WorldWideScience

Sample records for reuven ramaty high

  1. The Development of the Potential of Learning An Interview with Reuven Feuerstein

    Directory of Open Access Journals (Sweden)

    Sergio Noguez Casados

    2012-11-01

    Full Text Available Dr Reuven Feurstein's answers to this interview provide a first approximation to the work he has been doing for the last 40 years. It belongs to the area of structural cognitive psychology, with an interesting new use of the typical tools of psychometry focused on the development of thinking skills, not on IQ testing. Dr. Feuerstein offers a current balance of the most important fields he has been working on, which can be applied to different educational settings, from preschool to the training of High-Tech pilots.

  2. AMBITOS DE APLICACIÓN DE LA TEORÍA DE LA MODIFICABILIDAD ESTRUCTURAL COGNITIVA DE REUVEN FEUERSTEIN. SCOPES OF APPLICATION OF REUVEN FEUERSTEIN'S STRUCTURAL COGNITIVE MODIFIABILITY THEORY.

    Directory of Open Access Journals (Sweden)

    Abad E. Parada Trujillo.

    2013-12-01

    Full Text Available En el artículo se hace una exploración de la teoría de la Modificabilidad Estructural Cognitiva (MEC de Reuven Feuerstein, en relación con los ámbitos de aplicación de la misma. Para lo anterior, se ha hecho una recopilación de algunos estudios realizados en América Latina, Estados Unidos y Europa, a fin de identificar los diversos escenarios en que la teoría puede tener aplicación. Los resultados evidencian que la teoría de Feuerstein está ligada al concepto de desarrollo humano y que los sistemas creados con base en la MEC permiten reducir la deprivación cultural de muchas personas sin importar los factores endógenos que le afecten. Abstract: An exploration of Reuven Feuerstein's cognitive structural modifiability (CSM theory, in relation to the scope of its application, is made in the article. For this reason, a compilation of studies in Latin America, The United States, and Europe, is made, in order to identify the different scenarios in which the theory can be applied. The results show that Feuerstein's theory is linked to the concept of human development and that the systems created, based on the CSM, allow the reduction of the cultural deprivation of many people, regardless of the endogenous factors that affect it.

  3. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    Science.gov (United States)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  4. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland FHNW, 5210 Windisch (Switzerland)

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  5. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Science.gov (United States)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  6. A visibility-based approach using regularization for imaging-spectroscopy in solar X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Prato, M; Massone, A M; Piana, M [CNR - INFM LAMIA, Via Dodecaneso 33 1-16146 Genova (Italy); Emslie, A G [Department of Physics, Oklahoma State University, Stillwater, OK 74078 (United States); Hurford, G J [Space Sciences Laboratory, University of California at Berkeley, 8 Gauss Way, Berkeley, CA 94720-7450 (United States); Kontar, E P [Department of Physics and Astronomy, The University, Glasgow G12 8QQ, Scotland (United Kingdom); Schwartz, R A [CUA - Catholic University and LSSP at NASA Goddard Space Flight Center, code 671.1 Greenbelt, MD 20771 (United States)], E-mail: massone@ge.infm.it

    2008-11-01

    The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) is a nine-collimators satellite detecting X-rays and {gamma}-rays emitted by the Sun during flares. As the spacecraft rotates, imaging information is encoded as rapid time-variations of the detected flux. We recently proposed a method for the construction of electron flux maps at different electron energies from sets of count visibilities (i.e., direct, calibrated measurements of specific Fourier components of the source spatial structure) measured by RHESSI. The method requires the application of regularized inversion for the synthesis of electron visibility spectra and of imaging techniques for the reconstruction of two-dimensional electron flux maps. The method, already tested on real events registered by RHESSI, is validated in this paper by means of simulated realistic data.

  7. DUAL-STAGE RECONNECTION DURING SOLAR FLARES OBSERVED IN HARD X-RAY

    International Nuclear Information System (INIS)

    Xu Yan; Jing Ju; Wang Haimin; Cao Wenda

    2010-01-01

    In this Letter, we present hard X-ray (HXR) observation by the Reuven Ramaty High Energy Solar Spectroscopic Imager of the 2003 October 29 X10 flare. Two pairs of HXR conjugate footpoints have been identified during the early impulsive phase. This geometric configuration is very much in the manner predicted by the 'tether-cutting' scenario first proposed by Moore and Roumeliotis. The HXR light curves show that the outer pair of footpoints disappeared much faster than the other pair. This temporal behavior further confirms that this event is a good example of the 'tether-cutting' model. In addition, we reconstructed a three-dimensional magnetic field based on the nonlinear force-free extrapolation and found that each pair of HXR footpoints were indeed linked by corresponding magnetic field lines.

  8. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, 2000 Colorado Ave, Boulder, CO 80305 (United States); Allred, Joel C.; Daw, Adrian [NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Cauzzi, Gianna [INAF-Osservatorio Astrofisico di Arcetri, I-50125 Firenze (Italy); Carlsson, Mats, E-mail: Adam.Kowalski@lasp.colorado.edu [Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-02-10

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.

  9. Accelerated gradient methods for the x-ray imaging of solar flares

    Science.gov (United States)

    Bonettini, S.; Prato, M.

    2014-05-01

    In this paper we present new optimization strategies for the reconstruction of x-ray images of solar flares by means of the data collected by the Reuven Ramaty high energy solar spectroscopic imager. The imaging concept of the satellite is based on rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade, greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of different accelerated gradient methods for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function by means of a discrepancy principle accounting for the Poisson nature of the noise affecting the data.

  10. Millimeter and X-Ray Emission from the 5 July 2012 Solar Flare

    Science.gov (United States)

    Tsap, Y. T.; Smirnova, V. V.; Motorina, G. G.; Morgachev, A. S.; Kuznetsov, S. A.; Nagnibeda, V. G.; Ryzhov, V. S.

    2018-03-01

    The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39 - 11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (≳ 300 keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.

  11. Statistical relationship between the succeeding solar flares detected by the RHESSI satellite

    Science.gov (United States)

    Balázs, L. G.; Gyenge, N.; Korsós, M. B.; Baranyi, T.; Forgács-Dajka, E.; Ballai, I.

    2014-06-01

    The Reuven Ramaty High Energy Solar Spectroscopic Imager has observed more than 80 000 solar energetic events since its launch on 2002 February 12. Using this large sample of observed flares, we studied the spatiotemporal relationship between succeeding flares. Our results show that the statistical relationship between the temporal and spatial differences of succeeding flares can be described as a power law of the form R(t) ˜ tp with p = 0.327 ± 0.007. We discuss the possible interpretations of this result as a characteristic function of a supposed underlying physics. Different scenarios are considered to explain this relation, including the case where the connectivity between succeeding events is realized through a shock wave in the post Sedov-Taylor phase or where the spatial and temporal relationship between flares is supposed to be provided by an expanding flare area in the sub-diffusive regime. Furthermore, we cannot exclude the possibility that the physical process behind the statistical relationship is the reordering of the magnetic field by the flare or it is due to some unknown processes.

  12. Suppression of Hydrogen Emission in an X-class White-light Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Procházka, Ondrej; Milligan, Ryan O.; Mathioudakis, Mihalis [Astrophysics Research Centre, Queen’s University Belfast, Northern Ireland (United Kingdom); Allred, Joel C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kowalski, Adam F. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, 2000 Colorado Avenue, Boulder, CO 80305 (United States); Kotrč, Pavel, E-mail: oprochazka01@qub.ac.uk [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov (Czech Republic)

    2017-03-01

    We present unique NUV observations of a well-observed X-class flare from NOAA 12087 obtained at the Ondřejov Observatory. The flare shows a strong white-light continuum but no detectable emission in the higher Balmer and Lyman lines. Reuven Ramaty High-Energy Solar Spectroscopic Imager and Fermi observations indicate an extremely hard X-ray spectrum and γ -ray emission. We use the RADYN radiative hydrodynamic code to perform two types of simulations: one where an energy of 3 × 10{sup 11} erg cm{sup −2} s{sup −1} is deposited by an electron beam with a spectral index of ≈3, and a second where the same energy is applied directly to the photosphere. The combination of observations and simulations allows us to conclude that the white-light emission and the suppression or complete lack of hydrogen emission lines is best explained by a model where the dominant energy deposition layer is located in the lower layers of the solar atmosphere, rather than the chromosphere.

  13. Spatially inhomogeneous acceleration of electrons in solar flares

    Science.gov (United States)

    Stackhouse, Duncan J.; Kontar, Eduard P.

    2018-04-01

    The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.

  14. VizieR Online Data Catalog: Quasi-periodic pulsations in solar flares (Inglis+, 2016)

    Science.gov (United States)

    Inglis, A. R.; Ireland, J.; Dennis, B. R.; Hayes, L.; Gallagher, P.

    2018-04-01

    We have used data from the Geostationary Operational Environmental Satellite (GOES) instrument series, and from Fermi/Gamma-ray Burst Monitor (GBM). For this reason, we choose the interval 2011 February 1 - 2015 December 31, as it not only coincides with the availability of GOES-15 satellite data, but also includes regular solar observations by GBM. GOES satellites are equipped with solar X-ray detectors that record the incident flux in the 0.5-4Å and 1-8Å wavelength ranges. Solar X-ray data from the most recent satellite, GOES-15, has been available since 2010 at a nominal 2s cadence. To access the GOES catalog, we use the Heliophysics Event Knowledgebase (HEK). Fermi/GBM operates in the 8keV-40MeV range and regularly observes emission from solar flares, with a solar duty cycle of ~60%, similar to the solar-dedicated Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). To accumulate the database of Fermi/GBM events, we use the GBM trigger catalog produced by the instrument team, selecting all events marked as flares. (2 data files).

  15. FLARE-GENERATED TYPE II BURST WITHOUT ASSOCIATED CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Magdalenic, J.; Marque, C.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, SIDC, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, Kaciceva 26, HR-10000 Zagreb (Croatia); Veronig, A., E-mail: Jasmina.Magdalenic@oma.be [IGAM/Kanzelhoehe Observatory, Institut of Physics, Universitaet Graz, Universitaetsplatz 5, A-8010 Graz (Austria)

    2012-02-20

    We present a study of the solar coronal shock wave on 2005 November 14 associated with the GOES M3.9 flare that occurred close to the east limb (S06 Degree-Sign E60 Degree-Sign ). The shock signature, a type II radio burst, had an unusually high starting frequency of about 800 MHz, indicating that the shock was formed at a rather low height. The position of the radio source, the direction of the shock wave propagation, and the coronal electron density were estimated using Nancay Radioheliograph observations and the dynamic spectrum of the Green Bank Solar Radio Burst Spectrometer. The soft X-ray, H{alpha}, and Reuven Ramaty High Energy Solar Spectroscopic Imager observations show that the flare was compact, very impulsive, and of a rather high density and temperature, indicating a strong and impulsive increase of pressure in a small flare loop. The close association of the shock wave initiation with the impulsive energy release suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. This is supported by the fact that, contrary to the majority of events studied previously, no coronal mass ejection was detected in association with the shock wave, although the corresponding flare occurred close to the limb.

  16. Calibration of Solar Radio Spectrometer of the Purple Mountain Observatory

    Science.gov (United States)

    Lei, LU; Si-ming, LIU; Qi-wu, SONG; Zong-jun, NING

    2015-10-01

    Calibration is a basic and important job in solar radio spectral observations. It not only deduces the solar radio flux as an important physical quantity for solar observations, but also deducts the flat field of the radio spectrometer to display the radio spectrogram clearly. In this paper, we first introduce the basic method of calibration based on the data of the solar radio spectrometer of Purple Mountain Observatory. We then analyze the variation of the calibration coefficients, and give the calibrated results for a few flares. These results are compared with those of the Nobeyama solar radio polarimeter and the hard X-ray observations of the RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) satellite, it is shown that these results are consistent with the characteristics of typical solar flare light curves. In particular, the analysis on the correlation between the variation of radio flux and the variation of hard X-ray flux in the pulsing phase of a flare indicates that these observations can be used to study the relevant radiation mechanism, as well as the related energy release and particle acceleration processes.

  17. Dynamic Precursors of Flares in Active Region NOAA 10486

    Science.gov (United States)

    Korsós, M. B.; Gyenge, N.; Baranyi, T.; Ludmány, A.

    2015-03-01

    Four different methods are applied here to study the precursors of flare activity in the Active Region NOAA 10486. Two approaches track the temporal behaviour of suitably chosen features (one, the weighted hori- zontal gradient W G M , is the generalized form of the horizontal gradient of the magnetic field, G M ; the other is the sum of the horizontal gradient of the magnetic field, G S , for all sunspot pairs). W G M is a photospheric indicator, that is a proxy measure of magnetic non-potentiality of a specific area of the active region, i.e., it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one, referred to as the separateness parameter, S l- f , considers the overall morphology. Further, G S and S l- f are photospheric, newly defined quick-look indicators of the polarity mix of the entire active region. The fourth method is tracking the temporal variation of small X-ray flares, their times of succession and their energies observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager instrument. All approaches yield specific pre-cursory signatures for the imminence of flares.

  18. CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, Matej; Krucker, Säm; Battaglia, Marina; Kleint, Lucia; Casadei, Diego [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Oliveros, Juan Carlos Martinez; Hudson, Hugh S. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  19. NuSTAR Hard X-Ray Observation of a Sub-A Class Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Glesener, Lindsay [School of Physics and Astronomy, University of Minnesota, Minneapolis (United States); Krucker, Säm; Hudson, Hugh [Space Sciences Laboratory, University of California at Berkeley, Berkeley (United States); Hannah, Iain G. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Grefenstette, Brian W. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena (United States); White, Stephen M. [Air Force Research Laboratory, Albuquerque (United States); Smith, David M.; Marsh, Andrew J. [Santa Cruz Institute of Particle Physics and Department of Physics, University of California at Santa Cruz, Santa Cruz (United States)

    2017-08-20

    We report a Nuclear Spectroscopic Telescope Array ( NuSTAR ) observation of a solar microflare, SOL2015-09-01T04. Although it was too faint to be observed by the GOES X-ray Sensor, we estimate the event to be an A0.1 class flare in brightness. This microflare, with only ∼5 counts s{sup −1} detector{sup −1} observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager ( RHESSI ), is fainter than any hard X-ray (HXR) flare in the existing literature. The microflare occurred during a solar pointing by the highly sensitive NuSTAR astrophysical observatory, which used its direct focusing optics to produce detailed HXR microflare spectra and images. The microflare exhibits HXR properties commonly observed in larger flares, including a fast rise and more gradual decay, earlier peak time with higher energy, spatial dimensions similar to the RHESSI microflares, and a high-energy excess beyond an isothermal spectral component during the impulsive phase. The microflare is small in emission measure, temperature, and energy, though not in physical size; observations are consistent with an origin via the interaction of at least two magnetic loops. We estimate the increase in thermal energy at the time of the microflare to be 2.4 × 10{sup 27} erg. The observation suggests that flares do indeed scale down to extremely small energies and retain what we customarily think of as “flare-like” properties.

  20. TRANSITION REGION AND CHROMOSPHERIC SIGNATURES OF IMPULSIVE HEATING EVENTS. I. OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Reep, Jeffrey W. [National Research Council Postdoctoral Fellow, Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Crump, Nicholas A. [Naval Center for Space Technology, Naval Research Laboratory, Washington, DC 20375 (United States); Simões, Paulo J. A. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2016-09-20

    We exploit the high spatial resolution and high cadence of the Interface Region Imaging Spectrograph ( IRIS ) to investigate the response of the transition region and chromosphere to energy deposition during a small flare. Simultaneous observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager provide constraints on the energetic electrons precipitating into the flare footpoints, while observations of the X-Ray Telescope , Atmospheric Imaging Assembly, and Extreme Ultraviolet Imaging Spectrometer (EIS) allow us to measure the temperatures and emission measures from the resulting flare loops. We find clear evidence for heating over an extended period on the spatial scale of a single IRIS pixel. During the impulsive phase of this event, the intensities in each pixel for the Si iv 1402.770 Å, C ii 1334.535 Å, Mg ii 2796.354 Å, and O i 1355.598 Å emission lines are characterized by numerous small-scale bursts typically lasting 60 s or less. Redshifts are observed in Si iv, C ii, and Mg ii during the impulsive phase. Mg ii shows redshifts during the bursts and stationary emission at other times. The Si iv and C ii profiles, in contrast, are observed to be redshifted at all times during the impulsive phase. These persistent redshifts are a challenge for one-dimensional hydrodynamic models, which predict only short-duration downflows in response to impulsive heating. We conjecture that energy is being released on many small-scale filaments with a power-law distribution of heating rates.

  1. Active Longitude and Solar Flare Occurrences

    Science.gov (United States)

    Gyenge, N.; Ludmány, A.; Baranyi, T.

    2016-02-01

    The aim of the present work is to specify the spatio-temporal characteristics of flare activity observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Geostationary Operational Environmental Satellite (GOES) in connection with the behavior of the longitudinal domain of enhanced sunspot activity known as active longitude (AL). By using our method developed for this purpose, we identified the AL in every Carrington Rotation provided by the Debrecen Photoheliographic Data. The spatial probability of flare occurrence has been estimated depending on the longitudinal distance from AL in the northern and southern hemispheres separately. We have found that more than 60% of the RHESSI and GOES flares is located within +/- 36^\\circ from the AL. Hence, the most flare-productive active regions tend to be located in or close to the active longitudinal belt. This observed feature may allow for the prediction of the geo-effective position of the domain of enhanced flaring probability. Furthermore, we studied the temporal properties of flare occurrence near the AL and several significant fluctuations were found. More precisely, the results of the method are the following fluctuations: 0.8, 1.3, and 1.8 years. These temporal and spatial properties of the solar flare occurrence within the active longitudinal belts could provide us with an enhanced solar flare forecasting opportunity.

  2. Periodic Recurrence Patterns In X-Ray Solar Flare Appearances

    Science.gov (United States)

    Gyenge, N.; Erdélyi, R.

    2018-06-01

    The temporal recurrence of micro-flare events is studied for a time interval before and after of major solar flares. Our sample is based on the X-ray flare observations by the Geostationary Operational Environmental Satellite (GOES) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The analyzed data contain 1330/301 M-class and X-class GOES/RHESSI energetic solar flares and 4062/4119 GOES/RHESSI micro-flares covering the period elapse since 2002. The temporal analysis of recurrence, by Fast Fourier Transform, of the micro-flares, shows multiple significant periods. Based on the GOES and RHESSI data, the temporal analysis also demonstrates that multiple periods manifest simultaneously in both statistical samples without any significant shift over time. In the GOES sample, the detected significant periods are: 11.33, 5.61, 3.75, 2.80, and 2.24 minutes. The RHESSI data show similar significant periods at 8.54, 5.28, 3.66, 2.88, and 2.19 minutes. The periods are interpreted as signatures of standing oscillations, with the longest period (P 1) being the fundamental and others being higher harmonic modes. The period ratio of the fundamental and higher harmonics (P 1/P N ) is also analyzed. The standing modes may be signatures of global oscillations of the entire solar atmosphere encompassing magnetized plasma from the photosphere to the corona in active regions.

  3. Flare Characteristics from X-ray Light Curves

    Science.gov (United States)

    Gryciuk, M.; Siarkowski, M.; Sylwester, J.; Gburek, S.; Podgorski, P.; Kepa, A.; Sylwester, B.; Mrozek, T.

    2017-06-01

    A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS- Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single ("elementary") flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16 - 1.51 keV, 1.51 - 15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue - the SphinX Flare Catalogue - which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.

  4. Detection of Three-minute Oscillations in Full-disk Ly α Emission during a Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Ryan O.; Fletcher, Lyndsay [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Fleck, Bernhard [ESA Directorate of Science, Operations Department, c/o NASA/GSFC Code 671, Greenbelt, MD 20071 (United States); Ireland, Jack; Dennis, Brian R. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-10-10

    In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Ly α (from GOES /EUVS) and Lyman continuum (from Solar Dynamics Observatory ( SDO )/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ∼3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO /Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50–100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Ly α line may influence the composition and dynamics of planetary atmospheres during periods of high activity.

  5. Solar Flares Observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    Science.gov (United States)

    Holman, Gordon D.

    2004-01-01

    Solar flares are impressive examples of explosive energy release in unconfined, magnetized plasma. It is generally believed that the flare energy is derived from the coronal magnetic field. However, we have not been able to establish the specific energy release mechanism(s) or the relative partitioning of the released energy between heating, particle acceleration (electrons and ions), and mass motions. NASA's RHESSI Mission was designed to study the acceleration and evolution of electrons and ions in flares by observing the X-ray and gamma-ray emissions these energetic particles produce. This is accomplished through the combination of high-resolution spectroscopy and spectroscopic imaging, including the first images of flares in gamma rays. RHESSI has observed over 12,000 solar flares since its launch on February 5, 2002. I will demonstrate how we use the RHESSI spectra to deduce physical properties of accelerated electrons and hot plasma in flares. Using images to estimate volumes, w e typically find that the total energy in accelerated electrons is comparable to that in the thermal plasma. I will also present flare observations that provide strong support for the presence of magnetic reconnection in a large-scale, vertical current sheet in the solar corona. RHESSI observations such as these are allowing us to probe more deeply into the physics of solar flares.

  6. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    Science.gov (United States)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-07-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24 h interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare list, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one-day period depending on the type of the main flare. The spatial distribution was characterized by the normalized frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalized by the sunspot group diameter) in four 6 h time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 h prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6 h subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  7. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Effenberger, Frederic; Costa, Fatima Rubio da; Petrosian, Vahé [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Oka, Mitsuo; Saint-Hilaire, Pascal; Krucker, Säm [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Liu, Wei [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952 (United States); Glesener, Lindsay, E-mail: feffen@stanford.edu, E-mail: frubio@stanford.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flare emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES ) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.

  8. Probing Twisted Magnetic Field Using Microwave Observations in an M Class Solar Flare on 11 February, 2014

    Science.gov (United States)

    Sharykin, I. N.; Kuznetsov, A. A.; Myshyakov, I. I.

    2018-02-01

    This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-V map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.

  9. Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare

    Science.gov (United States)

    Kuroda, Natsuha; Gary, Dale E.; Wang, Haimin; Fleishman, Gregory D.; Nita, Gelu M.; Jing, Ju

    2018-01-01

    The well-established notion of a “common population” of the accelerated electrons simultaneously producing the hard X-ray (HXR) and microwave (MW) emission during the flare impulsive phase has been challenged by some studies reporting the discrepancies between the HXR-inferred and MW-inferred electron energy spectra. The traditional methods of spectral inversion have some problems that can be mainly attributed to the unrealistic and oversimplified treatment of the flare emission. To properly address this problem, we use a nonlinear force-free field (NLFFF) model extrapolated from an observed photospheric magnetogram as input to the three-dimensional, multiwavelength modeling platform GX Simulator and create a unified electron population model that can simultaneously reproduce the observed HXR and MW observations. We model the end of the impulsive phase of the 2015 June 22 M6.5 flare and constrain the modeled electron spatial and energy parameters using observations made by the highest-resolving instruments currently available in two wavelengths, the Reuven Ramaty High Energy Solar Spectroscopic Imager for HXR and the Expanded Owens Valley Solar Array for MW. Our results suggest that the HXR-emitting electron population model fits the standard flare model with a broken power-law spectrum ({E}{break}∼ 200 keV) that simultaneously produces the HXR footpoint emission and the MW high-frequency emission. The model also includes an “HXR-invisible” population of nonthermal electrons that are trapped in a large volume of magnetic field above the HXR-emitting loops, which is observable by its gyrosynchrotron radiation emitting mainly in the MW low-frequency range.

  10. The Multi-Instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Residual Non-Thermal Soft X-Ray Emission

    Science.gov (United States)

    McTiernan, James M.; Caspi, Amir; Warren, Harry

    2015-04-01

    In the soft X-ray energy range, solar flare spectra are typically dominated by thermal emission. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI). The improvement over the isothermal approximation is intended to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV for medium to large solar flares.Previous work (Caspi et.al. 2014ApJ...788L..31C) has concentrated on obtaining DEM models that fit both instruments' observations well. Now we are interested in any breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. Thermal emission is again modeled using a DEM that is parametrized as multiple gaussians in temperature; the non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner. The results for non-thermal parameters then are compared with those found using RHESSI data alone, with isothermal and double-thermal models.

  11. Deducing Electron Properties from Hard X-Ray Observations

    Science.gov (United States)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; hide

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  12. THE HEIGHT OF A WHITE-LIGHT FLARE AND ITS HARD X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Oliveros, Juan-Carlos; Hudson, Hugh S.; Hurford, Gordon J.; Krucker, Saem; Lin, R. P. [Space Sciences Laboratory, UC Berkeley, Berkeley, CA 94720 (United States); Lindsey, Charles [North West Research Associates, CORA Division, Boulder, CO (United States); Couvidat, Sebastien; Schou, Jesper [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA (United States); Thompson, W. T. [Adnet Systems, Inc., NASA Goddard Space Flight Center, code 671, Greenbelt, MD (United States)

    2012-07-10

    We describe observations of a white-light (WL) flare (SOL2011-02-24T07:35:00, M3.5) close to the limb of the Sun, from which we obtain estimates of the heights of the optical continuum sources and those of the associated hard X-ray (HXR) sources. For this purpose, we use HXR images from the Reuven Ramaty High Energy Spectroscopic Imager and optical images at 6173 A from the Solar Dynamics Observatory. We find that the centroids of the impulsive-phase emissions in WL and HXRs (30-80 keV) match closely in central distance (angular displacement from Sun center), within uncertainties of order 0.''2. This directly implies a common source height for these radiations, strengthening the connection between visible flare continuum formation and the accelerated electrons. We also estimate the absolute heights of these emissions as vertical distances from Sun center. Such a direct estimation has not been done previously, to our knowledge. Using a simultaneous 195 Angstrom-Sign image from the Solar-Terrestrial RElations Observatory spacecraft to identify the heliographic coordinates of the flare footpoints, we determine mean heights above the photosphere (as normally defined; {tau} = 1 at 5000 A) of 305 {+-} 170 km and 195 {+-} 70 km, respectively, for the centroids of the HXR and WL footpoint sources of the flare. These heights are unexpectedly low in the atmosphere, and are consistent with the expected locations of {tau} = 1 for the 6173 Angstrom-Sign and the {approx}40 keV photons observed, respectively.

  13. The Relationship Between Solar Radio and Hard X-Ray Emission

    Science.gov (United States)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; hide

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  14. TIME DELAYS IN QUASI-PERIODIC PULSATIONS OBSERVED DURING THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15

    Energy Technology Data Exchange (ETDEWEB)

    Dolla, L.; Marque, C.; Seaton, D. B.; Dominique, M.; Berghmans, D.; Cabanas, C.; De Groof, A.; Verdini, A.; West, M. J.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Van Doorsselaere, T. [Centrum voor Plasma-Astrofysica, Department of Mathematics, KULeuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Schmutz, W. [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos Dorf (Switzerland); Zender, J., E-mail: dolla@sidc.be [European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2012-04-10

    We report observations of quasi-periodic pulsations (QPPs) during the X2.2 flare of 2011 February 15, observed simultaneously in several wavebands. We focus on fluctuations on timescale 1-30 s and find different time lags between different wavebands. During the impulsive phase, the Reuven Ramaty High Energy Solar Spectroscopic Imager channels in the range 25-100 keV lead all the other channels. They are followed by the Nobeyama RadioPolarimeters at 9 and 17 GHz and the extreme-ultraviolet (EUV) channels of the Euv SpectroPhotometer (ESP) on board the Solar Dynamic Observatory. The zirconium and aluminum filter channels of the Large Yield Radiometer on board the Project for On-Board Autonomy satellite and the soft X-ray (SXR) channel of ESP follow. The largest lags occur in observations from the Geostationary Operational Environmental Satellite, where the channel at 1-8 A leads the 0.5-4 A channel by several seconds. The time lags between the first and last channels is up to Almost-Equal-To 9 s. We identified at least two distinct time intervals during the flare impulsive phase, during which the QPPs were associated with two different sources in the Nobeyama RadioHeliograph at 17 GHz. The radio as well as the hard X-ray channels showed different lags during these two intervals. To our knowledge, this is the first time that time lags are reported between EUV and SXR fluctuations on these timescales. We discuss possible emission mechanisms and interpretations, including flare electron trapping.

  15. The Height of a White-Light Flare and its Hard X-Ray Sources

    Science.gov (United States)

    Oliveros, Juan-Carlos Martinez; Hudson, Hugh S.; Hurford, Gordon J.; Kriucker, Saem; Lin, R. P.; Lindsey, Charles; Couvidat, Sebastien; Schou, Jesper; Thompson, W. T.

    2012-01-01

    We describe observations of a white-light (WL) flare (SOL2011-02-24T07:35:00, M3.5) close to the limb of the Sun, from which we obtain estimates of the heights of the optical continuum sources and those of the associated hard X-ray (HXR) sources. For this purpose, we use HXR images from the Reuven Ramaty High Energy Spectroscopic Imager and optical images at 6173 Ang. from the Solar Dynamics Observatory.We find that the centroids of the impulsive-phase emissions in WL and HXRs (30 -80 keV) match closely in central distance (angular displacement from Sun center), within uncertainties of order 0".2. This directly implies a common source height for these radiations, strengthening the connection between visible flare continuum formation and the accelerated electrons. We also estimate the absolute heights of these emissions as vertical distances from Sun center. Such a direct estimation has not been done previously, to our knowledge. Using a simultaneous 195 Ang. image from the Solar-Terrestrial RElations Observatory spacecraft to identify the heliographic coordinates of the flare footpoints, we determine mean heights above the photosphere (as normally defined; tau = 1 at 5000 Ang.) of 305 +/- 170 km and 195 +/- 70 km, respectively, for the centroids of the HXR and WL footpoint sources of the flare. These heights are unexpectedly low in the atmosphere, and are consistent with the expected locations of tau = 1 for the 6173 Ang and the approx 40 keV photons observed, respectively.

  16. A flare observed in coronal, transition region, and helium I 10830 Å emissions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhicheng; Cao, Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Qiu, Jiong [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307-3000 (United States)

    2014-10-01

    On 2012 June 17, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broadband TiO at 706 nm (bandpass: 10 Å) and He I 10830 Å narrow band (bandpass: 0.5 Å, centered 0.25 Å to the blue). We analyze the spatio-temporal behavior of the He I 10830 Å data, which were obtained over a 90''×90'' field of view with a cadence of 10 s. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from the Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the '0D' enthalpy-based thermal evolution of loops model code, indicate that the triplet states of the 10830 Å multiplet are populated by photoionization of chromospheric plasma followed by radiative recombination. Surprisingly, the He II 304 Å line is reasonably well matched by standard emission measure calculations, along with the C IV emission which dominates the Atmosphere Imaging Assembly 1600 Å channel during flares. This work lends support to some of our previous work combining X-ray, EUV, and UV data of flares to build models of energy transport from corona to chromosphere.

  17. Modeling of Pulses in Terrestrial Gamma-ray Flashes

    Science.gov (United States)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.

  18. SOLAR ENERGETIC PARTICLE EVENTS AND THE KIPLINGER EFFECT

    International Nuclear Information System (INIS)

    Kahler, S. W.

    2012-01-01

    The Kiplinger effect is an observed association of solar energetic (E > 10 MeV) particle (SEP) events with a 'soft-hard-harder' (SHH) spectral evolution during the extended phases of the associated solar hard (E > 30 keV) X-ray (HXR) flares. Besides its possible use as a space weather predictor of SEP events, the Kiplinger effect has been interpreted as evidence of SEP production in the flare site itself, contradicting the widely accepted view that particles of large SEP events are predominately or entirely accelerated in shocks driven by coronal mass ejections (CMEs). We review earlier work to develop flare soft X-ray (SXR) and HXR spectra as SEP event forecast tools and then examine recent Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) evidence supporting the association of SHH HXR flares with large SEP events. We point out that ad hoc prediction criteria using the CME widths and SXR flare durations of associated RHESSI hard X-ray bursts (HXBs) can yield results comparable to those of the SHH prediction criteria. An examination of the RHESSI dynamic plots reveals several ambiguities in the determination of whether and when the SHH criteria are fulfilled, which must be quantified and applied consistently before an SHH-based predictive tool can be made. A comparative HXR spectral study beginning with the large population of relatively smaller SEP events has yet to be done, and we argue that those events will not be so well predicted by the SHH criteria. SHH HXR flares and CMEs are both components of large eruptive flare events, which accounts for the good connection of the SHH HXR flares with SEP events.

