WorldWideScience

Sample records for reusable space systems

  1. Viability of a Reusable In-Space Transportation System

    Science.gov (United States)

    Jefferies, Sharon A.; McCleskey, Carey M.; Nufer, Brian M.; Lepsch, Roger A.; Merrill, Raymond G.; North, David D.; Martin, John G.; Komar, David R.

    2015-01-01

    The National Aeronautics and Space Administration (NASA) is currently developing options for an Evolvable Mars Campaign (EMC) that expands human presence from Low Earth Orbit (LEO) into the solar system and to the surface of Mars. The Hybrid in-space transportation architecture is one option being investigated within the EMC. The architecture enables return of the entire in-space propulsion stage and habitat to cis-lunar space after a round trip to Mars. This concept of operations opens the door for a fully reusable Mars transportation system from cis-lunar space to a Mars parking orbit and back. This paper explores the reuse of in-space transportation systems, with a focus on the propulsion systems. It begins by examining why reusability should be pursued and defines reusability in space-flight context. A range of functions and enablers associated with preparing a system for reuse are identified and a vision for reusability is proposed that can be advanced and implemented as new capabilities are developed. Following this, past reusable spacecraft and servicing capabilities, as well as those currently in development are discussed. Using the Hybrid transportation architecture as an example, an assessment of the degree of reusability that can be incorporated into the architecture with current capabilities is provided and areas for development are identified that will enable greater levels of reuse in the future. Implications and implementation challenges specific to the architecture are also presented.

  2. Is It Worth It? - the Economics of Reusable Space Transportation

    Science.gov (United States)

    Webb, Richard

    2016-01-01

    Over the past several decades billions of dollars have been invested by governments and private companies in the pursuit of lower cost access to space through earth-to-orbit (ETO) space transportation systems. Much of that investment has been focused on the development and operation of various forms of reusable transportation systems. From the Space Shuttle to current efforts by private commercial companies, the overarching belief of those making such investments has been that reusing system elements will be cheaper than utilizing expendable systems that involve throwing away costly engines, avionics, and other hardware with each flight. However, the view that reusable systems are ultimately a "better" approach to providing ETO transportation is not held universally by major stakeholders within the space transportation industry. While the technical feasibility of at least some degree of reusability has been demonstrated, there continues to be a sometimes lively debate over the merits and drawbacks of reusable versus expendable systems from an economic perspective. In summary, is it worth it? Based on our many years of direct involvement with the business aspects of several expendable and reusable transportation systems, it appears to us that much of the discussion surrounding reusability is hindered by a failure to clearly define and understand the financial and other metrics by which the financial "goodness" of a reusable or expandable approach is measured. As stakeholders, the different users and suppliers of space transportation have a varied set of criteria for determining the relative economic viability of alternative strategies, including reusability. Many different metrics have been used to measure the affordability of space transportation, such as dollars per payload pound (kilogram) to orbit, cost per flight, life cycle cost, net present value/internal rate of return, and many others. This paper will examine the key considerations that influence

  3. Global atmospheric response to emissions from a proposed reusable space launch system

    Science.gov (United States)

    Larson, Erik J. L.; Portmann, Robert W.; Rosenlof, Karen H.; Fahey, David W.; Daniel, John S.; Ross, Martin N.

    2017-01-01

    Modern reusable launch vehicle technology may allow high flight rate space transportation at low cost. Emissions associated with a hydrogen fueled reusable rocket system are modeled based on the launch requirements of developing a space-based solar power system that generates present-day global electric energy demand. Flight rates from 104 to 106 per year are simulated and sustained to a quasisteady state. For the assumed rocket engine, H2O and NOX are the primary emission products; this also includes NOX produced during reentry heating. For a base case of 105 flights per year, global stratospheric and mesospheric water vapor increase by approximately 10 and 100%, respectively. As a result, high-latitude cloudiness increases in the lower stratosphere and near the mesopause by as much as 20%. Increased water vapor also results in global effective radiative forcing of about 0.03 W/m2. NOX produced during reentry exceeds meteoritic production by more than an order of magnitude, and along with in situ stratospheric emissions, results in a 0.5% loss of the globally averaged ozone column, with column losses in the polar regions exceeding 2%.

  4. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  5. Intelligent, reusable software for plug and play space avionics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build upon our existing space processing and hardening technologies and products e.g (Proton 200K), to research and develop reusable software...

  6. Air Force Reusable Booster System: A Quick-look, Design Focused Modeling and Cost Analysis Study

    Science.gov (United States)

    Zapata, Edgar

    2011-01-01

    This paper presents a method and an initial analysis of the costs of a reusable booster system (RBS) as envisioned by the US Department of Defense (DoD) and numerous initiatives that form the concept of Operationally Responsive Space (ORS). This paper leverages the knowledge gained from decades of experience with the semi-reusable NASA Space Shuttle to understand how the costs of a military next generation semi-reusable space transport might behave in the real world - and how it might be made as affordable as desired. The NASA Space Shuttle had a semi-expendable booster, that being the reusable Solid Rocket MotorslBoosters (SRMlSRB) and the expendable cryogenic External Tank (ET), with a reusable cargo and crew capable orbiter. This paper will explore DoD concepts that invert this architectural arrangement, using a reusable booster plane that flies back to base soon after launch, with the in-space elements of the launch system being the expendable portions. Cost estimating in the earliest stages of any potential, large scale program has limited usefulness. As a result, the emphasis here is on developing an approach, a structure, and the basic concepts that could continue to be matured as the program gains knowledge. Where cost estimates are provided, these results by necessity carry many caveats and assumptions, and this analysis becomes more about ways in which drivers of costs for diverse scenarios can be better understood. The paper is informed throughout with a design-for-cost philosophy whereby the design and technology features of the proposed RBS (who and what, the "architecture") are taken as linked at the hip to a desire to perform a certain mission (where and when), and together these inform the cost, responsiveness, performance and sustainability (how) of the system. Concepts for developing, acquiring, producing or operating the system will be shown for their inextricable relationship to the "architecture" of the system, and how these too relate to costs

  7. Distributed Health Monitoring System for Reusable Liquid Rocket Engines

    Science.gov (United States)

    Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.

    2009-01-01

    The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.

  8. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    1995-01-01

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  9. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  10. The Road from the NASA Access to Space Study to a Reusable Launch Vehicle

    Science.gov (United States)

    Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae

    1998-01-01

    NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.

  11. Assessment of the Feasibility of Innovative Reusable Launchers

    Science.gov (United States)

    Chiesa, S.; Corpino, S.; Viola, N.

    The demand for getting access to space, in particular to Low Earth Orbit, is increasing and fully reusable launch vehicles (RLVs) are likely to play a key role in the development of future space activities. Up until now this kind of space systems has not been successfully carried out: in fact today only the Space Shuttle, which belongs to the old generation of launchers, is operative and furthermore it is not a fully reusable system. In the nineties many studies regarding advanced transatmospheric planes were started, but no one was accomplished because of the technological problems encountered and the high financial resources required with the corresponding industrial risk. One of the most promising project was the Lockheed Venture Star, which seemed to have serious chances to be carried out. Anyway, if this ever happens, it will take quite a long time thus the operative life of Space Shuttle will have to be extended for the International Space Station support. The purpose of the present work is to assess the feasibility of different kinds of advanced reusable launch vehicles to gain access to space and to meet the requirements of today space flight needs, which are mainly safety and affordability. Single stage to orbit (SSTO), two stage to orbit (TSTO) and the so called "one and a half" stage to orbit vehicles are here taken into account to highlight their advantages and disadvantages. The "one and a half" stage to orbit vehicle takes off and climbs to meet a tanker aircraft to be aerially refuelled and then, after disconnecting from the tanker, it flies to reach the orbit. In this case, apart from the space vehicle, also the tanker aircraft needs a dedicated study to examine the problems related to the refuelling at high subsonic speeds and at a height near the tropopause. Only winged vehicles which take off and land horizontally are considered but different architectural layouts and propulsive configurations are hypothesised. Unlike the Venture Star, which

  12. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  13. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    Science.gov (United States)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  14. Reusable Rocket Engine Turbopump Health Management System

    Science.gov (United States)

    Surko, Pamela

    1994-01-01

    A health monitoring expert system software architecture has been developed to support condition-based health monitoring of rocket engines. Its first application is in the diagnosis decisions relating to the health of the high pressure oxidizer turbopump (HPOTP) of Space Shuttle Main Engine (SSME). The post test diagnostic system runs off-line, using as input the data recorded from hundreds of sensors, each running typically at rates of 25, 50, or .1 Hz. The system is invoked after a test has been completed, and produces an analysis and an organized graphical presentation of the data with important effects highlighted. The overall expert system architecture has been developed and documented so that expert modules analyzing other line replaceable units may easily be added. The architecture emphasizes modularity, reusability, and open system interfaces so that it may be used to analyze other engines as well.

  15. Bantam: A Systematic Approach to Reusable Launch Vehicle Technology Development

    Science.gov (United States)

    Griner, Carolyn; Lyles, Garry

    1999-01-01

    The Bantam technology project is focused on providing a low cost launch capability for very small (100 kilogram) NASA and University science payloads. The cost goal has been set at one million dollars per launch. The Bantam project, however, represents much more than a small payload launch capability. Bantam represents a unique, systematic approach to reusable launch vehicle technology development. This technology maturation approach will enable future highly reusable launch concepts in any payload class. These launch vehicle concepts of the future could deliver payloads for hundreds of dollars per pound, enabling dramatic growth in civil and commercial space enterprise. The National Aeronautics and Space Administration (NASA) has demonstrated a better, faster, and cheaper approach to science discovery in recent years. This approach is exemplified by the successful Mars Exploration Program lead by the Jet Propulsion Laboratory (JPL) for the NASA Space Science Enterprise. The Bantam project represents an approach to space transportation technology maturation that is very similar to the Mars Exploration Program. The NASA Advanced Space Transportation Program (ASTP) and Future X Pathfinder Program will combine to systematically mature reusable space transportation technology from low technology readiness to system level flight demonstration. New reusable space transportation capability will be demonstrated at a small (Bantam) scale approximately every two years. Each flight demonstration will build on the knowledge derived from the previous flight tests. The Bantam scale flight demonstrations will begin with the flights of the X-34. The X-34 will demonstrate reusable launch vehicle technologies including; flight regimes up to Mach 8 and 250,000 feet, autonomous flight operations, all weather operations, twenty-five flights in one year with a surge capability of two flights in less than twenty-four hours and safe abort. The Bantam project will build on this initial

  16. Reusable Nanocomposite Membranes for the Selective Recovery of Nutrients in Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Through the STTR program, NanoSonic and Virginia Tech will create low-cost, reusable membranes that selectively capture and recycle nutrients (e.g., N, P, K) from...

  17. Commercial aspects of semi-reusable launch systems

    Science.gov (United States)

    Obersteiner, M. H.; Müller, H.; Spies, H.

    2003-07-01

    This paper presents a business planning model for a commercial space launch system. The financing model is based on market analyses and projections combined with market capture models. An operations model is used to derive the annual cash income. Parametric cost modeling, development and production schedules are used for quantifying the annual expenditures, the internal rate of return, break even point of positive cash flow and the respective prices per launch. Alternative consortia structures, cash flow methods, capture rates and launch prices are used to examine the sensitivity of the model. Then the model is applied for a promising semi-reusable launcher concept, showing the general achievability of the commercial approach and the necessary pre-conditions.

  18. Hospital information system: reusability, designing, modelling, recommendations for implementing.

    Science.gov (United States)

    Huet, B

    1998-01-01

    The aims of this paper are to precise some essential conditions for building reuse models for hospital information systems (HIS) and to present an application for hospital clinical laboratories. Reusability is a general trend in software, however reuse can involve a more or less part of design, classes, programs; consequently, a project involving reusability must be precisely defined. In the introduction it is seen trends in software, the stakes of reuse models for HIS and the special use case constituted with a HIS. The main three parts of this paper are: 1) Designing a reuse model (which objects are common to several information systems?) 2) A reuse model for hospital clinical laboratories (a genspec object model is presented for all laboratories: biochemistry, bacteriology, parasitology, pharmacology, ...) 3) Recommendations for generating plug-compatible software components (a reuse model can be implemented as a framework, concrete factors that increase reusability are presented). In conclusion reusability is a subtle exercise of which project must be previously and carefully defined.

  19. Authoring Systems Delivering Reusable Learning Objects

    Directory of Open Access Journals (Sweden)

    George Nicola Sammour

    2009-10-01

    Full Text Available A three layer e-learning course development model has been defined based on a conceptual model of learning content object. It starts by decomposing the learning content into small chunks which are initially placed in a hierarchic structure of units and blocks. The raw content components, being the atomic learning objects (ALO, were linked to the blocks and are structured in the database. We set forward a dynamic generation of LO's using re-usable e-learning raw materials or ALO’s In that view we need a LO authoring/ assembling system fitting the requirements of interoperability and reusability and starting from selecting the raw learning content from the learning materials content database. In practice authoring systems are used to develop e-learning courses. The company EDUWEST has developed an authoring system that is database based and will be SCORM compliant in the near future.

  20. Reusable Rack Interface Controller Common Software for Various Science Research Racks on the International Space Station

    Science.gov (United States)

    Lu, George C.

    2003-01-01

    The purpose of the EXPRESS (Expedite the PRocessing of Experiments to Space Station) rack project is to provide a set of predefined interfaces for scientific payloads which allow rapid integration into a payload rack on International Space Station (ISS). VxWorks' was selected as the operating system for the rack and payload resource controller, primarily based on the proliferation of VME (Versa Module Eurocard) products. These products provide needed flexibility for future hardware upgrades to meet everchanging science research rack configuration requirements. On the International Space Station, there are multiple science research rack configurations, including: 1) Human Research Facility (HRF); 2) EXPRESS ARIS (Active Rack Isolation System); 3) WORF (Window Observational Research Facility); and 4) HHR (Habitat Holding Rack). The RIC (Rack Interface Controller) connects payloads to the ISS bus architecture for data transfer between the payload and ground control. The RIC is a general purpose embedded computer which supports multiple communication protocols, including fiber optic communication buses, Ethernet buses, EIA-422, Mil-Std-1553 buses, SMPTE (Society Motion Picture Television Engineers)-170M video, and audio interfaces to payloads and the ISS. As a cost saving and software reliability strategy, the Boeing Payload Software Organization developed reusable common software where appropriate. These reusable modules included a set of low-level driver software interfaces to 1553B. RS232, RS422, Ethernet buses, HRDL (High Rate Data Link), video switch functionality, telemetry processing, and executive software hosted on the FUC computer. These drivers formed the basis for software development of the HRF, EXPRESS, EXPRESS ARIS, WORF, and HHR RIC executable modules. The reusable RIC common software has provided extensive benefits, including: 1) Significant reduction in development flow time; 2) Minimal rework and maintenance; 3) Improved reliability; and 4) Overall

  1. Benefits of Government Incentives for Reusable Launch Vehicle Development

    Science.gov (United States)

    Shaw, Eric J.; Hamaker, Joseph W.; Prince, Frank A.

    1998-01-01

    Many exciting new opportunities in space, both government missions and business ventures, could be realized by a reduction in launch prices. Reusable launch vehicle (RLV) designs have the potential to lower launch costs dramatically from those of today's expendable and partially-expendable vehicles. Unfortunately, governments must budget to support existing launch capability, and so lack the resources necessary to completely fund development of new reusable systems. In addition, the new commercial space markets are too immature and uncertain to motivate the launch industry to undertake a project of this magnitude and risk. Low-cost launch vehicles will not be developed without a mature market to service; however, launch prices must be reduced in order for a commercial launch market to mature. This paper estimates and discusses the various benefits that may be reaped from government incentives for a commercial reusable launch vehicle program.

  2. Reusable Military Launch Systems (RMLS)

    Science.gov (United States)

    2008-02-01

    shown in Figure 11. The second configuration is an axisymmetric, rocket-based combined cycle (RBCC) powered, SSTO vehicle, similar to the GTX...McCormick, D., and Sorensen, K., “Hyperion: An SSTO Vision Vehicle Concept Utilizing Rocket-Based Combined Cycle Propulsion”, AIAA paper 99-4944...there have been several failedattempts at the development of reusable rocket or air-breathing launch vehicle systems. Single-stage-to-orbit ( SSTO

  3. Reusable launch vehicle facts and fantasies

    Science.gov (United States)

    Kaplan, Marshall H.

    2002-01-01

    Many people refuse to address many of the realities of reusable launch vehicle systems, technologies, operations and economics. Basic principles of physics, space flight operations, and business limitations are applied to the creation of a practical vision of future expectations. While reusable launcher concepts have been proposed for several decades, serious review of potential designs began in the mid-1990s, when NASA decided that a Space Shuttle replacement had to be pursued. A great deal of excitement and interest was quickly generated by the prospect of ``orders-of-magnitude'' reduction in launch costs. The potential for a vastly expanded space program motivated the entire space community. By the late-1990s, and after over one billion dollars were spent on the technology development and privately-funded concepts, it had become clear that there would be no new, near-term operational reusable vehicle. Many factors contributed to a very expensive and disappointing effort to create a new generation of launch vehicles. It began with overly optimistic projections of technology advancements and the belief that a greatly increased demand for satellite launches would be realized early in the 21st century. Contractors contributed to the perception of quickly reachable technology and business goals, thus, accelerating the enthusiasm and helping to create a ``gold rush'' euphoria. Cost, schedule and performance margins were all highly optimistic. Several entrepreneurs launched start up companies to take advantage of the excitement and the availability of investor capital. Millions were raised from private investors and venture capitalists, based on little more than flashy presentations and animations. Well over $500 million were raised by little-known start up groups to create reusable systems, which might complete for the coming market in launch services. By 1999, it was clear that market projections, made just two years earlier, were not going to be realized. Investors

  4. Making the Case for Reusable Booster Systems: The Operations Perspective

    Science.gov (United States)

    Zapata, Edgar

    2012-01-01

    Presentation to the Aeronautics Space Engineering Board National Research Council Reusable Booster System: Review and Assessment Committee. Addresses: the criteria and assumptions used in the formulation of current RBS plans; the methodologies used in the current cost estimates for RBS; the modeling methodology used to frame the business case for an RBS capability including: the data used in the analysis, the models' robustness if new data become available, and the impact of unclassified government data that was previously unavailable and which will be supplied by the USAF; the technical maturity of key elements critical to RBS implementation and the ability of current technology development plans to meet technical readiness milestones.

  5. 14 CFR 437.67 - Tracking a reusable suborbital rocket.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tracking a reusable suborbital rocket. 437... a reusable suborbital rocket. A permittee must— (a) During permitted flight, measure in real time the position and velocity of its reusable suborbital rocket; and (b) Provide position and velocity...

  6. Systems aspects of a space nuclear reactor power system

    Science.gov (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  7. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Science.gov (United States)

    2010-01-01

    ... suborbital rockets. 437.95 Section 437.95 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  8. Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign

    Science.gov (United States)

    McVay, Eric S.; Jones, Christopher A.; Merrill, Raymond G.

    2016-01-01

    Human exploration missions to Mars or other destinations in the solar system require large quantities of propellant to enable the transportation of required elements from Earth's sphere of influence to Mars. Current and proposed launch vehicles are incapable of launching all of the requisite mass on a single vehicle; hence, multiple launches and in-space aggregation are required to perform a Mars mission. This study examines the potential of reusable chemical propulsion stages based in cis-lunar space to meet the transportation objectives of the Evolvable Mars Campaign and identifies cis-lunar propellant supply requirements. These stages could be supplied with fuel and oxidizer delivered to cis-lunar space, either launched from Earth or other inner solar system sources such as the Moon or near Earth asteroids. The effects of uncertainty in the model parameters are evaluated through sensitivity analysis of key parameters including the liquid propellant combination, inert mass fraction of the vehicle, change in velocity margin, and change in payload masses. The outcomes of this research include a description of the transportation elements, the architecture that they enable, and an option for a campaign that meets the objectives of the Evolvable Mars Campaign. This provides a more complete understanding of the propellant requirements, as a function of time, that must be delivered to cis-lunar space. Over the selected sensitivity ranges for the current payload and schedule requirements of the 2016 point of departure of the Evolvable Mars Campaign destination systems, the resulting propellant delivery quantities are between 34 and 61 tonnes per year of hydrogen and oxygen propellant, or between 53 and 76 tonnes per year of methane and oxygen propellant, or between 74 and 92 tonnes per year of hypergolic propellant. These estimates can guide future propellant manufacture and/or delivery architectural analysis.

  9. Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  10. Reliable, Reusable Cryotank, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcracking issues have significantly limited the reusability of state-of-the-art (SOA) composite cryotanks. While developers have made some progress addressing...

  11. Highly reusable space transportation: Approaches for reducing ETO launch costs to $100 - $200 per pound of payload

    Science.gov (United States)

    Olds, John R.

    1995-01-01

    The Commercial Space Transportation Study (CSTS) suggests that considerable market expansion in earth-to-orbit transportation would take place if current launch prices could be reduced to around $400 per pound of payload. If these low prices can be achieved, annual payload delivered to low earth orbit (LEO) is predicted to reach 6.7 million pounds. The primary market growth will occur in communications, government missions, and civil transportation. By establishing a cost target of $100-$200 per pound of payload for a new launch system, the Highly Reusable Space Transportation (HRST) program has clearly set its sights on removing the current restriction on market growth imposed by today's high launch costs. In particular, achieving the goal of $100-$200 per pound of payload will require significant coordinated efforts in (1) marketing strategy development, (2) business planning, (3) system operational strategy, (4) vehicle technical design, and (5) vehicle maintenance strategy.

  12. Future Launch Vehicle Structures - Expendable and Reusable Elements

    Science.gov (United States)

    Obersteiner, M. H.; Borriello, G.

    2002-01-01

    Further evolution of existing expendable launch vehicles will be an obvious element influencing the future of space transportation. Besides this reusability might be the change with highest potential for essential improvement. The expected cost reduction and finally contributing to this, the improvement of reliability including safe mission abort capability are driving this idea. Although there are ideas of semi-reusable launch vehicles, typically two stages vehicles - reusable first stage or booster(s) and expendable second or upper stage - it should be kept in mind that the benefit of reusability will only overwhelm if there is a big enough share influencing the cost calculation. Today there is the understanding that additional technology preparation and verification will be necessary to master reusability and get enough benefits compared with existing launch vehicles. This understanding is based on several technology and system concepts preparation and verification programmes mainly done in the US but partially also in Europe and Japan. The major areas of necessary further activities are: - System concepts including business plan considerations - Sub-system or component technologies refinement - System design and operation know-how and capabilities - Verification and demonstration oriented towards future mission mastering: One of the most important aspects for the creation of those coming programmes and activities will be the iterative process of requirements definition derived from concepts analyses including economical considerations and the results achieved and verified within technology and verification programmes. It is the intention of this paper to provide major trends for those requirements focused on future launch vehicles structures. This will include the aspects of requirements only valid for reusable launch vehicles and those common for expendable, semi-reusable and reusable launch vehicles. Structures and materials is and will be one of the

  13. Integration of reusable systems

    CERN Document Server

    Rubin, Stuart

    2014-01-01

    Software reuse and integration has been described as the process of creating software systems from existing software rather than building software systems from scratch. Whereas reuse solely deals with the artifacts creation, integration focuses on how reusable artifacts interact with the already existing parts of the specified transformation. Currently, most reuse research focuses on creating and integrating adaptable components at development or at compile time. However, with the emergence of ubiquitous computing, reuse technologies that can support adaptation and reconfiguration of architectures and components at runtime are in demand. This edited book includes 15 high quality research papers written by experts in information reuse and integration to cover the most recent advances in the field. These papers are extended versions of the best papers which were presented at IEEE International Conference on Information Reuse and Integration and IEEE International Workshop on Formal Methods Integration, which wa...

  14. Operational Issues in the Development of a Cost-Effective Reusable LOX/LH2 Engine

    Science.gov (United States)

    Ballard, Richard O.

    2003-01-01

    The NASA Space Launch Initiative (SLI) was initiated in early 2001 to conduct technology development and to reduce the business and technical risk associated with developing the next-generation reusable launch system. In the field of main propulsion, two LOXLH2 rocket engine systems, the Pratt & Whitney / Aerojet Joint Venture (JV) COBRA and the Rocketdyne RS-83, were funded to develop a safe, economical, and reusable propulsion system. Given that a large-thrust reusable rocket engine program had not been started in the U.S. since 1971, with the Space Shuttle Main Engine (SSME), this provided an opportunity to build on the experience developed on the SSME system, while exploiting advances in technology that had occurred in the intervening 30 years. One facet of engine development that was identified as being especially vital in order to produce an optimal system was in the areas of operability and maintainability. In order to achieve the high levels of performance required by the Space Shuttle, the SSME system is highly complex with very tight tolerances and detailed requirements. Over the lifetime of the SSME program, the engine has required a high level of manpower to support the performance of inspections, maintenance (scheduled and unscheduled) and operations (prelaunch and post-flight). As a consequence, the labor- intensive needs of the SSME provide a significant impact to the overall cost efficiency of the Space Transportation System (STS). One of the strategic goals of the SLI is to reduce cost by requiring the engine(s) to be easier (Le. less expensive) to operate and maintain. The most effective means of accomplishing this goal is to infuse the operability and maintainability features into the engine design from the start. This paper discusses some of the operational issues relevant to a reusable LOx/LH2 main engine, and the means by which their impact is mitigated in the design phase.

  15. A One Chip Hardened Solution for High Speed SpaceWire System Implementations. Session: Components

    Science.gov (United States)

    Marshall, Joseph R.; Berger, Richard W.; Rakow, Glenn P.

    2007-01-01

    An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASIC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a router with 4 SpaceWire ports and two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, and a memory controller for additional external memory use. The SpaceWire cores are also reused in other ASICs under development. The SpaceWire ASIC is planned for use on the Geostationary Operational Environmental Satellites (GOES)-R, the Lunar Reconnaissance Orbiter (LRO) and other missions. Engineering and flight parts have been delivered to programs and users. This paper reviews the SpaceWire protocol and those elements of it that have been built into the current and next SpaceWire reusable cores and features within the core that go beyond the current standard and can be enabled or disabled by the user. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be reviewed and highlighted. Optional configurations within user systems and test boards will be shown. The physical implementation of the design will be described and test results from the hardware will be discussed. Application of this ASIC and other ASICs containing the SpaceWire cores and embedded microcontroller to Plug and Play and reconfigurable implementations will be described. Finally, the BAE Systems roadmap for SpaceWire developments will be updated, including some products already in design as well as longer term plans.

  16. Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    Science.gov (United States)

    Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.

    1983-01-01

    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.

  17. Space Van system update

    Science.gov (United States)

    Cormier, Len

    1992-07-01

    The Space Van is a proposed commercial launch vehicle that is designed to carry 1150 kg to a space-station orbit for a price of $1,900,000 per flight in 1992 dollars. This price includes return on preoperational investment. Recurring costs are expected to be about $840,000 per flight. The Space Van is a fully reusable, assisted-single-stage-to orbit system. The most innovative new feature of the Space Van system is the assist-stage concept. The assist stage uses only airbreathing engines for vertical takeoff and vertical landing in the horizontal attitude and for launching the rocket-powered orbiter stage at mach 0.8 and an altitude of about 12 km. The primary version of the orbiter is designed for cargo-only without a crew. However, a passenger version of the Space Van should be able to carry a crew of two plus six passengers to a space-station orbit. Since the Space Van is nearly single-stage, performance to polar orbit drops off significantly. The cargo version should be capable of carrying 350 kg to a 400-km polar orbit. In the passenger version, the Space Van should be able to carry two crew members - or one crew member plus a passenger.

  18. A Quality Function Deployment Method Applied to Highly Reusable Space Transportation

    Science.gov (United States)

    Zapata, Edgar

    2016-01-01

    This paper will describe a Quality Function Deployment (QFD) currently in work the goal of which is to add definition and insight to the development of long term Highly Reusable Space Transportation (HRST). The objective here is twofold. First, to describe the process, the actual QFD experience as applies to the HRST study. Second, to describe the preliminary results of this process, in particular the assessment of possible directions for future pursuit such as promising candidate technologies or approaches that may finally open the space frontier. The iterative and synergistic nature of QFD provides opportunities in the process for the discovery of what is key in so far as it is useful, what is not, and what is merely true. Key observations on the QFD process will be presented. The importance of a customer definition as well as the similarity of the process of developing a technology portfolio to product development will be shown. Also, the relation of identified cost and operating drivers to future space vehicle designs that are robust to an uncertain future will be discussed. The results in particular of this HRST evaluation will be preliminary given the somewhat long term (or perhaps not?) nature of the task being considered.

  19. A quality function deployment method applied to highly reusable space transportation

    Science.gov (United States)

    Zapata, Edgar

    1997-01-01

    This paper will describe a Quality Function Deployment (QFD) currently in work the goal of which is to add definition and insight to the development of long term Highly Reusable Space Transportation (HRST). The objective here is twofold. First, to describe the process, the actual QFD experience as applies to the HRST study. Second, to describe the preliminary results of this process, in particular the assessment of possible directions for future pursuit such as promising candidate technologies or approaches that may finally open the space frontier. The iterative and synergistic nature of QFD provides opportunities in the process for the discovery of what is key in so far as it is useful, what is not, and what is merely true. Key observations on the QFD process will be presented. The importance of a customer definition as well as the similarity of the process of developing a technology portfolio to product development will be shown. Also, the relation of identified cost and operating drivers to future space vehicle designs that are robust to an uncertain future will be discussed. The results in particular of this HRST evaluation will be preliminary given the somewhat long term (or perhaps not?) nature of the task being considered.

  20. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    Science.gov (United States)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace the Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  1. Space shuttle orbit maneuvering engine reusable thrust chamber program

    Science.gov (United States)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  2. Airframe Integration Trade Studies for a Reusable Launch Vehicle

    Science.gov (United States)

    Dorsey, John T.; Wu, Chauncey; Rivers, Kevin; Martin, Carl; Smith, Russell

    1999-01-01

    Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.

  3. Risk Perception and Communication in Commercial Reusable Launch Vehicle Operations

    Science.gov (United States)

    Hardy, Terry L.

    2005-12-01

    A number of inventors and entrepreneurs are currently attempting to develop and commercially operate reusable launch vehicles to carry voluntary participants into space. The operation of these launch vehicles, however, produces safety risks to the crew, to the space flight participants, and to the uninvolved public. Risk communication therefore becomes increasingly important to assure that those involved in the flight understand the risk and that those who are not directly involved understand the personal impact of RLV operations on their lives. Those involved in the launch vehicle flight may perceive risk differently from those non-participants, and these differences in perception must be understood to effectively communicate this risk. This paper summarizes existing research in risk perception and communication and applies that research to commercial reusable launch vehicle operations. Risk communication is discussed in the context of requirements of United States law for informed consent from any space flight participants on reusable suborbital launch vehicles.

  4. Reusable Agena study. Volume 2: Technical

    Science.gov (United States)

    Carter, W. K.; Piper, J. E.; Douglass, D. A.; Waller, E. W.; Hopkins, C. V.; Fitzgerald, E. T.; Sagawa, S. S.; Carter, S. A.; Jensen, H. L.

    1974-01-01

    The application of the existing Agena vehicle as a reusable upper stage for the space shuttle is discussed. The primary objective of the study is to define those changes to the Agena required for it to function in the reusable mode in the 100 percent capture of the NASA-DOD mission model. This 100 percent capture is achieved without use of kick motors or stages by simply increasing the Agena propellant load by using optional strap-on-tanks. The required shuttle support equipment, launch and flight operations techniques, development program, and cost package are also defined.

  5. Using PHM to measure equipment usable life on the Air Force's next generation reusable space booster

    Science.gov (United States)

    Blasdel, A.

    The U.S. Air Force procures many launch vehicles and launch vehicle services to place their satellites at their desired location in space. The equipment on-board these satellite and launch vehicle often suffer from premature failures that result in the total loss of the satellite or a shortened mission life sometimes requiring the purchase of a replacement satellite and launch vehicle. The Air Force uses its EELV to launch its high priority satellites. Due to a rise in the cost of purchasing a launch using the Air Force's EELV from 72M in 1997 to as high as 475M per launch today, the Air Force is working to replace the EELV with a reusable space booster (RSB). The RSB will be similar in design and operations to the recently cancelled NASA reusable space booster known as the Space Shuttle. If the Air Force uses the same process that procures the EELV and other launch vehicles and satellites, the RSB will also suffer from premature equipment failures thus putting the payloads at a similar high risk of mission failure. The RSB is expected to lower each launch cost by 50% compared to the EELV. The development of the RSB offers the Air Force an opportunity to use a new reliability paradigm that includes a prognostic and health management program and a condition-based maintenance program. These both require using intelligent, decision making self-prognostic equipment The prognostic and health management program and its condition-based maintenance program allows increases in RSB equipment usable life, lower logistics and maintenance costs, while increasing safety and mission assurance. The PHM removes many decisions from personnel that, in the past resulted in catastrophic failures and loss of life. Adding intelligent, decision-making self-prognostic equipment to the RSB will further decrease launch costs while decreasing risk and increasing safety and mission assurance.

  6. Portable, parallel, reusable Krylov space codes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.; Gropp, W. [Argonne National Lab., IL (United States)

    1994-12-31

    Krylov space accelerators are an important component of many algorithms for the iterative solution of linear systems. Each Krylov space method has it`s own particular advantages and disadvantages, therefore it is desirable to have a variety of them available all with an identical, easy to use, interface. A common complaint application programmers have with available software libraries for the iterative solution of linear systems is that they require the programmer to use the data structures provided by the library. The library is not able to work with the data structures of the application code. Hence, application programmers find themselves constantly recoding the Krlov space algorithms. The Krylov space package (KSP) is a data-structure-neutral implementation of a variety of Krylov space methods including preconditioned conjugate gradient, GMRES, BiCG-Stab, transpose free QMR and CGS. Unlike all other software libraries for linear systems that the authors are aware of, KSP will work with any application codes data structures, in Fortran or C. Due to it`s data-structure-neutral design KSP runs unchanged on both sequential and parallel machines. KSP has been tested on workstations, the Intel i860 and Paragon, Thinking Machines CM-5 and the IBM SP1.

  7. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision

    Science.gov (United States)

    Palaszewski, Bryan A.

    1997-01-01

    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  8. Reusable Surface Insulation

    Science.gov (United States)

    1997-01-01

    Advanced Flexible Reusable Surface Insulation, developed by Ames Research Center, protects the Space Shuttle from the searing heat that engulfs it on reentry into the Earth's atmosphere. Initially integrated into the Space Shuttle by Rockwell International, production was transferred to Hi-Temp Insulation Inc. in 1974. Over the years, Hi-Temp has created many new technologies to meet the requirements of the Space Shuttle program. This expertise is also used commercially, including insulation blankets to cover aircrafts parts, fire barrier material to protect aircraft engine cowlings and aircraft rescue fire fighter suits. A Fire Protection Division has also been established, offering the first suit designed exclusively by and for aircraft rescue fire fighters. Hi-Temp is a supplier to the Los Angeles City Fire Department as well as other major U.S. civil and military fire departments.

  9. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    Science.gov (United States)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  10. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    Science.gov (United States)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  11. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    Science.gov (United States)

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  12. Modern architectures for intelligent systems: reusable ontologies and problem-solving methods.

    Science.gov (United States)

    Musen, M A

    1998-01-01

    When interest in intelligent systems for clinical medicine soared in the 1970s, workers in medical informatics became particularly attracted to rule-based systems. Although many successful rule-based applications were constructed, development and maintenance of large rule bases remained quite problematic. In the 1980s, an entire industry dedicated to the marketing of tools for creating rule-based systems rose and fell, as workers in medical informatics began to appreciate deeply why knowledge acquisition and maintenance for such systems are difficult problems. During this time period, investigators began to explore alternative programming abstractions that could be used to develop intelligent systems. The notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) domain-independent problem-solving methods-standard algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper will highlight how intelligent systems for diverse tasks can be efficiently automated using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.

  13. Economic Metrics for Commercial Reusable Space Transportation Systems

    Science.gov (United States)

    Shaw, Eric J.; Hamaker, Joseph (Technical Monitor)

    2000-01-01

    baseline. Still, economic metrics for technology development in these Programs and projects remain fairly straightforward, being based on reductions in acquisition and operating costs of the Systems. One of the most challenging requirements that NASA levies on its Programs is to plan for the commercialization of the developed technology. Some NASA Programs are created for the express purpose of developing technology for a particular industrial sector, such as aviation or space transportation, in financial partnership with that sector. With industrial investment, another set of goals, constraints and expectations are levied on the technology program. Economic benefit metrics then expand beyond cost and cost savings to include the marketability, profit, and investment return requirements of the private sector. Commercial investment criteria include low risk, potential for high return, and strategic alignment with existing product lines. These corporate criteria derive from top-level strategic plans and investment goals, which rank high among the most proprietary types of information in any business. As a result, top-level economic goals and objectives that industry partners bring to cooperative programs cannot usually be brought into technical processes, such as systems engineering, that are worked collaboratively between Industry and Government. In spite of these handicaps, the top-level economic goals and objectives of a joint technology program can be crafted in such a way that they accurately reflect the fiscal benefits from both Industry and Government perspectives. Valid economic metrics can then be designed that can track progress toward these goals and objectives, while maintaining the confidentiality necessary for the competitive process.

  14. DEPONTO: A Reusable Dependability Domain Ontology

    Directory of Open Access Journals (Sweden)

    Teodora Sanislav

    2015-08-01

    Full Text Available This paper proposes a dependability reusable ontology for knowledge representation. The fundamental knowledge related to dependability follows its taxonomy. Thus, this paper gives an analysis of what is the dependability domain ontology andof its components.The dependability domain ontology plays an important role in ensuring the dependability of information systems by providing support for their diagnosis in case of faults, errors and failures.The proposed ontology is used as a dependability framework in two case study Cyber-Physical Systemswhich demonstrate its reusability within this category of systems.

  15. Project of Ariane 5 LV family advancement by use of reusable fly-back boosters (named “Bargouzine”)

    Science.gov (United States)

    Sumin, Yu.; Bonnal, Ch.; Kostromin, S.; Panichkin, N.

    2007-12-01

    The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called "Bargouzin". This paper describes the status of the presently studied RFBB concepts during its three phases. The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters ("Baikal" type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented. The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts. The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.

  16. Development of a novel controllable, multidirectional, reusable metallic port with a wide working space.

    Science.gov (United States)

    Hosaka, Seiji; Ohdaira, Takeshi; Umemoto, Satoshi; Hashizume, Makoto; Kawamoto, Shunji

    2013-12-01

    Endoscopic surgery is currently a standard procedure in many countries. Furthermore, conventional four-port laparoscopic cholecystectomy is developing into a single-port procedure. However, in many developing countries, disposable medical products are expensive and adequate medical waste disposable facilities are absent. Advanced medical treatments such as laparoscopic or single-port surgeries are not readily available in many areas of developing countries, and there are often no other sterilization methods besides autoclaving. Moreover, existing reusable metallic ports are impractical and are thus not widely used. We developed a novel controllable, multidirectional single-port device that can be autoclaved, and with a wide working space, which was employed in five patients. In all patients, laparoscopic cholecystectomy was accomplished without complications. Our device facilitates single-port surgery in areas of the world with limited sterilization methods and offers a novel alternative to conventional tools for creating a smaller incision, decrease postoperative pain, and improve cosmesis. This novel device can also lower the cost of medical treatment and offers a promising tool for major surgeries requiring a wide working space.

  17. Systems aspects of a space nuclear reactor power system

    International Nuclear Information System (INIS)

    Jaffe, L.; Fujita, T.; Beatty, R.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: Power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, attitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly

  18. A study of upwind schemes on the laminar hypersonic heating predictions for the reusable space vehicle

    Science.gov (United States)

    Qu, Feng; Sun, Di; Zuo, Guang

    2018-06-01

    With the rapid development of the Computational Fluid Dynamics (CFD), Accurate computing hypersonic heating is in a high demand for the design of the new generation reusable space vehicle to conduct deep space exploration. In the past years, most researchers try to solve this problem by concentrating on the choice of the upwind schemes or the definition of the cell Reynolds number. However, the cell Reynolds number dependencies and limiter dependencies of the upwind schemes, which are of great importance to their performances in hypersonic heating computations, are concerned by few people. In this paper, we conduct a systematic study on these properties respectively. Results in our test cases show that SLAU (Simple Low-dissipation AUSM-family) is with a much higher level of accuracy and robustness in hypersonic heating predictions. Also, it performs much better in terms of the limiter dependency and the cell Reynolds number dependency.

  19. A Reusable Software Architecture for Small Satellite AOCS Systems

    DEFF Research Database (Denmark)

    Alminde, Lars; Bendtsen, Jan Dimon; Laursen, Karl Kaas

    2006-01-01

    This paper concerns the software architecture called Sophy, which is an abbreviation for Simulation, Observation, and Planning in HYbrid systems. We present a framework that allows execution of hybrid dynamical systems in an on-line distributed computing environment, which includes interaction...... with both hardware and on-board software. Some of the key issues addressed by the framework are automatic translation of mathematical specifications of hybrid systems into executable software entities, management of execution of coupled models in a parallel distributed environment, as well as interaction...... with external components, hardware and/or software, through generic interfaces. Sophy is primarily intended as a tool for development of model based reusable software for the control and autonomous functions of satellites and/or satellite clusters....

  20. Modular and Reusable Power System Design for the BRRISON Balloon Telescope

    Science.gov (United States)

    Truesdale, Nicholas A.

