WorldWideScience

Sample records for retrotransposon based molecular

  1. Full Length Research Paper LTR-retrotransposons-based molecular ...

    African Journals Online (AJOL)

    LTR-retrotransposons possess unique properties that make them appropriate for investigating relationships between closely related species and populations. The aim of the current study was to employ Ty1-copia group retrotransposons as molecular markers in cultivated Egyptian cottons, G. barbadense L. Restriction site ...

  2. LTR-retrotransposons-based molecular markers in cultivated ...

    African Journals Online (AJOL)

    GRACE

    2006-07-03

    Jul 3, 2006 ... LTR-retrotransposons represent a standard component of the Gossypium Genome (Zaki and Abdel Ghany,. 2003). The analysis of the molecular existence and distribution of ancient and active LTR-retrotransposons, therefore, provides a comprehensive evaluation of the evolutionary history of Gossypium.

  3. Retrotransposon-Based Molecular Markers for Analysis of Genetic Diversity within the Genus Linum

    Science.gov (United States)

    Melnikova, Nataliya V.; Kudryavtseva, Anna V.; Zelenin, Alexander V.; Lakunina, Valentina A.; Yurkevich, Olga Yu.; Speranskaya, Anna S.; Dmitriev, Alexey A.; Krinitsina, Anastasia A.; Belenikin, Maxim S.; Uroshlev, Leonid A.; Snezhkina, Anastasiya V.; Sadritdinova, Asiya F.; Koroban, Nadezda V.; Amosova, Alexandra V.; Samatadze, Tatiana E.; Guzenko, Elena V.; Lemesh, Valentina A.; Savilova, Anastasya M.; Rachinskaia, Olga A.; Kishlyan, Natalya V.; Rozhmina, Tatiana A.; Bolsheva, Nadezhda L.; Muravenko, Olga V.

    2014-01-01

    SSAP method was used to study the genetic diversity of 22 Linum species from sections Linum, Adenolinum, Dasylinum, Stellerolinum, and 46 flax cultivars. All the studied flax varieties were distinguished using SSAP for retrotransposons FL9 and FL11. Thus, the validity of SSAP method was demonstrated for flax marking, identification of accessions in genebank collections, and control during propagation of flax varieties. Polymorphism of Fl1a, Fl1b, and Cassandra insertions were very low in flax varieties, but these retrotransposons were successfully used for the investigation of Linum species. Species clusterization based on SSAP markers was in concordance with their taxonomic division into sections Dasylinum, Stellerolinum, Adenolinum, and Linum. All species of sect. Adenolinum clustered apart from species of sect. Linum. The data confirmed the accuracy of the separation in these sections. Members of section Linum are not as closely related as members of other sections, so taxonomic revision of this section is desirable. L. usitatissimum accessions genetically distant from modern flax cultivars were revealed in our work. These accessions are of utmost interest for flax breeding and introduction of new useful traits into flax cultivars. The chromosome localization of Cassandra retrotransposon in Linum species was determined. PMID:25243121

  4. Identification of SSR and retrotransposon-based molecular markers linked to morphological characters in oily sunfl ower (Helianthus annuus L.) under natural and water-limited states.

    Science.gov (United States)

    Ali, Soleimani Gezeljeh; Darvishzadeh, Reza; Ebrahimi, Asa; Bihamta, Mohammad Reza

    2018-03-01

    Sunflower is an important source of edible oil. Drought is known as an important factor limiting the growth and productivity of field crops in most parts of the world. Agricultural biotechnology mainly aims at developing crops with higher tolerance to the challenging environmental conditions, such as drought. This study examined a number of morphological characters, along with relative water content (RWC) in 100 inbred sunflower lines. A 10 × 10 simple lattice design with two replications was employed to measure the mentioned parameters under natural and water-limited states during two successive years. In molecular trial, 30 simple sequence repeat (SSR) primer pairs, as well as 14 inter-retrotransposon amplified polymorphism (IRAP) and 14 retrotransposon-microsatellite amplified polymorphism (REMAP) primer combinations were used for DNA fingerprinting of the lines. Most of the examined characters had lower average values under water-limited than natural states. Maximum and minimum reductions were observed in the cases of yield and oil percentage, respectively. The broad-sense heritabilities for all the examined characters were 0.20-0.73 and 0.10-0.34 under natural and water-limited states, respectively. In the studied samples, 8.97% of the 435 possible locus pairs of the SSRs represented significant linkage disequilibrium (LD) levels. In the association analysis using SSR markers, 22 and 21 markers were identified (P ≤ 0.05) for the studied characters under natural and water-limited states, respectively. The corresponding values were 50 and 37 using retrotransposon-based molecular markers. Some detected markers were communal between the characters under water-limited and natural states. This was in line with the phenotypic correlations detected between the characters. Communal markers facilitate the simultaneous selection of several characters and can thus improve the efficacy of selection based on markers in the plant-breeding activities.

  5. Prediction of retrotransposons and assessment of genetic variability based on developed retrotransposon-based insertion polymorphism (RBIP) markers in Pyrus L.

    Science.gov (United States)

    Jiang, Shuang; Zong, Yu; Yue, Xiaoyan; Postman, Joseph; Teng, Yuanwen; Cai, Danying

    2015-02-01

    Interspecific hybridization has been considered the major mode of evolution in Pyrus (pear), and thus, the genetic relationships within this genus have not been well documented. Retrotransposons are ubiquitous components of plant genomes and 42.4 % of the pear genome was reported to be long terminal repeat (LTR) retrotransposons, implying that retrotransposons might be significant in the evolution of Pyrus. In this study, 1,836 putative full-length LTR retrotransposons were isolated and 196 retrotransposon-based insertion polymorphism (RBIP) primers were developed, of which 24 pairs to the Ppcr1 subfamily of copia retrotransposons were used to analyze genetic diversity among 110 Pyrus accessions from Eurasia. Our results showed that Ppcr1 replicated many times in the development of cultivated Asian pears. The genetic structure analysis and the unweighted pair group method with arithmetic mean (UPGMA) dendrogram indicated that all accessions could be divided into Oriental and Occidental groups. In Oriental pears, wild pea pears clustered separately into independent groups in accordance with their morphological classifications. Cultivars of P. ussuriensis Maxim, P. pyrifolia Nakai, and P. pyrifolia Chinese white pear were mingled together, which inferred that hybridization events occurred during the development of the cultivated Asian pears. In Occidental pears, two clades were obtained in the UPGMA dendrogram in accordance with their geographical distribution; one contained the European species and the other included species from North Africa and West Asia. New findings in this study will be important to further understand the phylogeny of Pyrus and origins of cultivated pears.

  6. Transferability of retrotransposon primers derived from Persimmon (Diospyros kaki Thunb.) across other plant species.

    Science.gov (United States)

    Du, X Y; Hu, Q N; Zhang, Q L; Wang, Y B; Luo, Z R

    2013-06-06

    Retrotransposon-based molecular markers are powerful molecular tools. However, these markers are not readily available due to the difficulty in obtaining species-specific retrotransposon primers. Although recent techniques enabling the rapid isolation of retrotransposon sequences have facilitated primer development, this process nonetheless remains time-consuming and costly. Therefore, research into the transferability of retrotransposon primers developed from one plant species onto others would be of great value. The present study investigated the transferability of retrotransposon primers derived from 'Luotian-tianshi' persimmon (Diospyros kaki Thunb.) across other fruit crops, as well as within the genus using inter-retrotransposon amplified polymorphism molecular marker. Fourteen of the 26 retrotransposon primers tested (53.85%) produced robust and reproducible amplification products across all fruit crops tested, indicating their applicability across plant species. Four of the 13 fruit crops showed the best transferability performances: persimmon, grape, citrus, and peach. Furthermore, similarity coefficients and UPGMA clustering indicated that these primers could further offer a potential tool for germplasm differentiation, parentage identification, genetic diversity assessment, classification, and phylogenetic studies across a variety of plant species. Transferability was further confirmed by examining published primers derived from Rosaceae, Gramineae, and Solanaceae. This study is one of the few currently available studies concerning the transferability of retrotransposon primers across plant species in general, and is the first successful study of the transferability of retrotransposon primers derived from persimmon. The primers presented here will help reduce costs for future retrotransposon primer development and therefore contribute to the popularization of retrotransposon molecular markers.

  7. Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification.

    Science.gov (United States)

    Smýkal, Petr

    2006-01-01

    Fast and efficient DNA fingerprinting of crop cultivars and individuals is frequently used in both theoretical population genetics and in practical breeding. Numerous DNA marker technologies exist and the ratio of speed, cost and accuracy are of importance. Therefore even in species where highly accurate and polymorphic marker systems are available, such as microsatellite SSR (simple sequence repeats), also alternative methods may be of interest. Thanks to their high abundance and ubiquity, temporary mobile retrotransposable elements come into recent focus. Their properties, such as genome wide distribution and well-defined origin of individual insertions by descent, predetermine them for use as molecular markers. In this study, several Ty3-gypsy type retrotransposons have been developed and adopted for the inter-retrotransposon amplified polymorphism (IRAP) method, which is suitable for fast and efficient pea cultivar fingerprinting. The method can easily distinguish even between genetically closely related pea cultivars and provide high polymorphic information content (PIC) in a single PCR analysis.

  8. A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers

    Directory of Open Access Journals (Sweden)

    Palhares Alessandra C

    2012-06-01

    Full Text Available Abstract Background The development of sugarcane as a sustainable crop has unlimited applications. The crop is one of the most economically viable for renewable energy production, and CO2 balance. Linkage maps are valuable tools for understanding genetic and genomic organization, particularly in sugarcane due to its complex polyploid genome of multispecific origins. The overall objective of our study was to construct a novel sugarcane linkage map, compiling AFLP and EST-SSR markers, and to generate data on the distribution of markers anchored to sequences of scIvana_1, a complete sugarcane transposable element, and member of the Copia superfamily. Results The mapping population parents (‘IAC66-6’ and ‘TUC71-7’ contributed equally to polymorphisms, independent of marker type, and generated markers that were distributed into nearly the same number of co-segregation groups (or CGs. Bi-parentally inherited alleles provided the integration of 19 CGs. The marker number per CG ranged from two to 39. The total map length was 4,843.19 cM, with a marker density of 8.87 cM. Markers were assembled into 92 CGs that ranged in length from 1.14 to 404.72 cM, with an estimated average length of 52.64 cM. The greatest distance between two adjacent markers was 48.25 cM. The scIvana_1-based markers (56 were positioned on 21 CGs, but were not regularly distributed. Interestingly, the distance between adjacent scIvana_1-based markers was less than 5 cM, and was observed on five CGs, suggesting a clustered organization. Conclusions Results indicated the use of a NBS-profiling technique was efficient to develop retrotransposon-based markers in sugarcane. The simultaneous maximum-likelihood estimates of linkage and linkage phase based strategies confirmed the suitability of its approach to estimate linkage, and construct the linkage map. Interestingly, using our genetic data it was possible to calculate the number of retrotransposon scIvana_1 (~60

  9. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems.

    Science.gov (United States)

    Sharma, Vishakha; Nandineni, Madhusudan R

    2014-04-01

    Potato (Solanum tuberosum) is an important non-cereal crop throughout the world and is highly recommended for ensuring global food security. Owing to the complexities in genetics and inheritance pattern of potato, the conventional method of cross breeding for developing improved varieties has been difficult. Identification and tagging of desirable traits with informative molecular markers would aid in the development of improved varieties. Insertional polymorphism of copia-like and gypsy-like long terminal repeat retrotransposons (RTN) were investigated among 47 potato varieties from India using Inter-Retrotransposon Amplified Polymorphism (IRAP) and Retrotransposon Microsatellite Amplified Polymorphism (REMAP) marker techniques and were compared with the DNA profiles obtained with simple sequence repeats (SSRs). The genetic polymorphism, efficiency of polymorphism and effectiveness of marker systems were evaluated to assess the extent of genetic diversity among Indian potato varieties. A total of 139 polymorphic SSR alleles, 270 IRAP and 98 REMAP polymorphic bands, showing polymorphism of 100%, 87.9% and 68.5%, respectively, were used for detailed characterization of the genetic relationships among potato varieties by using cluster analysis and principal coordinate analysis (PCoA). IRAP analysis resulted in the highest number of polymorphic bands with an average of 15 polymorphic bands per assay unit when compared to the other two marker systems. Based on pair-wise comparison, the genetic similarity was calculated using Dice similarity coefficient. The SSRs showed a wide range in genetic similarity values (0.485-0.971) as compared to IRAP (0.69-0.911) and REMAP (0.713-0.947). A Mantel's matrix correspondence test showed a high positive correlation (r=0.6) between IRAP and REMAP, an intermediate value (r=0.58) for IRAP and SSR and the lowest value (r=0.17) for SSR and REMAP. Statistically significant cophenetic correlation coefficient values, of 0.961, 0.941 and 0

  10. Efficient DNA Fingerprinting Based on the Targeted Sequencing of Active Retrotransposon Insertion Sites Using a Bench-Top High-Throughput Sequencing Platform

    OpenAIRE

    Monden, Yuki; Yamamoto, Ayaka; Shindo, Akiko; Tahara, Makoto

    2014-01-01

    In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LI...

  11. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers.

    Science.gov (United States)

    Smýkal, P; Bačová-Kerteszová, N; Kalendar, R; Corander, J; Schulman, A H; Pavelek, M

    2011-05-01

    Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70-100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics.

  12. Identification of SSR and retrotransposon-based molecular markers ...

    Indian Academy of Sciences (India)

    SOLEIMANI GEZELJEH ALI

    2018-03-13

    Mar 13, 2018 ... A 10 × 10 simple lattice design with two replications was employed to measure the ..... was applied for the analysis population structure by using a software package of ... polygenic system (figures 1 and 2). The minimum, max-.

  13. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms

    Directory of Open Access Journals (Sweden)

    Tu Zhijian

    2008-08-01

    Full Text Available Abstract Background SINEs (Short INterspersed Elements are homoplasy-free and co-dominant genetic markers which are considered to represent useful tools for population genetic studies, and could help clarifying the speciation processes ongoing within the major malaria vector in Africa, Anopheles gambiae s.s. Here, we report the results of the analysis of the insertion polymorphism of a nearly 200 bp-long SINE (SINE200 within genome areas of high differentiation (i.e. "speciation islands" of M and S A. gambiae molecular forms. Methods A SINE-PCR approach was carried out on thirteen SINE200 insertions in M and S females collected along the whole range of distribution of A. gambiae s.s. in sub-Saharan Africa. Ten specimens each for Anopheles arabiensis, Anopheles melas, Anopheles quadriannulatus A and 15 M/S hybrids from laboratory crosses were also analysed. Results Eight loci were successfully amplified and were found to be specific for A. gambiae s.s.: 5 on 2L chromosome and one on X chromosome resulted monomorphic, while two loci positioned respectively on 2R (i.e. S200 2R12D and X (i.e. S200 X6.1 chromosomes were found to be polymorphic. S200 2R12D was homozygote for the insertion in most S-form samples, while intermediate levels of polymorphism were shown in M-form, resulting in an overall high degree of genetic differentiation between molecular forms (Fst = 0.46 p S200 X6.1 was found to be fixed in all M- and absent in all S-specimens. This led to develop a novel easy-to-use PCR approach to straightforwardly identify A. gambiae molecular forms. This novel approach allows to overcome the constraints associated with markers on the rDNA region commonly used for M and S identification. In fact, it is based on a single copy and irreversible SINE200 insertion and, thus, is not subjected to peculiar evolutionary patterns affecting rDNA markers, e.g. incomplete homogenization of the arrays through concerted evolution and/or mixtures of M and S IGS

  14. Drosophila: Retrotransposons Making up Telomeres.

    Science.gov (United States)

    Casacuberta, Elena

    2017-07-19

    Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.

  15. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins

    Science.gov (United States)

    Nikitin, Daniil; Penzar, Dmitry; Garazha, Andrew; Sorokin, Maxim; Tkachev, Victor; Borisov, Nicolas; Poltorak, Alexander; Prassolov, Vladimir; Buzdin, Anton A.

    2018-01-01

    Endogenous retroviruses and retrotransposons also termed retroelements (REs) are mobile genetic elements that were active until recently in human genome evolution. REs regulate gene expression by actively reshaping chromatin structure or by directly providing transcription factor binding sites (TFBSs). We aimed to identify molecular processes most deeply impacted by the REs in human cells at the level of TFBS regulation. By using ENCODE data, we identified ~2 million TFBS overlapping with putatively regulation-competent human REs located in 5-kb gene promoter neighborhood (~17% of all TFBS in promoter neighborhoods; ~9% of all RE-linked TFBS). Most of REs hosting TFBS were highly diverged repeats, and for the evolutionary young (0–8% diverged) elements we identified only ~7% of all RE-linked TFBS. The gene-specific distributions of RE-linked TFBS generally correlated with the distributions for all TFBS. However, several groups of molecular processes were highly enriched in the RE-linked TFBS regulation. They were strongly connected with the immunity and response to pathogens, with the negative regulation of gene transcription, ubiquitination, and protein degradation, extracellular matrix organization, regulation of STAT signaling, fatty acids metabolism, regulation of GTPase activity, protein targeting to Golgi, regulation of cell division and differentiation, development and functioning of perception organs and reproductive system. By contrast, the processes most weakly affected by the REs were linked with the conservative aspects of embryo development. We also identified differences in the regulation features by the younger and older fractions of the REs. The regulation by the older fraction of the REs was linked mainly with the immunity, cell adhesion, cAMP, IGF1R, Notch, Wnt, and integrin signaling, neuronal development, chondroitin sulfate and heparin metabolism, and endocytosis. The younger REs regulate other aspects of immunity, cell cycle progression and

  16. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins

    Directory of Open Access Journals (Sweden)

    Daniil Nikitin

    2018-01-01

    Full Text Available Endogenous retroviruses and retrotransposons also termed retroelements (REs are mobile genetic elements that were active until recently in human genome evolution. REs regulate gene expression by actively reshaping chromatin structure or by directly providing transcription factor binding sites (TFBSs. We aimed to identify molecular processes most deeply impacted by the REs in human cells at the level of TFBS regulation. By using ENCODE data, we identified ~2 million TFBS overlapping with putatively regulation-competent human REs located in 5-kb gene promoter neighborhood (~17% of all TFBS in promoter neighborhoods; ~9% of all RE-linked TFBS. Most of REs hosting TFBS were highly diverged repeats, and for the evolutionary young (0–8% diverged elements we identified only ~7% of all RE-linked TFBS. The gene-specific distributions of RE-linked TFBS generally correlated with the distributions for all TFBS. However, several groups of molecular processes were highly enriched in the RE-linked TFBS regulation. They were strongly connected with the immunity and response to pathogens, with the negative regulation of gene transcription, ubiquitination, and protein degradation, extracellular matrix organization, regulation of STAT signaling, fatty acids metabolism, regulation of GTPase activity, protein targeting to Golgi, regulation of cell division and differentiation, development and functioning of perception organs and reproductive system. By contrast, the processes most weakly affected by the REs were linked with the conservative aspects of embryo development. We also identified differences in the regulation features by the younger and older fractions of the REs. The regulation by the older fraction of the REs was linked mainly with the immunity, cell adhesion, cAMP, IGF1R, Notch, Wnt, and integrin signaling, neuronal development, chondroitin sulfate and heparin metabolism, and endocytosis. The younger REs regulate other aspects of immunity, cell cycle

  17. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation.

    Science.gov (United States)

    Kalendar, Ruslan; Antonius, Kristiina; Smýkal, Petr; Schulman, Alan H

    2010-11-01

    Molecular markers are essential in plant and animal breeding and biodiversity applications, in human forensics, and for map-based cloning of genes. The long terminal repeat (LTR) retrotransposons are well suited as molecular markers. As dispersed and ubiquitous transposable elements, their "copy and paste" life cycle of replicative transposition leads to new genome insertions without excision of the original element. Both the overall structure of retrotransposons and the domains responsible for the various phases of their replication are highly conserved in all eukaryotes. Nevertheless, up to a year has been required to develop a retrotransposon marker system in a new species, involving cloning and sequencing steps as well as the development of custom primers. Here, we describe a novel PCR-based method useful both as a marker system in its own right and for the rapid isolation of retrotransposon termini and full-length elements, making it ideal for "orphan crops" and other species with underdeveloped marker systems. The method, iPBS amplification, is based on the virtually universal presence of a tRNA complement as a reverse transcriptase primer binding site (PBS) in LTR retrotransposons. The method differs from earlier retrotransposon isolation methods because it is applicable not only to endogenous retroviruses and retroviruses, but also to both Gypsy and Copia LTR retrotransposons, as well as to non-autonomous LARD and TRIM elements, throughout the plant kingdom and to animals. Furthermore, the inter-PBS amplification technique as such has proved to be a powerful DNA fingerprinting technology without the need for prior sequence knowledge.

  18. PwRn1, a novel Ty3/gypsy-like retrotransposon of Paragonimus westermani: molecular characters and its differentially preserved mobile potential according to host chromosomal polyploidy

    Directory of Open Access Journals (Sweden)

    Kong Yoon

    2008-10-01

    Full Text Available Abstract Background Retrotransposons have been known to involve in the remodeling and evolution of host genome. These reverse transcribing elements, which show a complex evolutionary pathway with diverse intermediate forms, have been comprehensively analyzed from a wide range of host genomes, while the information remains limited to only a few species in the phylum Platyhelminthes. Results A LTR retrotransposon and its homologs with a strong phylogenetic affinity toward CsRn1 of Clonorchis sinensis were isolated from a trematode parasite Paragonimus westermani via a degenerate PCR method and from an insect species Anopheles gambiae by in silico analysis of the whole mosquito genome, respectively. These elements, designated PwRn1 and AgCR-1 – AgCR-14 conserved unique features including a t-RNATrp primer binding site and the unusual CHCC signature of Gag proteins. Their flanking LTRs displayed >97% nucleotide identities and thus, these elements were likely to have expanded recently in the trematode and insect genomes. They evolved heterogeneous expression strategies: a single fused ORF, two separate ORFs with an identical reading frame and two ORFs overlapped by -1 frameshifting. Phylogenetic analyses suggested that the elements with the separate ORFs had evolved from an ancestral form(s with the overlapped ORFs. The mobile potential of PwRn1 was likely to be maintained differentially in association with the karyotype of host genomes, as was examined by the presence/absence of intergenomic polymorphism and mRNA transcripts. Conclusion Our results on the structural diversity of CsRn1-like elements can provide a molecular tool to dissect a more detailed evolutionary episode of LTR retrotransposons. The PwRn1-associated genomic polymorphism, which is substantial in diploids, will also be informative in addressing genomic diversification following inter-/intra-specific hybridization in P. westermani populations.

  19. Isolation of two new retrotransposon sequences and development of molecular and cytological markers for Dasypyrum villosum (L.).

    Science.gov (United States)

    Zhang, Jie; Jiang, Yun; Xuan, Pu; Guo, Yuanlin; Deng, Guangbing; Yu, Maoqun; Long, Hai

    2017-10-01

    Dasypyrum villosum is a valuable genetic resource for wheat improvement. With the aim to efficiently monitor the D. villosum chromatin introduced into common wheat, two novel retrotransposon sequences were isolated by RAPD, and were successfully converted to D. villosum-specific SCAR markers. In addition, we constructed a chromosomal karyotype of D. villosum. Our results revealed that different accessions of D. villosum showed slightly different signal patterns, indicating that distribution of repeats did not diverge significantly among D. villosum accessions. The two SCAR markers and FISH karyotype of D. villosum could be used for efficient and precise identification of D. villosum chromatin in wheat breeding.

  20. Efficient DNA fingerprinting based on the targeted sequencing of active retrotransposon insertion sites using a bench-top high-throughput sequencing platform.

    Science.gov (United States)

    Monden, Yuki; Yamamoto, Ayaka; Shindo, Akiko; Tahara, Makoto

    2014-10-01

    In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LIb) in sweet potato. Using 38 cultivars, we identified 2,024 insertion sites in the two families with an Illumina MiSeq sequencing platform. Of these insertion sites, 91.4% appeared to be polymorphic among the cultivars and 376 cultivar-specific insertion sites were identified, which were converted directly into cultivar-specific sequence-characterized amplified region (SCAR) markers. A phylogenetic tree was constructed using these insertion sites, which corresponded well with known pedigree information, thereby indicating their suitability for genetic diversity studies. Thus, the genome-wide comparative analysis of active retrotransposon insertion sites using the bench-top MiSeq sequencing platform is highly effective for DNA fingerprinting without any requirement for whole genome sequence information. This approach may facilitate the development of practical polymerase chain reaction-based cultivar diagnostic system and could also be applied to the determination of genetic relationships. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  1. Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses.

    Science.gov (United States)

    Ustyantsev, Kirill; Novikova, Olga; Blinov, Alexander; Smyshlyaev, Georgy

    2015-05-01

    Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to retroviruses, many Ty3/Gypsy LTR retrotransposons harbor additional env-like genes, promoting concepts of the infective mode of these retrotransposons. Here, we provide a further line of evidence of similarity between retroviruses and some Ty3/Gypsy LTR retrotransposons. We identify that, together with their additional genes, plant Ty3/Gypsy LTR retrotransposons of the Tat group have a second RNH, as do retroviruses. Most importantly, we show that the resulting dual RNHs of Tat LTR retrotransposons and retroviruses emerged independently, providing strong evidence for their convergent evolution. The convergent resemblance of Tat LTR retrotransposons and retroviruses may indicate similar selection pressures acting on these diverse groups of elements and reveal potential evolutionary constraints on their structure. We speculate that dual RNH is required to accelerate retrotransposon evolution through increased rates of strand transfer events and subsequent recombination events. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns

    Directory of Open Access Journals (Sweden)

    Domingues Douglas S

    2012-04-01

    Full Text Available Abstract Background Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Results Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Conclusions Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.

  3. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants.