  19. DATA-DRIVEN RADIATIVE HYDRODYNAMIC MODELING OF THE 2014 MARCH 29 X1.0 SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Fatima Rubio da; Petrosian, Vahé [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kleint, Lucia [University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Liu, Wei [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952-5159 (United States); Allred, Joel C., E-mail: frubio@stanford.edu [NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

    2016-08-10

    Spectroscopic observations of solar flares provide critical diagnostics of the physical conditions in the flaring atmosphere. Some key features in observed spectra have not yet been accounted for in existing flare models. Here we report a data-driven simulation of the well-observed X1.0 flare on 2014 March 29 that can reconcile some well-known spectral discrepancies. We analyzed spectra of the flaring region from the Interface Region Imaging Spectrograph ( IRIS ) in Mg ii h and k, the Interferometric BIdimensional Spectropolarimeter at the Dunn Solar Telescope (DST/IBIS) in H α 6563 Å and Ca ii 8542 Å, and the Reuven Ramaty High Energy Solar Spectroscope Imager ( RHESSI ) in hard X-rays. We constructed a multithreaded flare loop model and used the electron flux inferred from RHESSI data as the input to the radiative hydrodynamic code RADYN to simulate the atmospheric response. We then synthesized various chromospheric emission lines and compared them with the IRIS and IBIS observations. In general, the synthetic intensities agree with the observed ones, especially near the northern footpoint of the flare. The simulated Mg ii line profile has narrower wings than the observed one. This discrepancy can be reduced by using a higher microturbulent velocity (27 km s{sup −1}) in a narrow chromospheric layer. In addition, we found that an increase of electron density in the upper chromosphere within a narrow height range of ≈800 km below the transition region can turn the simulated Mg ii line core into emission and thus reproduce the single peaked profile, which is a common feature in all IRIS flares.

  20. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    Science.gov (United States)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  1. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares.

    Science.gov (United States)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team

    2018-01-01

    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the

  2. The Instruments and Capabilities of the Miniature X-Ray Solar Spectrometer (MinXSS) CubeSats

    Science.gov (United States)

    Moore, Christopher S.; Caspi, Amir; Woods, Thomas N.; Chamberlin, Phillip C.; Dennis, Brian R.; Jones, Andrew R.; Mason, James P.; Schwartz, Richard A.; Tolbert, Anne K.

    2018-02-01

    The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, with the main objective of measuring the solar soft X-ray (SXR) flux and a science goal of determining its influence on Earth's ionosphere and thermosphere. These observations can also be used to investigate solar quiescent, active region, and flare properties. The MinXSS X-ray instruments consist of a spectrometer, called X123, with a nominal 0.15 keV full-width at half-maximum (FWHM) resolution at 5.9 keV and a broadband X-ray photometer, called XP. Both instruments are designed to obtain measurements from 0.5 - 30 keV at a nominal time cadence of 10 s. A description of the MinXSS instruments, performance capabilities, and relation to the Geostationary Operational Environmental Satellite (GOES) 0.1 - 0.8 nm flux is given in this article. Early MinXSS results demonstrate the capability of measuring variations of the solar spectral soft X-ray (SXR) flux between 0.8 - 12 keV from at least GOES A5-M5 (5 × 10^{-8} - 5 ×10^{-5} W m^{-2}) levels and of inferring physical properties (temperature and emission measure) from the MinXSS data alone. Moreover, coronal elemental abundances can be inferred, specifically for Fe, Ca, Si, Mg, S, Ar, and Ni, when the count rate is sufficiently high at each elemental spectral feature. Additionally, temperature response curves and emission measure loci demonstrate the MinXSS sensitivity to plasma emission at different temperatures. MinXSS observations coupled with those from other solar observatories can help address some of the most compelling questions in solar coronal physics. Finally, simultaneous observations by MinXSS and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) can provide the most spectrally complete soft X-ray solar flare photon flux measurements to date.

  3. Atomic Layer Deposition Re Ective Coatings For Future Astronomical Space Telescopes And The Solar Corona Viewed Through The Minxss (Miniature X-Ray Solar Spectrometer) Cubesats

    Science.gov (United States)

    Moore, Christopher Samuel

    2017-11-01

    Advances in technology and instrumentation open new windows for observing astrophysical objects. The first half of my dissertation involves the development of atomic layer deposition (ALD) coatings to create high reflectivity UV mirrors for future satellite astronomical telescopes. Aluminum (Al) has intrinsic reflectance greater than 80% from 90 – 2,000 nm, but develops a native aluminum oxide (Al2O3) layer upon exposure to air that readily absorbs light below 250 nm. Thus, Al based UV mirrors must be protected by a transmissive overcoat. Traditionally, metal-fluoride overcoats such as MgF2 and LiF are used to mitigate oxidation but with caveats. We utilize a new metal fluoride (AlF3) to protect Al mirrors deposited by ALD. ALD allows for precise thickness control, conformal and near stoichiometric thin films. We prove that depositing ultra-thin ( 3 nm) ALD ALF3 to protect Al mirrors after removing the native oxide layer via atomic layer etching (ALE) enhances the reflectance near 90 nm from 5% to 30%.X-ray detector technology with high readout rates are necessary for the relatively bright Sun, particularly during large flares. The hot plasma in the solar corona generates X-rays, which yield information on the physical conditions of the plasma. The second half of my dissertation includes detector testing, characterization and solar science with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats. The MinXSS CubeSats employ Silicon Drift Diode (SDD) detectors called X123, which generate full sun spectrally resolved ( 0.15 FWHM at 5.9 keV) measurements of the sparsely measured, 0.5 – 12 keV range. The absolute radiometric calibration of the MinXSS instrument suite was performed at the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive sources. I used MinXSS along with data from the Geostationary Operational Environmental Satellites (GOES), Reuven Ramaty

  4. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. II. IN THREE SOURCES OF A FLARING LOOP

    International Nuclear Information System (INIS)

    Huang Guangli; Li Jianping

    2011-01-01

    Based on the spatially resolvable data of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Nobeyama Radio Heliograph (NoRH), co-analysis of solar hard X-ray and microwave spectral evolution is performed in three separate sources located in one looptop (LT) and two footpoints (FPs) of a huge flaring loop in the 2003 October 24 flare. The RHESSI image spectral evolution in 10-100 keV is always fitted by the well-known soft-hard-soft (SHS) pattern in the three sources. When the total energy is divided into four intervals similar to the Yohkoh/Hard X-ray Telescope, i.e., 12.5-32.5 keV, 32.5-52.5 keV, 52.5-72.5 keV, and 72.5-97.5 keV, the SHS pattern in lower energies is converted gradually to the hard-soft-hard (HSH) pattern in higher energies in all three sources. However, the break energy in the LT and the northeast FP (∼32.5 keV) is evidently smaller than that in the southwest FP (∼72.5 keV). Regarding microwave spectral evolution of the NoRH data, the well-known soft-hard-harder pattern appeared in the southwest FP, while the HSH pattern coexisted in the LT and the northeast FP. The different features of the hard X-ray and microwave spectral evolutions in the three sources may be explained by the loop-loop interaction with another huge loop in the LT and with a compact loop in the northeast FP, where the trapping effect is much stronger than that in the southwest FP. The comparison between the LT and FP spectral indices suggests that the radiation mechanism of X-rays may be quite different in different energy intervals and sources. The calculated electron spectral indices from the predicted mechanisms of X-rays gradually become closer to those from the microwave data with increasing X-ray energies.

  5. Prediction of TARANIS Observations of TGF's and Optical Emissions from Red Sprites

    Science.gov (United States)

    Nelson, M. A.

    2006-12-01

    TARANIS (Tool for the Analysis of Radiation from Lightning and Sprites) is a French (CNES, Centre National D'Etudes Spatiales) micro-satellite that is scheduled for launch in 2009. This will be the first satellite that will measure coincident gamma-rays and optical emissions from atmospheric discharges. These measurements will provide important clues concerning the physics of discharges that produce gamma-rays and will provide more definitive evidence of the role of conventional breakdown versus runaway breakdown than is currently available. While a variety of discharges may be associated with Transient Gamma Ray Flashes (TGF's), this study will focus on emissions expected from red sprites. Future studies will focus on other types of discharges (for example, gigantic jets or blue jets) to see whether they should produce detectable signal levels at both gamma-ray and optical frequencies. The source of terrestrial TGF's is a matter of debate at this time. Many experts in the field have interpreted the data associated with the RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) satellite to be indicative that the discharges associated with terrestrial gamma-rays are not associated with sprites. However, RHESSI was not designed for the purpose of collecting gamma-ray measurements from terrestrial discharges; does not possess a coincident optical measurement capability; and must average data over many events to predict a spectrum. We will present a statistical analysis of the relative efficiencies of the RHESSI and TARANIS satellite designs for the detection of TGF's associated with sprites. We will show results from a fully 2-D electromagnetic model (UNIMAX, the Unified Maxwell code) and an optical model (POEM, the Physics Based Optical Emission Model) to demonstrate the level of agreement between the simulations and the gamma-ray spectrum measurements and optical measurements (camera, photometer, and spectral measurements) for several different classes of

  6. PRE-FLARE CORONAL JET AND EVOLUTIONARY PHASES OF A SOLAR ERUPTIVE PROMINENCE ASSOCIATED WITH THE M1.8 FLARE: SDO AND RHESSI OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Bhuwan; Kushwaha, Upendra [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur 313001 (India); Veronig, Astrid M. [Kanzelhöhe Observatory/Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Cho, K.-S., E-mail: bhuwan@prl.res.in [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2016-12-01

    We investigate the triggering, activation, and ejection of a solar eruptive prominence that occurred in a multi-polar flux system of active region NOAA 11548 on 2012 August 18 by analyzing data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory , the Reuven Ramaty High Energy Solar Spectroscopic Imager , and the Extreme Ultraviolet Imager/Sun Earth Connection Coronal and Heliospheric Investigation on board the Solar Terrestrial Relation Observatory . Prior to the prominence activation, we observed striking coronal activities in the form of a blowout jet, which is associated with the rapid eruption of a cool flux rope. Furthermore, the jet-associated flux rope eruption underwent splitting and rotation during its outward expansion. These coronal activities are followed by the prominence activation during which it slowly rises with a speed of ∼12 km s{sup −1} while the region below the prominence emits gradually varying EUV and thermal X-ray emissions. From these observations, we propose that the prominence eruption is a complex, multi-step phenomenon in which a combination of internal (tether-cutting reconnection) and external (i.e., pre-eruption coronal activities) processes are involved. The prominence underwent catastrophic loss of equilibrium with the onset of the impulsive phase of an M1.8 flare, suggesting large-scale energy release by coronal magnetic reconnection. We obtained signatures of particle acceleration in the form of power-law spectra with hard electron spectral index ( δ  ∼ 3) and strong HXR footpoint sources. During the impulsive phase, a hot EUV plasmoid was observed below the apex of the erupting prominence that ejected in the direction of the prominence with a speed of ∼177 km s{sup −1}. The temporal, spatial, and kinematic correlations between the erupting prominence and the plasmoid imply that the magnetic reconnection supported the fast ejection of prominence in the lower corona.

  7. Solar Flare Physics Enlivened by TRACE and RHESSI Markus J ...

    Indian Academy of Sciences (India)

    the highest EUV spatial resolution and the Ramaty High Energy Solar Spec- trometric Imager ... Displaced Electron and Ion Acceleration Sources. Key words. ... 2002) and the solid-state detectors of the Soft ... new diagnostic of the flare plasma temperature and iron abundance. 3. .... from the thick-target model (Fig. 3, right ...

  8. Ações e estratégias pedagógicas descritas a partir da prática docente voltada a alunos com deficiência que caracterizam os critérios de mediação de Reuven Feuerstein

    Directory of Open Access Journals (Sweden)

    Patricia Moralis Caramori

    2012-10-01

    Full Text Available O estudo aborda a temática da educação de pessoas com deficiência intelectual severa. Tem por objetivo descrever e analisar a implementação do processo educacional desses alunos, enfocando as estratégias pedagógicas utilizadas por professoras de Educação Especial na cidade de Araraquara. Abarca uma população pouco investigada, e une dois eixos de discussão de forma inovadora: a Teoria da Modificabilidade Cognitiva Estrutural (MCE de Reuven Feuerstein e a educação de alunos com deficiência intelectual severa. De acordo com a MCE e a idéia de Experiência de Aprendizagem Mediada, o professor atua como mediador, interpondo-se entre os estímulos do ambiente e o aluno, selecionando-os, filtrandoos e modelando-os. O método deu-se pelo estabelecimento do perfil do professor, seu mapeamento e localização. A coleta de dados ocorreu por meio de três instrumentos: entrevista com as professoras participantes, protocolo de observação e diário de campo para registro. Os dados foram analisados qualitativamente, extraindo-se o máximo de detalhes possível do cotidiano investigado. Os resultados descrevem o trabalho das quatro professoras e arrola as suas estratégias pedagógicas que permitem a relação com os três principais critérios de medicação: Intencionalidade e Reciprocidade, Significado e Transcendência. Como conclusão o estudo mostra ser possível a associação entre a Experiência de Aprendizagem Mediada de Feuerstein e as práticas pedagógicas voltadas a alunos com deficiência intelectual severa, já que determinados procedimentos empregados trazem em seu cerne preceitos essenciais à mediação.

  9. The analysis and the three-dimensional, forward-fit modeling of the X-ray and the microwave emissions of major solar flares

    Science.gov (United States)

    Kuroda, Natsuha; Wang, Haimin; Gary, Dale E.

    2017-08-01

    It is well known that the time profiles of the hard X-ray (HXR) emission and the microwave (MW) emission during the impulsive phase of the solar flare are well correlated, and that their analysis can lead to the understandings of the flare-accelerated electrons. In this work, we first studied the source locations of seven distinct temporal peaks observed in HXR and MW lightcurves of the 2011-02-15 X2.2 flare using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Nobeyama Radioheliograph. We found that the seven emission peaks did not come from seven spatially distinct sites in HXR and MW, but rather in HXR we observed a sudden change in location only between the second and the third peak, with the same pattern occurring, but evolving more slowly in MW, which is consistent with the tether-cutting model of solar flares. Next, we closely examine the widely-used notion of a "common population" of the accelerated electrons producing the HXR and the MW, which has been challenged by some studies suggesting the differences in the inferred energy spectral index and emitting energies of the HXR- and MW- producing electrons. We use the Non-linear Force Free Field model extrapolated from the observed photospheric magnetogram in the three-dimensional, multi-wavelength modeling platform GX Simulator, and attempt to create a unified electron population model that can simultaneously reproduce the observed X-ray and MW observations of the 2015-06-22 M6.5 flare. We constrain the model parameters by the observations made by the highest-resolving instruments currently available in two wavelengths, the RHESSI for X-ray and the Expanded Owens Valley Solar Array for MW. The results suggest that the X-ray emitting electron population model fits to the standard flare model with the broken, hardening power-law spectrum at ~300 keV that simultaneously produces the HXR footpoint emission and the MW high frequency emission, and also reveals that there could be a

  10. Tooling Techniques Enhance Medical Imaging

    Science.gov (United States)

    2012-01-01

    They can release as much energy as tens of billions of hydrogen bombs exploding at the same time. They send protons and electrons rocketing at near the speed of light. They heat gas in the Sun s atmosphere to tens of millions of degrees Celsius. They send a blast of gas and particles toward Earth, posing a danger to spacecraft and astronauts outside the planet s magnetosphere, in rare cases even knocking out radio communications and power grids on the ground. They are so-called solar eruptive events, made up of solar flares and the often associated coronal mass ejections. Because of the scientific mystery of how these solar eruptions are produced on the Sun with such scale and force, and also the major role they play in space weather that can impact life on Earth, NASA researchers have innovated new methods of gathering information about these violent events. One NASA mission, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has significantly advanced understanding of solar flares since its launch in 2002. RHESSI scientists use the spacecraft s imaging spectrometer to piece together pictures of solar flares from the high-energy X-ray and gamma-ray radiation they emit. While there is still much to be learned, data gathered by RHESSI has revealed how magnetic fields in the vast expanse of the solar atmosphere may be the force that drives the immense explosions. The instrument has imaged around 50,000 flares to date, providing information that may explain not only the workings of solar flares but also of much more massive energy releases from distant objects like black holes and quasars. We have been able to make images from X-rays with much finer resolution and greater sensitivity than have ever been made before, says Brian Dennis, RHESSI Mission Scientist and astrophysicist in the Solar Physics Laboratory at Goddard Space Flight Center. The key to RHESSI s unprecedented capabilities lie in a set of essential components a NASA partner created for the

  11. DETERMINING HEATING RATES IN RECONNECTION FORMED FLARE LOOPS OF THE M8.0 FLARE ON 2005 MAY 13

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenjuan; Qiu Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Caspi, Amir [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States)

    2013-06-20

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 A emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 A bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in

  12. Observational Investigation of Solar Interior and Atmosphere

    Science.gov (United States)

    Kuhn, Jeffrey R.

    2003-01-01

    The Imaging Vector Magnetograph (IVM) has been modified to make it easier to observe at more than one spectral line. The cell holding the blocking filter has been replaced by a four-position filter wheel, so that changing to a different line is a matter of a few minutes rather than the several hours it used to take to disassemble the cell and install a new filter. Three new filters have been obtained, for Na 1589.6 nm, Fe 1630.25 nm, and H 1656.3 nm. The new filters have better bandpass profiles than the ones they replaced: somewhat wider, with flatter tops and steeper wings. This results in a reduction of parasitic light coming from adjacent Fabry-Perot orders, from seven percent to about two percent, and flattens the apparent continuum. The Mees CCD Imaging Spectrograph (MCCD) was upgraded under this grant, with a new control computer and data system. The camera was replaced with a faster, larger-format frame-transfer camera. Final integration of the upgrades is not yet complete, but tests indicate that the system cadence will be improved by a factor of five to ten, while increasing the spatial coverage by a factor of two (depending on observation options). Synoptic observations with the IVM and MCCD continue to be conducted daily, to the extent permitted by the fact that we have a single observer responsible for the observations. The older Haleakala Stokes Polarimeter is also used to make a daily vector magnetogram, normally of the region selected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) duty scientists. This instrument, however, is showing its age to the extent that its maintenance is becoming something of a challenge. We also run a white light full-disk imager and a video H alpha prominence camera, continuously during times of observations. Of particular interest, we obtained rapid-cadence observations of the 2003 July 15 white light flare with both the IVM and MCCD. The vector magnetograms show no obvious difference between the

  13. Preliminary Feasibility Study of the Solar Observation Payloads for STSAT-CLASS Satellites

    Directory of Open Access Journals (Sweden)

    Yong-Jae Moon

    2004-12-01

    satellite missions due to their poor pointing stabilities, and (4 there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV to gamma ray (10 MeV.

  14. Representing "The Great Devouring:" Romani Characters in Young Adult Holocaust Literature

    Science.gov (United States)

    Dean-Ruzicka, Rachel

    2014-01-01

    This article discusses the representation of Roma-Sinti ("gypsy") characters in young adult literature about the Holocaust. It analyzes three primary texts: Jerry Spinelli's "Milkweed" (2003), Erich Hackl's "Farewell Sidonia" (1991), and Alexander Ramati's "And the Violins Stopped Playing"…

  15. Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and Ionosphere Systems

    Science.gov (United States)

    Piersanti, Mirko; Alberti, Tommaso; Bemporad, Alessandro; Berrilli, Francesco; Bruno, Roberto; Capparelli, Vincenzo; Carbone, Vincenzo; Cesaroni, Claudio; Consolini, Giuseppe; Cristaldi, Alice; Del Corpo, Alfredo; Del Moro, Dario; Di Matteo, Simone; Ermolli, Ilaria; Fineschi, Silvano; Giannattasio, Fabio; Giorgi, Fabrizio; Giovannelli, Luca; Guglielmino, Salvatore Luigi; Laurenza, Monica; Lepreti, Fabio; Marcucci, Maria Federica; Martucci, Matteo; Mergè, Matteo; Pezzopane, Michael; Pietropaolo, Ermanno; Romano, Paolo; Sparvoli, Roberta; Spogli, Luca; Stangalini, Marco; Vecchio, Antonio; Vellante, Massimo; Villante, Umberto; Zuccarello, Francesca; Heilig, Balázs; Reda, Jan; Lichtenberger, János

    2017-11-01

    A full-halo coronal mass ejection (CME) left the Sun on 21 June 2015 from active region (AR) NOAA 12371. It encountered Earth on 22 June 2015 and generated a strong geomagnetic storm whose minimum Dst value was -204 nT. The CME was associated with an M2-class flare observed at 01:42 UT, located near disk center (N12 E16). Using satellite data from solar, heliospheric, and magnetospheric missions and ground-based instruments, we performed a comprehensive Sun-to-Earth analysis. In particular, we analyzed the active region evolution using ground-based and satellite instruments (Big Bear Solar Observatory (BBSO), Interface Region Imaging Spectrograph (IRIS), Hinode, Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), covering Hα, EUV, UV, and X-ray data); the AR magnetograms, using data from SDO/ Helioseismic and Magnetic Imager (HMI); the high-energy particle data, using the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument; and the Rome neutron monitor measurements to assess the effects of the interplanetary perturbation on cosmic-ray intensity. We also evaluated the 1 - 8 Å soft X-ray data and the {˜} 1 MHz type III radio burst time-integrated intensity (or fluence) of the flare in order to predict the associated solar energetic particle (SEP) event using the model developed by Laurenza et al. ( Space Weather 7(4), 2009). In addition, using ground-based observations from lower to higher latitudes ( International Real-time Magnetic Observatory Network (INTERMAGNET) and European Quasi-Meridional Magnetometer Array (EMMA)), we reconstructed the ionospheric current system associated with the geomagnetic sudden impulse (SI). Furthermore, Super Dual Auroral Radar Network (SuperDARN) measurements were used to image the global ionospheric polar convection during the SI and during the principal phases of the geomagnetic storm. In addition

  16. Teorie deficitů kognitivních funkcí v kontextu specifických poruch učení

    OpenAIRE

    Bortlíková, Kristina

    2018-01-01

    The aim of this thesis is to describe the cognitive profile, including the developed and deficient cognitive functions, in a group of children and adolescents with specific learning disabilities. The theoretical part of the thesis introduces Reuven Feuerstein's work, especially his concepts of structural cognitive modifiability and mediated learning experience, the theory of cognitive deficits, cognitive map and Feuerstein's instrumental enrichment programme. The characteristics of traditiona...

  17. Theoretical scaling law of coronal magnetic field and electron power-law index in solar microwave burst sources

    Science.gov (United States)

    Huang, Y.; Song, Q. W.; Tan, B. L.

    2018-04-01

    It is first proposed a theoretical scaling law respectively for the coronal magnetic field strength B and electron power-law index δ versus frequency and coronal height in solar microwave burst sources. Based on the non-thermal gyro-synchrotron radiation model (Ramaty in Astrophys. J. 158:753, 1969), B and δ are uniquely solved by the observable optically-thin spectral index and turnover (peak) frequency, the other parameters (plasma density, temperature, view angle, low and high energy cutoffs, etc.) are relatively insensitive to the calculations, thus taken as some typical values. Both of B and δ increase with increasing of radio frequency but with decreasing of coronal height above photosphere, and well satisfy a square or cubic logarithmic fitting.

  18. Acceleration and propagation of energetic particles in the solar corona: from RHESSI data analysing to the preparation of the STIX tool operations on Solar Orbiter

    International Nuclear Information System (INIS)

    Musset, S.

    2016-01-01

    The Sun is an active star and one manifestation of its activity is the production of solar flares. It is currently admitted that solar flares are caused by the release of magnetic energy during the process of magnetic reconnection in the solar upper atmosphere, the solar corona. During these flares, a large fraction of the magnetic energy is transferred to the acceleration of particles (electrons and ions). However, the details of particle acceleration during flares are still not completely understood. Several scenarios and models have been developed to explain particle acceleration. In some of them, electric fields, produced at the location of current sheets, which can be fragmented or collapsing, and which are preferentially located on quasi-separatrix layers (QSLs), are accelerating particles. To investigate a possible link between energetic particles and direct electric fields produced at current sheet locations, we looked for a correlation between X-ray emission from energetic electrons and electric currents which can be measured at the photospheric level. We used the Reuven Ramaty High Energy Solar Spectrometric Imager (RHESSI) data to produce spectra and images of the X-ray emissions during GOES X-class flares, and spectro polarimetric data from the Helio seismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) to calculate the vertical current densities from the reconstructed 3D vector magnetic field. A correlation between the coronal X-ray emissions (tracing the energetic electrons near the acceleration site) and the strong current ribbons at the photospheric level (tracing the coronal current sheet) was found in the five studied X-class flares. Moreover, thanks to the 12-minute time cadence of SDO/HMI, we could study for the first time the time evolution of electric currents : in several flares, a change in the current intensity, occurring during the flare peak, was found to be spatially correlated with X-ray emission sites. These

  19. Exhibiting the past: Caspar Reuvens and the museums of antiquities in Europe, 1800-1840

    NARCIS (Netherlands)

    Hoijtink, M.

    2012-01-01

    In the first decades of the 19th century the exhibition of antiquity in museums reflected a universal history of civilization, in which the idea of cross-cultural influences dominated. Hindu-buddhist civilization of 13th century Java was easily connected to that of classical Greece, and Indian

  20. Využití zprostředkovaného učení ve školní výuce

    OpenAIRE

    Rázgová, Lenka

    2017-01-01

    The dissertation thesis presents the results of a research project which focused on the application of mediated learning experience theory to teaching with respect to cognitive development of pupils. The first chapter introduces cognitive education, which concentrates on the process of learning. It also compares this approach with traditional methods aimed at the content of learning. The following parts of the thesis deal with selected theories postulated by Reuven Feuerstein which are import...

  1. Illusion Of Defeat: Egyptian Strategic Thinking And The 1973 Yom Kippur War

    Science.gov (United States)

    2016-06-04

    military cemetery in Jerusalem in 2015, Israeli President Reuven Rivlin stated that the war continues to be an “open wound” for the nation.3 Indeed...Khartoum Conference reinforced Israel’s belief that their eradication remained the primary goal of the Arab community. In her biography , former Israeli...Political Biography of Anwar Sadat (Totowa, NJ: Barnes and Noble Books, 1985), 18. 95 Lesch, 239. 96 Anwar Sadat, In Search of Identity (New York

  2. Eficácia do Programa de Enriquecimento Instrumental-PEI, versão básica, em crianças com transtornos do neurodesenvolvimento (TDAH e Dislexia)

    OpenAIRE

    Ricci, Karen Alves

    2016-01-01

    O Programa de Enriquecimento Instrumental (PEI), de Reuven Feuerstein, tem por objetivo aumentar o nível de modificabilidade cognitiva e a capacidade de aprendizagem, porém raras são as pesquisas sobre a eficácia do PEI, versão básica, em transtornos do neurodesenvolvimento. Na presente pesquisa foram abordados dois transtornos do neurodesenvolvimento, o Transtorno do déficit de atenção e hiperatividade (TDAH), caracterizado por níveis prejudiciais de desatenção, desorganização e/ou hiperativ...

  3. Solar flares observed simultaneously with SphinX, GOES and RHESSI

    Science.gov (United States)

    Mrozek, Tomasz; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kępa, Anna; Gryciuk, Magdalena

    2013-07-01

    In February 2009, during recent deepest solar minimum, Polish Solar Photometer in X-rays (SphinX) begun observations of the Sun in the energy range of 1.2-15 keV. SphinX was almost 100 times more sensitive than GOES X-ray Sensors. The silicon PIN diode detectors used in the experiment were carefully calibrated on the ground using Synchrotron Radiation Source BESSY II. The SphinX energy range overlaps with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) energy range. The instrument provided us with observations of hundreds of very small flares and X-ray brightenings. We have chosen a group of solar flares observed simultaneously with GOES, SphinX and RHESSI and performed spectroscopic analysis of observations wherever possible. The analysis of thermal part of the spectra showed that SphinX is a very sensitive complementary observatory for RHESSI and GOES.

  4. Particle acceleration in solar flares: observations versus numerical simulations

    International Nuclear Information System (INIS)

    Benz, A O; Grigis, P C; Battaglia, M

    2006-01-01

    Solar flares are generally agreed to be impulsive releases of magnetic energy. Reconnection in dilute plasma is the suggested trigger for the coronal phenomenon. It releases up to 10 26 J, accelerates up to 10 38 electrons and ions and must involve a volume that greatly exceeds the current sheet dimension. The Ramaty High-Energy Solar Spectroscopic Imager satellite can image a source in the corona that appears to contain the acceleration region and can separate it from other x-ray emissions. The new observations constrain the acceleration process by a quantitative relation between spectral index and flux. We present recent observational results and compare them with theoretical modelling by a stochastic process assuming transit-time damping of fast-mode waves, escape and replenishment. The observations can only be fitted if additional assumptions on trapping by an electric potential and possibly other processes such as isotropization and magnetic trapping are made

  5. Mediación pedagógica y deserción escolar, en los estudiantes, de la Unidad Educativa Intercultural Bilingüe “Domingo Faustino Sarmiento”, de la parroquia de Ilumán, durante el período 2010-2013

    OpenAIRE

    Almeida Terán, Fayrud Titiana

    2015-01-01

    Esta investigación está fundamentada en la Mediación pedagógica y deserción escolar, en los y las estudiantes de la Escuela de Educación Básica “Domingo Faustino Sarmiento”, la misma que tiene como metas, determinar de qué manera influye la mediación pedagógica de Reuven Feurestein en la deserción de los y las estudiantes; así como establecer los factores que inciden para que los estudiantes abandonen la Institución, a su vez conceptualizar componentes, características de la mediación pedagóg...

  6. El mapa cognitivo en los procesos de evaluación del aprendizaje

    OpenAIRE

    William R. Avendaño C.; Abad E. Parada-Trujillo

    2012-01-01

    En este artículo se hace una revisión del mapa cognitivo de Reuven Feuerstein como instrumento de evaluación. El objetivo de este artículo, por lo tanto, es el análisis del mapa cognitivo en el marco de la evaluación, las ciencias cognitivas y su pertinencia como herramienta de uso en el aula de clase. Metodología: para el logro de ese objetivo se hizo una amplia revisión de la literatura en torno de la evaluación, la práctica de la calificación, los aportes de las ciencias cognitivas y los a...

  7. Common SphinX and RHESSI observations of solar flares

    Science.gov (United States)

    Mrozek, T.; Gburek, S.; Siarkowski, M.; Sylwester, B.; Sylwester, J.; Gryciuk, M.

    The Polish X-ray spectrofotometer SphinX has observed a great number of solar flares in the year 2009 - during the most quiet solar minimum almost over the last 100 years. Hundreds of flares have been recorded due to excellent sensitivity of SphinX's detectors. The Si-PIN diodes are about 100 times more sensitive to X-rays than GOES X-ray Monitors. SphinX detectors were absolutely calibrated on Earth with a use of the BESSY synchrotron. In space observations were made in the range 1.2-15~keV with 480~eV energy resolution. SphinX data overlap with the low-energy end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. RHESSI detectors are quite old (7 years in 2009), but still sensitive enough to provide us with observations of extremely weak solar flares such as those which occurred in 2009. We have selected a group of flares simultaneously observed by RHESSI and SphinX and performed a spectroscopic analysis of the data. Moreover, we compared the physical parameters of these flares plasma. Preliminary results of the comparison show very good agreement between both instruments.

  8. Education for a Culture of Peace and Co-Existence

    Directory of Open Access Journals (Sweden)

    Silvia Guetta

    2016-07-01

    Full Text Available Education is a key and fundamental tool required to achieve social change, especially regarding social cohesion and co-existence. Education affects the most critical issues facing humanity, including the proliferation of various forms of violence, environmental degradation, and annihilation of cultures. I argue that the impact of education is equal to that of economics, politics, and technological advances. Therefore, if we wish to see change, educational reform has to be designed to operate in a global-human context, empowering and allowing people to achieve their potential. It should instil in individuals and groups respect for others with whom they interact, in a global as well as local sense. The article draws on the theories of Edgar Morin, Reuven Feuerstein, and Jerome Bruner, and their contributions to the development of educational approaches that encourage a culture of responsible, participatory, and creative coexistence. .

