size of cluster increases. N-rich cluster has larger binding energy than Ga-rich ones. The HOMO-LUMO gaps of these clusters are evaluated.

  9. Electronic Structure and Transport in Solids from First Principles

    Science.gov (United States)

    Mustafa, Jamal Ibrahim

    The focus of this dissertation is the determination of the electronic structure and trans- port properties of solids. We first review some of the theory and computational methodology used in the calculation of electronic structure and materials properties. Throughout the dissertation, we make extensive use of state-of-the-art software packages that implement density functional theory, density functional perturbation theory, and the GW approximation, in addition to specialized methods for interpolating matrix elements for extremely accurate results. The first application of the computational framework introduced is the determination of band offsets in semiconductor heterojunctions using a theory of quantum dipoles at the interface. This method is applied to the case of heterojunction formed between a new metastable phase of silicon, with a rhombohedral structure, and cubic silicon. Next, we introduce a novel method for the construction of localized Wannier functions, which we have named the optimized projection functions method (OPFM). We illustrate the method on a variety of systems and find that it can reliably construct localized Wannier functions with minimal user intervention. We further develop the OPFM to investigate a class of materials called topological insulators, which are insulating in the bulk but have conductive surface states. These properties are a result of a nontrivial topology in their band structure, which has interesting effects on the character of the Wannier functions. In the last sections of the main text, the noble metals are studied in great detail, including their electronic properties and carrier dynamics. In particular, we investigate, the Fermi surface properties of the noble metals, specifically electron-phonon scattering lifetimes, and subsequently the transport properties determined by carriers on the Fermi surface. To achieve this, a novel sampling technique is developed, with wide applicability to transport calculations

  10. Electronic structure, bonding and chemisorption in metallic hydrides

    International Nuclear Information System (INIS)

    Ward, J.W.

    1980-01-01

    Problems that can arise during the cycling steps for a hydride storage system usually involve events at surfaces. Chemisorption and reaction processes can be affected by small amounts of contaminants that may act as catalytic poisons. The nature of the poisoning process can vary greatly for the different metals and alloys that form hydrides. A unifying concept is offered, which satisfactorily correlates many of the properties of transition-metal, rare-earth and actinide hydrides. The metallic hydrides can be differentiated on the basis of electronegativity, metallic radius (valence) and electronic structure. For those systems where there are d (transition metals) or f (early actinides) electrons near the Fermi level a broad range of chemical and catalytic behaviors are found, depending on bandwidth and energy. The more electropositive metals (rare-earths, actinides, transition metals with d > 5) dissolve hydrogen and form hydrides by an electronically somewhat different process, and as a class tend to adsorb electrophobic molecules. The net charge-transfer in either situation is subtle; however, the small differences are responsible for many of the observed structural, chemical, and catalytic properties in these hydride systems

  11. Novel electronic structures of superlattice composed of graphene and silicene

    International Nuclear Information System (INIS)

    Yu, S.; Li, X.D.; Wu, S.Q.; Wen, Y.H.; Zhou, S.; Zhu, Z.Z.

    2014-01-01

    Highlights: • Graphene/silicene superlattices exhibit metallic electronic properties. • Dirac point of graphene is folded to the Γ-point in the superlattice system. • Significant changes in the transport properties of the graphene layers are expected. • Small amount of charge transfer from the graphene to the silicene layers is found. - Abstract: Superlattice is a major force in providing man-made materials with unique properties. Here we report a study of the structural and electronic properties of a superlattice made with alternate stacking of graphene and hexagonal silicene. Three possible stacking models, i.e., the top-, bridge- and hollow-stacking, are considered. The top-stacking is found to be the most stable pattern. Although both the free-standing graphene and silicene are semi-metals, our results suggest that the graphene and silicene layers in the superlattice both exhibit metallic electronic properties due to a small amount of charge transfer from the graphene to the silicene layers. More importantly, the Dirac point of graphene is folded to the Γ-point of the superlattice, instead of the K-point in the isolated graphene. Such a change in the Dirac point of graphene could lead to significant change in the transportation property of the graphene layer. Moreover, the band structure and the charge transfer indicate that the interaction between the stacking sheets in the graphene/silicene superlattice is more than just the van der Waals interaction

  12. Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope

    Science.gov (United States)

    Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter

    2010-03-01

    Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable

  13. HREELS to identify electronic structures of organic thin films.

    Science.gov (United States)