    Directory of Open Access Journals (Sweden)

    Sophie Lanciano

    2017-02-01

    Full Text Available Retrotransposons are mobile genetic elements abundant in plant and animal genomes. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or during development. Their level of transcription not reflecting their transposition ability, it is thus difficult to evaluate their contribution to the active mobilome. Here we applied a simple methodology based on the high throughput sequencing of extrachromosomal circular DNA (eccDNA forms of active retrotransposons to characterize the repertoire of mobile retrotransposons in plants. This method successfully identified known active retrotransposons in both Arabidopsis and rice material where the epigenome is destabilized. When applying mobilome-seq to developmental stages in wild type rice, we identified PopRice as a highly active retrotransposon producing eccDNA forms in the wild type endosperm. The mobilome-seq strategy opens new routes for the characterization of a yet unexplored fraction of plant genomes.

  4. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants.

    Science.gov (United States)

    Lanciano, Sophie; Carpentier, Marie-Christine; Llauro, Christel; Jobet, Edouard; Robakowska-Hyzorek, Dagmara; Lasserre, Eric; Ghesquière, Alain; Panaud, Olivier; Mirouze, Marie

    2017-02-01

    Retrotransposons are mobile genetic elements abundant in plant and animal genomes. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or during development. Their level of transcription not reflecting their transposition ability, it is thus difficult to evaluate their contribution to the active mobilome. Here we applied a simple methodology based on the high throughput sequencing of extrachromosomal circular DNA (eccDNA) forms of active retrotransposons to characterize the repertoire of mobile retrotransposons in plants. This method successfully identified known active retrotransposons in both Arabidopsis and rice material where the epigenome is destabilized. When applying mobilome-seq to developmental stages in wild type rice, we identified PopRice as a highly active retrotransposon producing eccDNA forms in the wild type endosperm. The mobilome-seq strategy opens new routes for the characterization of a yet unexplored fraction of plant genomes.

  5. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants

    OpenAIRE

    Lanciano, Sophie; Carpentier, M. C.; Llauro, C.; Jobet, E.; Robakowska-Hyzorek, D.; Lasserre, E.; Ghesquière, Alain; Panaud, O.; Mirouze, Marie

    2017-01-01

    Retrotransposons are mobile genetic elements abundant in plant and animal genomes. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or during development. Their level of transcription not reflecting their transposition ability, it is thus difficult to evaluate their contribution to the active mobilome. Here we applied a simple methodology based on the high throughput sequencing of extrachromosomal circular DNA (eccDNA) forms of active retrotransposon...

  6. Evolutionary characterization of Ty3/gypsy-like LTR retrotransposons in the parasitic cestode Echinococcus granulosus.

    Science.gov (United States)

    Bae, Young-An

    2016-11-01

    Cyclophyllidean cestodes including Echinococcus granulosus have a smaller genome and show characteristics such as loss of the gut, a segmented body plan, and accelerated growth rate in hosts compared with other tissue-invading helminths. In an effort to address the molecular mechanism relevant to genome shrinkage, the evolutionary status of long-terminal-repeat (LTR) retrotransposons, which are known as the most potent genomic modulators, was investigated in the E. granulosus draft genome. A majority of the E. granulosus LTR retrotransposons were classified into a novel characteristic clade, named Saci-2, of the Ty3/gypsy family, while the remaining elements belonged to the CsRn1 clade of identical family. Their nucleotide sequences were heavily corrupted by frequent base substitutions and segmental losses. The ceased mobile activity of the major retrotransposons and the following intrinsic DNA loss in their inactive progenies might have contributed to decrease in genome size. Apart from the degenerate copies, a gag gene originating from a CsRn1-like element exhibited substantial evidences suggesting its domestication including a preserved coding profile and transcriptional activity, the presence of syntenic orthologues in cestodes, and selective pressure acting on the gene. To my knowledge, the endogenized gag gene is reported for the first time in invertebrates, though its biological function remains elusive.

  7. New aspartic proteinase of Ulysses retrotransposon from Drosophila virilis.

    Science.gov (United States)

    Volkov, D A; Dergousova, N I; Rumsh, L D

    2004-06-01

    This work is focused on the investigation of a proteinase of Ulysses mobile genetic element from Drosophila virilis. The primary structure of this proteinase is suggested based on comparative analysis of amino acid sequences of aspartic proteinases from retroviruses and retrotransposons. The corresponding cDNA fragment has been cloned and expressed in E. coli. The protein accumulated in inclusion bodies. The recombinant protein (12 kD) was subjected to refolding and purified by affinity chromatography on pepstatin-agarose. Proteolytic activity of the protein was determined using oligopeptide substrates melittin and insulin B-chain. It was found that the maximum of the proteolytic activity is displayed at pH 5.5 as for the majority of aspartic proteinases. We observed that hydrolysis of B-chain of insulin was totally inhibited by pepstatin A in the micromolar concentration range. The molecular weight of the monomer of the Ulysses proteinase was determined by MALDI-TOF mass-spectrometry.

  8. LTR retrotransposons in fungi.

    Directory of Open Access Journals (Sweden)

    Anna Muszewska

    Full Text Available Transposable elements with long terminal direct repeats (LTR TEs are one of the best studied groups of mobile elements. They are ubiquitous elements present in almost all eukaryotic genomes. Their number and state of conservation can be a highlight of genome dynamics. We searched all published fungal genomes for LTR-containing retrotransposons, including both complete, functional elements and remnant copies. We identified a total of over 66,000 elements, all of which belong to the Ty1/Copia or Ty3/Gypsy superfamilies. Most of the detected Gypsy elements represent Chromoviridae, i.e. they carry a chromodomain in the pol ORF. We analyzed our data from a genome-ecology perspective, looking at the abundance of various types of LTR TEs in individual genomes and at the highest-copy element from each genome. The TE content is very variable among the analyzed genomes. Some genomes are very scarce in LTR TEs (8000 elements. The data shows that transposon expansions in fungi usually involve an increase both in the copy number of individual elements and in the number of element types. The majority of the highest-copy TEs from all genomes are Ty3/Gypsy transposons. Phylogenetic analysis of these elements suggests that TE expansions have appeared independently of each other, in distant genomes and at different taxonomical levels. We also analyzed the evolutionary relationships between protein domains encoded by the transposon pol ORF and we found that the protease is the fastest evolving domain whereas reverse transcriptase and RNase H evolve much slower and in correlation with each other.

  9. Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (Helianthus annuus) Genotypes.

    Science.gov (United States)

    Mascagni, Flavia; Barghini, Elena; Giordani, Tommaso; Rieseberg, Loren H; Cavallini, Andrea; Natali, Lucia

    2015-11-24

    The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes--7 wild accessions and 8 cultivars--of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Internal validation of two new retrotransposons-based kits (InnoQuant® HY and InnoTyper® 21) at a forensic lab.

    Science.gov (United States)

    Martins, Cátia; Ferreira, Paulo Miguel; Carvalho, Raquel; Costa, Sandra Cristina; Farinha, Carlos; Azevedo, Luísa; Amorim, António; Oliveira, Manuela

    2018-02-01

    Obtaining a genetic profile from pieces of evidence collected at a crime scene is the primary objective of forensic laboratories. New procedures, methods, kits, software or equipment must be carefully evaluated and validated before its implementation. The constant development of new methodologies for DNA testing leads to a steady process of validation, which consists of demonstrating that the technology is robust, reproducible, and reliable throughout a defined range of conditions. The present work aims to internally validate two new retrotransposon-based kits (InnoQuant ® HY and InnoTyper ® 21), under the working conditions of the Laboratório de Polícia Científica da Polícia Judiciária (LPC-PJ). For the internal validation of InnoQuant ® HY and InnoTyper ® 21 sensitivity, repeatability, reproducibility, and mixture tests and a concordance study between these new kits and those currently in use at LPC-PJ (Quantifiler ® Duo and GlobalFiler™) were performed. The results obtained for sensitivity, repeatability, and reproducibility tests demonstrated that both InnoQuant ® HY and InnoTyper ® 21 are robust, reproducible, and reliable. The results of the concordance studies demonstrate that InnoQuant ® HY produced quantification results in nearly 29% more than Quantifiler ® Duo (indicating that this new kit is more effective in challenging samples), while the differences observed between InnoTyper ® 21 and GlobalFiler™ are not significant. Therefore, the utility of InnoTyper ® 21 has been proven, especially by the successful amplification of a greater number of complete genetic profiles (27 vs. 21). The results herein presented allowed the internal validation of both InnoQuant ® HY and InnoTyper ® 21, and their implementation in the LPC-PJ laboratory routine for the treatment of challenging samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Plant centromeric retrotransposons: a structural and cytogenetic perspective

    Czech Academy of Sciences Publication Activity Database

    Neumann, Pavel; Navrátilová, Alice; Koblížková, Andrea; Kejnovský, Eduard; Hřibová, Eva; Hobza, Roman; Widmer, A.; Doležel, Jaroslav; Macas, Jiří

    2011-01-01

    Roč. 2, č. 4 (2011), s. 1-16 ISSN 1759-8753 R&D Projects: GA AV ČR KJB500960802; GA MŠk(CZ) LC06004; GA ČR GA522/09/0083 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z50380511 Keywords : plant chromosomes * retrotransposons * cytogenetic perspective Subject RIV: EB - Genetics ; Molecular Biology

  12. Nanoplatform-based molecular imaging

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2011-01-01

    "Nanoplathform-Based Molecular Imaging provides rationale for using nanoparticle-based probes for molecular imaging, then discusses general strategies for this underutilized, yet promising, technology...

  13. Stress-induced rearrangement of Fusarium retrotransposon sequences.

    Science.gov (United States)

    Anaya, N; Roncero, M I

    1996-11-27

    Rearrangement of fusarium oxysporum retrotransposon skippy was induced by growth in the presence of potassium chlorate. Three fungal strains, one sensitive to chlorate (Co60) and two resistant to chlorate and deficient for nitrate reductase (Co65 and Co94), were studied by Southern analysis of their genomic DNA. Polymorphism was detected in their hybridization banding pattern, relative to the wild type grown in the absence of chlorate, using various enzymes with or without restriction sites within the retrotransposon. Results were consistent with the assumption that three different events had occurred in strain Co60: genomic amplification of skippy yielding tandem arrays of the element, generation of new skippy sequences, and deletion of skippy sequences. Amplification of Co60 genomic DNA using the polymerase chain reaction and divergent primers derived from the retrotransposon generated a new band, corresponding to one long terminal repeat plus flanking sequences, that was not present in the wild-type strain. Molecular analysis of nitrate reductase-deficient mutants showed that generation and deletion of skippy sequences, but not genomic amplification in tandem repeats, had occurred in their genomes.

  14. Evolutionary genomics revealed interkingdom distribution of Tcn1-like chromodomain-containing Gypsy LTR retrotransposons among fungi and plants

    Directory of Open Access Journals (Sweden)

    Blinov Alexander

    2010-04-01

    Full Text Available Abstract Background Chromodomain-containing Gypsy LTR retrotransposons or chromoviruses are widely distributed among eukaryotes and have been found in plants, fungi and vertebrates. The previous comprehensive survey of chromoviruses from mosses (Bryophyta suggested that genomes of non-seed plants contain the clade which is closely related to the retrotransposons from fungi. The origin, distribution and evolutionary history of this clade remained unclear mainly due to the absence of information concerning the diversity and distribution of LTR retrotransposons in other groups of non-seed plants as well as in fungal genomes. Results In present study we preformed in silico analysis of chromodomain-containing LTR retrotransposons in 25 diverse fungi and a number of plant species including spikemoss Selaginella moellendorffii (Lycopodiophyta coupled with an experimental survey of chromodomain-containing Gypsy LTR retrotransposons from diverse non-seed vascular plants (lycophytes, ferns, and horsetails. Our mining of Gypsy LTR retrotransposons in genomic sequences allowed identification of numerous families which have not been described previously in fungi. Two new well-supported clades, Galahad and Mordred, as well as several other previously unknown lineages of chromodomain-containing Gypsy LTR retrotransposons were described based on the results of PCR-mediated survey of LTR retrotransposon fragments from ferns, horsetails and lycophytes. It appeared that one of the clades, namely Tcn1 clade, was present in basidiomycetes and non-seed plants including mosses (Bryophyta and lycophytes (genus Selaginella. Conclusions The interkingdom distribution is not typical for chromodomain-containing LTR retrotransposons clades which are usually very specific for a particular taxonomic group. Tcn1-like LTR retrotransposons from fungi and non-seed plants demonstrated high similarity to each other which can be explained by strong selective constraints and the

  15. The role of retrotransposons in gene family expansions in the human and mouse genomes

    Czech Academy of Sciences Publication Activity Database

    Janoušek, Václav; Laukaitis, C. M.; Yanchukov, Alexey; Karn, R. C.

    2016-01-01

    Roč. 8, č. 9 (2016), s. 2632-2650 ISSN 1759-6653 R&D Projects: GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 Keywords : gene families * transposable elements * retrotransposons * LINE * LTR * SINE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.979, year: 2016

  16. A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons

    Czech Academy of Sciences Publication Activity Database

    Steinbauerová, Veronika; Neumann, Pavel; Novák, Petr; Macas, Jiří

    2011-01-01

    Roč. 139, 11-12 (2011), s. 1543-1555 ISSN 0016-6707 Institutional research plan: CEZ:AV0Z50510513 Keywords : Additional ORFs * LTR retrotransposons * Repetitive DNA * Plant genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.148, year: 2011

  17. LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome

    Czech Academy of Sciences Publication Activity Database

    Barghini, E.; Natali, L.; Giordani, T.; Cossu, R.M.; Scalabrin, S.; Cattonaro, F.; Šimková, Hana; Vrána, Jan; Doležel, Jaroslav; Morgante, M.; Cavallini, A.

    2015-01-01

    Roč. 22, č. 1 (2015), s. 91-100 ISSN 1340-2838 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : LTR retrotransposons * next-generation sequencing * olive Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.267, year: 2015

  18. Retrotransposon Domestication and Control in Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Marek Malicki

    2017-10-01

    Full Text Available Transposable elements, identified in all eukaryotes, are mobile genetic units that can change their genomic position. Transposons usually employ an excision and reintegration mechanism, by which they change position, but not copy number. In contrast, retrotransposons amplify via RNA intermediates, increasing their genomic copy number. Hence, they represent a particular threat to the structural and informational integrity of the invaded genome. The social amoeba Dictyostelium discoideum, model organism of the evolutionary Amoebozoa supergroup, features a haploid, gene-dense genome that offers limited space for damage-free transposition. Several of its contemporary retrotransposons display intrinsic integration preferences, for example by inserting next to transfer RNA genes or other retroelements. Likely, any retrotransposons that invaded the genome of the amoeba in a non-directed manner were lost during evolution, as this would result in decreased fitness of the organism. Thus, the positional preference of the Dictyostelium retroelements might represent a domestication of the selfish elements. Likewise, the reduced danger of such domesticated transposable elements led to their accumulation, and they represent about 10% of the current genome of D. discoideum. To prevent the uncontrolled spreading of retrotransposons, the amoeba employs control mechanisms including RNA interference and heterochromatization. Here, we review TRE5-A, DIRS-1 and Skipper-1, as representatives of the three retrotransposon classes in D. discoideum, which make up 5.7% of the Dictyostelium genome. We compile open questions with respect to their mobility and cellular regulation, and suggest strategies, how these questions might be addressed experimentally.

  19. [Ulysses retrotransposon aspartate proteinase (Drosophila virilis)].

    Science.gov (United States)

    Volkov, D A; Savvateeva, L V; Dergousova, N I; Rumsh, L D

    2002-01-01

    Retrotransposones are mobile genetic elements occurring in genomes of bacteria, plants or animals. Retrotransposones were found to contain nucleotide sequences encoding proteins which are homological to retroviral aspartic proteinases. Our research has been focused on Ulysses which is mobile genetic element found in Drosophila virilis. We suggested a primary structure of Ulysses proteinase using comparative analysis of amino acid sequences of retroviral proteinases and proteinases from retrotransposones. The appropriate cDNA fragment has been cloned and expressed in E. coli. The purification of recombinant protein (12 kD) has been carried out by affinity chromatography using pepstatine-agarose. The obtained protein has proteolytic activity at optimum pH 5.5 like the majority of aspartic proteinases.

  20. PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster.

    Science.gov (United States)

    Rocheta, Margarida; Cordeiro, Jorge; Oliveira, M; Miguel, Célia

    2007-02-01

    We have isolated and characterized a complete retrotransposon sequence, named PpRT1, from the genome of Pinus pinaster. PpRT1 is 5,966 bp long and is closely related to IFG7 gypsy retrotransposon from Pinus radiata. The long terminal repeats (LTRs) have 333 bp each and show a 5.4% sequence divergence between them. In addition to the characteristic polypurine tract (PPT) and the primer binding site (PBS), PpRT1 carries internal regions with homology to retroviral genes gag and pol. The pol region contains sequence motifs related to the enzymes protease, reverse transcriptase, RNAseH and integrase in the same typical order known for Ty3/gypsy-like retrotransposons. PpRT1 was extended from an EST database sequence indicating that its transcription is occurring in pine tissues. Southern blot analyses indicate however, that PpRT1 is present in a unique or a low number of copies in the P. pinaster genome. The differences in nucleotide sequence found between PpRT1 and IFG7 may explain the strikingly different copy number in the two pine species genome. Based on the homologies observed when comparing LTR region among different gypsy elements we propose that the highly conserved LTR regions may be useful to amplify other retrotransposon sequences of the same or close retrotransposon family.

  1. Retrotransposons and non-protein coding RNAs

    DEFF Research Database (Denmark)

    Mourier, Tobias; Willerslev, Eske

    2009-01-01

    does not merely represent spurious transcription. We review examples of functional RNAs transcribed from retrotransposons, and address the collection of non-protein coding RNAs derived from transposable element sequences, including numerous human microRNAs and the neuronal BC RNAs. Finally, we review...

  2. Citrus and Prunuscopia-like retrotransposons.

    Science.gov (United States)

    Asíns, M J; Monforte, A J; Mestre, P F; Carbonell, E A

    1999-08-01

    Many of the world's most important citrus cultivars ("Washington Navel", satsumas, clementines) have arisen through somatic mutation. This phenomenon occurs fairly often in the various species and varieties of the genus.The presence of copia-like retrotransposons has been investigated in fruit trees, especially citrus, by using a PCR assay designed to detect copia-like reverse transcriptase (RT) sequences. Amplification products from a genotype of each the following species Citrus sinensis, Citrus grandis, Citrus clementina, Prunus armeniaca and Prunus amygdalus, were cloned and some of them sequenced. Southern-blot hybridization using RT clones as probes showed that multiple copies are integrated throughout the citrus genome, while only 1-3 copies are detected in the P. armeniaca genome, which is in accordance with the Citrus and Prunus genome sizes. Sequence analysis of RT clones allowed a search for homologous sequences within three gene banks. The most similar ones correspond to RT domains of copia-like retrotransposons from unrelated plant species. Cluster analysis of these sequences has shown a great heterogeneity among RT domains cloned from the same genotype. This finding supports the hypothesis that horizontal transmission of retrotransposons has occurred in the past. The species presenting a RT sequence most similar to citrus RT clones is Gnetum montanum, a gymnosperm whose distribution area coincides with two of the main centers of origin of Citrus spp. A new C-methylated restriction DNA fragment containing a RT sequence is present in navel sweet oranges, but not in Valencia oranges from which the former originated suggesting, that retrotransposon activity might be, at least in part, involved in the genetic variability among sweet orange cultivars. Given that retrotransposons are quite abundant throughout the citrus genome, their activity should be investigated thoroughly before commercializing any transgenic citrus plant where the transgene(s) is part

  3. Polypeptides Based Molecular Electronics

    National Research Council Canada - National Science Library

    Lam, Yeng M; Mhaisalkar, Subodh; Li, Lain-Jong; Dravid, Vinayak P; Shekhawat, Gajendra S; Suri, Raman

    2008-01-01

    ... the formation of molecular devices such as transistors, diodes, and sensors. We have designed the peptides, arranged them on substrates using self-assembly, Dip-PEN nanolithography, and also e-beam assisted lithography...

  4. Retrotransposon Targeting of Tumor Cells

    National Research Council Canada - National Science Library

    Wu, Dongdong; DeVaux, George

    2005-01-01

    .... Cancer gene therapy techniques include oncogene inactivation, tumor suppressor gene replacement, inhibition of angiogenesis, immunopotentiation, molecular chemotherapy, and transfer of drug resistance genes...

  5. Retrotransposon Proliferation Coincident with the Evolution of Dioecy in Asparagus.

    Science.gov (United States)

    Harkess, Alex; Mercati, Francesco; Abbate, Loredana; McKain, Michael; Pires, J Chris; Sala, Tea; Sunseri, Francesco; Falavigna, Agostino; Leebens-Mack, Jim

    2016-09-08

    Current phylogenetic sampling reveals that dioecy and an XY sex chromosome pair evolved once, or possibly twice, in the genus Asparagus Although there appear to be some lineage-specific polyploidization events, the base chromosome number of 2n = 2× = 20 is relatively conserved across the Asparagus genus. Regardless, dioecious species tend to have larger genomes than hermaphroditic species. Here, we test whether this genome size expansion in dioecious species is related to a polyploidization and subsequent chromosome fusion, or to retrotransposon proliferation in dioecious species. We first estimate genome sizes, or use published values, for four hermaphrodites and four dioecious species distributed across the phylogeny, and show that dioecious species typically have larger genomes than hermaphroditic species. Utilizing a phylogenomic approach, we find no evidence for ancient polyploidization contributing to increased genome sizes of sampled dioecious species. We do find support for an ancient whole genome duplication (WGD) event predating the diversification of the Asparagus genus. Repetitive DNA content of the four hermaphroditic and four dioecious species was characterized based on randomly sampled whole genome shotgun sequencing, and common elements were annotated. Across our broad phylogenetic sampling, Ty-1 Copia retroelements, in particular, have undergone a marked proliferation in dioecious species. In the absence of a detectable WGD event, retrotransposon proliferation is the most likely explanation for the precipitous increase in genome size in dioecious Asparagus species. Copyright © 2016 Harkess et al.

  6. Retrotransposon-associated long non-coding RNAs in mice and men

    Czech Academy of Sciences Publication Activity Database

    Ganesh, Sravya; Svoboda, Petr

    2016-01-01

    Roč. 468, č. 6 (2016), s. 1049-1060 ISSN 0031-6768 R&D Projects: GA ČR(CZ) GBP305/12/G034; GA MŠk LO1419 EU Projects: European Commission 647403; European Commission 607720 Institutional support: RVO:68378050 Keywords : lncRNA * Retrotransposon * line * sine * ltr * MaLR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.156, year: 2016

  7. Identification and chromosomal localization of the monkey retrotransposon in Mesa sp

    Czech Academy of Sciences Publication Activity Database

    Balint-Kurti, P.; Clendennen, S.; Doleželová, Marie; Valárik, Miroslav; Doležel, Jaroslav; Beetham, G. M.

    2000-01-01

    Roč. 263, č. 6 (2000), s. 908-915 ISSN 0026-8925 R&D Projects: GA ČR GV521/96/K117; GA AV ČR IAA5020803; GA MŠk ME 376 Institutional research plan: CEZ:AV0Z5038910 Keywords : In situ hybridization * chromosomal localization * monkey retrotransposon Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.462, year: 2000

  8. Envelope-like retrotransposons in the plant kingdom: evidence of their presence in gymnosperms (Pinus pinaster).

    Science.gov (United States)

    Miguel, Célia; Simões, Marta; Oliveira, Maria Margarida; Rocheta, Margarida

    2008-11-01

    Retroviruses differ from retrotransposons due to their infective capacity, which depends critically on the encoded envelope. Some plant retroelements contain domains reminiscent of the env of animal retroviruses but the number of such elements described to date is restricted to angiosperms. We show here the first evidence of the presence of putative env-like gene sequences in a gymnosperm species, Pinus pinaster (maritime pine). Using a degenerate primer approach for conserved domains of RNaseH gene, three clones from putative envelope-like retrotransposons (PpRT2, PpRT3, and PpRT4) were identified. The env-like sequences of P. pinaster clones are predicted to encode proteins with transmembrane domains. These sequences showed identity scores of up to 30% with env-like sequences belonging to different organisms. A phylogenetic analysis based on protein alignment of deduced aminoacid sequences revealed that these clones clustered with env-containing plant retrotransposons, as well as with retrotransposons from invertebrate organisms. The differences found among the sequences of maritime pine clones isolated here suggest the existence of different putative classes of env-like retroelements. The identification for the first time of env-like genes in a gymnosperm species may support the ancestrality of retroviruses among plants shedding light on their role in plant evolution.

  9. [Non-LTR retrotransposons: LINEs and SINEs in plant genome].

    Science.gov (United States)

    Cheng, Xu-Dong; Ling, Hong-Qing

    2006-06-01

    Retrotransposons are one of the drivers of genome evolution. They include LTR (long terminal repeat) retrotransposons, which widespread in Eukaryotagenomes, show structural similarity to retroviruses. Non-LTR retrotransposons were first discovered in animal genomes and then identified as ubiquitous components of nuclear genomes in many species across the plant kingdom. They constitute a large fraction of the repetitive DNA. Non-LTR retrotransposons are divided into LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements). Transposition of non-LTR retrotransposons is rarely observed in plants indicating that most of them are inactive and/or under regulation of the host genome. Transposition is poorly understood, but experimental evidence from other genetic systems shows that LINEs are able to transpose autonomously while non-autonomous SINEs depend on the reverse transcription machinery of other retrotransposons. Phylogenic analysis shows LINEs are probably the most ancient class of retrotransposons in plant genomes, while the origin of SINEs is unknown. This review sums up the above data and wants to show readers a clear picture of non-LTR retrotransposons.