  9. Generation Mechanisms of Quasi-parallel and Quasi-circular Flare Ribbons in a Confined Flare

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Perez, Aaron; Thalmann, Julia K.; Veronig, Astrid M.; Dickson, Ewan C. [IGAM/Institute of Physics, University of Graz, A-8010 Graz (Austria); Su, Yang [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory Chinese Academy of Sciences, 2 West Beijing Road, 210008 Nanjing (China); Gömöry, Peter, E-mail: aaron.hernandez-perez@uni-graz.at [Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica (Slovakia)

    2017-10-01

    We analyze a confined multiple-ribbon M2.1 flare (SOL2015-01-29T11:42) that originated from a fan-spine coronal magnetic field configuration, within active region NOAA 12268. The observed ribbons form in two steps. First, two primary ribbons form at the main flare site, followed by the formation of secondary ribbons at remote locations. We observe a number of plasma flows at extreme-ultraviolet temperatures during the early phase of the flare (as early as 15 minutes before the onset) propagating toward the formation site of the secondary ribbons. The secondary ribbon formation is co-temporal with the arrival of the pre-flare generated plasma flows. The primary ribbons are co-spatial with Ramaty High Energy Spectroscopic Imager ( RHESSI ) hard X-ray sources, whereas no enhanced X-ray emission is detected at the secondary ribbon sites. The (E)UV emission, associated with the secondary ribbons, peaks ∼1 minute after the last RHESSI hard X-ray enhancement. A nonlinear force-free model of the coronal magnetic field reveals that the secondary flare ribbons are not directly connected to the primary ribbons, but to regions nearby. Detailed analysis suggests that the secondary brightenings are produced due to dissipation of kinetic energy of the plasma flows (heating due to compression), and not due to non-thermal particles accelerated by magnetic reconnection, as is the case for the primary ribbons.

  10. Differential clinical profile of candesartan compared to other angiotensin receptor blockers

    Directory of Open Access Journals (Sweden)

    Zimlichman R

    2011-12-01

    Full Text Available Relu Cernes1,2, Margarita Mashavi1,3, Reuven Zimlichman1,31The Brunner Institute for Cardiovascular Research, Wolfson Medical Center and Tel Aviv University, Tel Aviv, Israel; 2Department of Nephrology, Wolfson Medical Center, Holon, Israel; 3Department of Medicine, Wolfson Medical Center, Holon, IsraelAbstract: The advantages of blood pressure (BP control on the risks of heart failure and stroke are well established. The renin-angiotensin system plays an important role in volume homeostasis and BP regulation and is a target for several groups of antihypertensive drugs. Angiotensin II receptor blockers represent a major class of antihypertensive compounds. Candesartan cilexetil is an angiotensin II type 1 (AT[1] receptor antagonist (angiotensin receptor blocker [ARB] that inhibits the actions of angiotensin II on the renin-angiotensin-aldosterone system. Oral candesartan 8–32 mg once daily is recommended for the treatment of adult patients with hypertension. Clinical trials have demonstrated that candesartan cilexetil is an effective agent in reducing the risk of cardiovascular mortality, stroke, heart failure, arterial stiffness, renal failure, retinopathy, and migraine in different populations of adult patients including patients with coexisting type 2 diabetes, metabolic syndrome, or kidney impairment. Clinical evidence confirmed that candesartan cilexetil provides better antihypertensive efficacy than losartan and is at least as effective as telmisartan and valsartan. Candesartan cilexetil, one of the current market leaders in BP treatment, is a highly selective compound with high potency, a long duration of action, and a tolerability profile similar to placebo. The most important and recent data from clinical trials regarding candesartan cilexetil will be reviewed in this article.Keywords: angiotensin receptor blockers, candesartan, candesartan cilexetil, clinical trials, efficacy studies, safety, blood pressure

  11. Understanding Breaks in Flare X-Ray Spectra: Evaluation of a Cospatial Collisional Return-current Model

    Science.gov (United States)

    Alaoui, Meriem; Holman, Gordon D.

    2017-12-01

    Hard X-ray (HXR) spectral breaks are explained in terms of a one-dimensional model with a cospatial return current. We study 19 flares observed by the Ramaty High Energy Solar Spectroscopic Imager with strong spectral breaks at energies around a few deka-keV, which cannot be explained by isotropic albedo or non-uniform ionization alone. We identify these breaks at the HXR peak time, but we obtain 8 s cadence spectra of the entire impulsive phase. Electrons with an initially power-law distribution and a sharp low-energy cutoff lose energy through return-current losses until they reach the thick target, where they lose their remaining energy through collisions. Our main results are as follows. (1) The return-current collisional thick-target model provides acceptable fits for spectra with strong breaks. (2) Limits on the plasma resistivity are derived from the fitted potential drop and deduced electron-beam flux density, assuming the return current is a drift current in the ambient plasma. These resistivities are typically 2–3 orders of magnitude higher than the Spitzer resistivity at the fitted temperature, and provide a test for the adequacy of classical resistivity and the stability of the return current. (3) Using the upper limit of the low-energy cutoff, the return current is always stable to the generation of ion-acoustic and electrostatic ion-cyclotron instabilities when the electron temperature is nine times lower than the ion temperature. (4) In most cases, the return current is most likely primarily carried by runaway electrons from the tail of the thermal distribution rather than by the bulk drifting thermal electrons. For these cases, anomalous resistivity is not required.

  12. Detection and Interpretation of Long-lived X-Ray Quasi-periodic Pulsations in the X-class Solar Flare on 2013 May 14

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Brian R.; Tolbert, Anne K.; Inglis, Andrew; Ireland, Jack; Wang, Tongjiang; Holman, Gordon D. [Solar Physics Laboratory, Code 671, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hayes, Laura A. [ADNET Systems, Inc. at NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gallagher, Peter T., E-mail: brian.r.dennis@nasa.gov [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2017-02-10

    Quasi-periodic pulsations (QPP) seen in the time derivative of the GOES soft X-ray light curves are analyzed for the X3.2 event on 2013 May 14. The pulsations are apparent for a total of at least two hours from the impulsive phase to well into the decay phase, with a total of 163 distinct pulses evident to the naked eye. A wavelet analysis shows that the characteristic timescale of these pulsations increases systematically from ∼25 s at 01:10 UT, the time of the GOES peak, to ∼100 s at 02:00 UT. A second “ridge” in the wavelet power spectrum, most likely associated with flaring emission from a different active region, shows an increase from ∼40 s at 01:40 UT to ∼100 s at 03:10 UT. We assume that the QPP that produced the first ridge result from vertical kink-mode oscillations of the newly formed loops following magnetic reconnection in the coronal current sheet. This allows us to estimate the magnetic field strength as a function of altitude given the density, loop length, and QPP timescale as functions of time determined from the GOES light curves and Ramaty High Energy Solar Spectroscopic Imager ( RHESSI ) images. The calculated magnetic field strength of the newly formed loops ranges from ∼500 G at an altitude of 24 Mm to a low value of ∼10 G at 60 Mm, in general agreement with the expected values at these altitudes. Fast sausage-mode oscillations are also discussed and cannot be ruled out as an alternate mechanism for producing the QPP.

  13. El mapa cognitivo en los procesos de evaluación del aprendizaje

    Directory of Open Access Journals (Sweden)

    William R. Avendaño C.

    2012-07-01

    Full Text Available En este artículo se hace una revisión del mapa cognitivo de Reuven Feuerstein como instrumento de evaluación. El objetivo de este artículo, por lo tanto, es el análisis del mapa cognitivo en el marco de la evaluación, las ciencias cognitivas y su pertinencia como herramienta de uso en el aula de clase. Metodología: para el logro de ese objetivo se hizo una amplia revisión de la literatura en torno de la evaluación, la práctica de la calificación, los aportes de las ciencias cognitivas y los avances de la neurociencia, para concluir con el mapa cognitivo y un diseño propuesto para la sistematización de la información de acuerdo con los elementos del mapa cognitivo planteado por Feuerstein. Conclusiones: El mapa cognitivo es una herramienta de evaluación que responde a las necesidades de los estudiantes y al marco conceptual definido y aceptado por la comunidad académica. Las ventajas operativas del mapa cognitivo son evidentes a la luz de los avances del funcionamiento del cerebro y la mente en los procesos de aprendizaje.

  14. El mapa cognitivo en los procesos de evaluación del aprendizaje

    Directory of Open Access Journals (Sweden)

    William R. Avendaño C.

    2012-01-01

    Full Text Available En este artículo se hace una revisión del mapa cognitivo de Reuven Feuerstein como instrumento de evaluación. El objetivo de este artículo, por lo tanto, es el análisis del mapa cognitivo en el marco de la evaluación, las ciencias cognitivas y su pertinencia como herramienta de uso en el aula de clase. Metodología: para el logro de ese objetivo se hizo una amplia revisión de la literatura en torno de la evaluación, la práctica de la calificación, los aportes de las ciencias cognitivas y los avances de la neurociencia, para concluir con el mapa cognitivo y un diseño propuesto para la sistematización de la información de acuerdo con los elementos del mapa cognitivo planteado por Feuerstein. Conclusiones: El mapa cognitivo es una herramienta de evaluación que responde a las necesidades de los estudiantes y al marco conceptual definido y aceptado por la comunidad académica. Las ventajas operativas del mapa cognitivo son evidentes a la luz de los avances del funcionamiento del cerebro y la mente en los procesos de aprendizaje.

  15. CONJUGATE HARD X-RAY FOOTPOINTS IN THE 2003 OCTOBER 29 X10 FLARE: UNSHEARING MOTIONS, CORRELATIONS, AND ASYMMETRIES

    International Nuclear Information System (INIS)

    Liu Wei; Dennis, Brian R.; Holman, Gordon D.; Petrosian, Vahe

    2009-01-01

    We present a detailed imaging and spectroscopic study of the conjugate hard X-ray (HXR) footpoints (FPs) observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in the 2003 October 29 X10 flare. The double FPs first move toward and then away from each other, mainly parallel and perpendicular to the magnetic neutral line, respectively. The transition of these two phases of FP unshearing motions coincides with the direction reversal of the motion of the loop-top (LT) source, and with the minima of the estimated loop length and LT height. We find temporal correlations between the HXR flux, spectral index, and magnetic field strength of each FP. The HXR flux exponentially correlates with the magnetic field strength, which also anticorrelates with the spectral index before the second HXR peak's maximum, suggesting that particle acceleration sensitively depends on the magnetic field strength and/or reconnection rate. Asymmetries are observed between the FPs: on average, the eastern FP is 2.2 times brighter in HXR flux and 1.8 times weaker in magnetic field strength, and moves 2.8 times faster away from the neutral line than the western FP; the estimated coronal column density to the eastern FP from the LT source is 1.7 times smaller. The two FPs have marginally different spectral indices. The eastern-to-western FP HXR flux ratio and magnetic field strength ratio are anticorrelated only before the second HXR peak's maximum. Neither magnetic mirroring nor column density alone can explain the totality of these observations, but their combination, together with other transport effects, might provide a full explanation. We have also developed novel techniques to remove particle contamination from HXR counts and to estimate effects of pulse pileup in imaging spectroscopy, which can be applied to other RHESSI flares in similar circumstances.

  16. Stochastic Fermi Energization of Coronal Plasma during Explosive Magnetic Energy Release

    Science.gov (United States)

    Pisokas, Theophilos; Vlahos, Loukas; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2017-02-01

    The aim of this study is to analyze the interaction of charged particles (ions and electrons) with randomly formed particle scatterers (e.g., large-scale local “magnetic fluctuations” or “coherent magnetic irregularities”) using the setup proposed initially by Fermi. These scatterers are formed by the explosive magnetic energy release and propagate with the Alfvén speed along the irregular magnetic fields. They are large-scale local fluctuations (δB/B ≈ 1) randomly distributed inside the unstable magnetic topology and will here be called Alfvénic Scatterers (AS). We constructed a 3D grid on which a small fraction of randomly chosen grid points are acting as AS. In particular, we study how a large number of test particles evolves inside a collection of AS, analyzing the evolution of their energy distribution and their escape-time distribution. We use a well-established method to estimate the transport coefficients directly from the trajectories of the particles. Using the estimated transport coefficients and solving the Fokker-Planck equation numerically, we can recover the energy distribution of the particles. We have shown that the stochastic Fermi energization of mildly relativistic and relativistic plasma can heat and accelerate the tail of the ambient particle distribution as predicted by Parker & Tidman and Ramaty. The temperature of the hot plasma and the tail of the energetic particles depend on the mean free path (λsc) of the particles between the scatterers inside the energization volume.

  17. Stochastic Fermi Energization of Coronal Plasma during Explosive Magnetic Energy Release

    Energy Technology Data Exchange (ETDEWEB)

    Pisokas, Theophilos; Vlahos, Loukas; Isliker, Heinz; Tsiolis, Vassilis [Department of Physics, Aristotle University of Thessaloniki GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens GR-15236 Penteli (Greece)

    2017-02-01

    The aim of this study is to analyze the interaction of charged particles (ions and electrons) with randomly formed particle scatterers (e.g., large-scale local “magnetic fluctuations” or “coherent magnetic irregularities”) using the setup proposed initially by Fermi. These scatterers are formed by the explosive magnetic energy release and propagate with the Alfvén speed along the irregular magnetic fields. They are large-scale local fluctuations ( δB / B ≈ 1) randomly distributed inside the unstable magnetic topology and will here be called Alfvénic Scatterers (AS). We constructed a 3D grid on which a small fraction of randomly chosen grid points are acting as AS. In particular, we study how a large number of test particles evolves inside a collection of AS, analyzing the evolution of their energy distribution and their escape-time distribution. We use a well-established method to estimate the transport coefficients directly from the trajectories of the particles. Using the estimated transport coefficients and solving the Fokker–Planck equation numerically, we can recover the energy distribution of the particles. We have shown that the stochastic Fermi energization of mildly relativistic and relativistic plasma can heat and accelerate the tail of the ambient particle distribution as predicted by Parker and Tidman and Ramaty. The temperature of the hot plasma and the tail of the energetic particles depend on the mean free path ( λ {sub sc}) of the particles between the scatterers inside the energization volume.

  18. After the Fall: The RHESSI Legacy Archive

    Science.gov (United States)

    Schwartz, Richard A.; Zarro, Dominic M.; Tolbert, Anne K.

    2017-08-01

    Launched in 2002 the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) continues to observe the Sun with a nearly 50% duty cycle. During that time the instrument has recorded ~100,000 solar flares in energies from 4 keV to over 10 MeV.with durations of 10s to 1000s of seconds. However, for the reasons of the decline of the solar cycle, possible failure of the instrument, or the absence of funding, our operational phase will end someday. We describe here our plans to continue to serve this dataset in raw, processed, and analyzed forms to the worldwide solar community to continue our legacy of a stream of rich scientific results.We have and are providing a stream of quicklook lightcurves, spectra, and images that we mainly serve through a web interface as well as the data in raw form to be fully analyzed within our own branch of Solar Software written in IDL. We are in the process of creating higher quality images for flares in multiple energy bands on relevant timescales for those whose needs can be met without further processing. For users with IDL licenses we expect this software to be available far into the unknowable future. Together with a database of AIA cutouts during all SDO-era flares, along with software to recover saturated images by using the AIA diffraction fringes, these will be a highly used resource.We also are developing additional tools and databases that will increase the utility of RHESSI data to members of the community with and without either IDL licenses or full access to the RHESSI database. We will provide a database of RHESSI x-ray visibilities obtained during flares at a >4 second cadence over a broad range of detectable energies. With our IDL software those can be rendered as images for times and energies of nearly the analysts's choosing. And going beyond that we are converting our imaging procedures to the Python language to eliminate the need for an IDL license. We are also developing methods to allow the customization of these

  19. A Test of Thick-Target Nonuniform Ionization as an Explanation for Breaks in Solar Flare Hard X-Ray Spectra

    Science.gov (United States)

    Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard

    2010-01-01

    Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.

  20. High PRF high current switch

    Science.gov (United States)

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  1. High Caloric Diet for ALS Patients: High Fat, High Carbohydrate or High Protein

    Directory of Open Access Journals (Sweden)

    Sarvin Sanaie

    2015-01-01

    Full Text Available ALS is a fatal motor neurodegenerative disease characterized by muscle atrophy and weakness, dysarthria, and dysphagia. The mean survival of ALS patients is three to five years, with 50% of those diagnosed dying within three years of onset (1. A multidisciplinary approach is crucial to set an appropriate plan for metabolic and nutritional support in ALS. Nutritional management incorporates a continuous assessment and implementation of dietary modifications throughout the duration of the disease. The nutritional and metabolic approaches to ALS should start when the diagnosis of ALS is made and should become an integral part of the continuous care to the patient, including nutritional surveillance, dietary counseling, management of dysphagia, and enteral nutrition when needed. Malnutrition and lean body mass loss are frequent findings in ALS patients necessitating comprehensive energy requirement assessment for these patients. Malnutrition is an independent prognostic factor for survival in ALS with a 7.7 fold increase in risk of death. Malnutrition is estimated to develop in one quarter to half of people with ALS (2. Adequate calorie and protein provision would diminish muscle loss in this vulnerable group of patients. Although appropriate amount of energy to be administered is yet to be established, high calorie diet is expected to be effective for potential improvement of survival; ALS patients do not normally receive adequate  intake of energy. A growing number of clinicians suspect that a high calorie diet implemented early in their disease may help people with ALS meet their increased energy needs and extend their survival. Certain high calorie supplements appear to be safe and well tolerated by people with ALS according to studies led by Universitäts klinikum Ulm's and, appear to stabilize body weight within 3 months. In a recent study by Wills et al., intake of high-carbohydrate low-fat supplements has been recommended in ALS patients (3

  2. MANAGING HIGH-END, HIGH-VOLUME INNOVATIVE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Gembong Baskoro

    2008-01-01

    Full Text Available This paper discuses the concept of managing high-end, high-volume innovative products. High-end, high-volume consumer products are products that have considerable influence to the way of life. Characteristic of High-end, high-volume consumer products are (1 short cycle time, (2 quick obsolete time, and (3 rapid price erosion. Beside the disadvantages that they are high risk for manufacturers, if manufacturers are able to understand precisely the consumer needs then they have the potential benefit or success to be the market leader. High innovation implies to high utilization of the user, therefore these products can influence indirectly to the way of people life. The objective of managing them is to achieve sustainability of the products development and innovation. This paper observes the behavior of these products in companies operated in high-end, high-volume consumer product.

  3. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  4. Highly Accreting Quasars at High Redshift

    Science.gov (United States)

    Martínez-Aldama, Mary L.; Del Olmo, Ascensión; Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; Perea, Jaime; D'Onofrio, Mauro

    2017-12-01

    We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (LLedd>0.2) at high redshift, z 2-3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as AlIII, SiIII and CIII. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  5. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  6. Using SDO's AIA to investigate energy transport from a flare's energy release site to the chromosphere

    Science.gov (United States)

    Brosius, J. W.; Holman, G. D.

    2012-04-01

    Context. Coordinated observations of a GOES B4.8 microflare with SDO's Atmospheric Imaging Assembly (AIA) and the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIA's EUV channels brightened simultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK. Aims: To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIA's 94, 131, 171, 193, 211, and 335 Å channels to solar flare brightenings by combining (1) AIA's nominal temperature response functions available through SSWIDL with (2) EUV spectral line data observed in a flare loop footpoint on 2001 April 24 with the Coronal Diagnostic Spectrometer (CDS) on timescales comparable to AIA's image cadence. Methods: The nine emission lines observed by CDS cover a wide range of formation temperature from about 0.05 to 8 MK. Line brightenings observed early during the CDS flare occurred at temperatures less than about 0.7 MK, with the largest values around 0.1 MK. These brightenings were consistent with the flare's energy transport being dominated by nonthermal particle beams. Because all of AIA's EUV channels are sensitive to emission from plasma in the 0.1 to 0.7 MK temperature range, we show that all of AIA's EUV channels will brighten simultaneously during flares like this, in which energy transport is dominated by nonthermal particle beams. Results: The 2010 July 31 flare observed by AIA and RHESSI displays this behavior, so we conclude that such beams likely dominated the flare's energy transport early during the event. When thermal conduction from a reconnection-heated, hot (~10 MK) plasma dominates the energy transport, the AIA channels that are sensitive to emission from such temperatures (particularly the 94 and 131 Å channels) will brighten earlier than the channels that are not sensitive to such temperatures (171 and 211 Å). Conclusions: Thus

  7. Highly Accreting Quasars at High Redshift

    Directory of Open Access Journals (Sweden)

    Mary L. Martínez-Aldama

    2018-01-01

    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  8. High-voltage, high-current, solid-state closing switch

    Science.gov (United States)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  9. High-frequency, high-intensity photoionization

    Science.gov (United States)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  10. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  11. CMOS pixel sensors on high resistive substrate for high-rate, high-radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko, E-mail: thirono@uni-bonn.de [Physikalisches Institute der Universität Bonn, Bonn (Germany); Barbero, Marlon; Breugnon, Patrick; Godiot, Stephanie [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Gonella, Laura; Hemperek, Tomasz; Hügging, Fabian; Krüger, Hans [Physikalisches Institute der Universität Bonn, Bonn (Germany); Liu, Jian; Pangaud, Patrick [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Peric, Ivan [IPE, Karlsruher Institut für Technologie, Karlsruhe (Germany); Pohl, David-Leon [Physikalisches Institute der Universität Bonn, Bonn (Germany); Rozanov, Alexandre [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Rymaszewski, Piotr [Physikalisches Institute der Universität Bonn, Bonn (Germany); Wang, Anqing [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Wermes, Norbert [Physikalisches Institute der Universität Bonn, Bonn (Germany)

    2016-09-21

    A depleted CMOS active pixel sensor (DMAPS) has been developed on a substrate with high resistivity in a high voltage process. High radiation tolerance and high time resolution can be expected because of the charge collection by drift. A prototype of DMAPS was fabricated in a 150 nm process by LFoundry. Two variants of the pixel layout were tested, and the measured depletion depths of the variants are 166 μm and 80 μm. We report the results obtained with the prototype fabricated in this technology.

  12. High School Principals and the High School Journalism Program.

    Science.gov (United States)

    Peterson, Jane W.

    A study asked selected high school principals to respond to statements about the value of high school journalism to the high school student and about the rights and responsibilities of the high school journalist. These responses were then checked against such information as whether or not the high school principal had worked on a high school…

  13. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  14. High speed micromachining with high power UV laser

    Science.gov (United States)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  15. High-power, high-efficiency FELs

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  16. Highly dominating, highly authoritarian personalities.

    Science.gov (United States)

    Altemeyer, Bob

    2004-08-01

    The author considered the small part of the population whose members score highly on both the Social Dominance Orientation scale and the Right-Wing Authoritarianism scale. Studies of these High SDO-High RWAs, culled from samples of nearly 4000 Canadian university students and over 2600 of their parents and reported in the present article, reveal that these dominating authoritarians are among the most prejudiced persons in society. Furthermore, they seem to combine the worst elements of each kind of personality, being power-hungry, unsupportive of equality, manipulative, and amoral, as social dominators are in general, while also being religiously ethnocentric and dogmatic, as right-wing authoritarians tend to be. The author suggested that, although they are small in number, such persons can have considerable impact on society because they are well-positioned to become the leaders of prejudiced right-wing political movements.

  17. High-field, high-density tokamak power reactor

    International Nuclear Information System (INIS)

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  18. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats

    NARCIS (Netherlands)

    Chaumontet, C.; Even, P.C.; Schwarz, Jessica; Simonin-Foucault, A.; Piedcoq, J.; Fromentin, G.; Tomé, D.; Azzout-Marniche, D.

    2015-01-01

    High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the

  19. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  20. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  1. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Science.gov (United States)

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  2. Space Based Infrared System High (SBIRS High)

    Science.gov (United States)

    2015-12-01

    elements (five SMGTs) for the S2E2 Mobile Ground System. ​ SBIRS Block Buy (GEO 5-6) The GEO 5-6 Tech Refresh (TR) Engineering Change Proposal was...Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-210 Space Based Infrared System High ( SBIRS High) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 23, 2016 11:24:26 UNCLASSIFIED SBIRS High December 2015 SAR March 23, 2016 11:24:26

  3. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  4. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  5. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  6. High-Average, High-Peak Current Injector Design

    CERN Document Server

    Biedron, S G; Virgo, M

    2005-01-01

    There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.

  7. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  8. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  9. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  10. Gate Drive For High Speed, High Power IGBTs

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; /SLAC

    2007-06-18

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3{micro}S with a rate of current rise of more than 10000A/{micro}S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt.

  11. Gate Drive For High Speed, High Power IGBTs

    International Nuclear Information System (INIS)

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; SLAC

    2007-01-01

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3(micro)S with a rate of current rise of more than 10000A/(micro)S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt

  12. High-frequency high-voltage high-power DC-to-DC converters

    Science.gov (United States)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  13. High Temperature- and High Pressure-Processed Garlic Improves Lipid Profiles in Rats Fed High Cholesterol Diets

    Science.gov (United States)

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong

    2012-01-01

    Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (Pgarlic may be useful as a functional food to improve lipid profiles. PMID:22404600

  14. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  15. Western Canada: high prices, high activity

    International Nuclear Information System (INIS)

    Savidant, S

    2000-01-01

    The forces responsible for the high drilling and exploration activity in Western Canada (recent high prices, excess pipeline capacity, and the promise of as yet undiscovered natural gas resources) are discussed. Supply and demand signposts, among them weather impacts, political response by governments, the high demand for rigs and services, the intense competition for land, the scarcity of qualified human resources, are reviewed/. The geological potential of Western Canada, the implications of falling average pool sizes, the industry's ability to catch up to increasing declines, are explored. The disappearance of easy large discoveries, rising development costs involved in smaller, more complex hence more expensive pools are assessed and the Canadian equity and capital markets are reviewed. The predicted likely outcome of all the above factors is fewer players, increasing expectation of higher returns, and more discipline among the remaining players

  16. Production of High-Intensity, Highly Charged Ions

    CERN Document Server

    Gammino, S.

    2013-12-16

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now r...

  17. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  18. High n ballooning modes in highly elongated tokamaks

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1980-02-01

    An analytic study of stability against high n ballooning modes in highly elongated axisymmetric plasmas is presented and compared with computational results. From the equation for the marginal pressure gradient, it is found that the local shear plays an important role on the stability of elongated and shifted plasma, and that high elongation deteriorates the stability by decreasing the stabilizing effects of field line bending and local shear. The net contribution of the local shear to stability decreases with elongation and shift for strongly ballooning modes (eigenfunctions strongly localized near the outer edge of the toroidal flux surfaces) but increases for interchange modes (eigenfunctions more uniform along the flux surfaces). The computational study of high n ballooning modes in a highly elongated plasma reveals that lowering the aspect ratio and broadening the pressure profile enhance the marginal beta for β/sub p/ less than unity but severely reduce the marginal beta for β/sub p/ larger than unity

  19. High gain requirements and high field Tokamak experiments

    International Nuclear Information System (INIS)

    Cohn, D.R.

    1994-01-01

    Operation at sufficiently high gain (ratio of fusion power to external heating power) is a fundamental requirement for tokamak power reactors. For typical reactor concepts, the gain is greater than 25. Self-heating from alpha particles in deuterium-tritium plasmas can greatly reduce ητ/temperature requirements for high gain. A range of high gain operating conditions is possible with different values of alpha-particle efficiency (fraction of alpha-particle power that actually heats the plasma) and with different ratios of self heating to external heating. At one extreme, there is ignited operation, where all of the required plasma heating is provided by alpha particles and the alpha-particle efficiency is 100%. At the other extreme, there is the case of no heating contribution from alpha particles. ητ/temperature requirements for high gain are determined as a function of alpha-particle heating efficiency. Possibilities for high gain experiments in deuterium-tritium, deuterium, and hydrogen plasmas are discussed

  20. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  1. High Ra, high Pr convection with viscosity gradients

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.

  2. Progress of OLED devices with high efficiency at high luminance

    Science.gov (United States)

    Nguyen, Carmen; Ingram, Grayson; Lu, Zhenghong

    2014-03-01

    Organic light emitting diodes (OLEDs) have progressed significantly over the last two decades. For years, OLEDs have been promoted as the next generation technology for flat panel displays and solid-state lighting due to their potential for high energy efficiency and dynamic range of colors. Although high efficiency can readily be obtained at low brightness levels, a significant decline at high brightness is commonly observed. In this report, we will review various strategies for achieving highly efficient phosphorescent OLED devices at high luminance. Specifically, we will provide details regarding the performance and general working principles behind each strategy. We will conclude by looking at how some of these strategies can be combined to produce high efficiency white OLEDs at high brightness.

  3. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  4. Reducing AC-Winding Losses in High-Current High-Power Inductors

    DEFF Research Database (Denmark)

    Nymand, Morten; Madawala, Udaya K.; Andersen, Michael Andreas E.

    2009-01-01

    Foil windings are preferable in high-current high-power inductors to realize compact designs and to reduce dc-current losses. At high frequency, however, proximity effect will cause very significant increase in ac resistance in multi-layer windings, and lead to high ac winding losses. This paper ...

  5. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  6. High-voltage high-current triggering vacuum switch

    International Nuclear Information System (INIS)

    Alferov, D.F.; Bunin, R.A.; Evsin, D.V.; Sidorov, V.A.

    2012-01-01

    Experimental investigations of switching and breaking capacities of the new high current triggered vacuum switch (TVS) are carried out at various parameters of discharge current. It has been shown that the high current triggered vacuum switch TVS can switch repeatedly a current from units up to ten kiloampers with duration up to ten millisecond [ru

  7. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  8. High assurance SPIRAL

    Science.gov (United States)

    Franchetti, Franz; Sandryhaila, Aliaksei; Johnson, Jeremy R.

    2014-06-01

    In this paper we introduce High Assurance SPIRAL to solve the last mile problem for the synthesis of high assurance implementations of controllers for vehicular systems that are executed in today's and future embedded and high performance embedded system processors. High Assurance SPIRAL is a scalable methodology to translate a high level specification of a high assurance controller into a highly resource-efficient, platform-adapted, verified control software implementation for a given platform in a language like C or C++. High Assurance SPIRAL proves that the implementation is equivalent to the specification written in the control engineer's domain language. Our approach scales to problems involving floating-point calculations and provides highly optimized synthesized code. It is possible to estimate the available headroom to enable assurance/performance trade-offs under real-time constraints, and enables the synthesis of multiple implementation variants to make attacks harder. At the core of High Assurance SPIRAL is the Hybrid Control Operator Language (HCOL) that leverages advanced mathematical constructs expressing the controller specification to provide high quality translation capabilities. Combined with a verified/certified compiler, High Assurance SPIRAL provides a comprehensive complete solution to the efficient synthesis of verifiable high assurance controllers. We demonstrate High Assurance SPIRALs capability by co-synthesizing proofs and implementations for attack detection and sensor spoofing algorithms and deploy the code as ROS nodes on the Landshark unmanned ground vehicle and on a Synthetic Car in a real-time simulator.

  9. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  10. Measurements of the Properties of Highly-charged high-Z ions

    International Nuclear Information System (INIS)

    Augustine J. Smith, Ph.D.