    High altitude balloons are emerging as low-cost alternatives to orbital satellites in the field of telescopic observation. The near-space environment of balloons allows optics to perform near their diffraction limit. In practice, this implies that a telescope similar to the Hubble Space Telescope could be flown for a cost of tens of millions as opposed to billions. While highly feasible, the design of a balloon telescope to rival Hubble is limited by funding. Until a prototype is proven and more support for balloon science is gained, projects remain limited in both hardware costs and man hours. Thus, to effectively create and support balloon payloads, engineering designs must be efficient, modular, and if possible reusable. This thesis focuses specifically on a modular power system design for the BRRISON comet-observing balloon telescope. Time- and cost-saving techniques are developed that can be used for future missions. A modular design process is achieved through the development of individual circuit elements that span a wide range of capabilities. Circuits for power conversion, switching and sensing are designed to be combined in any configuration. These include DC-DC regulators, MOSFET drivers for switching, isolated switches, current sensors and voltage sensing ADCs. Emphasis is also given to commercially available hardware. Pre-fabricated DC-DC converters and an Arduino microcontroller simplify the design process and offer proven, cost-effective performance. The design of the BRRISON power system is developed from these low-level circuits elements. A board for main power distribution supports the majority of flight electronics, and is extensible to additional hardware in future applications. An ATX computer power supply is developed, allowing the use of a commercial ATX motherboard as the flight computer. The addition of new capabilities is explored in the form of a heater control board. Finally, the power system as a whole is described, and its overall

  1. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  2. GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules

    Science.gov (United States)

    Sarrion-Perdigones, Alejandro; Falconi, Erica Elvira; Zandalinas, Sara I.; Juárez, Paloma; Fernández-del-Carmen, Asun; Granell, Antonio; Orzaez, Diego

    2011-01-01

    Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (“braid”) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described. PMID:21750718

  3. Laser Shearography Inspection of TPS (Thermal Protection System) Cork on RSRM (Reusable Solid Rocket Motors)

    Science.gov (United States)

    Lingbloom, Mike; Plaia, Jim; Newman, John

    2006-01-01

    Laser Shearography is a viable inspection method for detection of de-bonds and voids within the external TPS (thermal protection system) on to the Space Shuttle RSRM (reusable solid rocket motors). Cork samples with thicknesses up to 1 inch were tested at the LTI (Laser Technology Incorporated) laboratory using vacuum-applied stress in a vacuum chamber. The testing proved that the technology could detect cork to steel un-bonds using vacuum stress techniques in the laboratory environment. The next logical step was to inspect the TPS on a RSRM. Although detailed post flight inspection has confirmed that ATK Thiokol's cork bonding technique provides a reliable cork to case bond, due to the Space Shuttle Columbia incident there is a great interest in verifying bond-lines on the external TPS. This interest provided and opportunity to inspect a RSRM motor with Laser Shearography. This paper will describe the laboratory testing and RSRM testing that has been performed to date. Descriptions of the test equipment setup and techniques for data collection and detailed results will be given. The data from the test show that Laser Shearography is an effective technology and readily adaptable to inspect a RSRM.

  4. Space Transportation Infrastructure Supported By Propellant Depots

    Science.gov (United States)

    Smitherman, David; Woodcock, Gordon

    2012-01-01

    A space transportation infrastructure is described that utilizes propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support a new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid and Mars Missions. New vehicle design concepts are presented that can be launched on current 5 meter diameter ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot, L1 Depot and missions beyond L1; a new reusable lunar lander for crew transportation between the L1 Depot and the lunar surface; and Mars orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure include competitive bidding for ELV flights and propellant services, developments of new reusable in-space vehicles and development of a multiuse infrastructure that can support many government and commercial missions simultaneously.

  5. Macroeconomic Benefits of Low-Cost Reusable Launch Vehicles

    Science.gov (United States)

    Shaw, Eric J.; Greenberg, Joel

    1998-01-01

    The National Aeronautics and Space Administration (NASA) initiated its Reusable Launch Vehicle (RLV) Technology Program to provide information on the technical and commercial feasibility of single-stage to orbit (SSTO), fully-reusable launchers. Because RLVs would not depend on expendable hardware to achieve orbit, they could take better advantage of economies of scale than expendable launch vehicles (ELVs) that discard costly hardware on ascent. The X-33 experimental vehicle, a sub-orbital, 60%-scale prototype of Lockheed Martin's VentureStar SSTO RLV concept, is being built by Skunk Works for a 1999 first flight. If RLVs achieve prices to low-earth orbit of less than $1000 US per pound, they could hold promise for eliciting an elastic response from the launch services market. As opposed to the capture of existing market, this elastic market would represent new space-based industry businesses. These new opportunities would be created from the next tier of business concepts, such as space manufacturing and satellite servicing, that cannot earn a profit at today's launch prices but could when enabled by lower launch costs. New business creation contributes benefits to the US Government (USG) and the US economy through increases in tax revenues and employment. Assumptions about the costs and revenues of these new ventures, based on existing space-based and aeronautics sector businesses, can be used to estimate the macroeconomic benefits provided by new businesses. This paper examines these benefits and the flight prices and rates that may be required to enable these new space industries.

  6. Conceptual Design of an APT Reusable Spaceplane

    Science.gov (United States)

    Corpino, S.; Viola, N.

    This paper concerns the conceptual design of an Aerial Propellant Transfer reusable spaceplane carried out during our PhD course under the supervision of prof. Chiesa. The new conceptual design methodology employed in order to develop the APT concept and the main characteristics of the spaceplane itself will be presented and discussed. The methodology for conceptual design has been worked out during the last three years. It was originally thought for atmospheric vehicle design but, thanks to its modular structure which makes it very flexible, it has been possible to convert it to space transportation systems design by adding and/or modifying a few modules. One of the major improvements has been for example the conception and development of the mission simulation and trajectory optimisation module. The methodology includes as main characteristics and innovations the latest techniques of geometric modelling and logistic, operational and cost aspects since the first stages of the project. Computer aided design techniques are used to obtain a better definition of the product at the end of the conceptual design phase and virtual reality concepts are employed to visualise three-dimensional installation and operational aspects, at least in part replacing full-scale mock- ups. The introduction of parametric three-dimensional CAD software integrated into the conceptual design methodology represents a great improvement because it allows to carry out different layouts and to assess them immediately. It is also possible to link the CAD system to a digital prototyping software which combines 3D visualisation and assembly analysis, useful to define the so-called Digital Mock-Up at Conceptual Level (DMUCL) which studies the integration between the on board systems, sized with simulation algorithms, and the airframe. DMUCL represents a very good means to integrate the conceptual design with a methodology turned towards dealing with Reliability, Availability, Maintainability and

  7. Integrated Systems Health Management for Space Exploration

    Science.gov (United States)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  8. New Approaches in Reusable Booster System Life Cycle Cost Modeling

    Science.gov (United States)

    Zapata, Edgar

    2013-01-01

    This paper presents the results of a 2012 life cycle cost (LCC) study of hybrid Reusable Booster Systems (RBS) conducted by NASA Kennedy Space Center (KSC) and the Air Force Research Laboratory (AFRL). The work included the creation of a new cost estimating model and an LCC analysis, building on past work where applicable, but emphasizing the integration of new approaches in life cycle cost estimation. Specifically, the inclusion of industry processes/practices and indirect costs were a new and significant part of the analysis. The focus of LCC estimation has traditionally been from the perspective of technology, design characteristics, and related factors such as reliability. Technology has informed the cost related support to decision makers interested in risk and budget insight. This traditional emphasis on technology occurs even though it is well established that complex aerospace systems costs are mostly about indirect costs, with likely only partial influence in these indirect costs being due to the more visible technology products. Organizational considerations, processes/practices, and indirect costs are traditionally derived ("wrapped") only by relationship to tangible product characteristics. This traditional approach works well as long as it is understood that no significant changes, and by relation no significant improvements, are being pursued in the area of either the government acquisition or industry?s indirect costs. In this sense then, most launch systems cost models ignore most costs. The alternative was implemented in this LCC study, whereby the approach considered technology and process/practices in balance, with as much detail for one as the other. This RBS LCC study has avoided point-designs, for now, instead emphasizing exploring the trade-space of potential technology advances joined with potential process/practice advances. Given the range of decisions, and all their combinations, it was necessary to create a model of the original model

  9. Weight Analysis of Two-Stage-To-Orbit Reusable Launch Vehicles for Military Applications

    National Research Council Canada - National Science Library

    Caldwell, Richard A

    2005-01-01

    In response to Department of Defense (DoD) requirements for responsive and low-cost space access, this design study provides an objective empty weight analysis of potential reusable launch vehicle (RLV) configurations...

  10. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    Science.gov (United States)

    Borowski, Stanley K.

    1994-09-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  11. A Reusable, Oxidizer-Cooled, Hybrid Aerospike Rocket Motor for Flight Test, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is to use the refrigerant capabilities of nitrous oxide (N2O) to provide the cooling required for reusable operation of an aerospike nozzle...

  12. A Concept of Two-Stage-To-Orbit Reusable Launch Vehicle

    Science.gov (United States)

    Yang, Yong; Wang, Xiaojun; Tang, Yihua

    2002-01-01

    Reusable Launch Vehicle (RLV) has a capability of delivering a wide rang of payload to earth orbit with greater reliability, lower cost, more flexibility and operability than any of today's launch vehicles. It is the goal of future space transportation systems. Past experience on single stage to orbit (SSTO) RLVs, such as NASA's NASP project, which aims at developing an rocket-based combined-cycle (RBCC) airplane and X-33, which aims at developing a rocket RLV, indicates that SSTO RLV can not be realized in the next few years based on the state-of-the-art technologies. This paper presents a concept of all rocket two-stage-to-orbit (TSTO) reusable launch vehicle. The TSTO RLV comprises an orbiter and a booster stage. The orbiter is mounted on the top of the booster stage. The TSTO RLV takes off vertically. At the altitude about 50km the booster stage is separated from the orbiter, returns and lands by parachutes and airbags, or lands horizontally by means of its own propulsion system. The orbiter continues its ascent flight and delivers the payload into LEO orbit. After completing orbit mission, the orbiter will reenter into the atmosphere, automatically fly to the ground base and finally horizontally land on the runway. TSTO RLV has less technology difficulties and risk than SSTO, and maybe the practical approach to the RLV in the near future.

  13. Reusable Boosters in a European-Russian Perspective

    Science.gov (United States)

    Deneu, François; Ramiandrasoa, Fabienne

    2002-01-01

    In 2001, EADS and Khrunichev SRPSC have initiated and carried out a working group devoted to the analysis of potential common studies and developments in the field of space activities. This working group came up with several propositions of interest, among which, the use of reusable boosters issued from Khrunichev previous design appeared to be promising when applied to heavy type launchers. Although the results required to be confirmed by detailed studies prior to final conclusions, preliminary studies have shown the interest of Ariane 5 configurations using such reusable booster in view of reducing the specific and launch cost as well as potentially increasing the performance. In November 2001, EADS and KHRUNICHEV SRPSC have started a study on an Ariane 5 plus reusable boosters configuration. This study aims at obtaining a better understanding of the advantages and drawbacks attached to such a use. Technical feasibility is more in depth analysed, with all recurring and not recurring aspects (including launch infrastructure modifications). Programmatic aspects are also addressed in order to better assess potential economic advantages and unavoidable drawbacks. Beyond that the identification of what could be, for western Europe and Russian players, an efficient and pay- off industrial organisation, is also a study theme of importance. This papers intends to present the main results achieved within this study and the propositions for the future which are likely to provide western Europe and Russia with stronger positions in the competitive field of launch business.

  14. SpaceX making commercial spaceflight a reality

    CERN Document Server

    Seedhouse, Erik

    2013-01-01

    2012 - the year when the first ever privately-developed spacecraft visited the International Space Station. This is the story of how one company is transforming commercial space flight. It describes the extraordinary feats of engineering and human achievement that have resulted in the world's first fully reusable launch vehicles and the prospect of human travel to Mars. SpaceX - The First Ten Years: - explores the philosophy behind the success of SpaceX; - explains the practical management that enables SpaceX to keep it simple, reliable, and affordable; - details the developmentof the Falcon 1, Falcon 9 and Falcon Heavy rockets and the technology of the Merlin engines; - describes the collaboration with NASA; - introduces current SpaceX projects, including the Grasshopper reusable launch vehicle and the Stratolaunch System. SpaceX - The First Ten Years is a portrait of one of the most spectacular spaceflight triumphs of the 21st century, one that is laying the foundation for humanity to become a spacefaring c...

  15. Real-Time Inhibitor Recession Measurements in the Space Shuttle Reusable Solid Rocket Motors

    Science.gov (United States)

    McWhorter, Bruce B.; Ewing, Mark E.; McCool, Alex (Technical Monitor)

    2001-01-01

    Real-time char line recession measurements were made on propellant inhibitors of the Space Shuttle Reusable Solid Rocket Motor (RSRM). The RSRM FSM-8 static test motor propellant inhibitors (composed of a rubber insulation material) were successfully instrumented with eroding potentiometers and thermocouples. The data was used to establish inhibitor recession versus time relationships. Normally, pre-fire and post-fire insulation thickness measurements establish the thermal performance of an ablating insulation material. However, post-fire inhibitor decomposition and recession measurements are complicated by the fact that most of the inhibitor is back during motor operation. It is therefore a difficult task to evaluate the thermal protection offered by the inhibitor material. Real-time measurements would help this task. The instrumentation program for this static test motor marks the first time that real-time inhibitors. This report presents that data for the center and aft field joint forward facing inhibitors. The data was primarily used to measure char line recession of the forward face of the inhibitors which provides inhibitor thickness reduction versus time data. The data was also used to estimate the inhibitor height versus time relationship during motor operation.

  16. Design criteria and candidate electrical power systems for a reusable Space Shuttle booster.

    Science.gov (United States)

    Merrifield, D. V.

    1972-01-01

    This paper presents the results of a preliminary study to establish electrical power requirements, investigate candidate power sources, and select a representative power generation concept for the NASA Space Shuttle booster stage. Design guidelines and system performance requirements are established. Candidate power sources and combinations thereof are defined and weight estimates made. The selected power source concept utilizes secondary silver-zinc batteries, engine-driven alternators with constant speed drive, and an airbreathing gas turbine. The need for cost optimization, within safety, reliability, and performance constraints, is emphasized as being the most important criteria in design of the final system.

  17. Status report on nuclear electric propulsion systems

    Science.gov (United States)

    Stearns, J. W.

    1975-01-01

    Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.

  18. Future Standardization of Space Telecommunications Radio System with Core Flight System

    Science.gov (United States)

    Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and

  19. Reusable tamper-indicating security seal

    International Nuclear Information System (INIS)

    Ryan, M.J.

    1981-01-01

    A reusable tamper-indicating mechanical security seal for use in safeguarding nuclear material has been developed. The high-security seal displays an unpredictable, randomly selected, five-digit code each time it is used. This five digit code serves the same purpose that the serial number does for conventional non-reusable seals - a unique identifier for each use or application. The newly developed reusable seal is completely enclosed within a seamless, tamper-indicating, plastic jacket. The jacket is designed to reveal any attempts to penetrate, section or to chemically remove and replace with a counterfeit for surreptitious purposes

  20. Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors

    Science.gov (United States)

    McWhorter, B. B.; Ewing, M. E.; Bolton, D. E.; Albrechtsen, K. U.; Earnest, T. E.; Noble, T. C.; Longaker, M.

    2003-01-01

    Real-time internal motor insulation char line recession measurements have been evaluated for two full-scale static tests of the Space Shuttle Reusable Solid Rocket Motor (RSRM). These char line recession measurements were recorded on the forward facing propellant grain inhibitors to better understand the thermal performance of these inhibitors. The RSRM propellant grain inhibitors are designed to erode away during motor operation, thus making it difficult to use post-fire observations to determine inhibitor thermal performance. Therefore, this new internal motor instrumentation is invaluable in establishing an accurate understanding of inhibitor recession versus motor operation time. The data for the first test was presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA 2001-3280) in July 2001. Since that time, a second full scale static test has delivered additional real-time data on inhibitor thermal performance. The evaluation of this data is presented in this paper. The second static test, in contrast to the first test, used a slightly different arrangement of instrumentation in the inhibitors. This instrumentation has yielded a better understanding of the inhibitor time dependent inboard tip recession. Graphs of inhibitor recession profiles with time are presented. Inhibitor thermal ablation models have been created from theoretical principals. The model predictions compare favorably with data from both tests. This verified modeling effort is important to support new inhibitor designs for a five segment Space Shuttle solid rocket motor. The internal instrumentation project on RSRM static tests is providing unique opportunities for other real-time internal motor measurements that could not otherwise be directly quantified.

  1. Deep Space Gateway "Recycler" Mission

    Science.gov (United States)

    Graham, L.; Fries, M.; Hamilton, J.; Landis, R.; John, K.; O'Hara, W.

    2018-02-01

    Use of the Deep Space Gateway provides a hub for a reusable planetary sample return vehicle for missions to gather star dust as well as samples from various parts of the solar system including main belt asteroids, near-Earth asteroids, and Mars moon.

  2. On the economics of staging for reusable launch vehicles

    Science.gov (United States)

    Griffin, Michael D.; Claybaugh, William R.

    1996-03-01

    There has been much recent discussion concerning possible replacement systems for the current U.S. fleet of launch vehicles, including both the shuttle and expendable vehicles. Attention has been focused upon the feasibility and potential benefits of reusable single-stage-to-orbit (SSTO) launch systems for future access to low Earth orbit (LEO). In this paper we assume the technical feasibility of such vehicles, as well as the benefits to be derived from system reusability. We then consider the benefits of launch vehicle staging from the perspective of economic advantage rather than performance necessity. Conditions are derived under which two-stage-to-orbit (TSTO) launch systems, utilizing SSTO-class vehicle technology, offer a relative economic advantage for access to LEO.

  3. Low-cost management aspects for developing, producing and operating future space transportation systems

    Science.gov (United States)

    Goehlich, Robert A.; Rücker, Udo

    2005-01-01

    It is believed that a potential means for further significant reduction of the recurrent launch cost, which results also in a stimulation of launch rates of small satellites, is to make the launcher reusable, to increase its reliability and to make it suitable for new markets such as mass space tourism. Therefore, not only launching small satellites with expendable rockets on non-regular flights but also with reusable rockets on regular flights should be considered for the long term. However, developing, producing and operating reusable rockets require a fundamental change in the current "business as usual" philosophy. Under current conditions, it might not be possible to develop, to produce or to operate a reusable vehicle fleet economically. The favorite philosophy is based on "smart business" processes adapted by the authors using cost engineering techniques. In the following paper, major strategies for reducing costs are discussed, which are applied for a representative program proposal.

  4. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  5. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

    Science.gov (United States)

    Singh, M.

    2007-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  6. Performance of Single-Use FlexorVue vs Reusable BoaVision Ureteroscope for Visualization of Calices and Stone Extraction in an Artificial Kidney Model.

    Science.gov (United States)

    Schlager, Daniel; Hein, Simon; Obaid, Moaaz Abdulghani; Wilhelm, Konrad; Miernik, Arkadiusz; Schoenthaler, Martin

    2017-11-01

    To evaluate and compare Flexor ® Vue™, a semidisposable endoscopic deflection system with disposable ureteral sheath and reusable visualization source, and a nondisposable fiber optic ureteroscope in a standard in vitro setting. FlexorVue and a reusable fiber optic flexible ureteroscope were each tested in an artificial kidney model. The experimental setup included the visualization of colored pearls and the extraction of calculi with two different extraction devices (NCircle ® and NGage ® ). The procedures were performed by six experienced surgeons. Visualization time, access to calices, successful stone retraction, and time required were recorded. In addition, the surgeons' workload and subjective performance were determined according to the National Aeronautics and Space Administration-task load index (NASA-TLX). We referred to the Likert scale to assess maneuverability, handling, and image quality. Nearly all calices (99%) were correctly identified using the reusable scope, indicating full kidney access, whereas 74% of the calices were visualized using FlexorVue, of which 81% were correctly identified. Access to the lower poles of the kidney model was significantly less likely with the disposable device, and time to completion was significantly longer (755 s vs 153 s, p NASA-TLX scores were significantly higher using FlexorVue. The conventional reusable device also demonstrated superior maneuverability, handling, and image quality. FlexorVue offers a semidisposable deflecting endoscopic system allowing basic ureteroscopic and cystoscopic procedures. For its use as an addition or replacement for current reusable scopes, it requires substantial technical improvements.

  7. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    Science.gov (United States)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  8. A microfluidic control system with re-usable micropump/valve actuator and injection moulded disposable polymer lab-on-a-slide

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Yi, Sun

    2011-01-01

    A microfluidic control system consisting of micropump/valves with a re-usable pneumatic actuator and a disposable polymer lab-on-a-slide is presented. The lab-on-a-slide was fabricated using low cost methods, such as injection moulding of TOPAS® cyclic olefin copolymer (COC) slide, lamination...... of different layers of polymer, and ultrasonic welding of TOPAS® lid to the slide. The re-usable pneumatic actuator not only simplifies the design of the lab-on-a-slide and reduces the fabrication cost, but also reduces the possibility of cross contamination during replacement of the disposable lab...

  9. Reusable Reentry Satellite (RRS): Propulsion system trade study

    Science.gov (United States)

    1990-01-01

    The purpose of the Reusable Reentry Satellite (RRS) Propulsion System Trade Study described in this summary report was to investigate various propulsion options available for incorporation on the RRS and to select the option best suited for RRS application. The design requirements for the RRS propulsion system were driven by the total impulse requirements necessary to operate within the performance envelope specified in the RRS System Requirements Documents. These requirements were incorporated within the Design Reference Missions (DRM's) identified for use in this and other subsystem trade studies. This study investigated the following propulsion systems: solid rocket, monopropellant, bipropellant (monomethyl hydrazine and nitrogen tetroxide or MMH/NTO), dual-mode bipropellant (hydrazine and nitrogen tetroxide or N2H4/NTO), liquid oxygen and liquid hydrogen (LO2/LH2), and an advanced design propulsion system using SDI-developed components. A liquid monopropellant blowdown propulsion system was found to be best suited for meeting the RRS requirements and is recommended as the baseline system. This system was chosen because it is the simplest of all investigated, has the fewest components, and is the most cost effective. The monopropellant system meets all RRS performance requirements and has the capability to provide a very accurate deorbit burn which minimizes reentry dispersions. In addition, no new hardware qualification is required for a monopropellant system. Although the bipropellant systems offered some weight savings capability for missions requiring large deorbit velocities, the advantage of a lower mass system only applies if the total vehicle design can be reduced to allow a cheaper launch vehicle to be used. At the time of this trade study, the overall RRS weight budget and launch vehicle selection were not being driven by the propulsion system selection. Thus, the added cost and complexity of more advanced systems did not warrant application.

  10. The Cost-Optimal Size of Future Reusable Launch Vehicles

    Science.gov (United States)

    Koelle, D. E.

    2000-07-01

    The paper answers the question, what is the optimum vehicle size — in terms of LEO payload capability — for a future reusable launch vehicle ? It is shown that there exists an optimum vehicle size that results in minimum specific transportation cost. The optimum vehicle size depends on the total annual cargo mass (LEO equivalent) enviseaged, which defines at the same time the optimum number of launches per year (LpA). Based on the TRANSCOST-Model algorithms a wide range of vehicle sizes — from 20 to 100 Mg payload in LEO, as well as launch rates — from 2 to 100 per year — have been investigated. It is shown in a design chart how much the vehicle size as well as the launch rate are influencing the specific transportation cost (in MYr/Mg and USS/kg). The comparison with actual ELVs (Expendable Launch Vehicles) and Semi-Reusable Vehicles (a combination of a reusable first stage with an expendable second stage) shows that there exists only one economic solution for an essential reduction of space transportation cost: the Fully Reusable Vehicle Concept, with rocket propulsion and vertical take-off. The Single-stage Configuration (SSTO) has the best economic potential; its feasibility is not only a matter of technology level but also of the vehicle size as such. Increasing the vehicle size (launch mass) reduces the technology requirements because the law of scale provides a better mass fraction and payload fraction — practically at no cost. The optimum vehicle design (after specification of the payload capability) requires a trade-off between lightweight (and more expensive) technology vs. more conventional (and cheaper) technology. It is shown that the the use of more conventional technology and accepting a somewhat larger vehicle is the more cost-effective and less risky approach.

  11. Reusable Component Services

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reusable Component Services (RCS) is a super-catalog of components, services, solutions and technologies that facilitates search, discovery and collaboration in...

  12. Reusable Solid Rocket Motor - Accomplishment, Lessons, and a Culture of Success

    Science.gov (United States)

    Moore, D. R.; Phelps, W. J.

    2011-01-01

    The Reusable Solid Rocket Motor (RSRM) represents the largest solid rocket motor (SRM) ever flown and the only human-rated solid motor. High reliability of the RSRM has been the result of challenges addressed and lessons learned. Advancements have resulted by applying attention to process control, testing, and postflight through timely and thorough communication in dealing with all issues. A structured and disciplined approach was taken to identify and disposition all concerns. Careful consideration and application of alternate opinions was embraced. Focus was placed on process control, ground test programs, and postflight assessment. Process control is mandatory for an SRM, because an acceptance test of the delivered product is not feasible. The RSRM maintained both full-scale and subscale test articles, which enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. RSRM reusability offered unique opportunities to learn about the hardware. NASA is moving forward with the Space Launch System that incorporates propulsion systems that takes advantage of the heritage Shuttle and Ares solid motor programs. These unique challenges, features of the RSRM, materials and manufacturing issues, and design improvements will be discussed in the paper.

  13. Reusable platform concepts

    International Nuclear Information System (INIS)

    Gudmestad, O.T.; Sparby, B.K.; Stead, B.L.

    1993-01-01

    There is an increasing need to reduce costs of offshore production facilities in order to make development of offshore fields profitable. For small fields with short production time there is in particular a need to investigate ways to reduce costs. The idea of platform reuse is for such fields particularly attractive. This paper will review reusable platform concepts and will discuss their range of application. Particular emphasis will be placed on technical limitations. Traditional concepts as jackups and floating production facilities will be discussed by major attention will be given to newly developed ideas for reuse of steel jackets and concrete structures. It will be shown how the operator for several fields can obtain considerable savings by applying such reusable platform concepts

  14. Developing a Toolset Supporting the Construction of Reusable Components for Embedded Control Systems

    DEFF Research Database (Denmark)

    Guan, Wei; Sierszecki, Krzysztof; Angelov, Christo K.

    2010-01-01

    Reusing software components for embedded control applications enhances product quality and reduces time to market when appropriate (formal) methodologies and supporting toolsets are available. That is why industrial companies are interested in developing trusted, in-house reusable components for ...... on open-source technology, in accordance with industrial requirements, as well as the approach used to engineer a toolset supporting component development for embedded control applications.......Reusing software components for embedded control applications enhances product quality and reduces time to market when appropriate (formal) methodologies and supporting toolsets are available. That is why industrial companies are interested in developing trusted, in-house reusable components...

  15. Reusability Framework for Cloud Computing

    OpenAIRE

    Singh, Sukhpal; Singh, Rishideep

    2012-01-01

    Cloud based development is a challenging task for several software engineering projects, especially for those which needs development with reusability. Present time of cloud computing is allowing new professional models for using the software development. The expected upcoming trend of computing is assumed to be this cloud computing because of speed of application deployment, shorter time to market, and lower cost of operation. Until Cloud Co mputing Reusability Model is considered a fundamen...

  16. Open-Source RTOS Space Qualification: An RTEMS Case Study

    Science.gov (United States)

    Zemerick, Scott

    2017-01-01

    NASA space-qualification of reusable off-the-shelf real-time operating systems (RTOSs) remains elusive due to several factors notably (1) The diverse nature of RTOSs utilized across NASA, (2) No single NASA space-qualification criteria, lack of verification and validation (V&V) analysis, or test beds, and (3) different RTOS heritages, specifically open-source RTOSs and closed vendor-provided RTOSs. As a leader in simulation test beds, the NASA IV&V Program is poised to help jump-start and lead the space-qualification effort of the open source Real-Time Executive for Multiprocessor Systems (RTEMS) RTOS. RTEMS, as a case-study, can be utilized as an example of how to qualify all RTOSs, particularly the reusable non-commercial (open-source) ones that are gaining usage and popularity across NASA. Qualification will improve the overall safety and mission assurance of RTOSs for NASA-agency wide usage. NASA's involvement in space-qualification of an open-source RTOS such as RTEMS will drive the RTOS industry toward a more qualified and mature open-source RTOS product.

  17. The European Space Agency's FESTIP initiative

    Science.gov (United States)

    Burleson, Daphne

    1998-01-01

    In an effort to reduce the cost of access and open up new markets, the European Space Agency has begun a program called Future European Space Transportation Investigations Programme or FESTIP, in which reusable launcher concepts are being studied and developed. The ideal reusable launcher would be comparable to a normal aircraft in that it would be capable of taking off from many possible locations on Earth, enter the desired orbital plane, then accelerate to orbital velocity, release its payload, de-orbit, disperse its kinetic energy and land at the take-off base to be prepared for its next flight following a quick turnaround time. This ideal vehicle would be called the `single-stage-to-orbit reusable rocket launcher' or SSTO-RRL. All space launchers currently in use are staged to orbit and expendable, except the US Space Shuttle, and there is no SSTO-RRL in operation as yet. This paper will discuss the design options being studied by the European Space Agency (ESA) as well as their practical use in serving the space-launch market (FESTIP Workshop 1).

  18. Space tourism optimized reusable spaceplane design

    Energy Technology Data Exchange (ETDEWEB)

    Penn, J.P.; Lindley, C.A. [The Aerospace Corporation El Segundo, California90245-4691 (United States)

    1997-01-01

    Market surveys suggest that a viable space tourism industry will require flight rates about two orders of magnitude higher than those required for conventional spacelift. Although enabling round-trip cost goals for a viable space tourism business are about {dollar_sign}240 per pound ({dollar_sign}529/kg), or {dollar_sign}72,000 per passenger round-trip, goals should be about {dollar_sign}50 per pound ({dollar_sign}110/kg) or approximately {dollar_sign}15,000 for a typical passenger and baggage. The lower price will probably open space tourism to the general population. Vehicle reliabilities must approach those of commercial aircraft as closely as possible. This paper addresses the development of spaceplanes optimized for the ultra-high flight rate and high reliability demands of the space tourism mission. It addresses the fundamental operability, reliability, and cost drivers needed to satisfy this mission need. Figures of merit similar to those used to evaluate the economic viability of conventional commercial aircraft are developed, including items such as payload/vehicle dry weight, turnaround time, propellant cost per passenger, and insurance and depreciation costs, which show that infrastructure can be developed for a viable space tourism industry. A reference spaceplane design optimized for space tourism is described. Subsystem allocations for reliability, operability, and costs are made and a route to developing such a capability is discussed. The vehicle{close_quote}s ability to also satisfy the traditional spacelift market is shown. {copyright} {ital 1997 American Institute of Physics.}

  19. Environmental considerations in the selection of isolation gowns: A life cycle assessment of reusable and disposable alternatives.

    Science.gov (United States)

    Vozzola, Eric; Overcash, Michael; Griffing, Evan

    2018-04-11

    Isolation gowns serve a critical role in infection control by protecting healthcare workers, visitors, and patients from the transfer of microorganisms and body fluids. The decision of whether to use a reusable or disposable garment system is a selection process based on factors including sustainability, barrier effectiveness, cost, and comfort. Environmental sustainability is increasingly being used in the decision-making process. Life cycle assessment is the most comprehensive and widely used tool used to evaluate environmental performance. The environmental impacts of market-representative reusable and disposable isolation gown systems were compared using standard life cycle assessment procedures. The basis of comparison was 1,000 isolation gown uses in a healthcare setting. The scope included the manufacture, use, and end-of-life stages of the gown systems. At the healthcare facility, compared to the disposable gown system, the reusable gown system showed a 28% reduction in energy consumption, a 30% reduction in greenhouse gas emissions, a 41% reduction in blue water consumption, and a 93% reduction in solid waste generation. Selecting reusable garment systems may result in significant environmental benefits compared to selecting disposable garment systems. By selecting reusable isolation gowns, healthcare facilities can add these quantitative benefits directly to their sustainability scorecards. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Designing a reusable system based on nanodiamonds for biochemical determination of urea.

    Science.gov (United States)

    Ronzhin, N O; Baron, A V; Bondar, V S; Gitelson, I I

    2015-01-01

    A reusable system including urease covalently bound to the surface of modified nanodiamonds (MNDs) has been developed for the multiple determination of urea. The immobilized enzyme exhibits functional activity and catalyzes the hydrolysis of urea to yield ammonia. The presence of ammonia is confirmed by the formation of a colored product after the addition of chemical reagents. It was shown that the MNDs-urease complex can function in a wide range of temperatures and pH as well as in deionized water. The complex provides a linear yield of the product at low analyte concentrations and allows the multiple determination of urea in vitro.

  1. Sustaining Human Presence on Mars Using ISRU and a Reusable Lander

    Science.gov (United States)

    Arney, Dale C.; Jones, Christopher A.; Klovstad, Jordan J.; Komar, D.R.; Earle, Kevin; Moses, Robert; Shyface, Hilary R.

    2015-01-01

    This paper presents an analysis of the impact of ISRU (In-Site Resource Utilization), reusability, and automation on sustaining a human presence on Mars, requiring a transition from Earth dependence to Earth independence. The study analyzes the surface and transportation architectures and compared campaigns that revealed the importance of ISRU and reusability. A reusable Mars lander, Hercules, eliminates the need to deliver a new descent and ascent stage with each cargo and crew delivery to Mars, reducing the mass delivered from Earth. As part of an evolvable transportation architecture, this investment is key to enabling continuous human presence on Mars. The extensive use of ISRU reduces the logistics supply chain from Earth in order to support population growth at Mars. Reliable and autonomous systems, in conjunction with robotics, are required to enable ISRU architectures as systems must operate and maintain themselves while the crew is not present. A comparison of Mars campaigns is presented to show the impact of adding these investments and their ability to contribute to sustaining a human presence on Mars.

  2. A literature review on business process modelling: new frontiers of reusability

    Science.gov (United States)

    Aldin, Laden; de Cesare, Sergio

    2011-08-01

    Business process modelling (BPM) has become fundamental for modern enterprises due to the increasing rate of organisational change. As a consequence, business processes need to be continuously (re-)designed as well as subsequently aligned with the corresponding enterprise information systems. One major problem associated with the design of business processes is reusability. Reuse of business process models has the potential of increasing the efficiency and effectiveness of BPM. This article critically surveys the existing literature on the problem of BPM reusability and more specifically on that State-of-the-Art research that can provide or suggest the 'elements' required for the development of a methodology aimed at discovering reusable conceptual artefacts in the form of patterns. The article initially clarifies the definitions of business process and business process model; then, it sets out to explore the previous research conducted in areas that have an impact on reusability in BPM. The article concludes by distilling directions for future research towards the development of apatterns-based approach to BPM; an approach that brings together the contributions made by the research community in the areas of process mining and discovery, declarative approaches and ontologies.

  3. Applying design principles to fusion reactor configurations for propulsion in space

    International Nuclear Information System (INIS)

    Carpenter, S.A.; Deveny, M.E.; Schulze, N.R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. Three design principles (DP's) were applied to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. A preliminary rating of these configurations was performed, and it was concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS)

  4. A reusable multi-agent architecture for active intelligent websites

    NARCIS (Netherlands)

    Jonker, C.M.; Lam, R.A.; Treur, J.

    In this paper a reusable multi-agent architecture for intelligent Websites is presented and illustrated for an electronic department store. The architecture has been designed and implemented using the compositional design method for multi-agent systems DESIRE. The agents within this architecture are

  5. Orion: Design of a system for assured low-cost human access to space

    Science.gov (United States)

    Elvander, Josh; Heifetz, Andy; Hunt, Teresa; Zhu, Martin

    1994-01-01

    In recent years, Congress and the American people have begun to seriously question the role and importance of future manned spaceflight. This is mainly due to two factors: a decline in technical competition caused by the collapse of communism, and the high costs associated with the Space Shuttle transportation system. With these factors in mind, the ORION system was designed to enable manned spaceflight at a low cost, while maintaining the ability to carry out diverse missions, each with a high degree of flexibility. It is capable of performing satellite servicing missions, supporting a space station via crew rotation and resupply, and delivering satellites into geosynchronous orbit. The components of the system are a primary launch module, an upper stage, and a manned spacecraft capable of dynamic reentry. For satellite servicing and space station resupply missions, the ORION system utilizes three primary modules, an upper stage, and the spacecraft, which is delivered to low earth orbit and used to rendezvous, transfer materials, and make repairs. For launching a geosynchronous satellite, one primary module and an upper stage are used to deliver the satellite, along with an apogee kick motor, into orbit. The system is designed with reusability and modularity in mind in an attempt to lower cost.

  6. On the Implementation of a European Space Traffic Management System - I. A White Paper

    OpenAIRE

    Tüllmann, Ralph; Arbinger, Christian; Baskcomb, Stuart; Berdermann, Jens; Fiedler, Hauke; Klock, Erich; Schildknecht, Thomas

    2017-01-01

    There are high expectations for a global commercial space travel market which is expected to turn into a multi-billion Euro business in the next two decades. Several key players in the space business, companies like Virgin Galactic, SpaceX, Blue Origin or SNC are preparing to serve this market by developing their own ballistic reusable space vehicles to carry humans and cargo payloads into suborbital and Low Earth Orbit (LEO) space. Europe’s single stage to orbit concepts, e.g., REL’s Skylon ...

  7. Model-Based Trade Space Exploration for Near-Earth Space Missions

    Science.gov (United States)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  8. Self-Healing Nanocomposites for Reusable Composite Cryotanks

    Science.gov (United States)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh

    2013-01-01

    Composite cryotanks, or composite overwrapped pressure vessels (COPVs), offer advantages over currently used aluminum-lithium cryotanks, particularly with respect to weight savings. Future NASA missions are expected to use COPVs in spaceflight propellant tanks to store fuels, oxidizers, and other liquids for launch and space exploration vehicles. However, reliability, reparability, and reusability of the COPVs are still being addressed, especially in cryogenic temperature applications; this has limited the adoption of COPVs in reusable vehicle designs. The major problem with composites is the inherent brittleness of the epoxy matrix, which is prone to microcrack formation, either from exposure to cryogenic conditions or from impact from different sources. If not prevented, the microcracks increase gas permeation and leakage. Accordingly, materials innovations are needed to mitigate microcrack damage, and prevent damage in the first place, in composite cryotanks. The self-healing technology being developed is capable of healing the microcracks through the use of a novel engineered nanocomposite, where a uniquely designed nanoparticle additive is incorporated into the epoxy matrix. In particular, this results in an enhancement in the burst pressure after cryogenic cycling of the nanocomposite COPVs, relative to the control COPVs. Incorporating a novel, self-healing, epoxy-based resin into the manufacture of COPVs allows repeatable self-healing of microcracks to be performed through the simple application of a low-temperature heat source. This permits COPVs to be reparable and reusable with a high degree of reliability, as microcracks will be remediated. The unique phase-separated morphology that was imparted during COPV manufacture allows for multiple self-healing cycles. Unlike single-target approaches where one material property is often improved at the expense of another, robustness has been introduced to a COPV by a combination of a modified resin and

  9. Delayed reactions to reusable protective gloves.

    Science.gov (United States)

    Pontén, Ann; Dubnika, Inese

    2009-04-01

    The materials in plastic protective gloves are thought to cause less contact allergy than rubber gloves. Our aim was to estimate the frequency of delayed reactions to different types of reusable protective gloves among dermatitis patients. 2 x 2 cm pieces of polyvinyl chloride (PVC) gloves, nitrile gloves, and natural rubber latex (NRL) gloves were tested as is in consecutive dermatitis patients tested with the baseline series. Among 658 patients, 6 patients reacted to PVC gloves and 6 patients to the NRL gloves. None reacted to both these types of gloves. Five of six patients with reactions to rubber gloves reacted to thiuram mix in the baseline series. Delayed reactions to reusable PVC gloves may be as common as to reusable NRL gloves. In contrast to most reactions to the NRL glove, the reactions to the PVC glove had no obvious association with reactions to any allergen(s) in the baseline series.

  10. Reusable single-port access device shortens operative time and reduces operative costs.

    Science.gov (United States)

    Shussman, Noam; Kedar, Asaf; Elazary, Ram; Abu Gazala, Mahmoud; Rivkind, Avraham I; Mintz, Yoav

    2014-06-01

    In recent years, single-port laparoscopy (SPL) has become an attractive approach for performing surgical procedures. The pitfalls of this approach are technical and financial. Financial concerns are due to the increased cost of dedicated devices and prolonged operating room time. Our aim was to calculate the cost of SPL using a reusable port and instruments in order to evaluate the cost difference between this approach to SPL using the available disposable ports and standard laparoscopy. We performed 22 laparoscopic procedures via the SPL approach using a reusable single-port access system and reusable laparoscopic instruments. These included 17 cholecystectomies and five other procedures. Operative time, postoperative length of stay (LOS) and complications were prospectively recorded and were compared with similar data from our SPL database. Student's t test was used for statistical analysis. SPL was successfully performed in all cases. Mean operative time for cholecystectomy was 72 min (range 40-116). Postoperative LOS was not changed from our standard protocols and was 1.1 days for cholecystectomy. The postoperative course was within normal limits for all patients and perioperative morbidity was recorded. Both operative time and length of hospital stay were shorter for the 17 patients who underwent cholecystectomy using a reusable port than for the matched previous 17 SPL cholecystectomies we performed (p cost difference. Operating with a reusable port ended up with an average cost savings of US$388 compared with using disposable ports, and US$240 compared with standard laparoscopy. Single-port laparoscopic surgery is a technically challenging and expensive surgical approach. Financial concerns among others have been advocated against this approach; however, we demonstrate herein that using a reusable port and instruments reduces operative time and overall operative costs, even beyond the cost of standard laparoscopy.