  10. Copia and Gypsy retrotransposons activity in sunflower (Helianthus annuus L.)

    Science.gov (United States)

    2009-01-01

    Background Retrotransposons are heterogeneous sequences, widespread in eukaryotic genomes, which refer to the so-called mobile DNA. They resemble retroviruses, both in their structure and for their ability to transpose within the host genome, of which they make up a considerable portion. Copia- and Gypsy-like retrotransposons are the two main classes of retroelements shown to be ubiquitous in plant genomes. Ideally, the retrotransposons life cycle results in the synthesis of a messenger RNA and then self-encoded proteins to process retrotransposon mRNA in double stranded extra-chromosomal cDNA copies which may integrate in new chromosomal locations. Results The RT-PCR and IRAP protocol were applied to detect the presence of Copia and Gypsy retrotransposon transcripts and of new events of integration in unstressed plants of a sunflower (Helianthus annuus L.) selfed line. Results show that in sunflower retrotransposons transcription occurs in all analyzed organs (embryos, leaves, roots, and flowers). In one out of sixty-four individuals analyzed, retrotransposons transcription resulted in the integration of a new element into the genome. Conclusion These results indicate that the retrotransposon life cycle is firmly controlled at a post transcriptional level. A possible silencing mechanism is discussed. PMID:20030800

  11. The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes.

    Science.gov (United States)

    Richardson, Sandra R; Doucet, Aurélien J; Kopera, Huira C; Moldovan, John B; Garcia-Perez, José Luis; Moran, John V

    2015-04-01

    Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.

  12. Identification of retrotransposon-like sequences in Iranian river buffalo

    African Journals Online (AJOL)

    ONOS

    2010-03-29

    % of a genome (Waterston et al., 2002). Mobile elements can be divided into two classes: Class I includes retrotransposons and class II includes DNA tran- sposons ... including dog, cat, horse, cattle, donkey, kangaroo, etc.

  13. Retrotransposons as regulators of gene expression.

    Science.gov (United States)

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms. Copyright © 2016, American Association for the Advancement of Science.

  14. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes.

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Rai

    2017-12-01

    Full Text Available Retroviruses and Long Terminal Repeat (LTR-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.

  15. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes.

    Science.gov (United States)

    Rai, Sudhir Kumar; Sangesland, Maya; Lee, Michael; Esnault, Caroline; Cui, Yujin; Chatterjee, Atreyi Ghatak; Levin, Henry L

    2017-12-01

    Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.

  16. Different histories of two highly variable LTR retrotransposons in sunflower species.

    Science.gov (United States)

    Mascagni, Flavia; Cavallini, Andrea; Giordani, Tommaso; Natali, Lucia

    2017-11-15

    In the Helianthus genus, very large intra- and interspecific variability related to two specific retrotransposons of Helianthus annuus (Helicopia and SURE) exists. When comparing these two sequences to sunflower sequence databases recently produced by our lab, the Helicopia family was shown to belong to the Maximus/SIRE lineage of the Sirevirus genus of the Copia superfamily, whereas the SURE element (whose superfamily was not even previously identified) was classified as a Gypsy element of the Ogre/Tat lineage of the Metavirus genus. Bioinformatic analysis of the two retrotransposon families revealed their genomic abundance and relative proliferation timing. The genomic abundance of these families differed significantly among 12 Helianthus species. The ratio between the abundance of long terminal repeats and their reverse transcriptases suggested that the SURE family has relatively more solo long terminal repeats than does Helicopia. Pairwise comparisons of Illumina reads encoding the reverse transcriptase domain indicated that SURE amplification may have occurred more recently than that of Helicopia. Finally, the analysis of population structure based on the SURE and Helicopia polymorphisms of 32 Helianthus species evidenced two subpopulations, which roughly corresponded to species of the Helianthus and Divaricati/Ciliares sections. However, a number of species showed an admixed structure, confirming the importance of interspecific hybridisation in the evolution of this genus. In general, these two retrotransposon families differentially contributed to interspecific variability, emphasising the need to refer to specific families when studying genome evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. LTRsift: a graphical user interface for semi-automatic classification and postprocessing of de novo detected LTR retrotransposons

    Directory of Open Access Journals (Sweden)

    Steinbiss Sascha

    2012-11-01

    Full Text Available Abstract Background Long terminal repeat (LTR retrotransposons are a class of eukaryotic mobile elements characterized by a distinctive sequence similarity-based structure. Hence they are well suited for computational identification. Current software allows for a comprehensive genome-wide de novo detection of such elements. The obvious next step is the classification of newly detected candidates resulting in (super-families. Such a de novo classification approach based on sequence-based clustering of transposon features has been proposed before, resulting in a preliminary assignment of candidates to families as a basis for subsequent manual refinement. However, such a classification workflow is typically split across a heterogeneous set of glue scripts and generic software (for example, spreadsheets, making it tedious for a human expert to inspect, curate and export the putative families produced by the workflow. Results We have developed LTRsift, an interactive graphical software tool for semi-automatic postprocessing of de novo predicted LTR retrotransposon annotations. Its user-friendly interface offers customizable filtering and classification functionality, displaying the putative candidate groups, their members and their internal structure in a hierarchical fashion. To ease manual work, it also supports graphical user interface-driven reassignment, splitting and further annotation of candidates. Export of grouped candidate sets in standard formats is possible. In two case studies, we demonstrate how LTRsift can be employed in the context of a genome-wide LTR retrotransposon survey effort. Conclusions LTRsift is a useful and convenient tool for semi-automated classification of newly detected LTR retrotransposons based on their internal features. Its efficient implementation allows for convenient and seamless filtering and classification in an integrated environment. Developed for life scientists, it is helpful in postprocessing and refining

  18. LTRsift: a graphical user interface for semi-automatic classification and postprocessing of de novo detected LTR retrotransposons.

    Science.gov (United States)

    Steinbiss, Sascha; Kastens, Sascha; Kurtz, Stefan

    2012-11-07

    Long terminal repeat (LTR) retrotransposons are a class of eukaryotic mobile elements characterized by a distinctive sequence similarity-based structure. Hence they are well suited for computational identification. Current software allows for a comprehensive genome-wide de novo detection of such elements. The obvious next step is the classification of newly detected candidates resulting in (super-)families. Such a de novo classification approach based on sequence-based clustering of transposon features has been proposed before, resulting in a preliminary assignment of candidates to families as a basis for subsequent manual refinement. However, such a classification workflow is typically split across a heterogeneous set of glue scripts and generic software (for example, spreadsheets), making it tedious for a human expert to inspect, curate and export the putative families produced by the workflow. We have developed LTRsift, an interactive graphical software tool for semi-automatic postprocessing of de novo predicted LTR retrotransposon annotations. Its user-friendly interface offers customizable filtering and classification functionality, displaying the putative candidate groups, their members and their internal structure in a hierarchical fashion. To ease manual work, it also supports graphical user interface-driven reassignment, splitting and further annotation of candidates. Export of grouped candidate sets in standard formats is possible. In two case studies, we demonstrate how LTRsift can be employed in the context of a genome-wide LTR retrotransposon survey effort. LTRsift is a useful and convenient tool for semi-automated classification of newly detected LTR retrotransposons based on their internal features. Its efficient implementation allows for convenient and seamless filtering and classification in an integrated environment. Developed for life scientists, it is helpful in postprocessing and refining the output of software for predicting LTR

  19. Comparative genomic analysis reveals multiple long terminal repeats, lineage-specific amplification, and frequent interelement recombination for Cassandra retrotransposon in pear (Pyrus bretschneideri Rehd.).

    Science.gov (United States)

    Yin, Hao; Du, Jianchang; Li, Leiting; Jin, Cong; Fan, Lian; Li, Meng; Wu, Jun; Zhang, Shaoling

    2014-06-04

    Cassandra transposable elements belong to a specific group of terminal-repeat retrotransposons in miniature (TRIM). Although Cassandra TRIM elements have been found in almost all vascular plants, detailed investigations on the nature, abundance, amplification timeframe, and evolution have not been performed in an individual genome. We therefore conducted a comprehensive analysis of Cassandra retrotransposons using the newly sequenced pear genome along with four other Rosaceae species, including apple, peach, mei, and woodland strawberry. Our data reveal several interesting findings for this particular retrotransposon family: 1) A large number of the intact copies contain three, four, or five long terminal repeats (LTRs) (∼20% in pear); 2) intact copies and solo LTRs with or without target site duplications are both common (∼80% vs. 20%) in each genome; 3) the elements exhibit an overall unbiased distribution among the chromosomes; 4) the elements are most successfully amplified in pear (5,032 copies); and 5) the evolutionary relationships of these elements vary among different lineages, species, and evolutionary time. These results indicate that Cassandra retrotransposons contain more complex structures (elements with multiple LTRs) than what we have known previously, and that frequent interelement unequal recombination followed by transposition may play a critical role in shaping and reshaping host genomes. Thus this study provides insights into the property, propensity, and molecular mechanisms governing the formation and amplification of Cassandra retrotransposons, and enhances our understanding of the structural variation, evolutionary history, and transposition process of LTR retrotransposons in plants. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  1. A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers

    NARCIS (Netherlands)

    Syed, H.; Sorensen, A.P.; Antonise, R.; van de Wiel, C.; van der Linden, C.G.; van 't Westende, W.; Hooftman, D.A.P.; den Nijs, J.C.M.; Flavell, A.J.

    2006-01-01

    Abstract Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187

  2. DIRS1-like retrotransposons are widely distributed among Decapoda and are particularly present in hydrothermal vent organisms

    Directory of Open Access Journals (Sweden)

    Bonnivard Eric

    2009-04-01

    allowed for revealing for the first time a widespread distribution of these elements among a large phylum, here the order Decapoda. They also suggest some peculiar features of these retrotransposons in hydrothermal organisms where a great diversity of elements is already observed. Finally, this paper constitutes the first essential step which allows for considering further studies based on the dynamics of the DIRS1-like retrotransposons among several genomes.

  3. Retrotransposons. An RNA polymerase III subunit determines sites of retrotransposon integration.

    Science.gov (United States)

    Bridier-Nahmias, Antoine; Tchalikian-Cosson, Aurélie; Baller, Joshua A; Menouni, Rachid; Fayol, Hélène; Flores, Amando; Saïb, Ali; Werner, Michel; Voytas, Daniel F; Lesage, Pascale

    2015-05-01

    Mobile genetic elements are ubiquitous. Their integration site influences genome stability and gene expression. The Ty1 retrotransposon of the yeast Saccharomyces cerevisiae integrates upstream of RNA polymerase III (Pol III)-transcribed genes, yet the primary determinant of target specificity has remained elusive. Here we describe an interaction between Ty1 integrase and the AC40 subunit of Pol III and demonstrate that AC40 is the predominant determinant targeting Ty1 integration upstream of Pol III-transcribed genes. Lack of an integrase-AC40 interaction dramatically alters target site choice, leading to a redistribution of Ty1 insertions in the genome, mainly to chromosome ends. The mechanism of target specificity allows Ty1 to proliferate and yet minimizes genetic damage to its host. Copyright © 2015, American Association for the Advancement of Science.

  4. Bases moleculares de las leucemias agudas

    Directory of Open Access Journals (Sweden)

    G. Martínez Antuña

    2006-04-01

    Full Text Available El gran desarrollo de la biología molecular en los últimos años ha contribuido a un importante avance en los conocimientos relacionados con las bases moleculares de las leucemias agudas (LA. Ademas de profundizar en la biología de estas enfermedades y conocer las bases moleculares, ha renido también gran impacto en mejorar el resultado de los tratamientos y disminuir la toxicidad de las terapias.

  5. BARE retrotransposons are translated and replicated via distinct RNA pools.

    Directory of Open Access Journals (Sweden)

    Wei Chang

    Full Text Available The replication of Long Terminal Repeat (LTR retrotransposons, which can constitute over 80% of higher plant genomes, resembles that of retroviruses. A major question for retrotransposons and retroviruses is how the two conflicting roles of their transcripts, in translation and reverse transcription, are balanced. Here, we show that the BARE retrotransposon, despite its organization into just one open reading frame, produces three distinct classes of transcripts. One is capped, polyadenylated, and translated, but cannot be copied into cDNA. The second is not capped or polyadenylated, but is destined for packaging and ultimate reverse transcription. The third class is capped, polyadenylated, and spliced to favor production of a subgenomic RNA encoding only Gag, the protein forming virus-like particles. Moreover, the BARE2 subfamily, which cannot synthesize Gag and is parasitic on BARE1, does not produce the spliced sub-genomic RNA for translation but does make the replication competent transcripts, which are packaged into BARE1 particles. To our knowledge, this is first demonstration of distinct RNA pools for translation and transcription for any retrotransposon.

  6. Modeling the amplification dynamics of human Alu retrotransposons.

    Directory of Open Access Journals (Sweden)

    Dale J Hedges

    2005-09-01

    Full Text Available Retrotransposons have had a considerable impact on the overall architecture of the human genome. Currently, there are three lineages of retrotransposons (Alu, L1, and SVA that are believed to be actively replicating in humans. While estimates of their copy number, sequence diversity, and levels of insertion polymorphism can readily be obtained from existing genomic sequence data and population sampling, a detailed understanding of the temporal pattern of retrotransposon amplification remains elusive. Here we pose the question of whether, using genomic sequence and population frequency data from extant taxa, one can adequately reconstruct historical amplification patterns. To this end, we developed a computer simulation that incorporates several known aspects of primate Alu retrotransposon biology and accommodates sampling effects resulting from the methods by which mobile elements are typically discovered and characterized. By modeling a number of amplification scenarios and comparing simulation-generated expectations to empirical data gathered from existing Alu subfamilies, we were able to statistically reject a number of amplification scenarios for individual subfamilies, including that of a rapid expansion or explosion of Alu amplification at the time of human-chimpanzee divergence.

  7. Modeling the amplification dynamics of human alu retrotransposons.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Retrotransposons have had a considerable impact on the overall architecture of the human genome. Currently, there are three lineages of retrotransposons (Alu, L1, and SVA that are believed to be actively replicating in humans. While estimates of their copy number, sequence diversity, and levels of insertion polymorphism can readily be obtained from existing genomic sequence data and population sampling, a detailed understanding of the temporal pattern of retrotransposon amplification remains elusive. Here we pose the question of whether, using genomic sequence and population frequency data from extant taxa, one can adequately reconstruct historical amplification patterns. To this end, we developed a computer simulation that incorporates several known aspects of primate Alu retrotransposon biology and accommodates sampling effects resulting from the methods by which mobile elements are typically discovered and characterized. By modeling a number of amplification scenarios and comparing simulation-generated expectations to empirical data gathered from existing Alu subfamilies, we were able to statistically reject a number of amplification scenarios for individual subfamilies, including that of a rapid expansion or explosion of Alu amplification at the time of human-chimpanzee divergence.

  8. The Microprocessor controls the activity of mammalian retrotransposons

    DEFF Research Database (Denmark)

    Heras, Sara R.; Macias, Sara; Plass, Mireya

    2013-01-01

    RNA biogenesis, also recognizes and binds RNAs derived from human long interspersed element 1 (LINE-1), Alu and SVA retrotransposons. Expression analyses demonstrate that cells lacking a functional Microprocessor accumulate LINE-1 mRNA and encoded proteins. Furthermore, we show that structured regions...

  9. Forward and reverse genetics: The LORE1 retrotransposon insertion mutants

    DEFF Research Database (Denmark)

    Fukai, Eigo; Malolepszy, Anna; Sandal, Niels Nørgaard

    2014-01-01

    The endogenous Lotus retrotransposon 1 (LORE1) transposes in the germ line of Lotus japonicus plants that carry an active element. This feature of LORE1 has been exploited for generation of a large non-transgenic insertion mutant population, where insertions have been annotated using next-generat...

  10. Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons.

    Directory of Open Access Journals (Sweden)

    Soledad Sacristán

    2009-10-01

    Full Text Available Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVR(k1 powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVR(k1 gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1 the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2 the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome.

  11. Young, intact and nested retrotransposons are abundant in the onion and asparagus genomes.

    Science.gov (United States)

    Vitte, C; Estep, M C; Leebens-Mack, J; Bennetzen, J L

    2013-09-01

    Although monocotyledonous plants comprise one of the two major groups of angiosperms and include >65 000 species, comprehensive genome analysis has been focused mainly on the Poaceae (grass) family. Due to this bias, most of the conclusions that have been drawn for monocot genome evolution are based on grasses. It is not known whether these conclusions apply to many other monocots. To extend our understanding of genome evolution in the monocots, Asparagales genomic sequence data were acquired and the structural properties of asparagus and onion genomes were analysed. Specifically, several available onion and asparagus bacterial artificial chromosomes (BACs) with contig sizes >35 kb were annotated and analysed, with a particular focus on the characterization of long terminal repeat (LTR) retrotransposons. The results reveal that LTR retrotransposons are the major components of the onion and garden asparagus genomes. These elements are mostly intact (i.e. with two LTRs), have mainly inserted within the past 6 million years and are piled up into nested structures. Analysis of shotgun genomic sequence data and the observation of two copies for some transposable elements (TEs) in annotated BACs indicates that some families have become particularly abundant, as high as 4-5 % (asparagus) or 3-4 % (onion) of the genome for the most abundant families, as also seen in large grass genomes such as wheat and maize. Although previous annotations of contiguous genomic sequences have suggested that LTR retrotransposons were highly fragmented in these two Asparagales genomes, the results presented here show that this was largely due to the methodology used. In contrast, this current work indicates an ensemble of genomic features similar to those observed in the Poaceae.

  12. Infection-Induced Retrotransposon-Derived Noncoding RNAs Enhance Herpesviral Gene Expression via the NF-κB Pathway.

    Directory of Open Access Journals (Sweden)

    John Karijolich

    Full Text Available Short interspersed nuclear elements (SINEs are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68 infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKβ-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit.

  13. Activation of an endogenous retrotransposon associated with epigenetic changes in Lotus japonicus

    DEFF Research Database (Denmark)

    Fukai, Eigo; Stougaard, Jens; Hayashi, Makoto

    2013-01-01

    Long terminal repeat retrotransposons occupy a large portion of genomes in flowering plants. In spite of their abundance, the majority are silenced and rarely transpose. One of the examples of a highly active retrotransposon is Lotus Retrotransposon 1(LORE1), of the model legume Lotus japonicus...... significance of LORE1 as a member of chromovirus, a chromodomain containing clade of the Gypsy superfamily. Then we discuss possibilities and methodologies for using endogenous transposable elements as mutagens to generate gene tagging populations in plants...

  14. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals.

    Science.gov (United States)

    Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is "mammalian-specific genomic functions", a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of "mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons", based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes.

  15. MASiVEdb: the Sirevirus Plant Retrotransposon Database

    Directory of Open Access Journals (Sweden)

    Bousios Alexandros

    2012-04-01

    Full Text Available Abstract Background Sireviruses are an ancient genus of the Copia superfamily of LTR retrotransposons, and the only one that has exclusively proliferated within plant genomes. Based on experimental data and phylogenetic analyses, Sireviruses have successfully infiltrated many branches of the plant kingdom, extensively colonizing the genomes of grass species. Notably, it was recently shown that they have been a major force in the make-up and evolution of the maize genome, where they currently occupy ~21% of the nuclear content and ~90% of the Copia population. It is highly likely, therefore, that their life dynamics have been fundamental in the genome composition and organization of a plethora of plant hosts. To assist studies into their impact on plant genome evolution and also facilitate accurate identification and annotation of transposable elements in sequencing projects, we developed MASiVEdb (Mapping and Analysis of SireVirus Elements Database, a collective and systematic resource of Sireviruses in plants. Description Taking advantage of the increasing availability of plant genomic sequences, and using an updated version of MASiVE, an algorithm specifically designed to identify Sireviruses based on their highly conserved genome structure, we populated MASiVEdb (http://bat.infspire.org/databases/masivedb/ with data on 16,243 intact Sireviruses (total length >158Mb discovered in 11 fully-sequenced plant genomes. MASiVEdb is unlike any other transposable element database, providing a multitude of highly curated and detailed information on a specific genus across its hosts, such as complete set of coordinates, insertion age, and an analytical breakdown of the structure and gene complement of each element. All data are readily available through basic and advanced query interfaces, batch retrieval, and downloadable files. A purpose-built system is also offered for detecting and visualizing similarity between user sequences and Sireviruses, as

  16. Structural characterization of copia-type retrotransposons leads to insights into the marker development in a biofuel crop, Jatropha curcas L.

    Science.gov (United States)

    2013-01-01

    Background Recently, Jatropha curcas L. has attracted worldwide attention for its potential as a source of biodiesel. However, most DNA markers have demonstrated high levels of genetic similarity among and within jatropha populations around the globe. Despite promising features of copia-type retrotransposons as ideal genetic tools for gene tagging, mutagenesis, and marker-assisted selection, they have not been characterized in the jatropha genome yet. Here, we examined the diversity, evolution, and genome-wide organization of copia-type retrotransposons in the Asian, African, and Mesoamerican accessions of jatropha, then introduced a retrotransposon-based marker for this biofuel crop. Results In total, 157 PCR fragments that were amplified using the degenerate primers for the reverse transcriptase (RT) domain of copia-type retroelements were sequenced and aligned to construct the neighbor-joining tree. Phylogenetic analysis demonstrated that isolated copia RT sequences were classified into ten families, which were then grouped into three lineages. An in-depth study of the jatropha genome for the RT sequences of each family led to the characterization of full consensus sequences of the jatropha copia-type families. Estimated copy numbers of target sequences were largely different among families, as was presence of genes within 5 kb flanking regions for each family. Five copia-type families were as appealing candidates for the development of DNA marker systems. A candidate marker from family Jc7 was particularly capable of detecting genetic variation among different jatropha accessions. Fluorescence in situ hybridization (FISH) to metaphase chromosomes reveals that copia-type retrotransposons are scattered across chromosomes mainly located in the distal part regions. Conclusion This is the first report on genome-wide analysis and the cytogenetic mapping of copia-type retrotransposons of jatropha, leading to the discovery of families bearing high potential as DNA

  17. Gas Sensors Based on Molecular Imprinting Technology.

    Science.gov (United States)

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-07-04

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.

  18. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons

    NARCIS (Netherlands)

    Jacobs, F.M.J.; Greenberg, D.; Nguyen, N.; Haeussler, M.; Ewing, A.D.; Katzman, S.; Paten, B.; Salama, S.R.; Haussler, D.

    2014-01-01

    Throughout evolution primate genomes have been modified by waves of retrotransposon insertions1, 2, 3. For each wave, the host eventually finds a way to repress retrotransposon transcription and prevent further insertions. In mouse embryonic stem cells, transcriptional silencing of retrotransposons

  19. Fluorescence based molecular in vivo imaging

    International Nuclear Information System (INIS)

    Ebert, Bernd

    2008-01-01

    Molecular imaging represents a modern research area that allows the in vivo study of molecular biological process kinetics using appropriate probes and visualization methods. This methodology may be defined- apart from the contrast media injection - as non-abrasive. In order to reach an in vivo molecular process imaging as accurate as possible the effects of the used probes on the biological should not be too large. The contrast media as important part of the molecular imaging can significantly contribute to the understanding of molecular processes and to the development of tailored diagnostics and therapy. Since more than 15 years PTB is developing optic imaging systems that may be used for fluorescence based visualization of tissue phantoms, small animal models and the localization of tumors and their predecessors, and for the early recognition of inflammatory processes in clinical trials. Cellular changes occur during many diseases, thus the molecular imaging might be of importance for the early diagnosis of chronic inflammatory diseases. Fluorescent dyes can be used as unspecific or also as specific contrast media, which allow enhanced detection sensitivity

  20. Molecular phylogeny of Ranunculaceae based on internal ...

    African Journals Online (AJOL)

    The botanical family Ranunculaceae contains important medicinal plants. To obtain new evolutionary evidence regarding the systematic classification of Ranunculaceae plants, we used molecular phylogenies to test relationships based on the internal transcribed spacer region. The results of phylogenetic analysis of 92 ...

  1. Graphene-based nanoprobes for molecular diagnostics.

    Science.gov (United States)

    Chen, Shixing; Li, Fuwu; Fan, Chunhai; Song, Shiping

    2015-10-07

    In recent years, graphene has received widespread attention owing to its extraordinary electrical, chemical, optical, mechanical and structural properties. Lately, considerable interest has been focused on exploring the potential applications of graphene in life sciences, particularly in disease-related molecular diagnostics. In particular, the coupling of functional molecules with graphene as a nanoprobe offers an excellent platform to realize the detection of biomarkers, such as nucleic acids, proteins and other bioactive molecules, with high performance. This article reviews emerging graphene-based nanoprobes in electrical, optical and other assay methods and their application in various strategies of molecular diagnostics. In particular, this review focuses on the construction of graphene-based nanoprobes and their special advantages for the detection of various bioactive molecules. Properties of graphene-based materials and their functionalization are also comprehensively discussed in view of the development of nanoprobes. Finally, future challenges and perspectives of graphene-based nanoprobes are discussed.

  2. Orthonormal Wavelet Bases for Quantum Molecular Dynamics

    International Nuclear Information System (INIS)

    Tymczak, C.; Wang, X.

    1997-01-01

    We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society

  3. A nanoplasmonic switch based on molecular machines

    KAUST Repository

    Zheng, Yue Bing

    2009-06-01

    We aim to develop a molecular-machine-driven nanoplasmonic switch for its use in future nanophotonic integrated circuits (ICs) that have applications in optical communication, information processing, biological and chemical sensing. Experimental data show that an Au nanodisk array, coated with rotaxane molecular machines, switches its localized surface plasmon resonances (LSPR) reversibly when it is exposed to chemical oxidants and reductants. Conversely, bare Au nanodisks and disks coated with mechanically inert control compounds, do not display the same switching behavior. Along with calculations based on time-dependent density functional theory (TDDFT), these observations suggest that the nanoscale movements within surface-bound "molecular machines" can be used as the active components in plasmonic devices. ©2009 IEEE.

  4. Identification and characterization of REC66, a Ty1-copia-like retrotransposon in the genome of red flower of Mirabilis jalapa L.