    2007-01-01

    We had proposed carrying out a systematic experimental investigation of the atomic physics of highly charged, high-Z ions, produced in the Lawrence Livermore National Laboratory LLNL electron beam ion trap (EBIT-I) in its high energy mode, superEBIT. In particular we were going to accurately measure line positions for Δn=0 transitions in few electron high-Z ions; this was meant to enable us to investigate relativistic and quantum electrodynamics QED contributions to the energy levels as well as the nuclear properties of heavy ions. We were also going to measure cross sections for various electron-ion interactions, the degree of polarization of emitted x-rays, and radiation cooling rates of various ionization stages of highly charged, high-Z ions. This would enable us to study fundamental atomic physics of high-Z ions at relativistic electron impact energies and in the intense nuclear fields of highly ionized, high-Z ions. This would extend previous measurements we have carried out to a regime where there is a paucity of good data. These measurements were expected to generate increased theoretical interest and activity in this area. The project will extend a very successful collaboration between Morehouse College (MC) and a national laboratory LLNL, Minority student training and development are major components of the proposal

  11. 'J-KAREN' - high intensity, high contrast laser

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Okada, Hajime; Sasao, Hajime; Sagisaka, Akito; Ochi, Yoshihiro; Tanaka, Momoko; Kondo, Kiminori; Tateno, Ryo; Sugiyama, Akira; Daido, Hiroyuki; Koike, Masato; Kawanishi, Syunichi; Shimomura, Takuya; Tanoue, Manabu; Wakai, Daisuke; Kondo, Shuji; Kanazawa, Shuhei

    2010-01-01

    We report on the high intensity, high contrast double chirped-pulse amplification (CPA) Ti:sapphire laser system (named J-KAREN). By use of an optical parametric chirped-pulse amplification (OPCPA) preamplifier that is seeded by a cleaned high-energy pulse, a background amplified spontaneous emission (ASE) level of 10 -10 relative to the peak main femtosecond pulse on the picosecond timescales demonstrated with an output energy of 1.7 J and a pulse duration of 30 fs, corresponding to a peak power of 60TW at a 10 Hz repetition rate. This system which uses a cryogenically-cooled Ti:sapphire final amplifier generates focused peak intensity in excess of 10 20 W/cm 2 at a 10 Hz repetition rate. (author)

  12. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  13. Bumball: Highly Engaging, Highly Inclusive, and Highly Entertaining

    Science.gov (United States)

    Hall, Amber; Barney, David; Wilkinson, Carol

    2014-01-01

    Physical educators are always looking for new and exciting games and activities in which students can participate. This article describes Bumball, a high-intensity game that provides the opportunity for students to use many common game skills, such as hand-eye coordination, passing to a target, running, playing defense, and getting to an open…

  14. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  15. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  16. A high-gradient high-duty-factor Rf photo-cathode electron gun

    International Nuclear Information System (INIS)

    Rimmer, Robert A.; Hartman, Neal; Lidia, Steven M.; Wang, Shaoheng

    2002-01-01

    We describe the analysis and preliminary design of a high-gradient, high-duty factor RF photocathode gun. The gun is designed to operate at high repetition rate or CW, with high gradient on the cathode surface to minimize emittance growth due to space charge forces at high bunch charge. The gun may also be operated in a solenoidal magnetic field for emittance compensation. The design is intended for use in short-pulse, high-charge, and high-repetition rate applications such as linac based X-ray sources. We present and compare the results of gun simulations using different codes, as well as RF and thermal analysis of the structure

  17. A high-gradient high-duty-factor RF photo-cathode electron gun

    International Nuclear Information System (INIS)

    Rimmer, Robert; Hartman, N.; Lidia, S.; Wang, S.H.

    2002-01-01

    We describe the analysis and preliminary design of a high-gradient, high-duty factor RF photocathode gun. The gun is designed to operate at high repetition rate or CW, with high gradient on the cathode surface to minimize emittance growth due to space charge forces at high bunch charge. The gun may also be operated in a solenoidal magnetic field for emittance compensation. The design is intended for use in short-pulse, high-charge, and high-repetition rate applications such as linac based X-ray sources. We present and compare the results of gun simulations using different codes, as well as RF and thermal analysis of the structure

  18. Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors

    KAUST Repository

    Xin, Yangyang

    2017-06-29

    There is an increasing demand for strain sensors with high sensitivity and high stretchability for new applications such as robotics or wearable electronics. However, for the available technologies, the sensitivity of the sensors varies widely. These sensors are also highly nonlinear, making reliable measurement challenging. Here we introduce a new family of sensors composed of a laser-engraved carbon nanotube paper embedded in an elastomer. A roll-to-roll pressing of these sensors activates a pre-defined fragmentation process, which results in a well-controlled, fragmented microstructure. Such sensors are reproducible and durable and can attain ultrahigh sensitivity and high stretchability (with a gauge factor of over 4.2 × 10(4) at 150% strain). Moreover, they can attain high linearity from 0% to 15% and from 22% to 150% strain. They are good candidates for stretchable electronic applications that require high sensitivity and linearity at large strains.

  19. Achieving high fusion reactivity in high poloidal beta discharges in TFTR

    International Nuclear Information System (INIS)

    Manuel, M.E.; Navratil, G.A.; Sabbagh, S.A.; Batha, S.; Bell, M.G.; Bell, R.; Budny, R.V.; Bush, C.E.; Cavallo, A.; Chance, M.S.; Cheng, C.Z.; Efthimion, P.C.; Fredrickson, E.D.; Fu, G.Y.; Hawryluk, R.J.; Janos, A.C.; Jassby, D.L.; Levinton, F.; Mikkelsen, D.R.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.K.; Ramsey, A.T.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.; Wieland, R.M.; Yamada, M.; Zarnstorff, M.C.: Zweben, S.; Kesner, J.; Marmar, E.; Snipes, J.; Terry, J.

    1993-04-01

    High poloidal beta discharges have been produced in TFTR that achieved high fusion reactivities at low plasma currents. By rapidly decreasing the plasma current just prior to high-power neutral beam injection, relatively peaked current profiles were created having high l i > 2, high Troyon-normalized beta, βN > 3, and high poloidal beta. β p ≥ 0.7 R/a. The global energy confinement time after the current ramp was comparable to supershots, and the combination of improved MHD stability and good confinement produced a new high εβ p high Q DD operating mode for TFTR. Without steady-state current profile control, as the pulse lengths of high βp discharges were extended, l i decreased, and the improved stability produced immediately after by the current ramp deteriorated. In four second, high εβ p discharges, the current profile broadened under the influence of bootstrap and beam-drive currents. When the calculated voltage throughout the plasma nearly vanished, MHD instabilities were observed with β N as low as 1.4. Ideal MHD stability calculations showed this lower beta limit to be consistent with theoretical expectations

  20. Application of polarization in high speed, high contrast inspection

    Science.gov (United States)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  1. High Cr ODS steels R and D for high burnup fuel cladding

    International Nuclear Information System (INIS)

    Kimura, A.; Kasada, R.; Kishimoto, H.; Iwata, N.; Cho, H.-S.; Toda, N.; Yutani, K.; Ukai, S.; Fujiwara, M.

    2007-01-01

    High-performance cladding materials is essential to realize highly efficient and high-burnup operation over 150 GWd/t of so called Generation IV nuclear energy systems, such as supercritical-water-cooled reactor (SCWR) and lead-cooled fast reactor (LFR). Oxide dispersion strengthening (ODS) ferritic/ martensitic steels, which contain 9-12%Cr, show rather high resistance to neutron irradiation embrittlement and high strength at elevated temperatures. However, their corrosion resistance is not good enough in SCW and in lead at high temperatures. High-Cr ODS steels have been developed to improve corrosion resistance. An increase in Cr content an addition resulted in a drastic improvement of corrosion resistance in SCW and in lead. On the contrary, high-Cr steels often show an enhancement of aging embrittlement as well as irradiation embrittlement. Anisotropy in tensile properties is another issue. In order to overwhelm these issues, surveillance tests of the material performance have been performed for high Cr-ODS steels produced by new processing technologies. It is demonstrated that the dispersion of nono-sized oxide particles in high density is effective to attain high-performance and high-Cr ODS steels have a high potential as fuel cladding materials for SCWR and LFR with high efficiency and high burnup. (authors)

  2. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  3. High field MRI in the diagnosis of multiple sclerosis: high field-high yield?

    International Nuclear Information System (INIS)

    Wattjes, Mike P.; Barkhof, Frederik

    2009-01-01

    Following the approval of the U.S. Food and Drug Administration (FDA), high field magnetic resonance imaging (MRI) has been increasingly incorporated into the clinical setting. Especially in the field of neuroimaging, the number of high field MRI applications has been increased dramatically. Taking advantage on increased signal-to-noise ratio (SNR) and chemical shift, higher magnetic field strengths offer new perspectives particularly in brain imaging and also challenges in terms of several technical and physical consequences. Over the past few years, many applications of high field MRI in patients with suspected and definite multiple sclerosis (MS) have been reported including conventional and quantitative MRI methods. Conventional pulse sequences at 3 T offers higher lesion detection rates when compared to 1.5 T, particularly in anatomic regions which are important for the diagnosis of patients with MS. MR spectroscopy at 3 T is characterized by an improved spectral resolution due to increased chemical shift allowing a better quantification of metabolites. It detects significant axonal damage already in patients presenting with clinically isolated syndromes and can quantify metabolites of special interest such as glutamate which is technically difficult to quantify at lower field strengths. Furthermore, the higher susceptibility and SNR offer advantages in the field of functional MRI and diffusion tensor imaging. The recently introduced new generation of ultra-high field systems beyond 3 T allows scanning in submillimeter resolution and gives new insights into in vivo MS pathology on MRI. The objectives of this article are to review the current knowledge and level of evidence concerning the application of high field MRI in MS and to give some ideas of research perspectives in the future. (orig.)

  4. Zerodur polishing process for high surface quality and high efficiency

    International Nuclear Information System (INIS)

    Tesar, A.; Fuchs, B.

    1992-08-01

    Zerodur is a glass-ceramic composite importance in applications where temperature instabilities influence optical and mechanical performance, such as in earthbound and spaceborne telescope mirror substrates. Polished Zerodur surfaces of high quality have been required for laser gyro mirrors. Polished surface quality of substrates affects performance of high reflection coatings. Thus, the interest in improving Zerodur polished surface quality has become more general. Beyond eliminating subsurface damage, high quality surfaces are produced by reducing the amount of hydrated material redeposited on the surface during polishing. With the proper control of polishing parameters, such surfaces exhibit roughnesses of < l Angstrom rms. Zerodur polishing was studied to recommend a high surface quality polishing process which could be easily adapted to standard planetary continuous polishing machines and spindles. This summary contains information on a polishing process developed at LLNL which reproducibly provides high quality polished Zerodur surfaces at very high polishing efficiencies

  5. Decay modes of high-lying excitations in nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Inelastic, charge-exchange and transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of new high-lying modes embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured branching ratios to the various decay channels as compared to statistical model calculations. As illustrative examples the decay modes of high-spin single-particle states and isovector resonances are discussed. (author) 23 refs.; 14 figs

  6. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  7. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunrui [Univ. of Texas, San Antonio, TX (United States); Enriquez, Erik [Univ. of Texas, San Antonio, TX (United States); Wang, Haibing [Univ. of Texas, San Antonio, TX (United States); Xu, Xing [Univ. of Texas, San Antonio, TX (United States); Bao, Shangyong [Univ. of Texas, San Antonio, TX (United States); Collins, Gregory [Univ. of Texas, San Antonio, TX (United States)

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo2O5+d (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  8. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  9. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  10. Ultra-high polarity ceramics induced extrinsic high permittivity of polymers contributing to high permittivity of 2-2 series composites

    Science.gov (United States)

    Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi

    2018-01-01

    Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity

  11. Decay properties of high-lying single-particles modes

    NARCIS (Netherlands)

    Beaumel, D; Fortier, S; Gales, S; Guillot, J; LangevinJoliot, H; Laurent, H; Maison, JM; Vernotte, J; Bordewijck, J; Brandenburg, S; Krasznahorkay, A; Crawley, GM; Massolo, CP; Renteria, M; Khendriche, A

    1996-01-01

    The neutron decay of high-lying single-particle states in Ni-64, Zr-90, Sn-120 and (208)pb excited by means of the (alpha,He-3) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular

  12. High-frequency applications of high-temperature superconductor thin films

    Science.gov (United States)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  13. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  14. High-frequency applications of high-temperature superconductor thin films

    International Nuclear Information System (INIS)

    Klein, N.

    2002-01-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz. (author)

  15. High regression rate, high density hybrid fuels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  16. High-power laser diodes with high polarization purity

    Science.gov (United States)

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  17. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  18. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...

  19. THE FUNDAMENTALS OF HIGH-TECH SECTOR AND HIGH-TECH COMPANIES OPERATION

    Directory of Open Access Journals (Sweden)

    Svetlana V. Gavrilova

    2014-01-01

    Full Text Available The article develops the concept of the«high-tech sector» and the «high-techcompany» as well as their differences and relation. Further the author accounts for the particularities of the high-tech company functioning compared to the common one. Finally the key factors and coreelements of high technology are identified.

  20. Final report: High current capacity high temperature superconducting film based tape for high field magnets

    International Nuclear Information System (INIS)

    Ying Xin

    2000-01-01

    The primary goal of the program was to establish the process parameters for the continuous deposition of high quality, superconducting YBCO films on one meter lengths of buffered RABiTS tape using MOCVD and to characterize the potential utility of the resulting tapes in high field magnet applications

  1. High-spin research with HERA [High Energy-Resolution Array

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum

  2. Obituary: Thomas Robert Metcalf, 1961-2007

    Science.gov (United States)

    Leka, K. D.

    2007-12-01

    California-Riverside (UCR). Computers entered Tom's life then as well: In a 1970s example of technological generation-gapping, he learned to program his father's new desktop computer. Soon, he was exploiting UCR's time-shared machines for that honorable endeavor, writing computer games. Those "great games that Metcalf wrote" brought Tom's father quite a reputation amongst the undergraduates. Tom earned his B.A. in Physics from the University of California-San Diego (UCSD) in 1983. He continued at his alma mater for graduate school in 1984, and joined the "solar group" there headed by Dr. Richard C. Canfield. After earning an M.S. in Physics in 1985, Tom moved to the Institute for Astronomy (IfA) of the University of Hawai`I, with Dr. Canfield's group, in 1986. Tom completed his Ph.D. through UCSD in 1990, "Flare Heating and Ionization of the Low Solar Chromosphere", then stayed at the IfA as first a Post-Doctoral Fellow and then Associate Astronomer. While at the IfA, his participation in Mees Solar Observatory operations and Yohkoh mission support developed along two themes: the observation, analysis, and interpretation of solar magnetic fields, and hard X-ray imaging of solar flares. Tom was a key member of the group that demonstrated the hemispheric "handedness" trend in the twist of solar active region magnetic fields. He applied his considerable mathematical expertise to the application of a "pixon" algorithm for hard X-ray image reconstruction. To this day, this approach remains the algorithm of choice for the Reuven Ramaty High Energy Solar Spectroscopic Imager [RHESSI) mission, on which he was a Co-Investigator. Tom moved to the Lockheed-Martin Solar and Astrophysics Laboratory (LMSAL) of Palo Alto, California, in 1996, once again sharing an office with Dr. Jean-Pierre Wülser, his old office-mate from the IfA. During his tenure at LMSAL, Tom became a Co-Investigator on several space experiments: the X-Ray Telescope (XRT) on the Japanese Hinode mission, and the

  3. Statistical and direct decay of high-lying single-particle excitations

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of high-lying excitations embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by microscopic nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured particle (n,p) decay branching ratios. The neutron and proton decay studies of high-lying single-particle states in heavy nuclei are presented. (author). 13 refs., 9 figs

  4. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  5. Design and development of high voltage high power operational ...

    Indian Academy of Sciences (India)

    address this challenge, a) Designing a discrete power opamp with high .... the use of high-impedance feedback networks, thus minimizing their output loading ... Spice simulation is done for the circuit and results are given in figures 4a–c.

  6. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  7. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  8. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    International Nuclear Information System (INIS)

    Han, K.; Embury, J.D.

    1998-01-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications

  9. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  10. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    Science.gov (United States)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  11. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  12. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  13. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  14. Characteristics of a High Current Helicon Ion Source With High Monatomic Fraction

    International Nuclear Information System (INIS)

    Jung, Hwa-Dong; Chung, Kyoung-Jae; Hwang, Yong-Seok

    2006-01-01

    Applications of neutron need compact and high yield neutron sources as well as very intense neutron sources from giant devices such as accelerators. Ion source based neutron sources using nuclear fusion reactions such as D(d, 3He)n, D(t, 4He)n can meet the requirements. This type of neutron generators can be simply composed of an ion source and a target. High-performance neutron generators with high yield require ion sources with high beam current, high monatomic fraction and long lifetime. Helicon ion source can meet these requirements. To make high current ion source, characteristics of helicon plasma such as high plasma density can be utilized. Moreover, efficient plasma heating with RF power lead high fraction of monatomic ion beam. Here, Characteristics of helicon plasma sources are described. Design and its performances of a helicon ion source are presented

  15. Development of high-performance concrete having high resistance to chloride penetration

    International Nuclear Information System (INIS)

    Oh, Byung Hwan; Cha, Soo Won; Jang, Bong Seok; Jang, Seung Yup

    2002-01-01

    The resistance to chloride penetration is one of the simplest measures to determine the durability of concrete, e.g. resistance to freezing and thawing, corrosion of steel in concrete and other chemical attacks. Thus, high-performance concrete may be defined as the concrete having high resistance to chloride penetration as well as high strength. The purpose of this paper is to investigate the resistance to chloride penetration of different types of concrete and to develop high-performance concrete that has very high resistance to chloride penetration, and thus, can guarantee high durability. A large number of concrete specimens have been tested by the rapid chloride permeability test method as designated in AASHTO T 277 and ASTM C 1202. The major test variables include water-to-binder ratios, type of cement, type and amount of mineral admixtures (silica fume, fly ash and blast-furnace slag), maximum size of aggregates and air-entrainment. Test results show that concrete containing optimal amount of silica fume shows very high resistance to chloride penetration, and high-performance concrete developed in this study can be efficiently employed to enhance the durability of concrete structures in severe environments such as nuclear power plants, water-retaining structures and other offshore structures

  16. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Xiao, Dong-Dong; Ge, Mingyuan; Yu, Xiqian; Chu, Yong; Huang, Xiaojing; Zhang, Xu-Dong; Yin, Ya-Xia; Yang, Xiao-Qing; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2018-03-01

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg -1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    Science.gov (United States)

    2016-08-01

    Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Brett A...Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) Brett A. Williams, Robert D. Moser, William F. Heard, Carol F...equipment and protocols for tests of both very-high-strength concrete (VHSC) and high- strength high-ductility concrete (HSHDC) to predict blast

  18. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    Science.gov (United States)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  19. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 kDa w...

  20. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  1. High altitude illness

    Science.gov (United States)

    Hartman-Ksycińska, Anna; Kluz-Zawadzka, Jolanta; Lewandowski, Bogumił

    High-altitude illness is a result of prolonged high-altitude exposure of unacclimatized individuals. The illness is seen in the form of acute mountain sickness (AMS) which if not treated leads to potentially life-threatening high altitude pulmonary oedema and high-altitude cerebral oedema. Medical problems are caused by hypobaric hypoxia stimulating hypoxia-inducible factor (HIF) release. As a result, the central nervous system, circulation and respiratory system function impairment occurs. The most important factor in AMS treatment is acclimatization, withdrawing further ascent and rest or beginning to descent; oxygen supplementation, and pharmacological intervention, and, if available, a portable hyperbaric chamber. Because of the popularity of high-mountain sports and tourism better education of the population at risk is essential.

  2. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  3. Design of highly oriented (HOR) media for extremely high density recording

    International Nuclear Information System (INIS)

    Hee, C.H.; Wang, J.P.; Chong, T.C.; Low, T.S.

    2001-01-01

    The magnetic properties and recording performance of highly oriented (HOR) longitudinal media are systematically studied via micromagnetic simulation. It was found that highly oriented longitudinal media could be achieved by controlling the anisotropy axes distribution. The effect of anisotropy constant, saturated magnetization and exchange coupling constants on the hysteresis loops are presented. It was further found that highly oriented media show an ultra-low transition noise. Another interesting observation made was that increasing M s for the HOR media decreases the coercivity, which suggests practical usage of this media with current head field. A 500 Gbit/in 2 recording media is simulated to support the application of the highly oriented longitudinal media for ultra high density recording

  4. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  5. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  6. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    Science.gov (United States)

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  7. High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline

    Science.gov (United States)

    Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren

    2018-06-01

    The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.

  8. Record high-average current from a high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Bruce; Barley, John; Bartnik, Adam; Bazarov, Ivan; Cultrera, Luca; Dobbins, John; Hoffstaetter, Georg; Johnson, Brent; Kaplan, Roger; Karkare, Siddharth; Kostroun, Vaclav; Li Yulin; Liepe, Matthias; Liu Xianghong; Loehl, Florian; Maxson, Jared; Quigley, Peter; Reilly, John; Rice, David; Sabol, Daniel [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States); and others

    2013-01-21

    High-power, high-brightness electron beams are of interest for many applications, especially as drivers for free electron lasers and energy recovery linac light sources. For these particular applications, photoemission injectors are used in most cases, and the initial beam brightness from the injector sets a limit on the quality of the light generated at the end of the accelerator. At Cornell University, we have built such a high-power injector using a DC photoemission gun followed by a superconducting accelerating module. Recent results will be presented demonstrating record setting performance up to 65 mA average current with beam energies of 4-5 MeV.

  9. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  10. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    International Nuclear Information System (INIS)

    Prasad, D N; Ayyappan, R; Kamble, L P; Singh, J P; Muralikrishna, L V; Alex, M; Balagi, V; Mukhopadhyay, P K

    2008-01-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm 2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ∼1 x 10 -5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mmx160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face and diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6x10 -9 m bar ltr/sec in vacuum mode and 2x10 -7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5x10 -5 mbar, the new valve achieved vacuum 7.4x10 -6 mbar in the same time under the same conditions

  11. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    Science.gov (United States)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  12. Discovering highly informative feature set over high dimensions

    KAUST Repository

    Zhang, Chongsheng; Masseglia, Florent; Zhang, Xiangliang

    2012-01-01

    For many textual collections, the number of features is often overly large. These features can be very redundant, it is therefore desirable to have a small, succinct, yet highly informative collection of features that describes the key characteristics of a dataset. Information theory is one such tool for us to obtain this feature collection. With this paper, we mainly contribute to the improvement of efficiency for the process of selecting the most informative feature set over high-dimensional unlabeled data. We propose a heuristic theory for informative feature set selection from high dimensional data. Moreover, we design data structures that enable us to compute the entropies of the candidate feature sets efficiently. We also develop a simple pruning strategy that eliminates the hopeless candidates at each forward selection step. We test our method through experiments on real-world data sets, showing that our proposal is very efficient. © 2012 IEEE.

  13. Discovering highly informative feature set over high dimensions

    KAUST Repository

    Zhang, Chongsheng

    2012-11-01

    For many textual collections, the number of features is often overly large. These features can be very redundant, it is therefore desirable to have a small, succinct, yet highly informative collection of features that describes the key characteristics of a dataset. Information theory is one such tool for us to obtain this feature collection. With this paper, we mainly contribute to the improvement of efficiency for the process of selecting the most informative feature set over high-dimensional unlabeled data. We propose a heuristic theory for informative feature set selection from high dimensional data. Moreover, we design data structures that enable us to compute the entropies of the candidate feature sets efficiently. We also develop a simple pruning strategy that eliminates the hopeless candidates at each forward selection step. We test our method through experiments on real-world data sets, showing that our proposal is very efficient. © 2012 IEEE.

  14. DECAY MODES OF HIGH-LYING SINGLE-PARTICLE STATES IN PB-209

    NARCIS (Netherlands)

    BEAUMEL, D; FORTIER, S; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; VERNOTTE, J; BORDEWIJK, JA; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M

    The neutron decay of high-lying single-particle states in Pb-209 excited by means of the (alpha, He-3) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high-spin values of these states, inferred from previous inclusive experiments, are confirmed by the

  15. To the probe theory in a highly-ionized high-pressure plasma

    International Nuclear Information System (INIS)

    Baksht, F.G.; Rybakov, A.B.

    1997-01-01

    The probe theory in highly-ionized high-pressure plasma is presented. The situation typical for high-pressure plasma, when the plasma in the main part of the near-probe layer is in the state of local ionization equilibrium with general temperature for electrons and heavy particles. Possibility is discussed for determining the parameters of non-perturbed plasma through analysis of the probe characteristic at place of ion saturation, transition area and by the probe floating potential. The experiments were carried out by example of highly-ionized xenon plasma under atmospheric pressure

  16. Self-Esteem of Junior High and High School Students.

    Science.gov (United States)

    Lee, Kimberly E.

    The purpose of this thesis was to investigate the self-esteem of junior high and high school students. The independent variables investigated were quality of family life, birth order, family size, maternal employment, grade level and family structure. The dependent variables were the self-esteem scores from the following sub-scales of the Texas…

  17. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  18. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia

    Directory of Open Access Journals (Sweden)

    Jessie R. Wilburn

    2015-01-01

    Full Text Available Introduction Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Methods Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1 EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2 (~600 kcal and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2 EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3 CON: no exercise control. Results The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL x 360 minutes and EX-DEF (499.4 ± 73.5 mg/dL x 360 minutes, respectively, compared to CON (660.2 ± 95.0 mg/dL x 360 minutes ( P < 0.05. Conclusions A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men.

  19. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia.

    Science.gov (United States)

    Wilburn, Jessie R; Bourquin, Jeffrey; Wysong, Andrea; Melby, Christopher L

    2015-01-01

    Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years) participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1) EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2) (~600 kcal) and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2) EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3) CON: no exercise control. The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL × 360 minutes) and EX-DEF (499.4 ± 73.5 mg/dL × 360 minutes), respectively, compared to CON (660.2 ± 95.0 mg/dL × 360 minutes) (P < 0.05). A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men.

  20. Simple Motor Control Concept Results High Efficiency at High Velocities

    Science.gov (United States)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  1. High voltage systems

    International Nuclear Information System (INIS)

    Martin, M.

    1991-01-01

    Industrial processes usually require electrical power. This power is used to drive motors, to heat materials, or in electrochemical processes. Often the power requirements of a plant require the electric power to be delivered at high voltage. In this paper high voltage is considered any voltage over 600 V. This voltage could be as high as 138,000 V for some very large facilities. The characteristics of this voltage and the enormous amounts of power being transmitted necessitate special safety considerations. Safety must be considered during the four activities associated with a high voltage electrical system. These activities are: Design; Installation; Operation; and Maintenance

  2. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    International Nuclear Information System (INIS)

    Pennicard, D.; Smoljanin, S.; Sheviakov, I.; Xia, Q.; Rothkirch, A.; Yu, Y.; Struth, B.; Hirsemann, H.; Graafsma, H.

    2014-01-01

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ''high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ''continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan

  3. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  4. Comparing the characteristics of highly cited titles and highly alted titles

    Energy Technology Data Exchange (ETDEWEB)

    Didegah, F.; Bowman, T.D.; Bowman, S.; Hartley, J.

    2016-07-01

    This study examines differences in the types of titles for articles that show high altmetric activity (highly alted articles) versus highly cited articles. This work expands on previous research on document titles in combination with a grounded theory approach to develop a codebook in which articles were manually coded based on 11 characteristics. The results show that there are differences and similarities in titles across many of the examined characteristics; highly cited titles and highly mentioned titles on Wikipedia have some similar characteristics such as they have the the highest percentage of substantive words; in addition, there are no or very few titles referencing outside or with humor/lightness on both platforms. Twitter and Facebook also showed some similarities having the highest percentage of humorous/light titles and lowest percentage of substantive words in their titles. (Author)

  5. A high current, high speed pulser using avalanche transistors

    International Nuclear Information System (INIS)

    Hosono, Yoneichi; Hasegawa, Ken-ichi

    1985-01-01

    A high current, high speed pulser for the beam pulsing of a linear accelerator is described. It uses seven avalanche transistors in cascade. Design of a trigger circuit to obtain fast rise time is discussed. The characteristics of the pulser are : (a) Rise time = 0.9 ns (FWHM) and (d) Life time asymptotically equals 2000 -- 3000 hr (at 50 Hz). (author)

  6. A high frequency, high power CARM proposal for the DEMO ECRH system

    International Nuclear Information System (INIS)

    Mirizzi, Francesco; Spassovsky, Ivan; Ceccuzzi, Silvio; Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero; Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca; Sabia, Elio; Tuccillo, Angelo Antonio; Zito, Pietro

    2015-01-01

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  7. A high frequency, high power CARM proposal for the DEMO ECRH system

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Francesco, E-mail: francesco.mirizzi@enea.it [Consorzio CREATE, Via Claudio 21, I-80125 Napoli (Italy); Spassovsky, Ivan [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Ceccuzzi, Silvio [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Sabia, Elio [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Tuccillo, Angelo Antonio; Zito, Pietro [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2015-10-15

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  8. Highly parallel algorithm for high pT physics at FAIR-CBM

    International Nuclear Information System (INIS)

    Fueloep, A; Vesztergombi, G

    2010-01-01

    The limitations of presently available data on p T range are discussed and planned future upgrades are outlined. Special attention is given to the FAIR-CBM experiment as a unique high luminosity facility for future continuation of the measurements at very high p T with emphasis on the so-called mosaic trigger system to use the highly parallel online algorithm.

  9. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  10. Mining High-Dimensional Data

    Science.gov (United States)

    Wang, Wei; Yang, Jiong

    With the rapid growth of computational biology and e-commerce applications, high-dimensional data becomes very common. Thus, mining high-dimensional data is an urgent problem of great practical importance. However, there are some unique challenges for mining data of high dimensions, including (1) the curse of dimensionality and more crucial (2) the meaningfulness of the similarity measure in the high dimension space. In this chapter, we present several state-of-art techniques for analyzing high-dimensional data, e.g., frequent pattern mining, clustering, and classification. We will discuss how these methods deal with the challenges of high dimensionality.

  11. High-Risk List

    Science.gov (United States)

    2017-01-01

    economy. The World Bank has said that “corruption creates an unfavorable business environment by undermining the operation efficiency of firms and... Bank Began as ‘Ponzi Scheme,’” 11/27/2012. 64 Independent Joint Anti-Corruption Monitoring and Evaluation Committee, Unfinished Business : The Follow...HIGH RISK AREA 7: Oversight 51 HIGH-RISK AREA 8: Strategy and Planning 55 CONCLUSION HIGH RISK LIST I JANUARY 11, 2017 2 EXECUTIVE SUMMARY

  12. Local endemicity and high diversity characterise high-latitude coral- Symbiodinium partnerships

    Science.gov (United States)

    Wicks, L. C.; Sampayo, E.; Gardner, J. P. A.; Davy, S. K.

    2010-12-01

    Obligate symbiotic dinoflagellates ( Symbiodinium) residing within the tissues of most reef invertebrates are important in determining the tolerance range of their host. Coral communities living at high latitudes experience wide fluctuations in environmental conditions and thus provide an ideal system to gain insights into the range within which the symbiotic relationship can be sustained. Further, understanding whether and how symbiont communities associated with high-latitude coral reefs are different from their tropical counterparts will provide clues to the potential of corals to cope with marginal or changing conditions. However, little is known of the host and symbiont partnerships at high latitudes. Symbiodinium diversity and specificity of high-latitude coral communities were explored using denaturing gradient gel electrophoresis (PCR-DGGE) analysis of the internal transcribed spacer regions (ITS1 and ITS2) of the ribosomal DNA at Lord Howe Island (31°S; Australia), and the Kermadec Islands (29°S; New Zealand). All but one host associated with clade C Symbiodinium, the exception being a soft coral ( Capnella sp.) that contained Symbiodinium B1. Besides ‘host-generalist’ Symbiodinium types C1 and C3, approximately 72% of the Symbiodinium identified were novel C types, and zonation of symbionts in relation to environmental parameters such as depth and turbidity was evident in certain host species. The high-latitude Symbiodinium communities showed little overlap and relatively high diversity compared with communities sampled on the tropical Great Barrier Reef. Although host specificity was maintained in certain species, others shared symbionts and this potential reduction of fidelity at high-latitude locations may be the result of locally challenging and highly variable environmental conditions.

  13. High-tech entrepreneurship

    DEFF Research Database (Denmark)

    Bernasconi, Michel; Harris, Simon; Mønsted, Mette

    High-tech businesses form a crucial part of entrepreneurial activity - in some ways representing very typical examples of entrepreneurship, yet in some ways representing quite different challenges. The uncertainty in innovation and advanced technology makes it difficult to use conventional economic...... focuses on the blend of theory and practice needed to inform advanced entrepreneurship students of the specifics of high-tech start-ups. Key topics covered include: uncertainty and innovation; entrepreneurial finance; marketing technological innovations; and high-tech incubation management.......Edited by a multi-national team, it draws together leading writers and researchers from across Europe, and is therefore a must-read for all those involved in advanced entrepreneurship with specific interests in high-tech start-ups....

  14. High-power klystrons

    Science.gov (United States)

    Siambis, John G.; True, Richard B.; Symons, R. S.

    1994-05-01

    Novel emerging applications in advanced linear collider accelerators, ionospheric and atmospheric sensing and modification and a wide spectrum of industrial processing applications, have resulted in microwave tube requirements that call for further development of high power klystrons in the range from S-band to X-band. In the present paper we review recent progress in high power klystron development and discuss some of the issues and scaling laws for successful design. We also discuss recent progress in electron guns with potential grading electrodes for high voltage with short and long pulse operation via computer simulations obtained from the code DEMEOS, as well as preliminary experimental results. We present designs for high power beam collectors.

  15. [Condition optimization for bio-oxidation of high-S and high-As gold concentrate].