  11. Mars Conjunction Crewed Missions With a Reusable Hybrid Architecture

    Science.gov (United States)

    Merrill, Raymond G.; Strange, Nathan J.; Qu, Min; Hatten, Noble

    2015-01-01

    A new crew Mars architecture has been developed that provides many potential benefits for NASA-led human Mars moons and surface missions beginning in the 2030s or 2040s. By using both chemical and electric propulsion systems where they are most beneficial and maintaining as much orbital energy as possible, the Hybrid spaceship that carries crew round trip to Mars is pre-integrated before launch and can be delivered to orbit by a single launch. After check-out on the way to cis-lunar space, it is refueled and can travel round trip to Mars in less than 1100 days, with a minimum of 300 days in Mars vicinity (opportunity dependent). The entire spaceship is recaptured into cis-lunar space and can be reused. The spaceship consists of a habitat for 4 crew attached to the Hybrid propulsion stage which uses long duration electric and chemical in-space propulsion technologies that are in use today. The hybrid architecture's con-ops has no in-space assembly of the crew transfer vehicle and requires only rendezvous of crew in a highly elliptical Earth orbit for arrival at and departure from the spaceship. The crew transfer vehicle does not travel to Mars so it only needs be able to last in space for weeks and re-enter at lunar velocities. The spaceship can be refueled and resupplied for multiple trips to Mars (every other opportunity). The hybrid propulsion stage for crewed transits can also be utilized for cargo delivery to Mars every other opportunity in a reusable manner to pre-deploy infrastructure required for Mars vicinity operations. Finally, the Hybrid architecture provides evolution options for mitigating key long-duration space exploration risks, including crew microgravity and radiation exposure.

  12. Reusable Solid Rocket Motor - Accomplishments, Lessons, and a Culture of Success

    Science.gov (United States)

    Moore, Dennis R.; Phelps, Willie J.

    2011-01-01

    The Reusable Solid Rocket Motor represents the largest solid rocket motor ever flown and the only human rated solid motor. Each Reusable Solid Rocket Motor (RSRM) provides approximately 3-million lb of thrust to lift the integrated Space Shuttle vehicle from the launch pad. The motors burn out approximately 2 minutes later, separate from the vehicle and are recovered and refurbished. The size of the motor and the need for high reliability were challenges. Thrust shaping, via shaping of the propellant grain, was needed to limit structural loads during ascent. The motor design evolved through several block upgrades to increase performance and to increase safety and reliability. A major redesign occurred after STS-51L with the Redesigned Solid Rocket Motor. Significant improvements in the joint sealing systems were added. Design improvements continued throughout the Program via block changes with a number of innovations including development of low temperature o-ring materials and incorporation of a unique carbon fiber rope thermal barrier material. Recovery of the motors and post flight inspection improved understanding of hardware performance, and led to key design improvements. Because of the multidecade program duration material obsolescence was addressed, and requalification of materials and vendors was sometimes needed. Thermal protection systems and ablatives were used to protect the motor cases and nozzle structures. Significant understanding of design and manufacturing features of the ablatives was developed during the program resulting in optimization of design features and processing parameters. The project advanced technology in eliminating ozone-depleting materials in manufacturing processes and the development of an asbestos-free case insulation. Manufacturing processes for the large motor components were unique and safety in the manufacturing environment was a special concern. Transportation and handling approaches were also needed for the large

  13. Reusable Electronics and Adaptable Communication as Implemented in the Odin Modular Robot

    DEFF Research Database (Denmark)

    Garcia, Ricardo Franco Mendoza; Lyder, Andreas; Christensen, David Johan

    2009-01-01

    This paper describes the electronics and communication system of Odin, a novel heterogeneous modular robot made of links and joints. The electronics is divided into two printed circuit boards: a General board with reusable components and a Specific board with non-reusable components. While...... electrical signals. The implementations of actuator and power links show that splitting the electronics into General and Specific boards allows rapid development of different types of modules, and an analysis of performance indicates that the communication system is simple, fast and flexible....... As the electronic design reuses approx. 50% of components between two different types of modules, we find it convenient for heterogeneous modular robots where production costs demand a small set of parts. In addition, as the features of the communication system are desirable in modular robots, we think...

  14. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    Science.gov (United States)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  15. Reusability of coordination programs

    NARCIS (Netherlands)

    F. Arbab (Farhad); C.L. Blom (Kees); F.J. Burger (Freek); C.T.H. Everaars (Kees)

    1996-01-01

    textabstractIsolating computation and communication concerns into separate pure computation and pure coordination modules enhances modularity, understandability, and reusability of parallel and/or distributed software. This can be achieved by moving communication primitives (such as SendMessage and

  16. The Development of Reusable Luggage Tag with the Internet of Things for Mobile Tracking and Environmental Sustainability

    Directory of Open Access Journals (Sweden)

    Eugene Y. C. Wong

    2016-12-01

    Full Text Available With more than two billion passengers worldwide travelling by air each year, vast amounts of lost luggage and disposable paper adhesive luggage tags are pushing the aviation industry to improve luggage tracking and reduce the one-off adhesive luggage paper tags. This paper reviews the current application of Radio Frequency Identification (RFID in the luggage handling system and proposes the Internet of Things’ (IoT development of the reusable luggage tag to facilitate aviation luggage handling, the tracking process and environmental conservation. A framework of IoT and its RFID components for the proposed reusable tag are presented. An integrated cyber-physical system, including a database management system and mobile app, for the reusable luggage tag is developed. Future studies will enhance the methodology of integrating the retail system, luggage tag, airport check-in counter, luggage handling system, aircraft, and the destination airport through the use of the tag, readers, antenna, and mobile devices.

  17. Thioaptamer Diagnostic System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — AM Biotechnologies (AM) in partnership with Sandia National Laboratories will develop a Thioaptamer Diagnostic System (TDS) in response to Topic X10.01 Reusable...

  18. On the Concepts of Usability and Reusability of Learning Objects

    Directory of Open Access Journals (Sweden)

    Miguel-Angel Sicilia

    2003-10-01

    Full Text Available “Reusable learning objects” oriented towards increasing their potential reusability are required to satisfy concerns about their granularity and their independence of concrete contexts of use. Such requirements also entail that the definition of learning object “usability,” and the techniques required to carry out their “usability evaluation” must be substantially different from those commonly used to characterize and evaluate the usability of conventional educational applications. In this article, a specific characterization of the concept of learning object usability is discussed, which places emphasis on “reusability,” the key property of learning objects residing in repositories. The concept of learning object reusability is described as the possibility and adequacy for the object to be usable in prospective educational settings, so that usability and reusability are considered two interrelated – and in many cases conflicting – properties of learning objects. Following the proposed characterization of two characteristics or properties of learning objects, a method to evaluate usability of specific learning objects will be presented.

  19. Research Data Reusability: Conceptual Foundations, Barriers and Enabling Technologies

    Directory of Open Access Journals (Sweden)

    Costantino Thanos

    2017-01-01

    Full Text Available High-throughput scientific instruments are generating massive amounts of data. Today, one of the main challenges faced by researchers is to make the best use of the world’s growing wealth of data. Data (reusability is becoming a distinct characteristic of modern scientific practice. By data (reusability, we mean the ease of using data for legitimate scientific research by one or more communities of research (consumer communities that is produced by other communities of research (producer communities. Data (reusability allows the reanalysis of evidence, reproduction and verification of results, minimizing duplication of effort, and building on the work of others. It has four main dimensions: policy, legal, economic and technological. The paper addresses the technological dimension of data reusability. The conceptual foundations of data reuse as well as the barriers that hamper data reuse are presented and discussed. The data publication process is proposed as a bridge between the data author and user and the relevant technologies enabling this process are presented.

  20. Thioaptamer Diagnostic System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AM Biotechnologies (AM) will develop a diagnostic system in response to SBIR Topic X10.01 Reusable Diagnostic Lab Technology that will simultaneously detect and...

  1. Study of extraterrestrial disposal of radioactive wastes. Part 1: Space transportation and destination considerations for extraterrestrial disposal of radioactive wastes. [feasibility of using space shuttle

    Science.gov (United States)

    Thompson, R. L.; Ramler, J. R.; Stevenson, S. M.

    1974-01-01

    A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur.

  2. Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    Science.gov (United States)

    Hueter, Uwe; Turner, James

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) has established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies Under the "Access to Space" pillar. The Core Technologies Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. One of the main activities over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the decision to determine the path this country will take for Space Shuttle and RLV. This year, additional technology efforts in the reusable technologies will be awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion.

  3. Putting Reusability First: A Paradigm Switch in Remote Laboratories Engineering

    Directory of Open Access Journals (Sweden)

    Romain Vérot

    2009-02-01

    Full Text Available In this paper, we present a new devices brought online thanks to our Collaborative Remote Laboratories framework. Whereas previous devices integrated in our remote laboratory belongs to the domain of electronics, such as Vector Network Analyzers, the devices at the concern in this paper are, on one hand, an antenna workbench, and on the other, an homemade switching device, which embeds several electronic components. Because the middleware and framework for our environment were designed to be reusable, we wanted to put it to the test by integrating new and different devices in our Online Engineering catalog. After presenting the devices to be put online, we will expose the software development efforts required in regards to the reusability of the solution. As a consequence, the expose work and results tend to make the Online Engineering software architects to think reusability first, breaking with the current trends to implement Remote Labs one after the other, without much reusability, apart the capitalized experience. In this, we defend a paradigm switch in our current engineering approaches for Remote Laboratories implementations: Reusability should be thought first.

  4. Air liquefaction and enrichment system propulsion in reusable launch vehicles

    Science.gov (United States)

    Bond, W. H.; Yi, A. C.

    1994-07-01

    A concept is shown for a fully reusable, Earth-to-orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high-speed acceleration, both using liquid hydrogen for fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90% pure liquid oxygen as its oxidizer that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. This article shows an approach and the corresponding technology needs for using air liquefaction and enrichment system propulsion in a single-stage-to-orbit (SSTO) vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, in a direct substitution for aluminum or aluminum-lithium alloy, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.

  5. Methodology for Evaluating Quality and Reusability of Learning Objects

    Science.gov (United States)

    Kurilovas, Eugenijus; Bireniene, Virginija; Serikoviene, Silvija

    2011-01-01

    The aim of the paper is to present the scientific model and several methods for the expert evaluation of quality of learning objects (LOs) paying especial attention to LOs reusability level. The activities of eQNet Quality Network for a European Learning Resource Exchange (LRE) aimed to improve reusability of LOs of European Schoolnet's LRE…

  6. Software Atom: An approach towards software components structuring to improve reusability

    Directory of Open Access Journals (Sweden)

    Muhammad Hussain Mughal

    2017-12-01

    Full Text Available Diversity of application domain compelled to design sustainable classification scheme for significantly amassing software repository. The atomic reusable software components are articulated to improve the software component reusability in volatile industry.  Numerous approaches of software classification have been proposed over past decades. Each approach has some limitations related to coupling and cohesion. In this paper, we proposed a novel approach by constituting the software based on radical functionalities to improve software reusability. We analyze the element's semantics in Periodic Table used in chemistry to design our classification approach, and present this approach using tree-based classification to curtail software repository search space complexity and further refined based on semantic search techniques. We developed a Global unique Identifier (GUID for indexing the functions and related components. We have exploited the correlation between chemistry element and software elements to simulate one to one mapping between them. Our approach is inspired from sustainability chemical periodic table. We have proposed software periodic table (SPT representing atomic software components extracted from real application software. Based on SPT classified repository tree parsing & extraction to enable the user to program their software by customizing the ingredients of software requirements. The classified repository of software ingredients assist user to exploits their requirements to software engineer and enable requirement engineer to develop a rapid large-scale prototype with great essence. Furthermore, we would predict the usability of the categorized repository based on feedback of users.  The continuous evolution of that proposed repository will be fine-tuned based on utilization and SPT would be gradually optimized by ant colony optimization techniques. Succinctly would provoke automating the software development process.

  7. Systems Challenges for Hypersonic Vehicles

    Science.gov (United States)

    Hunt, James L.; Laruelle, Gerard; Wagner, Alain

    1997-01-01

    This paper examines the system challenges posed by fully reusable hypersonic cruise airplanes and access to space vehicles. Hydrocarbon and hydrogen fueled airplanes are considered with cruise speeds of Mach 5 and 10, respectively. The access to space matrix is examined. Airbreathing and rocket powered, single- and two-stage vehicles are considered. Reference vehicle architectures are presented. Major systems/subsystems challenges are described. Advanced, enhancing systems concepts as well as common system technologies are discussed.

  8. Comparative life cycle assessment of disposable and reusable laryngeal mask airways.

    Science.gov (United States)

    Eckelman, Matthew; Mosher, Margo; Gonzalez, Andres; Sherman, Jodi

    2012-05-01

    Growing awareness of the negative impacts from the practice of health care on the environment and public health calls for the routine inclusion of life cycle criteria into the decision-making process of device selection. Here we present a life cycle assessment of 2 laryngeal mask airways (LMAs), a one-time-use disposable Unique™ LMA and a 40-time-use reusable Classic™ LMA. In life cycle assessment, the basis of comparison is called the "functional unit." For this report, the functional unit of the disposable and reusable LMAs was taken to be maintenance of airway patency by 40 disposable LMAs or 40 uses of 1 reusable LMA. This was a cradle-to-grave study that included inputs and outputs for the manufacture, transport, use, and waste phases of the LMAs. The environmental impacts of the 2 LMAs were estimated using SimaPro life cycle assessment software and the Building for Environmental and Economic Sustainability impact assessment method. Sensitivity and simple life cycle cost analyses were conducted to aid in interpretation of the results. The reusable LMA was found to have a more favorable environmental profile than the disposable LMA as used at Yale New Haven Hospital. The most important sources of impacts for the disposable LMA were the production of polymers, packaging, and waste management, whereas for the reusable LMA, washing and sterilization dominated for most impact categories. The differences in environmental impacts between these devices strongly favor reusable devices. These benefits must be weighed against concerns regarding transmission of infection. Health care facilities can decrease their environmental impacts by using reusable LMAs, to a lesser extent by selecting disposable LMA models that are not made of certain plastics, and by ordering in bulk from local distributors. Certain practices would further reduce the environmental impacts of reusable LMAs, such as increasing the number of devices autoclaved in a single cycle to 10 (-25% GHG

  9. Nano-Fe 3 O 4 /O 2 : Green, Magnetic and Reusable Catalytic ...

    African Journals Online (AJOL)

    , efficient, heterogeneous and reusable catalytic system for the synthesis of benzimidazoles via the reactions of o-phenylenediamine (1 eq) with aryl aldehydes (1 eq) in excellentyields (85–97 %) and short reaction times (30–100 min) with a ...

  10. Economics of reusable facilities

    International Nuclear Information System (INIS)

    Antia, D.D.J.

    1992-01-01

    In this paper some of the different economic development strategies that can be used for reusable facilities in the UK, Norway, Netherlands and in some production sharing contracts are outlined. These strategies focus on an integrated decision analysis approach which considers development phasing, reservoir management, tax planning and where appropriate facility purchase, leasing, or sale and leaseback decisions

  11. Reusable launch vehicles, enabling technology for the development of advanced upper stages and payloads

    International Nuclear Information System (INIS)

    Metzger, John D.

    1998-01-01

    In the near future there will be classes of upper stages and payloads that will require initial operation at a high-earth orbit to reduce the probability of an inadvertent reentry that could result in a detrimental impact on humans and the biosphere. A nuclear propulsion system, such as was being developed under the Space Nuclear Thermal Propulsion (SNTP) Program, is an example of such a potential payload. This paper uses the results of a reusable launch vehicle (RLV) study to demonstrate the potential importance of a Reusable Launch Vehicle (RLV) to test and implement an advanced upper stage (AUS) or payload in a safe orbit and in a cost effective and reliable manner. The RLV is a horizontal takeoff and horizontal landing (HTHL), two-stage-to-orbit (TSTO) vehicle. The results of the study shows that an HTHL is cost effective because it implements airplane-like operation, infrastructure, and flight operations. The first stage of the TSTO is powered by Rocket-Based-Combined-Cycle (RBCC) engines, the second stage is powered by a LOX/LH rocket engine. The TSTO is used since it most effectively utilizes the capability of the RBCC engine. The analysis uses the NASA code POST (Program to Optimize Simulated Trajectories) to determine trajectories and weight in high-earth orbit for AUS/advanced payloads. Cost and reliability of an RLV versus current generation expandable launch vehicles are presented

  12. Differences in alarm events between disposable and reusable electrocardiography lead wires.

    Science.gov (United States)

    Albert, Nancy M; Murray, Terri; Bena, James F; Slifcak, Ellen; Roach, Joel D; Spence, Jackie; Burkle, Alicia

    2015-01-01

    Disposable electrocardiographic lead wires (ECG-LWs) may not be as durable as reusable ones. To examine differences in alarm events between disposable and reusable ECG-LWs. Two cardiac telemetry units were randomized to reusable ECG-LWs, and 2 units alternated between disposable and reusable ECG-LWs for 4 months. A remote monitoring team, blinded to ECG-LW type, assessed frequency and type of alarm events by using total counts and rates per 100 patient days. Event rates were compared by using generalized linear mixed-effect models for differences and noninferiority between wire types. In 1611 patients and 9385.5 patient days of ECG monitoring, patient characteristics were similar between groups. Rates of alarms for no telemetry, leads fail, or leads off were lower in disposable ECG-LWs (adjusted relative risk [95% CI], 0.71 [0.53-0.96]; noninferiority P < .001; superiority P = .03) and monitoring (artifact) alarms were significantly noninferior (adjusted relative risk [95% CI]: 0.88, [0.62-1.24], P = .02; superiority P = .44). No between-group differences existed in false or true crisis alarms. Disposable ECG-LWs were noninferior to reusable ECG-LWs for all false-alarm events (N [rate per 100 patient days], disposable 2029 [79.1] vs reusable 6673 [97.9]; adjusted relative risk [95% CI]: 0.81 [0.63-1.06], P = .002; superiority P = .12.) Disposable ECG-LWs with patented push-button design had superior performance in reducing alarms created by no telemetry, leads fail, or leads off and significant noninferiority in all false-alarm rates compared with reusable ECG-LWs. Fewer ECG alarms may save nurses time, decrease alarm fatigue, and improve patient safety. ©2015 American Association of Critical-Care Nurses.

  13. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  14. A Reusable Framework for Regional Climate Model Evaluation

    Science.gov (United States)

    Hart, A. F.; Goodale, C. E.; Mattmann, C. A.; Lean, P.; Kim, J.; Zimdars, P.; Waliser, D. E.; Crichton, D. J.

    2011-12-01

    Climate observations are currently obtained through a diverse network of sensors and platforms that include space-based observatories, airborne and seaborne platforms, and distributed, networked, ground-based instruments. These global observational measurements are critical inputs to the efforts of the climate modeling community and can provide a corpus of data for use in analysis and validation of climate models. The Regional Climate Model Evaluation System (RCMES) is an effort currently being undertaken to address the challenges of integrating this vast array of observational climate data into a coherent resource suitable for performing model analysis at the regional level. Developed through a collaboration between the NASA Jet Propulsion Laboratory (JPL) and the UCLA Joint Institute for Regional Earth System Science and Engineering (JIFRESSE), the RCMES uses existing open source technologies (MySQL, Apache Hadoop, and Apache OODT), to construct a scalable, parametric, geospatial data store that incorporates decades of observational data from a variety of NASA Earth science missions, as well as other sources into a consistently annotated, highly available scientific resource. By eliminating arbitrary partitions in the data (individual file boundaries, differing file formats, etc), and instead treating each individual observational measurement as a unique, geospatially referenced data point, the RCMES is capable of transforming large, heterogeneous collections of disparate observational data into a unified resource suitable for comparison to climate model output. This facility is further enhanced by the availability of a model evaluation toolkit which consists of a set of Python libraries, a RESTful web service layer, and a browser-based graphical user interface that allows for orchestration of model-to-data comparisons by composing them visually through web forms. This combination of tools and interfaces dramatically simplifies the process of interacting with and

  15. Reusable radiation monitor

    International Nuclear Information System (INIS)

    Fanselow, D.L.; Ersfeld, D.A.

    1978-01-01

    An integrating, reusable device for monitoring exposure to actinic radiation is disclosed. The device comprises a substrate having deposited thereon at least one photochromic aziridine compound which is sealed in an oxygen barrier to stabilize the color developed by the aziridine compound in response to actinic radiation. The device includes a spectral response shaping filter to transmit only actinic radiation of the type being monitored. A color standard is also provided with which to compare the color developed by the aziridine compound

  16. Reusable LH2 tank technology demonstration through ground test

    Science.gov (United States)

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  17. Inertial Navigation System for India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD HEX) Mission

    Science.gov (United States)

    Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed

    2017-12-01

    This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.

  18. Economic Analysis of a Postulated space Tourism Transportation System

    Science.gov (United States)

    Hill, Allan S.

    2002-01-01

    Design concepts and associated costs were defined for a family of launch vehicles supporting a space tourism endeavor requiring the weekly transport of space tourists to and from an Earth- orbiting facility. The stated business goal for the Space Tourist Transportation System (STTS) element of the proposed commercial space venture was to transport and return ~50 passengers a week to LEO at a cost of roughly 50 K per seat commencing in 2005. This paper summarizes the economic analyses conducted within a broader Systems Engineering study of the postulated concept. Parametric costs were derived using TransCostSystems' (TCS) Cost Engineering Handbook, version 7. Costs were developed as a function of critical system characteristics and selected business scenarios. Various economic strategies directed toward achieving a cost of ~50 K per seat were identified and examined. The study indicated that with a `nominal' business scenario, the initial cost for developing and producing a fully reusable, 2-stage STTS element for a baseline of 46-passengers was about 15.5 B assuming a plausible `commercialization factor' of 0.333. The associated per-seat ticket cost was ~890 K, more than an order of magnitude higher than desired. If the system is enlarged to 104 passengers for better efficiency, the STTS initial cost for the nominal business scenario is increased to about 19.8 B and the per-seat ticket cost is reduced to ~530 K. It was concluded that achieving the desired ticket cost of 50 K per seat is not feasible unless the size of the STTS, and therefore of the entire system, is substantially increased. However, for the specified operational characteristics, it was shown that a system capacity of thousands of passengers per week is required. This implies an extremely high total system development cost, which is not very realistic as a commercial venture, especially in the proposed time frame. These results suggested that ambitious commercial space ventures may have to rely on

  19. SSTO RLVs: More Global Reach? A Study of the Use of Single Stage to Orbit Reusable Launch Vehicles as Airlift Platforms.

    Science.gov (United States)

    1996-11-01

    Orbit ( SSTO ) Reusable Launch Vehicles (RLVs) are currently under cooperative development by NASA, the Air Force, and the aerospace industry in the pursuit...exploit these rapid transit technologies to advance ’Global Reach for America.’ The SSTO RLV is a single stage rocket that will be completely reusable...investigated to assess the projected capabilities and costs of the SSTO system. This paper reviews the proposed capabilities of the SSTO system, discusses

  20. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    Science.gov (United States)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  1. Embedded expert system for space shuttle main engine maintenance

    Science.gov (United States)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  2. Russian aluminum-lithium alloys for advanced reusable spacecraft

    International Nuclear Information System (INIS)

    Charette, Ray O.; Leonard, Bruce G.; Bozich, William F.; Deamer, David A.

    1998-01-01

    Cryotanks that are cost-affordable, robust, fuel-compatible, and lighter weight than current aluminum design are needed to support next-generation launch system performance and operability goals. The Boeing (McDonnell Douglas Aerospace-MDA) and NASA's Delta Clipper-Experimental Program (DC-XA) flight demonstrator test bed vehicle provided the opportunity for technology transfer of Russia's extensive experience base with weight-efficient, highly weldable aluminum-lithium (Al-Li) alloys for cryogenic tank usage. As part of NASA's overall reusable launch vehicle (RLV) program to help provide technology and operations data for use in advanced RLVs, MDA contracted with the Russian Academy of Sciences (RAS/IMASH) for design, test, and delivery of 1460 Al-Li alloy liquid oxygen (LO 2 ) cryotanks: one for development, one for ground tests, and one for DC-XA flight tests. This paper describes the development of Al-Li 1460 alloy for reusable LO 2 tanks, including alloy composition tailoring, mechanical properties database, forming, welding, chemical milling, dissimilar metal joining, corrosion protection, completed tanks proof, and qualification testing. Mechanical properties of the parent and welded materials exceeded expectations, particularly the fracture toughness, which promise excellent reuse potential. The LO 2 cryotank was successfully demonstrated in DC-XA flight tests

  3. RAGE Reusable Game Software Components and Their Integration into Serious Game Engines

    NARCIS (Netherlands)

    Van der Vegt, Wim; Nyamsuren, Enkhbold; Westera, Wim

    2016-01-01

    This paper presents and validates a methodology for integrating reusable software components in diverse game engines. While conforming to the RAGE com-ponent-based architecture described elsewhere, the paper explains how the interac-tions and data exchange processes between a reusable software

  4. Space 2035: Technology, Transparency, and Trusted Immunity

    Science.gov (United States)

    2010-02-17

    12 Figure 2: Maglev -Assisted RLV Concepts .................................................................................. 14...reusable launch vehicles (RLVs). 12, 13 14 Figure 2: Maglev -Assisted RLV Concepts 14 By 2035, several innovative concepts for space...transportation may emerge. These include magnetically-levitated and assisted ( maglev ) RLVs; a novel Space Pier concept, which comprises a series of

  5. New reusable elastomer electrodes for assessing body composition

    International Nuclear Information System (INIS)

    Moreno, M-V; Chaset, L; Bittner, P A; Barthod, C; Passard, M

    2013-01-01

    The development of telemedicine requires finding solutions of reusable electrodes for use in patients' homes. The objective of this study is to evaluate the relevance of reusable elastomer electrodes for measuring body composition. We measured a population of healthy Caucasian (n = 17). A measurement was made with a reference device, the Xitron®, associated with AgCl Gel electrodes (Gel) and another measurement with a multifrequency impedancemeter Z-Metrix® associated with reusable elastomer electrodes (Elast). We obtained a low variability with an average error of repeatability of 0.39% for Re and 0.32% for Rinf. There is a non significantly difference (P T-test > 0.1) about 200 ml between extracellular water Ve measured with Gel and Elast in supine and in standing position. For total body water Vt, we note a non significantly difference (P T-test > 0.1) about 100 ml and 2.2 1 respectively in supine and standing position. The results give low dispersion, with R 2 superior to 0.90, with a 1.5% maximal error between Gel and Elast on Ve in standing position. It looks possible, taking a few precautions, using elastomer electrodes for assessing body composition.

  6. Latent Space Embedding for Retrieval in Question-Answer Archives

    OpenAIRE

    Padmanabhan, Deepak; Garg, Dinesh; Shevade, Shirish

    2017-01-01

    Community-driven Question Answering (CQA) systems such as Yahoo! Answers have become valuable sources of reusable information. CQA retrieval enables usage of historical CQA archives to solve new questions posed by users. This task has received much recent attention, with methods building upon literature from translation models, topic models, and deep learning. In this paper, we devise a CQA retrieval technique, LASER-QA, that embeds question-answer pairs within a unified latent space preservi...

  7. Future Food Production System Development Pulling From Space Biology Crop Growth Testing in Veggie

    Science.gov (United States)

    Massa, Gioia; Romeyn, Matt; Fritsche, Ralph

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics

  8. Reusable fuel test assembly for the FFTF

    International Nuclear Information System (INIS)

    Pitner, A.L.; Dittmer, J.O.

    1992-01-01

    A fuel test assembly that provides re-irradiation capability after interim discharge and reconstitution of the test pin bundle has been developed for use in the Fast Flux Test Facility (FFTF). This test vehicle permits irradiation test data to be obtained at multiple exposures on a few select test pins without the substantial expense of fabricating individual test assemblies as would otherwise be required. A variety of test pin types can be loaded in the reusable test assembly. A reusable test vehicle for irradiation testing in the FFTF has long been desired, but a number of obstacles previously prevented the implementation of such an experimental rig. The MFF-8A test assembly employs a 169-pin bundle using HT-9 alloy for duct and cladding material. The standard driver pins in the fuel bundle are sodium-bonded metal fuel (U-10 wt% Zr). Thirty-seven positions in the bundle are replaceable pin positions. Standard MFF-8A driver pins can be loaded in any test pin location to fill the bundle if necessary. Application of the MFF-8A reusable test assembly in the FFTF constitutes a considerable cost-saving measure with regard to irradiation testing. Only a few well-characterized test pins need be fabricated to conduct a test program rather than constructing entire test assemblies

  9. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif

    2016-10-20

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a reusable portion including wireless electronics. The one or more sensors can be secured to a flexible substrate and can be printed by non-contact printing on the substrate. The disposable portion can be removably coupled to the one or more sensors. The device can include one or more sensors for wireless monitoring of a wound, a wound dressing, a body fluid exuded by the wound and/or wearer health.

  10. Cost analysis of single-use (Ambu® aScope™) and reusable bronchoscopes in the ICU.

    Science.gov (United States)

    Perbet, S; Blanquet, M; Mourgues, C; Delmas, J; Bertran, S; Longère, B; Boïko-Alaux, V; Chennell, P; Bazin, J-E; Constantin, J-M

    2017-12-01

    Flexible optical bronchoscopes are essential for management of airways in ICU, but the conventional reusable flexible scopes have three major drawbacks: high cost of repairs, need for decontamination, and possible transmission of infectious agents. The main objective of this study was to measure the cost of bronchoalveolar lavage (BAL) and percutaneous tracheostomy (PT) using reusable bronchoscopes and single-use bronchoscopes in an ICU of an university hospital. The secondary objective was to compare the satisfaction of healthcare professionals with reusable and single-use bronchoscopes. The study was performed between August 2009 and July 2014 in a 16-bed ICU. All BAL and PT procedures were performed by experienced healthcare professionals. Cost analysis was performed considering ICU and hospital organization. Healthcare professional satisfaction with single-use and reusable scopes was determined based on eight factors. Sensitivity analysis was performed by applying discount rates (0, 3, and 5%) and by simulation of six situations based on different assumptions. At a discount rate of 3%, the costs per BAL for the two reusable scopes were 188.86€ (scope 1) and 185.94€ (scope 2), and the costs per PT for the reusable scope 1 and scope 2 and single-use scopes were 1613.84€, 410.24€, and 204.49€, respectively. The cost per procedure for the reusable scopes depended on the number of procedures performed, maintenance costs, and decontamination costs. Healthcare professionals were more satisfied with the third-generation single-use Ambu ® aScope™. The cost per procedure for the single-use scope was not superior to that for reusable scopes. The choice of single-use or reusable bronchoscopes in an ICU should consider the frequency of procedures and the number of bronchoscopes needed.

  11. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    International Nuclear Information System (INIS)

    Yoo, Haneul; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Cho, Young Tak; Chen, Xing; Hong, Seunghun; Lee, Dong Jun; Park, Jae Yeol

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species. (paper)

  12. Design, Fabrication, and Initial Operation of a Reusable Irradiation Facility

    International Nuclear Information System (INIS)

    Heatherly, D.W.; Thoms, K.R.; Siman-Tov, I.I.; Hurst, M.T.

    1999-01-01

    A Heavy-Section Steel Irradiation (HSSI) Program project, funded by the US Nuclear Regulatory Commission, was initiated at Oak Ridge National Laboratory to develop reusable materials irradiation facilities in which metallurgical specimens of reactor pressure vessel steels could be irradiated. As a consequence, two new, identical, reusable materials irradiation facilities have been designed, fabricated, installed, and are now operating at the Ford Nuclear Reactor at the University of Michigan. The facilities are referred to as the HSSI-IAR facilities with the individual facilities being designated as IAR-1 and IAR-2. This new and unique facility design requires no cutting or grinding operations to retrieve irradiated specimens, all capsule hardware is totally reusable, and materials transported from site to site are limited to specimens only. At the time of this letter report, the facilities have operated successfully for approximately 2500 effective full-power hours

  13. A Modular, Reusable Latch and Decking System for Securing Payloads During Launch and Planetary Surface Transport

    Science.gov (United States)

    Doggett, William R.; Dorsey, John T.; Jones, Thomas C.; King, Bruce D.; Mikulas, Martin M.

    2011-01-01

    Efficient handling of payloads destined for a planetary surface, such as the moon or mars, requires robust systems to secure the payloads during transport on the ground, in space and on the planetary surface. In addition, mechanisms to release the payloads need to be reliable to ensure successful transfer from one vehicle to another. An efficient payload handling strategy must also consider the devices available to support payload handling. Cranes used for overhead lifting are common to all phases of payload handling on Earth. Similarly, both recent and past studies have demonstrated that devices with comparable functionality will be needed to support lunar outpost operations. A first generation test-bed of a new high performance device that provides the capabilities of both a crane and a robotic manipulator, the Lunar Surface Manipulation System (LSMS), has been designed, built and field tested and is available for use in evaluating a system to secure payloads to transportation vehicles. A payload handling approach must address all phases of payload management including: ground transportation, launch, planetary transfer and installation in the final system. In addition, storage may be required during any phase of operations. Each of these phases requires the payload to be lifted and secured to a vehicle, transported, released and lifted in preparation for the next transportation or storage phase. A critical component of a successful payload handling approach is a latch and associated carrier system. The latch and carrier system should minimize requirements on the: payload, carrier support structure and payload handling devices as well as be able to accommodate a wide range of payload sizes. In addition, the latch should; be small and lightweight, support a method to apply preload, be reusable, integrate into a minimal set of hard-points and have manual interfaces to actuate the latch should a problem occur. A latching system which meets these requirements has been

  14. Microservices in Web Objects Enabled IoT Environment for Enhancing Reusability.

    Science.gov (United States)

    Jarwar, Muhammad Aslam; Kibria, Muhammad Golam; Ali, Sajjad; Chong, Ilyoung

    2018-01-26

    In the ubiquitous Internet of Things (IoT) environment, reusing objects instead of creating new one has become important in academics and industries. The situation becomes complex due to the availability of a huge number of connected IoT objects, and each individual service creates a new object instead of reusing the existing one to fulfill a requirement. A well-standard mechanism not only improves the reusability of objects but also improves service modularity and extensibility, and reduces cost. Web Objects enabled IoT environment applies the principle of reusability of objects in multiple IoT application domains through central objects repository and microservices. To reuse objects with microservices and to maintain a relationship with them, this study presents an architecture of Web of Objects platform. In the case of a similar request for an object, the already instantiated object that exists in the same or from other domain can be reused. Reuse of objects through microservices avoids duplications, and reduces time to search and instantiate them from their registries. Further, this article presents an algorithm for microservices and related objects discovery that considers the reusability of objects through the central objects repository. To support the reusability of objects, the necessary algorithm for objects matching is also presented. To realize the reusability of objects in Web Objects enabled IoT environment, a prototype has been designed and implemented based on a use case scenario. Finally, the results of the prototype have been analyzed and discussed to validate the proposed approach.

  15. Microservices in Web Objects Enabled IoT Environment for Enhancing Reusability

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Jarwar

    2018-01-01

    Full Text Available In the ubiquitous Internet of Things (IoT environment, reusing objects instead of creating new one has become important in academics and industries. The situation becomes complex due to the availability of a huge number of connected IoT objects, and each individual service creates a new object instead of reusing the existing one to fulfill a requirement. A well-standard mechanism not only improves the reusability of objects but also improves service modularity and extensibility, and reduces cost. Web Objects enabled IoT environment applies the principle of reusability of objects in multiple IoT application domains through central objects repository and microservices. To reuse objects with microservices and to maintain a relationship with them, this study presents an architecture of Web of Objects platform. In the case of a similar request for an object, the already instantiated object that exists in the same or from other domain can be reused. Reuse of objects through microservices avoids duplications, and reduces time to search and instantiate them from their registries. Further, this article presents an algorithm for microservices and related objects discovery that considers the reusability of objects through the central objects repository. To support the reusability of objects, the necessary algorithm for objects matching is also presented. To realize the reusability of objects in Web Objects enabled IoT environment, a prototype has been designed and implemented based on a use case scenario. Finally, the results of the prototype have been analyzed and discussed to validate the proposed approach.

  16. Reusable coordinator modules for massively concurrent applications

    NARCIS (Netherlands)

    F. Arbab (Farhad); C.L. Blom (Kees); F.J. Burger (Freek); C.T.H. Everaars (Kees)

    1998-01-01

    htmlabstractIsolating computation and communication concerns into separate pure computation and pure coordination modules enhances modularity, understandability and reusability of parallel and/or distributed software. MANIFOLD is a pure coordination language that encourages this separation. We use

  17. Some Problems of Rocket-Space Vehicles' Characteristics co- ordination

    Science.gov (United States)

    Sergienko, Alexander A.

    2002-01-01

    of the XX century suffered a reverse. The designers of the United States' firms and enterprises of aviation and rocket-space industry (Boeing, Rocketdyne, Lockheed Martin, McDonnell Douglas, Rockwell, etc.) and NASA (Marshall Space Flight Center, Johnson Space Center, Langley Research Center and Lewis Research Center and others) could not correctly co-ordinate the characteristics of a propulsion system and a space vehicle for elaboration of the "Single-Stage-To-Orbit" reusable vehicle (SSTO) as an integral whole system, which is would able to inject a payload into an orbit and to return back on the Earth. jet nozzle design as well as the choice of propulsion system characteristics, ensuring the high ballistic efficiency, are considered in the present report. The efficiency criterions for the engine and launch system parameters optimization are discussed. The new methods of the nozzle block optimal parameters' choice for the satisfaction of the object task of flight are suggested. The family of SSTO with a payload mass from 5 to 20 ton and initial weight under 800 ton is considered.

  18. Propulsion/ASME Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    Science.gov (United States)

    Hueter, Uwe; Turner, James

    1998-01-01

    NASA's Office Of Aeronautics and Space Transportation Technology (OASTT) has establish three major coals. "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville,Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Advanced Reusable Technologies (ART) Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. The main activity over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the year 2000 decision to determine the path this country will take for Space Shuttle and RLV. In February of this year, additional technology efforts in the reusable technologies were awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet, Boeing-Rocketdyne and Pratt & Whitney were selected for a two-year period to design, build and ground test their RBCC engine concepts. In addition, ASTROX, Pennsylvania State University (PSU) and University of Alabama in Huntsville also conducted supporting activities. The activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. An area that has caused a large amount of difficulty in the testing efforts is the means of initiating the rocket combustion process. All three of the prime contractors above were using silane (SiH4) for ignition of the thrusters. This follows from the successful use of silane in the NASP program for scramjet ignition. However, difficulties were immediately encountered when silane (an 80/20 mixture of hydrogen/silane) was used for rocket

  19. Learning Objects, Repositories, Sharing and Reusability

    Science.gov (United States)

    Koppi, Tony; Bogle, Lisa; Bogle, Mike

    2005-01-01

    The online Learning Resource Catalogue (LRC) Project has been part of an international consortium for several years and currently includes 25 institutions worldwide. The LRC Project has evolved for several pragmatic reasons into an academic network whereby members can identify and share reusable learning objects as well as collaborate in a number…

  20. Space transportation and destination considerations for extraterrestrial disposal of radioactive waste

    Science.gov (United States)

    Zimmerman, A. V.; Thompson, R. L.; Lubick, R. J.

    1973-01-01

    A feasibility study is summarized of extraterrestrial (space) disposal of radioactive waste. The initial work on the evaluation and comparison of possible space destinations and launch vehicles is reported. Only current or planned space transportation systems were considered. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles, by about a factor of two. The space shuttle will require a third stage to perform the disposal missions. Depending on the particular mission this could be either a reusable space tug or an expendable stage such as a Centaur. Of the destinations considered, high earth orbits (between geostationary and lunar orbit altitudes), solar orbits (such as a 0.90 AU circular solar orbit) or a direct injection to solar system escape appear to be the best candidates. Both earth orbits and solar orbits have uncertainties regarding orbit stability and waste package integrity for times on the order of a million years.

  1. Transforming existing content into reusable Learning Objects

    NARCIS (Netherlands)

    Doorten, Monique; Giesbers, Bas; Janssen, José; Daniels, Jan; Koper, Rob

    2003-01-01

    Please cite as: Doorten, M., Giesbers, B., Janssen, J., Daniëls, J, & Koper, E.J.R., (2004). Transforming existing content into reusable learning objects. In R. McGreal, Online Education using Learning Objects (pp. 116-127). London: RoutledgeFalmer.

  2. A densitometric analysis of IIaO film flown aboard the space shuttle transportation system STS #3, 7, and 8

    Science.gov (United States)

    Hammond, Ernest C., Jr.

    1989-01-01

    Since the United States of America is moving into an age of reusable space vehicles, both electronic and photographic materials will continue to be an integral part of the recording techniques available. Film as a scientifically viable recording technique in astronomy is well documented. There is a real need to expose various types of films to the Shuttle environment. Thus, the main objective was to look at the subtle densitometric changes of canisters of IIaO film that was placed aboard the Space Shuttle 3 (STS-3).

  3. Spaceborne computer executive routine functional design specification. Volume 1: Functional design of a flight computer executive program for the reusable shuttle

    Science.gov (United States)

    Curran, R. T.