    Directory of Open Access Journals (Sweden)

    Shunri Jiang

    2017-01-01

    Full Text Available Mirabilis jalapa Lis the most commonly grown ornamental species of Mirabilis and is available in a range of brilliant colors. However, genetic research on Mirabilis jalapa Lis limited. Using fluorescent differential display (FDD screening, we report the identification of a novel Ty1-copia-like retrotransposon in the genome of the red flower of Mirabilis jalapa L, and we named it REC66based on its sequence homology to the GAG protein from Ty1-copiaretrotransposon. Using degenerate primers based on the DNA sequence of REC66, a total of fourteen different variants in reverse transcriptase (RT sequence were recovered from the genomic DNA. These RT sequences show a high degree of heterogeneity characterized mainly by deletion mutation; they can be divided into three subfamilies, of which the majority encode defective RT. This is the first report of a Ty1-copiaretrotransposon in Mirabilis jalapa L. The finding could be helpful for the development of new molecular markers for genetic studies, particularly on the origin and evolutionary relationships of M. jalapa L, and the study of Ty1-copiaretrotransposons and plant genome evolution in the genus Mirabilisor family Nyctaginaceae.

  5. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting.

    Directory of Open Access Journals (Sweden)

    Shunsuke Suzuki

    2007-04-01

    Full Text Available Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10 is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii, but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus, suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5' region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.

  6. Towards the molecular bases of polymerase dynamics

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1991-03-01

    One aspect of the strong relationship that is known to exist between the processes of DNA replication and transcription is manifest in the coupling of the rates of movement of the replication fork (r f ) and RNA polymerase (r t ). We address two issues concerning the largely unexplored area of polymerase dynamics: (i) The validity of an approximate kinematic formula linking r f and r t suggested by experiments in which transcription is initiated in some prokaryotes with the antibiotic streptolydigin, and (ii) What are the molecular bases of the kinematic formula? An analysis of the available data suggests possible molecular bases for polymerase dynamics. In particular, we are led to a hypothesis: In active chromatin r t may depend on the length (λ t ) of the transcript of the primary messenger RNA (pre-mRNA). This new effect is subject to experimental verification. We discuss possible experiments that may be performed in order to test this prediction. (author). Refs, 6 tabs

  7. Progress on RNAi-based molecular medicines

    OpenAIRE

    Chen, Jing; Xie, Jianping

    2012-01-01

    Jing Chen, Jianping XieInstitute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, ChinaAbstract: RNA interference (RNAi) is a promising strategy to suppress the expression of disease-relevant genes and induce post-transcriptional gene silencing. Their simplicity and stability endow RNAi with great advantages in molecular medicine. Several RNA...

  8. Insertion of a solo LTR retrotransposon associates with spur mutations in 'Red Delicious' apple (Malus × domestica).

    Science.gov (United States)

    Han, Mengxue; Sun, Qibao; Zhou, Junyong; Qiu, Huarong; Guo, Jing; Lu, Lijuan; Mu, Wenlei; Sun, Jun

    2017-09-01

    Insertion of a solo LTR, which possesses strong bidirectional, stem-specific promoter activities, is associated with the evolution of a dwarfing apple spur mutation. Spur mutations in apple scions revolutionized global apple production. Since long terminal repeat (LTR) retrotransposons are tightly related to natural mutations, inter-retrotransposon-amplified polymorphism technique and genome walking were used to find sequences in the apple genome based on these LTRs. In 'Red Delicious' spur mutants, a novel, 2190-bp insertion was identified as a spur-specific, solo LTR (sLTR) located at the 1038th nucleotide of another sLTR, which was 1536 bp in length. This insertion-within-an-insertion was localized within a preexisting Gypsy-50 retrotransposon at position 3,762,767 on chromosome 4. The analysis of transcriptional activity of the two sLTRs (the 2190- and 1536-bp inserts) indicated that the 2190-bp sLTR is a promoter, capable of bidirectional transcription. GUS expression in the 2190-bp-sense and 2190-bp-antisense transgenic lines was prominent in stems. In contrast, no promoter activity from either the sense or the antisense strand of the 1536-bp sLTR was detected. From ~150 kb of DNA on each side of the 2190 bp, sLTR insertion site, corresponding to 300 kb of the 'Golden Delicious' genome, 23 genes were predicted. Ten genes had predicted functions that could affect shoot development. This first report, of a sLTR insertion associated with the evolution of apple spur mutation, will facilitate apple breeding, cloning of spur-related genes, and discovery of mechanisms behind dwarf habit.

  9. SREBP controls oxygen-dependent mobilization of retrotransposons in fission yeast.

    Directory of Open Access Journals (Sweden)

    Alfica Sehgal

    2007-08-01

    Full Text Available Retrotransposons are mobile genetic elements that proliferate through an RNA intermediate. Transposons do not encode transcription factors and thus rely on host factors for mRNA expression and survival. Despite information regarding conditions under which elements are upregulated, much remains to be learned about the regulatory mechanisms or factors controlling retrotransposon expression. Here, we report that low oxygen activates the fission yeast Tf2 family of retrotransposons. Sre1, the yeast ortholog of the mammalian membrane-bound transcription factor sterol regulatory element binding protein (SREBP, directly induces the expression and mobilization of Tf2 retrotransposons under low oxygen. Sre1 binds to DNA sequences in the Tf2 long terminal repeat that functions as an oxygen-dependent promoter. We find that Tf2 solo long terminal repeats throughout the genome direct oxygen-dependent expression of adjacent coding and noncoding sequences, providing a potential mechanism for the generation of oxygen-dependent gene expression.

  10. As bases moleculares da hemofilia A

    Directory of Open Access Journals (Sweden)

    Simone Ferreira Pio

    2009-01-01

    Full Text Available As hemofilias são doenças hemorrágicas resultantes da deficiência de fator VIII (hemofilia A ou de fator IX (hemofilia B da coagulação, decorrentes de mutações nos genes que codificam os fatores VIII ou IX, respectivamente. A hemofilia A é mais frequente que a hemofilia B e acomete aproximadamente 1:10.000 nascimentos masculinos. A gravidade e frequência dos episódios hemorrágicos está relacionado ao nível residual de atividade de fator VIII presente no plasma e este relaciona-se ao tipo de mutação associada à doença. A clonagem do gene do fator VIII tornou possível o conhecimento das bases moleculares da hemofilia A, sendo hoje conhecidas mais de 1.000 mutações associadas à doença. O conhecimento das bases moleculares da hemofilia A permite uma melhor compreensão da relação genótipo-fenótipo da doença, tomada de condutas clínicas diferenciadas em casos de mutações associadas a um maior risco de desenvolvimento de inibidor, determinação da condição de portadora de hemofilia em mulheres relacionadas aos pacientes, implementação de programa de aconselhamento genético/orientação familiar e melhor compreensão das relações estruturais-funcionais do gene-proteína. Este artigo propõe revisar as bases moleculares da hemofilia A, os métodos laboratoriais utilizados para a caracterização das mutações e as implicações clínicas envolvidas no diagnóstico molecular da hemofilia A.Hemophilias are bleeding disorders due to deficiency of the blood coagulation factor VIII (hemophilia A or factor IX (hemophilia B, resulting from mutation on the gene coding for factor VIII or factor IX. Hemophilia A is more frequent than hemophilia B and affects 1:10,000 male newborns. The severity and frequency of hemorrhagic episodes is related to residual activity of factor VIII present in the plasma and relates to the type of mutation associated with the disorder. Cloning of the factor VIII gene has enabled researchers to

  11. Organic-based molecular switches for molecular electronics.

    Science.gov (United States)

    Fuentes, Noelia; Martín-Lasanta, Ana; Alvarez de Cienfuegos, Luis; Ribagorda, Maria; Parra, Andres; Cuerva, Juan M

    2011-10-05

    In a general sense, molecular electronics (ME) is the branch of nanotechnology which studies the application of molecular building blocks for the fabrication of electronic components. Among the different types of molecules, organic compounds have been revealed as promising candidates for ME, due to the easy access, great structural diversity and suitable electronic and mechanical properties. Thanks to these useful capabilities, organic molecules have been used to emulate electronic devices at the nanoscopic scale. In this feature article, we present the diverse strategies used to develop organic switches towards ME with special attention to non-volatile systems.

  12. Advanced molecular devices based on light-driven molecular motors

    NARCIS (Netherlands)

    Chen, Jiawen

    2015-01-01

    Nature has provided a large collection of molecular machines and devices that are among the most amazing nanostructures on this planet. These machines are able to operate complex biological processes which are of great importance in our organisms. Inspired by these natural devices, artificial

  13. Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice.

    Directory of Open Access Journals (Sweden)

    Kota Inoue

    2017-07-01

    Full Text Available Mammalian genomes harbor millions of retrotransposon copies, some of which are transpositionally active. In mouse prospermatogonia, PIWI-interacting small RNAs (piRNAs combat retrotransposon activity to maintain the genomic integrity. The piRNA system destroys retrotransposon-derived RNAs and guides de novo DNA methylation at some retrotransposon promoters. However, it remains unclear whether DNA methylation contributes to retrotransposon silencing in prospermatogonia. We have performed comprehensive studies of DNA methylation and polyA(+ RNAs (transcriptome in developing male germ cells from Pld6/Mitopld and Dnmt3l knockout mice, which are defective in piRNA biogenesis and de novo DNA methylation, respectively. The Dnmt3l mutation greatly reduced DNA methylation levels at most retrotransposons, but its impact on their RNA abundance was limited in prospermatogonia. In Pld6 mutant germ cells, although only a few retrotransposons exhibited reduced DNA methylation, many showed increased expression at the RNA level. More detailed analysis of RNA sequencing, nascent RNA quantification, profiling of cleaved RNA ends, and the results obtained from double knockout mice suggest that PLD6 works mainly at the posttranscriptional level. The increase in retrotransposon expression was larger in Pld6 mutants than it was in Dnmt3l mutants, suggesting that RNA degradation by the piRNA system plays a more important role than does DNA methylation in prospermatogonia. However, DNA methylation had a long-term effect: hypomethylation caused by the Pld6 or Dnmt3l mutation resulted in increased retrotransposon expression in meiotic spermatocytes. Thus, posttranscriptional silencing plays an important role in the early stage of germ cell development, then transcriptional silencing becomes important in later stages. In addition, intergenic and intronic retrotransposon sequences, in particular those containing the antisense L1 promoters, drove ectopic expression of nearby

  14. Gas Sensors Based on Molecular Imprinting Technology

    OpenAIRE

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-01-01

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological mac...

  15. PET-based molecular imaging in neuroscience

    International Nuclear Information System (INIS)

    Jacobs, A.H.; Heiss, W.D.; Li, H.; Knoess, C.; Schaller, B.; Kracht, L.; Monfared, P.; Vollmar, S.; Bauer, B.; Wagner, R.; Graf, R.; Wienhard, K.; Winkeler, A.; Rueger, A.; Klein, M.; Hilker, R.; Galldiks, N.; Herholz, K.; Sobesky, J.

    2003-01-01

    Positron emission tomography (PET) allows non-invasive assessment of physiological, metabolic and molecular processes in humans and animals in vivo. Advances in detector technology have led to a considerable improvement in the spatial resolution of PET (1-2 mm), enabling for the first time investigations in small experimental animals such as mice. With the developments in radiochemistry and tracer technology, a variety of endogenously expressed and exogenously introduced genes can be analysed by PET. This opens up the exciting and rapidly evolving field of molecular imaging, aiming at the non-invasive localisation of a biological process of interest in normal and diseased cells in animal models and humans in vivo. The main and most intriguing advantage of molecular imaging is the kinetic analysis of a given molecular event in the same experimental subject over time. This will allow non-invasive characterisation and ''phenotyping'' of animal models of human disease at various disease stages, under certain pathophysiological stimuli and after therapeutic intervention. The potential broad applications of imaging molecular events in vivo lie in the study of cell biology, biochemistry, gene/protein function and regulation, signal transduction, transcriptional regulation and characterisation of transgenic animals. Most importantly, molecular imaging will have great implications for the identification of potential molecular therapeutic targets, in the development of new treatment strategies, and in their successful implementation into clinical application. Here, the potential impact of molecular imaging by PET in applications in neuroscience research with a special focus on neurodegeneration and neuro-oncology is reviewed. (orig.)

  16. Analysis of Hopi/Osr27 and Houba/Tos5/Osr13 retrotransposons in rice

    Directory of Open Access Journals (Sweden)

    Gozde Yuzbasioglu

    2016-03-01

    Full Text Available We investigated Hopi/Osr27 (gypsy and Houba/Tos5/Osr13 (copy retrotransposon movements in 10-day-old roots and leaves of Oryza sativa cvs. Ipsala, Beser and Osmancik-97. Seeds from these three cultivars were germinated between filter papers in Petri dishes for 10 days. Three biologically independent (nonrelated seeds were germinated for each cultivar. Then, roots and leaves grown from the same rice plant were harvested and used for genomic DNA isolation. Inter-retrotransposon amplified polymorphism–polymerase chain reaction with suitable primers was performed with each DNA template to analyze the movements of Hopi/Osr27 and Houba/Tos5/Osr13 retrotransposons. Polymorphism ratios were evaluated both among cultivars and among roots and leaves from the same cultivar. The polymorphism ratios ranged from 0% to 17% for Hopi/Osr27 and from 10% to 87% for Houba/Tos5/Osr13. The obtained results at retrotransposon and varietal levels indicated that the retrotransposon type and genotype dependence are responsible for the occurrence of different variations. Transposable elements are very important for understanding the relationship between cultivars and evolution. Our findings are expected to contribute to the understanding of spontaneous genomic insertion events and their effects on the genetic and epigenetic changes during rice development.

  17. Retrotransposon hypomethylation in melanoma and expression of a placenta-specific gene.

    Directory of Open Access Journals (Sweden)

    Erin C Macaulay

    Full Text Available In the human placenta, DNA hypomethylation permits the expression of retrotransposon-derived genes that are normally silenced by methylation in somatic tissues. We previously identified hypomethylation of a retrotransposon-derived transcript of the voltage-gated potassium channel gene KCNH5 that is expressed only in human placenta. However, an RNA sequence from this placental-specific transcript has been reported in melanoma. This study examined the promoter methylation and expression of the retrotransposon-derived KCNH5 transcript in 25 melanoma cell lines to determine whether the acquisition of 'placental' epigenetic marks is a feature of melanoma. Methylation and gene expression analysis revealed hypomethylation of this retrotransposon in melanoma cell lines, particularly in those samples that express the placental KCNH5 transcript. Therefore we propose that hypomethylation of the placental-specific KCNH5 promoter is frequently associated with KCNH5 expression in melanoma cells. Our findings show that melanoma can develop hypomethylation of a retrotransposon-derived gene; a characteristic notably shared with the normal placenta.

  18. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  19. A nanoplasmonic switch based on molecular machines

    KAUST Repository

    Zheng, Yue Bing; Yang, Ying-Wei; Jensen, Lasse; Fang, Lei; Juluri, Bala Krishna; Weiss, Paul S.; Stoddart, J. Fraser; Huang, Tony Jun

    2009-01-01

    We aim to develop a molecular-machine-driven nanoplasmonic switch for its use in future nanophotonic integrated circuits (ICs) that have applications in optical communication, information processing, biological and chemical sensing. Experimental

  20. Molecular phylogeny of Ranunculaceae based on internal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... evidence regarding the systematic classification of Ranunculaceae plants, we used molecular ... Ranunculaceae is a family of flowering plants known as ... and in the analysis of the evolutionary rate for lower level phylogeny ...

  1. Human Retrotransposon Insertion Polymorphisms Are Associated with Health and Disease via Gene Regulatory Phenotypes

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2017-08-01

    Full Text Available The human genome hosts several active families of transposable elements (TEs, including the Alu, LINE-1, and SVA retrotransposons that are mobilized via reverse transcription of RNA intermediates. We evaluated how insertion polymorphisms generated by human retrotransposon activity may be related to common health and disease phenotypes that have been previously interrogated through genome-wide association studies (GWAS. To address this question, we performed a genome-wide screen for retrotransposon polymorphism disease associations that are linked to TE induced gene regulatory changes. Our screen first identified polymorphic retrotransposon insertions found in linkage disequilibrium (LD with single nucleotide polymorphisms that were previously associated with common complex diseases by GWAS. We further narrowed this set of candidate disease associated retrotransposon polymorphisms by identifying insertions that are located within tissue-specific enhancer elements. We then performed expression quantitative trait loci analysis on the remaining set of candidates in order to identify polymorphic retrotransposon insertions that are associated with gene expression changes in B-cells of the human immune system. This progressive and stringent screen yielded a list of six retrotransposon insertions as the strongest candidates for TE polymorphisms that lead to disease via enhancer-mediated changes in gene regulation. For example, we found an SVA insertion within a cell-type specific enhancer located in the second intron of the B4GALT1 gene. B4GALT1 encodes a glycosyltransferase that functions in the glycosylation of the Immunoglobulin G (IgG antibody in such a way as to convert its activity from pro- to anti-inflammatory. The disruption of the B4GALT1 enhancer by the SVA insertion is associated with down-regulation of the gene in B-cells, which would serve to keep the IgG molecule in a pro-inflammatory state. Consistent with this idea, the B4GALT1 enhancer

  2. Logic circuits based on molecular spider systems.

    Science.gov (United States)

    Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko

    2016-08-01

    Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes.

    Science.gov (United States)

    Uludağ, Yildiz; Piletsky, Sergey A; Turner, Anthony P F; Cooper, Matthew A

    2007-11-01

    Biomimetic recognition elements employed for the detection of analytes are commonly based on proteinaceous affibodies, immunoglobulins, single-chain and single-domain antibody fragments or aptamers. The alternative supra-molecular approach using a molecularly imprinted polymer now has proven utility in numerous applications ranging from liquid chromatography to bioassays. Despite inherent advantages compared with biochemical/biological recognition (which include robustness, storage endurance and lower costs) there are few contributions that describe quantitative analytical applications of molecularly imprinted polymers for relevant small molecular mass compounds in real-world samples. There is, however, significant literature describing the use of low-power, portable piezoelectric transducers to detect analytes in environmental monitoring and other application areas. Here we review the combination of molecularly imprinted polymers as recognition elements with piezoelectric biosensors for quantitative detection of small molecules. Analytes are classified by type and sample matrix presentation and various molecularly imprinted polymer synthetic fabrication strategies are also reviewed.

  4. [Department of the molecular bases of semiotics].

    Science.gov (United States)

    Ternovyĭ, K S

    1995-01-01

    Department of molecular basis of semiotics was organized in 1986. The main task of the department was to work out new approaches in estimation of the state of immune and blood system at the tissue, cell and molecular levels, using biochemical, biophysical and molecular biology techniques. There are several main directions of scientific investigations at the department. Most informational methods were collected in "immunological portrait" for differential diagnostic and complex investigation of the immune system of autoimmune patients. This group of techniques was used to study changes in the immune system of Kievites after the Chernobyl disaster. A decrease of complement and thymic serum activity was detected. Antibodies against nuclear components appeared in 20% of donors. And a higher of circulating immune complex of low molecular weight was observed. Low level of thymic serum activity in blood of autoimmune patients with rheumatoid arthritis, lupus erythematosus, diabetes, herpes and other depends on the appearance of zinc-independent timuline inhibitor less then 2000 D. Another kind of thymic hormone inhibitors was detected in thymectomized adult mice. Its effect disappears when zinc added in blood rather due to competition for lymphocyte surface receptors timuline and its inactive analogue than other mechanism. Therapeutic effect of UV irradiation of patients' blood was shown to be closely connected with the changes in thymic serum activity in respect to stabilization of thymic hormone/inhibitor ratio. The immunochemical techniques were used to detect and investigate tumor-associated chromatin antigens in human and animal tumor cells. Antigens not found in normal tissues were detected when using rabbit antibodies against chromatin of rat hepatocarcinoma and human colon and carcinoma.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Identification of a non-LTR retrotransposon from the gypsy moth

    Science.gov (United States)

    K.J. Garner; J.M. Slavicek

    1999-01-01

    A family of highly repetitive elements, named LDT1, has been identified in the gypsy moth, Lymantria dispar. The complete element is 5.4 kb in length and lacks long-terminal repeats, The element contains two open reading frames with a significant amino acid sequence similarity to several non-LTR retrotransposons. The first open reading frame contains...

  6. How a retrotransposon exploits the plant's heat stress response for its activation.

    Directory of Open Access Journals (Sweden)

    Vladimir V Cavrak

    2014-01-01

    Full Text Available Retrotransposons are major components of plant and animal genomes. They amplify by reverse transcription and reintegration into the host genome but their activity is usually epigenetically silenced. In plants, genomic copies of retrotransposons are typically associated with repressive chromatin modifications installed and maintained by RNA-directed DNA methylation. To escape this tight control, retrotransposons employ various strategies to avoid epigenetic silencing. Here we describe the mechanism developed by ONSEN, an LTR-copia type retrotransposon in Arabidopsis thaliana. ONSEN has acquired a heat-responsive element recognized by plant-derived heat stress defense factors, resulting in transcription and production of full length extrachromosomal DNA under elevated temperatures. Further, the ONSEN promoter is free of CG and CHG sites, and the reduction of DNA methylation at the CHH sites is not sufficient to activate the element. Since dividing cells have a more pronounced heat response, the extrachromosomal ONSEN DNA, capable of reintegrating into the genome, accumulates preferentially in the meristematic tissue of the shoot. The recruitment of a major plant heat shock transcription factor in periods of heat stress exploits the plant's heat stress response to achieve the transposon's activation, making it impossible for the host to respond appropriately to stress without losing control over the invader.

  7. Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic.

    Science.gov (United States)

    Marcon, Helena Sanches; Domingues, Douglas Silva; Silva, Juliana Costa; Borges, Rafael Junqueira; Matioli, Fábio Filippi; Fontes, Marcos Roberto de Mattos; Marino, Celso Luis

    2015-08-14

    In Eucalyptus genus, studies on genome composition and transposable elements (TEs) are particularly scarce. Nearly half of the recently released Eucalyptus grandis genome is composed by retrotransposons and this data provides an important opportunity to understand TE dynamics in Eucalyptus genome and transcriptome. We characterized nine families of transcriptionally active LTR retrotransposons from Copia and Gypsy superfamilies in Eucalyptus grandis genome and we depicted genomic distribution and copy number in two Eucalyptus species. We also evaluated genomic polymorphism and transcriptional profile in three organs of five Eucalyptus species. We observed contrasting genomic and transcriptional behavior in the same family among different species. RLC_egMax_1 was the most prevalent family and RLC_egAngela_1 was the family with the lowest copy number. Most families of both superfamilies have their insertions occurring Eucalyptus species. Using EST analysis and qRT-PCRs, we observed transcriptional activity in several tissues and in all evaluated species. In some families, osmotic stress increases transcript values. Our strategy was successful in isolating transcriptionally active retrotransposons in Eucalyptus, and each family has a particular genomic and transcriptional pattern. Overall, our results show that retrotransposon activity have differentially affected genome and transcriptome among Eucalyptus species.

  8. An evaluation of a SVA retrotransposon in the FUS promoter as a transcriptional regulator and its association to ALS.

    Directory of Open Access Journals (Sweden)

    Abigail L Savage

    Full Text Available Genetic mutations of FUS have been linked to many diseases including Amyotrophic Lateral Sclerosis (ALS and Frontotemporal Lobar Degeneration. A primate specific and polymorphic retrotransposon of the SINE-VNTR-Alu (SVA family is present upstream of the FUS gene. Here we have demonstrated that this retrotransposon can act as a classical transcriptional regulatory domain in the context of a reporter gene construct both in vitro in the human SK-N-AS neuroblastoma cell line and in vivo in a chick embryo model. We have also demonstrated that the SVA is composed of multiple distinct regulatory domains, one of which is a variable number tandem repeat (VNTR. The ability of the SVA and its component parts to direct reporter gene expression supported a hypothesis that this region could direct differential FUS expression in vivo. The SVA may therefore contribute to the modulation of FUS expression exhibited in and associated with neurological disorders including ALS where FUS regulation may be an important parameter in progression of the disease. As VNTRs are often clinical associates for disease progression we determined the extent of polymorphism within the SVA. In total 2 variants of the SVA were identified based within a central VNTR. Preliminary analysis addressed the association of these SVA variants within a small sporadic ALS cohort but did not reach statistical significance, although we did not include other parameters such as SNPs within the SVA or an environmental factor in this analysis. The latter may be particularly important as the transcriptional and epigenetic properties of the SVA are likely to be directed by the environment of the cell.

  9. Molecular bases of methamphetamine-induced neurodegeneration.

    Science.gov (United States)

    Cadet, Jean Lud; Krasnova, Irina N

    2009-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. The addiction to METH is a major public concern because its chronic abuse is associated with serious health complications including deficits in attention, memory, and executive functions in humans. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. Thus, the purpose of the present paper is to review cellular and molecular mechanisms that might be responsible for METH neurotoxicity. These include oxidative stress, activation of transcription factors, DNA damage, excitotoxicity, blood-brain barrier breakdown, microglial activation, and various apoptotic pathways. Several approaches that allow protection against METH-induced neurotoxic effects are also discussed. Better understanding of the cellular and molecular mechanisms involved in METH toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of psychostimulant use disorders in humans.