    Science.gov (United States)

    Yang, Caiyun; Dong, Bowen; Wang, Meijun; Ye, Zhiyong; Zheng, Tianling; Huang, Huaiguo

    2015-12-04

    To study the effects of temperature and lixivium return on the concentrate bio-oxidation and rate of gold cyanide leaching. The bioleaching of a high-sulphur (S) and high-arsenic (As) refractory gold concentrate was conducted, and we studied the effects of different temperature (40 ° and 45 °C) and lixivium return (0 and 600 mL) on the bio-oxidation efficiency. The bacterial community structure also was investigated by 16S rRNA gene clone library. The results showed that both the temperature and lixivium return significantly influenced the oxidation system. The temperature rising elevated the oxidation level, while the addition of lixivium depressed the oxidation. Dissimilarity and DCA (detrended correspondence analysis) indicated the effect of temperature on oxidation system was much greater than lixivium. The bacterial community was comprised by Acidithiocacillus caldu (71%) Leptospirillum ferriphilum (23%) and Sulfobacillus thermosulfidooxidans (6%) indicated by the clone library, and the OTU coverage based on 97% sequence similarity was as high as 93.67%. Temperature rising to 45 T would improve the oxidation efficiency while lixivium return would decrease it. This study is helpful to provide an important guiding value for the industry cost optimization of mesophile bacterial oxidation and reduction process.

  16. The high density and high βpol disruption mechanism on TFTR

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Manickam, J.; McGuire, K.M.; Monticello, D.; Nagayama, Y.; Park, W.; Taylor, G.

    1992-01-01

    Studies of disruptions on TFTR have been extended to include high density disruptions as well as the high β pol disruptions. The data strongly suggests that the (m,n)=(1,1) mode plays an important role in both types of disruptions. Further, for the first time, it is unambiguously shown, using a fast electron cyclotron emission (ECE) instrument for the electron temperature profile measurements, that the (m,n)=(1,1) precursor to the high density disruptions has a 'cold bubble' structure. The precursor to the major disruption at high density resembles the 'vacuum bubble' model of disruptions first proposed by Kadomtsev and Pogutse. (author) 2 refs., 2 figs

  17. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  18. Highly Efficient Estimators of Multivariate Location with High Breakdown Point

    NARCIS (Netherlands)

    Lopuhaa, H.P.

    1991-01-01

    We propose an affine equivariant estimator of multivariate location that combines a high breakdown point and a bounded influence function with high asymptotic efficiency. This proposal is basically a location $M$-estimator based on the observations obtained after scaling with an affine equivariant

  19. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  20. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  1. High Voltage in Noble Liquids for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, B. [Fermilab; Bernard, E. [Yale U.; Faham, C. H. [LBL, Berkeley; Ito, T. M. [Los Alamos; Lundberg, B. [Maryland U.; Messina, M. [Columbia U.; Monrabal, F. [Valencia U., IFIC; Pereverzev, S. P. [LLNL, Livermore; Resnati, F. [Zurich, ETH; Rowson, P. C. [SLAC; Soderberg, M. [Fermilab; Strauss, T. [Bern U.; Tomas, A. [Imperial Coll., London; Va' vra, J. [SLAC; Wang, H. [UCLA

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  2. Machine Learning Control For Highly Reconfigurable High-Order Systems

    Science.gov (United States)

    2015-01-02

    calibration and applications,” Mechatronics and Embedded Systems and Applications (MESA), 2010 IEEE/ASME International Conference on, IEEE, 2010, pp. 38–43...AFRL-OSR-VA-TR-2015-0012 MACHINE LEARNING CONTROL FOR HIGHLY RECONFIGURABLE HIGH-ORDER SYSTEMS John Valasek TEXAS ENGINEERING EXPERIMENT STATION...DIMENSIONAL RECONFIGURABLE SYSTEMS FA9550-11-1-0302 Period of Performance 1 July 2011 – 29 September 2014 John Valasek Aerospace Engineering

  3. The CMS High Granularity Calorimeter for the High Luminosity LHC

    CERN Document Server

    Sauvan, Jean-baptiste

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities...

  4. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  5. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  6. Development of ultra high speed photographic system using high repetition rate visible laser

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Byung Hun; Kim, Sung Ho; Kim, Jung Bog; Lim, Chang Hwan; Cha, Hyung Ki; Song, Kyu Seok; Lee, Byung Deok; Rhi, Jong Hoon; Baik, Dae Hyun; Han, Jae Min; Rho, Si Pyo; Lee, Byung Cheol; Jeong, Do Yung; Choi, An Seong; Jeong, Chan Ik; Park, Dae Ung; Jeong, Sung Min; Lee, Sang Kil; Kim, Heon Jun; Jang, Rae gak; Jo, Do Hun; Park, Min Young

    1992-12-01

    The goal of this project is to develop and commercialize a high speed photographic system equipped with a high repetition rate visible laser. The developed system provides the characteristics of high time resolution and large number of frames. The system consists of 10 W air cooled CVL or a 30 W water cooled CVL, a rotating drum-type high speed camera with the framing rate of 35,000 fps, and a automatic control device. The system has the performance of 10 nsec time resolution, 35,000 fps framing rate, and 250 picture frames. The high speed photographic systems are widely applied to the fields such as high-efficient engine development, high-speed vibration analysis, shock wave propagation study, flow visualization analysis, weapon development, etc. (Author)

  7. High efficiency targets for high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Gardner, J.H.; Bodner, S.E.

    1986-01-01

    Rocket efficiencies as high as 15% are possible using short wavelength lasers and moderately high aspect ratio pellet designs. These designs are made possible by two recent breakthroughs in physics constraints. First is the development of the Induced Spatial Incoherence (ISI) technique which allows uniform illumination of the pellet and relaxes the constraint of thermal smoothing, permitting the use of short wavelength laser light. Second is the discovery that the Rayleigh-Taylor growth rate is considerably reduced at the short laser wavelengths. By taking advantage of the reduced constraints imposed by nonuniform laser illumination and Rayleigh-Taylor instability, pellets using 1/4 micron laser light and initial aspect ratios of about 10 (with in flight aspect ratios of about 150 to 200) may produce energy gains as high as 200 to 250

  8. High-efficiency targets for high-gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Gardner, J.H.; Bodner, S.E.

    1986-01-01

    Rocket efficiencies as high as 15% are possible using short wavelength lasers and moderately high aspect ratio pellet designs. These designs are made possible by two recent breakthroughs in physics constraints. First is the development of the induced spatial incoherence (ISI) technique, which allows uniform illumination of the pellet and relaxes the constraint of thermal smoothing, permitting the use of short wavelength laser light. Second is the discovery that the Rayleigh--Taylor growth rate is considerably reduced at short laser wavelengths. By taking advantage of the reduced constraints imposed by nonuniform laser illumination and Rayleigh--Taylor instability, pellets using (1)/(4) μm laser light and initial aspect ratios of about 10 (with in flight aspect ratios of about 150--200) may produce energy gains as high as 200--250

  9. High power klystrons for efficient reliable high power amplifiers

    Science.gov (United States)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  10. Minimally invasive treatment of lumbar spinal stenosis with a novel interspinous spacer

    Directory of Open Access Journals (Sweden)

    Shabat S

    2011-09-01

    Full Text Available Shay Shabat1, Larry E Miller2,3, Jon E Block3, Reuven Gepstein11Spinal Care Unit, Sapir Medical Center, Kfar Saba, Israel; 2Miller Scientific Consulting, Inc, Biltmore Lake, NC, USA; 3Jon E Block, PhD, Inc, San Francisco, CA, USAPurpose: To assess the safety and effectiveness of a novel, minimally invasive interspinous spacer in patients with moderate lumbar spinal stenosis (LSS.Methods: A total of 53 patients (mean age, 70 ± 11 years; 45% female with intermittent neurogenic claudication secondary to moderate LSS, confirmed on imaging studies, were treated with the Superion® Interspinous Spacer (VertiFlex, Inc, San Clemente, CA and returned for follow-up visits at 6 weeks, 1 year, and 2 years. Study endpoints included axial and extremity pain severity with an 11-point numeric scale, Zurich Claudication Questionnaire (ZCQ, back function with the Oswestry Disability Index (ODI, health-related quality of life with the Physical Component Summary (PCS and Mental Component Summary (MCS scores from the SF-12, and adverse events.Results: Axial and extremity pain each decreased 54% (both P < 0.001 over the 2-year follow-up period. ZCQ symptom severity scores improved 43% (P < 0.001 and ZCQ physical function improved 44% (P < 0.001 from pre-treatment to 2 years post-treatment. A statistically significant 50% improvement (P < 0.001 also was noted in back function. PCS and MCS each improved 40% (both P < 0.001 from pre-treatment to 2 years. Clinical success rates at 2 years were 83%–89% for ZCQ subscores, 75% for ODI, 78% for PCS, and 80% for MCS. No device infection, implant breakage, migration, or pull-out was observed, although two (3.8% patients underwent explant with subsequent laminectomy.Conclusion: Moderate LSS can be effectively treated with a minimally invasive interspinous spacer. This device is appropriate for select patients who have failed nonoperative treatment measures for LSS and meet strict anatomical criteria.Keywords: Superion, axial

  11. Gamma-ray spectrometer system with high efficiency and high resolution

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with the overall resolution showing little degradation over that of the worst detector

  12. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise.

    Science.gov (United States)

    Kohn, Julie C; Azar, Julian; Seta, Francesca; Reinhart-King, Cynthia A

    2018-03-01

    Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.

  13. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  14. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  15. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53719 (United States)

    2015-10-15

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  16. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 8. High Tech High School

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  17. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  18. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  19. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  20. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  1. High-emulation mask recognition with high-resolution hyperspectral video capture system

    Science.gov (United States)

    Feng, Jiao; Fang, Xiaojing; Li, Shoufeng; Wang, Yongjin

    2014-11-01

    We present a method for distinguishing human face from high-emulation mask, which is increasingly used by criminals for activities such as stealing card numbers and passwords on ATM. Traditional facial recognition technique is difficult to detect such camouflaged criminals. In this paper, we use the high-resolution hyperspectral video capture system to detect high-emulation mask. A RGB camera is used for traditional facial recognition. A prism and a gray scale camera are used to capture spectral information of the observed face. Experiments show that mask made of silica gel has different spectral reflectance compared with the human skin. As multispectral image offers additional spectral information about physical characteristics, high-emulation mask can be easily recognized.

  2. Design of a high-power, high-brightness Nd:YAG solar laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana; Garcia, Dário

    2014-03-20

    A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24  W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.

  3. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

    Directory of Open Access Journals (Sweden)

    Cariou Bertrand

    2013-01-01

    Full Text Available Abstract Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9 is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2 and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D patients that are more prone to develop insulin resistance, including: i acute post-prandial hyperlipidemic challenge (n=10, ii 4 days of high-fat (HF or high-fat/high-protein (HFHP (n=10, iii 7 (HFruc1, n=16 or 6 (HFruc2, n=9 days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1. Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05 in healthy volunteers and by 34% (p=0.001 in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p Conclusions Plasma PCSK9 concentrations vary

  4. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  5. High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance a......This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...

  6. High impact  =  high statistical standards? Not necessarily so.

    Science.gov (United States)

    Tressoldi, Patrizio E; Giofré, David; Sella, Francesco; Cumming, Geoff

    2013-01-01

    What are the statistical practices of articles published in journals with a high impact factor? Are there differences compared with articles published in journals with a somewhat lower impact factor that have adopted editorial policies to reduce the impact of limitations of Null Hypothesis Significance Testing? To investigate these questions, the current study analyzed all articles related to psychological, neuropsychological and medical issues, published in 2011 in four journals with high impact factors: Science, Nature, The New England Journal of Medicine and The Lancet, and three journals with relatively lower impact factors: Neuropsychology, Journal of Experimental Psychology-Applied and the American Journal of Public Health. Results show that Null Hypothesis Significance Testing without any use of confidence intervals, effect size, prospective power and model estimation, is the prevalent statistical practice used in articles published in Nature, 89%, followed by articles published in Science, 42%. By contrast, in all other journals, both with high and lower impact factors, most articles report confidence intervals and/or effect size measures. We interpreted these differences as consequences of the editorial policies adopted by the journal editors, which are probably the most effective means to improve the statistical practices in journals with high or low impact factors.

  7. High Impact = High Statistical Standards? Not Necessarily So

    Science.gov (United States)

    Tressoldi, Patrizio E.; Giofré, David; Sella, Francesco; Cumming, Geoff

    2013-01-01

    What are the statistical practices of articles published in journals with a high impact factor? Are there differences compared with articles published in journals with a somewhat lower impact factor that have adopted editorial policies to reduce the impact of limitations of Null Hypothesis Significance Testing? To investigate these questions, the current study analyzed all articles related to psychological, neuropsychological and medical issues, published in 2011 in four journals with high impact factors: Science, Nature, The New England Journal of Medicine and The Lancet, and three journals with relatively lower impact factors: Neuropsychology, Journal of Experimental Psychology-Applied and the American Journal of Public Health. Results show that Null Hypothesis Significance Testing without any use of confidence intervals, effect size, prospective power and model estimation, is the prevalent statistical practice used in articles published in Nature, 89%, followed by articles published in Science, 42%. By contrast, in all other journals, both with high and lower impact factors, most articles report confidence intervals and/or effect size measures. We interpreted these differences as consequences of the editorial policies adopted by the journal editors, which are probably the most effective means to improve the statistical practices in journals with high or low impact factors. PMID:23418533

  8. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    Science.gov (United States)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  9. Decay properties of high-lying single-particles modes

    Science.gov (United States)

    Beaumel, D.; Fortier, S.; Galès, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J. M.; Vernotte, J.; Bordewijck, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G. M.; Massolo, C. P.; Renteria, M.; Khendriche, A.

    1996-02-01

    The neutron decay of high-lying single-particle states in 64Ni, 90Zr, 120Sn and 208Pb excited by means of the (α, 3He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in 91Zr, and between 8 and 12 MeV excitation energy in 209Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations.

  10. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  11. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  12. High-Definition Medicine.

    Science.gov (United States)

    Torkamani, Ali; Andersen, Kristian G; Steinhubl, Steven R; Topol, Eric J

    2017-08-24

    The foundation for a new era of data-driven medicine has been set by recent technological advances that enable the assessment and management of human health at an unprecedented level of resolution-what we refer to as high-definition medicine. Our ability to assess human health in high definition is enabled, in part, by advances in DNA sequencing, physiological and environmental monitoring, advanced imaging, and behavioral tracking. Our ability to understand and act upon these observations at equally high precision is driven by advances in genome editing, cellular reprogramming, tissue engineering, and information technologies, especially artificial intelligence. In this review, we will examine the core disciplines that enable high-definition medicine and project how these technologies will alter the future of medicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  14. High voltage generator circuit with low power and high efficiency applied in EEPROM

    International Nuclear Information System (INIS)

    Liu Yan; Zhang Shilin; Zhao Yiqiang

    2012-01-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (V th ) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation. (semiconductor integrated circuits)

  15. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy

    International Nuclear Information System (INIS)

    Gao, Xuzhou; Lu, Yiping; Zhang, Bo; Liang, Ningning; Wu, Guanzhong; Sha, Gang; Liu, Jizi; Zhao, Yonghao

    2017-01-01

    Recent studies indicate that eutectic high-entropy alloys can simultaneously possess high strength and high ductility, which have potential applications in industrial fields. Nevertheless, microstructural origins of the excellent strength–ductility combination remain unclear. In this study, an AlCoCrFeNi 2.1 eutectic high-entropy alloy was prepared with face-centered cubic (FCC)(L1 2 )/body-centered-cubic (BCC)(B2) modulated lamellar structures and a remarkable combination of ultimate tensile strength (1351 MPa) and ductility (15.4%) using the classical casting technique. Post-deformation transmission electron microscopy revealed that the FCC(L1 2 ) phase was deformed in a matter of planar dislocation slip, with a slip system of {111} <110>, and stacking faults due to low stacking fault energy. Due to extreme solute drag, high densities of dislocations are distributed homogeneously at {111} slip plane. In the BCC(B2) phase, some dislocations exist on two {110} slip bands. The atom probe tomography analysis revealed a high density of Cr-enriched nano-precipitates, which strengthened the BCC(B2) phase by Orowan mechanisms. Fracture surface observation revealed a ductile fracture in the FCC(L1 2 ) phase and a brittle-like fracture in the BCC(B2) lamella. The underlying mechanism for the high strength and high ductility of AlCoCrFeNi 2.1 eutectic high-entropy alloy was finally analyzed based on the coupling between the ductile FCC(L1 2 ) and brittle BCC(B2) phases.

  16. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid.

    Science.gov (United States)

    Anumula, K R; Dhume, S T

    1998-07-01

    Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods

  17. High-performance liquid chromatography of oligoguanylates at high pH

    Science.gov (United States)

    Stribling, R.; Deamer, D. (Principal Investigator)

    1991-01-01

    Because of the stable self-structures formed by oligomers of guanosine, standard high-performance liquid chromatography techniques for oligonucleotide fractionation are not applicable. Previously, oligoguanylate separations have been carried out at pH 12 using RPC-5 as the packing material. While RPC-5 provides excellent separations, there are several limitations, including the lack of a commercially available source. This report describes a new anion-exchange high-performance liquid chromatography method using HEMA-IEC BIO Q, which successfully separates different forms of the guanosine monomer as well as longer oligoguanylates. The reproducibility and stability at high pH suggests a versatile role for this material.

  18. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    Science.gov (United States)

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  19. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    Directory of Open Access Journals (Sweden)

    Tianzhu Yi

    2017-11-01

    Full Text Available This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR data processing. Several nonlinear chirp scaling (NLCS algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC. However, the azimuth depth of focusing (ADOF is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS algorithm that is proposed in this paper uses the method of series reverse (MSR to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  20. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization

    International Nuclear Information System (INIS)

    Li Yanbo; Zheng Maojun; Ma Li; Shen Wenzhong

    2006-01-01

    Stable high-field anodization (1500-4000 A m -2 ) for the fabrication of highly ordered porous anodic alumina films has been realized in a H 3 PO 4 -H 2 O-C 2 H 5 OH system. By maintaining the self-ordering voltage and adjusting the anodizing current density, high-quality self-ordered alumina films with a controllable inter-pore distance over a large range are achieved. The high anodizing current densities lead to high-speed film growth (4-10 μm min -1 ). The inter-pore distance is not solely dependent on the anodizing voltage, but is also influenced by the anodizing current density. This approach is simple and cost-effective, and is of great value for applications in diverse areas of nanotechnology

  1. Measurement of total angular momentum values of high-lying even ...

    Indian Academy of Sciences (India)

    Spectrally resolved laser-induced fluorescence technique was used to uniquely assign total angular momentum () values to high-lying even-parity energy levels of atomic samarium. Unique value assignment was done for seven energy levels in the energy region 34,800–36,200 cm-1 , recently observed and reported in ...

  2. "Live High-Train High" increases hemoglobin mass in Olympic swimmers

    DEFF Research Database (Denmark)

    Bonne, Thomas Christian; Lundby, Carsten; Jørgensen, Susanne

    2014-01-01

    PURPOSE: This study tested whether 3-4 weeks of classical "Live High-Train High" (LHTH) altitude training increases swim-specific VO2max through increased hemoglobin mass (Hbmass). METHODS: Ten swimmers lived and trained for more than 3 weeks between 2,130 and 3,094 m of altitude, and a control...

  3. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  4. High blood sugar

    Science.gov (United States)

    ... Alternative Names Hyperglycemia - self care; High blood glucose - self care; Diabetes - high blood sugar References American Diabetes Association. Standards of medical care in diabetes - 2017: 4. Lifestyle management and 6. Glycemic targets. Diabetes Care . 2017;40( ...

  5. High speed analysis of high pressure combustion in a constant volume cell

    NARCIS (Netherlands)

    Frijters, P.J.M.; Klein-Douwel, R.J.H.; Manski, S.S.; Somers, L.M.T.; Baert, R.S.G.; Dias, V.

    2005-01-01

    A combustion process with N2, O2 and C2H4 as fuel used in an opticallyaccessible, high pressure, high temperature, constant volume cell forresearch on diesel fuel spray formation, is studied. The flame frontspeed Vf,HS is determined using high speed imaging. The pressure traceof the combustion

  6. HIGH-GRADIENT, HIGH-TRANSFORMER-RATIO, DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-04-12

    The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P's approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. This is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in

  7. Athletes at High Altitude.

    Science.gov (United States)

    Khodaee, Morteza; Grothe, Heather L; Seyfert, Jonathan H; VanBaak, Karin

    2016-01-01

    Athletes at different skill levels perform strenuous physical activity at high altitude for a variety of reasons. Multiple team and endurance events are held at high altitude and may place athletes at increased risk for developing acute high altitude illness (AHAI). Training at high altitude has been a routine part of preparation for some of the high level athletes for a long time. There is a general belief that altitude training improves athletic performance for competitive and recreational athletes. A review of relevant publications between 1980 and 2015 was completed using PubMed and Google Scholar. Clinical review. Level 3. AHAI is a relatively uncommon and potentially serious condition among travelers to altitudes above 2500 m. The broad term AHAI includes several syndromes such as acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE). Athletes may be at higher risk for developing AHAI due to faster ascent and more vigorous exertion compared with nonathletes. Evidence regarding the effects of altitude training on athletic performance is weak. The natural live high, train low altitude training strategy may provide the best protocol for enhancing endurance performance in elite and subelite athletes. High altitude sports are generally safe for recreational athletes, but they should be aware of their individual risks. Individualized and appropriate acclimatization is an essential component of injury and illness prevention.

  8. High-Order Hamilton's Principle and the Hamilton's Principle of High-Order Lagrangian Function

    International Nuclear Information System (INIS)

    Zhao Hongxia; Ma Shanjun

    2008-01-01

    In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.

  9. Comparison of Diesel Spray Combustion in Different High-temperature, High-pressure Facilities

    DEFF Research Database (Denmark)

    Pickett, Lyle M.; Genzale, Caroline L.; Bruneaux, Gilles

    2010-01-01

    Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models...... participants in the ECN. Thus, in addition to the presentation of a comparative study, this paper demonstrates steps that are needed for other interested groups to participate in ECN spray research. We expect that this collaborative effort will generate a high-quality dataset to be used for advanced...

  10. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  11. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  12. Transistor reset preamplifier for high-rate high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Landis, D.A.; Cork, C.P.; Madden, N.W.; Goulding, F.S.

    1981-10-01

    Pulsed transistor reset of high resolution charge sensitive preamplifiers used in cooled semiconductor spectrometers can sometimes have an advantage over pulsed light reset systems. Several versions of transistor reset spectrometers using both silicon and germanium detectors have been built. This paper discusses the advantages of the transistor reset system and illustrates several configurations of the packages used for the FET and reset transistor. It also describes the preamplifer circuit and shows the performance of the spectrometer at high rates

  13. High pressure and high temperature EXAFS and diffraction study of AgI

    International Nuclear Information System (INIS)

    Yoshiasa, Akira; Arima, Hiroshi; Fukui, Hiroshi; Okube, Maki; Katayama, Yoshinori; Ohtaka, Osamu

    2009-01-01

    We have determined the precise P-T phase diagram of AgI by in-situ high-pressure high-temperature synchrotron experiments. X-ray diffraction and XAFS measurements were performed up to 6.0 GPa and 1100 K using a multi-anvil high-pressure device and synchrotron radiation from SPring-8. In the disordered rock-salt phase, Ag ions occupy both octahedral and tetrahedral sites and twenty percent of Ag ions occupy the tetrahedral site as a maximum value at 2 GPa. From the viewpoint of the local structure analyses, some sudden changes are recognized near broad phase transition point. Analysis of EXAFS Debye-Waller factor is useful because the force constant can be decided directly even at high pressure and high temperature. Pressure influences greatly the effective potential and anharmonicity decreases with increasing pressure. (author)

  14. High Field Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A Workshop was held in Frascati at the end of September under the title 'Generation of High Fields for Particle Acceleration to Very High Energies'. It was organized by the CERN Accelerator School, the European Committee for Future Accelerators (ECFA) and the Italian INFN and was a further stage in the exploratory moves towards new techniques of acceleration. Such techniques might become necessary to respond to the needs of high energy physics some decades from now when the application of conventional techniques will probably have reached their limits.

  15. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  16. Deep-hole and high-lying particle states in heavy nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1985-01-01

    Our present knowledge on single-particle strength functions from one nucleon transfer reactions is reviewed. Results on deeply-bound neutron hole states in the Sn and Pb region are discussed with emphasis on the investigation of a very large excitation energy range. The first measurements on the γ-decay of deeply-bound hole states in the Sn isotopes are reported. High energy neutron and proton stripping reactions are used to study the particle response function. These reactions are particularly well suited to the study of high-spin outer subshells. For the proton states, the behaviour of the 1h 11/2 and 1i 13/2 strength distributions, as a function of deformation in the Sm region, is discussed. Strong transitions to high-lying neutron states are observed in the 112, 116, 118, 120, 122, 124 Sn and 208 Pb nuclei. The empirical systematics for both proton and neutron particle strength distributions are compared to the predictions from the quasi particle-phonon and the single-particle vibration coupling nuclear models. (orig.)

  17. The CMS High Granularity Calorimeter for the High Luminosity LHC

    Science.gov (United States)

    Sauvan, J.-B.

    2018-02-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5-1 cm2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection.

  18. Operation of the LHC with Protons at High Luminosity and High Energy

    CERN Document Server

    Papotti, Giulia; Alemany-Fernandez, Reyes; Crockford, Guy; Fuchsberger, Kajetan; Giachino, Rossano; Giovannozzi, Massimo; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Lamont, Mike; Nisbet, David; Normann, Lasse; Pojer, Mirko; Ponce, Laurette; Redaelli, Stefano; Salvachua, Belen; Solfaroli Camillocci, Matteo; Suykerbuyk, Ronaldus; Uythoven, Jan; Wenninger, Jorg

    2016-01-01

    In 2015 the Large Hadron Collider (LHC) entered the first year in its second long Run, after a 2-year shutdown that prepared it for high energy. The first two months of beam operation were dedicated to setting up the nominal cycle for proton-proton operation at 6.5 TeV/beam, and culminated with the first physics with 3 nominal bunches/ring at 13 TeV CoM on 3 June. The year continued with a stepwise intensity ramp up that allowed reaching 2244 bunches/ring for a peak luminosity of ~5·10³³ cm⁻²s^{−1} and a total of just above 4 fb-1 delivered to the high luminosity experiments. Beam operation was shaped by the high intensity effects, e.g. electron cloud and macroparticle-induced fast losses (UFOs), which on a few occasions caused the first beam induced quenches at high energy. This paper describes the operational experience with high intensity and high energy at the LHC, together with the issues that had to be tackled along the way.

  19. Decay properties of high-lying single-particles modes

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D. [Institut de Physique Nucleaire, 91 - Orsay (France); Fortier, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Gales, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Guillot, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Langevin-Joliot, H. [Institut de Physique Nucleaire, 91 - Orsay (France); Laurent, H. [Institut de Physique Nucleaire, 91 -Orsay (France); Maison, J.M. [Institut de Physique Nucleaire, 91 - Orsay (France); Vernotte, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Bordewijck, J. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Brandenburg, S. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Krasznahorkay, A. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Crawley, G.M. [NSCL, Michigan State University, East Lansing, MI 48824 (United States); Massolo, C.P. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Renteria, M. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Khendriche, A. [University of Tizi-Ouzou, Tizi-Ouzou (Algeria)

    1996-03-18

    The neutron decay of high-lying single-particle states in {sup 64}Ni, {sup 90}Zr, {sup 120}Sn and {sup 208}Pb excited by means of the ({alpha},{sup 3}He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in {sup 91}Zr, and between 8 and 12 MeV excitation energy in {sup 209}Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations. (orig.).

  20. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Ngoc Thanh [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Tran, Tuan Kiet [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Department of Civil Engineering and Applied Mechanics, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan, Thu Duc District, Ho Chi Minh City (Viet Nam); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-03-15

    The tensile response of ultra-high-performance fiber-reinforced concretes (UHPFRCs) at high strain rates (5–24 s{sup −} {sup 1}) was investigated. Three types of steel fibers, including twisted, long and short smooth steel fibers, were added by 1.5% volume content in an ultra high performance concrete (UHPC) with a compressive strength of 180 MPa. Two different cross sections, 25 × 25 and 25 × 50 mm{sup 2}, of tensile specimens were used to investigate the effect of the cross section area on the measured tensile response of UHPFRCs. Although all the three fibers generated strain hardening behavior even at high strain rates, long smooth fibers produced the highest tensile resistance at high rates whereas twisted fiber did at static rate. The breakages of twisted fibers were observed from the specimens tested at high strain rates unlike smooth steel fibers. The tensile behavior of UHPFRCs at high strain rates was clearly influenced by the specimen size, especially in post-cracking strength.

  1. High frequency relay protection channels on super high voltage lines

    Energy Technology Data Exchange (ETDEWEB)

    Mikutskii, G V

    1964-08-01

    General aspects of high voltage transmission line design are discussed. The relationships between line voltage and length and line dimensions and power losses are explained. Electrical interference in the line is classified under three headings: interference under normal operating conditions, interference due to insulation faults, and interference due to variations in operating conditions of the high-voltage network.

  2. Technological Aspects: High Voltage

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered. (author)

  3. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high blood glucose (blood sugar). High ... We Are Research Leaders We Support Your Doctor Student Resources Patient Access to Research Research Resources Practice ...

  4. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  5. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  6. High-Temperature Ceramic Matrix Composite with High Corrosion Resistance

    Science.gov (United States)

    2010-06-02

    description of high temperature oxidation processes of composite ceramic materials of ZrB2 - SiC and ZrB2-SiC-Zr(Mo)Si2 systems up to high (~1300 °C...analysis was applied using MІN-7 mineralogical microscope and a set of standard immersion liquids with the known values of refraction coefficients...2.0 V) corresponds to the simultaneous formation of ZrO2 zirconium dioxide of monoclinic modification and Zr(OH)4 zirconium hydroxide which is

  7. When high-volume PCI operators in high-volume hospitals move to lower volume hospitals-Do they still maintain high volume and quality of outcomes?

    Science.gov (United States)

    Lu, Tsung-Hsueh; Li, Sheng-Tun; Liang, Fu-Wen; Lee, Jo-Chi; Yin, Wei-Hsian

    2017-10-31

    The aim of this quasi-experimental study was to examine whether high-volume percutaneous coronary intervention (PCI) operators still maintain high volume and quality of outcomes when they moved to lower volume hospitals. Systematic reviews have indicated that high-volume PCI operators and hospitals have higher quality outcomes. However, little is known on whether high PCI volume and high quality outcomes are mainly due to operator characteristics (i.e., skill and experience) and is portable across organizations or whether it is due to hospital characteristics (i.e., equipment, team, and management system) and is less portable. We used Taiwan National Health Insurance claims data 2000-2012 to identify 98 high-volume PCI operators, 10 of whom moved from one hospital to another during the study period. We compared the PCI volume, risk-adjusted mortality ratio, and major adverse cardiovascular event (MACE) ratio before and after moving. Of the 10 high-volume operators who moved, 6 moved from high- to moderate- or low-volume hospitals, with median annual PCI volumes (interquartile range) of 130 (117-165) in prior hospitals and 54 (46-84) in subsequent hospitals (the hospital the operator moved to), and the remaining 4 moved from high to high-volume hospitals, with median annual PCI volumes (interquartile range) of 151 (133-162) in prior hospitals and 193 (178-239) in subsequent hospitals. No significant differences were observed in the risk-adjusted mortality ratios and MACE ratios between high-volume operators and matched controls before and after moving. High-volume operators cannot maintain high volume when they moved from high to moderate or low-volume hospitals; however, the quality of care is maintained. High PCI volume and high-quality outcomes are less portable and more hospital bound. © 2017 Wiley Periodicals, Inc.

  8. Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis.

    Science.gov (United States)

    Guo, Chunxian; Zheng, Yao; Ran, Jingrun; Xie, Fangxi; Jaroniec, Mietek; Qiao, Shi-Zhang

    2017-07-10

    Engineering high-energy interfacial structures for high-performance electrocatalysis is achieved by chemical coupling of active CoO nanoclusters and high-index facet Mn 3 O 4 nano-octahedrons (hi-Mn 3 O 4 ). A thorough characterization, including synchrotron-based near edge X-ray absorption fine structure, reveals that strong interactions between both components promote the formation of high-energy interfacial Mn-O-Co species and high oxidation state CoO, from which electrons are drawn by Mn III -O present in hi-Mn 3 O 4 . The CoO/hi-Mn 3 O 4 demonstrates an excellent catalytic performance over the conventional metal oxide-based electrocatalysts, which is reflected by 1.2 times higher oxygen evolution reaction (OER) activity than that of Ru/C and a comparable oxygen reduction reaction (ORR) activity to that of Pt/C as well as a better stability than that of Ru/C (95 % vs. 81 % retained OER activity) and Pt/C (92 % vs. 78 % retained ORR activity after 10 h running) in alkaline electrolyte. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

  10. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  11. High current ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.