    Oeter, D; Ziegler, C; Göpel, W

    1995-10-01

    The electronic structure of alpha-oligothiophene (alphanT) thin films has been investigated for increasing chain lengths of n= 4-8 thiophene units with high resolution electron energy loss spectroscopy (HREELS) in the specular reflection geometry at a primary energy of 15 eV. The great advantage of this technique in contrast to UV/VIS absorption spectroscopy results from the fact, that the impact scattering mechanism of HREELS makes it possible to also detect optically forbidden electronic transitions. On the other hand, the electrons used as probes in HREELS have a wavelength which is two orders of magnitudes smaller if compared to those of photons used in UV/VIS absorption spectroscopy. Therefore individual molecules are excited by HREELS independent from each other and hence the excitation of collective excitons is not possible. As a result, information about the orientation of the molecules cannot be achieved with HREELS, which, however, is possible in polarization-dependent UV/VIS spectroscopy.

  14. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Portolan, E. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Baumvol, I.J.R. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-970 (Brazil); Figueroa, C.A., E-mail: cafiguer@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil)

    2009-04-15

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p{sub 3/2} photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN{sub x}). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  15. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Science.gov (United States)

    Portolan, E.; Baumvol, I. J. R.; Figueroa, C. A.

    2009-04-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  16. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    International Nuclear Information System (INIS)

    Portolan, E.; Baumvol, I.J.R.; Figueroa, C.A.

    2009-01-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x ). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  17. The degree of π electron delocalization and the formation of 3D-extensible sandwich structures.

    Science.gov (United States)

    Wang, Xiang; Wang, Qiang; Yuan, Caixia; Zhao, Xue-Feng; Li, Jia-Jia; Li, Debao; Wu, Yan-Bo; Wang, Xiaotai

    2016-04-28

    DFT B3LYP/6-31G(d) calculations were performed to examine the feasibility of graphene-like C42H18 and starbenzene C6(BeH)6 (SBz) polymers as ligands of 3D-extensible sandwich compounds (3D-ESCs) with uninterrupted sandwich arrays. The results revealed that sandwich compounds with three or more C42H18 ligands were not feasible. The possible reason may be the localization of π electrons on certain C6 hexagons due to π-metal interactions, which makes the whole ligand lose its electronic structure basis (higher degree of π electron delocalization) to maintain the planar structure. For comparison, with the aid of benzene (Bz) molecules, the SBz polymers can be feasible ligands for designing 3D-ESCs because the C-Be interactions in individual SBz are largely ionic, which will deter the π electrons on one C6 ring from connecting to those on neighbouring C6 rings. This means that high degree of π electron delocalization is not necessary for maintaining the planarity of SBz polymers. Such a locally delocalized π electron structure is desirable for the ligands of 3D-ESCs. Remarkably, the formation of a sandwich compound with SBz is thermodynamically more favourable than that found for bis(Bz)chromium. The assembly of 3D-ESCs is largely exothermic, which will facilitate future experimental synthesis. The different variation trends on the HOMO-LUMO gaps in different directions (relative to the sandwich axes) suggest that they can be developed to form directional conductors or semiconductors, which may be useful in the production of electronic devices.

  18. Revealing the 1 nm/s Extensibility of Nanoscale Amorphous Carbon in a Scanning Electron Microscope

    DEFF Research Database (Denmark)

    Zhang, Wei

    2013-01-01

    In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation...... promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have...... positive implications to explore some amorphous carbon as electron field emission device. SCANNING 35: 261-264, 2013. © 2012 Wiley Periodicals, Inc....

  19. Design and fabrication of a continuous wave electron accelerating structure

    International Nuclear Information System (INIS)

    Takahashi, Jiro

    1997-01-01

    The Physics Institute of Sao Paulo University, SP, Brazil is fabricating a 31 MeV cw racetrack microtron (RTM) designed for nuclear physics research. This is a two-stage microtron that includes a 1.93 MeV injector linac feeding a five-turn microtron booster. After 28 turns, the main microtron delivers a 31 MeV continuous electron beam. The objective of this work is the development and fabrication of an advanced, beta=l, cw accelerating structure for the main microtron. The accelerating structure will be a side-coupled structure (SCS). We have chosen this kind of cavity, because it presents good vacuum properties, allows operation at higher accelerating electric fields and has a shunt impedance better than 81 MQ/m, with a high coupling factor ( 3 - 5%). The engineering design is the Los Alamos one. There will be two tuning plungers placed at both ends of the accelerating structure. They automatically and quickly compensate for the variation in the resonance frequency caused by changes in the structure temperature. Our design represents an advanced accelerating structure with the optimum SCS properties coexisting with the plunger's good tuning properties. (author)