  10. The RNAPII-CTD Maintains Genome Integrity through Inhibition of Retrotransposon Gene Expression and Transposition.

    Directory of Open Access Journals (Sweden)

    Maria J Aristizabal

    2015-10-01

    Full Text Available RNA polymerase II (RNAPII contains a unique C-terminal domain that is composed of heptapeptide repeats and which plays important regulatory roles during gene expression. RNAPII is responsible for the transcription of most protein-coding genes, a subset of non-coding genes, and retrotransposons. Retrotransposon transcription is the first step in their multiplication cycle, given that the RNA intermediate is required for the synthesis of cDNA, the material that is ultimately incorporated into a new genomic location. Retrotransposition can have grave consequences to genome integrity, as integration events can change the gene expression landscape or lead to alteration or loss of genetic information. Given that RNAPII transcribes retrotransposons, we sought to investigate if the RNAPII-CTD played a role in the regulation of retrotransposon gene expression. Importantly, we found that the RNAPII-CTD functioned to maintaining genome integrity through inhibition of retrotransposon gene expression, as reducing CTD length significantly increased expression and transposition rates of Ty1 elements. Mechanistically, the increased Ty1 mRNA levels in the rpb1-CTD11 mutant were partly due to Cdk8-dependent alterations to the RNAPII-CTD phosphorylation status. In addition, Cdk8 alone contributed to Ty1 gene expression regulation by altering the occupancy of the gene-specific transcription factor Ste12. Loss of STE12 and TEC1 suppressed growth phenotypes of the RNAPII-CTD truncation mutant. Collectively, our results implicate Ste12 and Tec1 as general and important contributors to the Cdk8, RNAPII-CTD regulatory circuitry as it relates to the maintenance of genome integrity.

  11. Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, Tx1L and Tx2L: target site specificity and evolutionary implications.

    Science.gov (United States)

    Christensen, S; Pont-Kingdon, G; Carroll, D

    2000-01-01

    In the genome of the South African frog, Xenopus laevis, there are two complex families of transposable elements, Tx1 and Tx2, that have identical overall structures, but distinct sequences. In each family there are approximately 1500 copies of an apparent DNA-based element (Tx1D and Tx2D). Roughly 10% of these elements in each family are interrupted by a non-LTR retrotransposon (Tx1L and Tx2L). Each retrotransposon is flanked by a 23-bp target duplication of a specific D element sequence. In earlier work, we showed that the endonuclease domain (Tx1L EN) located in the second open reading frame (ORF2) of Tx1L encodes a protein that makes a single-strand cut precisely at the expected site within its target sequence, supporting the idea that Tx1L is a site-specific retrotransposon. In this study, we express the endonuclease domain of Tx2L (Tx2L EN) and compare the target preferences of the two enzymes. Each endonuclease shows some preference for its cognate target, on the order of 5-fold over the non-cognate target. The observed discrimination is not sufficient, however, to explain the observation that no cross-occupancy is observed - that is, L elements of one family have never been found within D elements of the other family. Possible sources of additional specificity are discussed. We also compare two hypotheses regarding the genome duplication event that led to the contemporary pseudotetraploid character of Xenopus laevis in light of the Tx1L and Tx2L data.

  12. Controlling charge current through a DNA based molecular transistor

    Energy Technology Data Exchange (ETDEWEB)

    Behnia, S., E-mail: s.behnia@sci.uut.ac.ir; Fathizadeh, S.; Ziaei, J.

    2017-01-05

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I–V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive. - Highlights: • Modeling a DNA based molecular transistor and studying its transport properties. • Choosing the appropriate DNA sequence using the quantum chaos tools. • Choosing the functional interval for voltages via the inverse participation ratio tool. • Detecting the rectifier and negative differential resistance behavior of DNA.

  13. Bibliographic data base on atomic and molecular data

    International Nuclear Information System (INIS)

    Itikawa, Yukikazu.

    1983-03-01

    A comparative study is made on three bibliographic data bases: INSPEC, ORNL - AMPIC, GAPHYOR. An on - line retrieval is carried out for searching a number of specific atomic and molecular data. Characteristics of each data base are clarified and suggestions are given for use of those data bases. (author)

  14. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays.

    Science.gov (United States)

    Erturk, Filiz Aygun; Aydin, Murat; Sigmaz, Burcu; Taspinar, M Sinan; Arslan, Esra; Agar, Guleray; Yagci, Semra

    2015-12-01

    Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress.

  15. The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression and therapy of cancer

    Directory of Open Access Journals (Sweden)

    Ilaria eSciamanna

    2016-02-01

    Full Text Available In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1 retrotransposons represent a large family of repeated genomic elements. They transpose using a reverse transcriptase (RT, which they encode as part of the ORF2p product. RT inhibition in cancer cells, either via RNA interference-dependent silencing of active LINE-1 elements, or using RT inhibitory drugs, reduces cancer cell proliferation, promotes their differentiation and antagonizes tumor progression in animal models. Indeed, the nonnucleoside RT inhibitor efavirenz has recently been tested in a phase II clinical trial with metastatic prostate cancer patients. An in-depth analysis of ORF2p in a mouse model of breast cancer showed ORF2p to be precociously expressed in precancerous lesions and highly abundant in advanced cancer stages, while being barely detectable in normal breast tissue, providing a rationale for the finding that RT-expressing tumours are therapeutically sensitive to RT inhibitors. We summarise mechanistic and gene profiling studies indicating that highly abundant LINE-1-derived RT can sequester RNA substrates for reverse transcription in tumor cells, entailing the formation of RNA:DNA hybrid molecules and impairing the overall production of regulatory miRNAs, with a global impact on the cell transcriptome. Based on these data, LINE-1-ORF2 encoded RT has a tumor-promoting potential that is exerted at an epigenetic level. We propose a model whereby LINE1-RT drives a previously unrecognized global regulatory process, the deregulation of which drives cell transformation and tumorigenesis and possibly implicated in cancer cell heterogeneity.

  16. The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression and therapy of cancer

    Science.gov (United States)

    Sciamanna, Ilaria; De Luca, Chiara; Spadafora, Corrado

    2016-02-01

    In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons represent a large family of repeated genomic elements. They transpose using a reverse transcriptase (RT), which they encode as part of the ORF2p product. RT inhibition in cancer cells, either via RNA interference-dependent silencing of active LINE-1 elements, or using RT inhibitory drugs, reduces cancer cell proliferation, promotes their differentiation and antagonizes tumor progression in animal models. Indeed, the nonnucleoside RT inhibitor efavirenz has recently been tested in a phase II clinical trial with metastatic prostate cancer patients. An in-depth analysis of ORF2p in a mouse model of breast cancer showed ORF2p to be precociously expressed in precancerous lesions and highly abundant in advanced cancer stages, while being barely detectable in normal breast tissue, providing a rationale for the finding that RT-expressing tumours are therapeutically sensitive to RT inhibitors. We summarise mechanistic and gene profiling studies indicating that highly abundant LINE-1-derived RT can “sequester” RNA substrates for reverse transcription in tumor cells, entailing the formation of RNA:DNA hybrid molecules and impairing the overall production of regulatory miRNAs, with a global impact on the cell transcriptome. Based on these data, LINE-1-ORF2 encoded RT has a tumor-promoting potential that is exerted at an epigenetic level. We propose a model whereby LINE1-RT drives a previously unrecognized global regulatory process, the deregulation of which drives cell transformation and tumorigenesis and possibly implicated in cancer cell heterogeneity.

  17. Agent-Based Modeling in Molecular Systems Biology.

    Science.gov (United States)

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-06-08

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  18. Optimal separable bases and molecular collisions

    International Nuclear Information System (INIS)

    Poirier, L.W.

    1997-12-01

    A new methodology is proposed for the efficient determination of Green's functions and eigenstates for quantum systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is obtained from the set of all Hilbert space operators. It is shown that this determination itself, as well as the solution of the resultant approximation, are problems of reduced dimensionality for most systems of physical interest. Moreover, the approximate eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. These distorted waves give rise to a Born series with optimized convergence properties. Analytical results are presented for an application of the method to the two-dimensional shifted harmonic oscillator system. The primary interest however, is quantum reactive scattering in molecular systems. For numerical calculations, the use of distorted waves corresponds to numerical preconditioning. The new methodology therefore gives rise to an optimized preconditioning scheme for the efficient calculation of reactive and inelastic scattering amplitudes, especially at intermediate energies. This scheme is particularly suited to discrete variable representations (DVR's) and iterative sparse matrix methods commonly employed in such calculations. State to state and cumulative reactive scattering results obtained via the optimized preconditioner are presented for the two-dimensional collinear H + H 2 → H 2 + H system. Computational time and memory requirements for this system are drastically reduced in comparison with other methods, and results are obtained for previously prohibitive energy regimes

  19. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates.

    Science.gov (United States)

    Naville, M; Warren, I A; Haftek-Terreau, Z; Chalopin, D; Brunet, F; Levin, P; Galiana, D; Volff, J-N

    2016-04-01

    Viruses and transposable elements, once considered as purely junk and selfish sequences, have repeatedly been used as a source of novel protein-coding genes during the evolution of most eukaryotic lineages, a phenomenon called 'molecular domestication'. This is exemplified perfectly in mammals and other vertebrates, where many genes derived from long terminal repeat (LTR) retroelements (retroviruses and LTR retrotransposons) have been identified through comparative genomics and functional analyses. In particular, genes derived from gag structural protein and envelope (env) genes, as well as from the integrase-coding and protease-coding sequences, have been identified in humans and other vertebrates. Retroelement-derived genes are involved in many important biological processes including placenta formation, cognitive functions in the brain and immunity against retroelements, as well as in cell proliferation, apoptosis and cancer. These observations support an important role of retroelement-derived genes in the evolution and diversification of the vertebrate lineage. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Environmental Phosphorus Recovery Based on Molecular Bioscavengers

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix

    Phosphorus is a ubiquitous element of all known life and as such it is found throughout numerous key molecules related to various cellular functions. The supply of phosphorus is tightly linked to global food security, since phosphorus is used to produce agricultural fertilizers, without which...... it would not be possible to feed the world population. Sadly, the current supply of phosphorus is based on the gradual depletion of limited fossil reserves, and some estimates predict that within 15-25 years we will consume more phosphorus than we can produce. There is therefore a strong international...... pressure to develop sustainable phosphorus practices as well as new technologies for phosphorus recovery. Nature has spent billions of years refining proteins that interact with phosphates. This has inspired the present work where the overall ambitions are: to facilitate the development of a recovery...

  1. Progress in molecular-based management of differentiated thyroid cancer

    Science.gov (United States)

    Xing, Mingzhao; Haugen, Bryan R; Schlumberger, Martin

    2014-01-01

    Substantial developments have occurred in the past 5–10 years in clinical translational research of thyroid cancer. Diagnostic molecular markers, such as RET-PTC, RAS, and BRAFV600E mutations; galectin 3; and a new gene expression classifier, are outstanding examples that have improved diagnosis of thyroid nodules. BRAF mutation is a prognostic genetic marker that has improved risk stratification and hence tailored management of patients with thyroid cancer, including those with conventionally low risks. Novel molecular-targeted treatments hold great promise for radioiodine-refractory and surgically inoperable thyroid cancers as shown in clinical trials; such treatments are likely to become a component of the standard treatment regimen for patients with thyroid cancer in the near future. These novel molecular-based management strategies for thyroid nodules and thyroid cancer are the most exciting developments in this unprecedented era of molecular thyroid-cancer medicine. PMID:23668556

  2. Genome-wide analysis of LTR-retrotransposons in oil palm.

    Science.gov (United States)

    Beulé, Thierry; Agbessi, Mawussé Dt; Dussert, Stephane; Jaligot, Estelle; Guyot, Romain

    2015-10-15

    The oil palm (Elaeis guineensis Jacq.) is a major cultivated crop and the world's largest source of edible vegetable oil. The genus Elaeis comprises two species E. guineensis, the commercial African oil palm and E. oleifera, which is used in oil palm genetic breeding. The recent publication of both the African oil palm genome assembly and the first draft sequence of its Latin American relative now allows us to tackle the challenge of understanding the genome composition, structure and evolution of these palm genomes through the annotation of their repeated sequences. In this study, we identified, annotated and compared Transposable Elements (TE) from the African and Latin American oil palms. In a first step, Transposable Element databases were built through de novo detection in both genome sequences then the TE content of both genomes was estimated. Then putative full-length retrotransposons with Long Terminal Repeats (LTRs) were further identified in the E. guineensis genome for characterization of their structural diversity, copy number and chromosomal distribution. Finally, their relative expression in several tissues was determined through in silico analysis of publicly available transcriptome data. Our results reveal a congruence in the transpositional history of LTR retrotransposons between E. oleifera and E. guineensis, especially the Sto-4 family. Also, we have identified and described 583 full-length LTR-retrotransposons in the Elaeis guineensis genome. Our work shows that these elements are most likely no longer mobile and that no recent insertion event has occurred. Moreover, the analysis of chromosomal distribution suggests a preferential insertion of Copia elements in gene-rich regions, whereas Gypsy elements appear to be evenly distributed throughout the genome. Considering the high proportion of LTR retrotransposon in the oil palm genome, our work will contribute to a greater understanding of their impact on genome organization and evolution

  3. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin.

    Directory of Open Access Journals (Sweden)

    Anderly C Chueh

    2009-01-01

    Full Text Available We have previously identified and characterized the phenomenon of ectopic human centromeres, known as neocentromeres. Human neocentromeres form epigenetically at euchromatic chromosomal sites and are structurally and functionally similar to normal human centromeres. Recent studies have indicated that neocentromere formation provides a major mechanism for centromere repositioning, karyotype evolution, and speciation. Using a marker chromosome mardel(10 containing a neocentromere formed at the normal chromosomal 10q25 region, we have previously mapped a 330-kb CENP-A-binding domain and described an increased prevalence of L1 retrotransposons in the underlying DNA sequences of the CENP-A-binding clusters. Here, we investigated the potential role of the L1 retrotransposons in the regulation of neocentromere activity. Determination of the transcriptional activity of a panel of full-length L1s (FL-L1s across a 6-Mb region spanning the 10q25 neocentromere chromatin identified one of the FL-L1 retrotransposons, designated FL-L1b and residing centrally within the CENP-A-binding clusters, to be transcriptionally active. We demonstrated the direct incorporation of the FL-L1b RNA transcripts into the CENP-A-associated chromatin. RNAi-mediated knockdown of the FL-L1b RNA transcripts led to a reduction in CENP-A binding and an impaired mitotic function of the 10q25 neocentromere. These results indicate that LINE retrotransposon RNA is a previously undescribed essential structural and functional component of the neocentromeric chromatin and that retrotransposable elements may serve as a critical epigenetic determinant in the chromatin remodelling events leading to neocentromere formation.

  4. Identification of an Internal Ribosome Entry Segment in the 5′ Region of the Mouse VL30 Retrotransposon and Its Use in the Development of Retroviral Vectors

    Science.gov (United States)

    López-Lastra, Marcelo; Ulrici, Sandrine; Gabus, Caroline; Darlix, Jean-Luc

    1999-01-01

    Mouse virus-like 30S RNAs (VL30m) constitute a family of retrotransposons, present at 100 to 200 copies, dispersed in the mouse genome. They display little sequence homology to Moloney murine leukemia virus (MoMLV), do not encode virus-like proteins, and have not been implicated in retroviral carcinogenesis. However, VL30 RNAs are efficiently packaged into MLV particles that are propagated in cell culture. In this study, we addressed whether the 5′ region of VL30m could replace the 5′ leader of MoMLV functionally in a recombinant vector construct. Our data confirm that the putative packaging sequence of VL30 is located within the 5′ region (nucleotides 362 to 1149 with respect to the cap structure) and that it can replace the packaging sequence of MoMLV. We also show that VL30m contains an internal ribosome entry segment (IRES) in the 5′ region, as do MoMLV, Friend murine leukemia virus, Harvey murine sarcoma virus, and avian reticuloendotheliosis virus type A. Our data show that both the packaging and IRES functions of the 5′ region of VL30m RNA can be efficiently used to develop retrotransposon-based vectors. PMID:10482590

  5. Identification of an internal ribosome entry segment in the 5' region of the mouse VL30 retrotransposon and its use in the development of retroviral vectors.

    Science.gov (United States)

    López-Lastra, M; Ulrici, S; Gabus, C; Darlix, J L

    1999-10-01

    Mouse virus-like 30S RNAs (VL30m) constitute a family of retrotransposons, present at 100 to 200 copies, dispersed in the mouse genome. They display little sequence homology to Moloney murine leukemia virus (MoMLV), do not encode virus-like proteins, and have not been implicated in retroviral carcinogenesis. However, VL30 RNAs are efficiently packaged into MLV particles that are propagated in cell culture. In this study, we addressed whether the 5' region of VL30m could replace the 5' leader of MoMLV functionally in a recombinant vector construct. Our data confirm that the putative packaging sequence of VL30 is located within the 5' region (nucleotides 362 to 1149 with respect to the cap structure) and that it can replace the packaging sequence of MoMLV. We also show that VL30m contains an internal ribosome entry segment (IRES) in the 5' region, as do MoMLV, Friend murine leukemia virus, Harvey murine sarcoma virus, and avian reticuloendotheliosis virus type A. Our data show that both the packaging and IRES functions of the 5' region of VL30m RNA can be efficiently used to develop retrotransposon-based vectors.

  6. Links between human LINE-1 retrotransposons and hepatitis virus-related hepatocellular carcinoma

    Science.gov (United States)

    Honda, Tomoyuki

    2016-05-01

    Hepatocellular carcinoma (HCC) accounts for approximately 80% of liver cancers, the third most frequent cause of cancer mortality. The most prevalent risk factors for HCC are infections by hepatitis B or hepatitis C virus. Findings suggest that hepatitis virus-related HCC might be a cancer in which LINE-1 retrotransposons, often termed L1, activity plays a potential role. Firstly, hepatitis viruses can suppress host defense factors that also control L1 mobilization. Secondly, many recent studies also have indicated that hypomethylation of L1 affects the prognosis of HCC patients. Thirdly, endogenous L1 retrotransposition was demonstrated to activate oncogenic pathways in HCC. Fourthly, several L1 chimeric transcripts with host or viral genes are found in hepatitis virus-related HCC. Such lines of evidence suggest a linkage between L1 retrotransposons and hepatitis virus-related HCC. Here, I briefly summarize current understandings of the association between hepatitis virus-related HCC and L1. Then, I discuss potential mechanisms of how hepatitis viruses drive the development of HCC via L1 retrotransposons. An increased understanding of the contribution of L1 to hepatitis virus-related HCC may provide unique insights related to the development of novel therapeutics for this disease.

  7. Assessment of genetic variation for the LINE-1 retrotransposon from next generation sequence data

    Directory of Open Access Journals (Sweden)

    Ramos Kenneth

    2010-10-01

    Full Text Available Abstract Background In humans, copies of the Long Interspersed Nuclear Element 1 (LINE-1 retrotransposon comprise 21% of the reference genome, and have been shown to modulate expression and produce novel splice isoforms of transcripts from genes that span or neighbor the LINE-1 insertion site. Results In this work, newly released pilot data from the 1000 Genomes Project is analyzed to detect previously unreported full length insertions of the retrotransposon LINE-1. By direct analysis of the sequence data, we have identified 22 previously unreported LINE-1 insertion sites within the sequence data reported for a mother/father/daughter trio. Conclusions It is demonstrated here that next generation sequencing data, as well as emerging high quality datasets from individual genome projects allow us to assess the amount of heterogeneity with respect to the LINE-1 retrotransposon amongst humans, and provide us with a wealth of testable hypotheses as to the impact that this diversity may have on the health of individuals and populations.

  8. Retrotransposon-Encoded Reverse Transcriptase in the Genesis, Progression and Cellular Plasticity of Human Cancer

    International Nuclear Information System (INIS)

    Sinibaldi-Vallebona, Paola; Matteucci, Claudia; Spadafora, Corrado

    2011-01-01

    LINE-1 (Long Interspersed Nuclear Elements) and HERVs (Human Endogenous Retroviruses) are two families of autonomously replicating retrotransposons that together account for about 28% of the human genome. Genes harbored within LINE-1 and HERV retrotransposons, particularly those encoding the reverse transcriptase (RT) enzyme, are generally expressed at low levels in differentiated cells, but their expression is upregulated in transformed cells and embryonic tissues. Here we discuss a recently discovered RT-dependent mechanism that operates in tumorigenesis and reversibly modulates phenotypic and functional variations associated with tumor progression. Downregulation of active LINE-1 elements drastically reduces the tumorigenic potential of cancer cells, paralleled by reduced proliferation and increased differentiation. Pharmacological RT inhibitors (e.g., nevirapine and efavirenz) exert similar effects on tumorigenic cell lines, both in culture and in animal models. The HERV-K family play a distinct complementary role in stress-dependent transition of melanoma cells from an adherent, non-aggressive, to a non-adherent, highly malignant, growth phenotype. In synthesis, the retrotransposon-encoded RT is increasingly emerging as a key regulator of tumor progression and a promising target in a novel anti-cancer therapy

  9. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    Science.gov (United States)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  10. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice

    Directory of Open Access Journals (Sweden)

    Liu Jin-Song

    2008-08-01

    Full Text Available Abstract Background Long terminal repeat retrotransposons (LTR elements are ubiquitous Eukaryotic TEs that transpose through RNA intermediates. Accounting for significant proportion of many plant genomes, LTR elements have been well established as one of the major forces underlying the evolution of plant genome size, structure and function. The accessibility of more than 40% of genomic sequences of the model legume Medicago truncatula (Mt has made the comprehensive study of its LTR elements possible. Results We use a newly developed tool LTR_FINDER to identify LTR retrotransposons in the Mt genome and detect 526 full-length elements as well as a great number of copies related to them. These elements constitute about 9.6% of currently available genomic sequences. They are classified into 85 families of which 64 are reported for the first time. The majority of the LTR retrotransposons belong to either Copia or Gypsy superfamily and the others are categorized as TRIMs or LARDs by their length. We find that the copy-number of Copia-like families is 3 times more than that of Gypsy-like ones but the latter contribute more to the genome. The analysis of PBS and protein-coding domain structure of the LTR families reveals that they tend to use only 4–5 types of tRNAs and many families have quite conservative ORFs besides known TE domains. For several important families, we describe in detail their abundance, conservation, insertion time and structure. We investigate the amplification-deletion pattern of the elements and find that the detectable full-length elements are relatively young and most of them were inserted within the last 0.52 MY. We also estimate that more than ten million bp of the Mt genomic sequences have been removed by the deletion of LTR elements and the removal of the full-length structures in Mt has been more rapid than in rice. Conclusion This report is the first comprehensive description and analysis of LTR retrotransposons in the

  11. Optical materials based on molecular nano/microcrystals and ...

    Indian Academy of Sciences (India)

    Wintec

    generation capability of these ultrathin films are dimini- shed due to aggregation. The efficient solution to this problem based on polyelectrolyte templating is described. Current efforts in our laboratory are focused on the ex- ploitation of these molecular nanostructures for potential applications in sensors and photonics.

  12. Accelerating convergence of molecular dynamics-based structural relaxation

    DEFF Research Database (Denmark)

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...

  13. Fullerene-based Anchoring Groups for Molecular Electronics

    DEFF Research Database (Denmark)

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  14. Molecular Recognition: Detection of Colorless Compounds Based on Color Change

    Science.gov (United States)

    Khalafi, Lida; Kashani, Samira; Karimi, Javad

    2016-01-01

    A laboratory experiment is described in which students measure the amount of cetirizine in allergy-treatment tablets based on molecular recognition. The basis of recognition is competition of cetirizine with phenolphthalein to form an inclusion complex with ß-cyclodextrin. Phenolphthalein is pinkish under basic condition, whereas it's complex form…

  15. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  16. Chemical sensors based on molecularly modified metallic nanoparticles

    International Nuclear Information System (INIS)

    Haick, Hossam

    2007-01-01

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  17. A molecular shift register based on electron transfer

    Science.gov (United States)

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  18. NEW MOLECULAR MEDICINE-BASED SCAR MANAGEMENT STRATEGIES

    Science.gov (United States)

    Arno, Anna I; Gauglitz, Gerd G; Barret, Juan P; Jeschke, Marc G

    2014-01-01

    Keloids and hypertrophic scars are prevalent disabling conditions with still suboptimal treatments. Basic science and molecular-based medicine research has contributed to unravel new bench-to-bedside scar therapies, and to dissect the complex signaling pathways involved. Peptides such as transforming growth factor beta (TGF-β) superfamily, with SMADs, Ski, SnoN, Fussels, endoglin, DS-Sily, Cav-1p, AZX100, thymosin-β4 and other related molecules may emerge as targets to prevent and treat keloids and hypertrophic scars. The aim of this review is to describe the basic complexity of these new molecular scar management strategies, and point out new fibrosis research lines. PMID:24438742

  19. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation.

    Directory of Open Access Journals (Sweden)

    Kristel Kaer

    Full Text Available Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown.Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals.Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression.

  20. Gesture Interaction Browser-Based 3D Molecular Viewer.

    Science.gov (United States)

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2016-01-01

    The paper presents an open source system that allows the user to interact with a 3D molecular viewer using associated hand gestures for rotating, scaling and panning the rendered model. The novelty of this approach is that the entire application is browser-based and doesn't require installation of third party plug-ins or additional software components in order to visualize the supported chemical file formats. This kind of solution is suitable for instruction of users in less IT oriented environments, like medicine or chemistry. For rendering various molecular geometries our team used GLmol (a molecular viewer written in JavaScript). The interaction with the 3D models is made with Leap Motion controller that allows real-time tracking of the user's hand gestures. The first results confirmed that the resulting application leads to a better way of understanding various types of translational bioinformatics related problems in both biomedical research and education.

  1. Clustering the Orion B giant molecular cloud based on its molecular emission.

    Science.gov (United States)

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. A clustering analysis based only on the J = 1 - 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes ( n H ~ 100 cm -3 , ~ 500 cm -3 , and > 1000 cm -3 ), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 - 0 line of HCO + and the N = 1 - 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO + and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO + intensity ratio in UV-illuminated regions. Finer distinctions in density classes ( n H ~ 7 × 10 3 cm -3 ~ 4 × 10 4 cm -3 ) for the densest regions are also

  2. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data

    Science.gov (United States)

    Tetreault, Hannah M.; Ungerer, Mark C.