    1971-01-01

    A flight computer functional executive design for the reusable shuttle is presented. The design is given in the form of functional flowcharts and prose description. Techniques utilized in the regulation of process flow to accomplish activation, resource allocation, suspension, termination, and error masking based on process primitives are considered. Preliminary estimates of main storage utilization by the Executive are furnished. Conclusions and recommendations for timely, effective software-hardware integration in the reusable shuttle avionics system are proposed.

  4. A New Way of Doing Business: Reusable Launch Vehicle Advanced Thermal Protection Systems Technology Development: NASA Ames and Rockwell International Partnership

    Science.gov (United States)

    Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.

  5. Space storable propulsion components development

    Science.gov (United States)

    Hagler, R., Jr.

    1982-01-01

    The current development status of components to control the flow of propellants (liquid fluorine and hydrazine) in a demonstration space storable propulsion system is discussed. The criteria which determined the designs for the pressure regulator, explosive-actuated valves, propellant shutoff valve, latching solenoid-actuated valve and propellant filter are presented. The test philosophy that was followed during component development is outlined. The results from compatibility demonstrations for reusable connectors, flange seals, and CRES/Ti-6Al4V transition tubes and the evaluations of processes for welding (hand-held TIG, automated TIG, and EB), cleaning for fluorine service, and decontamination after fluorine exposure are described.

  6. Space Debris Alert System for Aviation

    Science.gov (United States)

    Sgobba, Tommaso

    2013-09-01

    Despite increasing efforts to accurately predict space debris re-entry, the exact time and location of re-entry is still very uncertain. Partially, this is due to a skipping effect uncontrolled spacecraft may experience as they enter the atmosphere at a shallow angle. Such effect difficult to model depends on atmospheric variations of density. When the bouncing off ends and atmospheric re-entry starts, the trajectory and the overall location of surviving fragments can be precisely predicted but the time to impact with ground, or to reach the airspace, becomes very short.Different is the case of a functional space system performing controlled re-entry. Suitable forecasts methods are available to clear air and maritime traffic from hazard areas (so-called traffic segregation).In US, following the Space Shuttle Columbia accident in 2003, a re-entry hazard areas location forecast system was putted in place for the specific case of major malfunction of a Reusable Launch Vehicles (RLV) at re-entry. The Shuttle Hazard Area to Aircraft Calculator (SHAAC) is a system based on ground equipment and software analyses and prediction tools, which require trained personnel and close coordination between the organization responsible for RLV operation (NASA for Shuttle) and the Federal Aviation Administration. The system very much relies on the operator's capability to determine that a major malfunction has occurred.This paper presents a US pending patent by the European Space Agency, which consists of a "smart fragment" using a GPS localizer together with pre- computed debris footprint area and direct broadcasting of such hazard areas.The risk for aviation from falling debris is very remote but catastrophic. Suspending flight over vast swath of airspace for every re-entering spacecraft or rocket upper stage, which is a weekly occurrence, would be extremely costly and disruptive.The Re-entry Direct Broadcasting Alert System (R- DBAS) is an original merging and evolution of the Re

  7. Life Cycle Assessment and Costing Methods for Device Procurement: Comparing Reusable and Single-Use Disposable Laryngoscopes.

    Science.gov (United States)

    Sherman, Jodi D; Raibley, Lewis A; Eckelman, Matthew J

    2018-01-09

    Traditional medical device procurement criteria include efficacy and safety, ease of use and handling, and procurement costs. However, little information is available about life cycle environmental impacts of the production, use, and disposal of medical devices, or about costs incurred after purchase. Reusable and disposable laryngoscopes are of current interest to anesthesiologists. Facing mounting pressure to quickly meet or exceed conflicting infection prevention guidelines and oversight body recommendations, many institutions may be electively switching to single-use disposable (SUD) rigid laryngoscopes or overcleaning reusables, potentially increasing both costs and waste generation. This study provides quantitative comparisons of environmental impacts and total cost of ownership among laryngoscope options, which can aid procurement decision making to benefit facilities and public health. We describe cradle-to-grave life cycle assessment (LCA) and life cycle costing (LCC) methods and apply these to reusable and SUD metal and plastic laryngoscope handles and tongue blade alternatives at Yale-New Haven Hospital (YNHH). The US Environmental Protection Agency's Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) life cycle impact assessment method was used to model environmental impacts of greenhouse gases and other pollutant emissions. The SUD plastic handle generates an estimated 16-18 times more life cycle carbon dioxide equivalents (CO2-eq) than traditional low-level disinfection of the reusable steel handle. The SUD plastic tongue blade generates an estimated 5-6 times more CO2-eq than the reusable steel blade treated with high-level disinfection. SUD metal components generated much higher emissions than all alternatives. Both the SUD handle and SUD blade increased life cycle costs compared to the various reusable cleaning scenarios at YNHH. When extrapolated over 1 year (60,000 intubations), estimated costs increased

  8. A Status of the Advanced Space Transportation Program from Planning to Action

    Science.gov (United States)

    Lyles, Garry; Griner, Carolyn

    1998-01-01

    A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and

  9. Space Access for Small Satellites on the K-1

    Science.gov (United States)

    Faktor, L.

    Affordable access to space remains a major obstacle to realizing the increasing potential of small satellites systems. On a per kilogram basis, small launch vehicles are simply too expensive for the budgets of many small satellite programs. Opportunities for rideshare with larger payloads on larger launch vehicles are still rare, given the complications associated with coordinating delivery schedules and deployment orbits. Existing contractual mechanisms are also often inadequate to facilitate the launch of multiple payload customers on the same flight. Kistler Aerospace Corporation is committed to lowering the price and enhancing the availability of space access for small satellite programs through the fully-reusable K-1 launch vehicle. Kistler has been working with a number of entities, including Astrium Ltd., AeroAstro, and NASA, to develop innovative approaches to small satellite missions. The K-1 has been selected by NASA as a Flight Demonstration Vehicle for the Space Launch Initiative. NASA has purchased the flight results during the first four K-1 launches on the performance of 13 advanced launch vehicle technologies embedded in the K-1 vehicle. On K-1 flights #2-#4, opportunities exist for small satellites to rideshare to low-earth orbit for a low-launch price. Kistler's flight demonstration contract with NASA also includes options to fly Add-on Technology Experiment flights. Opportunities exist for rideshare payloads on these flights as well. Both commercial and government customers may take advantage of the rideshare pricing. Kistler is investigating the feasibility of flying dedicated, multiple small payload missions. Such a mission would launch multiple small payloads from a single customer or small payloads from different customers. The orbit would be selected to be compatible with the requirements of as many small payload customers as possible, and make use of reusable hardware, standard interfaces (such as the existing MPAS) and verification plans

  10. Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle

    Science.gov (United States)

    Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.

    2017-12-01

    Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.

  11. Spaceborne computer executive routine functional design specification. Volume 2: Computer executive design for space station/base

    Science.gov (United States)

    Kennedy, J. R.; Fitzpatrick, W. S.

    1971-01-01

    The computer executive functional system design concepts derived from study of the Space Station/Base are presented. Information Management System hardware configuration as directly influencing the executive design is reviewed. The hardware configuration and generic executive design requirements are considered in detail in a previous report (System Configuration and Executive Requirements Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report defines basic system primitives and delineates processes and process control. Supervisor states are considered for describing basic multiprogramming and multiprocessing systems. A high-level computer executive including control of scheduling, allocation of resources, system interactions, and real-time supervisory functions is defined. The description is oriented to provide a baseline for a functional simulation of the computer executive system.

  12. What If Annotations Were Reusable: A Preliminary Discussion

    Science.gov (United States)

    Manouselis, Nikos; Vuorikari, Riina

    This paper discusses the rationale for the representation of user feedback in a structured and reusable format so that it can be reused by different recommender systems. We emphasize how information about the context can be included in such a representation. This work-in-progress takes place in the context of two large European initiatives that set up collections of digital educational resources in distributed repositories to serve the needs of different user communities, and to collect user feedback such as ratings, bookmarks and tags related to the resources. The overall aim is to facilitate the exchange and reuse of their data sets in order to support recommendation of appropriate resources to the end users.

  13. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    Science.gov (United States)

    Tawie, R.; Lee, H. K.

    2011-08-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials.

  14. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    International Nuclear Information System (INIS)

    Tawie, R; Lee, H K

    2011-01-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials

  15. Clinical outcomes and costs of reusable and single-use flexible ureterorenoscopes: a prospective cohort study.

    Science.gov (United States)

    Mager, R; Kurosch, M; Höfner, T; Frees, S; Haferkamp, A; Neisius, A

    2018-01-22

    The purpose of this study is to analyze clinical outcomes and costs of single-use flexible ureterorenoscopes in comparison with reusable flexible ureterorenoscopes in a tertiary referral center. Prospectively, 68 flexible ureterorenoscopies utilizing reusable (Flex-X2S, Flex-X C , Karl Storz) and 68 applying single-use flexible ureterorenoscopes (LithoVue, Boston Scientific) were collected. Clinical outcome parameters such as overall success rate, complication rates according to Clavien-Dindo, operation time and radiation exposure time were measured. Cost analysis was based on purchase costs and recurrent costs for repair and reprocessing divided by number of procedures. In each group 68 procedures were available for evaluation. In 91% of reusable and 88% of single-use ureterorenoscopies stone disease was treated with a mean stone burden of 101 ± 226 and 90 ± 244 mm 2 and lower pole involvement in 47 and 41%, respectively (p > 0.05). Comparing clinical outcomes of reusable vs. single-use instruments revealed no significant difference for overall success rates (81 vs. 87%), stone-free rates (82 vs. 85%), operation time (76.2 ± 46.8 vs. 76.8 ± 40.2 min), radiation exposure time (3.83 ± 3.15 vs. 3.93 ± 4.43 min) and complication rates (7 vs. 17%) (p > 0.05). A wide range of repair and purchase costs resulted in total to $1212-$1743 per procedure for reusable ureterorenoscopy whereas price of single-use ureterorenoscopy was $1300-$3180 per procedure. The current work provided evidence for equal clinical effectiveness of reusable and single-use flexible ureterorenoscopes. Partially overlapping ranges of costs for single-use and reusable scopes stress the importance to precisely know the expenses and caseload when negotiating purchase prices, repair prices and warranty conditions.

  16. Decomposition of business process models into reusable sub-diagrams

    Directory of Open Access Journals (Sweden)

    Wiśniewski Piotr

    2017-01-01

    Full Text Available In this paper, an approach to automatic decomposition of business process models is proposed. According to our method, an existing BPMN diagram is disassembled into reusable parts containing the desired number of elements. Such elements and structure can work as design patterns and be validated by a user in terms of correctness. In the next step, these component models are categorised considering their parameters such as resources used, as well as input and output data. The classified components may be considered a repository of reusable parts, that can be further applied in the design of new models. The proposed technique may play a significant role in facilitating the business process redesign procedure, which is of a great importance regarding engineering and industrial applications.

  17. Macro Level Simulation Model Of Space Shuttle Processing

    Science.gov (United States)

    2000-01-01

    The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.

  18. Reusable launch vehicle model uncertainties impact analysis

    Science.gov (United States)

    Chen, Jiaye; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    Reusable launch vehicle(RLV) has the typical characteristics of complex aerodynamic shape and propulsion system coupling, and the flight environment is highly complicated and intensely changeable. So its model has large uncertainty, which makes the nominal system quite different from the real system. Therefore, studying the influences caused by the uncertainties on the stability of the control system is of great significance for the controller design. In order to improve the performance of RLV, this paper proposes the approach of analyzing the influence of the model uncertainties. According to the typical RLV, the coupling dynamic and kinematics models are built. Then different factors that cause uncertainties during building the model are analyzed and summed up. After that, the model uncertainties are expressed according to the additive uncertainty model. Choosing the uncertainties matrix's maximum singular values as the boundary model, and selecting the uncertainties matrix's norm to show t how much the uncertainty factors influence is on the stability of the control system . The simulation results illustrate that the inertial factors have the largest influence on the stability of the system, and it is necessary and important to take the model uncertainties into consideration before the designing the controller of this kind of aircraft( like RLV, etc).

  19. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  20. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif; Farooqui, Muhammad Fahad

    2016-01-01

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a

  1. DOOCS patterns, reusable software components for FPGA based RF GUN field controller

    Energy Technology Data Exchange (ETDEWEB)

    Pucyk, P. [Institute of Electronic Systems, Warsaw (Poland)

    2006-07-01

    Modern accelerator technology combines software and hardware solutions to provide distributed, high efficiency digital systems for High Energy Physics experiments. Providing flexible, maintainable software is crucial for ensuring high availability of the whole system. In order to fulfil all these requirements, appropriate design and development techniques have to be used. Software patterns are well known solution for common programming issues, providing proven development paradigms, which can help to avoid many design issues. DOOCS patterns introduces new concepts of reusable software components for control system algorithms development and implementation in DOOCS framework. Chosen patterns have been described and usage examples have been presented in this paper. (orig.)

  2. DOOCS patterns, reusable software components for FPGA based RF GUN field controller

    International Nuclear Information System (INIS)

    Pucyk, P.

    2006-01-01

    Modern accelerator technology combines software and hardware solutions to provide distributed, high efficiency digital systems for High Energy Physics experiments. Providing flexible, maintainable software is crucial for ensuring high availability of the whole system. In order to fulfil all these requirements, appropriate design and development techniques have to be used. Software patterns are well known solution for common programming issues, providing proven development paradigms, which can help to avoid many design issues. DOOCS patterns introduces new concepts of reusable software components for control system algorithms development and implementation in DOOCS framework. Chosen patterns have been described and usage examples have been presented in this paper. (orig.)

  3. Logistics: An integral part of cost efficient space operations

    Science.gov (United States)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  4. Catalytic asymmetric dihydroxylation of olefins using a recoverable and reusable OsO(4)2- in ionic liquid [bmim][PF6].

    Science.gov (United States)

    Branco, Luís C; Afonso, Carlos A M

    2002-12-21

    The use of the solvent systems water/ionic liquid or water/ionic liquid/tert-butanol provides a recoverable, reusable, robust and simple system for the asymmetric dihydroxylation of olefins, based on the immobilization of the osmium-ligand catalyst in the ionic liquid phase.

  5. Optically transparent super-hydrophobic thin film fabricated by reusable polyurethane-acrylate (PUA) mold

    Science.gov (United States)

    Park, J.-S.; Park, J.-H.; Lee, D.-W.

    2018-02-01

    In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle  ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.

  6. Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase

    Science.gov (United States)

    Mu, Lingxia; Yu, Xiang; Zhang, Y. M.; Li, Ping; Wang, Xinmin

    2018-02-01

    A terminal area energy management (TAEM) guidance system for an unpowered reusable launch vehicle (RLV) is proposed in this paper. The mathematical model representing the RLV gliding motion is provided, followed by a transformation of extracting the required dynamics for reference profile generation. Reference longitudinal profiles are conceived based on the capability of maximum dive and maximum glide that a RLV can perform. The trajectory is obtained by iterating the motion equations at each node of altitude, where the angle of attack and the flight-path angle are regarded as regulating variables. An onboard ground-track predictor is constructed to generate the current range-to-go and lateral commands online. Although the longitudinal profile generation requires pre-processing using the RLV aerodynamics, the ground-track prediction can be executed online. This makes the guidance scheme adaptable to abnormal conditions. Finally, the guidance law is designed to track the reference commands. Numerical simulations demonstrate that the proposed guidance scheme is capable of guiding the RLV to the desired touchdown conditions.

  7. A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars)

    Science.gov (United States)

    Davoodi, Faranak

    2013-01-01

    Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Architecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample-return missions, as a reusable lander, ascend/descend vehicle, refuelable hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments. The proposed REARM architecture consists of the following subsystems: REARM-dock, REARM-spacecraft, sky-crane, secure-attached-compartment, sample-return container, agile rover, scalable orbital lab, and on-the-road robotic handymen.

  8. Silica sulfuric acid: a versatile and reusable heterogeneous catalyst ...

    African Journals Online (AJOL)

    ... and reusable heterogeneous catalyst for the synthesis of N-acyl carbamates and ... All the reactions were done at room temperature and the N-acyl carbamates ... This method is attractive and is in a close agreement with green chemistry.

  9. NASA Wavelength: A Digital Library for Earth and Space Science Education

    Science.gov (United States)

    Schwerin, T.; Peticolas, L. M.; Bartolone, L. M.; Davey, B.; Porcello, D.

    2012-12-01

    The NASA Science Education and Public Outreach Forums have developed a web-based information system - NASA Wavelength - that will enable easy discovery and retrieval of thousands of resources from the NASA Earth and space science education portfolio. The beta system is being launched fall 2012 and has been developed based on best-practices in the architecture and design of Web-based information systems. The design style and philosophy emphasize simple, reusable data and services that facilitate the free-flow of data across systems. The primary audiences for NASA Wavelength are STEM educators (K-12, higher education and informal education) as well as scientists, education and public outreach professionals who work with k-12, higher education and informal education.

  10. Modelling informally collected quantities of bulky waste and reusable items in Austria

    International Nuclear Information System (INIS)

    Ramusch, R.; Pertl, A.; Scherhaufer, S.; Schmied, E.; Obersteiner, G.

    2015-01-01

    Highlights: • Informal collectors from Hungary collect bulky waste and reusable items in Austria. • Two methodologies were applied to estimate the informally collected quantities. • Both approaches lead to an estimation of roughly 100,000 t p.a. informally collected. • The formal Austrian system collects 72 kg/cap/yr of bulky waste, WEE & scrap metal. • Informal collection amounts to approx. 12 kg/cap/yr. - Abstract: Disparities in earnings between Western and Eastern European countries are the reason for a well-established informal sector actively involved in collection and transboundary shipment activities from Austria to Hungary. The preferred objects are reusable items and wastes within the categories bulky waste, WEEE and metals, intended to be sold on flea markets. Despite leading to a loss of recyclable resources for Austrian waste management, these informal activities may contribute to the extension of the lifetime of certain goods when they are reused in Hungary; nevertheless they are discussed rather controversially. The aim of this paper is to provide objective data on the quantities informally collected and transhipped. The unique activities of informal collectors required the development and implementation of a new set of methodologies. The concept of triangulation was used to verify results obtained by field visits, interviews and a traffic counting campaign. Both approaches lead to an estimation of approx. 100,000 t per year of reusable items informally collected in Austria. This means that in addition to the approx. 72 kg/cap/yr formally collected bulky waste, bulky waste wood, household scrap (excluding packaging) and WEEE, up to a further 12 kg/cap/yr might, in the case that informal collection is abandoned, end up as waste or in the second-hand sector

  11. Modelling informally collected quantities of bulky waste and reusable items in Austria

    Energy Technology Data Exchange (ETDEWEB)

    Ramusch, R., E-mail: roland.ramusch@boku.ac.at; Pertl, A.; Scherhaufer, S.; Schmied, E.; Obersteiner, G.

    2015-10-15

    Highlights: • Informal collectors from Hungary collect bulky waste and reusable items in Austria. • Two methodologies were applied to estimate the informally collected quantities. • Both approaches lead to an estimation of roughly 100,000 t p.a. informally collected. • The formal Austrian system collects 72 kg/cap/yr of bulky waste, WEE & scrap metal. • Informal collection amounts to approx. 12 kg/cap/yr. - Abstract: Disparities in earnings between Western and Eastern European countries are the reason for a well-established informal sector actively involved in collection and transboundary shipment activities from Austria to Hungary. The preferred objects are reusable items and wastes within the categories bulky waste, WEEE and metals, intended to be sold on flea markets. Despite leading to a loss of recyclable resources for Austrian waste management, these informal activities may contribute to the extension of the lifetime of certain goods when they are reused in Hungary; nevertheless they are discussed rather controversially. The aim of this paper is to provide objective data on the quantities informally collected and transhipped. The unique activities of informal collectors required the development and implementation of a new set of methodologies. The concept of triangulation was used to verify results obtained by field visits, interviews and a traffic counting campaign. Both approaches lead to an estimation of approx. 100,000 t per year of reusable items informally collected in Austria. This means that in addition to the approx. 72 kg/cap/yr formally collected bulky waste, bulky waste wood, household scrap (excluding packaging) and WEEE, up to a further 12 kg/cap/yr might, in the case that informal collection is abandoned, end up as waste or in the second-hand sector.

  12. FAA's Implementation of the Commercial Space Launch Amendments Act of 2004- The Experimental Permit

    Science.gov (United States)

    Repcheck, J. Randall

    2005-12-01

    A number of entrepreneurs are committed to the goal of developing and operating reusable launch vehicles for private human space travel. In order to promote this emerging industry, and to create a clear legal, regulatory, and safety regime, the United States (U.S.) Congress passed the Commercial Space Launch Amendments Act of 2004 (CSLAA). Signed on December 23, 2004 by U.S. President George W. Bush, the CSLAA makes the Federal Aviation Administration (FAA) responsible for regulating human spaceflight. The CSLAA, among other things, establishes an experimental permit regime for developmental reusable suborbital rockets. This paper describes the FAA's approach in developing guidelines for obtaining and maintaining an experimental permit, and describes the core safety elements of those guidelines.

  13. Reusable launch vehicle development research

    Science.gov (United States)

    1995-01-01

    NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.

  14. Reusable Xerogel Containing Quantum Dots with High Fluorescence Retention

    Directory of Open Access Journals (Sweden)

    Xiang-Yong Liang

    2018-03-01

    Full Text Available Although various analytical methods have been established based on quantum dots (QDs, most were conducted in solution, which is inadequate for storage/transportation and rapid analysis. Moreover, the potential environmental problems caused by abandoned QDs cannot be ignored. In this paper, a reusable xerogel containing CdTe with strong emission is established by introducing host–guest interactions between QDs and polymer matrix. This xerogel shows high QDs loading capacity without decrease or redshift in fluorescence (the maximum of loading is 50 wt % of the final xerogel, which benefits from the steric hindrance of β-cyclodextrin (βCD molecules. Host–guest interactions immobilize QDs firmly, resulting in the excellent fluorescence retention of the xerogel. The good detecting performance and reusability mean this xerogel could be employed as a versatile analysis platform (for quantitative and qualitative analyses. In addition, the xerogel can be self-healed by the aid of water.

  15. Implementation of a Space Communications Cognitive Engine

    Science.gov (United States)

    Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.

    2017-01-01

    Although communications-based cognitive engines have been proposed, very few have been implemented in a full system, especially in a space communications system. In this paper, we detail the implementation of a multi-objective reinforcement-learning algorithm and deep artificial neural networks for the use as a radio-resource-allocation controller. The modular software architecture presented encourages re-use and easy modification for trying different algorithms. Various trade studies involved with the system implementation and integration are discussed. These include the choice of software libraries that provide platform flexibility and promote reusability, choices regarding the deployment of this cognitive engine within a system architecture using the DVB-S2 standard and commercial hardware, and constraints placed on the cognitive engine caused by real-world radio constraints. The implemented radio-resource allocation-management controller was then integrated with the larger spaceground system developed by NASA Glenn Research Center (GRC).

  16. Space Transportation Technology Workshop: Propulsion Research and Technology

    Science.gov (United States)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  17. Developing hybrid near-space technologies for affordable access to suborbital space

    Science.gov (United States)

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  18. Reusability of photocatalytic TiO{sub 2} and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Sara, E-mail: sara.teixeira@nano.tu-dresden.de [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Martins, P.M. [Centro/Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga (Portugal); Lanceros-Méndez, S. [Centro/Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); BCMaterials, Parque Científico y Tecnológico de Bizkaia, 48160 Derio (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Kühn, Klaus [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science (DCCMS), TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany)

    2016-10-30

    Highlights: • Performance of immobilized TiO{sub 2} and ZnO nanoparticles in P(VDF-TrFE) membranes. • Photocatalytic degradation of methylene blue under UV radiation. • Assessment of the reusability of the nanocomposites. • Ecofriendly and cost-effective process for water treatment. - Abstract: Pollutants present in water are increasingly becoming an important public health issue. After their transportation across the sewer network they can pass through the wastewater treatment plants (WWTPs) mostly unchanged because WWTPs are not designed to remove pollutants present at trace levels. Conventional treatments are therefore ineffective. Immobilized photocatalytic systems are thus an advantage for the treatment of contaminated water, because they are ecofriendly, cost-effective and allow reusability. This work reports on TiO{sub 2} and ZnO commercial nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene (P(VDF-TrFE)). Nanocomposites of P(VDF-TrFE) with different concentrations of TiO{sub 2} nanoparticles (5, 10, and 15 wt.%) and ZnO nanoparticles (15 wt.%) were produced by solvent casting and tested on the degradation of methylene blue, a model organic dye. Each nanocomposite was tested three times to assess its reusability. It is shown that increasing the photocatalyst concentration results in higher photocatalytic efficiencies; the degradation rates of 15% of TiO{sub 2} and ZnO are similar; and the photoactivity decreases 6%, 16%, 13%, and 11% after three utilizations, for TiO{sub 2} 5%, TiO{sub 2} 10%, TiO{sub 2} 15%, and ZnO 15%, respectively. Thus, the low decrease in the photocatalytic activity after three uses makes the nanocomposites suitable for applications in which reusability is an important key factor.

  19. Advanced Air Evaporation System with Reusable Wicks for Water Recovery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Advanced Air Evaporation System (AAES) is proposed for recovering nearly 100% of water from highly contaminated wastewater without concern...

  20. Bacterial contamination of re-usable laryngoscope blades during the ...

    African Journals Online (AJOL)

    We aimed to assess the level of microbial contamination of re-usable laryngoscope blades at a public hospital in South Africa. Setting. The theatre complex of a secondary-level public hospital in Johannesburg. Methods. Blades from two different theatres were sampled twice daily, using a standardised technique, over a ...

  1. Cost comparison of re-usable and single-use fibrescopes in a large English teaching hospital.

    Science.gov (United States)

    McCahon, R A; Whynes, D K

    2015-06-01

    A number of studies in the U.S.A. and mainland Europe have described the costs of fibreoptic tracheal intubation. However, no such data from the UK appear available. We performed a cost assessment of fibreoptic intubation, using re-usable (various devices from Olympus, Acutronic and Karl Storz) and single-use (Ambu aScope) fibrescopes, at the Queens Medical Centre, Nottingham, U.K., between 1 January 2009 and 31 March 2014. The total annual cost of fibreoptic intubation with re-usable fibrescopes was £46,385. Based on 141 fibreoptic intubations per year, this equated to £329 per use, an average dominated by repair/maintenance costs (43%) and capital depreciation costs (42%). In comparison, the total annual cost of using single-use fibrescopes for the same work would have been around £200 per use. The analysis enabled us to develop a generic model, wherein we were able to describe the relationship between total cost of use vs number of uses for a fibrescope. An 'isopleth' was identified for this relationship: a line that joined all the points where the cost of re-usable vs single-use fibrescopes was equal. It appears cheaper to use single-use fibrescopes at up to 200 fibreoptic intubations per year (a range commensurate with normal practice) even when the repair rate for re-usable fibrescopes is low. Any centre, knowing its fibrescope use and repair rate, can plot its data similarly to help ascertain which of the re-usable or single-use fibrescope represents better value. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  2. An Automatic Indicator of the Reusability of Learning Objects Based on Metadata That Satisfies Completeness Criteria

    Science.gov (United States)

    Sanz-Rodríguez, Javier; Margaritopoulos, Merkourios; Margaritopoulos, Thomas; Dodero, Juan Manuel; Sánchez-Alonso, Salvador; Manitsaris, Athanasios

    The search for learning objects in open repositories is currently a tedious task, owing to the vast amount of resources available and the fact that most of them do not have associated ratings to help users make a choice. In order to tackle this problem, we propose a reusability indicator, which can be calculated automatically using the metadata that describes the objects, allowing us to select those materials most likely to be reused. In order for this reusability indicator to be applied, metadata records must reach a certain amount of completeness, guaranteeing that the material is adequately described. This reusability indicator is tested in two studies on the Merlot and eLera repositories, and results obtained offer evidence to support their effectiveness.

  3. Space remote sensing systems an introduction

    CERN Document Server

    Chen, H S

    1985-01-01

    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  4. Towards a reusable architecture for message exchange in pervasive healthcare

    NARCIS (Netherlands)

    Cardoso de Moraes, J.L.; Lopes de Souza, Wanderley; Ferreira Pires, Luis; do Prado, Antonio Francisco; Hammoudi, S.; Maciaszek, L.A.; Cordeiro, J.; Dietz, J.L.G.

    The main objective of this paper is to present a reusable architecture for message exchange in pervasive healthcare environments meant to be generally applicable to different applications in the healthcare domain. This architecture has been designed by integrating different concepts and technologies

  5. Humidifiers for oxygen therapy: what risk for reusable and disposable devices?

    Science.gov (United States)

    La Fauci, V; Costa, G B; Facciolà, A; Conti, A; Riso, R; Squeri, R

    2017-06-01

    Nosocomial pneumonia accounts for the vast majority of healthcare-associated infections (HAI). Although numerous medical devices have been discussed as potential vehicles for microorganisms, very little is known about the role played by oxygen humidifiers as potential sources of nosocomial pathogens. The purpose of this research was to evaluate the safety of the reuse of humidifiers by analysing the rate of microbial contamination in reusable and disposable oxygen humidifiers used during therapy, and then discuss their potential role in the transmission of respiratory pathogens. Water samples from reusable and disposable oxygen humidifiers were collected from different wards of the University Hospital of Messina, Italy, where nosocomial pneumonia has a higher incidence rate due to the "critical" clinical conditions of inpatients. In particular, we monitored the Internal Medicine and Pulmonology wards for the medical area; the General Surgery and Thoracic and Cardiovascular Surgery wards for the surgical area and the Intensive Care Unit and Neonatal Intensive Care Unit for the emergency area. The samples were always collected after a period of 5 days from initial use for both types of humidifiers. Samples were processed using standard bacteriological techniques and microbial colonies were identified using manual and automated methods. High rates of microbial contamination were observed in samples from reusable oxygen humidifiers employed in medical (83%), surgical (77%) and emergency (50%) areas. The most relevant pathogens were Pseudomonas aeruginosa, amongst the Gram-negative bacteria, and Staphylococcus aureus, amongst the Gram-positive bacteria. Other pathogens were detected in lower percentage. The disposable oxygen humidifier samples showed no contamination. This research presents evidence of the high rate and type of microbial contamination of reusable humidifiers employed for oxygen therapy. These devices may thus be involved in the transmission of potential

  6. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  7. Next Generation Space Surveillance System-of-Systems

    Science.gov (United States)

    McShane, B.

    2014-09-01

    International economic and military dependence on space assets is pervasive and ever-growing in an environment that is now congested, contested, and competitive. There are a number of natural and man-made risks that need to be monitored and characterized to protect and preserve the space environment and the assets within it. Unfortunately, today's space surveillance network (SSN) has gaps in coverage, is not resilient, and has a growing number of objects that get lost. Risks can be efficiently and effectively mitigated, gaps closed, resiliency improved, and performance increased within a next generation space surveillance network implemented as a system-of-systems with modern information architectures and analytic techniques. This also includes consideration for the newest SSN sensors (e.g. Space Fence) which are born Net-Centric out-of-the-box and able to seamlessly interface with the JSpOC Mission System, global information grid, and future unanticipated users. Significant opportunity exists to integrate legacy, traditional, and non-traditional sensors into a larger space system-of-systems (including command and control centers) for multiple clients through low cost sustainment, modification, and modernization efforts. Clients include operations centers (e.g. JSpOC, USSTRATCOM, CANSPOC), Intelligence centers (e.g. NASIC), space surveillance sensor sites (e.g. AMOS, GEODSS), international governments (e.g. Germany, UK), space agencies (e.g. NASA), and academic institutions. Each has differing priorities, networks, data needs, timeliness, security, accuracy requirements and formats. Enabling processes and technologies include: Standardized and type accredited methods for secure connections to multiple networks, machine-to-machine interfaces for near real-time data sharing and tip-and-queue activities, common data models for analytical processing across multiple radar and optical sensor types, an efficient way to automatically translate between differing client and

  8. Schoolgirls' experience and appraisal of menstrual absorbents in rural Uganda: a cross-sectional evaluation of reusable sanitary pads.

    Science.gov (United States)

    Hennegan, Julie; Dolan, Catherine; Wu, Maryalice; Scott, Linda; Montgomery, Paul

    2016-12-07

    Governments, multinational organisations, and charities have commenced the distribution of sanitary products to address current deficits in girls' menstrual management. The few effectiveness studies conducted have focused on health and education outcomes but have failed to provide quantitative assessment of girls' preferences, experiences of absorbents, and comfort. Objectives of the study were, first, to quantitatively describe girls' experiences with, and ratings of reliability and acceptability of different menstrual absorbents. Second, to compare ratings of freely-provided reusable pads (AFRIpads) to other existing methods of menstrual management. Finally, to assess differences in self-reported freedom of activity during menses according to menstrual absorbent. Cross-sectional, secondary analysis of data from the final survey of a controlled trial of reusable sanitary padand puberty education provision was undertaken. Participants were 205 menstruating schoolgirls from eight schools in rural Uganda. 72 girls who reported using the intervention-provided reusable pads were compared to those using existing improvised methods (predominately new or old cloth). Schoolgirls using reusable pads provided significantly higher ratings of perceived absorbent reliability across activities, less difficulties changing absorbents, and less disgust with cleaning absorbents. There were no significant differences in reports of outside garment soiling (OR 1.00 95%CI 0.51-1.99), or odour (0.84 95%CI 0.40-1.74) during the last menstrual period. When girls were asked if menstruation caused them to miss daily activities there were no differences between those using reusable pads and those using other existing methods. However, when asked about activities avoided during menstruation, those using reusable pads participated less in physical sports, working in the field, fetching water, and cooking. Reusable pads were rated favourably. This translated into some benefits for self

  9. Space stations systems and utilization

    CERN Document Server

    Messerschmid, Ernst

    1999-01-01

    The design of space stations like the recently launched ISS is a highly complex and interdisciplinary task. This book describes component technologies, system integration, and the potential usage of space stations in general and of the ISS in particular. It so adresses students and engineers in space technology. Ernst Messerschmid holds the chair of space systems at the University of Stuttgart and was one of the first German astronauts.

  10. Orbiting Depot and Reusable Lander for Lunar Transportation

    Science.gov (United States)

    Petro, Andrew

    2009-01-01

    A document describes a conceptual transportation system that would support exploratory visits by humans to locations dispersed across the surface of the Moon and provide transport of humans and cargo to sustain one or more permanent Lunar outpost. The system architecture reflects requirements to (1) minimize the amount of vehicle hardware that must be expended while maintaining high performance margins and (2) take advantage of emerging capabilities to produce propellants on the Moon while also enabling efficient operation using propellants transported from Earth. The system would include reusable single- stage lander spacecraft and a depot in a low orbit around the Moon. Each lander would have descent, landing, and ascent capabilities. A crew-taxi version of the lander would carry a pressurized crew module; a cargo version could carry a variety of cargo containers. The depot would serve as a facility for storage and for refueling with propellants delivered from Earth or propellants produced on the Moon. The depot could receive propellants and cargo sent from Earth on a variety of spacecraft. The depot could provide power and orbit maintenance for crew vehicles from Earth and could serve as a safe haven for lunar crews pending transport back to Earth.

  11. Reusable rocket engine preventive maintenance scheduling using genetic algorithm

    International Nuclear Information System (INIS)

    Chen, Tao; Li, Jiawen; Jin, Ping; Cai, Guobiao

    2013-01-01

    This paper deals with the preventive maintenance (PM) scheduling problem of reusable rocket engine (RRE), which is different from the ordinary repairable systems, by genetic algorithm. Three types of PM activities for RRE are considered and modeled by introducing the concept of effective age. The impacts of PM on all subsystems' aging processes are evaluated based on improvement factor model. Then the reliability of engine is formulated by considering the accumulated time effect. After that, optimization model subjected to reliability constraint is developed for RRE PM scheduling at fixed interval. The optimal PM combination is obtained by minimizing the total cost in the whole life cycle for a supposed engine. Numerical investigations indicate that the subsystem's intrinsic reliability characteristic and the improvement factor of maintain operations are the most important parameters in RRE's PM scheduling management

  12. A reusable OSL-film for 2D radiotherapy dosimetry

    Science.gov (United States)

    Wouter, Crijns; Dirk, Vandenbroucke; Paul, Leblans; Tom, Depuydt

    2017-11-01

    Optical stimulated luminescence (OSL) combines reusability, sub-mm resolution, and a linear dose response in a single radiation detection technology. Such a combination is currently lacking in radiotherapy dosimetry. But OSL-films have a strong energy dependent response to keV photons due to a relative high effective atomic number (Z eff). The current work studied the applicability of a 2D OSL-film with a reduced Z eff as (IMRT/VMAT) dosimeter. Based on their commercial OSL-film experience, Agfa Healthcare N.V. produced a new experimental OSL-film for RT dosimetry. This film had a lower effective atomic number compared to the films used in radiology. Typical 2D dosimeter requirements such as uniformity, dose response, signal stability with time, and angular dependence were evaluated. Additionally, the impact of a possible residual energy dependence was assessed for the infield as well as the out-of-field region of both static beams and standard intensity modulated patterns (chair and pyramid). The OSL-film’s reusable nature allowed for a film specific absolute and linear calibration including a flood-field uniformity correction. The OSL-film was scanned with a CR-15X engine based reader using a strict timing (i.e. 4 min after ‘beam on’ or as soon as possible) to account for spontaneous recombination. The OSL-film had good basic response properties: non-uniformities  ⩽2.6%, a linear dose response (0-32 Gy), a linear signal decay (0.5% min-1) over the 20 min measured, and limited angular dependence  ⩽2.6%. Due to variations of the energy spectrum, larger dose differences were noted outside the central region of the homogenous phantom and outside both static and IMRT fields. However, the OSL-film’s measured dose differences of the IMRT patterns were lower than those of Gafchromic EBT measurements ([-1.6%, 2.1%] versus [-2.9%, 3.6%]). The current OSL-film could be used as a reusable high resolution dosimeter with read-out immediately after

  13. Planning for a space infrastructure for disposal of nuclear space power systems

    International Nuclear Information System (INIS)

    Angelo, J. Jr.; Albert, T.E.; Lee, J.

    1989-01-01

    The development of safe, reliable, and compact power systems is vital to humanity's exploration, development, and, ultimately, civilization of space. Nuclear power systems appear to present to offer the only practical option of compact high-power systems. From the very beginning of US space nuclear power activities, safety has been a paramount requirement. Assurance of nuclear safety has included prelaunch ground handling operations, launch, and space operations of nuclear power sources, and more recently serious attention has been given to postoperational disposal of spent or errant nuclear reactor systems. The purpose of this paper is to describe the progress of a project to utilize the capabilities of an evolving space infrastructure for planning for disposal of space nuclear systems. Project SIREN (Search, Intercept, Retrieve, Expulsion - Nuclear) is a project that has been initiated to consider post-operational disposal options for nuclear space power systems. The key finding of Project SIREN was that although no system currently exists to affect the disposal of a nuclear space power system, the requisite technologies for such a system either exist or are planned for part of the evolving space infrastructure

  14. A Reference Architecture for Space Information Management

    Science.gov (United States)

    Mattmann, Chris A.; Crichton, Daniel J.; Hughes, J. Steven; Ramirez, Paul M.; Berrios, Daniel C.

    2006-01-01

    We describe a reference architecture for space information management systems that elegantly overcomes the rigid design of common information systems in many domains. The reference architecture consists of a set of flexible, reusable, independent models and software components that function in unison, but remain separately managed entities. The main guiding principle of the reference architecture is to separate the various models of information (e.g., data, metadata, etc.) from implemented system code, allowing each to evolve independently. System modularity, systems interoperability, and dynamic evolution of information system components are the primary benefits of the design of the architecture. The architecture requires the use of information models that are substantially more advanced than those used by the vast majority of information systems. These models are more expressive and can be more easily modularized, distributed and maintained than simpler models e.g., configuration files and data dictionaries. Our current work focuses on formalizing the architecture within a CCSDS Green Book and evaluating the architecture within the context of the C3I initiative.

  15. Experiences with Reusable E-Learning Objects: From Theory to Practice.

    Science.gov (United States)

    Muzio, Jeanette A.; Heins, Tanya; Mundell, Roger

    2002-01-01

    Explains reusable electronic learning objects (ELOs) that are stored in a database and discusses the practical application of creating and reusing ELOs at Royal Roads University (Canada). Highlights include ELOs and the instructional design of online courses; and examples of using templates to develop interactive ELOs. (Author/LRW)

  16. Active Space Debris Removal System

    Directory of Open Access Journals (Sweden)

    Gabriele GUERRA

    2017-06-01

    Full Text Available Since the start of the space era, more than 5000 launches have been carried out, each carrying satellites for many disparate uses, such as Earth observation or communication. Thus, the space environment has become congested and the problem of space debris is now generating some concerns in the space community due to our long-lived belief that “space is big”. In the last few years, solutions to this problem have been proposed, one of those is Active Space Debris Removal: this method will reduce the increasing debris growth and permit future sustainable space activities. The main idea of the method proposed below is a drag augmentation system: use a system capable of putting an expanded foam on a debris which will increase the area-to-mass ratio to increase the natural atmospheric drag and solar pressure. The drag augmentation system proposed here requires a docking system; the debris will be pushed to its release height and then, after un-docking, an uncontrolled re-entry takes place ending with a burn up of the object and the foam in the atmosphere within a given time frame. The method requires an efficient way to change the orbit between two debris. The present paper analyses such a system in combination with an Electric Propulsion system, and emphasizes the choice of using two satellites to remove five effective rockets bodies debris within a year.