  20. Structural phase transition and electronic properties in samarium chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Y. S., E-mail: yspanwar2011@gmail.com [Department of Physics, Govt. New Science College Dewas-455001 (India); Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore, 466001 (India); Pataiya, J.; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  1. Structural and electronic properties of Pt induced nanowires on Ge(110)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Bampoulis, P.; Safaei, A.; Zandvliet, H.J.W.; Houselt, A. van, E-mail: A.vanHouselt@utwente.nl

    2016-11-30

    Highlights: • Deposition of Pt induces regularly spaced (1.13 nm, 1.97 nm and 3.38 nm) nanowires on Ge(110). • In the troughs between the wires spaced 6× the Ge lattice consant pentagons are observed. • Spatially resolved STS reveals a filled electronic state at −0.35 eV. • This state has its highest intensity above the pentagons. • For 2 ML Pt, nanowires coexist with PtGe clusters, which become liquid like above 1040 K. - Abstract: The structural and electronic properties of Pt induced nanowires on Ge(110) surfaces have been studied by scanning tunneling microscopy and low energy electron microscopy. The deposition of a sub-monolayer amount of Pt and subsequent annealing at 1100 (±30) K results into nanowires which are aligned along the densely packed [1–10] direction of the Ge(110) surface. With increasing Pt coverage the nanowires form densely packed arrays with separations of 1.1 ± 0.1 nm, 2.0 ± 0.1 nm and 3.4 ± 0.1 nm. Ge pentagons reside in the troughs for nanowire separations of 3.4 nm, however for smaller nanowire separations no pentagons are found. Spatially resolved scanning tunneling spectroscopy measurements reveal a filled electronic state at −0.35 eV. This electronic state is present in the troughs as well as on the nanowires. The −0.35 eV state has the strongest intensity on the pentagons. For Pt depositions exceeding two monolayers, pentagon free nanowire patches are found, that coexist with Pt/Ge clusters. Upon annealing at 1040 K these Pt/Ge clusters become liquid-like, indicating that we are dealing with eutectic Pt{sub 0.22}Ge{sub 0.78} clusters. Low energy electron microscopy videos reveal the formation and spinodal decomposition of these eutectic Pt/Ge clusters.

  2. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  3. Microscopical Studies of Structural and Electronic Properties of Semiconductors

    CERN Multimedia

    2002-01-01

    The electronic and structural properties of point defects in semiconductors, e.g. radiation defects, impurities or passivating defects can excellently be studied by the hyperfine technique of Perturbed Angular Correlation (PAC). The serious limitation of this method, the small number of chemically different radioactive PAC probe atoms can be widely overcome by means of ISOLDE. Providing shortliving isotopes, which represent common dopants as well as suitable PAC probe atoms, the ISOLDE facility enables a much broader application of PAC to problems in semiconductor physics.\\\\ Using the probe atom $^{111m}$ Cd , the whole class of III-V compounds becomes accessible for PAC investigations. First successful experiments in GaAs, InP and GaP have been performed, concerning impurity complex formation and plasma induced defects. In Si and Ge, the electronic properties~-~especially their influence on acceptor-donor interaction~-~could be exemplarily st...

  4. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  5. Development and application of advanced methods for electronic structure calculations

    DEFF Research Database (Denmark)

    Schmidt, Per Simmendefeldt

    . For this reason, part of this thesis relates to developing and applying a new method for constructing so-called norm-conserving PAW setups, that are applicable to GW calculations by using a genetic algorithm. The effect of applying the new setups significantly affects the absolute band positions, both for bulk......This thesis relates to improvements and applications of beyond-DFT methods for electronic structure calculations that are applied in computational material science. The improvements are of both technical and principal character. The well-known GW approximation is optimized for accurate calculations...... of electronic excitations in two-dimensional materials by exploiting exact limits of the screened Coulomb potential. This approach reduces the computational time by an order of magnitude, enabling large scale applications. The GW method is further improved by including so-called vertex corrections. This turns...

  6. Structural and electronic properties of GaAsBi

    International Nuclear Information System (INIS)

    Achour, H.; Louhibi, S.; Amrani, B.; Tebboune, A.; Sekkal, N.