    1989-06-01

    The concept of high current ion source is both relative and evolutionary. Within the domain of one particular kind of ion source technology a current of microamperers might be 'high', while in another area a current of 10 Amperes could 'low'. Even within the domain of a single ion source type, what is considered high current performance today is routinely eclipsed by better performance and higher current output within a short period of time. Within their fields of application, there is a large number of kinds of ion sources that can justifiably be called high current. Thus, as a very limited example only, PIGs, Freemen sources, ECR sources, duoplasmatrons, field emission sources, and a great many more all have their high current variants. High current ion beams of gaseous and metallic species can be generated in a number of different ways. Ion sources of the kind developed at various laboratories around the world for the production of intense neutral beams for controlled fusion experiments are used to form large area proton deuteron beams of may tens of Amperes, and this technology can be used for other applications also. There has been significant progress in recent years in the use of microwave ion sources for high current ion beam generation, and this method is likely to find wide application in various different field application. Finally, high current beams of metal ions can be produced using metal vapor vacuum arc ion source technology. After a brief consideration of high current ion source design concepts, these three particular methods are reviewed in this paper

  12. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  13. High-speed and high-ratio referential genome compression.

    Science.gov (United States)

    Liu, Yuansheng; Peng, Hui; Wong, Limsoon; Li, Jinyan

    2017-11-01

    The rapidly increasing number of genomes generated by high-throughput sequencing platforms and assembly algorithms is accompanied by problems in data storage, compression and communication. Traditional compression algorithms are unable to meet the demand of high compression ratio due to the intrinsic challenging features of DNA sequences such as small alphabet size, frequent repeats and palindromes. Reference-based lossless compression, by which only the differences between two similar genomes are stored, is a promising approach with high compression ratio. We present a high-performance referential genome compression algorithm named HiRGC. It is based on a 2-bit encoding scheme and an advanced greedy-matching search on a hash table. We compare the performance of HiRGC with four state-of-the-art compression methods on a benchmark dataset of eight human genomes. HiRGC takes compress about 21 gigabytes of each set of the seven target genomes into 96-260 megabytes, achieving compression ratios of 217 to 82 times. This performance is at least 1.9 times better than the best competing algorithm on its best case. Our compression speed is also at least 2.9 times faster. HiRGC is stable and robust to deal with different reference genomes. In contrast, the competing methods' performance varies widely on different reference genomes. More experiments on 100 human genomes from the 1000 Genome Project and on genomes of several other species again demonstrate that HiRGC's performance is consistently excellent. The C ++ and Java source codes of our algorithm are freely available for academic and non-commercial use. They can be downloaded from https://github.com/yuansliu/HiRGC. jinyan.li@uts.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. High rate flame synthesis of highly crystalline iron oxide nanorods

    International Nuclear Information System (INIS)

    Merchan-Merchan, W; Taylor, A M; Saveliev, A V

    2008-01-01

    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe 3 O 4 ) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks

  15. Diagnostic accuracy of high-definition CT coronary angiography in high-risk patients

    International Nuclear Information System (INIS)

    Iyengar, S.S.; Morgan-Hughes, G.; Ukoumunne, O.; Clayton, B.; Davies, E.J.; Nikolaou, V.; Hyde, C.J.; Shore, A.C.; Roobottom, C.A.

    2016-01-01

    Aim: To assess the diagnostic accuracy of computed tomography coronary angiography (CTCA) using a combination of high-definition CT (HD-CTCA) and high level of reader experience, with invasive coronary angiography (ICA) as the reference standard, in high-risk patients for the investigation of coronary artery disease (CAD). Materials and methods: Three hundred high-risk patients underwent HD-CTCA and ICA. Independent experts evaluated the images for the presence of significant CAD, defined primarily as the presence of moderate (≥50%) stenosis and secondarily as the presence of severe (≥70%) stenosis in at least one coronary segment, in a blinded fashion. HD-CTCA was compared to ICA as the reference standard. Results: No patients were excluded. Two hundred and six patients (69%) had moderate and 178 (59%) had severe stenosis in at least one vessel at ICA. The sensitivity, specificity, positive predictive value, and negative predictive value were 97.1%, 97.9%, 99% and 93.9% for moderate stenosis, and 98.9%, 93.4%, 95.7% and 98.3%, for severe stenosis, on a per-patient basis. Conclusion: The combination of HD-CTCA and experienced readers applied to a high-risk population, results in high diagnostic accuracy comparable to ICA. Modern generation CT systems in experienced hands might be considered for an expanded role. - Highlights: • Diagnostic accuracy of High-Definition CT Angiography (HD-CTCA) has been assessed. • Invasive Coronary angiography (ICA) is the reference standard. • Diagnostic accuracy of HD-CTCA is comparable to ICA. • Diagnostic accuracy is not affected by coronary calcium or stents. • HD-CTCA provides a non-invasive alternative in high-risk patients.

  16. High-speed and high-fidelity system and method for collecting network traffic

    Science.gov (United States)

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  17. Chaos in high-power high-frequency gyrotrons

    International Nuclear Information System (INIS)

    Airila, M.

    2004-01-01

    Gyrotron interaction is a complex nonlinear dynamical process, which may turn chaotic in certain circumstances. The emergence of chaos renders dynamical systems unpredictable and causes bandwidth broadening of signals. Such effects would jeopardize the prospect of advanced gyrotrons in fusion. Therefore, it is important to be aware of the possibility of chaos in gyrotrons. There are three different chaos scenarios closely related to the development of high-power gyrotrons: First, the onset of chaos in electron trajectories would lead to difficulties in the design and efficient operation of depressed potential collectors, which are used for efficiency enhancement. Second, the radio-frequency signal could turn chaotic, decreasing the output power and the spectral purity of the output signal. As a result, mode conversion, transmission, and absorption efficiencies would be reduced. Third, spatio-temporal chaos in the resonator field structure can set a limit for the use of large-diameter interaction cavities and high-order TE modes (large azimuthal index) allowing higher generated power. In this thesis, the issues above are addressed with numerical modeling. It is found that chaos in electron residual energies is practically absent in the parameter region corresponding to high efficiency. Accordingly, depressed collectors are a feasible solution also in advanced high-power gyrotrons. A new method is presented for straightforward numerical solution of the one-dimensional self-consistent time-dependent gyrotron equations, and the method is generalized to two dimensions. In 1D, a chart of gyrotron oscillations is calculated. It is shown that the regions of stationary oscillations, automodulation, and chaos have a complicated topology in the plane of generalized gyrotron variables. The threshold current for chaotic oscillations exceeds typical operating currents by a factor of ten. However, reflection of the output signal may significantly lower the threshold. 2D

  18. High density high performance plasma with internal diffusion barrier in Large Helical Device

    International Nuclear Information System (INIS)

    Sakamoto, R.; Kobayashi, M.; Miyazawa, J.

    2008-10-01

    A attractive high density plasma operational regime, namely an internal diffusion barrier (IDB), has been discovered in the intrinsic helical divertor configuration on the Large Helical Device (LHD). The IDB which enables core plasma to access a high density/high pressure regime has been developed. It is revealed that the IDB is reproducibly formed by pellet fueling in the magnetic configurations shifted outward in major radius. Attainable central plasma density exceeds 1x10 21 m -3 . Central pressure reaches 1.5 times atmospheric pressure and the central β value becomes fairly high even at high magnetic field, i.e. β(0)=5.5% at B t =2.57 T. (author)

  19. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    International Nuclear Information System (INIS)

    Casse, G.; Glaser, M.; Lemeilleur, F.; Ruzin, A.; Wegrzecki, M.

    1999-01-01

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>10 17 atoms cm -3 ) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO 2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 μm thick silicon wafer

  20. High-Conflict Divorce.

    Science.gov (United States)

    Johnston, Janet R.

    1994-01-01

    Reviews available research studies of high-conflict divorce and its effects on children. Factors believed to contribute to high-conflict divorce are explored, and a model of their interrelationships is proposed. Dispute resolution, intervention, and prevention programs are discussed, and implications for social policy are outlined. (SLD)

  1. High current and high power superconducting rectifiers

    International Nuclear Information System (INIS)

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  2. CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank

    International Nuclear Information System (INIS)

    Tashkun, S.A.; Perevalov, V.I.

    2011-01-01

    We present a high-resolution, high-temperature version of the Carbon Dioxide Spectroscopic Databank called CDSD-4000. The databank contains the line parameters (positions, intensities, air- and self-broadened half-widths, coefficients of temperature dependence of air- and self-broadened half-widths, and air-broadened pressure shifts) of the four most abundant isotopologues of CO 2 . A reference temperature is 296 K and an intensity cutoff is 10 -27 cm -1 /molecule cm -2 at 4000 K. The databank has 628,324,454 entries, covers the 226-8310 cm -1 spectral range and designed for the temperature range 2500-5000 K. Format of CDSD-4000 is similar to that of HITRAN-2008. The databank has been generated within the framework of the method of effective operators and based on the global fittings of spectroscopic parameters (parameters of the effective Hamiltonians and effective dipole moment operators) to observed data collected from the literature. The databank is useful for studying high-temperature radiative properties of CO 2 , including exoplanets atmospheres, aerothemal modeling for Mars entry missions, high-temperature laboratory spectra, and industrial applications. CDSD-4000 is freely accessible via the Internet site (ftp://ftp.iao.ru/pub/CDSD-4000).

  3. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  4. High voltage high brightness electron accelerators with MITL voltage adder coupled to foilless diodes

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Frost, C.A.; Shope, S.L.; Halbleib, J.A.; Turman, B.N.

    1993-01-01

    During the last ten years the authors have extensively studied the physics and operation of magnetically-immersed electron foilless diodes. Most of these sources were utilized as injectors to high current, high energy linear induction accelerators such as those of the RADLAC family. Recently they have experimentally and theoretically demonstrated that foilless diodes can be successfully coupled to self-magnetically insulated transmission line voltage adders to produce very small high brightness, high definition (no halo) electron beams. The RADLAC/SMILE experience opened the path to a new approach in high brightness, high energy induction accelerators. There is no beam drifting through the device. The voltage addition occurs in a center conductor, and the beam is created at the high voltage end in an applied magnetic field diode. This work was motivated by the remarkable success of the HERMES-III accelerator and the need to produce small radius, high energy, high current electron beams for air propagation studies and flash x-ray radiography. In this paper they present experimental results compared with analytical and numerical simulations in addition to design examples of devices that can produce multikiloamp electron beams of as high as 100 MV energies and radii as small as 1 mm

  5. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  6. Theoretical description of high-lying two-electrons states

    International Nuclear Information System (INIS)

    Greene, C.H.; Cavagnero, M.; Sadeghpour, H.R.

    1993-01-01

    Within the past two years, experiments on high-lying doubly-excited states in He and H- have shown spectra at energies near excited hydrogenic thresholds having principal quantum numbers in the range N=5--9. While they display some nontrivial complexities, the spectra are tremendously simpler than might be anticipated on the basis of independent electron models, in that only a small fraction of the total number of anticipated resonances are observed experimentally. Moreover, for principal quantum number N that are not too high, specifically N - , the resonance positions are described accurately by adiabatic calculations using hyperspherical coordinates and can be parametrized by a remarkably simple two-electron Rydberg formula. The observed propensity for excitation of only a small subset of the possible resonance states has been codified by several groups into approximate selection rules based on alternative (but apparently equivalent) classification schemes. Comparatively few attempts have been made at quantitative tests of the validity of these rules. The present review describes recent efforts to quantify their accuracy and limitations using R-matrix and quantum defect techniques, and Smith's delay-time matrix. Prospensity rules for exciting different degrees of freedom are found to differ greatly in their degree of validity

  7. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  8. Workshop on High Power ICH Antenna Designs for High Density Tokamaks

    Science.gov (United States)

    Aamodt, R. E.

    1990-02-01

    A workshop in high power ICH antenna designs for high density tokamaks was held to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of RF auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made.

  9. Spectroscopic studies of sulfite-based polyoxometalates at high temperature and high pressure

    International Nuclear Information System (INIS)

    Quesada Cabrera, Raul; Firth, Steven; Blackman, Christopher S.; Long, De-Liang; Cronin, Leroy; McMillan, Paul F.

    2012-01-01

    Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. - Graphical abstract: Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. Highlights: ► Spectroscopy studies of non-conventional Wells–Dawson polyoxometalates (POMs) at high temperature and high pressure. ► Discussion on the stability of two POM isomers. ► Local formation of bronze-like materials: possibilities for a new synthetic method at high pressure from POM precursors.

  10. Effects of high mean stress on the high-cycle fatigue behavior of PWA 1480

    International Nuclear Information System (INIS)

    Majumdar, S.; Antolovich, S.; Milligan, W.

    1985-03-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the Space Shuttle Main Engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. This paper describes results obtained in an ongoing program to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material

  11. High Thermoelectric Power Factor of High-Mobility 2D Electron Gas.

    Science.gov (United States)

    Ohta, Hiromichi; Kim, Sung Wng; Kaneki, Shota; Yamamoto, Atsushi; Hashizume, Tamotsu

    2018-01-01

    Thermoelectric conversion is an energy harvesting technology that directly converts waste heat from various sources into electricity by the Seebeck effect of thermoelectric materials with a large thermopower ( S ), high electrical conductivity (σ), and low thermal conductivity (κ). State-of-the-art nanostructuring techniques that significantly reduce κ have realized high-performance thermoelectric materials with a figure of merit ( ZT = S 2 ∙σ∙ T ∙κ -1 ) between 1.5 and 2. Although the power factor (PF = S 2 ∙σ) must also be enhanced to further improve ZT , the maximum PF remains near 1.5-4 mW m -1 K -2 due to the well-known trade-off relationship between S and σ. At a maximized PF, σ is much lower than the ideal value since impurity doping suppresses the carrier mobility. A metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) structure on an AlGaN/GaN heterostructure is prepared. Applying a gate electric field to the MOS-HEMT simultaneously modulates S and σ of the high-mobility electron gas from -490 µV K -1 and ≈10 -1 S cm -1 to -90 µV K -1 and ≈10 4 S cm -1 , while maintaining a high carrier mobility (≈1500 cm 2 V -1 s -1 ). The maximized PF of the high-mobility electron gas is ≈9 mW m -1 K -2 , which is a two- to sixfold increase compared to state-of-the-art practical thermoelectric materials.

  12. High-brightness electron injectors

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1987-01-01

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  13. High bandgap III-V alloys for high efficiency optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  14. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  15. Development of high sensitivity and high speed large size blank inspection system LBIS

    Science.gov (United States)

    Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko

    2017-07-01

    The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.

  16. A digital approach for real time high-rate high-resolution radiation measurements

    International Nuclear Information System (INIS)

    Gerardi, G.; Abbene, L.

    2014-01-01

    Modern spectrometers are currently developed by using digital pulse processing (DPP) systems, showing several advantages over traditional analog electronics. The aim of this work is to present digital strategies, in a time domain, for the development of real time high-rate high-resolution spectrometers. We propose a digital method, based on the single delay line (SDL) shaping technique, able to perform multi-parameter analysis with high performance even at high photon counting rates. A robust pulse shape and height analysis (PSHA), applied on single isolated time windows of the detector output waveforms, is presented. The potentialities of the proposed strategy are highlighted through both theoretical and experimental approaches. To strengthen our approach, the implementation of the method on a real-time system together with some experimental results are presented. X-ray spectra measurements with a semiconductor detector are performed both at low and high photon counting rates (up to 1.1 Mcps)

  17. A digital approach for real time high-rate high-resolution radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, G.; Abbene, L., E-mail: leonardo.abbene@unipa.it

    2014-12-21

    Modern spectrometers are currently developed by using digital pulse processing (DPP) systems, showing several advantages over traditional analog electronics. The aim of this work is to present digital strategies, in a time domain, for the development of real time high-rate high-resolution spectrometers. We propose a digital method, based on the single delay line (SDL) shaping technique, able to perform multi-parameter analysis with high performance even at high photon counting rates. A robust pulse shape and height analysis (PSHA), applied on single isolated time windows of the detector output waveforms, is presented. The potentialities of the proposed strategy are highlighted through both theoretical and experimental approaches. To strengthen our approach, the implementation of the method on a real-time system together with some experimental results are presented. X-ray spectra measurements with a semiconductor detector are performed both at low and high photon counting rates (up to 1.1 Mcps)

  18. A high pulsed power supply system designed for pulsed high magnetic field

    International Nuclear Information System (INIS)

    Liu Kefu; Wang Shaorong; Zhong Heqing; Xu Yan; Pan Yuan

    2008-01-01

    This paper introduces the design of high pulsed power supply system for producing pulsed high magnetic field up to 70 T. This system consists of 58 sets of 55 μF of capacitor bank which provides 1.0 MJ energy storage. A set of vacuum closing switch is chosen as main switch for energy discharge into magnetic coil. A crowbar circuit with high power diodes in series with resistor is used to absorb the redundant energy and adjust pulse width. The resistance of magnetic coil changing with current is deduced by energy balance equations. A capacitor-charging power supply using a series-resonant, constant on-time variable frequency control, and zero-current switching charges the capacitor bank in one minute time with high efficiency. The pulsed power supply provides adjustable current and pulse width with 30 kA peak and 30 ms maximum. The primary experiments demonstrate the system reliability. This work provides an engineering guidance for future development of pulsed high magnetic field. (authors)

  19. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    Science.gov (United States)

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Applications of high-throughput clonogenic survival assays in high-LET particle microbeams

    Directory of Open Access Journals (Sweden)

    Antonios eGeorgantzoglou

    2016-01-01

    Full Text Available Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-LET particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells’ clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells’ response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell’s capacity to divide at least 4-5 times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  1. Applications of High-Throughput Clonogenic Survival Assays in High-LET Particle Microbeams.

    Science.gov (United States)

    Georgantzoglou, Antonios; Merchant, Michael J; Jeynes, Jonathan C G; Mayhead, Natalie; Punia, Natasha; Butler, Rachel E; Jena, Rajesh

    2015-01-01

    Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-linear energy transfer (LET) particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells' clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells' response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell's capacity to divide at least four to five times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  2. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  3. High flying physics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Cosmic ray physicists have always had to aim high. In the constant search for interactions produced as close as possible to the immensely high primary particles entering the earth's atmosphere from outer space, they have installed experiments on high mountain peaks and flown detectors aloft in balloons. In these studies, there have been periodic sightings of remarkable configurations of secondary particles. These events, many of which bear exotic names like Centauro, Andromeda, Texas Lone Star, etc., frequently defy explanation in terms of conventional physics ideas and give a glimpse of what may lie beyond the behaviour seen so far under laboratory conditions

  4. 3D printed high performance strain sensors for high temperature applications

    Science.gov (United States)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  5. High Line

    DEFF Research Database (Denmark)

    Kiib, Hans

    2015-01-01

    At just over 10 meters above street level, the High Line extends three kilometers through three districts of Southwestern Manhattan in New York. It consists of simple steel construction, and previously served as an elevated rail line connection between Penn Station on 34th Street and the many....... The High Line project has been carried out as part of an open conversion strategy. The result is a remarkable urban architectural project, which works as a catalyst for the urban development of Western Manhattan. The greater project includes the restoration and reuse of many old industrial buildings...

  6. High-order shock-fitted detonation propagation in high explosives

    Science.gov (United States)

    Romick, Christopher M.; Aslam, Tariq D.

    2017-03-01

    A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting

  7. Journalism Beyond High School.

    Science.gov (United States)

    Turner, Sally

    2001-01-01

    Discusses the shift from high school journalism to college journalism for students. Describes the role of the high school journalism advisor in that process. Offers checklists for getting to know a college publication. Outlines ways high school journalism teachers can take advantage of journalism resources available at local colleges and…

  8. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  9. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  10. High enthalpy gas dynamics

    CERN Document Server

    Rathakrishnan, Ethirajan

    2014-01-01

    This is an introductory level textbook which explains the elements of high temperature and high-speed gas dynamics. written in a clear and easy to follow style, the author covers all the latest developments in the field including basic thermodynamic principles, compressible flow regimes and waves propagation in one volume covers theoretical modeling of High Enthalpy Flows, with particular focus on problems in internal and external gas-dynamic flows, of interest in the fields of rockets propulsion and hypersonic aerodynamics High enthalpy gas dynamics is a compulsory course for aerospace engine

  11. Reconciliation of high-tech and high-touch for SME innovation performance in Indonesia

    OpenAIRE

    RIDUAN R.

    2017-01-01

    The euphoria of technology in the Internet of Things (IOT) era is not only more advantageous but also provides double-edged sword effect for high-tech SMEs. In general, high-tech SMEs have a dependence on technology and neglect high touch aspect capacity to build relationships with human resources. Ironically, it is otherwise allegedly in an action as it is assumed to cause innovation imbalance where the product of SME innovation is high-tech but low-touch. Given its importance, this study ai...

  12. High resolution study of high mass pairs and high transverse momentum particles

    International Nuclear Information System (INIS)

    Smith, S.R.

    1983-01-01

    Preliminary experiments involving the high resolution spectrometer (experiment 605) at Fermilab are described. The spectrometer is designed for the study of pairs of particles at large invariant masses and single particles at large transverse momenta. A number of applications of the apparatus in the study of Drell-Yan processes, e.g. transverse momentum measurement, are discussed

  13. High-temperature mechanical properties of high-purity 70 mass% Cr-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, M.; Harima, N.; Takaki, S.; Abiko, K. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2002-01-16

    An ingot of high-purity 70 mass% Cr-Fe alloy was prepared by high-frequency induction melting in a high-purity argon atmosphere using a cold copper crucible. Its tensile properties such as hot-ductility and tensile strength were measured, and compared with the results for a high-purity 50 mass% Cr-Fe alloy, a high-purity 60 mass% Cr-Fe alloy and a Ni-based super-alloy. The formation of {sigma}-phase was also examined. The purity of a 70Cr-Fe alloy (70 mass% Cr-Fe alloy) ingot is more than 99.98 mass% and the total amount of gaseous impurities (C, N, O, S, H) in the 70Cr-Fe alloy is 69.9 mass ppm. The strength of the 70Cr-Fe alloy is higher than those of the 60Cr-Fe alloy and the 50Cr-Fe alloy at the temperatures between 293 and 1573 K, without decrease in ductility with increasing Cr content. The 70Cr-Fe alloy also possesses excellent high-temperature ductility. The {sigma}-phase was not observed after aging of 3.6 Ms at 873 K. Consequently, the 70Cr-Fe alloy is an excellent alloy as the base of super heat-resistant alloys. (orig.)

  14. High speed atom source

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi.

    1990-01-01

    In a high speed atom source, since the speed is not identical between ions and electrons, no sufficient neutralizing effect for ionic rays due to the mixing of the ionic rays and the electron rays can be obtained failing to obtain high speed atomic rays at high density. In view of the above, a speed control means is disposed for equalizing the speed of ions forming ionic rays and the speed of electrons forming electron rays. Further, incident angle of the electron rays and/or ionic rays to a magnet or an electrode is made variable. As a result, the relative speed between the ions and the electrons to the processing direction is reduced to zero, in which the probability of association between the ions and the electrons due to the coulomb force is increased to improve the neutralizing efficiency to easily obtain fine and high density high speed electron rays. Further, by varying the incident angle, a track capable of obtaining an ideal mixing depending on the energy of the neutralized ionic rays is formed. Since the high speed electron rays has such high density, they can be irradiated easily to the minute region of the specimen. (N.H.)

  15. Workshop on high power ICH antenna designs for high density tokamaks

    International Nuclear Information System (INIS)

    Aamodt, R.E.

    1990-01-01

    A workshop in high power ICH antenna designs for high density tokamaks was held in Boulder, Colorado on January 31 through February 2, 1990. The purposes of the workshop were to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of rf auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made

  16. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  17. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    Science.gov (United States)

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  18. High performance germanium MOSFETs

    International Nuclear Information System (INIS)

    Saraswat, Krishna; Chui, Chi On; Krishnamohan, Tejas; Kim, Donghyun; Nayfeh, Ammar; Pethe, Abhijit

    2006-01-01

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO x N y ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin (∼2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices

  19. High performance germanium MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Saraswat, Krishna [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)]. E-mail: saraswat@stanford.edu; Chui, Chi On [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Krishnamohan, Tejas [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Kim, Donghyun [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Nayfeh, Ammar [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Pethe, Abhijit [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-12-15

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO {sub x}N {sub y} ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin ({approx}2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices.

  20. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

    International Nuclear Information System (INIS)

    Haddad, Ferid; Guertin, Arnaud; Michel, Nathalie; Ferrer, Ludovic; Carlier, Thomas; Barbet, Jacques; Chatal, Jean-Francois

    2008-01-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ( 67 Cu, 47 Sc) or alpha ( 211 At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ( 64 Cu, 124 I, 44 Sc), or that can be generator-produced ( 82 Rb, 68 Ga) or providing the opportunity of a new imaging modality ( 44 Sc) are considered to have a great interest at short term whereas 86 Y, 52 Fe, 55 Co, 76 Br or 89 Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs. (orig.) 5

  1. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  2. High-silica glass matrix process for high-level waste solidification

    International Nuclear Information System (INIS)

    Simmons, J.H.; Macedo, P.B.

    1981-01-01

    In the search for an optimum glass matrix composition, we have determined that chemical durability and thermal stability are maximized, and that stress development is minimized for glass compositions containing large concentrations of glass-forming oxides, of which silica is the major component (80 mol%). These properties and characteristics were recently demonstrated to belong to very old geological glasses known as tektites (ages of 750,000 to 34 million years.) The barrier to simulating tektite compositions for the waste glasses was the high melting temperature (1600 to 1800 0 C) needed for these glasses. Such temperatures greatly complicate furnace design and maintenance and lead to an intolerable vaporization of many of the radioisotopes into the off-gas system. Research conducted at our laboratory led to the development of a porous high-silica waste glass material with approximately 80% SiO 2 by mole and 30% waste loading by weight. The process can handle a wide variety of compositions, and yields long, elliptical, monolithic samples, which consist of a loaded high-silica core completely enveloped in a high-silica glass tube, which has collapsed upon the core and sealed it from the outside. The outer glass layer is totally free of waste isotopes and provides an integral multibarrier protection system

  3. Evaluating High School IT

    Science.gov (United States)

    Thompson, Brett A.

    2004-01-01

    Since its inception in 1997, Cisco's curriculum has entered thousands of high schools across the U.S. and around the world for two reasons: (1) Cisco has a large portion of the computer networking market, and thus has the resources for and interest in developing high school academies; and (2) high school curriculum development teams recognize the…

  4. Principals' Perceptions of Professional Development in High- and Low-Performing High-Poverty Schools

    Science.gov (United States)

    Moore, Sheila; Kochan, Frances

    2013-01-01

    This is the second part of a two-part study examining issues related to professional development in high-poverty schools. The findings from the initial study indicated that principals in high-poverty, high-performing schools perceived higher levels of implementation of quality professional development standards in their schools than did principals…

  5. Hardness of high-pressure high-temperature treated single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kawasaki, S.; Nojima, Y.; Yokomae, T.; Okino, F.; Touhara, H.

    2007-01-01

    We have performed high-pressure high-temperature (HPHT) treatments of high quality single-walled carbon nanotubes (SWCNTs) over a wide pressure-temperature range up to 13 GPa-873 K and have investigated the hardness of the HPHT-treated SWCNTs using a nanoindentation technique. It was found that the hardness of the SWCNTs treated at pressures greater than 11 GPa and at temperatures higher than 773 K is about 10 times greater than that of the SWCNTs treated at low temperature. It was also found that the hardness change of the SWCNTs is related to the structural change by the HPHT treatments which was based on synchrotron X-ray diffraction measurements

  6. Review - X-ray diffraction measurements in high magnetic fields and at high temperatures

    Directory of Open Access Journals (Sweden)

    Yoshifuru Mitsui, Keiichi Koyama and Kazuo Watanabe

    2009-01-01

    Full Text Available A system was developed measuring x-ray powder diffraction in high magnetic fields up to 5 T and at temperatures from 283 to 473 K. The stability of the temperature is within 1 K over 6 h. In order to examine the ability of the system, the high-field x-ray diffraction measurements were carried out for Si and a Ni-based ferromagnetic shape-memory alloy. The results show that the x-ray powder diffraction measurements in high magnetic fields and at high temperatures are useful for materials research.

  7. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia

    OpenAIRE

    Jessie R. Wilburn; Jeffrey Bourquin; Andrea Wysong; Christopher L. Melby

    2015-01-01

    Introduction Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Methods Eight ...

  8. Fixing High Schools

    Science.gov (United States)

    Perkins-Gough, Deborah

    2005-01-01

    Reports from national education organizations in the US indicate the sorry state of high schools in the country that are accused of failing to adequately prepare their graduates for college or for the workforce, highlighting what is a serious problem in light of the troubled state of the US economy. The need to improve high schools is urgent and…

  9. Proxmox high availability

    CERN Document Server

    Cheng, Simon MC

    2014-01-01

    If you want to know the secrets of virtualization and how to implement high availability on your services, this is the book for you. For those of you who are already using Proxmox, this book offers you the chance to build a high availability cluster with a distributed filesystem to further protect your system from failure.

  10. Integrated and comparative proteomics of high-oil and high-protein soybean seeds.

    Science.gov (United States)

    Xu, Xiu Ping; Liu, Hui; Tian, Lihong; Dong, Xiang Bai; Shen, Shi Hua; Qu, Le Qing

    2015-04-01

    We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. High mortality in diabetic recipients of high KDPI deceased donor kidneys.

    Science.gov (United States)

    Pelletier, Ronald P; Pesavento, Todd E; Rajab, Amer; Henry, Mitchell L

    2016-08-01

    Deceased donor (DD) kidney quality is determined by calculating the Kidney Donor Profile Index (KDPI). Optimizing high KDPI (≥85%) DD transplant outcome is challenging. This retrospective study was performed to review our high KDPI DD transplant results to identify clinical practices that can improve future outcomes. We retrospectively calculated the KDPI for 895 DD kidney recipients transplanted between 1/2002 and 11/2013. Age, race, body mass index (BMI), retransplantation, gender, diabetes (DM), dialysis time, and preexisting coronary artery disease (CAD) (previous myocardial infarction (MI), coronary artery bypass (CABG), or stenting) were determined for all recipients. About 29.7% (266/895) of transplants were from donors with a KDPI ≥85%. By Cox regression older age, diabetes, female gender, and dialysis time >4 years correlated with shorter patient survival time. Diabetics with CAD who received a high KDPI donor kidney had a significantly increased risk of death (HR 4.33 (CI 1.82-10.30), P=.001) compared to low KDPI kidney recipients. The Kaplan-Meier survival curve for diabetic recipients of high KDPI kidneys was significantly worse if they had preexisting CAD (P<.001 by log-rank test). Patient survival using high KDPI donor kidneys may be improved by avoiding diabetic candidates with preexisting CAD. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Pedagogical Stances of High School ESL Teachers: "Huelgas" in High School ESL Classrooms

    Science.gov (United States)

    del Carmen Salazar, Maria

    2010-01-01

    This article presents a qualitative case study of the pedagogical stances of high school English as a Second Language (ESL) teachers, and the subsequent responses of resistance or conformity by their English Language Learners (ELLs). The participants include three high school ESL teachers and 60 high school ESL students of Mexican origin. Findings…

  13. Manga High: Literacy, Identity, and Coming of Age in an Urban High School

    Science.gov (United States)

    Bitz, Michael

    2009-01-01

    Based on a four-year study, "Manga High" explores the convergence of literacy, creativity, social development, and personal identity in one of New York City's largest high schools. Since 2004, students at Martin Luther King, Jr., High School in Manhattan have been creating manga--Japanese comic books. They write the stories, design the…

  14. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  15. Nb effect on Zr-alloy oxidation under high pressure steam at high temperatures

    International Nuclear Information System (INIS)

    Park, Kwangheon; Yang, Sungwoo; Kim, Kyutae

    2005-01-01

    The high-pressure steam effects on the oxidation of Zircaloy-4 (Zry-4) and Zirlo (Zry-1%Nb) claddings at high temperature have been analyzed. Test temperature range was 700-900degC, and pressures were 1-150 bars. High pressure-steam enhances oxidation of Zry-4, and the dependency of enhancement looks exponential to steam pressure. The origin of the oxidation enhancement turned out to be the formation of cracks in oxide. The loss of tetragonal phase by high-pressure steam seems related to the crack formation. Addition of Nb as an alloying element to Zr alloy reduces significantly the steam pressure effects on oxidation. The higher compressive stresses and the smaller fraction of tetragonal oxides in Zry-1%Nb seem to be the diminished effect of high-pressure steam on oxidation. (author)

  16. The measurement for level of marine high-temperature and high-pressure vessels

    International Nuclear Information System (INIS)

    Lin Jie.