    2016-01-01

    The most abundant transposable elements (TEs) in plant genomes are Class I long terminal repeat (LTR) retrotransposons represented by superfamilies gypsy and copia. Amplification of these superfamilies directly impacts genome structure and contributes to differential patterns of genome size evolution among plant lineages. Utilizing short-read Illumina data and sequence information from a panel of Helianthus annuus (sunflower) full-length gypsy and copia elements, we explore the contribution of these sequences to genome size variation among eight diploid Helianthus species and an outgroup taxon, Phoebanthus tenuifolius. We also explore transcriptional dynamics of these elements in both leaf and bud tissue via RT-PCR. We demonstrate that most LTR retrotransposon sublineages (i.e., families) display patterns of similar genomic abundance across species. A small number of LTR retrotransposon sublineages exhibit lineage-specific amplification, particularly in the genomes of species with larger estimated nuclear DNA content. RT-PCR assays reveal that some LTR retrotransposon sublineages are transcriptionally active across all species and tissue types, whereas others display species-specific and tissue-specific expression. The species with the largest estimated genome size, H. agrestis, has experienced amplification of LTR retrotransposon sublineages, some of which have proliferated independently in other lineages in the Helianthus phylogeny. PMID:27233667

  3. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Science.gov (United States)

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  4. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  5. Arthropod phylogeny based on eight molecular loci and morphology

    Science.gov (United States)

    Giribet, G.; Edgecombe, G. D.; Wheeler, W. C.

    2001-01-01

    The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean-hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal 'total evidence' cladogram supports the crustacean-hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.

  6. Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3

    Directory of Open Access Journals (Sweden)

    Katarzyna Pachulska-Wieczorek

    2016-07-01

    Full Text Available Long-terminal repeat (LTR retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation.

  7. Forcefields based molecular modeling on the mechanical and physical properties of emeraldine base polyaniline

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, K.Y.; Zhang, G.Q.

    2010-01-01

    Molecular dynamics (MD) and molecular mechanical (MM) analysis are carried out to provide reliable and accurate model for emeraldine base polyaniline. This study validate the forcefields and model with the physical and mechanical properties of the polyaniline. The temperature effects on non-bond

  8. Organization of a radioisotope based molecular biology laboratory

    International Nuclear Information System (INIS)

    2006-12-01

    Polymerase chain reaction (PCR) has revolutionized the application of molecular techniques to medicine. Together with other molecular biology techniques it is being increasingly applied to human health for identifying prognostic markers and drug resistant profiles, developing diagnostic tests and genotyping systems and for treatment follow-up of certain diseases in developed countries. Developing Member States have expressed their need to also benefit from the dissemination of molecular advances. The use of radioisotopes, as a step in the detection process or for increased sensitivity and specificity is well established, making it ideally suitable for technology transfer. Many molecular based projects using isotopes for detecting and studying micro organisms, hereditary and neoplastic diseases are received for approval every year. In keeping with the IAEA's programme, several training activities and seminars have been organized to enhance the capabilities of developing Member States to employ in vitro nuclear medicine technologies for managing their important health problems and for undertaking related basic and clinical research. The background material for this publication was collected at training activities and from feedback received from participants at research and coordination meetings. In addition, a consultants' meeting was held in June 2004 to compile the first draft of this report. Previous IAEA TECDOCS, namely IAEA-TECDOC-748 and IAEA-TECDOC-1001, focused on molecular techniques and their application to medicine while the present publication provides information on organization of the laboratory, quality assurance and radio-safety. The technology has specific requirements of the way the laboratory is organized (e.g. for avoiding contamination and false positives in PCR) and of quality assurance in order to provide accurate information to decision makers. In addition while users of the technology accept the scientific rationale of using radio

  9. Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders.

    Science.gov (United States)

    Frahry, Matthew Blake; Sun, Cheng; Chong, Rebecca A; Mueller, Rachel Lockridge

    2015-02-01

    Across the tree of life, species vary dramatically in nuclear genome size. Mutations that add or remove sequences from genomes-insertions or deletions, or indels-are the ultimate source of this variation. Differences in the tempo and mode of insertion and deletion across taxa have been proposed to contribute to evolutionary diversity in genome size. Among vertebrates, most of the largest genomes are found within the salamanders, an amphibian clade with genome sizes ranging from ~14 to ~120 Gb. Salamander genomes have been shown to experience slower rates of DNA loss through small (i.e., genomes. However, no studies have addressed DNA loss from salamander genomes resulting from larger deletions. Here, we focus on one type of large deletion-ectopic-recombination-mediated removal of LTR retrotransposon sequences. In ectopic recombination, double-strand breaks are repaired using a "wrong" (i.e., ectopic, or non-allelic) template sequence-typically another locus of similar sequence. When breaks occur within the LTR portions of LTR retrotransposons, ectopic-recombination-mediated repair can produce deletions that remove the internal transposon sequence and the equivalent of one of the two LTR sequences. These deletions leave a signature in the genome-a solo LTR sequence. We compared levels of solo LTRs in the genomes of four salamander species with levels present in five vertebrates with smaller genomes. Our results demonstrate that salamanders have low levels of solo LTRs, suggesting that ectopic-recombination-mediated deletion of LTR retrotransposons occurs more slowly than in other vertebrates with smaller genomes.

  10. Design of two and three input molecular logic gates using non-Watson-Crick base pairing-based molecular beacons.

    Science.gov (United States)

    Lin, Jia-Hui; Tseng, Wei-Lung

    2014-03-21

    This study presents a single, resettable, and sensitive molecular beacon (MB) used to operate molecular-scale logic gates. The MB consists of a random DNA sequence, a fluorophore at the 5'-end, and a quencher at the 3'-end. The presence of Hg(2+), Ag(+), and coralyne promoted the formation of stable T-Hg(2+)-T, C-Ag(+)-C, and A2-coralyne-A2 coordination in the MB probe, respectively, thereby driving its conformational change. The metal ion or small molecule-mediated coordination of mismatched DNA brought the fluorophore and the quencher into close proximity, resulting in collisional quenching of fluorescence between the two organic dyes. Because thiol can bind Hg(2+) and remove it from the T-Hg(2+)-T-based MB, adding thiol to a solution of the T-Hg(2+)-T-based MB allowed the fluorophore and the quencher to be widely separated. A similar phenomenon was observed when replacing Hg(2+) with Ag(+). Because Ag(+) strongly binds to iodide, cyanide, and cysteine, they were capable of removing Ag(+) from the C-Ag(+)-C-based MB, restoring the fluorescence of the MB. Moreover, the fluorescence of the A2-coralyne-A2-based MB could be switched on by adding polyadenosine. Using these analytes as inputs and the MB as a signal transducer, we successfully developed a series of two-input, three-input, and set-reset logic gates at the molecular level.

  11. Characterization of active reverse transcriptase and nucleoprotein complexes of the yeast retrotransposon Ty3 in vitro.

    Science.gov (United States)

    Cristofari, G; Gabus, C; Ficheux, D; Bona, M; Le Grice, S F; Darlix, J L

    1999-12-17

    Human immunodeficiency virus (HIV) and the distantly related yeast Ty3 retrotransposon encode reverse transcriptase (RT) and a nucleic acid-binding protein designated nucleocapsid protein (NCp) with either one or two zinc fingers, required for HIV-1 replication and Ty3 transposition, respectively. In vitro binding of HIV-1 NCp7 to viral 5' RNA and primer tRNA(3)(Lys) catalyzes formation of nucleoprotein complexes resembling the virion nucleocapsid. Nucleocapsid complex formation functions in viral RNA dimerization and tRNA annealing to the primer binding site (PBS). RT is recruited in these nucleoprotein complexes and synthesizes minus-strand cDNA initiated at the PBS. Recent results on yeast Ty3 have shown that the homologous NCp9 promotes annealing of primer tRNA(i)(Met) to a 5'-3' bipartite PBS, allowing RNA:tRNA dimer formation and initiation of cDNA synthesis at the 5' PBS (). To compare specific cDNA synthesis in a retrotransposon and HIV-1, we have established a Ty3 model system comprising Ty3 RNA with the 5'-3' PBS, primer tRNA(i)(Met), NCp9, and for the first time, highly purified Ty3 RT. Here we report that Ty3 RT is as active as retroviral HIV-1 or murine leukemia virus RT using a synthetic template-primer system. Moreover, and in contrast to what was found with retroviral RTs, retrotransposon Ty3 RT was unable to direct cDNA synthesis by self-priming. We also show that Ty3 nucleoprotein complexes were formed in vitro and that the N terminus of NCp9, but not the zinc finger, is required for complex formation, tRNA annealing to the PBS, RNA dimerization, and primer tRNA-directed cDNA synthesis by Ty3 RT. These results indicate that NCp9 chaperones bona fide cDNA synthesis by RT in the yeast Ty3 retrotransposon, as illustrated for NCp7 in HIV-1, reinforcing the notion that Ty3 NCp9 is an ancestor of HIV-1 NCp7.

  12. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family.

    Science.gov (United States)

    Janoušek, Václav; Karn, Robert C; Laukaitis, Christina M

    2013-05-29

    Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in

  13. Molecular polarization potential maps of the nucleic acid bases

    International Nuclear Information System (INIS)

    Alkorta, I.; Perez, J.J.

    1996-01-01

    Ab initio calculations at the SCF level were carried out to compute the polarization potential map NM of the nucleic acid bases: cytosine, thymine, uracil, adedine, and guanine. For this purpose, the Dunning's 9s5p basis set contracted to a split-valence, was selected to perform the calculations. The molecular polarization potential (MPP) at each point was evaluated by the difference between the interaction energy of the molecule with a unit point charge and the molecular electrostatic potential (MEP) at that point. MEPS and MPPS for the different molecules were computed with a density of 5 points/Angstrom 2 on the van der Waals surface of each molecule, defined using the van der Waals radii. Due to the symmetry of the molecules, only half the points were computed. The total number of points calculated was 558 for cytosine, 621 for thymine, 526 for uracil, 666 for adenine, and 699 for guanine. The results of these calculations are analyzed in terms of their implications on the molecular interactions between pairs of nucleic acid bases. 23 refs., 5 figs., 1 tab

  14. Programmable molecular recognition based on the geometry of DNA nanostructures.

    Science.gov (United States)

    Woo, Sungwook; Rothemund, Paul W K

    2011-07-10

    From ligand-receptor binding to DNA hybridization, molecular recognition plays a central role in biology. Over the past several decades, chemists have successfully reproduced the exquisite specificity of biomolecular interactions. However, engineering multiple specific interactions in synthetic systems remains difficult. DNA retains its position as the best medium with which to create orthogonal, isoenergetic interactions, based on the complementarity of Watson-Crick binding. Here we show that DNA can be used to create diverse bonds using an entirely different principle: the geometric arrangement of blunt-end stacking interactions. We show that both binary codes and shape complementarity can serve as a basis for such stacking bonds, and explore their specificity, thermodynamics and binding rules. Orthogonal stacking bonds were used to connect five distinct DNA origami. This work, which demonstrates how a single attractive interaction can be developed to create diverse bonds, may guide strategies for molecular recognition in systems beyond DNA nanostructures.

  15. Clustering the Orion B giant molecular cloud based on its molecular emission

    Science.gov (United States)

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Context. Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims: We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods: We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional probability density function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results: A clustering analysis based only on the J = 1-0 lines of three isotopologues of CO proves sufficient to reveal distinct density/column density regimes (nH 100 cm-3, 500 cm-3, and >1000 cm-3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1-0 line of HCO+ and the N = 1-0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH 7 × 103 cm-3, 4 × 104 cm-3) for the densest regions are also

  16. Treatment Algorithms Based on Tumor Molecular Profiling: The Essence of Precision Medicine Trials.

    Science.gov (United States)

    Le Tourneau, Christophe; Kamal, Maud; Tsimberidou, Apostolia-Maria; Bedard, Philippe; Pierron, Gaëlle; Callens, Céline; Rouleau, Etienne; Vincent-Salomon, Anne; Servant, Nicolas; Alt, Marie; Rouzier, Roman; Paoletti, Xavier; Delattre, Olivier; Bièche, Ivan

    2016-04-01

    With the advent of high-throughput molecular technologies, several precision medicine (PM) studies are currently ongoing that include molecular screening programs and PM clinical trials. Molecular profiling programs establish the molecular profile of patients' tumors with the aim to guide therapy based on identified molecular alterations. The aim of prospective PM clinical trials is to assess the clinical utility of tumor molecular profiling and to determine whether treatment selection based on molecular alterations produces superior outcomes compared with unselected treatment. These trials use treatment algorithms to assign patients to specific targeted therapies based on tumor molecular alterations. These algorithms should be governed by fixed rules to ensure standardization and reproducibility. Here, we summarize key molecular, biological, and technical criteria that, in our view, should be addressed when establishing treatment algorithms based on tumor molecular profiling for PM trials. © The Author 2015. Published by Oxford University Press.

  17. Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules.

    Science.gov (United States)

    Ren, Pengyu; Wu, Chuanjie; Ponder, Jay W

    2011-10-11

    An empirical potential based on permanent atomic multipoles and atomic induced dipoles is reported for alkanes, alcohols, amines, sulfides, aldehydes, carboxylic acids, amides, aromatics and other small organic molecules. Permanent atomic multipole moments through quadrupole moments have been derived from gas phase ab initio molecular orbital calculations. The van der Waals parameters are obtained by fitting to gas phase homodimer QM energies and structures, as well as experimental densities and heats of vaporization of neat liquids. As a validation, the hydrogen bonding energies and structures of gas phase heterodimers with water are evaluated using the resulting potential. For 32 homo- and heterodimers, the association energy agrees with ab initio results to within 0.4 kcal/mol. The RMS deviation of hydrogen bond distance from QM optimized geometry is less than 0.06 Å. In addition, liquid self-diffusion and static dielectric constants computed from molecular dynamics simulation are consistent with experimental values. The force field is also used to compute the solvation free energy of 27 compounds not included in the parameterization process, with a RMS error of 0.69 kcal/mol. The results obtained in this study suggest the AMOEBA force field performs well across different environments and phases. The key algorithms involved in the electrostatic model and a protocol for developing parameters are detailed to facilitate extension to additional molecular systems.

  18. Molecular Bases Underlying the Hepatoprotective Effects of Coffee

    Directory of Open Access Journals (Sweden)

    Federico Salomone

    2017-01-01

    Full Text Available Coffee is the most consumed beverage worldwide. Epidemiological studies with prospective cohorts showed that coffee intake is associated with reduced cardiovascular and all-cause mortality independently of caffeine content. Cohort and case-control studies reported an inverse association between coffee consumption and the degree of liver fibrosis as well as the development of liver cancer. Furthermore, the beneficial effects of coffee have been recently confirmed by large meta-analyses. In the last two decades, various in vitro and in vivo studies evaluated the molecular determinants for the hepatoprotective effects of coffee. In the present article, we aimed to critically review experimental evidence regarding the active components and the molecular bases underlying the beneficial role of coffee against chronic liver diseases. Almost all studies highlighted the beneficial effects of this beverage against liver fibrosis with the most solid results indicating a pivot role for both caffeine and chlorogenic acids. In particular, in experimental models of fibrosis, caffeine was shown to inhibit hepatic stellate cell activation by blocking adenosine receptors, and emerging evidence indicated that caffeine may also favorably impact angiogenesis and hepatic hemodynamics. On the other side, chlorogenic acids, potent phenolic antioxidants, suppress liver fibrogenesis and carcinogenesis by reducing oxidative stress and counteract steatogenesis through the modulation of glucose and lipid homeostasis in the liver. Overall, these molecular insights may have translational significance and suggest that coffee components need clinical evaluation.

  19. Recent expansion of heat-activated retrotransposons in the coral symbiont Symbiodinium microadriaticum

    KAUST Repository

    Chen, Jit Ern

    2017-10-20

    Rising sea surface temperature is the main cause of global coral reef decline. Abnormally high temperatures trigger the breakdown of the symbiotic association between corals and their photosynthetic symbionts in the genus Symbiodinium. Higher genetic variation resulting from shorter generation times has previously been proposed to provide increased adaptability to Symbiodinium compared to the host. Retrotransposition is a significant source of genetic variation in eukaryotes and some transposable elements are specifically expressed under adverse environmental conditions. We present transcriptomic and phylogenetic evidence for the existence of heat stress-activated Ty1-copia-type LTR retrotransposons in the coral symbiont Symbiodinium microadriaticum. Genome-wide analyses of emergence patterns of these elements further indicate recent expansion events in the genome of S. microadriaticum. Our findings suggest that acute temperature increases can activate specific retrotransposons in the Symbiodinium genome with potential impacts on the rate of retrotransposition and the generation of genetic variation under heat stress.The ISME Journal advance online publication, 20 October 2017; doi:10.1038/ismej.2017.179.

  20. Regulation of rice root development by a retrotransposon acting as a microRNA sponge.

    Science.gov (United States)

    Cho, Jungnam; Paszkowski, Jerzy

    2017-08-26

    It is well documented that transposable elements (TEs) can regulate the expression of neighbouring genes. However, their ability to act in trans and influence ectopic loci has been reported rarely. We searched in rice transcriptomes for tissue-specific expression of TEs and found them to be regulated developmentally. They often shared sequence homology with co-expressed genes and contained potential microRNA-binding sites, which suggested possible contributions to gene regulation. In fact, we have identified a retrotransposon that is highly transcribed in roots and whose spliced transcript constitutes a target mimic for miR171. miR171 destabilizes mRNAs encoding the root-specific family of SCARECROW-Like transcription factors. We demonstrate that retrotransposon-derived transcripts act as decoys for miR171, triggering its degradation and thus results in the root-specific accumulation of SCARECROW-Like mRNAs. Such transposon-mediated post-transcriptional control of miR171 levels is conserved in diverse rice species.

  1. DNA barcode-based molecular identification system for fish species.

    Science.gov (United States)

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  2. Molecular neuron based on the Franck–Condon blockade

    International Nuclear Information System (INIS)

    Timm, C; Di Ventra, M

    2013-01-01

    Electronic realizations of neurons are of great interest as building blocks for neuromorphic computation. Electronic neurons should send signals into the input and output lines when subject to an input signal exceeding a given threshold, in such a way that they may affect all other parts of a neural network. Here, we propose a design for a neuron that is based on molecular-electronics components and thus promises a very high level of integration. We employ the Monte Carlo technique to simulate typical time evolutions of this system and thereby show that it indeed functions as a neuron. (paper)

  3. Molecular tools for the construction of peptide-based materials.

    Science.gov (United States)

    Ramakers, B E I; van Hest, J C M; Löwik, D W P M

    2014-04-21

    Proteins and peptides are fundamental components of living systems where they play crucial roles at both functional and structural level. The versatile biological properties of these molecules make them interesting building blocks for the construction of bio-active and biocompatible materials. A variety of molecular tools can be used to fashion the peptides necessary for the assembly of these materials. In this tutorial review we shall describe five of the main techniques, namely solid phase peptide synthesis, native chemical ligation, Staudinger ligation, NCA polymerisation, and genetic engineering, that have been used to great effect for the construction of a host of peptide-based materials.

  4. Acidity constants from DFT-based molecular dynamics simulations

    International Nuclear Information System (INIS)

    Sulpizi, Marialore; Sprik, Michiel

    2010-01-01

    In this contribution we review our recently developed method for the calculation of acidity constants from density functional theory based molecular dynamics simulations. The method is based on a half reaction scheme in which protons are formally transferred from solution to the gas phase. The corresponding deprotonation free energies are computed from the vertical energy gaps for insertion or removal of protons. Combined to full proton transfer reactions, the deprotonation energies can be used to estimate relative acidity constants and also the Broensted pK a when the deprotonation free energy of a hydronium ion is used as a reference. We verified the method by investigating a series of organic and inorganic acids and bases spanning a wide range of pK a values (20 units). The thermochemical corrections for the biasing potentials assisting and directing the insertion are discussed in some detail.

  5. Stable Molecular Diodes Based on π-π Interactions of the Molecular Frontier Orbitals with Graphene Electrodes.

    Science.gov (United States)

    Song, Peng; Guerin, Sarah; Tan, Sherman Jun Rong; Annadata, Harshini Venkata; Yu, Xiaojiang; Scully, Micheál; Han, Ying Mei; Roemer, Max; Loh, Kian Ping; Thompson, Damien; Nijhuis, Christian A

    2018-03-01

    In molecular electronics, it is important to control the strength of the molecule-electrode interaction to balance the trade-off between electronic coupling strength and broadening of the molecular frontier orbitals: too strong coupling results in severe broadening of the molecular orbitals while the molecular orbitals cannot follow the changes in the Fermi levels under applied bias when the coupling is too weak. Here, a platform based on graphene bottom electrodes to which molecules can bind via π-π interactions is reported. These interactions are strong enough to induce electronic function (rectification) while minimizing broadening of the molecular frontier orbitals. Molecular tunnel junctions are fabricated based on self-assembled monolayers (SAMs) of Fc(CH 2 ) 11 X (Fc = ferrocenyl, X = NH 2 , Br, or H) on graphene bottom electrodes contacted to eutectic alloy of gallium and indium top electrodes. The Fc units interact more strongly with graphene than the X units resulting in SAMs with the Fc at the bottom of the SAM. The molecular diodes perform well with rectification ratios of 30-40, and they are stable against bias stressing under ambient conditions. Thus, tunnel junctions based on graphene with π-π molecule-electrode coupling are promising platforms to fabricate stable and well-performing molecular diodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics.

    Science.gov (United States)

    Tang, Longhua; Li, Jinghong

    2017-07-28

    Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.

  7. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research.

    Science.gov (United States)

    Pattnaik, Satyanarayan; Pathak, Kamla

    2017-01-01

    Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Selective interface transparency in graphene nanoribbon based molecular junctions.

    Science.gov (United States)

    Dou, K P; Kaun, C C; Zhang, R Q

    2018-03-08

    A clear understanding of electrode-molecule interfaces is a prerequisite for the rational engineering of future generations of nanodevices that will rely on single-molecule coupling between components. With a model system, we reveal a peculiar dependence on interfaces in all graphene nanoribbon-based carbon molecular junctions. The effect can be classified into two types depending on the intrinsic feature of the embedded core graphene nanoflake (GNF). For metallic GNFs with |N A - N B | = 1, good/poor contact transparency occurs when the core device aligns with the center/edge of the electrode. The situation is reversed when a semiconducting GNF is the device, where N A = N B . These results may shed light on the design of real connecting components in graphene-based nanocircuits.

  9. Molecular medicine of fragile X syndrome: based on known molecular mechanisms.

    Science.gov (United States)

    Luo, Shi-Yu; Wu, Ling-Qian; Duan, Ran-Hui

    2016-02-01

    Extensive research on fragile X mental retardation gene knockout mice and mutant Drosophila models has largely expanded our knowledge on mechanism-based treatment of fragile X syndrome (FXS). In light of these findings, several clinical trials are now underway for therapeutic translation to humans. Electronic literature searches were conducted using the PubMed database and ClinicalTrials.gov. The search terms included "fragile X syndrome", "FXS and medication", "FXS and therapeutics" and "FXS and treatment". Based on the publications identified in this search, we reviewed the neuroanatomical abnormalities in FXS patients and the potential pathogenic mechanisms to monitor the progress of FXS research, from basic studies to clinical trials. The pathological mechanisms of FXS were categorized on the basis of neuroanatomy, synaptic structure, synaptic transmission and fragile X mental retardation protein (FMRP) loss of function. The neuroanatomical abnormalities in FXS were described to motivate extensive research into the region-specific pathologies in the brain responsible for FXS behavioural manifestations. Mechanism-directed molecular medicines were classified according to their target pathological mechanisms, and the most recent progress in clinical trials was discussed. Current mechanism-based studies and clinical trials have greatly contributed to the development of FXS pharmacological therapeutics. Research examining the extent to which these treatments provided a rescue effect or FMRP compensation for the developmental impairments in FXS patients may help to improve the efficacy of treatments.

  10. Overexpression of LINE-1 Retrotransposons in Autism Brain.

    Science.gov (United States)

    Shpyleva, Svitlana; Melnyk, Stepan; Pavliv, Oleksandra; Pogribny, Igor; Jill James, S

    2018-02-01

    Long interspersed nuclear elements-1 (LINE-1 or L1) are mobile DNA sequences that are capable of duplication and insertion (retrotransposition) within the genome. Recently, retrotransposition of L1 was shown to occur within human brain leading to somatic mosaicism in hippocampus and cerebellum. Because unregulated L1 activity can promote genomic instability and mutagenesis, multiple mechanisms including epigenetic chromatin condensation have evolved to effectively repress L1 expression. Nonetheless, L1 expression has been shown to be increased in patients with Rett syndrome and schizophrenia. Based on this evidence and our reports of oxidative stress and epigenetic dysregulation in autism cerebellum, we sought to determine whether L1 expression was increased in autism brain. The results indicated that L1 expression was significantly elevated in the autism cerebellum but not in BA9, BA22, or BA24. The binding of repressive MeCP2 and histone H3K9me3 to L1 sequences was significantly lower in autism cerebellum suggesting that relaxation of epigenetic repression may have contributed to increased expression. Further, the increase in L1 expression was inversely correlated with glutathione redox status consistent with reports indicating that L1 expression is increased under pro-oxidant conditions. Finally, the expression of transcription factor FOXO3, sensor of oxidative stress, was significantly increased and positively associated with L1 expression and negatively associated with glutathione redox status. While these novel results are an important first step, future understanding of the contribution of elevated L1 expression to neuronal CNVs and genomic instability in autism will depend on emerging cell-specific genomic technologies, a challenge that warrants future investigation.