  17. Mobile Authoring of Open Educational Resources as Reusable Learning Objects

    Directory of Open Access Journals (Sweden)

    Dr Kinshuk

    2013-06-01

    Full Text Available E-learning technologies have allowed authoring and playback of standardized reusable learning objects (RLO for several years. Effective mobile learning requires similar functionality at both design time and runtime. Mobile devices can play RLO using applications like SMILE, mobile access to a learning management system (LMS, or other systems which deploy content to mobile learners (Castillo & Ayala, 2008; Chu, Hwang, & Tseng, 2010; Hsu & Chen, 2010; Nakabayashi, 2009; Zualkernan, Nikkhah, & Al-Sabah, 2009. However, implementations which author content in a mobile context do not typically permit reuse across multiple contexts due to a lack of standardization. Standards based (IMS and SCORM authoring implementations exist for non-mobile platforms (Gonzalez-Barbone & Anido-Rifon, 2008; Griffiths, Beauvoir, Liber, & Barrett-Baxendale, 2009; Téllez, 2010; Yang, Chiu, Tsai, & Wu, 2004. However, this paradigm precludes capturing learning where and when it occurs. Consequently, RLO authored for e-learning lack learner generated content, especially with timely, relevant, and location aware examples.

  18. Embracing the Importance of FAIR Research Products - Findable, Accessible, Interoperable, and Reusable

    Science.gov (United States)

    Stall, S.

    2017-12-01

    Integrity and transparency within research is solidified by a complete set of research products that are findable, accessible, interoperable, and reusable. In other words, they follow the FAIR Guidelines developed by FORCE11.org. Your datasets, images, video, software, scripts, models, physical samples, and other tools and technology are an integral part of the narrative you tell about your research. These research products increasingly are being captured through workflow tools and preserved and connected through persistent identifiers across multiple repositories that keep them safe. They help secure, with your publications, the supporting evidence and integrity of the scientific record. This is the direction that Earth and space science as well as other disciplines is moving. Within our community, some science domains are further along, and others are taking more measured steps. AGU as a publisher is working to support the full scientific record with peer reviewed publications. Working with our community and all the Earth and space science journals, AGU is developing new policies to encourage researchers to plan for proper data preservation and provide data citations along with their research submission and to encourage adoption of best practices throughout the research workflow and data life cycle. Providing incentives, community standards, and easy-to-use tools are some important factors for helping researchers embrace the FAIR Guidelines and support transparency and integrity.

  19. The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Burke, Laura M.

    2014-01-01

    The nuclear thermal rocket (NTR) has frequently been discussed as a key space asset that can bridge the gap between a sustained human presence on the Moon and the eventual human exploration of Mars. Recently, a human mission to a near Earth asteroid (NEA) has also been included as a "deep space precursor" to an orbital mission of Mars before a landing is attempted. In his "post-Apollo" Integrated Space Program Plan (1970 to 1990), Wernher von Braun, proposed a reusable Nuclear Thermal Propulsion Stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base initially before sending human missions to Mars. The NTR was selected because it was a proven technology capable of generating both high thrust and high specific impulse (Isp approx. 900 s)-twice that of today's best chemical rockets. During the Rover and NERVA programs, 20 rocket reactors were designed, built and successfully ground tested. These tests demonstrated the (1) thrust levels; (2) high fuel temperatures; (3) sustained operation; (4) accumulated lifetime; and (5) restart capability needed for an affordable in-space transportation system. In NASA's Mars Design Reference Architecture (DRA) 5.0 study, the "Copernicus" crewed NTR Mars transfer vehicle used three 25 klbf "Pewee" engines-the smallest and highest performing engine tested in the Rover program. Smaller lunar transfer vehicles-consisting of a NTPS with three approx. 16.7 klbf "SNRE-class" engines, an in-line propellant tank, plus the payload-can be delivered to LEO using a 70 t to LEO upgraded SLS, and can support reusable cargo delivery and crewed lunar landing missions. The NTPS can play an important role in returning humans to the Moon to stay by providing an affordable in-space transportation system that can allow initial lunar outposts to evolve into settlements capable of supporting commercial activities. Over the next decade collaborative efforts between NASA and private industry could open up new exploration and commercial

  20. Manager's assistant systems for space system planning

    Science.gov (United States)

    Bewley, William L.; Burnard, Robert; Edwards, Gary E.; Shoop, James

    1992-01-01

    This paper describes a class of knowledge-based 'assistant' systems for space system planning. Derived from technology produced for the DARPA/USAF Pilot's Associate program, these assistant systems help the human planner by doing the bookkeeping to maintain plan data and executing the procedures and heuristics currently used by the human planner to define, assess, diagnose, and revise plans. Intelligent systems for Space Station Freedom assembly sequence planning and Advanced Launch System modeling will be presented as examples. Ongoing NASA-funded work on a framework supporting the development of such tools will also be described.

  1. Holographic representation of space-variant systems: system theory.

    Science.gov (United States)

    Marks Ii, R J; Krile, T F

    1976-09-01

    System theory for holographic representation of linear space-variant systems is derived. The utility of the resulting piecewise isoplanatic approximation (PIA) is illustrated by example application to the invariant system, ideal magnifier, and Fourier transformer. A method previously employed to holographically represent a space-variant system, the discrete approximation, is shown to be a special case of the PIA.

  2. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics

    Directory of Open Access Journals (Sweden)

    Héctor Herrero

    2017-05-01

    Full Text Available This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.

  3. Reusability Performance of Zinc Oxide Nanoparticles for Photocatalytic Degradation of POME

    Science.gov (United States)

    Zarifah Zainuri, Nur; Hanis Hayati Hairom, Nur; Abu Bakar Sidik, Dilaelyana; Misdan, Nurasyikin; Yusof, Norhaniza; Wahab Mohammad, Abdul

    2018-03-01

    Performance and reusability of different zinc oxide nanoparticles (ZnO-PVP and ZnO-PEG) for photocatalytic degradation of palm-mill oil effluent (POME) has been studied. The nanoparticles properties were characterised with fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM results show that ZnO-PEG nanoparticles exhibit the smaller size than ZnO-PVP with less agglomeration. It was found that ZnO-PEG shows better effectiveness than ZnO-PVP in reducing turbidity, colour and increasing the dissolved oxygen (DO). By using two types of reusability methods: (a) oven drying (b) hot water rinsing, the oven drying method portrayed the most efficient route for POME treatment. This research would be a solution to the palm oil industry for photocatalyst recovering as well as reduction of the chemical usage in order to meet the development of advanced and greener technologies.

  4. High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network.

    Science.gov (United States)

    Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan

    2017-07-12

    Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.

  5. Facility arrangements and the environmental performance of disposable and reusable cups

    NARCIS (Netherlands)

    Potting, José; Harst-Wintraecken, van der Eugenie

    2015-01-01

    Purpose: This paper integrates two complementary life cycle assessment (LCA) studies with the aim to advice facility managers on the sustainable use of cups, either disposable or reusable. Study 1 compares three disposable cups, i.e., made from fossil-based polystyrene (PS), biobased and

  6. Commercial suborbital reusable launch vehicles: ushering in a new era for turbopause exploration (Invited)

    Science.gov (United States)

    Smith, H. T.

    2013-12-01

    Multiple companies are in the process of developing commercial suborbital reusable launch vehicles (sRLV's). While these companies originally targeted space tourism as the primary customer base, it is rapidly becoming apparent that this dramatic increase in low cost access to space could provide revolutionary opportunities for scientific research, engineering/instrument development and STEM education. These burgeoning capabilities will offer unprecedented opportunities regarding access to space with frequent low-cost access to the region of space from the ground to the boundary of near-Earth space at ~100 km. In situ research of this region is difficult because it is too high for aircraft and balloons and yet too low for orbital satellites and spacecraft. However, this region is very significant because it represents the tenuous boundary of Earth's Atmosphere and Space. It contains a critical portion of the atmosphere where the regime transitions from collisional to non-collisional physics and includes complex charged and neutral particle interactions. These new launch vehicles are currently designed for manned and unmanned flights that reach altitudes up to 110 km for 5K-500K per flight with payload capacity exceeding 600 kg. Considering the much higher cost per flight for a sounding rocket with similar capabilities, high flight cadence, and guaranteed return of payload, commercial spacecraft has the potential to revolutionize access to near space. This unprecedented access to space allows participation at all levels of research, engineering, education and the public at large. For example, one can envision a model where students can conduct complete end to end projects where they design, build, fly and analyze data from individual research projects for thousands of dollars instead of hundreds of thousands. Our community is only beginning to grasp the opportunities and impactions of these new capabilities but with operational flights anticipated in 2014, it is

  7. Sound absorption of low-temperature reusable surface insulation candidate materials

    Science.gov (United States)

    Johnston, J. D.

    1974-01-01

    Sound absorption data from tests of four candidate low-temperature reusable surface insulation materials are presented. Limitations on the use of the data are discussed, conclusions concerning the effective absorption of the materials are drawn, and the relative significance to Vibration and Acoustic Test Facility test planning of the absorption of each material is assessed.

  8. Space solar power satellite systems with a space elevator

    Energy Technology Data Exchange (ETDEWEB)

    Kellum, M. J. (Mervyn J.); Laubscher, B. E. (Bryan E.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in mankind's access to outer space. If the SE's promise of low-cost access to space can be realized, the economics of space-based business endeavors becomes much more feasible. In this paper, we describe a Solar Power Satellite (SPS) system and estimate its costs within the context of an SE. We also offer technical as well as financial comparisons between SPS and terrestrial solar photovoltaic technologies. Even though SPS systems have been designed for over 35 years, technologies pertinent to SPS systems are continually evolving. One of the designs we present includes an evolving technology, optical rectennas. SPS systems could be a long-term energy source that is clean, technologically feasible, and virtually limitless. Moreover, electrical energy could be distributed inexpensively to remote areas where such power does not currently exist, thereby raising the quality of life of the people living in those areas. The energy 'playing field' will be leveled across the world and the resulting economic growth will improve the lot of humankind everywhere.

  9. Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule

    Science.gov (United States)

    Yue, Shuai; Nie, Hong; Zhang, Ming; Wei, Xiaohui; Gan, Shengyong

    2018-06-01

    To improve the landing performance of a near-space manned capsule under various landing conditions, a novel landing system is designed that employs double chamber and single chamber dampers in the primary and auxiliary struts, respectively. A dynamic model of the landing system is established, and the damper parameters are determined by employing the design method. A single-leg drop test with different initial pitch angles is then conducted to compare and validate the simulation model. Based on the validated simulation model, seven critical landing conditions regarding nine crucial landing responses are found by combining the radial basis function (RBF) surrogate model and adaptive simulated annealing (ASA) optimization method. Subsequently, the adaptability of the landing system under critical landing conditions is analyzed. The results show that the simulation effectively results match the test results, which validates the accuracy of the dynamic model. In addition, all of the crucial responses under their corresponding critical landing conditions satisfy the design specifications, demonstrating the feasibility of the landing system.

  10. Space Fission System Test Effectiveness

    International Nuclear Information System (INIS)

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-01-01

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program

  11. Ground Processing Affordability for Space Vehicles

    Science.gov (United States)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  12. Lunar transportation system

    Science.gov (United States)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  13. Nuclear Space Power Systems Materials Requirements

    International Nuclear Information System (INIS)

    Buckman, R.W. Jr.

    2004-01-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited

  14. Conformal cryogenic tank trade study for reusable launch vehicles

    Science.gov (United States)

    Rivers, H. Kevin

    1999-01-01

    Future reusable launch vehicles may be lifting bodies with non-circular cross section like the proposed Lockheed-Martin VentureStar™. Current designs for the cryogenic tanks of these vehicles are dual-lobed and quad-lobed tanks which are packaged more efficiently than circular tanks, but still have low packaging efficiencies with large gaps existing between the vehicle outer mold line and the outer surfaces of the tanks. In this study, tanks that conform to the outer mold line of a non-circular vehicle were investigated. Four structural concepts for conformal cryogenic tanks and a quad-lobed tank concept were optimized for minimum weight designs. The conformal tank concepts included a sandwich tank stiffened with axial tension webs, a sandwich tank stiffened with transverse tension webs, a sandwich tank stiffened with rings and tension ties, and a sandwich tank stiffened with orthogrid stiffeners and tension ties. For each concept, geometric parameters (such as ring frame spacing, the number and spacing of tension ties or webs, and tank corner radius) and internal pressure loads were varied and the structure was optimized using a finite-element-based optimization procedure. Theoretical volumetric weights were calculated by dividing the weight of the barrel section of the tank concept and its associated frames, webs and tension ties by the volume it circumscribes. This paper describes the four conformal tank concepts and the design assumptions utilized in their optimization. The conformal tank optimization results included theoretical weights, trends and comparisons between the concepts, are also presented, along with results from the optimization of a quad-lobed tank. Also, the effects of minimum gauge values and non-optimum weights on the weight of the optimized structure are described in this paper.

  15. Carbon Footprint in Flexible Ureteroscopy: A Comparative Study on the Environmental Impact of Reusable and Single-Use Ureteroscopes.

    Science.gov (United States)

    Davis, Niall F; McGrath, Shannon; Quinlan, Mark; Jack, Gregory; Lawrentschuk, Nathan; Bolton, Damien M

    2018-03-01

    There are no comparative assessments on the environmental impact of endourologic instruments. We evaluated and compared the environmental impact of single-use flexible ureteroscopes with reusable flexible ureteroscopes. An analysis of the typical life cycle of the LithoVue™ (Boston Scientific) single-use digital flexible ureteroscope and Olympus Flexible Video Ureteroscope (URV-F) was performed. To measure the carbon footprint, data were obtained on manufacturing of single-use and reusable flexible ureteroscopes and from typical uses obtained with a reusable scope, including repairs, replacement instruments, and ultimate disposal of both ureteroscopes. The solid waste generated (kg) and energy consumed (kWh) during each case were quantified and converted into their equivalent mass of carbon dioxide (kg of CO 2 ) released. Flexible ureteroscopic raw materials composed of plastic (90%), steel (4%), electronics (4%), and rubber (2%). The manufacturing cost of a flexible ureteroscope was 11.49 kg of CO 2 per 1 kg of ureteroscope. The weight of the single-use LithoVue and URV-F flexible ureteroscope was 0.3 and 1 kg, respectively. The total carbon footprint of the lifecycle assessment of the LithoVue was 4.43 kg of CO 2 per endourologic case. The total carbon footprint of the lifecycle of the reusable ureteroscope was 4.47 kg of CO 2 per case. The environmental impacts of the reusable flexible ureteroscope and the single-use flexible ureteroscope are comparable. Urologists should be aware that the typical life cycle of urologic instruments is a concerning source of environmental emissions.

  16. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya

    2016-12-05

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  17. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya; Kyoungjin An, Alicia; Guo, Jiaxin; Lee, Eui-Jong; Usman Farid, Muhammad; Jeong, Sanghyun

    2016-01-01

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  18. Commercial Space Travel, Ethics and Society

    Science.gov (United States)

    Cox, N. L. J.

    2002-01-01

    For the past two decades interest in the possibilities of commercial (manned) space travel or space tourism has increased among engineers, scientists, entrepreneurs and also citizens. A continuously growing collection of papers is being published on space tourism itself and associated subjects, like new reusable launch vehicles, space habitats, space entertainment and corresponding law and regulation. Market research promises sufficient interest in tourist space travel to take off and develop into a multi billion-dollar business. The basic engineering knowledge and expertise is available to start development and designing of safe and affordable reusable vertical lift off and landing vehicles, like the Kankoh-Maru. However, many issues remain fairly untouched in literature. These include, for example, regulations, law, international agreement on space traffic control and also insurance policy. One important topic however has been barely touched upon. This concerns the ethical issues in commercial (manned) space travel, which need to be considered thoroughly, preferably before actual take off of the first regular space tourist services. The answer to the latter question comprises the major part of the paper. First, the paper deals with the issue of who wants, needs and will go to space at what stage in the development of the space tourism industry. A schematic pyramid differentiating between several community groups is made. Secondly, it discusses the way we can and should deal with our environment. Space is still fairly unspoiled, although there is a lot of (government) debris out there. Rules of the space tourist game need to be established. A few general directions are presented, for example on debris cleaning and garbage disposal. Also our right to exploit the asteroids and the moon for material is discussed. In the last part of this paper, the risks involved with the harsh environment of space are considered. Is it safe and responsible to eject people into outer

  19. Formaldehyde in reusable protective gloves.

    Science.gov (United States)

    Pontén, Ann

    2006-05-01

    Due to the clinical findings in a single patient's case, formaldehyde was suspected to be present in clinically relevant levels in reusable protective gloves. Therefore, 9 types of gloves were investigated with the semi-quantitative chromotropic acid method. It was found that 6/9 gloves emitted some formaldehyde and that 4/9 gloves emitted > or =40 microg of formaldehyde. Most of the formaldehyde was found on the inside of the gloves. To get an indication of the clinical relevance, a comparison with a protective cream declared to contain the formaldehyde-releasing agent diazolidinyl urea was performed by comparing areas of gloves with areas of cream layers with thickness 1-2 mg/cm(2). It was found that the amounts of formaldehyde emitted from the gloves might be in the same range as emitted from a layer of cream.

  20. Space power systems--''Spacecraft 2000''

    International Nuclear Information System (INIS)

    Faymon, K.A.

    1985-01-01

    The National Space programs of the 21st century will require abundant and relatively low cost power and energy produced by high reliability-low mass systems. Advancement of current power system related technologies will enable the U.S. to realize increased scientific payload for government missions or increased revenue producing payload for commercial space endeavors. Autonomous, unattended operation will be a highly desirable characteristic of these advanced power systems. Those space power-energy related technologies, which will comprise the space craft of the late 1990's and the early 2000's, will evolve from today's state-of-the-art systems and those long term technology development programs presently in place. However, to foster accelerated development of the more critical technologies which have the potential for high-payoffs, additional programs will be proposed and put in place between now and the end of the century. Such a program is ''Spacecraft 2000'', which is described in this paper

  1. Simple and reusable fibre-to-chip interconnect with adjustable coupling eficiency

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Parriaux, Olivier M.; Kley, Ernst-Bernhard

    1997-01-01

    A simple, efficient and reusable fiber-to-chip interconnect is presented. The interconnect is based on a V-groove (wet- chemically etched) in silicon, combined with a loose-mode Si3N4-channel waveguide. The loose-mode waveguide is adiabatically tapered to the integrated optical (sensor) circuitry.

  2. A Diagnostic Approach to Increase Reusable Dinnerware Selection in a Cafeteria

    Science.gov (United States)

    Manuel, Jennifer C.; Sunseri, Mary Anne; Olson, Ryan; Scolari, Miranda

    2007-01-01

    The current project tested a diagnostic approach to selecting interventions to increase patron selection of reusable dinnerware in a cafeteria. An assessment survey, completed by a sample of 43 patrons, suggested that the primary causes of wasteful behavior were (a) environmental arrangement of dinnerware options and (b) competing motivational…

  3. In-Space Propellant Production Using Water

    Science.gov (United States)

    Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William

    2012-01-01

    A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.

  4. The Aurora space launcher concept

    Science.gov (United States)

    Kopp, Alexander; Stappert, Sven; Mattsson, David; Olofsson, Kurt; Marklund, Erik; Kurth, Guido; Mooij, Erwin; Roorda, Evelyne

    2017-11-01

    This paper gives an overview about the Aurora reusable space launcher concept study that was initiated in late-2015/early-2016. Within the Aurora study, several spaceplane-like vehicle configurations with different geometries, propulsion systems and mission profiles will be designed, investigated and evaluated with respect to their technical and economic feasibility. The first part of this paper will discuss the study logic and the current status of the Aurora studies and introduces the first vehicle configurations and their system design status. As the identification of highly efficient structural designs is of particular interest for Aurora, the structural design and analysis approach will be discussed in higher level of detail. A special design feature of the Aurora vehicle configurations is the utilization of the novel thin-ply composite material technology for structural mass reductions. Therefore, the second part of this paper will briefly discuss this technology and investigate the application and potential mass savings on vehicle level within simplified structural analysis studies. The results indicate that significant mass savings could be possible. Finally, an outlook on the next steps is provided.

  5. The Aurora space launcher concept

    Science.gov (United States)

    Kopp, Alexander; Stappert, Sven; Mattsson, David; Olofsson, Kurt; Marklund, Erik; Kurth, Guido; Mooij, Erwin; Roorda, Evelyne

    2018-06-01

    This paper gives an overview about the Aurora reusable space launcher concept study that was initiated in late-2015/early-2016. Within the Aurora study, several spaceplane-like vehicle configurations with different geometries, propulsion systems and mission profiles will be designed, investigated and evaluated with respect to their technical and economic feasibility. The first part of this paper will discuss the study logic and the current status of the Aurora studies and introduces the first vehicle configurations and their system design status. As the identification of highly efficient structural designs is of particular interest for Aurora, the structural design and analysis approach will be discussed in higher level of detail. A special design feature of the Aurora vehicle configurations is the utilization of the novel thin-ply composite material technology for structural mass reductions. Therefore, the second part of this paper will briefly discuss this technology and investigate the application and potential mass savings on vehicle level within simplified structural analysis studies. The results indicate that significant mass savings could be possible. Finally, an outlook on the next steps is provided.

  6. Concept for an International Standard related to Space Weather Effects on Space Systems

    Science.gov (United States)

    Tobiska, W. Kent; Tomky, Alyssa

    There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances

  7. Reusable, tamper-indicating seal

    International Nuclear Information System (INIS)

    Ryan, M.J.

    1978-01-01

    A reusable, tamper-indicating seal is comprised of a drum confined within a fixed body and rotatable in one direction therewithin, the top of the drum constituting a tray carrying a large number of small balls of several different colors. The fixed body contains parallel holes for looping a seal wire therethrough. The base of the drums carries cams adapted to coact with cam followers to lock the wire within the seal at one angular position of the drum. A channel in the fixed body, visible from outside the seal, adjacent the tray constitutes a segregated location for a small plurality of the colored balls. A spring in the tray forces colored balls into the segregated location at one angular position of the drum, further rotation securing the balls in position and the wires in the seal. A wedge-shaped plough removes the balls from the segregated location, at a different angular position of the drum, the wire being unlocked at the same postion. A new pattern of colored balls will appear in the segregated location when the seal is relocked

  8. Reusable Software Usability Specifications for mHealth Applications.

    Science.gov (United States)

    Cruz Zapata, Belén; Fernández-Alemán, José Luis; Toval, Ambrosio; Idri, Ali

    2018-01-25

    One of the key factors for the adoption of mobile technologies, and in particular of mobile health applications, is usability. A usable application will be easier to use and understand by users, and will improve user's interaction with it. This paper proposes a software requirements catalog for usable mobile health applications, which can be used for the development of new applications, or the evaluation of existing ones. The catalog is based on the main identified sources in literature on usability and mobile health applications. Our catalog was organized according to the ISO/IEC/IEEE 29148:2011 standard and follows the SIREN methodology to create reusable catalogs. The applicability of the catalog was verified by the creation of an audit method, which was used to perform the evaluation of a real app, S Health, application created by Samsung Electronics Co. The usability requirements catalog, along with the audit method, identified several usability flaws on the evaluated app, which scored 83%. Some flaws were detected in the app related to the navigation pattern. Some more issues related to the startup experience, empty screens or writing style were also found. The way a user navigates through an application improves or deteriorates user's experience with the application. We proposed a reusable usability catalog and an audit method. This proposal was used to evaluate a mobile health application. An audit report was created with the usability issues identified on the evaluated application.

  9. Space Station power system issues

    International Nuclear Information System (INIS)

    Giudici, R.J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite

  10. Utilizing Provenance in Reusable Research Objects

    Directory of Open Access Journals (Sweden)

    Zhihao Yuan

    2018-03-01

    Full Text Available Science is conducted collaboratively, often requiring the sharing of knowledge about computational experiments. When experiments include only datasets, they can be shared using Uniform Resource Identifiers (URIs or Digital Object Identifiers (DOIs. An experiment, however, seldom includes only datasets, but more often includes software, its past execution, provenance, and associated documentation. The Research Object has recently emerged as a comprehensive and systematic method for aggregation and identification of diverse elements of computational experiments. While a necessary method, mere aggregation is not sufficient for the sharing of computational experiments. Other users must be able to easily recompute on these shared research objects. Computational provenance is often the key to enable such reuse. In this paper, we show how reusable research objects can utilize provenance to correctly repeat a previous reference execution, to construct a subset of a research object for partial reuse, and to reuse existing contents of a research object for modified reuse. We describe two methods to summarize provenance that aid in understanding the contents and past executions of a research object. The first method obtains a process-view by collapsing low-level system information, and the second method obtains a summary graph by grouping related nodes and edges with the goal to obtain a graph view similar to application workflow. Through detailed experiments, we show the efficacy and efficiency of our algorithms.

  11. NASA Earth-to-Orbit Engineering Design Challenges: Thermal Protection Systems

    Science.gov (United States)

    National Aeronautics and Space Administration (NASA), 2010

    2010-01-01

    National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, Dryden Flight Research Center, and their partners at other NASA centers and in private industry are currently developing X-33, a prototype to test technologies for the next generation of space transportation. This single-stage-to-orbit reusable launch…

  12. REUSABLE PROPULSION ARCHITECTURE FOR SUSTAINABLE LOW-COST ACCESS TO SPACE

    Science.gov (United States)

    Bonometti, Joseph; Frame, Kyle L.; Dankanich, John W.

    2005-01-01

    Two transportation architecture changes are presented at either end of a conventional two-stage rocket flight: 1) Air launch using a large, conventional, pod hauler design (i.e., Crossbow)ans 2) Momentum exchange tether (i.e., an in-space asset like MXER). Air launch has ana analytically justified cost reduction of approx. 10%, but its intangible benefits suggest real-world operations cost reductions much higher: 1) Inherent launch safety; 2) Mission Risk Reduction; 3) Favorable payload/rocket limitations; and 4) Leveraging the aircraft for other uses (military transport, commercial cargo, public outreach activities, etc.)

  13. Portable Virtual Aircraft Test System (PVATS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TMC's reusable modeling and simulation technologies are currently utilized by NASA for enabling advanced verification and validation (V&V) and dynamic analysis...

  14. CLARAty: Challenges and Steps Toward Reusable Robotic Software

    Directory of Open Access Journals (Sweden)

    Richard Madison

    2008-11-01

    Full Text Available We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and execution. CLARAty was adapted to a number of heterogeneous robots with different mechanisms and hardware control architectures. In this paper, we also describe how we addressed some of these challenges in the development of the CLARAty software.

  15. CLARAty: Challenges and Steps toward Reusable Robotic Software

    Directory of Open Access Journals (Sweden)

    Issa A.D. Nesnas

    2006-03-01

    Full Text Available We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and execution. CLARAty was adapted to a number of heterogeneous robots with different mechanisms and hardware control architectures. In this paper, we also describe how we addressed some of these challenges in the development of the CLARAty software.

  16. Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script

    Science.gov (United States)

    Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)

    1992-01-01

    The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.

  17. System survivability in nuclear and space environments

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1987-01-01

    Space systems must operate in the hostile natural environment of space. In the event of a war, these systems may also be exposed to the radiation environments created by the explosions of nuclear warheads. The effects of these environments on a space system and hardening techniques are discussed in the paper

  18. SP-100 nuclear space power systems with application to space commercialization

    International Nuclear Information System (INIS)

    Smith, J.M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power

  19. Poorly processed reusable surface disinfection tissue dispensers may be a source of infection.

    Science.gov (United States)

    Kampf, Günter; Degenhardt, Stina; Lackner, Sibylle; Jesse, Katrin; von Baum, Heike; Ostermeyer, Christiane

    2014-01-21

    Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations. Reusable tissue dispensers with different surface disinfectants were randomly collected from healthcare facilities. Solutions were investigated for bacterial contamination. The efficacy of two surface disinfectants was determined in suspension tests against two isolated species directly from a contaminated solution or after 5 passages without selection pressure in triplicate. Freshly prepared use solutions were contaminated to determine survival of isolates. 66 dispensers containing disinfectant solutions with surface-active ingredients were collected in 15 healthcare facilities. 28 dispensers from nine healthcare facilities were contaminated with approximately 107 cells per mL of Achromobacter species 3 (9 hospitals), Achromobacter xylosoxidans or Serratia marcescens (1 hospital each). In none of the hospitals dispenser processing had been adequately performed. Isolates regained susceptibility to the disinfectants after five passages without selection pressure but were still able to multiply in different formulations from different manufacturers at room temperature within 7 days. Neglecting adequate processing of surface disinfectant dispensers has contributed to frequent and heavy contamination of use-solutions based on surface active ingredients. Tissue dispenser processing should be taken seriously in clinical practice.

  20. The Reusable Launch Vehicle Technology Program and the X-33 Advanced Technology Demonstrator

    Science.gov (United States)

    Cook, Stephen A.

    1995-01-01

    The goal of the Reusable Launch Vehicle (RLV) technology program is formulated, and the primary objectives of RLV are listed. RLV technology program implementation phases are outlined. X-33 advanced technology demonstrator is described. Program management is addressed.

  1. Integrated design for space transportation system

    CERN Document Server

    Suresh, B N

    2015-01-01

    The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbit...

  2. Reusable Areas of Clinically Used Ventilators Carry Low Numbers of Aerobic Bacteria

    Directory of Open Access Journals (Sweden)

    Elizabeth Anne Gonzalez

    2014-12-01

    Full Text Available Ventilator associated pneumonia (VAP remains a serious problem for critically ill patients. We swabbed nine reusable areas on 20 clinically-used ventilators from a VA Hospital shortly after they had been removed from patients and identified bacterial isolates. No bacteria were isolated from most of the samples and of the samples that did grow bacteria, the majority of those had fewer than 10 colonies. The bacteria that were isolated were primarily non-pathogenic Gram-positive skin flora. Of the 20 ventilators swabbed, only one cultured bacteria associated with nosocomial infections: methicillin-resistant S.aureus. The most commonly contaminated areas were those most likely to be touched by healthcare professionals: the power button and the screen. The areas in closest proximity to the patients, the inspiratory and expiratory ports were the least often contaminated areas. Overall, very few bacteria were transferred to the reusable areas of the ventilators following clinical use.

  3. Reusable Areas of Clinically Used Ventilators Carry Low Numbers of Aerobic Bacteria

    Directory of Open Access Journals (Sweden)

    Elizabeth Anne Gonzalez

    2014-10-01

    Full Text Available Ventilator associated pneumonia (VAP remains a serious problem for critically ill patients. We swabbed nine reusable areas on 20 clinically-used ventilators from a VA Hospital shortly after they had been removed from patients and identified bacterial isolates. No bacteria were isolated from most of the samples and of the samples that did grow bacteria, the majority of those had fewer than 10 colonies. The bacteria that were isolated were primarily non-pathogenic Gram-positive skin flora. Of the 20 ventilators swabbed, only one cultured bacteria associated with nosocomial infections: methicillin-resistant S.aureus. The most commonly contaminated areas were those most likely to be touched by healthcare professionals: the power button and the screen. The areas in closest proximity to the patients, the inspiratory and expiratory ports were the least often contaminated areas. Overall, very few bacteria were transferred to the reusable areas of the ventilators following clinical use.

  4. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  5. REUSABILITY OF BOND ELUT CERTIFY COLUMNS FOR THE EXTRACTION OF DRUGS FROM PLASMA

    NARCIS (Netherlands)

    CHEN, XH; FRANKE, JP; WIJSBEEK, J; DEZEEUW, RA

    1993-01-01

    The reusability of Bond Elut Certify columns for the extraction of toxicologically relevant drugs from plasma has been evaluated. Pentobarbital, hexobarbital, mepivacaine, trimipramine and clonazepam were selected as test drugs to represent various classes of drugs. The columns were regenerated

  6. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits.

    Science.gov (United States)

    Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2016-08-22

    Modern electronic microprocessors use semiconductor logic gates organized on a silicon chip to enable efficient inter-gate communication. Here, arrays of communicating DNA logic gates integrated on a single DNA tile were designed and used to process nucleic acid inputs in a reusable format. Our results lay the foundation for the development of a DNA nanoprocessor, a small and biocompatible device capable of performing complex analyses of DNA and RNA inputs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reusable locking tube in a reconstitutable fuel assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1987-01-01

    This patent describes a reconstitutable fuel assembly including a top nozzle with an adapter plate having an interior wall forming at least one passageway, at least one guide thimble with an upper end portion, and an attaching structure having an outer socket formed by a circumferential groove defined in the adapter plate passageway wall and opening into the passageway and an inner socket formed by a circumferential bulge and at least one longitudinal slot defined in the upper end portion of the guide thimble. The circumferential bulge is capable of seating within the circumferential groove, an improved reusable tube for releasably locking the inner socket of the guide thimble upper end portion in locking engagement within the outer socket of the adapter plate passageway when the circumferential bulge is seated within the circumferential groove. The reusable tube comprises: (a) an elongated hollow tubular body capable of insertion within the adapter plate passageway and guide thimble upper end portion to a locking position therein such that the circumferential bulge of the inner socket is maintained seated in the locking engagement with the circumferential groove of the outer socket; and (b) at least a pair of dimples performed on the exterior of the tubular body prior to insertion of the body in the guide thimble upper end portion and to the locking position, the dimples being performed and configured to increase the thickness of the tubular body in relation to the remainder of the tubular body. The dimples are substantially resisting resilient yielding in relation to the remainder of the tubular body

  8. Permeability Testing of Impacted Composite Laminates for Use on Reusable Launch Vehicles

    Science.gov (United States)

    Nettles, A. T.

    2001-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite, and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented, and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a nonlinear fashion for almost all the specimens tested.

  9. Space Station data management system architecture

    Science.gov (United States)

    Mallary, William E.; Whitelaw, Virginia A.

    1987-01-01

    Within the Space Station program, the Data Management System (DMS) functions in a dual role. First, it provides the hardware resources and software services which support the data processing, data communications, and data storage functions of the onboard subsystems and payloads. Second, it functions as an integrating entity which provides a common operating environment and human-machine interface for the operation and control of the orbiting Space Station systems and payloads by both the crew and the ground operators. This paper discusses the evolution and derivation of the requirements and issues which have had significant effect on the design of the Space Station DMS, describes the DMS components and services which support system and payload operations, and presents the current architectural view of the system as it exists in October 1986; one-and-a-half years into the Space Station Phase B Definition and Preliminary Design Study.

  10. Space transfer vehicle concepts and requirements, volume 2, book 1

    Science.gov (United States)

    1991-01-01

    The objective of the systems engineering task was to develop and implement an approach that would generate the required study products as defined by program directives. This product list included a set of system and subsystem requirements, a complete set of optimized trade studies and analyses resulting in a recommended system configuration, and the definition of an integrated system/technology and advanced development growth path. A primary ingredient in the approach was the TQM philosophy stressing job quality from the inception. Included throughout the Systems Engineering, Programmatics, Concepts, Flight Design, and Technology sections are data supporting the original objectives as well as supplemental information resulting from program activities. The primary result of the analyses and studies was the recommendation of a single propulsion stage Lunar Transportation System (LTS) configuration that supports several different operations scenarios with minor element changes. This concept has the potential to support two additional scenarios with complex element changes. The space based LTS concept consists of three primary configurations--Piloted, Reusable Cargo, and Expendable Cargo.

  11. Lockheed Martin approach to a Reusable Launch Vehicle (RLV)

    Science.gov (United States)

    Elvin, John D.

    1996-03-01

    This paper discusses Lockheed Martin's perspective on the development of a cost effective Reusable Launch Vehicle (RLV). Critical to a successful Single Stage To Orbit (SSTO) program are; an economic development plan sensitive to fiscal constraints; a vehicle concept satisfying present and future US launch needs; and an operations concept commensurate with a market driven program. Participation in the economic plan by government, industry, and the commercial sector is a key element of integrating our development plan and funding profile. The RLV baseline concept design, development evolution and several critical trade studies illustrate the superior performance achieved by our innovative approach to the problem of SSTO. Findings from initial aerodynamic and aerothermodynamic wind tunnel tests and trajectory analyses on this concept confirm the superior characteristics of the lifting body shape combined with the Linear Aerospike rocket engine. This Aero Ballistic Rocket (ABR) concept captures the essence of The Skunk Works approach to SSTO RLV technology integration and system engineering. These programmatic and concept development topics chronicle the key elements to implementing an innovative market driven next generation RLV.

  12. Validation of Autonomous Space Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — System validation addresses the question "Will the system do the right thing?" When system capability includes autonomy, the question becomes more pointed. As NASA...

  13. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  14. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  15. Electrical Power Systems for NASA's Space Transportation Program

    Science.gov (United States)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  16. Space shuttle orbital maneuvering engine platelet injector program

    Science.gov (United States)

    1975-01-01

    A platelet-face injector for the fully reusable orbit maneuvering system OMS on the space shuttle was evaluated as a means of obtaining additional design margin and low cost. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects of acoustic cavity configuration on combustion stability, including cavity depth, open area, inlet contour, and other parameters, were investigated using sea level bomb tests. Prototype injector and chamber behavior was evaluated for a variety of conditions; these tests examined the effects of film cooling, helium saturated propellants, chamber length, inlet conditions, and operating point, on performance, heat transfer and engine transient behavior. Helium bubble ingestion into both propellant circuits was investigated, as was chugging at low pressure operation, and hot and cold engine restart with and without a purge.

  17. Orbital transfer vehicle concept definition and system analysis study, 1985. Volume 2: OTV concept definition and evaluation. Book 4: Operations

    Science.gov (United States)

    Mitchell, Jack C.; Keeley, J. T.

    1985-01-01

    The benefits of the reusable Space Shuttle and the advent of the new Space Station hold promise for increasingly effective utilization of space by the scientific and commercial as well as military communities. A high energy reusable oribital transfer vehicle (OTV) represents an additional capability which also exhibits potential for enhancing space access by allowing more ambitious missions and at the same time reducing launch costs when compared to existing upper stages. This section, Vol. 2: Book 4, covers launch operations and flight operations. The launch operations section covers analyses of ground based and space based vehicles, launch site facilities, logistics requirements, propellant loading, space based maintenance and aft cargo carrier access options. The flight operations sections contain summary descriptions of ground based and space based OTV missions, operations and support requirements, and a discussion of fleet implications.

  18. Man-systems distributed system for Space Station Freedom

    Science.gov (United States)

    Lewis, J. L.

    1990-01-01

    Viewgraphs on man-systems distributed system for Space Station Freedom are presented. Topics addressed include: description of man-systems (definition, requirements, scope, subsystems, and topologies); implementation (approach, tools); man-systems interfaces (system to element and system to system); prime/supporting development relationship; selected accomplishments; and technical challenges.

  19. Dynamic reusable workflows for ocean science

    Science.gov (United States)

    Signell, Richard; Fernandez, Filipe; Wilcox, Kyle

    2016-01-01

    Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog search and data access make it now possible to create catalog-driven workflows that automate — end-to-end — data search, analysis and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS) which automates the skill-assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC) Catalog Service for the Web (CSW), then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS) for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enters the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased use of dynamic

  20. Dynamic Reusable Workflows for Ocean Science

    Directory of Open Access Journals (Sweden)

    Richard P. Signell

    2016-10-01

    Full Text Available Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog searches and data access now make it possible to create catalog-driven workflows that automate—end-to-end—data search, analysis, and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused, and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS which automates the skill assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC Catalog Service for the Web (CSW, then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enter the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased

  1. Aerospace News: Space Shuttle Commemoration. Volume 2, No. 7

    Science.gov (United States)

    2011-01-01

    The complex space shuttle design was comprised of four components: the external tank, two solid rocket boosters (SRB), and the orbiter vehicle. Six orbiters were used during the life of the program. In order of introduction into the fleet, they were: Enterprise (a test vehicle), Columbia, Challenger, Discovery, Atlantis and Endeavour. The space shuttle had the unique ability to launch into orbit, perform on-orbit tasks, return to earth and land on a runway. It was an orbiting laboratory, International Space Station crew delivery and supply replenisher, satellite launcher and payload delivery vehicle, all in one. Except for the external tank, all components of the space shuttle were designed to be reusable for many flights. ATK s reusable solid rocket motors (RSRM) were designed to be flown, recovered, and the metal components reused 20 times. Following each space shuttle launch, the SRBs would parachute into the ocean and be recovered by the Liberty Star and Freedom Star recovery ships. The recovered boosters would then be received at the Cape Canaveral Air Force Station Hangar AF facility for disassembly and engineering post-flight evaluation. At Hangar AF, the RSRM field joints were demated and the segments prepared to be returned to Utah by railcar. The segments were then shipped to ATK s facilities in Clearfield for additional evaluation prior to washout, disassembly and refurbishment. Later the refurbished metal components would be transported to ATK s Promontory facilities to begin a new cycle. ATK s RSRMs were manufactured in Promontory, Utah. During the Space Shuttle Program, ATK supported NASA s Marshall Space Flight Center whose responsibility was for all propulsion elements on the program, including the main engines and solid rocket motors. On launch day for the space shuttle, ATK s Launch Site Operations employees at Kennedy Space Center (KSC) provided lead engineering support for ground operations and NASA s chief engineer. It was ATK s responsibility

  2. Technology development for metallic hot structures in aerodynamic control surfaces of reusable launchers

    NARCIS (Netherlands)

    Sudmeijer, K.J.; Wentzel, C.; Lefeber, B.M.; Kloosterman, A.