    2008-05-01

    The structural and electronic properties of the GaAs 1-x Bi x ternary alloy are investigated by means of two first principles and full potential methods, the linear augmented plane waves (FPLAPW) method and a recent version of the full potential linear muffin-tin orbitals method (FPLMTO) which enables an accurate treatment of the interstitial regions. In particular, we have found that the maximal GaBi mole fraction x for which GaBixAs 1-x remains a semiconductor is probably around x = 0.5. The electronic properties of (GaAs) m /(GaBi) n quantum well superlattices (SLs) have also been calculated and it is found that such SLs are semiconductors when m is larger or equal to n. (author)

  7. Protonated serotonin: Geometry, electronic structures and photophysical properties

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  8. Electronic structure characterization and bandgap engineering of solar hydrogen materials

    International Nuclear Information System (INIS)

    Guo, Jinghua

    2007-01-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe 2 O 3 and ZnO

  9. Quantum Monte Carlo for electronic structure: Recent developments and applications

    International Nuclear Information System (INIS)

    Rodriguez, M.M.S.; Lawrence Berkeley Lab., CA

    1995-04-01

    Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function's nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C 2 H and C 2 H 2 . The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included

  10. Electronic structure of xenon implanted with low energy in amorphous silicon

    International Nuclear Information System (INIS)

    Barbieri, P.F.; Landers, R.; Oliveira, M.H. de; Alvarez, F.; Marques, F.C.

    2007-01-01

    Electronic structure of Xe implanted in amorphous silicon (a-Si) films are investigated. Xe atoms were implanted with low energy by ion beam assisted deposition (IBAD) technique during growth of the a-Si films. The Xe implantation energy varied in the 0-300 eV energy range. X-ray photoelectron spectroscopy (XPS), X-ray Auger excited spectroscopy (XAES) and X-ray absorption spectroscopy (XAS) were used for investigating the Xe electronic structure. The Xe M 4 N 45 N 45 transitions were measured to extract the Auger parameter and to analyze the initial state and relaxation contributions. It was found that the binding energy variation is mainly due to initial state contribution. The relaxation energy variation also shows that the Xe trapped environment depends on the implantation energy. XAS measurements reveals that Xe atoms are dispersed in the a-Si matrix

  11. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets.

    Science.gov (United States)

    Vitali, Lucia; Fabris, Stefano; Conte, Adriano Mosca; Brink, Susan; Ruben, Mario; Baroni, Stefano; Kern, Klaus

    2008-10-01

    The electronic structure of isolated bis(phthalocyaninato) terbium(III) molecules, a novel single-molecular-magnet (SMM), supported on the Cu(111) surface has been characterized by density functional theory and scanning tunneling spectroscopy. These studies reveal that the interaction with the metal surface preserves both the molecular structure and the large spin magnetic moment of the metal center. The 4f electron states are not perturbed by the adsorption while a strong molecular/metal interaction can induce the suppression of the minor spin contribution delocalized over the molecular ligands. The calculations show that the inherent spin magnetic moment of the molecule is only weakly affected by the interaction with the surface and suggest that the SMM character might be preserved.

  12. Electronic structure and optical properties of the thiolate-protected Au28(SMe)20 cluster.

    Science.gov (United States)

    Knoppe, Stefan; Malola, Sami; Lehtovaara, Lauri; Bürgi, Thomas; Häkkinen, Hannu

    2013-10-10

    The recently reported crystal structure of the Au28(TBBT)20 cluster (TBBT: p-tert-butylbenzenethiolate) is analyzed with (time-dependent) density functional theory (TD-DFT). Bader charge analysis reveals a novel trimeric Au3(SR)4 binding motif. The cluster can be formulated as Au14(Au2(SR)3)4(Au3(SR)4)2. The electronic structure of the Au14(6+) core and the ligand-protected cluster were analyzed, and their stability can be explained by formation of distorted eight-electron superatoms. Optical absorption and circular dichroism (CD) spectra were calculated and compared to the experiment. Assignment of handedness of the intrinsically chiral cluster is possible.

  13. Electron microscope investigation into dislocation structure of cast aluminium alloys

    International Nuclear Information System (INIS)

    Zolotorevskij, V.S.; Orelkina, T.A.; Istomin-Kastrovskij, V.V.