  11. Photoredox-Based Actuation of an Artificial Molecular Muscle.

    Science.gov (United States)

    Liles, Kevin P; Greene, Angelique F; Danielson, Mary K; Colley, Nathan D; Wellen, Andrew; Fisher, Jeremy M; Barnes, Jonathan C

    2018-01-24

    The use of light to actuate materials is advantageous because it represents a cost-effective and operationally straightforward way to introduce energy into a stimuli-responsive system. Common strategies for photoinduced actuation of materials typically rely on light irradiation to isomerize azobenzene or spiropyran derivatives, or to induce unidirectional rotation of molecular motors incorporated into a 3D polymer network. Although interest in photoredox catalysis has risen exponentially in the past decade, there are far fewer examples where photoinduced electron transfer (PET) processes are employed to actuate materials. Here, a novel mode of actuation in a series of redox-responsive hydrogels doped with a visible-light-absorbing ruthenium-based photocatalyst is reported. The hydrogels are composed primarily of polyethylene glycol and low molar concentrations of a unimolecular electroactive polyviologen that is activated through a PET mechanism. The rate and degree of contraction of the hydrogels are measured over several hours while irradiating with blue light. Likewise, the change in mechanical properties-determined through oscillatory shear rheology experiments-is assessed as a function of polyviologen concentration. Finally, an artificial molecular muscle is fabricated using the best-performing hydrogel composition, and its ability to perform work, while irradiated, is demonstrated by lifting a small weight. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bases moleculares de alfa-talasemia en la Argentina

    Directory of Open Access Journals (Sweden)

    Karen G Scheps

    2015-04-01

    Full Text Available La α-talasemia, es uno de los desórdenes hereditarios más frecuentes mundialmente. Al presente, el diagnóstico molecular es la única herramienta que permite el diagnóstico certero. El propósito de este trabajo fue caracterizar las bases moleculares de estos síndromes en nuestro medio, y establecer relaciones genotipo-fenotipo. Mediante la complementación de distintas técnicas de biología molecular e hibridación fluorescente in situ (FISH, se logró poner en evidencia la presencia de mutaciones α-talasémicas en 145 de 184 (78.8% pacientes estudiados con perfil hematológico compatible con α-talasemia. Dentro de este grupo, las deleciones correspondieron al defecto genético más frecuente, prevaleciendo la mutación -α3.7 en genotipos heterocigotas y homocigotas. Asimismo, en pacientes con fenotipo α0 las deleciones prevalentes fueron -MED y -CAL/CAMP. Este estudio permitió también describir una deleción de la región sub-telomérica en un paciente con α-talasemia y retraso mental. En el 7.6% de los pacientes caracterizados clínicamente como posibles α-talasémicos (microcitosis con valores de Hb A2 inferiores al 3.5%, se hallaron mutaciones β-talasémicas en estado heterocigota. Se lograron establecer perfiles hematológicos asociados a los genotipos α+ y α0 para pacientes adultos y niños. Esperamos que este trabajo pueda servir como guía para reconocer posibles portadores α-talasémicos. También permite destacar el trabajo en conjunto de médicos hematólogos, el laboratorio (bioquímico y de biología molecular y de los médicos genetistas, con el fin de proporcionar adecuado consejo genético.

  13. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    Science.gov (United States)

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  14. Recognizing the SINEs of Infection: Regulation of Retrotransposon Expression and Modulation of Host Cell Processes

    Directory of Open Access Journals (Sweden)

    William Dunker

    2017-12-01

    Full Text Available Short interspersed elements (SINEs are a family of retrotransposons evolutionarily derived from cellular RNA polymerase III transcripts. Over evolutionary time, SINEs have expanded throughout the human genome and today comprise ~11% of total chromosomal DNA. While generally transcriptionally silent in healthy somatic cells, SINE expression increases during a variety of types of stresses, including DNA virus infection. The relevance of SINE expression to viral infection was largely unexplored, however, recent years have seen great progress towards defining the impact of SINE expression on viral replication and host gene expression. Here we review the origin and diversity of SINE elements and their transcriptional control, with an emphasis on how their expression impacts host cell biology during viral infection.

  15. DNA methylation inhibits expression and transposition of the Neurospora Tad retrotransposon.

    Science.gov (United States)

    Zhou, Y; Cambareri, E B; Kinsey, J A

    2001-06-01

    Tad is a LINE-like retrotransposon of the filamentous fungus Neurospora crassa. We have analyzed both expression and transposition of this element using strains with a single copy of Tad located in the 5' noncoding sequences of the am (glutamate dehydrogenase) gene. Tad in this position has been shown to carry a de novo cytosine methylation signal which causes reversible methylation of both Tad and am upstream sequences. Here we find that methylation of the Tad sequences inhibits both Tad expression and transposition. This inhibition can be relieved by the use of 5-azacytidine, a drug which reduces cytosine methylation, or by placing the Tad/am sequences in a dim-2 genetic background.

  16. Light-operated machines based on threaded molecular structures.

    Science.gov (United States)

    Credi, Alberto; Silvi, Serena; Venturi, Margherita

    2014-01-01

    Rotaxanes and related species represent the most common implementation of the concept of artificial molecular machines, because the supramolecular nature of the interactions between the components and their interlocked architecture allow a precise control on the position and movement of the molecular units. The use of light to power artificial molecular machines is particularly valuable because it can play the dual role of "writing" and "reading" the system. Moreover, light-driven machines can operate without accumulation of waste products, and photons are the ideal inputs to enable autonomous operation mechanisms. In appropriately designed molecular machines, light can be used to control not only the stability of the system, which affects the relative position of the molecular components but also the kinetics of the mechanical processes, thereby enabling control on the direction of the movements. This step forward is necessary in order to make a leap from molecular machines to molecular motors.

  17. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Maria Françoise Bayer

    2013-01-01

    Full Text Available In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma plays pivotal roles in the orchestration of development, defence responses and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialised domains of the endoplasmic reticulum and the plasma membrane. PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalisation or screening of random cDNAs, only few PD proteins had been conclusively identified and characterised. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on free PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD associated proteins.

  18. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.

    Science.gov (United States)

    Salmon, Magali S; Bayer, Emmanuelle M F

    2012-01-01

    In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma) plays pivotal roles in the orchestration of development, defence responses, and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialized domains of the endoplasmic reticulum (ER) and the plasma membrane (PM). PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalization, or screening of random cDNAs, only few PD proteins had been conclusively identified and characterized. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on "free" PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic-based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD-associated proteins.

  19. POLYANA-A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

    Science.gov (United States)

    Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios

    2015-12-01

    We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.

  20. BASES MOLECULARES DA ABSORÇÃO DO FERRO

    Directory of Open Access Journals (Sweden)

    A. A. MACHADO

    2009-03-01

    Full Text Available

    O ferro é um elemento essencial a todos os organismos vivos e alterações em sua homeostase resultam em quadro de deficiência ou acúmulo, ambos com alta prevalência e relevância clínica. A última década foi marcada pela geração de conhecimentos importantes, que estão contribuindo para a elucidação dos mecanismos moleculares da homeostase do ferro. Foram identificadas proteínas, envolvidas na absorção intestinal do ferro não-heme, e progressos significativos foram feitos no entendimento da regulação da absorção intestinal do ferro, sendo identificadas várias moléculas candidatas. As bases moleculares da homeostase do ferro ainda não foram totalmente elucidadas, porém as informações já existentes sugerem que, em condições fisiológicas, a absorção, o transporte e o armazenamento sejam feitos por moléculas altamente especializadas e, em especial, a absorção, com mecanismos saturáveis em baixa concentração. No entanto, a absorção pode ocorrer por vias menos sujeitas ao controle, dependendo da sobrecarga e da natureza química do composto utilizado. Estas informações advogam a favor de uma revisão nas estratégias de combate à anemia ferropriva. PALAVRAS-CHAVE: Absorção do ferro; DMT-1; hepahestina; ceruloplasmina; ferroportina; hepcidina.

  1. Molecular biology-based diagnosis and therapy for pancreatic cancer

    International Nuclear Information System (INIS)

    Fujita, Hayato; Ohuchida, Kenoki; Mizumoto, Kazuhiro; Tanaka, Masao

    2011-01-01

    Mainly described are author's investigations of the title subject through clinical and basic diagnosis/therapeutic approach. Based on their consideration of carcinogenesis and pathological features of pancreatic cancer (PC), analysis of expression of cancer-related genes in clinically available samples like pancreatic juice and cells biopsied can result in attaining their purposes. Desmoplasia, a pathological feature of PC, possibly induces resistance to therapy and one of strategies is probably its suppression. Targeting stem cells of the mesenchyma as well as those of PC is also a strategy in future. Authors' studies have revealed that quantitation of hTERT (coding teromerase) mRNA levels in PC cells micro-dissected from cytological specimens is an accurate molecular biological diagnostic method applicable clinically. Other cancer-related genes are also useful for the diagnosis and mucin (MUC) family genes are shown to be typical ones for differentiating the precancerous PC, PC and chronic pancreatisis. Efficacy of standard gemcitabine chemotherapy can be individualized with molecular markers concerned to metabolism of the drug like dCK. Radiotherapy/radio-chemotherapy are not so satisfactory for PC treatment now. Authors have found elevated MMP-2 expression and HGF/c-Met signal activation in irradiated PC cells, which can increase the invasive capability; and stimulation of phosphorylation and activation of c-Met/MARK in co-culture of irradiated PC cells with messenchymal cells from PC, which possibly leads to progression of malignancy of PC through their interaction, of which suppression, therefore, can be a new approach to increase the efficacy of radiotherapy. Authors are making effort to introducing adenovirus therapy in clinic; exempli gratia (e.g.), the virus carrying wild type p53, a cancer-suppressive gene, induces apoptosis of PC cells often having its mutated gene. (T.T.)

  2. Molecular dosimetry based on radiation induced degradation of polyisobutylene

    International Nuclear Information System (INIS)

    Joerkov Thomsen, Kristina

    1999-01-01

    This project investigates the possibility of qualitative measurement of radiation doses through detection of changes in the average molecular weight in the polymer Polyisobutylene (PIB). Changes in molecular weight and molecular weight distribution is detected by Gel Permeation Chromatography (GPC). The aim of the project is to decide whether or not it is possible to determine a quality difference between α-radiation ( 241 Am, 5,5 MeV) and γ-radiation ( 60 Co, 1,25 MeV) in the dose range 0,5 to 10 kGy by irradiation of PIB. Irradiation with 60 Co changes the average number molecular weight M n by 12% per kGy and the average weight molecular weight M w by 23% per kGy. The presence of antioxidant in the irradiated sample inhibits a change in average molecular weight by 5% and 16% for M n and M w respectively. (au)

  3. Molecularly Imprinted Polypyrrole Based Impedimentric Sensor for Theophylline Determination

    International Nuclear Information System (INIS)

    Ratautaite, Vilma; Janssens, Stoffel D.; Haenen, Ken; Nesládek, Milos; Ramanaviciene, Almira; Baleviciute, Ieva; Ramanavicius, Arunas

    2014-01-01

    Highlights: • Sensor based on polypyrrole imprinted by theophylline (MIP) deposited on oxygen terminated boron-doped nanocrystalline diamond was developed. • This structure was applied as impedimetric sensor sensitive for theophylline. • Optimal polymer formation conditions suitable for MIP formation were elaborated. • Some analytical parameters were determined and evaluated. - Abstract: In this study development of impedimetric sensor based on oxygen terminated boron-doped nanocrystalline diamond (B:NCD:O) modified with theophylline imprinted polypyrrole is described. Hydrogen peroxide induced chemical formation of polypyrrole molecularly imprinted by theophylline was applied for the modification of conducting silicon substrate covered by B:NCD:O film. Non-imprinted polypyrrole layer was formed on similar substrate in order to prove efficiency of imprinted polypyrrole. Electrochemical impedance spectroscopy was applied for the evaluation of analyte-induced changes in electrochemical capacitance/resistance. The impact of polymerization duration on the capacitance of impedimetric sensor was estimated. A different impedance behavior was observed at different ratio of polymerized monomer and template molecule in the polymerization media. The influence of ethanol as additive to polymerization media on registered changes in capacitance/resistance was evaluated. Degradation of sensor stored in buffer solution was evaluated

  4. Pathological Bases for a Robust Application of Cancer Molecular Classification

    Directory of Open Access Journals (Sweden)

    Salvador J. Diaz-Cano

    2015-04-01

    Full Text Available Any robust classification system depends on its purpose and must refer to accepted standards, its strength relying on predictive values and a careful consideration of known factors that can affect its reliability. In this context, a molecular classification of human cancer must refer to the current gold standard (histological classification and try to improve it with key prognosticators for metastatic potential, staging and grading. Although organ-specific examples have been published based on proteomics, transcriptomics and genomics evaluations, the most popular approach uses gene expression analysis as a direct correlate of cellular differentiation, which represents the key feature of the histological classification. RNA is a labile molecule that varies significantly according with the preservation protocol, its transcription reflect the adaptation of the tumor cells to the microenvironment, it can be passed through mechanisms of intercellular transference of genetic information (exosomes, and it is exposed to epigenetic modifications. More robust classifications should be based on stable molecules, at the genetic level represented by DNA to improve reliability, and its analysis must deal with the concept of intratumoral heterogeneity, which is at the origin of tumor progression and is the byproduct of the selection process during the clonal expansion and progression of neoplasms. The simultaneous analysis of multiple DNA targets and next generation sequencing offer the best practical approach for an analytical genomic classification of tumors.

  5. Molecular clips based on propanediurea : synthesis and physical properties

    NARCIS (Netherlands)

    Jansen, Robertus Johannes

    2002-01-01

    This thesis describes the synthesis and physical properties of a series of molecular clips derived from the concave molecule propanediurea. These molecular clips are cavity-containing receptors that can bind a variety of aromatic guests. This binding is a result of hydrogen bonding and pi-pi

  6. Molecular microenvironments: Solvent interactions with nucleic acid bases and ions

    Science.gov (United States)

    Macelroy, R. D.; Pohorille, A.

    1986-01-01

    The possibility of reconstructing plausible sequences of events in prebiotic molecular evolution is limited by the lack of fossil remains. However, with hindsight, one goal of molecular evolution was obvious: the development of molecular systems that became constituents of living systems. By understanding the interactions among molecules that are likely to have been present in the prebiotic environment, and that could have served as components in protobiotic molecular systems, plausible evolutionary sequences can be suggested. When stable aggregations of molecules form, a net decrease in free energy is observed in the system. Such changes occur when solvent molecules interact among themselves, as well as when they interact with organic species. A significant decrease in free energy, in systems of solvent and organic molecules, is due to entropy changes in the solvent. Entropy-driven interactioins played a major role in the organization of prebiotic systems, and understanding the energetics of them is essential to understanding molecular evolution.

  7. Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.).

    Science.gov (United States)

    Mascagni, Flavia; Giordani, Tommaso; Ceccarelli, Marilena; Cavallini, Andrea; Natali, Lucia

    2017-08-18

    Genome divergence by mobile elements activity and recombination is a continuous process that plays a key role in the evolution of species. Nevertheless, knowledge on retrotransposon-related variability among species belonging to the same genus is still limited. Considering the importance of the genus Helianthus, a model system for studying the ecological genetics of speciation and adaptation, we performed a comparative analysis of the repetitive genome fraction across ten species and one subspecies of sunflower, focusing on long terminal repeat retrotransposons at superfamily, lineage and sublineage levels. After determining the relative genome size of each species, genomic DNA was isolated and subjected to Illumina sequencing. Then, different assembling and clustering approaches allowed exploring the repetitive component of all genomes. On average, repetitive DNA in Helianthus species represented more than 75% of the genome, being composed mostly by long terminal repeat retrotransposons. Also, the prevalence of Gypsy over Copia superfamily was observed and, among lineages, Chromovirus was by far the most represented. Although nearly all the same sublineages are present in all species, we found considerable variability in the abundance of diverse retrotransposon lineages and sublineages, especially between annual and perennial species. This large variability should indicate that different events of amplification or loss related to these elements occurred following species separation and should have been involved in species differentiation. Our data allowed us inferring on the extent of interspecific repetitive DNA variation related to LTR-RE abundance, investigating the relationship between changes of LTR-RE abundance and the evolution of the genus, and determining the degree of coevolution of different LTR-RE lineages or sublineages between and within species. Moreover, the data suggested that LTR-RE abundance in a species was affected by the annual or perennial

  8. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons.

    Science.gov (United States)

    Locati, Mauro D; Pagano, Johanna F B; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2017-04-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. © 2017 Locati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. UPAR targeted molecular imaging of cancers with small molecule-based probes.

    Science.gov (United States)

    Ding, Feng; Chen, Seng; Zhang, Wanshu; Tu, Yufeng; Sun, Yao

    2017-10-15

    Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi, E-mail: mehmetyola@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop (Turkey); Eren, Tanju [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey)

    2016-01-30

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H{sub 3}PW{sub 12}O{sub 40}, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10{sup −12}–1.0 × 10{sup −10} M and 2.0 × 10{sup −13} M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  11. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    International Nuclear Information System (INIS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H_3PW_1_2O_4_0, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10"−"1"2–1.0 × 10"−"1"0 M and 2.0 × 10"−"1"3 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  12. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    Science.gov (United States)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10-12-1.0 × 10-10 M and 2.0 × 10-13 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  13. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia.

    Science.gov (United States)

    Kojima, Kenji K; Jurka, Jerzy

    2015-01-01

    Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an "archaeal" RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes.

  14. MrGrid: a portable grid based molecular replacement pipeline.

    Directory of Open Access Journals (Sweden)

    Jason W Schmidberger

    Full Text Available BACKGROUND: The crystallographic determination of protein structures can be computationally demanding and for difficult cases can benefit from user-friendly interfaces to high-performance computing resources. Molecular replacement (MR is a popular protein crystallographic technique that exploits the structural similarity between proteins that share some sequence similarity. But the need to trial permutations of search models, space group symmetries and other parameters makes MR time- and labour-intensive. However, MR calculations are embarrassingly parallel and thus ideally suited to distributed computing. In order to address this problem we have developed MrGrid, web-based software that allows multiple MR calculations to be executed across a grid of networked computers, allowing high-throughput MR. METHODOLOGY/PRINCIPAL FINDINGS: MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the Xgrid. We evaluated MrGrid using 10 different protein test cases on a network of 13 computers, and achieved an average speed up factor of 5.69. CONCLUSIONS: MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted. This high-throughput approach allows parameter sweeps to be performed in parallel, improving the chances of MR success.

  15. A CZT-based blood counter for quantitative molecular imaging.

    Science.gov (United States)

    Espagnet, Romain; Frezza, Andrea; Martin, Jean-Pierre; Hamel, Louis-André; Lechippey, Laëtitia; Beauregard, Jean-Mathieu; Després, Philippe

    2017-12-01

    Robust quantitative analysis in positron emission tomography (PET) and in single-photon emission computed tomography (SPECT) typically requires the time-activity curve as an input function for the pharmacokinetic modeling of tracer uptake. For this purpose, a new automated tool for the determination of blood activity as a function of time is presented. The device, compact enough to be used on the patient bed, relies on a peristaltic pump for continuous blood withdrawal at user-defined rates. Gamma detection is based on a 20 × 20 × 15 mm 3 cadmium zinc telluride (CZT) detector, read by custom-made electronics and a field-programmable gate array-based signal processing unit. A graphical user interface (GUI) allows users to select parameters and easily perform acquisitions. This paper presents the overall design of the device as well as the results related to the detector performance in terms of stability, sensitivity and energy resolution. Results from a patient study are also reported. The device achieved a sensitivity of 7.1 cps/(kBq/mL) and a minimum detectable activity of 2.5 kBq/ml for 18 F. The gamma counter also demonstrated an excellent stability with a deviation in count rates inferior to 0.05% over 6 h. An energy resolution of 8% was achieved at 662 keV. The patient study was conclusive and demonstrated that the compact gamma blood counter developed has the sensitivity and the stability required to conduct quantitative molecular imaging studies in PET and SPECT.

  16. Symbol Synchronization for Diffusion-Based Molecular Communications.

    Science.gov (United States)

    Jamali, Vahid; Ahmadzadeh, Arman; Schober, Robert

    2017-12-01

    Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop several symbol synchronization schemes for molecular communication (MC) systems where we consider some practical challenges, which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g., modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we develop two synchronization-detection frameworks which both employ two types of molecule. In the first framework, one type of molecule is used for symbol synchronization and the other one is used for data detection, whereas in the second framework, both types of molecule are used for joint symbol synchronization and data detection. For both frameworks, we first derive the optimal maximum likelihood (ML) symbol synchronization schemes as performance upper bounds. Since ML synchronization entails high complexity, for each framework, we also propose three low-complexity suboptimal schemes, namely a linear filter-based scheme, a peak observation-based scheme, and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Furthermore, we study the relative complexity and the constraints associated with the proposed schemes and the impact of the insertion and deletion errors that arise due to imperfect synchronization. Our simulation results reveal the effectiveness of the proposed synchronization schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of the symbol

  17. Impact of Low-Energy Ion Beam Implantation on the Expression of Ty1-copia-like Retrotransposons in Wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Ya Huiyuan; Jiao Zhen; Gu Yunhong; Wang Weidong; Qin Guangyong; Huo Yuping

    2007-01-01

    Retrotransposon-like elements are major constituents of most eukaryotic genomes. For example, they account for roughly 90% of the wheat (Triticum aestivum) genome. Previous study on a wheat strain treated by low-energy N + ions indicated the variations in AFLP (Amplified Fragment Length Polymorphism ) markers. One such variation was caused by the re-activation of Ty1-copia-like retrotransposons, implying that the mutagenic effects of low-energy ions might work through elevated activation of retrotransposons. In this paper an expression profile of Ty1-copia-like retrotransposons in wheat treated by low-energy N + ions is reported. The reverse transcriptase (RT) domains of these retrotransposons were amplified by reverse-transcriptional polymerase chain reaction (RT-PCR) and sequentially cloned. 42 and 65 clones were obtained from the treated (CL) and control materials (CK), respectively. Sequence analysis of each clone was performed by software. Phylogeny and classification were calculated responding to the sequences of the RT domains. All the results show that there is much difference in the RT domain between the control sample and the treated sample. Especially, the RT domains from the treated group encode significantly more functional ORF (open reading frames) than those from the control sample. This observation suggests that the treated sample has higher activation of retrotransposons, possibly as a consequence of low-energy ion beam irradiation. It also suggests that retrotransposons in the two groups impact the host gene expression in two different ways and carry out different functions in wheat cells

  18. Determinants of molecular marker based classification of rice (Oryza ...

    African Journals Online (AJOL)

    mr devi singh

    2015-01-07

    Jan 7, 2015 ... 1Molecular Biology Laboratory, Department of Genetics and Plant Breeding, SVP University of Agriculture and ... Basmati and non-Basmati rice adapted to different agro- ecological ..... acid soils in southern New South Wales?

  19. Congenital neutropenia: diagnosis, molecular bases and patient management

    Directory of Open Access Journals (Sweden)

    Chantelot Christine

    2011-05-01

    Full Text Available Abstract The term congenital neutropenia encompasses a family of neutropenic disorders, both permanent and intermittent, severe ( When neutropenia is detected, an attempt should be made to establish the etiology, distinguishing between acquired forms (the most frequent, including post viral neutropenia and auto immune neutropenia and congenital forms that may either be isolated or part of a complex genetic disease. Except for ethnic neutropenia, which is a frequent but mild congenital form, probably with polygenic inheritance, all other forms of congenital neutropenia are extremely rare and have monogenic inheritance, which may be X-linked or autosomal, recessive or dominant. About half the forms of congenital neutropenia with no extra-hematopoetic manifestations and normal adaptive immunity are due to neutrophil elastase (ELANE mutations. Some patients have severe permanent neutropenia and frequent infections early in life, while others have mild intermittent neutropenia. Congenital neutropenia may also be associated with a wide range of organ dysfunctions, as for example in Shwachman-Diamond syndrome (associated with pancreatic insufficiency and glycogen storage disease type Ib (associated with a glycogen storage syndrome. So far, the molecular bases of 12 neutropenic disorders have been identified. Treatment of severe chronic neutropenia should focus on prevention of infections. It includes antimicrobial prophylaxis, generally with trimethoprim-sulfamethoxazole, and also granulocyte-colony-stimulating factor (G-CSF. G-CSF has considerably improved these patients' outlook. It is usually well tolerated, but potential adverse effects include thrombocytopenia, glomerulonephritis, vasculitis and osteoporosis. Long-term treatment with G-CSF, especially at high doses, augments the spontaneous risk of leukemia in patients with congenital neutropenia.

  20. Computer-Based Molecular Modelling: Finnish School Teachers' Experiences and Views

    Science.gov (United States)

    Aksela, Maija; Lundell, Jan

    2008-01-01

    Modern computer-based molecular modelling opens up new possibilities for chemistry teaching at different levels. This article presents a case study seeking insight into Finnish school teachers' use of computer-based molecular modelling in teaching chemistry, into the different working and teaching methods used, and their opinions about necessary…

  1. Molecular materials and devices: developing new functional systems based on the coordination chemistry approach

    Directory of Open Access Journals (Sweden)

    Toma Henrique E.

    2003-01-01

    Full Text Available At the onset of the nanotechnology age, molecular designing of materials and single molecule studies are opening wide possibilities of using molecular systems in electronic and photonic devices, as well as in technological applications based on molecular switching or molecular recognition. In this sense, inorganic chemists are privileged by the possibility of using the basic strategies of coordination chemistry to build up functional supramolecular materials, conveying the remarkable chemical properties of the metal centers and the characteristics of the ancillary ligands. Coordination chemistry also provides effective self-assembly strategies based on specific metal-ligand affinity and stereochemistry. Several molecular based materials, derived from inorganic and metal-organic compounds are focused on this article, with emphasis on new supramolecular porphyrins and porphyrazines, metal-clusters and metal-polyimine complexes. Such systems are also discussed in terms of their applications in catalysis, sensors and molecular devices.

  2. Nanohashtag structures based on carbon nanotubes and molecular linkers

    Science.gov (United States)

    Frye, Connor W.; Rybolt, Thomas R.