    1986-01-01

    The various error factors in measurement for level of marine high-temperature and high-pressure vessels are anslysed. The measuring method of error self compensation and its simplification for land use are shown

  17. Design practice and operational experience of highly irradiated, high-performance normal magnets

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1982-09-01

    The limitations of high performance magnets are discussed in terms of mechanical, temperature, and electrical limits. The limitations of magnets that are highly irradiated by neutrons, gamma radiation, or x radiation are discussed

  18. Early College High Schools

    Science.gov (United States)

    Dessoff, Alan

    2011-01-01

    For at-risk students who stand little chance of going to college, or even finishing high school, a growing number of districts have found a solution: Give them an early start in college while they still are in high school. The early college high school (ECHS) movement that began with funding from the Bill and Melinda Gates Foundation 10 years ago…

  19. Design of high current bunching system and high power fast Faraday cup for high current LEBT at VECC

    International Nuclear Information System (INIS)

    Anuraag Misra, A.; Pandit, B.V.S.; Gautam Pal, C.

    2011-01-01

    A high current microwave ion source as described is currently operational at VECC. We are able to optimize 6.4 mA of proton current in the LEBT line of ion source. The cyclotron type of accelerators accept only a fraction of DC ion beam coming from ion source so a ion beam buncher is needed to increase the accepted current into the cyclotron. The buncher described in this paper is unique in its kind as it has to handle high beam loading power upto 400 W as it is designed to bunch few mA of proton beam currents at 80 keV beam energy. A sinusoidal quarter wave RF structure has been chosen to bunch the high current beam due to high Q achievable in comparison with other configurations. This buncher has been designed using CST Microwave studio 3D advanced code since the design frequency of our buncher is 42 MHz, we have provided the RF and vacuum window near the drift tube of buncher to avoid vacuum and multipacting problems and to keep maximum volume in air region. There is a provision of multipacting interlocks to shut off amplifier during multipacting. We have carried out a detailed electromagnetic and thermal design of the buncher in CST Microwave studio and simulated values of unloaded Q was calculated be 4000. We have estimated a power of 400 W to achieve gap (designed) voltage of 10 kV. This buncher is in advanced stage of fabrication. A high power fast Faraday cup is also designed to characterize the above mentioned high current bunching system. The fast Faraday cup is designed in 50 Ω coaxial geometry to transmit fast pulse of bunched ion beam. The design of Faraday cup was completed using ANSYS HFSS and a bandwidth of 1.75 GHz was achieved this faraday cup design was different from conventional Faraday cup design as we have designed the support and cooling lines at such a place on Faraday cup which do not disturb the electrical impedance of the cup. (author)

  20. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    Science.gov (United States)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  1. Modelling of high-enthalpy, high-Mach number flows

    International Nuclear Information System (INIS)

    Degrez, G; Lani, A; Panesi, M; Chazot, O; Deconinck, H

    2009-01-01

    A review is made of the computational models of high-enthalpy flows developed over the past few years at the von Karman Institute and Universite Libre de Bruxelles, for the modelling of high-enthalpy hypersonic (re-)entry flows. Both flows in local thermo-chemical equilibrium (LTE) and flows in thermo-chemical non-equilibrium (TCNEQ) are considered. First, the physico-chemical models are described, i.e. the set of conservation laws, the thermodynamics, transport phenomena and chemical kinetics models. Particular attention is given to the correct modelling of elemental (LTE flows) and species (chemical non-equilibrium-CNEQ-flows) transport. The numerical algorithm, based on a state-of-the-art finite volume discretization, is then briefly described. Finally, selected examples are included to illustrate the capabilities of the developed solver. (review article)

  2. Evaluation of the high-voltage high-frequency transformer insulating materials for satellites

    International Nuclear Information System (INIS)

    Kurita, Hiroshi; Hasegawa, Taketoshi; Hirasawa, Eiichi; Gonai, Toshio; Ohsuga, Hiroyuki.

    1987-01-01

    Environment resistance evaluation was made of the insulating materials of impregnated injection type for high-voltage high-frequency transformers mounted in satellites. (1) The stress occurring in the impregnated injection type resin is small in silicon resin and urethane resin and large in epoxy resin. (2) The dielectric characteristic at high frequency is good in silicone resin. In epoxy resin, when the transformer is operated at high temperature, its thermal runaway may take place. (3) The radiation deterioration at 1 Mrad - 10 Mrad is slight in urethane resin. (4) The degassing is not good in silicone resin. (5) The adhesive power is good in urethane resin. (6) From the above results, in silicone resin there is problem in degassing and adhesive power. In epoxy resin there is problem in stress and dielectric characteristic. (Mori, K.)

  3. Re-Conceptualizing Extra Help for High School Students in a High Standards Era.

    Science.gov (United States)

    Balfanz, Robert; McPartland, James; Shaw, Alta

    The push for higher academic standards has resulted in an increase in the numbers of high school students needing extra help. The need for extra help is most pervasive in high-poverty areas and most high school students need extra help not in traditional basic elementary skills but in reading, mathematics, and advanced reasoning skills. Most…

  4. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  5. A high-temperature, high-pressure, silver-silver chloride reference electrode

    International Nuclear Information System (INIS)

    King, F.; Bailey, M.G.; Clarke, C.F.; Ikeda, B.M.; Litke, C.D.; Ryan, S.R.

    1989-05-01

    A high-temperature, high-pressure, silver-silver chloride reference electrode is described. This report is meant to serve as a user's guide to the experimentalist. Consequently, the design and construction of the electrode are dealt with in some detail. The problems that may be encountered, along with their possible causes and remedies, are also discussed. Conversion factors are given for both internal and external reference electrodes, so that measured potentials can be related to the standard hydrogen electrode scale

  6. Multidimensional high harmonic spectroscopy

    International Nuclear Information System (INIS)

    Bruner, Barry D; Soifer, Hadas; Shafir, Dror; Dudovich, Nirit; Serbinenko, Valeria; Smirnova, Olga

    2015-01-01

    High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena. (paper)

  7. Production of high-specific activity radionuclides using SM high-flux reactor

    International Nuclear Information System (INIS)

    Karelin, Ye.A.; Toporov, Yu.G.; Filimonov, V.T.; Vakhetov, F.Z.; Tarasov, V.A.; Kuznetsov, R.A.; Lebedev, V.M.; Andreev, O.I.; Melnik, M.I.; Gavrilov, V.D.

    1997-01-01

    The development of High Specific Activity (HSA) radionuclides production technologies is one of the directions of RIAR activity, and the high flux research reactor SM, having neutron flux density up to 2.10 15 cm -2 s 1 in a wide range of neutron spectra hardness, plays the principal role in this development. The use of a high-flux reactor for radionuclide production provides the following advantages: production of radionuclides with extremely high specific activity, decreasing of impurities content in irradiated targets (both radioactive and non-radioactive), cost-effective use of expensive isotopically enriched target materials. The production technologies of P-33, Gd-153, W-188, Ni-63, Fe-55,59, Sn-113,117m,119m, Sr- 89, applied in industry, nuclear medicine, research, etc, were developed by RIAR during the last 5-10 years. The research work included the development of calculation procedures for radionuclide reactor accumulation forecast, experimental determination of neutron cross-sections, the development of irradiated materials reprocessing procedures, isolation and purification of radionuclides. The principal results are reviewed in the paper. (authors)

  8. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    Science.gov (United States)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  9. High Touch in a High-Tech World

    Science.gov (United States)

    Gibson, Cindy L.

    2009-01-01

    In a world of high tech and low touch, it is easy for public relations programs to stray from tried-and-true interpersonal strategies long associated with solid communication planning. New technologies allow communications professionals to quickly send e-mails and telephone calls to selected groups. Social media sites provide users immediate…

  10. Highly Skilled Migrants

    DEFF Research Database (Denmark)

    Hvidt, Martin

    2016-01-01

    . It is pointed out that while the system facilitated speedy entry to the job market, the lack of inclusion in the Gulf economies of the migrants, the lack of long-term prospects of residing in the countries and the highly asymmetric power balance between sponsor and migrant, provides few incentives...... for the highly skilled migrants to fully contribute to the Gulf economies....

  11. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  12. High-tech entrepreneurship

    DEFF Research Database (Denmark)

    Bernasconi, Michel; Harris, Simon; Mønsted, Mette

    ; entrepreneurial finance; marketing technological innovations; and high-tech incubation management. Including case studies to give practical insights into genuine business examples, this comprehensive book has a distinctly 'real-world' focus throughout.Edited by a multi-national team, this comprehensive book......High-tech businesses form a crucial part of entrepreneurial activity - in some ways representing very typical examples of entrepreneurship, yet in some ways representing quite different challenges. The uncertainty in innovation and advanced technology makes it difficult to use conventional economic...... planning models, and also means that the management skills used in this area must be more responsive to issues of risk, uncertainty and evaluation than in conventional business opportunities. Whilst entrepreneurial courses do reflect the importance of high-tech businesses, they often lack the resources...

  13. High-Order Dielectric Metasurfaces for High-Efficiency Polarization Beam Splitters and Optical Vortex Generators

    Science.gov (United States)

    Guo, Zhongyi; Zhu, Lie; Guo, Kai; Shen, Fei; Yin, Zhiping

    2017-08-01

    In this paper, a high-order dielectric metasurface based on silicon nanobrick array is proposed and investigated. By controlling the length and width of the nanobricks, the metasurfaces could supply two different incremental transmission phases for the X-linear-polarized (XLP) and Y-linear-polarized (YLP) light with extremely high efficiency over 88%. Based on the designed metasurface, two polarization beam splitters working in high-order diffraction modes have been designed successfully, which demonstrated a high transmitted efficiency. In addition, we have also designed two vortex-beam generators working in high-order diffraction modes to create vortex beams with the topological charges of 2 and 3. The employment of dielectric metasurfaces operating in high-order diffraction modes could pave the way for a variety of new ultra-efficient optical devices.

  14. hdm: High-dimensional metrics

    OpenAIRE

    Chernozhukov, Victor; Hansen, Christian; Spindler, Martin

    2016-01-01

    In this article the package High-dimensional Metrics (\\texttt{hdm}) is introduced. It is a collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for (possibly many) low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and uniformly valid confidence intervals for regression coefficients on target variables (e...

  15. High-Throughput Proteomics Using High Efficiency Multiple-Capillary Liquid Chromatography With On-Line High-Performance ESI FTICR Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yufeng (BATTELLE (PACIFIC NW LAB)); Tolic, Nikola (BATTELLE (PACIFIC NW LAB)); Zhao, Rui (ASSOC WESTERN UNIVERSITY); Pasa Tolic, Ljiljana (BATTELLE (PACIFIC NW LAB)); Li, Lingjun (Illinois Univ Of-Urbana/Champa); Berger, Scott J.(ASSOC WESTERN UNIVERSITY); Harkewicz, Richard (BATTELLE (PACIFIC NW LAB)); Anderson, Gordon A.(BATTELLE (PACIFIC NW LAB)); Belov, Mikhail E.(BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2000-12-01

    We report on the design and application of a high-efficiency multiple-capillary liquid chromatography (LC) system for high-throughput proteome analysis. The multiple-capillary LC system was operated at the pressure of 10,000 psi using commercial LC pumps to deliver the mobile phase and newly developed passive feedback valves to switch the mobile phase flow and introduce samples. The multiple-capillary LC system was composed of several serially connected dual-capillary column devices. The dual-capillary column approach was designed to eliminate the time delay for regeneration (or equilibrium) of the capillary column after its use under the mobile phase gradient condition (i.e. one capillary column was used in separation and the other was washed using mobile phase A). The serially connected dual-capillary columns and ESI sources were operated independently, and could be used for either''backup'' operation or with other mass spectrometer(s). This high-efficiency multiple-capillary LC system uses switching valves for all operations and is highly amenable to automation. The separations efficiency of dual-capillary column device, optimal capillary dimensions (column length and packed particle size), suitable mobile phases for electrospray, and the capillary re-generation were investigated. A high magnetic field (11.5 tesla) Fourier transform ion cyclotron resonance (FTICR) mass spectrometer was coupled on-line with this high-efficiency multiple-capillary LC system through an electrospray ionization source. The capillary LC provided a peak capacity of {approx}600, and the 2-D capillary LC-FTICR provided a combined resolving power of > 6 x 10 7 polypeptide isotopic distributions. For yeast cellular tryptic digests, > 100,000 polypeptides were typically detected, and {approx}1,000 proteins can be characterized in a single run.

  16. Effects of high-order deformation on high-K isomers in superheavy nuclei

    International Nuclear Information System (INIS)

    Liu, H. L.; Bertulani, C. A.; Xu, F. R.; Walker, P. M.

    2011-01-01

    Using, for the first time, configuration-constrained potential-energy-surface calculations with the inclusion of β 6 deformation, we find remarkable effects of the high-order deformation on the high-K isomers in 254 No, the focus of recent spectroscopy experiments on superheavy nuclei. For shapes with multipolarity six, the isomers are more tightly bound and, microscopically, have enhanced deformed shell gaps at N=152 and Z=100. The inclusion of β 6 deformation significantly improves the description of the very heavy high-K isomers.

  17. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  18. New highly efficient piezoceramic materials

    International Nuclear Information System (INIS)

    Dantsiger, A.Ya.; Razumovskaya, O.N.; Reznichenko, L.A.; Grineva, L.D.; Devlikanova, R.U.; Dudkina, S.I.; Gavrilyachenko, S.V.; Dergunova, N.V.

    1993-01-01

    New high efficient piezoceramic materials with various combination of parameters inclusing high Curie point for high-temperature transducers using in atomic power engineering are worked. They can be used in systems for heated matters nondestructive testing, controllers for varied industrial power plants and other high-temperature equipment

  19. Performance Limiting Flow Processes in High-State Loading High-Mach Number Compressors

    National Research Council Canada - National Science Library

    Tan, Choon S

    2008-01-01

    In high-stage loading high-Mach number (HLM) compressors, counter-rotating pairs of discrete vortices are shed at the trailing edge of the upstream blade row at a frequency corresponding to the downstream rotor blade passing frequency...

  20. Treatment Protocol for High Velocity/High Energy Gunshot Injuries to the Face

    Science.gov (United States)

    Peled, Micha; Leiser, Yoav; Emodi, Omri; Krausz, Amir

    2011-01-01

    Major causes of facial combat injuries include blasts, high-velocity/high-energy missiles, and low-velocity missiles. High-velocity bullets fired from assault rifles encompass special ballistic properties, creating a transient cavitation space with a small entrance wound and a much larger exit wound. There is no dispute regarding the fact that primary emergency treatment of ballistic injuries to the face commences in accordance with the current advanced trauma life support (ATLS) recommendations; the main areas in which disputes do exist concern the question of the timing, sequence, and modes of surgical treatment. The aim of the present study is to present the treatment outcome of high-velocity/high-energy gunshot injuries to the face, using a protocol based on the experience of a single level I trauma center. A group of 23 injured combat soldiers who sustained bullet and shrapnel injuries to the maxillofacial region during a 3-week regional military conflict were evaluated in this study. Nine patients met the inclusion criteria (high-velocity/high-energy injuries) and were included in the study. According to our protocol, upon arrival patients underwent endotracheal intubation and were hemodynamically stabilized in the shock-trauma unit and underwent total-body computed tomography with 3-D reconstruction of the head and neck and computed tomography angiography. All patients underwent maxillofacial surgery upon the day of arrival according to the protocol we present. In view of our treatment outcomes, results, and low complication rates, we conclude that strict adherence to a well-founded and structured treatment protocol based on clinical experience is mandatory in providing efficient, appropriate, and successful treatment to a relatively large group of patients who sustain various degrees of maxillofacial injuries during a short period of time. PMID:23449809

  1. Applications of high and ultra high pressure homogenization for food safety

    Directory of Open Access Journals (Sweden)

    Francesca Patrignani

    2016-08-01

    Full Text Available Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time (LTLT and high temperature short time (HTST treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure (HHP, pulsed electric field (PEF, ultrasound (US and high pressure homogenization (HPH. This last technique has been demonstrated to have a great potential to provide fresh-like products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350-400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of high pressure homogenization against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered

  2. Research & Implementation of AC - DC Converter with High Power Factor & High Efficiency

    Directory of Open Access Journals (Sweden)

    Hsiou-Hsian Nien

    2014-05-01

    Full Text Available In this paper, we design and develop a high power factor, high efficiency two-stage AC - DC power converter. This paper proposes a two-stage AC - DC power converter. The first stage is boost active power factor correction circuit. The latter stage is near constant frequency LLC resonant converter. In addition to traditional LLC high efficiency advantages, light-load conversion efficiency of this power converter can be improved. And it possesses high power factor and near constant frequency operating characteristics, can significantly reduce the electromagnetic interference. This paper first discusses the main structure and control manner of power factor correction circuit. And then by the LLC resonant converter equivalent model proceed to circuit analysis to determine the important parameters of the converter circuit elements. Then design a variable frequency resonant tank. The resonant frequency can change automatically on the basis of the load to reach near constant frequency operation and a purpose of high efficiency. Finally, actually design and produce an AC – DC power converter with output of 190W to verify the characteristics and feasibility of this converter. The experimental results show that in a very light load (9.5 W the efficiency is as high as 81%, the highest efficiency of 88% (90 W. Full load efficiency is 87%. At 19 W ~ 190 W power changes, the operating frequency change is only 0.4 kHz (AC 110 V and 0.3 kHz (AC 220 V.

  3. A novel power source for high-precision, highly efficient micro w-EDM

    International Nuclear Information System (INIS)

    Chen, Shun-Tong; Chen, Chi-Hung

    2015-01-01

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance–capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts. (paper)

  4. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  5. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  6. Stakeholder engagement in patient-centered outcomes research: high-touch or high-tech?

    Science.gov (United States)

    Lavallee, Danielle C; Wicks, Paul; Alfonso Cristancho, Rafael; Mullins, C Daniel

    2014-06-01

    Patient and stakeholder engagement enhances the meaningfulness of patient-centered outcomes research. Continuous engagement of diverse patients helps to achieve representativeness and to avoid tokenism, but is perceived as challenging due to resource and time constraints. The widespread availability of the internet, mobile phones, and electronic devices makes 'high-tech' solutions appealing, but such approaches may trade-off larger sample sizes for shallower engagement and/or skewed perspectives if most participants reflect users of technology. More traditional 'high-touch' solutions such as in-person interviews, focus groups, and town hall meetings can provide qualitative and sociological context and potentially more in-depth insights from small numbers of patients, but such approaches are also prone to selection bias as well. We compare and contrast high-tech and high-touch approaches to engaging stakeholders and suggest hybrid processes.

  7. Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers

    Science.gov (United States)

    Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.

    2018-03-01

    Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.

  8. High estradiol levels improve false memory rates and meta-memory in highly schizotypal women.

    Science.gov (United States)

    Hodgetts, Sophie; Hausmann, Markus; Weis, Susanne

    2015-10-30

    Overconfidence in false memories is often found in patients with schizophrenia and healthy participants with high levels of schizotypy, indicating an impairment of meta-cognition within the memory domain. In general, cognitive control is suggested to be modulated by natural fluctuations in oestrogen. However, whether oestrogen exerts beneficial effects on meta-memory has not yet been investigated. The present study sought to provide evidence that high levels of schizotypy are associated with increased false memory rates and overconfidence in false memories, and that these processes may be modulated by natural differences in estradiol levels. Using the Deese-Roediger-McDermott paradigm, it was found that highly schizotypal participants with high estradiol produced significantly fewer false memories than those with low estradiol. No such difference was found within the low schizotypy participants. Highly schizotypal participants with high estradiol were also less confident in their false memories than those with low estradiol; low schizotypy participants with high estradiol were more confident. However, these differences only approached significance. These findings suggest that the beneficial effect of estradiol on memory and meta-memory observed in healthy participants is specific to highly schizotypal individuals and might be related to individual differences in baseline dopaminergic activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  10. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  11. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  12. High-order harmonics from bow wave caustics driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.

    2012-01-01

    We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

  13. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  14. The High Luminosity Challenge: potential and limitations of High Intensity High Brightness in the LHC and its injectors

    CERN Document Server

    De Maria, R; Banfi, D; Barranco, J; Bartosik, H; Benedetto, E; Bruce, R; Brüning, O; Calaga, R; Cerutti, F; Damerau, H; Esposito, L; Fartoukh, S; Fitterer, M; Garoby, R; Gilardoni, S; Giovannozzi, M; Goddard, B; Gorini, B; Hanke, K; Iadarola, G; Lamont, M; Meddahi, M; Métral, E; Mikulec, B; Mounet, N; Papaphilippou, Y; Pieloni, T; Redaelli, S; Rossi, L; Rumolo, G; Shaposhnikova, E; Sterbini, G; Todesco, E; Tomás, R; Zimmermann, F; Valishev, A

    2014-01-01

    High-intensity and high-brightness beams are key ingredients to maximize the LHC integrated luminosity and to exploit its full potential. This contribution describes the optimization of beam and machine parameters to maximize the integrated luminosity as seen by the LHC experiments, by taking into account the expected intensity and brightness reach of LHC itself and its injector chain as well as the capabilities of the detectors for next run and foreseen upgrade scenarios.

  15. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...

  16. An explanation of the irreversibility behavior in the highly- anisotropic high-temperature superconductors

    International Nuclear Information System (INIS)

    Gray, K.E.; Kim, D.H.

    1991-01-01

    The wide temperature range of the reversible, lossy state of the new high-temperature superconductors in a magnetic field was recognized soon after their discovery. This behavior, which had gone virtually undetected in conventional superconductors, has generated considerable interest, both for a fundamental understanding of the HTS and because it degrades the performance of HTS for finite-field applications. We show that recently proposed explanation of this behavior for the highly-anisotropic high-temperature superconductors, as a dimensional crossover of the magnetic vortices, is strongly supported by recent experiments on a Bi 2 Sr 2 CaCu 2 O x single crystal using the high-Q mechanical oscillator techniques

  17. Unsupervised Learning Through Randomized Algorithms for High-Volume High-Velocity Data (ULTRA-HV).

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolda, Tamara G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Wake Forest Univ., Winston-Salem, MA (United States); Ballard, Grey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mahoney, Michael [Univ. of California, Berkeley, CA (United States)

    2018-01-01

    Through long-term investments in computing, algorithms, facilities, and instrumentation, DOE is an established leader in massive-scale, high-fidelity simulations, as well as science-leading experimentation. In both cases, DOE is generating more data than it can analyze and the problem is intensifying quickly. The need for advanced algorithms that can automatically convert the abundance of data into a wealth of useful information by discovering hidden structures is well recognized. Such efforts however, are hindered by the massive volume of the data and its high velocity. Here, the challenge is developing unsupervised learning methods to discover hidden structure in high-volume, high-velocity data.

  18. Cosmological Evolution of the Central Engine in High-Luminosity, High-Accretion Rate AGN

    Directory of Open Access Journals (Sweden)

    Matteo Guainazzi

    2014-12-01

    Full Text Available In this paper I discuss the status of observational studies aiming at probing the cosmological evolution of the central engine in high-luminosity, high-accretion rate Active Galactic Nuclei (AGN. X-ray spectroscopic surveys, supported by extensive multi-wavelength coverage, indicate a remarkable invariance of the accretion disk plus corona system, and of their coupling up to redshifts z≈6. Furthermore, hard X-ray (E >10 keV surveys show that nearby Seyfert Galaxies share the same central engine notwithstanding their optical classication. These results suggest that the high-luminosity, high accretion rate quasar phase of AGN evolution is homogeneous over cosmological times.

  19. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  20. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  1. ADX: a high field, high power density, advanced divertor and RF tokamak

    Science.gov (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  2. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids

    Science.gov (United States)

    Godeke, A.; Abraimov, D. V.; Arroyo, E.; Barret, N.; Bird, M. D.; Francis, A.; Jaroszynski, J.; Kurteva, D. V.; Markiewicz, W. D.; Marks, E. L.; Marshall, W. S.; McRae, D. M.; Noyes, P. D.; Pereira, R. C. P.; Viouchkov, Y. L.; Walsh, R. P.; White, J. M.

    2017-03-01

    We performed a feasibility study on a high-strength Bi{}2-xPb x Sr2Ca2Cu3O{}10-x(Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries. It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥slant 0.92 % (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  3. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health ...

  5. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  6. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  7. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  8. Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes

    Science.gov (United States)

    Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.

  9. High Resolution, High-Speed Photography, an Increasingly Prominent Diagnostic in Ballistic Research Experiments

    International Nuclear Information System (INIS)

    Shaw, L.; Muelder, S.

    1999-01-01

    High resolution, high-speed photography is becoming a prominent diagnostic in ballistic experimentation. The development of high speed cameras utilizing electro-optics and the use of lasers for illumination now provide the capability to routinely obtain high quality photographic records of ballistic style experiments. The purpose of this presentation is to review in a visual manner the progress of this technology and how it has impacted ballistic experimentation. Within the framework of development at LLNL, we look at the recent history of large format high-speed photography, and present a number of photographic records that represent the state of the art at the time they were made. These records are primarily from experiments involving shaped charges. We also present some examples of current photographic technology, developed within the ballistic community, that has application to hydro diagnostic experimentation at large. This paper is designed primarily as an oral-visual presentation. This written portion is to provide general background, a few examples, and a bibliography

  10. High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.

    Science.gov (United States)

    Kuang, Xiao; Zhao, Zeang; Chen, Kaijuan; Fang, Daining; Kang, Guozheng; Qi, Hang Jerry

    2018-04-01

    Design and direct fabrication of high-performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high-speed 3D printing of high-performance epoxy thermosets via a two-stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h -1 . It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two-stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high-performance and functional applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  12. High and medium high energy lines in France. The SATURNE case

    International Nuclear Information System (INIS)

    Milleret, G.

    1994-01-01

    Located in the Paris area, the SATURNE accelerator produces high energy charged particles: protons, deuterons, helium 3, helium 4, neutrons. The beams, with very flexible characteristics (linear energy transfer, flexible environment, dimension and intensity) for simulation of cosmic particles or high energy accelerator environments, allow for testing various individual or complete components. The various commercial offers and prices are presented. 5 fig., 2 ref

  13. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  14. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  15. High-beta linac structures

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1979-01-01

    Accelerating structures for high-beta linacs that have been and are in use are reviewed in terms of their performance. Particular emphasis is given to room-temperature structures and the disk-and-washer structure. The disk-and-washer structure has many attractive features that are discussed for pulsed high-gradient linacs, for 100% duty-cycle medium-gradient linacs and for high-current linacs requiring maximal amounts of stored energy in the electric fields available to the beam

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools ...

  17. High Efficiency Heat Exchanger for High Temperature and High Pressure Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    CompRex, LLC (CompRex) specializes in the design and manufacture of compact heat exchangers and heat exchange reactors for high temperature and high pressure applications. CompRex’s proprietary compact technology not only increases heat exchange efficiency by at least 25 % but also reduces footprint by at least a factor of ten compared to traditional shell-and-tube solutions of the same capacity and by 15 to 20 % compared to other currently available Printed Circuit Heat Exchanger (PCHE) solutions. As a result, CompRex’s solution is especially suitable for Brayton cycle supercritical carbon dioxide (sCO2) systems given its high efficiency and significantly lower capital and operating expenses. CompRex has already successfully demonstrated its technology and ability to deliver with a pilot-scale compact heat exchanger that was under contract by the Naval Nuclear Laboratory for sCO2 power cycle development. The performance tested unit met or exceeded the thermal and hydraulic specifications with measured heat transfer between 95 to 98 % of maximum heat transfer and temperature and pressure drop values all consistent with the modeled values. CompRex’s vision is to commercialize its compact technology and become the leading provider for compact heat exchangers and heat exchange reactors for various applications including Brayton cycle sCO2 systems. One of the limitations of the sCO2 Brayton power cycle is the design and manufacturing of efficient heat exchangers at extreme operating conditions. Current diffusion-bonded heat exchangers have limitations on the channel size through which the fluid travels, resulting in excessive solid material per heat exchanger volume. CompRex’s design allows for more open area and shorter fluid proximity for increased heat transfer efficiency while sustaining the structural integrity needed for the application. CompRex is developing a novel improvement to its current heat exchanger design where fluids are directed to alternating

  18. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank

    Science.gov (United States)

    Lyulin, O. M.; Perevalov, V. I.

    2017-11-01

    We present a high-resolution, high-temperature version of the Acetylene Spectroscopic Databank called ASD-1000. The databank contains the line parameters (position, intensity, Einstein coefficient for spontaneous emission, term value of the lower states, self- and air-broadening coefficients, temperature dependence exponents of the self- and air-broadening coefficients) of the principal isotopologue of C2H2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-27 cm-1/(molecule cm-2) at 1000 K. The databank has 33,890,981 entries and covers the 3-10,000 cm-1 spectral range. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as their temperature dependence exponents were calculated using the empirical equations. The databank is useful for studying high-temperature radiative properties of C2H2. ASD-1000 is freely accessible via the Internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/ASD1000/.

  19. High Channel Count, High Density Microphone Arrays for Wind Tunnel Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interdisciplinary Consulting Corporation (IC2) proposes the development of high channel count, high density, reduced cost per channel, directional microphone...

  20. Assessing the High Temperature, High Pressure Subsurface for Anaerobic Methane Oxidation

    Science.gov (United States)

    Harris, R. L.; Bartlett, D.; Byrnes, A. W.; Walsh, K. M.; Lau, C. Y. M.; Onstott, T. C.

    2017-12-01

    The anaerobic oxidation of methane (AOM) is an important sink in the global methane (CH4) budget. ANMEs are known to oxidize CH4 either independently or in consortia with bacteria, coupling the reduction of electron acceptors such as, SO42-, NO2-, NO3-, Mn4+, or Fe3+. To further constrain the contribution of AOM to the global CH4 budget, it is important to assess unexplored environments where AOM is thermodynamically possible such as the high pressure, high temperature deep biosphere. Provided plausible electron acceptor availability, increased temperature and pCH4 yield favorable Gibbs free energies for AOM reactions and the production of ATP (Fig. 1). To date, only sulfate-dependent AOM metabolism has been documented under high temperature conditions (50-72˚C), and AOM has not been assessed above 10.1 MPa. Given that ANMEs share close phylogenetic and metabolic heritage with methanogens and that the most heat-tolerant microorganism known is a barophilic methanogen, there possibly exist thermophilic ANMEs. Here we describe preliminary results from high pressure, high temperature stable isotope tracer incubation experiments on deep biosphere samples. Deep sub-seafloor sediments collected by IODP 370 from the Nankai Trough (257 - 865 m below seafloor) and deep fracture fluid from South Africa (1339 m below land surface) were incubated anaerobically in hydrostatic pressure vessels at 40 MPa in simulated in situ temperatures (40˚ - 80˚C). Sediments and fracture fluid were incubated in sulfate-free artificial seawater, a 2:98 13CH4:N2 headspace, and treated with one of the potential electron acceptors listed above in addition to kill and endogenous activity (i.e. no added electron acceptor) controls. Stable isotope analysis of dissolved inorganic carbon (DIC) suggests that AOM occurred within 60 days of incubation for all investigated electron acceptors and temperatures except 50˚C. Sulfate-dependent AOM rates are consistent with those previously reported in the

  1. High-Tc superconductor applications

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    There has been much speculation about new products and business opportunities which high-Tc superconductors might make possible. However, with the exception of one Japanese survey, there have not been any recognized forecasts suggesting a timeframe and relative economic impact for proposed high-Tc products. The purpose of this survey is to provide definitive projections of the timetable for high-Tc product development, based on the combined forecasts of the leading U.S. superconductivity experts. The FTS panel of experts on high-Tc superconductor applications, representing both business and research, forecast the commercialization and economic impact for 28 classes of electronic, magnetic, communications, instrumentation, transportation, industrial, and power generation products. In most cases, forecasts predict the occurrence of developments within a 90% statistical confidence limit of 2-to-3 years. The report provides background information on the 28 application areas, as well as other information useful for strategic planners. The panel also forecast high-Tc research spending, markets, and international competitiveness, and provide insight into how the industry will evolve

  2. High emissivity coatings for high temperature application: Progress and prospect

    International Nuclear Information System (INIS)

    He Xiaodong; Li Yibin; Wang Lidong; Sun Yue; Zhang, Sam

    2009-01-01

    High emissivity coatings are widely used in many cases where heat transfers through electromagnetic radiation that arises due to the temperature of a body. Extensive theoretical and experimental efforts have been made to synthesize and investigate high emissivity coatings. The emissivity can be improved through various or combined mechanisms. The characterization of the emissivity is still a fully open problem. In this paper, we review the various mechanisms associated with the emissivity enhancement and emissivity characterization techniques. Based on these literature reviews, the prospect will be presented in the concluding remarks.