    1978-01-01

    By applying the diffraction electron microscopy method, the general specific features of the disclocation structure of cast binary alloys of aluminium with different additions were established. It is shown that in most alloys, when they undergo cooling in the process of crystallization at the rate of about 850 deg/min, the cellular dislocation structure is formed. It is shown that in all the alloys studied, the total density of dislocations of one order is about-10 9 cm -2 , which exceeds by 1 to 2 orders of magnitude the value which follows from the Tiller theory of concentration stresses. It has been experimentally established that the contribution of shrinkage and thermal stresses to the formation of a dislocation structure is rather insignificant; yet the dislocation density values calculated according to the size of dendritic cells and the medium angles of their disorientation are close to those determined by the electron-microscopic method. This is the basis for making a supposition that the greater part of the dislocations in castings are formed as a result of comparing dendritic branches with one another, which are disoriented in respect to each other

  14. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  15. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  16. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy.

    Science.gov (United States)

    Zhu, Yihan; Ciston, Jim; Zheng, Bin; Miao, Xiaohe; Czarnik, Cory; Pan, Yichang; Sougrat, Rachid; Lai, Zhiping; Hsiung, Chia-En; Yao, Kexin; Pinnau, Ingo; Pan, Ming; Han, Yu

    2017-05-01

    Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  17. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy

    KAUST Repository

    Zhu, Yihan

    2017-02-21

    Metal–organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis1, 2, 3. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation4, 5, 6, 7. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  18. Structural studies of glasses by transmission electron microscopy and electron diffraction

    International Nuclear Information System (INIS)

    Kashchieva, E.P.

    1997-01-01

    The purpose of this work is to present information about the applications of transmission electron microscopy (TEM) and electron diffraction (ED) for structural investigations of glasses. TEM investigations have been carried out on some binary and on a large number of ternary borate-telluride systems where glass-forming oxides, oxides of transitional elements and modified oxides of elements from I, II and III groups in the periodic table, are used as third component. The large experimental data given by TEM method allows the fine classification of the micro-heterogeneities. A special case of micro-heterogeneous structure with technological origin occurs near the boundary between the 2 immiscible liquids obtained at macro-phase separation. TEM was also used for the direct observation of the glass structure and we have studied the nano-scale structure of borate glasses obtained at slow and fast cooling of the melts. The ED possesses advantages for analysis of amorphous thin films or micro-pastilles and it is a very useful technique for study in materials containing simultaneously light and heavy elements. A comparison between the possibilities of the 3 diffraction techniques (X-ray diffraction, neutron diffraction and ED) is presented

  19. Electron self-exchange in hemoglobins revealed by deutero-hemin substitution.

    Science.gov (United States)

    Athwal, Navjot Singh; Alagurajan, Jagannathan; Sturms, Ryan; Fulton, D Bruce; Andreotti, Amy H; Hargrove, Mark S

    2015-09-01

    Hemoglobins (phytoglobins) from rice plants (nsHb1) and from the cyanobacterium Synechocystis (PCC 6803) (SynHb) can reduce hydroxylamine with two electrons to form ammonium. The reaction requires intermolecular electron transfer between protein molecules, and rapid electron self-exchange might play a role in distinguishing these hemoglobins from others with slower reaction rates, such as myoglobin. A relatively rapid electron self-exchange rate constant has been measured for SynHb by NMR, but the rate constant for myoglobin is equivocal and a value for nsHb1 has not yet been measured. Here we report electron self-exchange rate constants for nsHb1 and Mb as a test of their role in hydroxylamine reduction. These proteins are not suitable for analysis by NMR ZZ exchange, so a method was developed that uses cross-reactions between each hemoglobin and its deutero-hemin substituted counterpart. The resulting electron transfer is between identical proteins with low driving forces and thus closely approximates true electron self-exchange. The reactions can be monitored spectrally due to the distinct spectra of the prosthetic groups, and from this electron self-exchange rate constants of 880 (SynHb), 2900 (nsHb1), and 0.05M(-1) s(-1) (Mb) have been measured for each hemoglobin. Calculations of cross-reactions using these values accurately predict hydroxylamine reduction rates for each protein, suggesting that electron self-exchange plays an important role in the reaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Temperature dependence of the electronic structure of semiconductors and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Poncé, S., E-mail: samuel.pon@gmail.com; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  1. Electronic structure and magnetic properties of Pd sub(3)Fe

    International Nuclear Information System (INIS)

    Kuhnen, C.A.