    2002-01-01

    In this paper a summary is presented of the technology development in the Netherlands focussed on the design and development of a metallic aerodynamic control surface for the future European reusable launcher. The applied materials are mainly Oxide Dispersion Strengthened (ODS) alloys produced by

  3. Space Radiation Intelligence System (SPRINTS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Federal Systems proposes an innovative SPace Radiation INTelligence System (SPRINTS) which provides an interactive and web-delivered capability that...

  4. NASA Space Launch System Operations Outlook

    Science.gov (United States)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  5. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  6. SpaceX's Dragon America's next generation spacecraft

    CERN Document Server

    Seedhouse, Erik

    2016-01-01

    This book describes Dragon V2, a futuristic vehicle that not only provides a means for NASA to transport its astronauts to the orbiting outpost but also advances SpaceX’s core objective of reusability. A direct descendant of Dragon, Dragon V2 can be retrieved, refurbished and re-launched. It is a spacecraft with the potential to completely revolutionize the economics of an industry where equipment costing hundreds of millions of dollars is routinely discarded after a single use. It was presented by SpaceX CEO Elon Musk in May 2014 as the spaceship that will carry NASA astronauts to the International Space Station as soon as 2016 SpaceX’s Dragon – America’s Next Generation Spacecraft describes the extraordinary feats of engineering and human achievement that have placed this revolutionary spacecraft at the forefront of the launch industry and positioned it as the precursor for ultimately transporting humans to Mars. It describes the design and development of Dragon, provides mission highlights of the f...

  7. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Hans Martin

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observ...

  8. RPD: Reusable Pseudo-Id Distribution for a Secure and Privacy Preserving VANET

    Directory of Open Access Journals (Sweden)

    Sulaiman Ashraph

    2013-08-01

    Full Text Available In any VANET, security and privacy are the two fundamental issues. Obtaining efficient security in vehicular communication is essential without compromising privacy-preserving mechanisms. Designing a suitable protocol for VANET by having these two issues in mind is challenging because efficiency, unlinkablity and traceability are the three qualities having contradictions between them. In this paper, we introduce an efficient Reusable Pseudo-id Distribution (RPD scheme. The Trusted Authority (TA designating the Road Side Units (RSUs to generate n reusable pseudo ids and distribute them to the On Board Units (OBUs on request characterizes the proposed protocol. RSUs issue the aggregated hashes of all its valid pseudo-ids along with a symmetric shared key and a particular pseudo-id to each vehicle that enters into its coverage range. Through this the certificates attached to the messages can be eliminated and thus resulting in a significantly reduced packet size. The same anonymous keys can then be re-distributed by the RSUs episodically to other vehicles. We analyze the proposed protocol extensively to demonstrate its merits and efficiency.

  9. Improving learning of anatomy with reusable learning objects

    Directory of Open Access Journals (Sweden)

    P Rad

    2015-12-01

    Full Text Available Introduction: The use of modern educational technologies is useful for learning, durability, sociability, and upgrading professionalism. The aim of this study was evaluating the effect of reusable learning objects on improving learning of anatomy. Methods: This was a quasi-experimental study. Fourteen (reusable learning objects RLO from different parts of anatomy of human body including thorax, abdomen, and pelvis were prepared for medical student in Yasuj University of Medical Sciences in 2009. The length of the time for RLO was between 11-22 min. Because their capacities were low, so they were easy to use with cell phone or MP4. These materials were available to the students before the classes. The mean scores of students in anatomy of human body group were compared to the medical students who were not used this method and entered the university in 2008. A questionnaire was designed by the researcher to evaluate the effect of RLO and on, content, interest and motivation, participation, preparation and attitude. Result: The mean scores of anatomy of human body of medical student who were entered the university in 2009 have been increased compare to the students in 2008, but this difference was not significant. Based on the questionnaire data, it was shown that the RLO had a positive effect on improving learning anatomy of human body (75.5% and the effective relationship (60.6%. The students were interested in using RLO (74.6%, some students (54.2% believed that this method should be replaced by lecture. Conclusion: The use of RLO could promote interests and effective communication among the students and led to increasing self-learning motivation.

  10. Palladium(II/Cationic 2,2’-Bipyridyl System as a Highly Efficient and Reusable Catalyst for the Mizoroki-Heck Reaction in Water

    Directory of Open Access Journals (Sweden)

    Fu-Yu Tsai

    2010-01-01

    Full Text Available A water-soluble and air-stable Pd(NH32Cl2/cationic 2,2’-bipyridyl system was found to be a highly-efficient and reusable catalyst for the coupling of aryl iodides and alkenes in neat water using Bu3N as a base. The reaction was conducted at 140 °C in a sealed tube in air with a catalyst loading as low as 0.0001 mol % for the coupling of activated aryl iodides with butyl and ethyl acrylates, providing the corresponding products in good to excellent yields with very high turnover numbers. In the case of styrene, Mizoroki-Heck coupling products were obtained in good to high yields by using a greater catalyst loading (1 mol % and TBAB as a phase-transfer agent. After extraction, the residual aqueous solution could be reused several times with only a slight decrease in its activity, making the Mizoroki-Heck reaction “greener”.

  11. A reusable suture anchor for arthroscopy psychomotor skills training.

    Science.gov (United States)

    Tillett, Edward D; Rogers, Rainie; Nyland, John

    2003-03-01

    For residents to adequately develop the early arthroscopy psychomotor skills required to better learn how to manage the improvisational situations they will encounter during actual patient cases, they need to experience sufficient practice repetitions within a contextually relevant environment. Unfortunately, the cost of suture anchors can be a practice repetition-limiting factor in learning arthroscopic knot-tying techniques. We describe a technique for creating inexpensive reusable suture anchors and provide an example of their application to repair the anterior glenoid labrum during an arthroscopy psychomotor skills laboratory training session.

  12. Space station operating system study

    Science.gov (United States)

    Horn, Albert E.; Harwell, Morris C.

    1988-01-01

    The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

  13. Space Shuttle Orbiter - Leading edge structural design/analysis and material allowables

    Science.gov (United States)

    Johnson, D. W.; Curry, D. M.; Kelly, R. E.

    1986-01-01

    Reinforced Carbon-Carbon (RCC), a structural composite whose development was targeted for the high temperature reentry environments of reusable space vehicles, has successfully demonstrated that capability on the Space Shuttle Orbiter. Unique mechanical properties, particularly at elevated temperatures up to 3000 F, make this material ideally suited for the 'hot' regions of multimission space vehicles. Design allowable characterization testing, full-scale development and qualification testing, and structural analysis techniques will be presented herein that briefly chart the history of the RCC material from infancy to eventual multimission certification for the Orbiter. Included are discussions pertaining to the development of the design allowable data base, manipulation of the test data into usable forms, and the analytical verification process.

  14. Phase-space networks of geometrically frustrated systems.

    Science.gov (United States)

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  15. Micropropulsion Systems for Precision Controlled Space Flight

    DEFF Research Database (Denmark)

    Larsen, Jack

    . This project is thus concentrating on developing a method by which an entire, ecient, control system compensating for the disturbances from the space environment and thereby enabling precision formation flight can be realized. The space environment is initially studied and the knowledge gained is used......Space science is subject to a constantly increasing demand for larger coherence lengths or apertures of the space observation systems, which in turn translates into a demand for increased dimensions and subsequently cost and complexity of the systems. When this increasing demand reaches...... the pratical limitations of increasing the physical dimensions of the spacecrafts, the observation platforms will have to be distributed on more spacecrafts flying in very accurate formations. Consequently, the observation platform becomes much more sensitive to disturbances from the space environment...

  16. Internal Flow Simulation of Enhanced Performance Solid Rocket Booster for the Space Transportation System

    Science.gov (United States)

    Ahmad, Rashid A.; McCool, Alex (Technical Monitor)

    2001-01-01

    An enhanced performance solid rocket booster concept for the space shuttle system has been proposed. The concept booster will have strong commonality with the existing, proven, reliable four-segment Space Shuttle Reusable Solid Rocket Motors (RSRM) with individual component design (nozzle, insulator, etc.) optimized for a five-segment configuration. Increased performance is desirable to further enhance safety/reliability and/or increase payload capability. Performance increase will be achieved by adding a fifth propellant segment to the current four-segment booster and opening the throat to accommodate the increased mass flow while maintaining current pressure levels. One development concept under consideration is the static test of a "standard" RSRM with a fifth propellant segment inserted and appropriate minimum motor modifications. Feasibility studies are being conducted to assess the potential for any significant departure in component performance/loading from the well-characterized RSRM. An area of concern is the aft motor (submerged nozzle inlet, aft dome, etc.) where the altered internal flow resulting from the performance enhancing features (25% increase in mass flow rate, higher Mach numbers, modified subsonic nozzle contour) may result in increased component erosion and char. To assess this issue and to define the minimum design changes required to successfully static test a fifth segment RSRM engineering test motor, internal flow studies have been initiated. Internal aero-thermal environments were quantified in terms of conventional convective heating and discrete phase alumina particle impact/concentration and accretion calculations via Computational Fluid Dynamics (CFD) simulation. Two sets of comparative CFD simulations of the RSRM and the five-segment (IBM) concept motor were conducted with CFD commercial code FLUENT. The first simulation involved a two-dimensional axi-symmetric model of the full motor, initial grain RSRM. The second set of analyses

  17. Space Plastic Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot's proposed Space Plastic Recycler (SPR) is an automated closed loop plastic recycling system that allows the automated conversion of disposable ISS...

  18. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    Science.gov (United States)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software

  19. Quantum systems and symmetric spaces

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1978-01-01

    Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained

  20. High Temperature Structures With Inherent Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The hot structures for current space vehicles require an atmospheric entry thermal protection system. Reusable hot structures that can function without requiring any...

  1. Developing Reusable and Reconfigurable Real-Time Software using Aspects and Components

    OpenAIRE

    Tešanović, Aleksandra

    2006-01-01

    Our main focus in this thesis is on providing guidelines, methods, and tools for design, configuration, and analysis of configurable and reusable real-time software, developed using a combination of aspect-oriented and component-based software development. Specifically, we define a reconfigurable real-time component model (RTCOM) that describes how a real-time component, supporting aspects and enforcing information hiding, could efficiently be designed and implemented. In this context, we out...

  2. Conceptual Spaces of the Immune System.

    Science.gov (United States)

    Fierz, Walter

    2016-01-01

    The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.

  3. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    Science.gov (United States)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  4. Systems Engineering Analysis for Office Space Management

    Science.gov (United States)

    2017-09-01

    ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT by James E. Abellana September 2017 Thesis Advisor: Diana Angelis Second Reader: Walter E. Owen...Master’s thesis 4. TITLE AND SUBTITLE SYSTEMS ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT 5. FUNDING NUMBERS 6. AUTHOR(S) James E. Abellana 7...of the systems engineering method, this thesis develops a multicriteria decision-making framework applicable to space allocation decisions for

  5. Space elevator systems level analysis

    Energy Technology Data Exchange (ETDEWEB)

    Laubscher, B. E. (Bryan E.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. It involves new, untried technologies in most of its subsystems. Thus the successful construction of the SE requires a significant amount of development, This in turn implies a high level of risk for the SE. This paper will present a systems level analysis of the SE by subdividing its components into their subsystems to determine their level of technological maturity. such a high-risk endeavor is to follow a disciplined approach to the challenges. A systems level analysis informs this process and is the guide to where resources should be applied in the development processes. It is an efficient path that, if followed, minimizes the overall risk of the system's development. systems level analysis is that the overall system is divided naturally into its subsystems, and those subsystems are further subdivided as appropriate for the analysis. By dealing with the complex system in layers, the parameter space of decisions is kept manageable. Moreover, A rational way to manage One key aspect of a resources are not expended capriciously; rather, resources are put toward the biggest challenges and most promising solutions. This overall graded approach is a proven road to success. The analysis includes topics such as nanotube technology, deployment scenario, power beaming technology, ground-based hardware and operations, ribbon maintenance and repair and climber technology.

  6. SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2014-01-01

    This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high performance data processing system for space applications. The purpose in building the SpaceCube v2.0 system is to create a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. The SpaceCube v2.0 system leverages seven years of board design, avionics systems design, and space flight application experiences. This paper shows how SpaceCube v2.0 solves the increasing computing demands of space data processing applications that cannot be attained with a standalone processor approach.The main objective during the design stage is to find a good system balance between power, size, reliability, cost, and data processing capability. These design variables directly impact each other, and it is important to understand how to achieve a suitable balance. This paper will detail how these critical design factors were managed including the construction of an Engineering Model for an experiment on the International Space Station to test out design concepts. We will describe the designs for the processor card, power card, backplane, and a mission unique interface card. The mechanical design for the box will also be detailed since it is critical in meeting the stringent thermal and structural requirements imposed by the processing system. In addition, the mechanical design uses advanced thermal conduction techniques to solve the internal thermal challenges.The SpaceCube v2.0 processing system is based on an extended version of the 3U cPCI standard form factor where each card is 190mm x 100mm in size The typical power draw of the processor card is 8 to 10W and scales with application complexity. The SpaceCube v2.0 data processing card features two Xilinx Virtex-5 QV Field Programmable Gate Arrays (FPGA), eight memory modules, a monitor

  7. RAGE Architecture for Reusable Serious Gaming Technology Components

    Directory of Open Access Journals (Sweden)

    Wim van der Vegt

    2016-01-01

    Full Text Available For seizing the potential of serious games, the RAGE project—funded by the Horizon-2020 Programme of the European Commission—will make available an interoperable set of advanced technology components (software assets that support game studios at serious game development. This paper describes the overall software architecture and design conditions that are needed for the easy integration and reuse of such software assets in existing game platforms. Based on the component-based software engineering paradigm the RAGE architecture takes into account the portability of assets to different operating systems, different programming languages, and different game engines. It avoids dependencies on external software frameworks and minimises code that may hinder integration with game engine code. Furthermore it relies on a limited set of standard software patterns and well-established coding practices. The RAGE architecture has been successfully validated by implementing and testing basic software assets in four major programming languages (C#, C++, Java, and TypeScript/JavaScript, resp.. Demonstrator implementation of asset integration with an existing game engine was created and validated. The presented RAGE architecture paves the way for large scale development and application of cross-engine reusable software assets for enhancing the quality and diversity of serious gaming.

  8. Enabling Technology for Thermal Protection on HIAD and Other Hypersonic Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas conduction and radiation are the two important heat transfer mechanisms in highly porous reusable thermal protection systems used for planetary entry of space...

  9. The Launch Systems Operations Cost Model

    Science.gov (United States)

    Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)

    2001-01-01

    One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring cost for the ground infrastructure and the recurring cost of maintaining that infrastructure, performing vehicle logistics, and performing the O&S actions to return the vehicle to flight. In addition, the model must estimate the time required to cycle the vehicle through all of the ground processing activities. The current version of LSOCM is an amalgamation of existing tools, leveraging our understanding of shuttle operations cost with a means of predicting how the maintenance burden will change as the vehicle becomes more aircraft like. The use of the Conceptual Operations Manpower Estimating Tool/Operations Cost Model (COMET/OCM) provides a solid point of departure based on shuttle and expendable launch vehicle (ELV) experience. The incorporation of the Reliability and Maintainability Analysis Tool (RMAT) as expressed by a set of response surface model equations gives a method for estimating how changing launch system characteristics affects cost and cycle time as compared to today's shuttle system. Plans are being made to improve the model. The development team will be spending the next few months devising a structured methodology that will enable verified and validated algorithms to give accurate cost estimates. To assist in this endeavor the LSOCM team is part of an Agency wide effort to combine resources with other cost and operations professionals to

  10. Nonlinear transport of dynamic system phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1993-01-01

    The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example

  11. Architectures Toward Reusable Science Data Systems

    Science.gov (United States)

    Moses, John

    2015-01-01

    Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research and NOAAs Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today. System functions such as ingest, product generation and distribution need to be configured and performed in a consistent and repeatable way with an emphasis on scalability. This paper will examine the key architectural elements of several NASA satellite data processing systems currently in operation and under development that make them suitable for scaling and reuse. Examples of architectural elements that have become attractive include virtual machine environments, standard data product formats, metadata content and file naming, workflow and job management frameworks, data acquisition, search, and distribution protocols. By highlighting key elements and implementation experience we expect to find architectures that will outlast their original application and be readily adaptable for new applications. Concepts and principles are explored that lead to sound guidance for SDS developers and strategists.

  12. Educational Modelling Language and Learning Design: new challenges for instructional re-usability and personalized learning

    NARCIS (Netherlands)

    Hummel, Hans; Manderveld, Jocelyn; Tattersall, Colin; Koper, Rob

    2003-01-01

    Published: Hummel, H. G. K., Manderveld, J. M., Tattersall, C.,& Koper, E. J. R. (2004). Educational Modelling Language: new challenges for instructional re-usability and personalized learning. International Journal of Learning Technology, 1, 1, 110-111.

  13. Effectiveness of Loan Guarantees versus Tax Incentives for Space Launch Ventures

    Science.gov (United States)

    Scottoline, S.; Coleman, R.

    1999-01-01

    Over the course of the past few years, several new and innovative fully or partiailly reusable launch vehicle designs have been initiated with the objective of reducing the cost of space transportation. These new designs are in various stages hardware development for technology and system demonstrators. The larger vehicles include the Lockheed Martin X-33 technology demonstrator for VentureStar and the Space Access launcher. The smaller launcher ventures include Kelly Space and Technology and Rotary Rocket Company. A common denominator between the new large and small commercial launch systems is the ability to obtain project financing and at an affordable cost. Both are having or will have great difficulty in obtaining financing in the capital markets because of the dollar amounts and the risk involved. The large established companies are pursuing multi-billion dollar developments which are a major challenge to finance because of the size and risk of the projects. The smaller start-up companies require less capital for their smaller systems, however, their lack of corporate financial muscle and launch vehicle track record results in a major challenge to obtain financing also because of high risk. On Wall Street, new launch system financing is a question of market, technical, organizational, legal/regulatory and financial risk. The current limit of acceptable financial risk for Space businesses on Wall Street are the telecommunications and broadcast satellite projects, of which many in number are projected for the future. Tbc recent problems with Iridium market and financial performance are casting a long shadow over new satellite project financing, making it increasingly difficult for the new satellite projects to obtain needed financing.

  14. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Science.gov (United States)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  15. High-Glass-Transition-Temperature Polyimides Developed for Reusable Launch Vehicle Applications

    Science.gov (United States)

    Chuang, Kathy; Ardent, Cory P.

    2002-01-01

    Polyimide composites have been traditionally used for high-temperature applications in aircraft engines at temperatures up to 550 F (288 C) for thousands of hours. However, as NASA shifts its focus toward the development of advanced reusable launch vehicles, there is an urgent need for lightweight polymer composites that can sustain 600 to 800 F (315 to 427 C) for short excursions (hundreds of hours). To meet critical vehicle weight targets, it is essential that one use lightweight, high-temperature polymer matrix composites in propulsion components such as turbopump housings, ducts, engine supports, and struts. Composite materials in reusable launch vehicle components will heat quickly during launch and reentry. Conventional composites, consisting of layers of fabric or fiber-reinforced lamina, would either blister or encounter catastrophic delamination under high heating rates above 300 C. This blistering and delamination are the result of a sudden volume expansion within the composite due to the release of absorbed moisture and gases generated by the degradation of the polymer matrix. Researchers at the NASA Glenn Research Center and the Boeing Company (Long Beach, CA) recently demonstrated a successful approach for preventing this delamination--the use of three-dimensional stitched composites fabricated by resin infusion.

  16. High temperature glass thermal control structure and coating. [for application to spacecraft reusable heat shielding

    Science.gov (United States)

    Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)

    1983-01-01

    A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.

  17. The immune system in space, including Earth-based benefits of space-based research.

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-08-01

    Exposure to space flight conditions has been shown to result in alterations in immune responses. Changes in immune responses of humans and experimental animals have been shown to be altered during and after space flight of humans and experimental animals or cell cultures of lymphoid cells. Exposure of subjects to ground-based models of space flight conditions, such as hindlimb unloading of rodents or chronic bed rest of humans, has also resulted in changes in the immune system. The relationship of these changes to compromised resistance to infection or tumors in space flight has not been fully established, but results from model systems suggest that alterations in the immune system that occur in space flight conditions may be related to decreases in resistance to infection. The establishment of such a relationship could lead to the development of countermeasures that could prevent or ameliorate any compromises in resistance to infection resulting from exposure to space flight conditions. An understanding of the mechanisms of space flight conditions effects on the immune response and development of countermeasures to prevent them could contribute to the development of treatments for compromised immunity on earth.

  18. Space network scheduling benchmark: A proof-of-concept process for technology transfer

    Science.gov (United States)

    Moe, Karen; Happell, Nadine; Hayden, B. J.; Barclay, Cathy

    1993-01-01

    This paper describes a detailed proof-of-concept activity to evaluate flexible scheduling technology as implemented in the Request Oriented Scheduling Engine (ROSE) and applied to Space Network (SN) scheduling. The criteria developed for an operational evaluation of a reusable scheduling system is addressed including a methodology to prove that the proposed system performs at least as well as the current system in function and performance. The improvement of the new technology must be demonstrated and evaluated against the cost of making changes. Finally, there is a need to show significant improvement in SN operational procedures. Successful completion of a proof-of-concept would eventually lead to an operational concept and implementation transition plan, which is outside the scope of this paper. However, a high-fidelity benchmark using actual SN scheduling requests has been designed to test the ROSE scheduling tool. The benchmark evaluation methodology, scheduling data, and preliminary results are described.

  19. Much Lower Launch Costs Make Resupply Cheaper than Recycling for Space Life Support

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    The development of commercial launch vehicles by SpaceX has greatly reduced the cost of launching mass to Low Earth Orbit (LEO). Reusable launch vehicles may further reduce the launch cost per kilogram. The new low launch cost makes open loop life support much cheaper than before. Open loop systems resupply water and oxygen in tanks for crew use and provide disposable lithium hydroxide (LiOH) in canisters to remove carbon dioxide. Short human space missions such as Apollo and shuttle have used open loop life support, but the long duration International Space Station (ISS) recycles water and oxygen and removes carbon dioxide with a regenerative molecular sieve. These ISS regenerative and recycling life support systems have significantly reduced the total launch mass needed for life support. But, since the development cost of recycling systems is much higher than the cost of tanks and canisters, the relative cost savings have been much less than the launch mass savings. The Life Cycle Cost (LCC) includes development, launch, and operations. If another space station was built in LEO, resupply life support would be much cheaper than the current recycling systems. The mission most favorable to recycling would be a long term lunar base, since the resupply mass would be large, the proximity to Earth would reduce the need for recycling reliability and spares, and the launch cost would be much higher than for LEO due to the need for lunar transit and descent propulsion systems. For a ten-year lunar base, the new low launch costs make resupply cheaper than recycling systems similar to ISS life support.

  20. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  1. An Analysis of the Advantages of Reusable Plastic Containers in Strawberry Logistics : A Case Study of the Japan Agricultural Cooperative YOICHI

    OpenAIRE

    尾碕, 亨; 樋元, 淳一

    2014-01-01

    This article undertook a comparative analysis of cardboard boxes and reusable plastic containers and their impact on production logistics costs and the receipt prices of producers. The results showed that reusable plastic containers shortened logistical working hours, reduced production logistics costs and increased the receipt prices of the producer. However, exchange-value cannot realized if the quality of the farm product is not maintained, even if it is transported in superior packing con...

  2. Space and Missile Systems Center Standard: Systems Engineering Requirements and Products

    Science.gov (United States)

    2013-07-01

    MISSILE SYSTEMS CENTER Air Force Space Command 483 N. Aviation Blvd. El Segundo, CA 90245 4. This standard has been approved for use on all Space...Any RF receiver with a burnout level of less than 30 dBm (1 mW). b. A summary of all significant areas are addressed in the EMC Control Plan...address 7. Date Submitted 8. Preparing Activity Space and Missile Systems Center AIR FORCE SPACE COMMAND 483 N. Aviation Blvd. El Segundo, CA 91245 Attention: SMC/EN February 2013

  3. A revolutionary lunar space transportation system architecture using extraterrestrial LOX-augmented NTR propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; McIlwain, Mel C.

    1994-08-01

    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on

  4. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  5. A philosophy for space nuclear systems safety

    International Nuclear Information System (INIS)

    Marshall, A.C.

    1992-01-01

    The unique requirements and contraints of space nuclear systems require careful consideration in the development of a safety policy. The Nuclear Safety Policy Working Group (NSPWG) for the Space Exploration Initiative has proposed a hierarchical approach with safety policy at the top of the hierarchy. This policy allows safety requirements to be tailored to specific applications while still providing reassurance to regulators and the general public that the necessary measures have been taken to assure safe application of space nuclear systems. The safety policy used by the NSPWG is recommended for all space nuclear programs and missions

  6. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  7. Options for development of space fission propulsion systems

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  8. ARC Code TI: Livingstone2

    Data.gov (United States)

    National Aeronautics and Space Administration — Livingstone2 is a reusable artificial intelligence (AI) software system designed to assist spacecraft, life support systems, chemical plants or other complex systems...

  9. Intelligent tutoring systems for space applications

    Science.gov (United States)

    Luckhardt-Redfield, Carol A.

    1990-01-01

    Artificial Intelligence has been used in many space applications. Intelligent tutoring systems (ITSs) have only recently been developed for assisting training of space operations and skills. An ITS at Southwest Research Institute is described as an example of an ITS application for space operations, specifically, training console operations at mission control. A distinction is made between critical skills and knowledge versus routine skills. Other ITSs for space are also discussed and future training requirements and potential ITS solutions are described.

  10. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2010-05-01

    Full Text Available During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  11. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use. PMID:22399929

  12. A reusable PZT transducer for monitoring initial hydration and structural health of concrete.

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  13. Architecture and Knowledge-Driven Self-Adaptive Security in Smart Space

    Directory of Open Access Journals (Sweden)

    Antti Evesti

    2013-03-01

    Full Text Available Dynamic and heterogeneous smart spaces cause challenges for security because it is impossible to anticipate all the possible changes at design-time. Self-adaptive security is an applicable solution for this challenge. This paper presents an architectural approach for security adaptation in smart spaces. The approach combines an adaptation loop, Information Security Measuring Ontology (ISMO and a smart space security-control model. The adaptation loop includes phases to monitor, analyze, plan and execute changes in the smart space. The ISMO offers input knowledge for the adaptation loop and the security-control model enforces dynamic access control policies. The approach is novel because it defines the whole adaptation loop and knowledge required in each phase of the adaptation. The contributions are validated as a part of the smart space pilot implementation. The approach offers reusable and extensible means to achieve adaptive security in smart spaces and up-to-date access control for devices that appear in the space. Hence, the approach supports the work of smart space application developers.

  14. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  15. Host-Guest Recognition-Assisted Electrochemical Release: Its Reusable Sensing Application Based on DNA Cross Configuration-Fueled Target Cycling and Strand Displacement Reaction Amplification.

    Science.gov (United States)

    Chang, Yuanyuan; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2017-08-15

    In this work, an elegantly designed host-guest recognition-assisted electrochemical release was established and applied in a reusable electrochemical biosensor for the detection of microRNA-182-5p (miRNA-182-5p), a prostate cancer biomarker in prostate cancer, based on the DNA cross configuration-fueled target cycling and strand displacement reaction (SDR) amplification. With such a design, the single target miRNA input could be converted to large numbers of single-stranded DNA (S1-Trp and S2-Trp) output, which could be trapped by cucurbit[8]uril methyl viologen (CB-8-MV 2+ ) based on the host-guest recognition, significantly enhancing the sensitivity for miRNA detection. Moreover, the nucleic acids products obtained from the process of cycling amplification could be utilized sufficiently, avoiding the waste and saving the experiment cost. Impressively, by resetting a settled voltage, the proposed biosensor could release S1-Trp and S2-Trp from the electrode surface, attributing that the guest ion methyl viologen (MV 2+ ) was reduced to MV +· under this settled voltage and formed a more-stable CB-8-MV +· -MV +· complex. Once O 2 was introduced in this system, MV +· could be oxidized to MV 2+ , generating the complex of CB-8-MV 2+ for capturing S1-Trp and S2-Trp again in only 5 min. As a result, the simple and fast regeneration of biosensor for target detection was realized on the base of electrochemical redox-driven assembly and release, overcoming the challenges of time-consuming, burdensome operations and expensive experimental cost in traditional reusable biosensors and updating the construction method for a reusable bisensor. Furthermore, the biosensor could be reused for more than 10 times with a regeneration rate of 93.20%-102.24%. After all, the conception of this work provides a novel thought for the construction of effective reusable biosensor to detect miRNA and other biomarkers and has great potential application in the area requiring the release of

  16. Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle

    Science.gov (United States)

    Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)

    1998-01-01

    The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.

  17. The NASA Advanced Space Power Systems Project

    Science.gov (United States)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  18. Approach and landing guidance design for reusable launch vehicle using multiple sliding surfaces technique

    Directory of Open Access Journals (Sweden)

    Xiangdong LIU

    2017-08-01

    Full Text Available An autonomous approach and landing (A&L guidance law is presented in this paper for landing an unpowered reusable launch vehicle (RLV at the designated runway touchdown. Considering the full nonlinear point-mass dynamics, a guidance scheme is developed in three-dimensional space. In order to guarantee a successful A&L movement, the multiple sliding surfaces guidance (MSSG technique is applied to derive the closed-loop guidance law, which stems from higher order sliding mode control theory and has advantage in the finite time reaching property. The global stability of the proposed guidance approach is proved by the Lyapunov-based method. The designed guidance law can generate new trajectories on-line without any specific requirement on off-line analysis except for the information on the boundary conditions of the A&L phase and instantaneous states of the RLV. Therefore, the designed guidance law is flexible enough to target different touchdown points on the runway and is capable of dealing with large initial condition errors resulted from the previous flight phase. Finally, simulation results show the effectiveness of the proposed guidance law in different scenarios.

  19. Lossless Coding Standards for Space Data Systems

    Science.gov (United States)

    Rice, R. F.

    1996-01-01

    The International Consultative Committee for Space Data Systems (CCSDS) is preparing to issue its first recommendation for a digital data compression standard. Because the space data systems of primary interest are employed to support scientific investigations requiring accurate representation, this initial standard will be restricted to lossless compression.

  20. RT-Syn: A real-time software system generator

    Science.gov (United States)

    Setliff, Dorothy E.

    1992-01-01

    This paper presents research into providing highly reusable and maintainable components by using automatic software synthesis techniques. This proposal uses domain knowledge combined with automatic software synthesis techniques to engineer large-scale mission-critical real-time software. The hypothesis centers on a software synthesis architecture that specifically incorporates application-specific (in this case real-time) knowledge. This architecture synthesizes complex system software to meet a behavioral specification and external interaction design constraints. Some examples of these external constraints are communication protocols, precisions, timing, and space limitations. The incorporation of application-specific knowledge facilitates the generation of mathematical software metrics which are used to narrow the design space, thereby making software synthesis tractable. Success has the potential to dramatically reduce mission-critical system life-cycle costs not only by reducing development time, but more importantly facilitating maintenance, modifications, and extensions of complex mission-critical software systems, which are currently dominating life cycle costs.

  1. The Orbital Space Environment and Space Situational Awareness Domain Ontology - Toward an International Information System for Space Data

    Science.gov (United States)

    Rovetto, R.

    2016-09-01

    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for datasharing and integration.

  2. Application of Ceramic Bond Coating for Reusable Melting Crucible of Metallic Fuel Slugs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Song, Hoon; Ko, Young-Mo; Park, Jeong-Yong; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Ki-Won [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel slugs of the driver fuel assembly have been fabricated by injection casting of the fuel alloys under a vacuum state or an inert atmosphere. Traditionally, metal fuel such as a U-Zr alloy system for SFR has been melted in slurry-coated graphite crucibles and cast in slurry-coated quartz tube molds to prevent melt/material interactions. Reactive coatings and porous coatings can be a source of melt contaminations, and fuel losses, respectively. Ceramic Y{sub 2}O{sub 3}, TiC, and TaC coating materials showed no penetration in the protective layer after a melt dipping test. However, the ceramic coating materials showed separations in the coating interface between the substrate and coating layer, or between the coating layer and fuel melt after the dipping test. All plasma-spray coated methods maintained a sound coating state after a dipping test with U-10wt.%Zr melt. A single coating Y{sub 2}O{sub 3}(150) layer and double coating layer of TaC(50)-Y{sub 2}O{sub 3}(100), showed a sound state or little penetration in the protective layer after a dipping test with U-10wt.%Zr-5wt.%RE melt. Injection casting experiments of U-10wt.%Zr and U-10wt.%Zr-5wt.%RE fuel slugs have been performed to investigate the feasibility of a reusable crucible of the metal fuel slugs. U–10wt.%Zr and U–10wt.%Zr–5wt.%RE fuel slugs have been soundly fabricated without significant interactions of the graphite crucibles. Thus, the ceramic plasma-spray coatings are thought to be promising candidate coating methods for a reusable graphite crucible to fabricate metal fuel slugs.

  3. Space rescue system definition (system performance analysis and trades)

    Science.gov (United States)

    Housten, Sam; Elsner, Tim; Redler, Ken; Svendsen, Hal; Wenzel, Sheri

    This paper addresses key technical issues involved in the system definition of the Assured Crew Return Vehicle (ACRV). The perspective on these issues is that of a prospective ACRV contractor, performing system analysis and trade studies. The objective of these analyses and trade studies is to develop the recovery vehicle system concept and top level requirements. The starting point for this work is the definition of the set of design missions for the ACRV. This set of missions encompasses three classes of contingency/emergency (crew illness/injury, space station catastrophe/failure, transportation element catastrophe/failure). The need is to provide a system to return Space Station crew to Earth quickly (less than 24 hours) in response to randomly occurring contingency events over an extended period of time (30 years of planned Space Station life). The main topics addressed and characterized in this paper include the following: Key Recovery (Rescue) Site Access Considerations; Rescue Site Locations and Distribution; Vehicle Cross Range vs Site Access; On-orbit Loiter Capability and Vehicle Design; and Water vs. Land Recovery.

  4. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  5. Enabling the Use of Space Fission Propulsion Systems

    International Nuclear Information System (INIS)

    Mike Houts; Melissa Van Dyke; Tom Godfroy; James Martin; Kevin Pedersen; Ricky Dickens; Ivana Hrbud; Leo Bitteker; Bruce Patton; Suman Chakrabarti; Joe Bonometti

    2000-01-01

    This paper gives brief descriptions of advantages of fission technology for reaching any point in the solar system and of earlier efforts to develop space fission propulsion systems, and gives a more detailed description of the safe, affordable fission engine (SAFE) concept being pursued at the National Aeronautics and Space Administration's Marshall Space Flight Center

  6. Fermion systems in discrete space-time

    International Nuclear Information System (INIS)

    Finster, Felix

    2007-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure

  7. Fermion systems in discrete space-time

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)

    2007-05-15

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  8. Fermion Systems in Discrete Space-Time

    OpenAIRE

    Finster, Felix

    2006-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  9. Fermion systems in discrete space-time

    Science.gov (United States)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  10. Support to X-33/Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    2000-01-01

    The Primary activities of Lee & Associates for the referenced Purchase Order has been in direct support of the X-33/Reusable Launch Vehicle Technology Program. An independent review to evaluate the X-33 liquid hydrogen fuel tank failure, which recently occurred after-test of the starboard tank has been provided. The purpose of the Investigation team was to assess the tank design modifications, provide an assessment of the testing approach used by MSFC (Marshall Space Flight Center) in determining the flight worthiness of the tank, assessing the structural integrity, and determining the cause of the failure of the tank. The approach taken to satisfy the objectives has been for Lee & Associates to provide the expertise of Mr. Frank Key and Mr. Wayne Burton who have relevant experience from past programs and a strong background of experience in the fields critical to the success of the program. Mr. Key and Mr. Burton participated in the NASA established Failure Investigation Review Team to review the development and process data and to identify any design, testing or manufacturing weaknesses and potential problem areas. This approach worked well in satisfying the objectives and providing the Review Team with valuable information including the development of a Fault Tree. The detailed inputs were made orally in real time in the Review Team daily meetings. The results of the investigation were presented to the MSFC Center Director by the team on February 15, 2000. Attached are four charts taken from that presentation which includes 1) An executive summary, 2) The most probable cause, 3) Technology assessment, and 4) Technology Recommendations for Cryogenic tanks.

  11. Man--machine interface issues for space nuclear power systems

    International Nuclear Information System (INIS)

    Nelson, W.R.; Haugset, K.

    1991-01-01

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man--machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented

  12. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  13. Silica Sulfuric Acid: An Eco-Friendly and Reusable Catalyst for Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Bahareh Sadeghi

    2013-01-01

    Full Text Available Silica sulfuric acid (SiO2-OSO3H as an eco-friendly, readily available, and reusable catalyst is applied to benzimidazole derivatives synthesis under reflux in ethanol. The procedure is very simple and the products are isolated with an easy workup in good-to-excellent yields.

  14. Architecture Design for the Space Situational Awareness System in the Preparedness Plan for Space Hazards of Republic of Korea

    Science.gov (United States)

    Choi, E.; Cho, S.; Shin, S.; Park, J.; Kim, J.; Kim, D.

    The threat posed by asteroids and comets has become one of the important issues. Jinju meteorite discovered in March 2014 has expanded the interest of the people of the fall of the natural space objects. Furthermore, the growing quantity of space debris is a serious threat to satellites and other spacecraft, which risk being damaged or even destroyed. In May of 2014, Korea established the preparedness plan for space hazards according to the space development promotion act which is amended to take action with respect to hazards from space. This plan is largely composed of 3 items such as system, technology and infrastructure. System is included the establishment and management of national space hazards headquarters at risk situation. Korea Astronomy and Space Science Institute (KASI) was designated as a space environment monitoring agency under the ministry of science, ICT and future planning (MSIP). Technology is supposed to develop the space situational awareness system that can monitor and detect space objects. For infrastructure, research and development of core technology will be promoted for capabilities improvement of space hazards preparedness such as software tools, application and data systems. This paper presents the architectural design for building space situational awareness system. The trade-off study of space situational awareness system for the Korea situation was performed. The results have shown the proposed architectural design. The baseline architecture is composed of Integrated Analysis System and Space Objects Monitoring System. Integrated Analysis System collects the status data from Space Objects Monitoring System and analyzes the space risk information through a data processing. For Space Objects Monitoring System, the all-sky surveillance camera, array radar and meteoroid surveillance sensor networks were considered. This system focuses on not only the threat of a large artificial satellite and natural space objects such as asteroids that

  15. Chaos of discrete dynamical systems in complete metric spaces

    International Nuclear Information System (INIS)

    Shi Yuming; Chen Guanrong

    2004-01-01

    This paper is concerned with chaos of discrete dynamical systems in complete metric spaces. Discrete dynamical systems governed by continuous maps in general complete metric spaces are first discussed, and two criteria of chaos are then established. As a special case, two corresponding criteria of chaos for discrete dynamical systems in compact subsets of metric spaces are obtained. These results have extended and improved the existing relevant results of chaos in finite-dimensional Euclidean spaces

  16. A Reusable Component for Communication and Data Synchronization in Mobile Distributed Interactive Applications

    Directory of Open Access Journals (Sweden)

    Abdul Malik Khan

    2010-10-01

    Full Text Available In Distributed Interactive Applications (DIA such as multiplayer games, where many participants are involved in a same game session and communicate through a network, they may have an inconsistent view of the virtual world because of the communication delays across the network. This issue becomes even more challenging when communicating through a cellular network while executing the DIA client on a mobile terminal. Consistency maintenance algorithms may be used to obtain a uniform view of the virtual world. These algorithms are very complex and hard to program and therefore, the implementation and the future evolution of the application logic code become difficult. To solve this problem, we propose an approach where the consistency concerns are handled separately by a distributed component called a Synchronization Medium, which is responsible for the communication management as well as the consistency maintenance. We present the detailed architecture of the Synchronization Medium and the generic interfaces it offers to DIAs. We evaluate our approach both qualitatively and quantitatively. We first demonstrate that the Synchronization Medium is a reusable component through the development of two game applications, a car racing game and a space war game. A performance evaluation then shows that the overhead introduced by the Synchronization Medium remains acceptable.

  17. Template-guided interstitial implants: Cs-137 reusable sources as a substitute for Ir-192

    International Nuclear Information System (INIS)

    Williamson, J.F.; Seminoff, T.

    1987-01-01

    Template-guided implantation of rigid steel or plastic guide needles for afterloading of radioactive sources is widely used in the treatment of gynecologic, rectal, and urologic malignant neoplasms. Iridium-192 is used almost universally, despite the high cost per implant, due to its short half-life and limited need for a flexible, trimmable source. A reusable afterloading system containing cesium-137 was developed. Each source has an effective active length of 6.8 cm and is encapsulated at the distal end of a 21-cm-long stainless steel tube. The sources can be afterloaded into the same plastic guide needles normally used for Ir-192 ribbons. Physical and dosimetric aspects of these sources are compared with those of Ir-192, and radiation protection and cost effectiveness are also discussed

  18. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Power ventilation systems except machinery space ventilation systems. Each power ventilation system must...

  19. A design for a reusable water-based spacecraft known as the spacecoach

    CERN Document Server

    McConnell, Brian

    2016-01-01

     Based on components already in existence, this manual details a reference design for an interplanetary spacecraft that is simple, durable, fully reusable and comprised mostly of water. Using such an accessible material leads to a spacecraft architecture that is radically simpler, safer and cheaper than conventional capsule based designs. If developed, the potential affordability of the design will substantially open all of the inner solar system to human exploration. A spacecraft that is comprised mostly of water will be much more like a living cell or a terrarium than a conventional rocket and capsule design. It will use water for many purposes before it is superheated in electric engines for propulsion, purposes which include radiation shielding, heat management, basic life support, crew consumption and comfort. The authors coined the term "spacecoaches" to describe them, as an allusion to the Prairie Schooners of the Old West, which were simple, rugged, and could live off the land.