  3. High-speed Light Peak optical link for high energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.X. [Academia Sinica, Taipei, Taiwan (China); Chiang, F. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Deng, B. [Hubei Polytechnic University, Huangshi, Hubei (China); Southern Methodist University, Dallas, TX (United States); Hou, J. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Hou, S., E-mail: suen@gate.sinica.edu.tw [Academia Sinica, Taipei, Taiwan (China); Liu, C.; Liu, T. [Southern Methodist University, Dallas, TX (United States); Teng, P.K. [Academia Sinica, Taipei, Taiwan (China); Wang, C.H. [National United University, Miaoli, Taiwan (China); Xu, T. [Shandong University, Ji' nan (China); Southern Methodist University, Dallas, TX (United States); Ye, J. [Southern Methodist University, Dallas, TX (United States)

    2014-11-21

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with {sup 60}Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ...

  5. Reduction on high level radioactive waste volume and geological repository footprint with high burn-up and high thermal efficiency of HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Yuji, E-mail: fukaya.yuji@jaea.go.jp; Nishihara, Tetsuo

    2016-10-15

    Highlights: • We evaluate the number of canisters and its footprint for HTGR. • We proposed new waste loading method for direct disposal of HTGR. • HTGR can significantly reduce HLW volume compared with LWR. - Abstract: Reduction on volume of High Level radioactive Waste (HLW) and footprint in a geological repository due to high burn-up and high thermal efficiency of High Temperature Gas-cooled Reactor (HTGR) has been investigated. A helium-cooled and graphite-moderated commercial HTGR was designed as a Gas Turbine High Temperature Reactor (GTHTR300), and that has particular features such as significantly high burn-up of approximately 120 GWd/t, high thermal efficiency around 50%, and pin-in-block type fuel. The pin-in-block type fuel was employed to reduce processed graphite volume in reprocessing. By applying the feature, effective waste loading method for direct disposal is proposed in this study. By taking into account these feature, the number of HLW canister generations and its repository footprint are evaluated by burn-up fuel composition, thermal calculation and criticality calculation in repository. As a result, it is found that the number of canisters and its repository footprint per electricity generation can be reduced by 60% compared with Light Water Reactor (LWR) representative case for direct disposal because of the higher burn-up, higher thermal efficiency, less TRU generation, and effective waste loading proposed in this study for HTGR. But, the reduced ratios change to 20% and 50% if the long term durability of LWR canister is guaranteed. For disposal with reprocessing, the number of canisters and its repository footprint per electricity generation can be reduced by 30% compared with LWR because of the 30% higher thermal efficiency of HTGR.

  6. Kilburn High Road Revisited

    Directory of Open Access Journals (Sweden)

    Cristina Capineri

    2016-07-01

    Full Text Available Drawing on John Agnew’s (1987 theoretical framework for the analysis of place (location, locale and sense of place and on Doreen Massey’s (1991 interpretation of Kilburn High Road (London, the contribution develops an analysis of the notion of place in the case study of Kilburn High Road by comparing the semantics emerging from Doreen Massey’s interpretation of Kilburn High Road in the late Nineties with those from a selection of noisy and unstructured volunteered geographic information collected from Flickr photos and Tweets harvested in 2014–2015. The comparison shows how sense of place is dynamic and changing over time and explores Kilburn High Road through the categories of location, locale and sense of place derived from the qualitative analysis of VGI content and annotations. The contribution shows how VGI can contribute to discovering the unique relationship between people and place which takes the form given by Doreen Massey to Kilburn High Road and then moves on to the many forms given by people experiencing Kilburn High Road through a photo, a Tweet or a simple narrative. Finally, the paper suggests that the analysis of VGI content can contribute to detect the relevant features of street life, from infrastructure to citizens’ perceptions, which should be taken into account for a more human-centered approach in planning or service management.

  7. 77 FR 59842 - Atlantic Highly Migratory Species; 2006 Consolidated Highly Migratory Species Fishery Management...

    Science.gov (United States)

    2012-10-01

    ... vessels permitted in the Atlantic tunas General category in Puerto Rico and 10 in the U.S. Virgin Islands... [Docket No. 080603729-2454-02] RIN 0648-AW83 Atlantic Highly Migratory Species; 2006 Consolidated Highly... management plan (FMP) amendment addresses Atlantic highly migratory species (HMS) fishery management measures...

  8. High-throughput sample adaptive offset hardware architecture for high-efficiency video coding

    Science.gov (United States)

    Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin

    2018-03-01

    A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.

  9. Defects of diamond single crystal grown under high temperature and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Su, Qingcai, E-mail: suqc@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China); Zhang, Jianhua [School of Mechanical Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Li, Musen [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China)

    2013-11-01

    The diamond single crystal, synthesized with Fe–Ni–C–B system of catalyst under high temperature and high pressure, had been observed by field emission scanning electron microscope and transmission electron microscope. The presence of a cellular structure suggested that the diamond grew from melted catalyst solution and there existed a zone of component supercooling zone in front of the solid–liquid interface. The main impurities in the diamond crystal was (FeNi){sub 23}C{sub 6}. The triangle screw pit revealed on the (111) plane was generated by the screw dislocation meeting the diamond (111) plane at the points of emergence of dislocations. A narrow twin plane was formed between the two (111) plane. - Highlights: • High pressure, high temperature synthesis of diamond single crystal. • Fe–Ni–C–B used as catalyst, graphite as carbon source. • The main impurity in the diamond crystal was (FeNi){sub 23}C{sub 6}. • Surface defects arose from screw dislocations and stacking faults.

  10. Large motion high cycle high speed optical fibers for space based applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Peter G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tandon, Rajan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gibson, Cory S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rasberry, Roger David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rohr, Garth David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  11. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  12. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  13. High hopes for high tech | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-28

    Jan 28, 2011 ... English · Français ... it's appropriate that Michael Clarke's first journey abroad as the new ... After earning a BSc in biology in Canada, he left to teach high ... as broadband networks so that the benefits of ICTs become more ...

  14. Switching transients in high-frequency high-power converters using power MOSFET's

    Science.gov (United States)

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  15. High-speed radiography and x-ray cinematography by high-current betatrons

    International Nuclear Information System (INIS)

    Akimochkin, Yu.V.; Akulov, G.V.; Leunov, F.G.; Moskalev, V.A.; Ryabukhin, V.L.

    1979-01-01

    The paper provides a description of an equipment system comprising a pair of 25 MeV high-current betatrons and an X-ray drum-type cinecamera for high-speed radiography and X-ray cinematography for use when studying dynamics of objects moving at a rate of 0.5 - 3.0 km/s as well as in X-ray cinematography of processes at a rate of up to 1 m/s. (author)

  16. Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Wongyu; Jeong, Daeho; Sung, Hyokyung; Kim, Sangshik, E-mail: sang@gnu.ac.kr

    2017-02-15

    Tensile and high cycle fatigue behaviors of high-Mn austenitic steels, including 25Mn, 25Mn0.2Al, 25Mn0.5Cu, 24Mn4Cr, 22Mn3Cr and 16Mn2Al specimens, were investigated at 298 and 110 K. Depending on the alloying elements, tensile ductility of high-Mn steels either increased or decreased with decreasing temperature from 298 to 110 K. Reasonable correlation between the tendency for martensitic tranformation, the critical twinning stress and the percent change in tensile elongation suggested that tensile deformation of high-Mn steels was strongly influenced by SFE determining TRIP and TWIP effects. Tensile strength was the most important parameter in determining the resistance to high cycle fatigue of high-Mn steels with an exceptional work hardening capability at room and cryogenic temperatures. The fatigue crack nucleation mechanism in high-Mn steels did not vary with decreasing tempertature, except Cr-added specimens with grain boundary cracking at 298 K and slip band cracking at 110 K. The EBSD (electron backscatter diffraction) analyses suggested that the deformation mechanism under fatigue loading was significantly different from tensile deformation which could be affected by TRIP and TWIP effects. - Highlights: •The resistances to HCF of various high-Mn steels were measured. •The variables affecting tensile and HCF behaviors of high-Mn steels were assessed. •The relationship between tensile and the HCF behaviors of high-Mn steels was established.

  17. Electrical and mechanical properties of highly elongated high density polyethylene as cryogenic insulation materials

    International Nuclear Information System (INIS)

    Yoshino, Katsumi; Park, Dae-Hee; Miyata, Kiyomi; Yamaoka, Hitoshi; Itoh, Minoru; Ichihara, Syouji.

    1989-01-01

    Electrical and mechanical properties of highly elongated high density polyethylene were investigated in the temperature range between 4.2 K and 400 K from a viewpoint of electrical insulation at low temperature and the following properties have been clarified. (1) The electrical conductivity of samples decreases with increasing draw ratio, and also decreases at cryogenic temperature. (2) Breakdown strength of highly elongated sample is similar to that of non-elongated sample. It is nearby temperature independent below 300 K but at higher temperature it falls steeply. (3) Mechanical breakdown stress and elastic modulus of high density polyethylene increase with increasing draw ratio. Their values at liquid nitrogen temperature are much higher than that at room temperature. On the other hand, strains decreases at liquid nitrogen temperature. (4) Break of the sample develops in the direction of 45deg from the direction of stress both at room temperature and at cryogenic temperature. (5) The characteristic of mechanical breakdown at liquid nitrogen temperature can be explained by a brittleness fracture process. (6) Toughness of high density polyethylene increases with increasing draw ratio until draw ratio of 5, and it decreased, and increase at higher draw ratio. However at extremely high draw ratio of 10 it again increases. These findings clearly indicate that highly elongated high density polyethylene has good electrical and mechanical properties at cryogenic temperature and can be used as the insulating materials at cryogenic temperature. (author)

  18. Physics and high technology

    International Nuclear Information System (INIS)

    Shao Liqin; Ma Junru.

    1992-01-01

    At present, the development of high technology has opened a new chapter in world's history of science and technology. This review describes the great impact of physics on high technology in six different fields (energy technology, new materials, information technology, biotechnology, space technology, and Ocean technology). It is shown that the new concepts and new methods created in physics and the special conditions and measurements established for physics researches not only deepen human's knowledge about nature but also point out new directions for engineering and technology. The achievements in physics have been more and more applied to high technology, while the development of high technology has explored some new research areas and raised many novel, important projects for physics. Therefore, it is important for us to strengthen the research on these major problems in physics

  19. High fusion performance at high T i/T e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing

    Science.gov (United States)

    Kim, Hyun-Tae; Sips, A. C. C.; Romanelli, M.; Challis, C. D.; Rimini, F.; Garzotti, L.; Lerche, E.; Buchanan, J.; Yuan, X.; Kaye, S.; contributors, JET

    2018-03-01

    This paper presents the transport analysis of high density baseline discharges in the 2016 experimental campaign of the Joint European Torus with the ITER-Like Wall (JET-ILW), where a significant increase in the deuterium-deuterium (D-D) fusion neutron rate (~2.8  ×  1016 s-1) was achieved with stable high neutral beam injection (NBI) powers of up to 28 MW and low gas puffing. Increase in T i exceeding T e were produced for the first time in baseline discharges despite the high electron density; this enabled a significant increase in the thermal fusion reaction rate. As a result, the new achieved record in fusion performance was much higher than the previous record in the same heating power baseline discharges, where T i  =  T e. In addition to the decreases in collisionality and the increases in ion heating fraction in the discharges with high NBI power, T i  >  T e can also be attributed to positive feedback between the high T i/T e ratio and stabilisation of the turbulent heat flux resulting from the ion temperature gradient driven mode. The high T i/T e ratio was correlated with high rotation frequency. Among the discharges with identical beam heating power, higher rotation frequencies were observed when particle fuelling was provided by low gas puffing and pellet injection. This reveals that particle fuelling played a key role for achieving high T i/T e, and the improved fusion performance.

  20. Nb3Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio

    2015-06-01

    The High Luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11 T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11 T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets.

  1. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  2. High blood pressure - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  3. Using High-Dimensional Image Models to Perform Highly Undetectable Steganography

    Science.gov (United States)

    Pevný, Tomáš; Filler, Tomáš; Bas, Patrick

    This paper presents a complete methodology for designing practical and highly-undetectable stegosystems for real digital media. The main design principle is to minimize a suitably-defined distortion by means of efficient coding algorithm. The distortion is defined as a weighted difference of extended state-of-the-art feature vectors already used in steganalysis. This allows us to "preserve" the model used by steganalyst and thus be undetectable even for large payloads. This framework can be efficiently implemented even when the dimensionality of the feature set used by the embedder is larger than 107. The high dimensional model is necessary to avoid known security weaknesses. Although high-dimensional models might be problem in steganalysis, we explain, why they are acceptable in steganography. As an example, we introduce HUGO, a new embedding algorithm for spatial-domain digital images and we contrast its performance with LSB matching. On the BOWS2 image database and in contrast with LSB matching, HUGO allows the embedder to hide 7× longer message with the same level of security level.

  4. High density, high magnetic field concepts for compact fusion reactors

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    One rather discouraging feature of our conventional approaches to fusion energy is that they do not appear to lend themselves to a small reactor for developmental purposes. This is in contrast with the normal evolution of a new technology which typically proceeds to a full scale commercial plant via a set of graduated steps. Accordingly' several concepts concerned with dense plasma fusion systems are being studied theoretically and experimentally. A common aspect is that they employ: (a) high to very high plasma densities (∼10 16 cm -3 to ∼10 26 cm -3 ) and (b) magnetic fields. If they could be shown to be viable at high fusion Q, they could conceivably lead to compact and inexpensive commercial reactors. At least, their compactness suggests that both proof of principle experiments and development costs will be relatively inexpensive compared with the present conventional approaches. In this paper, the following concepts are considered: (1) The staged Z-pinch, (2) Liner implosion of closed-field-line configurations, (3) Magnetic ''fast'' ignition of inertial fusion targets, (4) The continuous flow Z-pinch

  5. Solid State Track Recorder fission rate measurements at high neutron fluence and high temperature

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.

    1985-01-01

    Solid State Track Recorder (SSTR) techniques have been used to measure 239-Pu, 235-U, and 237-Np fission rates for total neutron fluences approaching 5 x 10 17 n/cm 2 at temperatures in the range 680 to 830 0 F. Natural quartz crystal SSTRs were used to withstand the high temperature environment and ultra low-mass fissionable deposits of the three isotopes were required to yield scannable track densities at the high neutron fluences. The results of these high temperature, high neutron fluence measurements are reported

  6. Decay modes of high-lying single-particle states in [sup 209]Pb

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Vernotte, J.; Bordewijk, J.A.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M. (Institut de Physique Nucleaire, Institut National de Physique Nucleaire et de Physique des Particules Centre National de la Recherche Scientifique, 91406 Orsay Cedex (France) Kernfysisch Versneller Instituut, 9747AA Groningen (Netherlands) National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States) Departamento de Fisica, Fac. Cs. Exactas, Universidad Nacional de La Plata, CC No. 67, 1900 La Plata (Argentina))

    1994-05-01

    The neutron decay of high-lying single-particle states in [sup 209]Pb excited by means of the ([alpha],[sup 3]He) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in [sup 208]Pb. The structure located between 8.5 and 12 MeV excitation energy in [sup 209]Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3[sup [minus

  7. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  8. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  9. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    International Nuclear Information System (INIS)

    Liu Chuan-Jiang; Zheng Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO 4 ) phase precipitates at 250–320°C in the pressure range of 1.0–1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO 4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T−0.7126 (250°C≤T≤320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature. (geophysics, astronomy, and astrophysics)

  10. Gradient twinned 304 stainless steels for high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiying [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai (China); Liu, Jiabin; Wang, Hongtao [Institute of Applied Mechanics, Zhejiang University, Hangzhou (China); Lu, Jian, E-mail: jianlu@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Y. Morris, E-mail: ymwang@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-06-14

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  11. High lysine and high yielding mutants in wheat (Triticum aestivum) L

    International Nuclear Information System (INIS)

    Mohammad, T.; Mahmood, F.; Ahmad, A.; Sattar, A.; Khan, I.

    1988-01-01

    The dry seeds of the variety Lu-26 were irradiated with 20 krad of gamma rays. In M 2 about 300 mutant plants were selected for short stature, rust resistance and other desirable traits. As a result of further selection, in M 6 , eight superior lines were finally identified. The agronomic characteristics of these mutants, the parent variety (Lu-26) and a standard check variety (Pak-81) are shown. The selected mutants and commercially grown cultivars (Lu-26 and Pak-81) were studied for total protein content and amino acid pattern. The mutants WM-89-1, WM-6-17 and WM-81-2 showing high yield also contained comparatively high amounts of methionine and lysine. The lysine contents were 565, 410, and 370 mg/100g in the mutants WM-89-1, WM-6-17 and WM-81-2, respectively against a range value of 210-370 mg/100g in other mutants and 250-320 in the commercial cultivars. The mutant WM-81-2 was comparable to WM-56-1-5 in lysine content. The results of these experiments show a possibility of developing varieties having high yield and high amounts of essential amino acids such as lysine and methionine

  12. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  13. Decay modes of high-lying single-particle states in 209Pb

    International Nuclear Information System (INIS)

    Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Crawley, G.M.; Massolo, C.P.; Renteria, M.

    1993-01-01

    The neutron decay of high-lying single-particle states in 209 Pb excited by means of the (α, 3 He) reaction has been investigated at 122 MeV incident energy using the multidetector array EDEN. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in 208 Pb. The structure located between 8.5 and 12 MeV excitation energy in 209 Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3 - ,5 - ) of 208 Pb. At higher excitation energy up to 20 MeV, the measured neutron decay is in agreement with the predictions of the statistical model. (authors). 24 refs., 16 figs., 2 tabs

  14. Unitarity corrections and high field strengths in high energy hard collisions

    International Nuclear Information System (INIS)

    Kovchegov, Y.V.; Mueller, A.H.

    1997-01-01

    Unitarity corrections to the BFKL description of high energy hard scattering are viewed in large N c QCD in light-cone quantization. In a center of mass frame unitarity corrections to high energy hard scattering are manifestly perturbatively calculable and unrelated to questions of parton saturation. In a frame where one of the hadrons is initially at rest unitarity corrections are related to parton saturation effects and involve potential strengths A μ ∝1/g. In such a frame we describe the high energy scattering in terms of the expectation value of a Wilson loop. The large potentials A μ ∝1/g are shown to be pure gauge terms allowing perturbation theory to again describe unitarity corrections and parton saturation effects. Genuine nonperturbative effects only come in at energies well beyond those energies where unitarity constraints first become important. (orig.)

  15. Assessment of microelectronics packaging for high temperature, high reliability applications

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, F.

    1997-04-01

    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ... you should check and what your blood glucose levels should be. Checking your blood and then treating ...

  17. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ...

  19. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Clinical Practice Guidelines Patient Education Materials Scientific Sessions Journals for Professionals Professional Books Patient Access to Research ...

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Day in the Life of Diabetes Famous People Working to Stop Diabetes Common Terms Diabetes Statistics Infographics ...

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For Lawyers Food & Fitness Home ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ...

  2. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  3. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get ... the technical term for high blood glucose (blood sugar). High blood glucose happens when the body has ...

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High ... What Can I Drink? Fruit Dairy Food Tips Eating Out Quick Meal Ideas Snacks Nutrient Content Claims ...

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood ... For Parents & Kids Safe at School Everyday Life Children and Type 2 Diabetes Know Your Rights Employment ...

  6. High estradiol and low progesterone are associated with high assertiveness in women.

    Science.gov (United States)

    Blake, Khandis R; Bastian, Brock; O'Dean, Siobhan M; Denson, Thomas F

    2017-01-01

    Sexual selection theory posits that women are more selective than men are when choosing a mate. This evolutionary theory suggests that "choosiness" increases during the fertile window because the costs and benefits of mate selection are highest when women are likely to conceive. Little research has directly investigated reproductive correlates of choice assertion. To address this gap, in the present research we investigated whether fertility, estradiol, and progesterone influenced general assertiveness in women. We recruited 98 naturally cycling, ethnically diverse women. Using a within-subjects design and ovarian hormone concentrations at fertile and non-fertile menstrual cycle phases, we measured implicit assertiveness and self-reported assertive behavior. To see if fertility-induced high assertiveness was related to increased sexual motivation, we also measured women's implicit sexual availability and interest in buying sexy clothes. Results showed that high estradiol and low progesterone predicted higher assertiveness. Sexual availability increased during periods of high fertility. Low progesterone combined with high estradiol predicted greater interest in buying sexy clothes. Results held when controlling for individual differences in mate value and sociosexual orientation. Our findings support the role of fluctuating ovarian hormones in the expression and magnitude of women's assertiveness. High assertiveness during the fertile window may be a psychological adaptation that promotes mate selectivity and safeguards against indiscriminate mate choice when conception risk is highest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  8. Highly Efficient Method for the Synthesis of Activated Mesoporous Biocarbons with Extremely High Surface Area for High-Pressure CO2 Adsorption.

    Science.gov (United States)

    Singh, Gurwinder; Lakhi, Kripal S; Kim, In Young; Kim, Sungho; Srivastava, Prashant; Naidu, Ravi; Vinu, Ajayan

    2017-09-06

    A simple and efficient way to synthesize activated mesoporous biocarbons (AMBs) with extremely high BET surface area and large pore volume has been achieved for the first time through a simple solid state activation of freely available biomass, Arundo donax, with zinc chloride. The textural parameters of the AMB can easily be controlled by varying the activation temperature. It is demonstrated that the mesoporosity of AMB can be finely tuned with a simple adjustment of the amount of activating agent. AMB with almost 100% mesoporosity can be achieved using the activating agent and the biomass ratio of 5 and carbonization at 500 °C. Under the optimized conditions, AMB with a BET surface area of 3298 m 2 g -1 and a pore volume of 1.9 cm 3 g -1 can be prepared. While being used as an adsorbent for CO 2 capture, AMB registers an impressively high pressure CO 2 adsorption capacity of 30.2 mmol g -1 at 30 bar which is much higher than that of activated carbon (AC), multiwalled carbon nanotubes (MWCNTs), highly ordered mesoporous carbons, and mesoporous carbon nitrides. AMB also shows high stability with excellent regeneration properties under vacuum and temperatures of up to 250 °C. These impressive textural parameters and high CO 2 adsorption capacity of AMB clearly reveal its potential as a promising adsorbent for high-pressure CO 2 capture and storage application. Also, the simple one-step synthesis strategy outlined in this work would provide a pathway to generate a series of novel mesoporous activated biocarbons from different biomasses.

  9. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  10. Applications of High and Ultra High Pressure Homogenization for Food Safety

    OpenAIRE

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time (LTLT) and high temperature short time (HTST) treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure (HHP), pulsed ele...

  11. HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASSES FOR HANFORD'S WTP (WASTE TREATMENT PROJECT)

    International Nuclear Information System (INIS)

    Kruger, A.A.; Bowan, B.W.; Joseph, I.; Gan, H.; Kot, W.K.; Matlack, K.S.; Pegg, I.L.

    2010-01-01

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m 2 and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m 2 . The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al 2 O 3 concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m 2 .day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m 2 .day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m 2 .day).

  12. Psoriasis and high blood pressure.

    Science.gov (United States)

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  13. High Burnup Effects Program

    International Nuclear Information System (INIS)

    Barner, J.O.; Cunningham, M.E.; Freshley, M.D.; Lanning, D.D.

    1990-04-01

    This is the final report of the High Burnup Effects Program (HBEP). It has been prepared to present a summary, with conclusions, of the HBEP. The HBEP was an international, group-sponsored research program managed by Battelle, Pacific Northwest Laboratories (BNW). The principal objective of the HBEP was to obtain well-characterized data related to fission gas release (FGR) for light water reactor (LWR) fuel irradiated to high burnup levels. The HBEP was organized into three tasks as follows: Task 1 -- high burnup effects evaluations; Task 2 -- fission gas sampling; and Task 3 -- parameter effects study. During the course of the HBEP, a program that extended over 10 years, 82 fuel rods from a variety of sources were characterized, irradiated, and then examined in detail after irradiation. The study of fission gas release at high burnup levels was the principal objective of the program and it may be concluded that no significant enhancement of fission gas release at high burnup levels was observed for the examined rods. The rim effect, an as yet unquantified contributor to athermal fission gas release, was concluded to be the one truly high-burnup effect. Though burnup enhancement of fission gas release was observed to be low, a full understanding of the rim region and rim effect has not yet emerged and this may be a potential area of further research. 25 refs., 23 figs., 4 tabs

  14. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type ...

  16. High Gravity (g) Combustion

    National Research Council Canada - National Science Library

    Zelina, Joseph

    2006-01-01

    .... The Ultra-Compact Combustor (UCC), a novel design based on trapped-vortex combustor (TVC) work that uses high swirl in a circumferential cavity to enhance reaction rates via high cavity g-loading on the order of 3000 g's...

  17. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To ... Email: Sign Up Thank you for signing up ' + ' '); $('.survey-form').show(); }, success: function (data) { $('#survey-errors').remove(); $('. ...

  18. High availability using virtualization

    International Nuclear Information System (INIS)

    Calzolari, Federico; Arezzini, Silvia; Ciampa, Alberto; Mazzoni, Enrico; Domenici, Andrea; Vaglini, Gigliola

    2010-01-01

    High availability has always been one of the main problems for a data center. Till now high availability was achieved by host per host redundancy, a highly expensive method in terms of hardware and human costs. A new approach to the problem can be offered by virtualization. Using virtualization, it is possible to achieve a redundancy system for all the services running on a data center. This new approach to high availability allows the running virtual machines to be distributed over a small number of servers, by exploiting the features of the virtualization layer: start, stop and move virtual machines between physical hosts. The 3RC system is based on a finite state machine, providing the possibility to restart each virtual machine over any physical host, or reinstall it from scratch. A complete infrastructure has been developed to install operating system and middleware in a few minutes. To virtualize the main servers of a data center, a new procedure has been developed to migrate physical to virtual hosts. The whole Grid data center SNS-PISA is running at the moment in virtual environment under the high availability system.

  19. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  20. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  1. Tests of ball bearing used in high-temperature and high-purity water

    International Nuclear Information System (INIS)

    Leng Chengmu; Hao Shouxin.

    1987-01-01

    According to the particular conditions and the operation environments in high-temperature and high-purity water, the test content and the measurement instrumentation for the ball bearing were defined. Through various tests, operational performances of the bearing have preliminarily been understood. It provided some useful information for the engineering application of the bearing

  2. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  3. Very-High Efficiency, High Power Laser Diodes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AdTech Photonics, in collaboration with the Center for Advanced Studies in Photonics Research (CASPR) at UMBC, is pleased to submit this proposal entitled ?Very-High...

  4. Highly stretchable carbon aerogels.

    Science.gov (United States)

    Guo, Fan; Jiang, Yanqiu; Xu, Zhen; Xiao, Youhua; Fang, Bo; Liu, Yingjun; Gao, Weiwei; Zhao, Pei; Wang, Hongtao; Gao, Chao

    2018-02-28

    Carbon aerogels demonstrate wide applications for their ultralow density, rich porosity, and multifunctionalities. Their compressive elasticity has been achieved by different carbons. However, reversibly high stretchability of neat carbon aerogels is still a great challenge owing to their extremely dilute brittle interconnections and poorly ductile cells. Here we report highly stretchable neat carbon aerogels with a retractable 200% elongation through hierarchical synergistic assembly. The hierarchical buckled structures and synergistic reinforcement between graphene and carbon nanotubes enable a temperature-invariable, recoverable stretching elasticity with small energy dissipation (~0.1, 100% strain) and high fatigue resistance more than 10 6 cycles. The ultralight carbon aerogels with both stretchability and compressibility were designed as strain sensors for logic identification of sophisticated shape conversions. Our methodology paves the way to highly stretchable carbon and neat inorganic materials with extensive applications in aerospace, smart robots, and wearable devices.

  5. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    2014-01-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt 2 Mo-type, DO 22 and D1 a superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420} fcc planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt 2 Mo-type and DO 22 superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1 a superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries

  6. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Tawancy, H.M., E-mail: tawancy@kfupm.edu.sa [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, KFUPM Box 1639, Dhahran 31261 (Saudi Arabia); Aboelfotoh, M.O., E-mail: oaboelfotoh@gmail.com [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606 (United States)

    2014-05-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt{sub 2}Mo-type, DO{sub 22} and D1{sub a} superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420}{sub fcc} planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt{sub 2}Mo-type and DO{sub 22} superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1{sub a} superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries.

  7. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... around 4:00 a.m. to 5:00 a.m.). What are the Symptoms of Hyperglycemia? The signs and symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ...

  9. High speed data acquisition

    International Nuclear Information System (INIS)

    Cooper, P.S.

    1997-07-01

    A general introduction to high speed data acquisition system techniques in modern particle physics experiments is given. Examples are drawn from the SELEX(E78 1) high statistics charmed baryon production and decay experiment now taking data at Fermilab

  10. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  11. Effect of cold working and aging on high temperature deformation of high Mn stainless steel

    International Nuclear Information System (INIS)

    Yoshikawa, M.; Habara, Y.; Matsuki, R.; Aoyama, H.

    1999-01-01

    By the addition of N, the strength of high Mn stainless steel can be increased. Cold rolling and aging are effective to increase its strength further, and with those treatments this grade is often used for high temperature applications. In this study, creep deformation behavior and high temperature strength of the high Mn stainless steel in cold rolled and aged conditions are discussed as compared to Type 304 stainless steel. It has been revealed that as-rolled specimens show instant elongation at the beginning of creep tests and its amount is larger in the high Mn grade than in Type 304. Also, the creep rate of the high Mn stainless steel is smaller than that of Type 304. These facts may be related to the change in microstructure. (orig.)

  12. Hadron--hadron reactions, high multiplicity

    International Nuclear Information System (INIS)

    Diebold, R.

    1978-09-01

    A coverage of results on high energy and high multiplicity hadron reactions, charm searches and related topics, ultrahigh energy events and exotic phenomena (cosmic rays), and the nuclear effects in high energy collisions and related topics is discussed. 67 references

  13. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  14. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    Science.gov (United States)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  15. High Temperature, High Frequency Fuel Metering Valve, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ... Chat Closed engagement en -- Have Type 2 Diabetes? - 2017-03-lwt2d-en.html Have Type 2 Diabetes? ...

  17. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high ... function (data) { $('#survey-errors').remove(); $('.survey-form .form-group .survey-alert-wrap').remove(); if (data.submitSurveyResponse.success == ' ...

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Research & Practice Ways to Give Close Are You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ...

  19. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type 1 Type 2 Facts About Type 2 Enroll ...

  20. A study on structural analysis of highly corrosive melts at high temperature

    CERN Document Server

    Ohtori, N

    2002-01-01

    When sodium is burned at high temperature in the atmosphere, it reacts simultaneously with H sub 2 O in the atmosphere so that it can produce high temperature melt of sodium hydroxide as a solvent. If this melt includes peroxide ion (O sub 2 sup 2 sup -), it will be a considerably active and corrosive for iron so that several sodium iron double oxides will be produced as corrosion products after the reaction with steel structures. The present study was carried out in order to investigate the ability of presence of peroxide ion in sodium hydroxide solvent at high temperature and that of identification of the several corrosion products using laser Raman spectroscopy. The measurement system with ultraviolet laser was developed simultaneously in the present work to improve the ability of the measurement at high temperature. As results from the measurements, the possibility of the presence of peroxide ion was shown up to 823K in sodium peroxide and 823K in the melt of sodium hydroxide mixed with sodium peroxide. A...