    1988-01-01

    In this work we study the electronic and magnetic properties of the Pd sub(3)Fe alloy. For the ordered phase of Pd sub(3)Fe we employed the Linear Muffin-Tin Orbitals Method, with the atomic sphere approximation, which is a first principles method and includes spin polarization. The theoretical results for the thermal and magnetic properties show good agreement with experience. Here we explain the formation of the localized magnetic moments from completely itinerant electrons. We investigate the influence of the hydrogen in the physical properties of the compound Pd sub(3)Fe, where we obtain a drastic reduction in the magnetic moments at the Pd and Fe sites. This reduction is confirmed by experience. The self consistent potentials of the Pd sub(3)Fe compound were used for an analysis of the influence of the disorder in the electronic structure of Pd sub(3)Fe alloy. To this end, we employ a spin polarized version of the Green's Function Method with the Coherent Potential Approximation (or KKR-CPA). The results obtained show that in random ferromagnetic alloys different degrees of disorder occurs for the different spin directions. The formation of the magnetic moments in these alloys were explained from the existence of 'virtual crystal' states for spin up electrons and 'split band' states for spin down electrons. Finally we employ the muffin-tin orbitals to calculate the X-ray photoemission spectra of the Pd sub(3)Fe and Pd sub(3)FeH compounds, which allows us a direct comparison between theory and experiment. (author)

  2. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  3. Electronic, structural, and optical properties of host materials for inorganic phosphors

    International Nuclear Information System (INIS)

    Alemany, Pere; Moreira, Ibério de P.R.; Castillo, Rodrigo; Llanos, Jaime

    2012-01-01

    Highlights: ► We performed a first-principles DFT study of the electronic structures of several wide band gap insulators (La 2 O 3 , La 2 O 2 S, Y 2 O 3 Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) used as host materials for inorganic phosphors. ► The electronic, structural, and optical properties calculated for these compounds are in good agreement with the available experimental data. ► The electronic structure of the M 2 TeO 6 phases exhibits distinct features that could allow a fine tuning of the optical properties of luminescent materials obtained by doping with rare earth metals. - Abstract: A family of large gap insulators used as host materials for inorganic phosphors (La 2 O 3 , La 2 O 2 S, Y 2 O 3 , Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) have been studied by first-principles DFT based calculations. We have determined electronic, structural, and optical properties for all these compounds both at the LDA and GGA levels obtaining, in general, a good agreement with available experimental data and previous theoretical studies. The electronic structure for the M 2 TeO 6 phases, addressed in this work for the first time, reveals some significant differences with respect to the other compounds, especially in the region of the lower conduction band, where the appearance of a group of four isolated oxygen/tellurium based bands below the main part of the La (Y) centered conduction band is predicted to lead to significant changes in the optical properties of the two tellurium containing compounds with respect to the rest of compounds in the series.

  4. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition.

    Science.gov (United States)

    Glazyrin, K; Pourovskii, L V; Dubrovinsky, L; Narygina, O; McCammon, C; Hewener, B; Schünemann, V; Wolny, J; Muffler, K; Chumakov, A I; Crichton, W; Hanfland, M; Prakapenka, V B; Tasnádi, F; Ekholm, M; Aichhorn, M; Vildosola, V; Ruban, A V; Katsnelson, M I; Abrikosov, I A

    2013-03-15

    We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.

  5. Ab initio density functional theory investigation of structural and electronic properties of double-walled silicon carbide nanotubes

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-12-01

    By using ab initio density functional theory, the structural and electronic properties of (n,n)@(11,11) double-walled silicon carbide nanotubes (SiCNTs) are investigated. Our calculations reveal the existence of an energetically favorable double-walled nanotube whose interwall distance is about 4.3 Å. Interwall spacing and curvature difference are found to be essential for the electronic states around the Fermi level.

  6. Electronic, structural, and optical properties of crystalline yttria

    International Nuclear Information System (INIS)

    Xu, Y.; Gu, Z.; Ching, W.Y.

    1997-01-01

    The electronic structure of crystalline Y 2 O 3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom- and orbital-resolved partial DOS, effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B ' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Γ is obtained which increases with pressure at a rate of dE g /dP=0.012eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y 2 O 3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of var-epsilon(0)=3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Γ between the top of the valence band and the bottom of the conduction band may be symmetry forbidden. copyright 1997 The American Physical Society

  7. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    Science.gov (United States)

    Oyama, Takuji; Schmitz, George E; Dodd, Dylan; Han, Yejun; Burnett, Alanna; Nagasawa, Naoko; Mackie, Roderick I; Nakamura, Haruki; Morikawa, Kosuke; Cann, Isaac