  20. The unique safety challenges of space reactor systems

    International Nuclear Information System (INIS)

    Lanes, S.J.; Marshall, A.C.

    1991-01-01

    Compact reactor systems can provide high levels of power for extended periods in space environments. Their relatively low mass and their ability to operate independently of their proximity to the sun make reactor power systems high desirable for many civilian and military space missions. The US Department of Energy is developing reactor system technologies to provide electrical power for space applications. In addition, reactors are now being considered to provide thermal power to a hydrogen propellant for nuclear thermal rocketry. Space reactor safety issues differ from commercial reactor issues, in some areas, because of very different operating requirements and environments. Accidents similar to those postulated for commercial reactors must be considered for space reactors during their operational phase. Safety strategies will need to be established that account for the consequences of the loss of essential power

  1. Remote Laboratories Framework : Focus on Reusability and Security in m-Learning Situations

    Directory of Open Access Journals (Sweden)

    Jeremy Lardon

    2009-08-01

    Full Text Available Remote laboratories is a spreading concept which allows the remote use of devices through Internet connexion. The paper deals with the providing of a framework which is reusable for many devices, from different end-user media such as phone, computer or TV and acceptable in industry, therefore taking into account multi information systems securities. The problem is addressed through the point of view of m-learning situations which involves the lack of rich user interactions and the fact that the user belongs to external information systems when he interacts with the remote device. The modelisation of the remote device with ontologies, the use of a central application server, message oriented middleware and standard web services (database, authentication are the keys allowing the independence of the framework to the device. The adaptation of the GUI to the end-user device is made through a proxy which refactor the requests and responses according to the capabilities of the end-user device (size of screen, interactions tools. The use of a user-centric model of identities federation allows us to provide an efficient way to reach the goal of transparency to security constraints.

  2. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    Science.gov (United States)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  3. Analysis of space systems study for the space disposal of nuclear waste study report. Volume 2: Technical report

    Science.gov (United States)

    1981-01-01

    Reasonable space systems concepts were systematically identified and defined and a total system was evaluated for the space disposal of nuclear wastes. Areas studied include space destinations, space transportation options, launch site options payload protection approaches, and payload rescue techniques. Systems level cost and performance trades defined four alternative space systems which deliver payloads to the selected 0.85 AU heliocentric orbit destination at least as economically as the reference system without requiring removal of the protective radiation shield container. No concepts significantly less costly than the reference concept were identified.

  4. Shackleton Energy enabling Space Resources Exploitation on the Moon within a Decade

    Science.gov (United States)

    Keravala, J.; Stone, B.; Tietz, D.; Frischauf, N.

    2013-09-01

    Access to in-space natural resources is a key requirement for increasing exploration and expansion of humanity off Earth. In particular, making use of the Moon's resources in the form of lunar polar ice to fuel propellant depots at key locations in near Earth space enables dramatic reductions in the cost of access and operations in space, while simultaneously leveraging reusable in-space transporters essential to opening the newspace highway system. Success of this private venture will provide for a sustained balance of our terrestrial economy and the growth of our civilisation. Establishing the cis-Lunar highway required to access lunar sourced water from the cold traps of the polar craters provides the backbone infrastructure for an exponential growth of a space-based economy. With that core infrastructure in place, space-based solar power generation systems, debris mitigation capabilities and planetary protection systems plus scientific and exploratory missions, among others, can become commercial realities in our lifetime. Shackleton Energy was founded from the space, mining, energy and exploration sectors to meet this challenge as a fully private venture. Following successful robotic precursor missions, our industrial astronauts combined with a robotic mining capability will make first landings at the South Pole of the Moon and begin deliveries of propellant to our depots in within a decade. Customers, partners, technologies and most importantly, the investor classes aligned with the risk profiles involved, have been identified and all the components for a viable business are available. Infrastructure investment in space programs has traditionally been the province of governments, but sustainable expansion requires commercial leadership and this is now the responsibility of a dynamic new industry. The technologies and know-how are ready to be applied. Launch services to LEO are available and the industrial capability exists in the aerospace, mining and energy

  5. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  6. Examining the Use of Web-Based Reusable Learning Objects by Animal and Veterinary Nursing Students

    Science.gov (United States)

    Chapman-Waterhouse, Emily; Silva-Fletcher, Ayona; Whittlestone, Kim David

    2016-01-01

    This intervention study examined the interaction of animal and veterinary nursing students with reusable learning objects (RLO) in the context of preparing for summative assessment. Data was collected from 199 undergraduates using quantitative and qualitative methods. Students accessed RLO via personal devices in order to reinforce taught…

  7. Comparison of single-use and reusable metal laryngoscope blades for orotracheal intubation during rapid sequence induction of anesthesia: a multicenter cluster randomized study.

    Science.gov (United States)

    Amour, Julien; Le Manach, Yannick Le; Borel, Marie; Lenfant, François; Nicolas-Robin, Armelle; Carillion, Aude; Ripart, Jacques; Riou, Bruno; Langeron, Olivier

    2010-02-01

    Single-use metal laryngoscope blades are cheaper and carry a lower risk of infection than reusable metal blades. The authors compared single-use and reusable metal blades during rapid sequence induction of anesthesia in a multicenter cluster randomized trial. One thousand seventy-two adult patients undergoing general anesthesia under emergency conditions and requiring rapid sequence induction were randomly assigned on a weekly basis to either single-use or reusable metal blades (cluster randomization). After induction, a 60-s period was allowed to complete intubation. In the case of failed intubation, a second attempt was performed using the opposite type of blade. The primary endpoint was the rate of failed intubation, and the secondary endpoints were the incidence of complications (oxygen desaturation, lung aspiration, and/or oropharynx trauma) and the Cormack and Lehane score. Both groups were similar in their main characteristics, including the risk factors for difficult intubation. The rate of failed intubation was significantly decreased with single-use metal blades at the first attempt compared with reusable blades (2.8 vs. 5.4%, P < 0.05). In addition, the proportion of grades III and IV in Cormack and Lehane score were also significantly decreased with single-use metal blades (6 vs. 10%, P < 0.05). The global complication rate did not reach statistical significance, although the same trend was noted (6.8% vs. 11.5%, P = not significant). An investigator survey and a measure of illumination pointed that illumination might have been responsible for this result. The single-use metal blade was more efficient than a reusable metal blade in rapid sequence induction of anesthesia.

  8. Design options for advanced manned launch systems

    Science.gov (United States)

    Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.

    1995-03-01

    Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.

  9. Radionuclide inventories for short run-time space nuclear reactor systems

    International Nuclear Information System (INIS)

    Coats, R.L.

    1993-01-01

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems

  10. Deep Space Habitat Configurations Based on International Space Station Systems

    Science.gov (United States)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  11. Fabrication and Optimization of Stable, Optically Transparent, and Reusable pH-Responsive Silk Membranes

    Directory of Open Access Journals (Sweden)

    Andreas Toytziaridis

    2016-11-01

    Full Text Available The fabrication of silk-based membranes that are stable, optically transparent and reusable is yet to be achieved. To address this bottleneck we have developed a method to produce transparent chromogenic silk patches that are optically responsive to pH. The patches were produced by blending regenerated silk fibroin (RSF, Laponite RD (nano clay and the organic dyes neutral red and Thionine acetate. The Laponite RD played a central role in the patch mechanical integrity and prevention of dye leaching. The process was optimized using a factorial design to maximize the patch response to pH by UV absorbance and fluorescence emission. New patches of the optimized protocol, made from solutions containing 125 μM neutral red or 250 μM of Thionine and 15 mg/mL silk, were further tested for operational stability over several cycles of pH altering. Stability, performance, and reusability were achieved over the tested cycles. The approach could be extended to other reporting molecules or enzymes able to bind to Laponite.

  12. New Space Weather Systems Under Development and Their Contribution to Space Weather Management

    Science.gov (United States)

    Tobiska, W.; Bouwer, D.; Schunk, R.; Garrett, H.; Mertens, C.; Bowman, B.

    2008-12-01

    There have been notable successes during the past decade in the development of operational space environment systems. Examples include the Magnetospheric Specification Model (MSM) of the Earth's magnetosphere, 2000; SOLAR2000 (S2K) solar spectral irradiances, 2001; High Accuracy Satellite Drag Model (HASDM) neutral atmosphere densities, 2004; Global Assimilation of Ionospheric Measurements (GAIM) ionosphere specification, 2006; Hakamada-Akasofu-Fry (HAF) solar wind parameters, 2007; Communication Alert and Prediction System (CAPS) ionosphere, high frequency radio, and scintillation S4 index prediction, 2008; and GEO Alert and Prediction System (GAPS) geosynchronous environment satellite charging specification and forecast, 2008. Operational systems that are in active operational implementation include the Jacchia-Bowman 2006/2008 (JB2006/2008) neutral atmosphere, 2009, and the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) aviation radiation model using the Radiation Alert and Prediction System (RAPS), 2010. U.S. national agency and commercial assets will soon reach a state where specification and prediction will become ubiquitous and where coordinated management of the space environment and space weather will become a necessity. We describe the status of the CAPS, GAPS, RAPS, and JB2008 operational development. We additionally discuss the conditions that are laying the groundwork for space weather management and estimate the unfilled needs as we move beyond specification and prediction efforts.

  13. Research on Retro-reflecting Modulation in Space Optical Communication System

    Science.gov (United States)

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  14. X-framework: Space system failure analysis framework

    Science.gov (United States)

    Newman, John Steven

    Space program and space systems failures result in financial losses in the multi-hundred million dollar range every year. In addition to financial loss, space system failures may also represent the loss of opportunity, loss of critical scientific, commercial and/or national defense capabilities, as well as loss of public confidence. The need exists to improve learning and expand the scope of lessons documented and offered to the space industry project team. One of the barriers to incorporating lessons learned include the way in which space system failures are documented. Multiple classes of space system failure information are identified, ranging from "sound bite" summaries in space insurance compendia, to articles in journals, lengthy data-oriented (what happened) reports, and in some rare cases, reports that treat not only the what, but also the why. In addition there are periodically published "corporate crisis" reports, typically issued after multiple or highly visible failures that explore management roles in the failure, often within a politically oriented context. Given the general lack of consistency, it is clear that a good multi-level space system/program failure framework with analytical and predictive capability is needed. This research effort set out to develop such a model. The X-Framework (x-fw) is proposed as an innovative forensic failure analysis approach, providing a multi-level understanding of the space system failure event beginning with the proximate cause, extending to the directly related work or operational processes and upward through successive management layers. The x-fw focus is on capability and control at the process level and examines: (1) management accountability and control, (2) resource and requirement allocation, and (3) planning, analysis, and risk management at each level of management. The x-fw model provides an innovative failure analysis approach for acquiring a multi-level perspective, direct and indirect causation of

  15. What do you mean you can't sterilize it? The reusable medical device matrix.

    Science.gov (United States)

    Stephens, Anne; Assang, AnnMarie

    2010-12-01

    Health Canada recommends that hospitals should have procedures in place to ensure Reusable Medical Devices (RMD) are cleaned, disinfected and sterilized according to the manufacturer's instructions. For the purpose of this paper, reusable medical devices will be referred to as RMDs and include all instrumentation and devices that the Central Processing Department (CPD) resterilizes for use in the hospital. Patient safety in surgery begins in CPD. Manufacturer recommendations for the decontamination and sterilization of surgical instrumentation are of utmost importance to Operating Room (OR) and CPD staff. With recommendations that are unclear, nonspecific or unattainable there was a need to define what it means institutionally to meet standards and provide safe patient care while continuing to support the advancement of surgical technology. The purpose of this paper is to describe the challenges faced by one multisite organization (The University Health Network) in managing the sterilization of surgical instrumentation. The development of The Guidance Matrix by the network's inter-professional Reusable Medical Device (RMD) Committee, will be discussed along with information about the elements of this tool and an illustration of how it is used. The key benefits of The Guidance Matrix, including how its use has facilitated transparent decision-making, communication and collaboration regarding sterilization issues across the sites, will be described. Sterilization processes in Central Processing Departments (CPD) include chemical indicators, dated load indicators, and tamperproof locks and filters. The lack of an indicator of sterilization can be a frustrating experience for an OR Nurse. But do we really understand the critical importance of all these indicators? The foundation of sterilizing reusable medical devices (RMDs) begins with proper processes, standards and subsequent scientific validation from the vendors. According to AORN, patient safety is vital and it

  16. Space construction system analysis. Part 2: Cost and programmatics

    Science.gov (United States)

    Vonflue, F. W.; Cooper, W.

    1980-01-01

    Cost and programmatic elements of the space construction systems analysis study are discussed. The programmatic aspects of the ETVP program define a comprehensive plan for the development of a space platform, the construction system, and the space shuttle operations/logistics requirements. The cost analysis identified significant items of cost on ETVP development, ground, and flight segments, and detailed the items of space construction equipment and operations.

  17. NASA's Space Launch System: Deep-Space Delivery for Smallsats

    Science.gov (United States)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight test of the Orion spacecraft around the moon, accompanying Orion on SLS will be small-satellite secondary payloads, which will deploy in cislunar space. The deployment berths are sized for "6U" CubeSats, and on EM-1 the spacecraft will be deployed into cislunar space following Orion separate from the SLS Interim Cryogenic Propulsion Stage. Payloads in 6U class will be limited to 14 kg maximum mass. Secondary payloads on EM-1 will be launched in the Orion Stage Adapter (OSA). Payload dispensers will be mounted on specially designed brackets, each attached to the interior wall of the OSA. For the EM-1 mission, a total of fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence. Following the launch of EM-1, deployments of the secondary payloads will commence after sufficient separation of the Orion spacecraft to the upper stage vehicle to minimize any possible contact of the deployed CubeSats to Orion. Currently this is estimated to require approximately 4 hours. The allowed deployment window for the CubeSats will be from the time the upper stage disposal maneuvers are complete to up to 10 days after launch. The upper stage

  18. Comment on 'Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers'

    International Nuclear Information System (INIS)

    Gao Fei; Guo Fenzhuo; Wen Qiaoyan; Zhu Fuchen

    2005-01-01

    In a recent paper [S. Bagherinezhad and V. Karimipour, Phys. Rev. A 67, 044302 (2003)], a quantum secret sharing protocol based on reusable Greenberger-Horne-Zeilinger states was proposed. However, in this Comment, it is shown that this protocol is insecure if Eve employs a special strategy to attack

  19. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  20. Quality management for space systems in ISRO

    Science.gov (United States)

    Satish, S.; Selva Raju, S.; Nanjunda Swamy, T. S.; Kulkarni, P. L.

    2009-11-01

    In a little over four decades, the Indian Space Program has carved a niche for itself with the unique application driven program oriented towards National development. The end-to-end capability approach of the space projects in the country call for innovative practices and procedures in assuring the quality and reliability of space systems. The System Reliability (SR) efforts initiated at the start of the projects continue during the entire life cycle of the project encompassing design, development, realisation, assembly, testing and integration and during launch. Even after the launch, SR groups participate in the on-orbit evaluation of transponders in communication satellites and camera systems in remote sensing satellites. SR groups play a major role in identification, evaluation and inculcating quality practices in work centres involved in the fabrication of mechanical, electronics and propulsion systems required for Indian Space Research Organization's (ISRO's) launch vehicle and spacecraft projects. Also the reliability analysis activities like prediction, assessment and demonstration as well as de-rating analysis, Failure Mode Effects and Criticality Analysis (FMECA) and worst-case analysis are carried out by SR groups during various stages of project realisation. These activities provide the basis for project management to take appropriate techno-managerial decisions to ensure that the required reliability goals are met. Extensive test facilities catering to the needs of the space program has been set up. A system for consolidating the experience and expertise gained for issue of standards called product assurance specifications to be used in all ISRO centres has also been established.

  1. Space Launch System Accelerated Booster Development Cycle

    Science.gov (United States)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  2. Nuclear propulsion systems for orbit transfer based on the particle bed reactor

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Horn, F.L.

    1987-01-01

    The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ΔV missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined

  3. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2: Technical report

    Science.gov (United States)

    1982-01-01

    The space option for disposal of certain high-level nuclear wastes in space as a complement to mined geological repositories is studied. A brief overview of the study background, scope, objective, guidelines and assumptions, and contents is presented. The determination of the effects of variations in the waste mix on the space systems concept to allow determination of the space systems effect on total system risk benefits when used as a complement to the DOE reference mined geological repository is studied. The waste payload system, launch site, launch system, and orbit transfer system are all addressed. Rescue mission requirements are studied. The characteristics of waste forms suitable for space disposal are identified. Trajectories and performance requirements are discussed.

  4. The Sun/Earth System and Space Weather

    Science.gov (United States)

    Poland, Arthur I.; Fox, Nicola; Lucid, Shannon

    2003-01-01

    Solar variability and solar activity are now seen as significant drivers with respect to the Earth and human technology systems. Observations over the last 10 years have significantly advanced our understanding of causes and effects in the Sun/Earth system. On a practical level the interactions between the Sun and Earth dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). This talk will be about the Sun/Earth system: how it changes with time, its magnetic interactions, flares, the solar wind, and how the Sun effects human systems. Data will be presented from some current spacecraft which show, for example, how we are able to currently give warnings to the scientific community, the Government and industry about space storms and how this data has improved our physical understanding of processes on the Sun and in the magnetosphere. The scientific advances provided by our current spacecraft has led to a new program in NASA to develop a 'Space Weather' system called 'Living With a Star'. The current plan for the 'Living With a Star' program will also be presented.

  5. Alenia Spazio: Space Programs for Solar System Exploration .

    Science.gov (United States)

    Ferri, A.

    Alenia Spazio is the major Italian space industry and one of the largest in Europe, with 2,400 highly skilled employees and 16,000 square meters of clean rooms and laboratories for advanced technological research that are among the most modern and well-equipped in Europe. The company has wide experience in the design, development, assembly, integration, verification and testing of complete space systems: satellites for telecommunications and navigation, remote sensing, meteorology and scientific applications; manned systems and space infrastructures; launch, transport and re-entry systems, and control centres. Alenia Spazio has contributed to the construction of over 200 satellites and taken part in the most important national and international space programmes, from the International Space Station to the new European global navigation system Galileo. Focusing on Solar System exploration, in the last 10 years the Company took part, with different roles, to the major European and also NASA missions in the field: Rosetta, Mars Express, Cassini; will soon take part in Venus Express, and is planning the future with Bepi Colombo, Solar Orbiter, GAIA and Exomars. In this paper, as in the presentation, a very important Earth Observation mission is also presented: GOCE. All in all, the Earth is by all means part of the Solar system as well and we like to see it as a planet to be explored.

  6. System theory on group manifolds and coset spaces.

    Science.gov (United States)

    Brockett, R. W.

    1972-01-01

    The purpose of this paper is to study questions regarding controllability, observability, and realization theory for a particular class of systems for which the state space is a differentiable manifold which is simultaneously a group or, more generally, a coset space. We show that it is possible to give rather explicit expressions for the reachable set and the set of indistinguishable states in the case of autonomous systems. We also establish a type of state space isomorphism theorem. Our objective is to reduce all questions about the system to questions about Lie algebras generated from the coefficient matrices entering in the description of the system and in that way arrive at conditions which are easily visualized and tested.

  7. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  8. Data as a service a framework for providing reusable enterprise data services

    CERN Document Server

    Sarkar, Pushpak

    2015-01-01

    Data as a Service shows how organizations can leverage "data as a service" by providing real-life case studies on the various and innovative architectures and related patterns. Comprehensive approach to introducing data as a service in any organization. A re-usable and flexible SOA based architecture framework. Roadmap to introduce 'big data as a service' for potential clients. Presents a thorough description of each component in the DaaS reference architecture so readers can implement solutions.

  9. Performance Analysis of Sensor Systems for Space Situational Awareness

    Science.gov (United States)

    Choi, Eun-Jung; Cho, Sungki; Jo, Jung Hyun; Park, Jang-Hyun; Chung, Taejin; Park, Jaewoo; Jeon, Hocheol; Yun, Ami; Lee, Yonghui

    2017-12-01

    With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a 1-m2 radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.

  10. Elective gastropexy with a reusable single-incision laparoscopic surgery port in dogs: 14 cases (2012-2013).

    Science.gov (United States)

    Stiles, Mandy; Case, J Brad; Coisman, James

    2016-08-01

    OBJECTIVE To describe the technique, clinical findings, and short-term outcome in dogs undergoing laparoscopic-assisted incisional gastropexy with a reusable single-incision surgery port. DESIGN Retrospective case series. ANIMALS 14 client-owned dogs. PROCEDURES Medical records of dogs referred for elective laparoscopic gastropexy between June 2012 and August 2013 were reviewed. History, signalment, results of physical examination and preoperative laboratory testing, surgical procedure, duration of surgery, postoperative complications, duration of hospital stay, and short-term outcome were recorded. All patients underwent general anesthesia and were positioned in dorsal recumbency. After an initial limited laparoscopic exploration, single-incision laparoscopic-assisted gastropexy was performed extracorporeally in all dogs via a conical port placed in a right paramedian location. Concurrent procedures included laparoscopic ovariectomy (n = 4), gastric biopsy (2), and castration (7). Short-term outcome was evaluated. RESULTS Median duration of surgery was 76 minutes (range, 40 to 90 minutes). Intraoperative complications were minor and consisted of loss of pneumoperitoneum in 2 of 14 dogs. A postoperative surgical site infection occurred in 1 dog and resolved with standard treatment. Median duration of follow-up was 371 days (range, 2 weeks to 1.5 years). No dogs developed gastric dilation-volvulus during the follow-up period, and all owners were satisfied with the outcome. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that single-incision laparoscopic-assisted gastropexy with a reusable conical port was feasible and effective in appropriately selected cases. Investigation of the potential benefits of this reusable port versus single-use devices for elective gastropexy in dogs is warranted.

  11. Security for safety critical space borne systems

    Science.gov (United States)

    Legrand, Sue

    1987-01-01

    The Space Station contains safety critical computer software components in systems that can affect life and vital property. These components require a multilevel secure system that provides dynamic access control of the data and processes involved. A study is under way to define requirements for a security model providing access control through level B3 of the Orange Book. The model will be prototyped at NASA-Johnson Space Center.

  12. General Purpose Data-Driven System Monitoring for Space Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern space propulsion and exploration system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using...

  13. Access to space

    Science.gov (United States)

    1994-07-01

    The goal of this conceptual design was to devise a reusable, commercially viable, single-stage-to-orbit vehicle. The vehicle has the ability to deliver a 9100 kg (20,000 lb) payload to a low earth orbit of 433 km to 933 km (250 n.mi. - 450 n.mi.). The SSTO vehicle is 51 meters in length and has a gross takeoff mass of 680,400 kg (1,500,000 lb). The vehicle incorporates three RD-701 engines for the main propulsion system and two RL-10 engines for the orbital maneuvering system. The vehicle is designed for a three day stay on orbit with two crew members.

  14. Managing Programmatic Risk for Complex Space System Developments

    Science.gov (United States)

    Panetta, Peter V.; Hastings, Daniel; Brumfield, Mark (Technical Monitor)

    2001-01-01

    Risk management strategies have become a recent important research topic to many aerospace organizations as they prepare to develop the revolutionary complex space systems of the future. Future multi-disciplinary complex space systems will make it absolutely essential for organizations to practice a rigorous, comprehensive risk management process, emphasizing thorough systems engineering principles to succeed. Project managers must possess strong leadership skills to direct high quality, cross-disciplinary teams for successfully developing revolutionary space systems that are ever increasing in complexity. Proactive efforts to reduce or eliminate risk throughout a project's lifecycle ideally must be practiced by all technical members in the organization. This paper discusses some of the risk management perspectives that were collected from senior managers and project managers of aerospace and aeronautical organizations by the use of interviews and surveys. Some of the programmatic risks which drive the success or failure of projects are revealed. Key findings lead to a number of insights for organizations to consider for proactively approaching the risks which face current and future complex space systems projects.

  15. Nonterrestrial material processing and manufacturing of large space systems

    Science.gov (United States)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  16. A Markovian state-space framework for integrating flexibility into space system design decisions

    Science.gov (United States)

    Lafleur, Jarret M.

    The past decades have seen the state of the art in aerospace system design progress from a scope of simple optimization to one including robustness, with the objective of permitting a single system to perform well even in off-nominal future environments. Integrating flexibility, or the capability to easily modify a system after it has been fielded in response to changing environments, into system design represents a further step forward. One challenge in accomplishing this rests in that the decision-maker must consider not only the present system design decision, but also sequential future design and operation decisions. Despite extensive interest in the topic, the state of the art in designing flexibility into aerospace systems, and particularly space systems, tends to be limited to analyses that are qualitative, deterministic, single-objective, and/or limited to consider a single future time period. To address these gaps, this thesis develops a stochastic, multi-objective, and multi-period framework for integrating flexibility into space system design decisions. Central to the framework are five steps. First, system configuration options are identified and costs of switching from one configuration to another are compiled into a cost transition matrix. Second, probabilities that demand on the system will transition from one mission to another are compiled into a mission demand Markov chain. Third, one performance matrix for each design objective is populated to describe how well the identified system configurations perform in each of the identified mission demand environments. The fourth step employs multi-period decision analysis techniques, including Markov decision processes from the field of operations research, to find efficient paths and policies a decision-maker may follow. The final step examines the implications of these paths and policies for the primary goal of informing initial system selection. Overall, this thesis unifies state-centric concepts of

  17. A future data environment - reusability vs. citability and synchronisation vs. ingestion

    Science.gov (United States)

    Fleischer, D.

    2012-04-01

    During the last decades data managers dedicated their work to the pursuit for importable data. In the recent years this chase seams to come to an end while funding organisations assume that the approach of data publications with citable data sets will eliminate denial of scientists to commit their data. But is this true for all problems we are facing at the edge of a data avalanche and data intensive science? The concept of citable data is a logical consequence from the connection of points. Potential data providers in the past complained usually about the missing of a credit assignment for data providers and they still do. The selected way of DOI captured data sets is perfectly fitting into the credit system of publisher driven publications with countable citations. This system is well known by scientists for approximately 400 years now. Unfortunately, there is a double bind situation between citeability and reusability. While cooperation of publishers and data archives are coming into existence, it is necessary to get one question clear: "Is it really worth while in the twenty-first century to force data into the publication process of the seventeenth century?" Data publications enable easy citability, but do not support easy data reusability for future users. Additional problems occur in such an environment while taking into account the chances of collaborative data corrections in the institutional repository. The future with huge amounts of data connected with publications makes reconsideration towards a more integrated approach reasonable. In the past data archives were the only infrastructures taking care of long-term data retrievability and availability. Nevertheless, they were never a part of the scientific process from data creation, analysis, interpretation and publication. Data archives were regarded as isolated islands in the sea of scientific data. Accordingly scientists considered data publications like a stumbling stone in their daily routines and

  18. Design space pruning through hybrid analysis in system-level design space exploration

    NARCIS (Netherlands)

    Piscitelli, R.; Pimentel, A.D.

    2012-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system archi- tectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size

  19. Looking toward to the next-generation space weather forecast system. Comments former a former space weather forecaster

    International Nuclear Information System (INIS)

    Tomita, Fumihiko

    1999-01-01

    In the 21st century, man's space-based activities will increase significantly and many kinds of space utilization technologies will assume a vital role in the infrastructure, creating new businesses, securing the global environment, contributing much to human welfare in the world. Communications Research Laboratory (CRL) has been contributing to the safety of human activity in space and to the further understanding of the solar terrestrial environment through the study of space weather, including the upper atmosphere, magnetosphere, interplanetary space, and the sun. The next-generation Space Weather Integrated Monitoring System (SWIMS) for future space activities based on the present international space weather forecasting system is introduced in this paper. (author)

  20. NASA/BAE SYSTEMS SpaceWire Effort

    Science.gov (United States)

    Rakow, Glenn Parker; Schnurr, Richard G.; Kapcio, Paul

    2003-01-01

    This paper discusses the state of the NASA and BAE SYSTEMS developments of SpaceWire. NASA has developed intellectual property that implements SpaceWire in Register Transfer Level (RTL) VHDL for a SpaceWire link and router. This design has been extensively verified using directed tests from the SpaceWire Standard and design specification, as well as being randomly tested to flush out hard to find bugs in the code. The high level features of the design will be discussed, including the support for multiple time code masters, which will be useful for the James Webb Space Telescope electrical architecture. This design is now ready to be targeted to FPGA's and ASICs. Target utilization and performance information will be presented for Spaceflight worthy FPGA's and a discussion of the ASIC implementations will be addressed. In particular, the BAE SYSTEMS ASIC will be highlighted which will be implemented on their .25micron rad-hard line. The chip will implement a 4-port router with the ability to tie chips together to make larger routers without external glue logic. This part will have integrated LVDS drivers/receivers, include a PLL and include skew control logic. It will be targeted to run at greater than 300 MHz and include the implementation for the proposed SpaceWire transport layer. The need to provide a reliable transport mechanism for SpaceWire has been identified by both NASA And ESA, who are attempting to define a transport layer standard that utilizes a low overhead, low latency connection oriented approach that works end-to-end. This layer needs to be implemented in hardware to prevent bottlenecks.

  1. Non-Toxic Orbital Maneuvering System Engine Development

    Science.gov (United States)

    Green, Christopher; Claflin, Scott; Maeding, Chris; Butas, John

    1999-01-01

    Recent results using the Aestus engine operated with LOx/ethanol propellant are presented. An experimental program at Rocketdyne Propulsion and Power is underway to adapt this engine for the Boeing Reusable Space Systems Division non-toxic Orbital Maneuvering System/Reaction control System (OMS/RCS) system. Daimler-Chrysler Aerospace designed the Aestus as an nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) upper-stage engine for the Ariane 5. The non-toxic OMS/RCS system's preliminary design requires a LOx/ethanol (O2/C2H5OH) engine that operates with a mixture ratio of 1.8, a specific impulse of 323 seconds, and fits within the original OMS design envelope. This paper describes current efforts to meet these requirements including, investigating engine performance using LOx/ethanol, developing the en-ine system sizing package, and meeting the vehicle operation parameters. Data from hot-fire testing are also presented and discussed.

  2. NASP - Enabling new space launch options

    Science.gov (United States)

    Froning, David; Gaubatz, William; Mathews, George

    1990-10-01

    Successful NASP developments in the United States are bringing about the possibility of effective, fully reusable vehicles for transport of people and cargo between earth and space. These developments include: extension of airbreathing propulsion to a much higher speed; densification of propellants for greater energy per unit volume of mass; structures with much greater strength-to-weight at high temperatures; computational advancements that enable more optimal design and integration of airframes, engines and controls; and advances in avionics, robotics, artificial intelligence and automation that enable accomplishment of earth-to-orbit (ETO) operations with much less manpower support and cost. This paper describes the relative magnitude of improvement that these developments may provide.

  3. Considerations in development of expert systems for real-time space applications

    Science.gov (United States)

    Murugesan, S.

    1988-01-01

    Over the years, demand on space systems has increased tremendously and this trend will continue for the near future. Enhanced capabilities of space systems, however, can only be met with increased complexity and sophistication of onboard and ground systems. Artificial Intelligence and expert system techniques have great potential in space applications. Expert systems could facilitate autonomous decision making, improve in-orbit fault diagnosis and repair, enhance performance and reduce reliance on ground support. However, real-time expert systems, unlike conventional off-line consultative systems, have to satisfy certain special stringent requirements before they could be used for onboard space applications. Challenging and interesting new environments are faced while developing expert system space applications. This paper discusses the special characteristics, requirements and typical life cycle issues for onboard expert systems. Further, it also describes considerations in design, development, and implementation which are particularly important to real-time expert systems for space applications.

  4. Modelling informally collected quantities of bulky waste and reusable items in Austria.

    Science.gov (United States)

    Ramusch, R; Pertl, A; Scherhaufer, S; Schmied, E; Obersteiner, G

    2015-10-01

    Disparities in earnings between Western and Eastern European countries are the reason for a well-established informal sector actively involved in collection and transboundary shipment activities from Austria to Hungary. The preferred objects are reusable items and wastes within the categories bulky waste, WEEE and metals, intended to be sold on flea markets. Despite leading to a loss of recyclable resources for Austrian waste management, these informal activities may contribute to the extension of the lifetime of certain goods when they are reused in Hungary; nevertheless they are discussed rather controversially. The aim of this paper is to provide objective data on the quantities informally collected and transhipped. The unique activities of informal collectors required the development and implementation of a new set of methodologies. The concept of triangulation was used to verify results obtained by field visits, interviews and a traffic counting campaign. Both approaches lead to an estimation of approx. 100,000 t per year of reusable items informally collected in Austria. This means that in addition to the approx. 72 kg/cap/yr formally collected bulky waste, bulky waste wood, household scrap (excluding packaging) and WEEE, up to a further 12 kg/cap/yr might, in the case that informal collection is abandoned, end up as waste or in the second-hand sector. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Space Shuttle Program (SSP) Shock Test and Specification Experience for Reusable Flight Hardware Equipment

    Science.gov (United States)

    Larsen, Curtis E.

    2012-01-01

    As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions

  6. Towards Mobile Information Systems for Indoor Space

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Zhang

    2016-01-01

    Full Text Available With the rapid development of Internet of things (IOT and indoor positioning technologies such as Wi-Fi and RFID, indoor mobile information systems have become a new research hotspot. Based on the unique features of indoor space and urgent needs on indoor mobile applications, in this paper we analyze some key issues in indoor mobile information systems, including positioning technologies in indoor environments, representation models for indoor spaces, query processing techniques for indoor moving objects, and index structures for indoor mobile applications. Then, we present an indoor mobile information management system named IndoorDB. Finally, we give some future research topics about indoor mobile information systems.

  7. An expert systems application to space base data processing

    Science.gov (United States)

    Babb, Stephen M.

    1988-01-01

    The advent of space vehicles with their increased data requirements are reflected in the complexity of future telemetry systems. Space based operations with its immense operating costs will shift the burden of data processing and routine analysis from the space station to the Orbital Transfer Vehicle (OTV). A research and development project is described which addresses the real time onboard data processing tasks associated with a space based vehicle, specifically focusing on an implementation of an expert system.

  8. Taking advantage of ground data systems attributes to achieve quality results in testing software

    Science.gov (United States)

    Sigman, Clayton B.; Koslosky, John T.; Hageman, Barbara H.

    1994-01-01

    During the software development life cycle process, basic testing starts with the development team. At the end of the development process, an acceptance test is performed for the user to ensure that the deliverable is acceptable. Ideally, the delivery is an operational product with zero defects. However, the goal of zero defects is normally not achieved but is successful to various degrees. With the emphasis on building low cost ground support systems while maintaining a quality product, a key element in the test process is simulator capability. This paper reviews the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) test tool that is used in the acceptance test process for unmanned satellite operations control centers. The TASS is designed to support the development, test and operational environments of the Goddard Space Flight Center (GSFC) operations control centers. The TASS uses the same basic architecture as the operations control center. This architecture is characterized by its use of distributed processing, industry standards, commercial off-the-shelf (COTS) hardware and software components, and reusable software. The TASS uses much of the same TPOCC architecture and reusable software that the operations control center developer uses. The TASS also makes use of reusable simulator software in the mission specific versions of the TASS. Very little new software needs to be developed, mainly mission specific telemetry communication and command processing software. By taking advantage of the ground data system attributes, successful software reuse for operational systems provides the opportunity to extend the reuse concept into the test area. Consistency in test approach is a major step in achieving quality results.

  9. War-gaming application for future space systems acquisition

    Science.gov (United States)

    Nguyen, Tien M.; Guillen, Andy T.

    2016-05-01

    Recently the U.S. Department of Defense (DOD) released the Defense Innovation Initiative (DII) [1] to focus DOD on five key aspects; Aspect #1: Recruit talented and innovative people, Aspect #2: Reinvigorate war-gaming, Aspect #3: Initiate long-range research and development programs, Aspect #4: Make DOD practices more innovative, and Aspect #5: Advance technology and new operational concepts. Per DII instruction, this paper concentrates on Aspect #2 and Aspect #4 by reinvigorating the war-gaming effort with a focus on an innovative approach for developing the optimum Program and Technical Baselines (PTBs) and their corresponding optimum acquisition strategies for acquiring future space systems. The paper describes a unified approach for applying the war-gaming concept for future DOD acquisition of space systems. The proposed approach includes a Unified Game-based Acquisition Framework (UGAF) and an Advanced Game-Based Mathematical Framework (AGMF) using Bayesian war-gaming engines to optimize PTB solutions and select the corresponding optimum acquisition strategies for acquiring a space system. The framework defines the action space for all players with a complete description of the elements associated with the games, including Department of Defense Acquisition Authority (DAA), stakeholders, warfighters, and potential contractors, War-Gaming Engines (WGEs) played by DAA, WGEs played by Contractor (KTR), and the players' Payoff and Cost functions (PCFs). The AGMF presented here addresses both complete and incomplete information cases. The proposed framework provides a recipe for the DAA and USAF-Space and Missile Systems Center (SMC) to acquire future space systems optimally.

  10. Space Environment Information System (SPENVIS)

    Science.gov (United States)

    Kruglanski, Michel; de Donder, Erwin; Messios, Neophytos; Hetey, Laszlo; Calders, Stijn; Evans, Hugh; Daly, Eamonn

    SPENVIS is an ESA operational software developed and maintained at BIRA-IASB since 1996. It provides standardized access to most of the recent models of the hazardous space environment, through a user-friendly Web interface (http://www.spenvis.oma.be/). The system allows spacecraft engineers to perform a rapid analysis of environmental problems related to natural radiation belts, solar energetic particles, cosmic rays, plasmas, gases, magnetic fields and micro-particles. Various reporting and graphical utilities and extensive help facilities are included to allow engineers with relatively little familiarity to produce reliable results. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard and access to in-flight data on the space environment. Although SPENVIS in the first place is designed to help spacecraft designers, it is also used by technical universities in their educational programs. In the framework of the ESA Space Situational Awareness Preparatory Programme, SPENVIS will be part of the initial set of precursor services of the Space Weather segment. SPENVIS includes several engineering models to assess to effects of the space environment on spacecrafts such as surface and internal charging, energy deposition, solar cell damage and SEU rates. The presentation will review how such models could be connected to in situ measurements or forecasting models of the space environment in order to produce post event analysis or in orbit effects alert. The last developments and models implemented in SPENVIS will also be presented.

  11. Ontology and Language for Intelligent Reusable Autonomy

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation consists of enabling “thinking” by the autonomous system, so that autonomous strategies may be inferred by the computers as a thought process. The...

  12. Space construction base control system

    Science.gov (United States)

    1978-01-01

    Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.

  13. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  14. Cooperating expert systems for space station power distribution management

    International Nuclear Information System (INIS)

    Nguyen, T.A.; Chiou, W.C.

    1986-01-01

    In a complex system such as the manned Space Station, it is deemed necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question to arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, the authors have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, they use the two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will serve as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange

  15. Cooperating Expert Systems For Space Station Power Distribution Management

    Science.gov (United States)

    Nguyen, T. A.; Chiou, W. C.

    1987-02-01

    In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.

  16. A reference model for space data system interconnection services

    Science.gov (United States)

    Pietras, John; Theis, Gerhard

    1993-01-01

    The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).

  17. The State of Play: US Space Systems Competitiveness

    Science.gov (United States)

    Zapata, Edgar

    2017-01-01

    Collects space systems cost and related data (flight rate, payload, etc.) over time. Gathers only public data. Non-recurring and recurring. Minimal data processing. Graph, visualize, add context. Focus on US space systems competitiveness. Keep fresh update as data arises, launches occur, etc. Keep fresh focus on recent data, indicative of the future.