    2013-01-01

    CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  8. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    Directory of Open Access Journals (Sweden)

    Takuji Oyama

    Full Text Available CpMan5B is a glycoside hydrolase (GH family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196 in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  9. Structure and electronic properties of graphene on ferroelectric LiNbO{sub 3} surface

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jun, E-mail: dingjun@haue.edu.cn [College of Science, Henan University of Engineering, Zhengzhou 451191 (China); Wen, LiWei; Li, HaiDong [College of Science, Henan University of Engineering, Zhengzhou 451191 (China); Zhang, Ying, E-mail: yingzhang@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2017-05-25

    Highlights: • Interface structure of graphene on O terminated LiNbO{sub 3} surface. • Asymmetry gap around Dirac point. • Berry phase calculations confirm a valley Hall effect. - Abstract: We investigate the structural and electronic properties of graphene on the O terminated LiNbO{sub 3}(001) surface by density functional theory simulations. We observe that the first graphene layer is covalent bonded with the surface O atoms and buckles a lot. While considering second layer graphene upon the first layer, it almost recovers the planar structure and the interface interaction breaks the AB sublattice symmetry which leads to a valley Hall effect. Our results reveal the interface structure of graphene-ferroelectric heterostructure and provide the way for valleytronic applications with graphene.

  10. Comparison of optimization methods for electronic-structure calculations

    International Nuclear Information System (INIS)

    Garner, J.; Das, S.G.; Min, B.I.; Woodward, C.; Benedek, R.

    1989-01-01

    The performance of several local-optimization methods for calculating electronic structure is compared. The fictitious first-order equation of motion proposed by Williams and Soler is integrated numerically by three procedures: simple finite-difference integration, approximate analytical integration (the Williams-Soler algorithm), and the Born perturbation series. These techniques are applied to a model problem for which exact solutions are known, the Mathieu equation. The Williams-Soler algorithm and the second Born approximation converge equally rapidly, but the former involves considerably less computational effort and gives a more accurate converged solution. Application of the method of conjugate gradients to the Mathieu equation is discussed

  11. Modern quantum chemistry introduction to advanced electronic structure theory

    CERN Document Server

    Szabo, Attila

    1996-01-01

    The aim of this graduate-level textbook is to present and explain, at other than a superficial level, modem ab initio approaches to the calculation of the electronic structure and properties of molecules. The first three chapters contain introductory material culminating in a thorough discussion of the Hartree-Fock approximation.The remaining four chapters describe a variety of more sophisticated approaches, which improve upon this approximation.Among the highlights of the seven chapters are (1) a review of the mathematics (mostly matrix algebra) required for the rest of the book, (2) an intr

  12. Structural, electronic and optical properties of carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M L [California Univ., Berkeley (United States). Dept. of Physics

    1996-05-01

    Carbon nitride was proposed as a superhard material and a structural prototype, {beta}-C{sub 3}N{sub 4}, was examined using several theoretical models. Some reports claiming experimental verifications have been made recently. The current status of the theory and experiment is reviewed, and a detailed discussion is presented of calculations of the electronic and optical properties of this material. These calculations predict that {beta}-C{sub 3}N{sub 4} will have a minimum gap which is indirect at 6.4{+-}0.5 eV. A discussion of the possibility of carbon nitride nanotubes is also presented. (orig.)

  13. CIF2Cell: Generating geometries for electronic structure programs

    Science.gov (United States)

    Björkman, Torbjörn

    2011-05-01

    The CIF2Cell program generates the geometrical setup for a number of electronic structure programs based on the crystallographic information in a Crystallographic Information Framework (CIF) file. The program will retrieve the space group number, Wyckoff positions and crystallographic parameters, make a sensible choice for Bravais lattice vectors (primitive or principal cell) and generate all atomic positions. Supercells can be generated and alloys are handled gracefully. The code currently has output interfaces to the electronic structure programs ABINIT, CASTEP, CPMD, Crystal, Elk, Exciting, EMTO, Fleur, RSPt, Siesta and VASP. Program summaryProgram title: CIF2Cell Catalogue identifier: AEIM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 3 No. of lines in distributed program, including test data, etc.: 12 691 No. of bytes in distributed program, including test data, etc.: 74 933 Distribution format: tar.gz Programming language: Python (versions 2.4-2.7) Computer: Any computer that can run Python (versions 2.4-2.7) Operating system: Any operating system that can run Python (versions 2.4-2.7) Classification: 7.3, 7.8, 8 External routines: PyCIFRW [1] Nature of problem: Generate the geometrical setup of a crystallographic cell for a variety of electronic structure programs from data contained in a CIF file. Solution method: The CIF file is parsed using routines contained in the library PyCIFRW [1], and crystallographic as well as bibliographic information is extracted. The program then generates the principal cell from symmetry information, crystal parameters, space group number and Wyckoff sites. Reduction to a primitive cell is then performed, and the resulting cell is output to suitably named files along with documentation of the information source generated from any bibliographic information contained in the CIF

  14. Electronic structure and photoelectron spectra of boron beta-diketonates

    International Nuclear Information System (INIS)

    Borisenko, A.V.; Vovna, V.I.

    1990-01-01

    Photoelectron spectra and data of semiempirical (MNDO, CNDO/2, CNDO/S, INDO) and nonempirical (with STO-3G basis) methods of calculation were obtained to analyse the electronic structure of boron-containing diketonate cycle and the influence of substitution effect (aromatic substituents in particular) on it. The sequence and the character of upper occupied MO were determined; the nature of bond of the fragment X 2 B + and AA was established; charges of six-membered ion and influence of substituents on their values were determined. 13 refs.; 5 figs.; 4 tabs

  15. 8th international conference on electronic spectroscopy and structure

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Art

    2000-10-16

    Gathering from 33 countries around the world, 408 registrants and a number of local drop-in participants descended on the Clark Kerr Campus of the University of California, Berkeley, from Monday, August 7 through Saturday, August 12, 2000 for the Eighth International Conference on Electronic Structure and Spectroscopy (ICESS8). At the conference, participants benefited from an extensive scientific program comprising more than 100 oral presentations (plenary lectures and invited and contributed talks) and 330 poster presentations, as well as ample time for socializing and a tour of the Advanced Light Source (ALS) at the nearby Lawrence Berkeley National Laboratory.

  16. Electronic band structure of magnetic bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C. Huy; Nguyen, T. Thuong; Nguyen, V. Lien

    2014-01-01

    Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  17. Wavelets in self-consistent electronic structure calculations

    International Nuclear Information System (INIS)

    Wei, S.; Chou, M.Y.

    1996-01-01

    We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H 2 and O 2 , using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically. copyright 1996 The American Physical Society

  18. Self-consistent electronic-structure calculations for interface geometries

    International Nuclear Information System (INIS)

    Sowa, E.C.; Gonis, A.; MacLaren, J.M.; Zhang, X.G.

    1992-01-01

    This paper describes a technique for computing self-consistent electronic structures and total energies of planar defects, such as interfaces, which are embedded in an otherwise perfect crystal. As in the Layer Korringa-Kohn-Rostoker approach, the solid is treated as a set of coupled layers of atoms, using Bloch's theorem to take advantage of the two-dimensional periodicity of the individual layers. The layers are coupled using the techniques of the Real-Space Multiple-Scattering Theory, avoiding artificial slab or supercell boundary conditions. A total-energy calculation on a Cu crystal, which has been split apart at a (111) plane, is used to illustrate the method

  19. Alloying effect on the electronic structures of hydrogen storage compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, H.; Moringa, M.; Takahashi, Y. [Nagoya Univ. (Japan). Dept. of Mater. Sci. and Eng.

    1997-05-20

    The electronic structures of hydrogenated LaNi{sub 5} containing various 3d transition elements were investigated by the DV-X{alpha} molecular orbital method. The hydrogen atom was found to form a strong chemical bond with the Ni rather than the La atoms. The alloying modified the chemical bond strengths between atoms in a small metal octahedron containing a hydrogen atom at the center, resulting in the change in the hydrogen absorption and desorption characteristics of LaNi{sub 5} with alloying. (orig.) 7 refs.

  20. STRUCTURE FOR SUB-ASSEMBLIES OF ELECTRONIC EQUIPMENT

    Science.gov (United States)

    Bell, P.R.; Harris, C.C.

    1959-03-31

    Sub-assemblies for electronic systems, particularly a unit which is self- contained and which may be adapted for quick application to and detachment from a chassis or panel, are discussed. The disclosed structure serves the dual purpose of a cover or enclosure for a subassembly comprising a base plate and also acts as a clamp for retaining the base plate in position on a chassis. The clamping action is provided by flexible fingers projecting from the side walls of the cover and extending through grooves in the base plate to engage with the opposite side of the chassis.