  18. Casting metal microstructures from a flexible and reusable mold

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2009-01-01

    This paper describes casting-based microfabrication of metal microstructures and nanostructures. The metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. Microcasting is demonstrated in two metal alloys of melting temperature 70 °C or 138 °C. Many structures were successfully cast into the metal with excellent replication fidelity, including ridges with periodicity 400 nm and holes or pillars with diameter in the range 10–100 µm and aspect ratio up to 2:1. The flexibility of the silicone mold permits casting of curved surfaces, which we demonstrate by fabricating a cylindrical metal roller of diameter 8 mm covered with microstructures. The metal microstructures can be in turn used as a reusable molding tool

  19. UniSat-5: a space-based optical system for space debris monitoring

    Science.gov (United States)

    Di Roberto, Riccardo; Cappelletti, Chantal

    2012-07-01

    Micro-satellite missions, thanks to the miniaturization process of electronic components, now have a broader range of applications. Gauss Group at School of Aerospace Engineering has been a pioneer in educational micro-satellites, namely with UNISAT and EDUSAT missions. Moreover it has been long involved in space debris related studies, such as optical observations as well as mitigation. A new project is under development for a compact digital imaging system. The purpose will be in situ observation of space debris on board Unisat-5 micro-satellite. One of the key elements of observing on orbit is that many atmospheric phenomena would be avoided, such as diffraction and EM absorption. Hence images would gain more contrast and solar spectral irradiance would be higher for the whole visible spectrum Earlier limitations of power and instrument size prevented the inclusion of these payloads in educational satellite missions. The system is composed of an optical tube, a camera, C band and S band transceivers and two antennas. The system is independent from the rest of the spacecraft. The optical tube is a Schmidt-Cassegrain reflector, and the magnitude limit is 13. The camera is equipped with a panchromatic 5Mpix sensor, capable of direct video streaming, as well as local storage of recorded images. The transceivers operate on ISM 2.4GHz and 5 GHz Wi-Fi bands, and they provide stand-alone communication capabilities to the payload, and Unisat-5 OBDH can switch between the two. Both transceivers are connected to their respective custom-designed patch antenna. The ground segment is constituted of a high gain antenna dish, which will use the same transceiver on board the spacecraft as the feed, in order to establish a TCP/IP wireless link. Every component of this system is a consumer grade product. Therefore price reduction of cutting edge imaging technology now allows the use of professional instruments, that combined with the new wireless technology developed for

  20. Space Industry Commercialization: A Systems Engineering Evaluation of Alternatives

    Science.gov (United States)

    Dinally, Jihan

    The Constellation Program cancellation reversed the government and commercial space industry's roles and relationships by dedicating the majority of the federal funding and opportunities to the commercial space industry and left the government space industry in search of an approach to collaborate with the dominant organization, the commercial space industry service providers. The space industry government agencies, Air Force Space Command (AFSPC) and National Aeronautics and Space Administration (NASA) had realized that to gain resources in the new commercially oriented economic environment, they had to work together and possess the capabilities aligned with the National Space Policy's documented goals. Multi-organizational collaboration in space industry programs is challenging, as NASA, AFSPC, and commercial providers, follow different [1] enterprise architecture guidance such as the NASA systems engineering Handbook, MIL-STD-499 and "A Guide to the systems engineering Body of Knowledge" by the International Council on systems engineering [2] [3]. A solution to streamline their enterprise architecture documentation and meet National Space Policy goals is the Multi-User Architecture Maturity Model Methodology (MAM3), which offers a tailored systems engineering technique the government agencies and private companies can implement for the program's maturity level. In order to demonstrate the MAM3, a CubeSat motivated study was conducted partnering a commercial provider with a government agency. A survey of the commercial space industry service providers' capabilities was performed to select the private companies for the study. Using the survey results, the commercial space industry service providers were ranked using the Analytic Hierarchy Process (AHP) [4]. The AHP is a structured technique for making complex decisions for representing and quantifying its weights, relating those weights to overall goals, and evaluating alternative solutions [5] - [8]. The weights

  1. Brayton cycle space power systems

    International Nuclear Information System (INIS)

    Pietsch, A.; Trimble, S.W.; Harper, A.D.

    1985-01-01

    The latest accomplishments in the design and development of the Brayton Isotope Power System (BIPS) for space applications are described, together with a reexamination of the design/cost tradeoffs with respect to current economic parameters and technology status. The results of tests performed on a ground test version of the flight configuration, the workhorse loop, were used to confirm the performance projections made for the flight system. The results of cost-model analysis indicate that the use of the highest attainable power conversion system efficiency will yield the most cost-effective systems. 13 references

  2. Systems and methods for free space optical communication

    Science.gov (United States)

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  3. A cislunar transportation system fuelled by lunar resources

    Science.gov (United States)

    Sowers, G. F.

    2016-11-01

    A transportation system for a self sustaining economy in cislunar space is discussed. The system is based on liquid oxygen (LO2), liquid hydrogen (LH2) propulsion whose fuels are derived from ice mined at the polar regions of the Moon. The elements of the transportation system consist of the Advanced Cryogenic Evolved Stage (ACES) and the XEUS lander, both being developed by United Launch Alliance (ULA). The main propulsion elements and structures are common between ACES and XEUS. Both stages are fully reusable with refueling of their LO2/LH2 propellants. Utilization of lunar sourced propellants has the potential to dramatically lower the cost of transportation within the cislunar environs. These lower costs dramatically lower the barriers to entry of a number of promising cislunar based activities including space solar power. One early application of the architecture is providing lunar sourced propellant to refuel ACES for traditional spacecraft deployment missions. The business case for this application provides an economic framework for a potential lunar water mining operation.

  4. Development and application of a model for the analysis of trades between space launch system operations and acquisition costs

    Science.gov (United States)

    Nix, Michael B.

    2005-12-01

    Early design decisions in the development of space launch systems determine the costs to acquire and operate launch systems. Some sources indicate that as much as 90% of life cycle costs are fixed by the end of the critical design review phase. System characteristics determined by these early decisions are major factors in the acquisition cost of flight hardware elements and facilities and influence operations costs through the amount of maintenance and support labor required to sustain system function. Operations costs are also dependent on post-development management decisions regarding how much labor will be deployed to meet requirements of market demand and ownership profit. The ability to perform early trade-offs between these costs is vital to the development of systems that have the necessary capacity to provide service and are profitable to operate. An Excel-based prototype model was developed for making early analyses of trade-offs between the costs to operate a space launch system and to acquire the necessary assets to meet a given set of operational requirements. The model, integrating input from existing models and adding missing capability, allows the user to make such trade-offs across a range of operations concepts (required flight rates, staffing levels, shifts per workday, workdays per week and per year, unreliability, wearout and depot maintenance) and the number, type and capability of assets (flight hardware elements, processing and supporting facilities and infrastructure). The costs and capabilities of hypothetical launch systems can be modeled as a function of interrelated turnaround times and labor resource levels, and asset loss and retirement. The number of flight components and facilities required can be calculated and the operations and acquisition costs compared for a specified scenario. Findings, based on the analysis of a hypothetical two stage to orbit, reusable, unmanned launch system, indicate that the model is suitable for the

  5. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  6. Dynamic analysis of space robot remote control system

    Science.gov (United States)

    Kulakov, Felix; Alferov, Gennady; Sokolov, Boris; Gorovenko, Polina; Sharlay, Artem

    2018-05-01

    The article presents analysis on construction of two-stage remote control for space robots. This control ensures efficiency of the robot control system at large delays in transmission of control signals from the ground control center to the local control system of the space robot. The conditions for control stability of and high transparency are found.

  7. Characterizing and Modeling the Cost of Rework in a Library of Reusable Software Components

    Science.gov (United States)

    Basili, Victor R.; Condon, Steven E.; ElEmam, Khaled; Hendrick, Robert B.; Melo, Walcelio

    1997-01-01

    In this paper we characterize and model the cost of rework in a Component Factory (CF) organization. A CF is responsible for developing and packaging reusable software components. Data was collected on corrective maintenance activities for the Generalized Support Software reuse asset library located at the Flight Dynamics Division of NASA's GSFC. We then constructed a predictive model of the cost of rework using the C4.5 system for generating a logical classification model. The predictor variables for the model are measures of internal software product attributes. The model demonstrates good prediction accuracy, and can be used by managers to allocate resources for corrective maintenance activities. Furthermore, we used the model to generate proscriptive coding guidelines to improve programming, practices so that the cost of rework can be reduced in the future. The general approach we have used is applicable to other environments.

  8. Building of Reusable Reverse Logistics Model and its Optimization Considering the Decision of Backorder or Next Arrival of Goods

    Science.gov (United States)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu; Lee, Hee-Hyol

    This paper deals with the building of the reusable reverse logistics model considering the decision of the backorder or the next arrival of goods. The optimization method to minimize the transportation cost and to minimize the volume of the backorder or the next arrival of goods occurred by the Just in Time delivery of the final delivery stage between the manufacturer and the processing center is proposed. Through the optimization algorithms using the priority-based genetic algorithm and the hybrid genetic algorithm, the sub-optimal delivery routes are determined. Based on the case study of a distilling and sale company in Busan in Korea, the new model of the reusable reverse logistics of empty bottles is built and the effectiveness of the proposed method is verified.

  9. Future space transportation systems systems analysis study, phase 1 technical report

    Science.gov (United States)

    1975-01-01

    The requirements of projected space programs (1985-1995) for transportation vehicles more advanced than the space shuttle are discussed. Several future program options are described and their transportation needs are analyzed. Alternative systems approaches to meeting these needs are presented.

  10. Advanced materials for space nuclear power systems

    International Nuclear Information System (INIS)

    Titran, R.H.; Grobstein, T.L.

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications

  11. A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice

    Science.gov (United States)

    Sun, Hongbao; Liu, Hai; Wu, Yiyong

    2017-09-01

    We report a green and reusable surface-enhanced Raman scattering (SERS) film based on PMMA/Ag NPs/graphene. By using this Raman substrate, the SERS signals of R6G were significantly enhanced reaching a minimum detectable concentration of 5 × 10-8 M, due to having lots of hot spots adhered backside to the exposed graphene. The SERS film can be used for in-situ monitoring of trace thiram in apple juice with a detection limit of 1 × 10-6 M (0.24 ppm), which is below the maximal residue limit (MRL) of 7 ppm in fruit prescribed by the U.S. Environmental Protection Agency (EPA). Furthermore, reusability studies show that the SERS film can be used repeatedly. In addition, the graphene-enhanced SERS technique shows great potential applications for the in-situ detection and identification of pesticide residues in environmental water, fruits and vegetables.

  12. Space Shuttle Main Propulsion System Anomaly Detection: A Case Study

    Data.gov (United States)

    National Aeronautics and Space Administration — The space shuttle main engine (SSME) is part of the Main Propnlsion System (MPS) which is an extremely complex system containing several sub-systems and components,...

  13. The Lunar Space Tug: A sustainable bridge between low Earth orbits and the Cislunar Habitat

    Science.gov (United States)

    Mammarella, M.; Paissoni, C. A.; Viola, N.; Denaro, A.; Gargioli, E.; Massobrio, F.

    2017-09-01

    The International Space Station is the first space human outpost and over the last 15 years, it has represented a peculiar environment where science, technology and human innovation converge together in a unique microgravity and space research laboratory. With the International Space Station entering the second part of its life and its operations running steadily at nominal pace, the global space community is starting planning how the human exploration could move further, beyond Low-Earth-Orbit. According to the Global Exploration Roadmap, the Moon represents the next feasible path-way for advances in human exploration towards the nal goal, Mars. Based on the experience of the ISS, one of the most widespread ideas is to develop a Cislunar Station in preparation of long duration missions in a deep space environment. Cislunar space is de ned as the area of deep space under the influence of Earth-Moon system, including a set of special orbits, e.g. Earth-Moon Libration points and Lunar Retrograde Orbit. This habitat represents a suitable environment for demonstrating and testing technologies and capabilities in deep space. In order to achieve this goal, there are several crucial systems and technologies, in particular related to transportation and launch systems. The Orion Multi-Purpose Crew Vehicle is a reusable transportation capsule designed to provide crew transportation in deep space missions, whereas NASA is developing the Space Launch System, the most powerful rocket ever built, which could provide the necessary heavy-lift launch capability to support the same kind of missions. These innovations would allow quite-fast transfers from Earth to the Cislunar Station and vice versa, both for manned and unmanned missions. However, taking into account the whole Concept of Operations for both the growth and sustainability of the Cislunar Space Station, the Lunar Space Tug can be considered as an additional, new and fundamental element for the mission architecture. The

  14. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  15. SU-E-T-353: Effects of Time and Temperature On a Potential Reusable 3D Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Juang, T; Miles, D; Crockett, E [Medical Physics Graduate Program, Duke University Medical Center, Durham, NC (United States); Adamovics, J [Rider University, Skillman, NJ (United States); Oldham, M [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: Preliminary studies of a novel, optically-clearing PRESAGE 3D dosimeter formulation (Presage-RU) demonstrated potential reusability. This study investigates the effects of time and temperature on the accuracy and reusability of Presage-RU, and reports on progress toward developing a reusable 3D dosimeter. Methods: Presage-RU was cast as small volume samples (1×1×4.5cm). The effect of dose response sensitivity with reirradiation and time was evaluated by irradiating samples from 0–10Gy, measuring change in optical density (ΔOD), clearing at room temperature (RT) (5–7 days to fully clear), and then repeating for a total of 5 irradiations. Effects of heating on clearing rate were investigated by irradiating samples to 8Gy, then tracking measurements with samples held at RT, 35°C, and 45°C. Two cylindrical dosimeters (11cm diameter, 9.5cm length) were evaluated for dosimetric accuracy when stored at RT and −3°C prior to irradiation. Plans delivered were 2 overlapping AP fields (RT) and VMAT (-3°C). Results: Heating the dosimeters reduced the clearing half-life from 16.3h at RT to 5.8h (35°C) and 5.1h (45°C), but also increased background ΔOD by 1.7x (35°C) and 2.3x (45°C). Reductions in dose response were more closely linked to age than reirradiation, and storage at RT showed pronounced desensitization from dosimeter edges. These results suggest desensitization from oxygen diffusion. It should be noted that atmospheric diffusion into the dosimeter is not seen in standard, single-use PRESAGE, and is likely caused by differences in the Presage-RU polyurethane matrix. The dosimeter kept in cold storage, however, showed no evidence of desensitization and exhibited accuracy on par with standard PRESAGE with a 3%/3mm 3D gamma passing rate of 98.1%. Conclusions: Presage-RU is sensitive to storage temperatures and time, both of which affect oxygen diffusion and subsequent desensitization. Development shows promising progress with further formulation

  16. Alert-derivative bimodal space power and propulsion systems

    International Nuclear Information System (INIS)

    Houts, M.G.; Ranken, W.A.; Buksa, J.J.

    1994-01-01

    Safe, reliable, low-mass bimodal space power and propulsion systems could have numerous civilian and military applications. This paper discusses potential bimodal systems that could be derived from the ALERT space fission power supply concept. These bimodal concepts have the potential for providing 5 to 10 kW of electrical power and a total impulse of 100 MN-s at an average specific impulse of 770 s. System mass is on the order of 1000 kg

  17. Omicron space habitat—research stage II

    Science.gov (United States)

    Doule, Ondřej; Šálený, Vratislav; Hérin, Benoît; Rousek, Tomáš

    2012-01-01

    The design presented in this paper is in response to the revolution in private space activities, the increasing public interest in commercial flights to space and the utilization of structures such as space hotels or private orbital habitats. The baseline for the Omicron design concept is the Russian Salyut derived space station module. Salyut was the first space station to orbit the Earth. Its unique design and technical features were what made the development of space stations Salyut 1-7, MIR and the International Space Station (ISS) Zwezda service module possible. Due to its versatility and the reliable operating launch vehicle Proton, this space module series has the potential to be adapted for space hotel development. This paper proposes a conceptual design of the space habitat called Omicron, with particular focus on interior design for the microgravity environment. The Omicron concepts address the needs of space tourism with a strong emphasis on the safety and comfort of the spaceflight participants. The Omicron habitat supports three inhabitants in nominal conditions (e.g., two passengers and one astronaut). The habitat provides a flexible interior, facilities and spaces dynamically transforming in order to accommodate various types of activities, which will be performed in an organically formed interior supporting spatial orientation and movement in microgravity. The future development potential of Omicron is also considered. The baseline version is composed solely of one rigid module with an inverted cupola for observations. An alternative version offers more space using an inflatable structure. Finally, a combination of multiple Omicron modules enables the creation of a larger orbital habitat. The Omicron's subsystems support a few days visit by trained passengers. The transport to the habitat would be provided e.g., by the Soyuz TMA spacecraft carried by the Soyuz launch vehicle in the early stage of Omicron's development, before a fully reusable

  18. Approach to developing reliable space reactor power systems

    International Nuclear Information System (INIS)

    Mondt, J.F.; Shinbrot, C.H.

    1991-01-01

    The Space Reactor Power System Project is in the engineering development phase of a three-phase program. During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described in this paper along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top down systems approach which includes a point design based on a detailed technical specification of a 100 kW power system

  19. Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles.

  20. 8th symposium on space nuclear power systems

    International Nuclear Information System (INIS)

    Brandhorst, H. W.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems

  1. Three-dimensional oscillator and Coulomb systems reduced from Kaehler spaces

    International Nuclear Information System (INIS)

    Nersessian, Armen; Yeranyan, Armen

    2004-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kaehler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kaehler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kaehler one. Finally, we extend these results to the family of Kaehler spaces with conic singularities

  2. Massive Modularity of Space and Surface Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will conduct a systems level investigation of a modular design and operations approach for future NASA exploration systems. Particular emphasis will be...

  3. Human System Risk Management for Space Flight

    Science.gov (United States)

    Davis, Jeffrey

    2015-01-01

    This brief abstract reviews the development of the current day approach to human system risk management for space flight and the development of the critical components of this process over the past few years. The human system risk management process now provides a comprehensive assessment of each human system risk by design reference mission (DRM) and is evaluated not only for mission success but also for long-term health impacts for the astronauts. The discipline of bioastronautics is the study of the biological and medical effects of space flight on humans. In 1997, the Space Life Sciences Directorate (SLSD) initiated the Bioastronautics Roadmap (Roadmap) as the "Critical Path Roadmap", and in 1998 participation in the roadmap was expanded to include the National Space Biomedical Research Institute (NSBRI) and the external community. A total of 55 risks and 250 questions were identified and prioritized and in 2000, the Roadmap was base-lined and put under configuration control. The Roadmap took into account several major advisory committee reviews including the Institute of Medicine (IOM) "Safe Passage: Astronaut care for Exploration Missions", 2001. Subsequently, three collaborating organizations at NASA HQ (Chief Health and Medical Officer, Office of Space Flight and Office of Biological & Physical Research), published the Bioastronautics Strategy in 2003, that identified the human as a "critical subsystem of space flight" and noted that "tolerance limits and safe operating bands must be established" to enable human space flight. These offices also requested a review by the IOM of the Roadmap and that review was published in October 2005 as "A Risk Reduction Strategy for Human Exploration of Space: A Review of NASA's Bioastronautics Roadmap", that noted several strengths and weaknesses of the Roadmap and made several recommendations. In parallel with the development of the Roadmap, the Office of the Chief Health and Medical Officer (OCHMO) began a process in

  4. Systems Engineering and Integration (SE and I)

    Science.gov (United States)

    Chevers, ED; Haley, Sam

    1990-01-01

    The issue of technology advancement and future space transportation vehicles is addressed. The challenge is to develop systems which can be evolved and improved in small incremental steps where each increment reduces present cost, improves, reliability, or does neither but sets the stage for a second incremental upgrade that does. Future requirements are interface standards for commercial off the shelf products to aid in the development of integrated facilities; enhanced automated code generation system slightly coupled to specification and design documentation; modeling tools that support data flow analysis; and shared project data bases consisting of technical characteristics cast information, measurement parameters, and reusable software programs. Topics addressed include: advanced avionics development strategy; risk analysis and management; tool quality management; low cost avionics; cost estimation and benefits; computer aided software engineering; computer systems and software safety; system testability; and advanced avionics laboratories - and rapid prototyping. This presentation is represented by viewgraphs only.

  5. Development of space simulation / net-laboratory system

    Science.gov (United States)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  6. System security in the space flight operations center

    Science.gov (United States)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  7. Scalable and reusable emulator for evaluating the performance of SS7 networks

    Science.gov (United States)

    Lazar, Aurel A.; Tseng, Kent H.; Lim, Koon Seng; Choe, Winston

    1994-04-01

    A scalable and reusable emulator was designed and implemented for studying the behavior of SS7 networks. The emulator design was largely based on public domain software. It was developed on top of an environment supported by PVM, the Parallel Virtual Machine, and managed by OSIMIS-the OSI Management Information Service platform. The emulator runs on top of a commercially available ATM LAN interconnecting engineering workstations. As a case study for evaluating the emulator, the behavior of the Singapore National SS7 Network under fault and unbalanced loading conditions was investigated.

  8. Diaphragm Effect of Steel Space Roof Systems in Hall Structures

    Directory of Open Access Journals (Sweden)

    Mehmet FENKLİ

    2015-09-01

    Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively

  9. Coupled Aeroheating and Ablative Thermal Response Simulation Tool

    Data.gov (United States)

    National Aeronautics and Space Administration — The thermal protection system (TPS) performance requirements for atmospheric entry vehicles on current and future NASA missions preclude the use of heritage reusable...

  10. Reliability models for Space Station power system

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kim, Y.; Wagner, H.

    1987-01-01

    This paper presents a methodology for the reliability evaluation of Space Station power system. The two options considered are the photovoltaic system and the solar dynamic system. Reliability models for both of these options are described along with the methodology for calculating the reliability indices.

  11. Earth and space science information systems

    Energy Technology Data Exchange (ETDEWEB)

    Zygielbaum, A. (ed.) (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States))

    1993-01-01

    These proceedings represent papers presented at the Earth and Space Science Information Systems (ESSIS) Conference. The attendees included scientists and engineers across many disciplines. New trends in information organizations were reviewed. One hundred and twenty eight papers are included in this volume, out of these two have been abstracted for the Energy Science and Technology database. The topics covered in the papers range from Earth science and technology to astronomy and space, planetary science and education. (AIP)

  12. Transition From NASA Space Communication Systems to Commerical Communication Products

    Science.gov (United States)

    Ghazvinian, Farzad; Lindsey, William C.

    1994-01-01

    Transitioning from twenty-five years of space communication system architecting, engineering and development to creating and marketing of commercial communication system hardware and software products is no simple task for small, high-tech system engineering companies whose major source of revenue has been the U.S. Government. Yet, many small businesses are faced with this onerous and perplexing task. The purpose of this talk/paper is to present one small business (LinCom) approach to taking advantage of the systems engineering expertise and knowledge captured in physical neural networks and simulation software by supporting numerous National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) projects, e.g., Space Shuttle, TDRSS, Space Station, DCSC, Milstar, etc. The innovative ingredients needed for a systems house to transition to a wireless communication system products house that supports personal communication services and networks (PCS and PCN) development in a global economy will be discussed. Efficient methods for using past government sponsored space system research and development to transition to VLSI communication chip set products will be presented along with notions of how synergy between government and industry can be maintained to benefit both parties.

  13. Space-Ready Advanced Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  14. Space nuclear power systems, Part 2

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hoover, M.D.

    1992-01-01

    This volume, number two of three, contains the reviewed and edited papers were being presented at the Ninth Symposium in Albuquerque, New Mexico, 12--16 January 1992. The objective of the symposium, and hence these volumes, is to summarize the state of knowledge in the area of space nuclear power and propulsion and to provide a forum at which the most recent findings and important new developments can be presented and discussed. Topics included is this volume are: reactor and power systems control; thermionic energy conversion; space missions and power needs; key issues in nuclear and propulsion; nuclear thermal propulsion; manufacturing and processing; thermal management; space nuclear safety; and nuclear testing and production facilities

  15. Multi-User Space Link Extension (SLE) System

    Science.gov (United States)

    Perkins, Toby

    2013-01-01

    The Multi-User Space (MUS) Link Extension system, a software and data system, provides Space Link Extension (SLE) users with three space data transfer services in timely, complete, and offline modes as applicable according to standards defined by the Consultative Committee for Space Data Systems (CCSDS). MUS radically reduces the schedule, cost, and risk of implementing a new SLE user system, minimizes operating costs with a lights-out approach to SLE, and is designed to require no sustaining engineering expense during its lifetime unless changes in the CCSDS SLE standards, combined with new provider implementations, force changes. No software modification to MUS needs to be made to support a new mission. Any systems engineer with Linux experience can begin testing SLE user service instances with MUS starting from a personal computer (PC) within five days. For flight operators, MUS provides a familiar-looking Web page for entering SLE configuration data received from SLE. Operators can also use the Web page to back up a space mission's entire set of up to approximately 500 SLE service instances in less than five seconds, or to restore or transfer from another system the same amount of data from a MUS backup file in about the same amount of time. Missions operate each MUS SLE service instance independently by sending it MUS directives, which are legible, plain ASCII strings. MUS directives are usually (but not necessarily) sent through a TCP-IP (Transmission Control Protocol Internet Protocol) socket from a MOC (Mission Operations Center) or POCC (Payload Operations Control Center) system, under scripted control, during "lights-out" spacecraft operation. MUS permits the flight operations team to configure independently each of its data interfaces; not only commands and telemetry, but also MUS status messages to the MOC. Interfaces can use single- or multiple-client TCP/IP server sockets, TCP/IP client sockets, temporary disk files, the system log, or standard in

  16. A Sustainable, Reliable Mission-Systems Architecture that Supports a System of Systems Approach to Space Exploration

    Science.gov (United States)

    Watson, Steve; Orr, Jim; O'Neil, Graham

    2004-01-01

    A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.

  17. Dose measurements in space by the Hungarian Pille TLD system

    International Nuclear Information System (INIS)

    Apathy, I.; Deme, S.; Feher, I.; Akatov, Y.A.; Reitz, G.; Arkhanguelski, V.V.

    2002-01-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 μGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised

  18. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  19. Space information systems in the Space Station era; Proceedings of the AIAA/NASA International Symposium on Space Information Systems, Washington, DC and Greenbelt, MD, June 22, 23, 1987

    Science.gov (United States)

    Gerard, Mireille (Editor); Edwards, Pamela W. (Editor)

    1988-01-01

    Technological and planning issues for data management, processing, and communication on Space Station Freedom are discussed in reviews and reports by U.S., European, and Japanese experts. The space-information-system strategies of NASA, ESA, and NASDA are discussed; customer needs are analyzed; and particular attention is given to communication and data systems, standards and protocols, integrated system architectures, software and automation, and plans and approaches being developed on the basis of experience from past programs. Also included are the reports from workshop sessions on design to meet customer needs, the accommodation of growth and new technologies, and system interoperability.

  20. Air-Breathing Launch Vehicle Technology Being Developed

    Science.gov (United States)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  1. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight

    Science.gov (United States)

    Urzay, Javier

    2018-01-01

    Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.

  2. Computer aided system engineering for space construction

    Science.gov (United States)

    Racheli, Ugo

    1989-01-01

    This viewgraph presentation covers the following topics. Construction activities envisioned for the assembly of large platforms in space (as well as interplanetary spacecraft and bases on extraterrestrial surfaces) require computational tools that exceed the capability of conventional construction management programs. The Center for Space Construction is investigating the requirements for new computational tools and, at the same time, suggesting the expansion of graduate and undergraduate curricula to include proficiency in Computer Aided Engineering (CAE) though design courses and individual or team projects in advanced space systems design. In the center's research, special emphasis is placed on problems of constructability and of the interruptability of planned activity sequences to be carried out by crews operating under hostile environmental conditions. The departure point for the planned work is the acquisition of the MCAE I-DEAS software, developed by the Structural Dynamics Research Corporation (SDRC), and its expansion to the level of capability denoted by the acronym IDEAS**2 currently used for configuration maintenance on Space Station Freedom. In addition to improving proficiency in the use of I-DEAS and IDEAS**2, it is contemplated that new software modules will be developed to expand the architecture of IDEAS**2. Such modules will deal with those analyses that require the integration of a space platform's configuration with a breakdown of planned construction activities and with a failure modes analysis to support computer aided system engineering (CASE) applied to space construction.

  3. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  4. Note: reliable and reusable ultrahigh vacuum optical viewports.

    Science.gov (United States)

    Arora, P; Sen Gupta, A

    2012-04-01

    We report a simple technique for the realization of ultrahigh vacuum optical viewports. The technique relies on using specially designed thin copper knife-edges and using a thin layer of Vacseal(®) on tip of the knife-edges between the optical flat and the ConFlat(®) (CF) flange. The design of the windows is such that it gives uniform pressure on the flat without breaking it. The assembled window is a complete unit, which can be mounted directly onto a CF flange of the vacuum chamber. It can be removed and reused without breaking the window seal. The design is reliable as more than a dozen such windows have survived several bake out and cooling cycles and have been leak tested up to 10(-11) Torr l/s level with a commercial Helium leak detector. The advantages of this technique are ease of assembly and leak proof sealing that survives multiple temperature cycling making the windows reliable and reusable. © 2012 American Institute of Physics

  5. Reusable Solid Rocket Motor - V(RSRMV)Nozzle Forward Nose Ring Thermo-Structural Modeling

    Science.gov (United States)

    Clayton, J. Louie

    2012-01-01

    During the developmental static fire program for NASAs Reusable Solid Rocket Motor-V (RSRMV), an anomalous erosion condition appeared on the nozzle Carbon Cloth Phenolic nose ring that had not been observed in the space shuttle RSRM program. There were regions of augmented erosion located on the bottom of the forward nose ring (FNR) that measured nine tenths of an inch deeper than the surrounding material. Estimates of heating conditions for the RSRMV nozzle based on limited char and erosion data indicate that the total heat loading into the FNR, for the new five segment motor, is about 40-50% higher than the baseline shuttle RSRM nozzle FNR. Fault tree analysis of the augmented erosion condition has lead to a focus on a thermomechanical response of the material that is outside the existing experience base of shuttle CCP materials for this application. This paper provides a sensitivity study of the CCP material thermo-structural response subject to the design constraints and heating conditions unique to the RSRMV Forward Nose Ring application. Modeling techniques are based on 1-D thermal and porous media calculations where in-depth interlaminar loading conditions are calculated and compared to known capabilities at elevated temperatures. Parameters such as heat rate, in-depth pressures and temperature, degree of char, associated with initiation of the mechanical removal process are quantified and compared to a baseline thermo-chemical material removal mode. Conclusions regarding postulated material loss mechanisms are offered.

  6. Expert systems and advanced automation for space missions operations

    Science.gov (United States)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  7. A microfabricated gecko-inspired controllable and reusable dry adhesive

    International Nuclear Information System (INIS)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-01-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ′) of 8–16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ′, along with a large shear force of ∼78 kPa, approaching the 88–226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry. (paper)

  8. A microfabricated gecko-inspired controllable and reusable dry adhesive

    Science.gov (United States)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-02-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ‧) of 8-16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ‧, along with a large shear force of ˜78 kPa, approaching the 88-226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry.

  9. STARS - Supportability Trend Analysis and Reporting System for the National Space Transportation System

    Science.gov (United States)

    Graham, Leroy J.; Doempke, Gerald T.

    1990-01-01

    The concept, implementation, and long-range goals of a Supportability Trend Analysis and Reporting System (STARS) for the National Space Transportation System (NSTS) are discussed. The requirement was established as a direct result of the recommendations of the Rogers Commission investigation of the circumstances of the Space Shuttle Challenger accident. STARS outlines the requirements for the supportability-trend data collection, analysis, and reporting requirements that each of the project offices supporting the Space Shuttle are required to provide to the NSTS program office. STARS data give the historic and predictive logistics information necessary for all levels of NSTS management to make safe and cost-effective decisions concerning the smooth flow of Space Shuttle turnaround.

  10. Space station evolution: Planning for the future

    Science.gov (United States)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-06-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  11. Space station evolution: Planning for the future

    Science.gov (United States)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-01-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  12. Enabling autonomous control for space reactor power systems

    International Nuclear Information System (INIS)

    Wood, R. T.

    2006-01-01

    The application of nuclear reactors for space power and/or propulsion presents some unique challenges regarding the operations and control of the power system. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a space reactor power system (SRPS) employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. Thus, a SRPS control system must provide for operational autonomy. Oak Ridge National Laboratory (ORNL) has conducted an investigation of the state of the technology for autonomous control to determine the experience base in the nuclear power application domain, both for space and terrestrial use. It was found that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and basic control for a SRPS is clearly feasible under optimum circumstances. However, autonomous control is primarily intended to account for the non optimum circumstances when degradation, failure, and other off-normal events challenge the performance of the reactor and near-term human intervention is not possible. Thus, the development and demonstration of autonomous control capabilities for the specific domain of space nuclear power operations is needed. This paper will discuss the findings of the ORNL study and provide a description of the concept of autonomy, its key characteristics, and a prospective

  13. System resiliency quantification using non-state-space and state-space analytic models

    International Nuclear Information System (INIS)

    Ghosh, Rahul; Kim, DongSeong; Trivedi, Kishor S.

    2013-01-01

    Resiliency is becoming an important service attribute for large scale distributed systems and networks. Key problems in resiliency quantification are lack of consensus on the definition of resiliency and systematic approach to quantify system resiliency. In general, resiliency is defined as the ability of (system/person/organization) to recover/defy/resist from any shock, insult, or disturbance [1]. Many researchers interpret resiliency as a synonym for fault-tolerance and reliability/availability. However, effect of failure/repair on systems is already covered by reliability/availability measures and that of on individual jobs is well covered under the umbrella of performability [2] and task completion time analysis [3]. We use Laprie [4] and Simoncini [5]'s definition in which resiliency is the persistence of service delivery that can justifiably be trusted, when facing changes. The changes we are referring to here are beyond the envelope of system configurations already considered during system design, that is, beyond fault tolerance. In this paper, we outline a general approach for system resiliency quantification. Using examples of non-state-space and state-space stochastic models, we analytically–numerically quantify the resiliency of system performance, reliability, availability and performability measures w.r.t. structural and parametric changes

  14. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  15. Core Flight Software

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Core Flight Software (CFS) project purpose is to analyze applicability, and evolve and extend the reusability of the CFS system originally developed by...

  16. Space transportation systems within ESA programmes: Current status and perspectives

    Science.gov (United States)

    Delahais, Maurice

    1993-03-01

    An overview of the space transportation aspects of the ESA (European Space Agency) programs as they result from history, present status, and decisions taken at the ministerial level conference in Granada, Spain is presented. The new factors taken into consideration for the long term plan proposed in Munich, Germany, the three strategic options for the reorientation of the ESA long term plan, and the essential elements of space transportation in the Granada long term plan in three areas of space activities, scientific, and commercial launches with expendable launch vehicles, manned flight and in-orbit infrastructure, and future transportation systems are outlined. The new ESA long term plan, in the field of space transportation systems, constitutes a reorientation of the initial program contemplated in previous councils at ministerial level. It aims at balancing the new economic situation with the new avenues of cooperation, and the outcome will be a new implementation of the space transportation systems policy.

  17. The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1

    Science.gov (United States)

    Lee, S. C.

    1989-01-01

    The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.

  18. Reusability of coded data in the primary care electronic medical record : A dynamic cohort study concerning cancer diagnoses

    NARCIS (Netherlands)

    Sollie, Annet; Sijmons, Rolf H.; Helsper, Charles W.; Numans, Mattijs E.

    Objectives: To assess quality and reusability of coded cancer diagnoses in routine primary care data. To identify factors that influence data quality and areas for improvement. Methods: A dynamic cohort study in a Dutch network database containing 250,000 anonymized electronic medical records (EMRs)

  19. Reaction Control Engine for Space Launch Initiative

    Science.gov (United States)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  20. Value-informed space systems design and acquisition

    Science.gov (United States)

    Brathwaite, Joy

    Investments in space systems are substantial, indivisible, and irreversible, characteristics that make them high-risk, especially when coupled with an uncertain demand environment. Traditional approaches to system design and acquisition, derived from a performance- or cost-centric mindset, incorporate little information about the spacecraft in relation to its environment and its value to its stakeholders. These traditional approaches, while appropriate in stable environments, are ill-suited for the current, distinctly uncertain, and rapidly changing technical and economic conditions; as such, they have to be revisited and adapted to the present context. This thesis proposes that in uncertain environments, decision-making with respect to space system design and acquisition should be value-based, or at a minimum value-informed. This research advances the value-centric paradigm by providing the theoretical basis, foundational frameworks, and supporting analytical tools for value assessment of priced and unpriced space systems. For priced systems, stochastic models of the market environment and financial models of stakeholder preferences are developed and integrated with a spacecraft-sizing tool to assess the system's net present value. The analytical framework is applied to a case study of a communications satellite, with market, financial, and technical data obtained from the satellite operator, Intelsat. The case study investigates the implications of the value-centric versus the cost-centric design and acquisition choices. Results identify the ways in which value-optimal spacecraft design choices are contingent on both technical and market conditions, and that larger spacecraft for example, which reap economies of scale benefits, as reflected by their decreasing cost-per-transponder, are not always the best (most valuable) choices. Market conditions and technical constraints for which convergence occurs between design choices under a cost-centric and a value

  1. SPECIAL COLLOQUIUM : Building a Commercial Space Launch System and the Role of Space Tourism in the Future (exceptionally on Tuesday)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan

  2. Automation and Robotics for Space-Based Systems, 1991

    Science.gov (United States)

    Williams, Robert L., II (Editor)

    1992-01-01

    The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.

  3. Update of KSC activities for the space transportation system

    Science.gov (United States)

    Gray, R. H.

    1979-01-01

    The paper is a status report on the facilities and planned operations at the Kennedy Space Center (KSC) that will support Space Shuttle launches. The conversion of KSC facilities to support efficient and economical checkout and launch operations in the era of the Space Shuttle is nearing completion. The driving force behind the KSC effort has been the necessity of providing adequate and indispensable facilities and support systems at minimum cost. This required the optimum utilization of existing buildings, equipment and systems, both at KSC and at Air Force property on Cape Canaveral, as well as the construction of two major new facilities and several minor ones. The entirely new structures discussed are the Shuttle Landing Facility and Orbiter Processing Facility. KSC stands ready to provide the rapid reliable economical landing-to-launch processing needed to ensure the success of this new space transportation system.

  4. Comments on Current Space Systems Observing the Climate

    Science.gov (United States)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  5. Evolutionary growth for Space Station Freedom electrical power system

    Science.gov (United States)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  6. Development of laser weld monitoring system for PWR space grid

    International Nuclear Information System (INIS)

    Chung, Chin Man; Kim, Cheol Jung; Kim, Min Suk

    1998-06-01

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  7. Deep Space Network equipment performance, reliability, and operations management information system

    Science.gov (United States)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  8. A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway

    Science.gov (United States)

    2001-01-01

    A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway at Edwards Air Force Base, California, following its successful free-flight on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies.

  9. Path integral quantization of the Aharonov-Bohm-Coulomb system in momentum space

    International Nuclear Information System (INIS)

    Lin, De-Hone

    2001-01-01

    The Coulomb system with a charge moving in the fields of Ahanorov and Bohm is quantized via path integral in momentum space. Due to the dynamics of the system in momentum space being in curve space, our result not only gives the Green function of this interesting system in momentum space but provides the second example to answer an open problem of quantum dynamics in curved spaces posed by DeWitt in 1957: We find that the physical Hamiltonian in curved spaces does not contain the Riemannian scalar curvature R

  10. Collaboration support system for "Phobos-Soil" space mission.

    Science.gov (United States)

    Nazarov, V.; Nazirov, R.; Zakharov, A.

    2009-04-01

    Rapid development of communication facilities leads growth of interactions done via electronic means. However we can see some paradox in this segment in last times: Extending of communication facilities increases collaboration chaos. And it is very sensitive for space missions in general and scientific space mission particularly because effective decision of this task provides successful realization of the missions and promises increasing the ratio of functional characteristic and cost of mission at all. Resolving of this problem may be found by using respective modern technologies and methods which widely used in different branches and not in the space researches only. Such approaches as Social Networking, Web 2.0 and Enterprise 2.0 look most prospective in this context. The primary goal of the "Phobos-Soil" mission is an investigation of the Phobos which is the Martian moon and particularly its regolith, internal structure, peculiarities of the orbital and proper motion, as well as a number of different scientific measurements and experiments for investigation of the Martian environment. A lot of investigators involved in the mission. Effective collaboration system is key facility for information support of the mission therefore. Further to main goal: communication between users of the system, modern approaches allows using such capabilities as self-organizing community, user generated content, centralized and federative control of the system. Also it may have one unique possibility - knowledge management which is very important for space mission realization. Therefore collaboration support system for "Phobos-Soil" mission designed on the base of multilayer model which includes such levels as Communications, Announcement and Information, Data sharing and Knowledge management. The collaboration support system for "Phobos-Soil" mission will be used as prototype for prospective Russian scientific space missions and the presentation describes its architecture

  11. Thin film coatings for space electrical power system applications

    Science.gov (United States)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  12. System Engineering of Photonic Systems for Space Application

    Science.gov (United States)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  13. Immobilization in polyvinyl alcohol hydrogel enhances yeast storage stability and reusability of recombinant laccase-producing S-cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Herkommerová, Klára; Zemančíková, Jana; Sychrová, Hana; Antošová, Zuzana

    2018-01-01

    Roč. 40, č. 2 (2018), s. 405-411 ISSN 0141-5492 R&D Projects: GA TA ČR(CZ) TA01011461 Institutional support: RVO:67985823 Keywords : immobilization * laccase * LentiKats * polyvinyl alcohol hydrogel * reusability * storage stability * yeasts Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Industrial biotechnology Impact factor: 1.730, year: 2016

  14. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    Science.gov (United States)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.

  15. Space Shuttle solid rocket booster

    Science.gov (United States)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  16. Support interoperability and reusability of emerging forms of assessment: Some issues on integrating IMS LD with IMS QTI

    NARCIS (Netherlands)

    Miao, Yongwu; Boon, Jo; Van der Klink, Marcel; Sloep, Peter; Koper, Rob

    2009-01-01

    Miao, Y., Boon, J., Van der Klink, M., Sloep, P. B., & Koper, R. (2011). Support interoperability and reusability of emerging forms of assessment: Some issues on integrating IMS LD with IMS QTI. In F. Lazarinis, S. Green, & E. Pearson (Eds.), E-Learning Standards and Interoperability: Frameworks

  17. Modular Architecture for the Deep Space Habitat Instrumentation System

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is focused on developing a continually evolving modular backbone architecture for the Deep Space Habitat (DSH) instrumentation system by integrating new...

  18. Strut Attachment System for In-Space Robotic Assembly, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The size of space systems is currently limited to payload envelopes of existing launch vehicles. Due to this and the customized nature of satellites, existing space...

  19. Strut Attachment System for In-Space Robotic Assembly, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The size of space systems is currently limited to payload envelopes of existing launch vehicles. Due to this and the customized nature of satellites, existing space...

  20. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    Science.gov (United States)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.