    2018-03-01

    Molecular mechanics was used to study the noncovalent interactions between single-walled carbon nanotubes and molecular linkers. Groups of nanotubes have the tendency to form tight, parallel bundles (||||). Molecular linkers were introduced into our models to stabilize nanostructures with carbon nanotubes held in perpendicular orientations. Molecular mechanics makes it possible to estimate the strength of noncovalent interactions holding these structures together and to calculate the overall binding energy of the structures. A set of linkers were designed and built around a 1,3,5,7-cyclooctatetraene tether with two corannulene containing pincers that extend in opposite directions from the central cyclooctatetraene portion. Each pincer consists of a pairs of "arms." These molecular linkers were modified so that the "hand" portions of each pair of "arms" could close together to grab and hold two carbon nanotubes in a perpendicular arrangement. To illustrate the possibility of more complicated and open perpendicular CNTs structures, our primary goal was to create a model of a nanohashtag (#) CNT conformation that is more stable than any parallel CNT arrangements with bound linker molecules forming clumps of CNTs and linkers in non-hashtag arrangements. This goal was achieved using a molecular linker (C280H96) that utilizes van der Waals interactions to two perpendicular oriented CNTs. Hydrogen bonding was then added between linker molecules to augment the stability of the hashtag structure. In the hashtag structure with hydrogen bonding, four (5,5) CNTs of length 4.46 nm (18 rings) and four linkers (C276H92N8O8) stabilized the hashtag so that the average binding energy per pincer was 118 kcal/mol.

  3. Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus

    DEFF Research Database (Denmark)

    Urbanski, Dorian Fabian; Malolepszy, Anna; Stougaard, Jens

    2012-01-01

    Insertion mutants facilitate functional analysis of genes, but for most plant species it has been difficult to identify a suitable mutagen and to establish large populations for reverse genetics. The main challenge is developing efficient high-throughput procedures for both mutagenesis and insert......Insertion mutants facilitate functional analysis of genes, but for most plant species it has been difficult to identify a suitable mutagen and to establish large populations for reverse genetics. The main challenge is developing efficient high-throughput procedures for both mutagenesis...... plants. The identified insertions showed that the endogenous LORE1 retrotransposon is well suited for insertion mutagenesis due to its homogenous gene targeting and exonic insertion preference. Since LORE1 transposition occurs in the germline, harvesting seeds from a single founder line and cultivating...... progeny generates a complete mutant population. This ease of LORE1 mutagenesis combined with the efficient FSTpoolit protocol, which exploits 2D pooling, Illumina sequencing, and automated data analysis, allows highly cost-efficient development of a comprehensive reverse genetic resource....

  4. Identification and chromosomal distribution of copia-like retrotransposon sequences in the coffee (Coffea L. genome

    Directory of Open Access Journals (Sweden)

    Juan-Carlos Herrera

    2013-12-01

    Full Text Available The presence of copia-like transposable elements in seven coffee (Coffea sp. species, including the cultivated Coffea arabica, was investigated. The highly conserved domains of the reverse transcriptase (RT present in the copia retrotransposons were amplified by PCR using degenerated primers. Fragments of roughly 300 bp were obtained and the nucleotide sequence was determined for 36 clones, 19 of which showed good quality. The deduced amino acid sequences were compared by multiple alignment analysis. The data suggested two distinct coffee RT groups, designated as CRTG1 and CRTG2. The sequence identities among the groups ranged from 52 to 60% for CRTG1 and 74 to 85% for CRTG2. The multiple alignment analysis revealed that some of the clones in CRTG1 were closely related to the representative elements present in other plant species such as Brassica napus, Populus ciliata and Picea abis. Furthermore, the chromosomal localization of the RT domains in C. arabica and their putative ancestors was investigated by fluorescence in situ hybridization (FISH analysis. FISH signals were observed throughout the chromosomes following a similar dispersed pattern with some localized regions exhibiting higher concentrations of those elements, providing new evidence of their relative conservation and stability in the coffee genome

  5. A LTR copia retrotransposon and Mutator transposons interrupt Pgip genes in cultivated and wild wheats.

    Science.gov (United States)

    Di Giovanni, Michela; Cenci, Alberto; Janni, Michela; D'Ovidio, Renato

    2008-04-01

    Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defence. Wheat pgip genes have been isolated from the B (Tapgip1) and D (Tapgip2) genomes, and now we report the identification of pgip genes from the A genomes of wild and cultivated wheats. By Southern blots and sequence analysis of BAC clones we demonstrated that wheat contains a single copy pgip gene per genome and the one from the A genome, pgip3, is inactivated by the insertion of a long terminal repeat copia retrotranspon within the fourth LRR. We demonstrated also that this retrotransposon insertion is present in Triticum urartu and all the polyploidy wheats assayed, but is absent in T. monococcum (Tmpgip3), suggesting that this insertion took place after the divergence between T. monococcum and T. urartu, but before the formation of the polyploid wheats. We identified also two independent insertion events of new Class II transposable elements, Vacuna, belonging to the Mutator superfamily, that interrupted the Tdipgip1 gene of T. turgidum ssp. dicoccoides. The occurrence of these transposons within the coding region of Tdipgip1 facilitated the mapping of the Pgip locus in the pericentric region of the short arm of chromosome group 7. We speculate that the inactivation of pgip genes are tolerated because of redundancy of PGIP activities in the wheat genome.

  6. Bases moleculares del hipotiroidismo congénito

    OpenAIRE

    Pinzón-Serrano, Estefanía; Morán-Barroso, Verónica; Coyote-Estrada, Ninel

    2006-01-01

    Las alteraciones endocrinológicas constituyen parte importante de la consulta pediátrica, la más frecuente es el hipotiroidismo congénito, grave problema de salud pública que requiere de diagnóstico neonatal. Los avances en el estudio molecular han permitido discernir las alteraciones en los procesos de organogénesis y hormonogénesis que lo producen. Se describen las principales alteraciones moleculares relacionadas con: diferenciación tiroidea, síntesis hormonal, hipotiroidismo central y con...

  7. Molecular characterization of Cymbidium kanran cultivars based on ...

    African Journals Online (AJOL)

    TUOYO

    2010-08-09

    Aug 9, 2010 ... Fifty-four Cymbidium kanran cultivars from China, Japan and Korea were examined and analyzed by using the successive screening of 3′-end extended random primer amplified polymorphic DNA (ERAPD) markers to determine their molecular diversity and relationships. In ERAPD analyses, the strand-.

  8. Engineering controllable bidirectional molecular motors based on myosin

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  9. Molecular filter-based diagnostics in high speed flows

    Science.gov (United States)

    Elliott, Gregory S.; Samimy, MO; Arnette, Stephen A.

    1993-01-01

    The use of iodine molecular filters in nonintrusive planar velocimetry methods is examined. Detailed absorption profiles are obtained to highlight the effects that determine the profile shape. It is shown that pressure broadening induced by the presence of a nonabsorbing vapor can be utilized to significantly change the slopes bounding the absorbing region while remaining in the optically-thick regime.

  10. Molecular phylogenetic implications in Brassica napus based on ...

    Indian Academy of Sciences (India)

    Brassica napus L. (canola, rapeseed) is one of the most important oil crops in many countries (Abdelmigid 2012;. Fayyaz et al. 2014), and thought to have originated from a cross where the maternal donor was closely related to two diploid species, B. oleracea (CC, 2n = 18) and B. rapa (AA, 2n = 20). Here, molecular ...

  11. Dynamic combinatorial libraries based on hydrogen-bonde molecular boxes

    NARCIS (Netherlands)

    Kerckhoffs, J.M.C.A.; Mateos timoneda, Miguel; Reinhoudt, David; Crego Calama, Mercedes

    2007-01-01

    This article describes two different types of dynamic combinatorial libraries of host and guest molecules. The first part of this article describes the encapsulation of alizarin trimer 2 a3 by dynamic mixtures of up to twenty different self-assembled molecular receptors together with the

  12. Engineering controllable bidirectional molecular motors based on myosin

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-01-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14. PMID:22343382

  13. Molecular characterization of Cymbidium kanran cultivars based on ...

    African Journals Online (AJOL)

    Fifty-four Cymbidium kanran cultivars from China, Japan and Korea were examined and analyzed by using the successive screening of 3'-end extended random primer amplified polymorphic DNA (ERAPD) markers to determine their molecular diversity and relationships. In ERAPD analyses, the strandspecific DNA ...

  14. Adsorbate-driven cooling of carbene-based molecular junctions

    Czech Academy of Sciences Publication Activity Database

    Foti, Giuseppe; Vázquez, Héctor

    2017-01-01

    Roč. 8, Oct (2017), s. 2060-2068 ISSN 2190-4286 R&D Projects: GA ČR GA15-19672S EU Projects: European Commission(XE) 702114 - HEATEXMOL Institutional support: RVO:68378271 Keywords : adsorbate * carbene * current-induced heating and cooling * molecular junction * vibrations Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.127, year: 2016

  15. Extending the molecular clutch beyond actin-based cell motility

    International Nuclear Information System (INIS)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-01-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton. (paper)

  16. Electron dopable molecular wires based on the extended viologens

    Czech Academy of Sciences Publication Activity Database

    Kolivoška, Viliam; Gál, Miroslav; Pospíšil, Lubomír; Valášek, Michal; Hromadová, Magdaléna

    2011-01-01

    Roč. 13, č. 23 (2011), s. 11422-11429 ISSN 1463-9076 R&D Projects: GA ČR GA203/08/1157; GA ČR GA203/09/0705; GA AV ČR IAA400400802; GA MŠk(CZ) MEB041006 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : electron transfer * spectroelectrochemistry * molecular wires Subject RIV: CG - Electrochemistry Impact factor: 3.573, year: 2011

  17. Epidemiological bases and molecular mechanisms linking obesity, diabetes, and cancer.

    Science.gov (United States)

    Gutiérrez-Salmerón, María; Chocarro-Calvo, Ana; García-Martínez, José Manuel; de la Vieja, Antonio; García-Jiménez, Custodia

    2017-02-01

    The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer. In addition, antidiabetic treatments may have an impact on the occurrence and course of some cancers. Moreover, some anticancer treatments may induce diabetes. These observations aroused a great controversy because of the ethical implications and the associated commercial interests. We report an epidemiological update from a mechanistic perspective that suggests the existence of many common and differential individual mechanisms linking obesity and type 1 and 2 diabetes mellitus to certain cancers. The challenge today is to identify the molecular links responsible for this association. Classification of cancers by their molecular signatures may facilitate future mechanistic and epidemiological studies. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Comprehensive characterization of molecular interactions based on nanomechanics.

    Directory of Open Access Journals (Sweden)

    Murali Krishna Ghatkesar

    Full Text Available Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6 Da adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions.

  19. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    Science.gov (United States)

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  20. A WAO - ARIA - GA2LEN consensus document on molecular-based allergy diagnostics

    DEFF Research Database (Denmark)

    Canonica, Giorgio Walter; Ansotegui, Ignacio J; Pawankar, Ruby

    2013-01-01

    Molecular-based allergy (MA) diagnostics is an approach used to map the allergen sensitization of a patient at a molecular level, using purified natural or recombinant allergenic molecules (allergen components) instead of allergen extracts. Since its introduction, MA diagnostics has increasingly ...

  1. Molecular modeling of protonic acid doping of emeraldine base polyaniline for chemical sensors

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, C.K.Y.; Ye, H.; Leung, S.Y.Y.; Zhang, G.

    2012-01-01

    We proposed a molecular modeling methodology to study the protonic acid doping of emeraldine base polyaniline which can used in gas detection. The commercial forcefield COMPASS was used for the polymer and protonic acid molecules. The molecular model, which is capable of representing the polyaniline

  2. Molecular Imaging: A Useful Tool for the Development of Natural Killer Cell-Based Immunotherapies

    Directory of Open Access Journals (Sweden)

    Prakash Gangadaran

    2017-09-01

    Full Text Available Molecular imaging is a relatively new discipline that allows visualization, characterization, and measurement of the biological processes in living subjects, including humans, at a cellular and molecular level. The interaction between cancer cells and natural killer (NK cells is complex and incompletely understood. Despite our limited knowledge, progress in the search for immune cell therapies against cancer could be significantly improved by dynamic and non-invasive visualization and tracking of immune cells and by visualization of the response of cancer cells to therapies in preclinical and clinical studies. Molecular imaging is an essential tool for these studies, and a multimodal molecular imaging approach can be applied to monitor immune cells in vivo, for instance, to visualize therapeutic effects. In this review, we discuss the usefulness of NK cells in cancer therapies and the preclinical and clinical usefulness of molecular imaging in NK cell-based therapies. Furthermore, we discuss different molecular imaging modalities for use with NK cell-based therapies, and their preclinical and clinical applications in animal and human subjects. Molecular imaging has contributed to the development of NK cell-based therapies against cancers in animal models and to the refinement of current cell-based cancer immunotherapies. Developing sensitive and reproducible non-invasive molecular imaging technologies for in vivo NK cell monitoring and for real-time assessment of therapeutic effects will accelerate the development of NK cell therapies.

  3. Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae).

    Science.gov (United States)

    Kolano, Bozena; Bednara, Edyta; Weiss-Schneeweiss, Hanna

    2013-10-01

    High heterogeneity was observed among conserved domains of reverse transcriptase ( rt ) isolated from quinoa. Only one Ty1- copia rt was highly amplified. Reverse transcriptase sequences were located predominantly in pericentromeric region of quinoa chromosomes. The heterogeneity, genomic abundance, and chromosomal distribution of reverse transcriptase (rt)-coding fragments of Ty1-copia and Ty3-gypsy long terminal repeat retrotransposons were analyzed in the Chenopodium quinoa genome. Conserved domains of the rt gene were amplified and characterized using degenerate oligonucleotide primer pairs. Sequence analyses indicated that half of Ty1-copia rt (51 %) and 39 % of Ty3-gypsy rt fragments contained intact reading frames. High heterogeneity among rt sequences was observed for both Ty1-copia and Ty3-gypsy rt amplicons, with Ty1-copia more heterogeneous than Ty3-gypsy. Most of the isolated rt fragments were present in quinoa genome in low copy numbers, with only one highly amplified Ty1-copia rt sequence family. The gypsy-like RNase H fragments co-amplified with Ty1-copia-degenerate primers were shown to be highly amplified in the quinoa genome indicating either higher abundance of some gypsy families of which rt domains could not be amplified, or independent evolution of this gypsy-region in quinoa. Both Ty1-copia and Ty3-gypsy retrotransposons were preferentially located in pericentromeric heterochromatin of quinoa chromosomes. Phylogenetic analyses of newly amplified rt fragments together with well-characterized retrotransposon families from other organisms allowed identification of major lineages of retroelements in the genome of quinoa and provided preliminary insight into their evolutionary dynamics.

  4. Four new topological indices based on the molecular path code.

    Science.gov (United States)

    Balaban, Alexandru T; Beteringhe, Adrian; Constantinescu, Titus; Filip, Petru A; Ivanciuc, Ovidiu

    2007-01-01

    The sequence of all paths pi of lengths i = 1 to the maximum possible length in a hydrogen-depleted molecular graph (which sequence is also called the molecular path code) contains significant information on the molecular topology, and as such it is a reasonable choice to be selected as the basis of topological indices (TIs). Four new (or five partly new) TIs with progressively improved performance (judged by correctly reflecting branching, centricity, and cyclicity of graphs, ordering of alkanes, and low degeneracy) have been explored. (i) By summing the squares of all numbers in the sequence one obtains Sigmaipi(2), and by dividing this sum by one plus the cyclomatic number, a Quadratic TI is obtained: Q = Sigmaipi(2)/(mu+1). (ii) On summing the Square roots of all numbers in the sequence one obtains Sigmaipi(1/2), and by dividing this sum by one plus the cyclomatic number, the TI denoted by S is obtained: S = Sigmaipi(1/2)/(mu+1). (iii) On dividing terms in this sum by the corresponding topological distances, one obtains the Distance-reduced index D = Sigmai{pi(1/2)/[i(mu+1)]}. Two similar formulas define the next two indices, the first one with no square roots: (iv) distance-Attenuated index: A = Sigmai{pi/[i(mu + 1)]}; and (v) the last TI with two square roots: Path-count index: P = Sigmai{pi(1/2)/[i(1/2)(mu + 1)]}. These five TIs are compared for their degeneracy, ordering of alkanes, and performance in QSPR (for all alkanes with 3-12 carbon atoms and for all possible chemical cyclic or acyclic graphs with 4-6 carbon atoms) in correlations with six physical properties and one chemical property.

  5. Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element.

    Science.gov (United States)

    Leung, Wilson; Shaffer, Christopher D; Chen, Elizabeth J; Quisenberry, Thomas J; Ko, Kevin; Braverman, John M; Giarla, Thomas C; Mortimer, Nathan T; Reed, Laura K; Smith, Sheryl T; Robic, Srebrenka; McCartha, Shannon R; Perry, Danielle R; Prescod, Lindsay M; Sheppard, Zenyth A; Saville, Ken J; McClish, Allison; Morlock, Emily A; Sochor, Victoria R; Stanton, Brittney; Veysey-White, Isaac C; Revie, Dennis; Jimenez, Luis A; Palomino, Jennifer J; Patao, Melissa D; Patao, Shane M; Himelblau, Edward T; Campbell, Jaclyn D; Hertz, Alexandra L; McEvilly, Maddison F; Wagner, Allison R; Youngblom, James; Bedi, Baljit; Bettincourt, Jeffery; Duso, Erin; Her, Maiye; Hilton, William; House, Samantha; Karimi, Masud; Kumimoto, Kevin; Lee, Rebekah; Lopez, Darryl; Odisho, George; Prasad, Ricky; Robbins, Holly Lyn; Sandhu, Tanveer; Selfridge, Tracy; Tsukashima, Kara; Yosif, Hani; Kokan, Nighat P; Britt, Latia; Zoellner, Alycia; Spana, Eric P; Chlebina, Ben T; Chong, Insun; Friedman, Harrison; Mammo, Danny A; Ng, Chun L; Nikam, Vinayak S; Schwartz, Nicholas U; Xu, Thomas Q; Burg, Martin G; Batten, Spencer M; Corbeill, Lindsay M; Enoch, Erica; Ensign, Jesse J; Franks, Mary E; Haiker, Breanna; Ingles, Judith A; Kirkland, Lyndsay D; Lorenz-Guertin, Joshua M; Matthews, Jordan; Mittig, Cody M; Monsma, Nicholaus; Olson, Katherine J; Perez-Aragon, Guillermo; Ramic, Alen; Ramirez, Jordan R; Scheiber, Christopher; Schneider, Patrick A; Schultz, Devon E; Simon, Matthew; Spencer, Eric; Wernette, Adam C; Wykle, Maxine E; Zavala-Arellano, Elizabeth; McDonald, Mitchell J; Ostby, Kristine; Wendland, Peter; DiAngelo, Justin R; Ceasrine, Alexis M; Cox, Amanda H; Docherty, James E B; Gingras, Robert M; Grieb, Stephanie M; Pavia, Michael J; Personius, Casey L; Polak, Grzegorz L; Beach, Dale L; Cerritos, Heaven L; Horansky, Edward A; Sharif, Karim A; Moran, Ryan; Parrish, Susan; Bickford, Kirsten; Bland, Jennifer; Broussard, Juliana; Campbell, Kerry; Deibel, Katelynn E; Forka, Richard; Lemke, Monika C; Nelson, Marlee B; O'Keeffe, Catherine; Ramey, S Mariel; Schmidt, Luke; Villegas, Paola; Jones, Christopher J; Christ, Stephanie L; Mamari, Sami; Rinaldi, Adam S; Stity, Ghazal; Hark, Amy T; Scheuerman, Mark; Silver Key, S Catherine; McRae, Briana D; Haberman, Adam S; Asinof, Sam; Carrington, Harriette; Drumm, Kelly; Embry, Terrance; McGuire, Richard; Miller-Foreman, Drew; Rosen, Stella; Safa, Nadia; Schultz, Darrin; Segal, Matt; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Skuse, Gary; Paetkau, Don W; Bridgman, Rachael K; Brown, Charlotte M; Carroll, Alicia R; Gifford, Francesca M; Gillespie, Julie Beth; Herman, Susan E; Holtcamp, Krystal L; Host, Misha A; Hussey, Gabrielle; Kramer, Danielle M; Lawrence, Joan Q; Martin, Madeline M; Niemiec, Ellen N; O'Reilly, Ashleigh P; Pahl, Olivia A; Quintana, Guadalupe; Rettie, Elizabeth A S; Richardson, Torie L; Rodriguez, Arianne E; Rodriguez, Mona O; Schiraldi, Laura; Smith, Joanna J; Sugrue, Kelsey F; Suriano, Lindsey J; Takach, Kaitlyn E; Vasquez, Arielle M; Velez, Ximena; Villafuerte, Elizabeth J; Vives, Laura T; Zellmer, Victoria R; Hauke, Jeanette; Hauser, Charles R; Barker, Karolyn; Cannon, Laurie; Parsamian, Perouza; Parsons, Samantha; Wichman, Zachariah; Bazinet, Christopher W; Johnson, Diana E; Bangura, Abubakarr; Black, Jordan A; Chevee, Victoria; Einsteen, Sarah A; Hilton, Sarah K; Kollmer, Max; Nadendla, Rahul; Stamm, Joyce; Fafara-Thompson, Antoinette E; Gygi, Amber M; Ogawa, Emmy E; Van Camp, Matt; Kocsisova, Zuzana; Leatherman, Judith L; Modahl, Cassie M; Rubin, Michael R; Apiz-Saab, Susana S; Arias-Mejias, Suzette M; Carrion-Ortiz, Carlos F; Claudio-Vazquez, Patricia N; Espada-Green, Debbie M; Feliciano-Camacho, Marium; Gonzalez-Bonilla, Karina M; Taboas-Arroyo, Mariela; Vargas-Franco, Dorianmarie; Montañez-Gonzalez, Raquel; Perez-Otero, Joseph; Rivera-Burgos, Myrielis; Rivera-Rosario, Francisco J; Eisler, Heather L; Alexander, Jackie; Begley, Samatha K; Gabbard, Deana; Allen, Robert J; Aung, Wint Yan; Barshop, William D; Boozalis, Amanda; Chu, Vanessa P; Davis, Jeremy S; Duggal, Ryan N; Franklin, Robert; Gavinski, Katherine; Gebreyesus, Heran; Gong, Henry Z; Greenstein, Rachel A; Guo, Averill D; Hanson, Casey; Homa, Kaitlin E; Hsu, Simon C; Huang, Yi; Huo, Lucy; Jacobs, Sarah; Jia, Sasha; Jung, Kyle L; Wai-Chee Kong, Sarah; Kroll, Matthew R; Lee, Brandon M; Lee, Paul F; Levine, Kevin M; Li, Amy S; Liu, Chengyu; Liu, Max Mian; Lousararian, Adam P; Lowery, Peter B; Mallya, Allyson P; Marcus, Joseph E; Ng, Patrick C; Nguyen, Hien P; Patel, Ruchik; Precht, Hashini; Rastogi, Suchita; Sarezky, Jonathan M; Schefkind, Adam; Schultz, Michael B; Shen, Delia; Skorupa, Tara; Spies, Nicholas C; Stancu, Gabriel; Vivian Tsang, Hiu Man; Turski, Alice L; Venkat, Rohit; Waldman, Leah E; Wang, Kaidi; Wang, Tracy; Wei, Jeffrey W; Wu, Dennis Y; Xiong, David D; Yu, Jack; Zhou, Karen; McNeil, Gerard P; Fernandez, Robert W; Menzies, Patrick Gomez; Gu, Tingting; Buhler, Jeremy; Mardis, Elaine R; Elgin, Sarah C R

    2017-08-07

    The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∼5.2 Mb) is the smallest chromosome in Drosophila melanogaster , but it is substantially larger (>18.7 Mb) in D. ananassae To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes ( e.g. , larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae Compared to D. melanogaster , the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5' ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains. Copyright © 2017 Leung et al.

  6. Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration

    Science.gov (United States)

    Zhu, Wei; Kuo, Dwight; Nathanson, Jason; Satoh, Akira; Pao, Gerald M.; Yeo, Gene W.; Bryant, Susan V.; Voss, S. Randal; Gardiner, David M.; Hunter, Tony

    2012-01-01

    Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mammals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of salamander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. In addition, higher genomic LINE-1 content was also detected in the limb regenerate when compared to that before amputation indicating that LINE-1 retrotransposition is indeed active during regeneration. Active LINE-1 retrotransposition has been suggested to have a potentially deleterious impact on genomic integrity. Silencing of activated LINE-1 by small RNAs has been reported to be part of the machinery aiming to maintain genomic integrity. Indeed, we were able to identify putative LINE-1-related piRNAs in the limb blastema. Transposable element-related piRNAs have been identified frequently in the germline in other organisms. Thus, we present here a scenario in which a unique germline-like state is established during axolotl limb regeneration, and the re-activation of LINE-1 may serve as a marker for cellular dedifferentiation in the early-stage of limb regeneration. PMID:22913491

  7. Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element

    Directory of Open Access Journals (Sweden)

    Wilson Leung

    2017-08-01

    Full Text Available The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∼5.2 Mb is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb in D. ananassae. To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons are major contributors to this expansion (78.6%, while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%. Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias, but these differences are exaggerated in D. ananassae. Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5′ ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2, while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains.

  8. Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element

    Science.gov (United States)

    Shaffer, Christopher D.; Chen, Elizabeth J.; Quisenberry, Thomas J.; Ko, Kevin; Braverman, John M.; Giarla, Thomas C.; Mortimer, Nathan T.; Reed, Laura K.; Smith, Sheryl T.; Robic, Srebrenka; McCartha, Shannon R.; Perry, Danielle R.; Prescod, Lindsay M.; Sheppard, Zenyth A.; Saville, Ken J.; McClish, Allison; Morlock, Emily A.; Sochor, Victoria R.; Stanton, Brittney; Veysey-White, Isaac C.; Revie, Dennis; Jimenez, Luis A.; Palomino, Jennifer J.; Patao, Melissa D.; Patao, Shane M.; Himelblau, Edward T.; Campbell, Jaclyn D.; Hertz, Alexandra L.; McEvilly, Maddison F.; Wagner, Allison R.; Youngblom, James; Bedi, Baljit; Bettincourt, Jeffery; Duso, Erin; Her, Maiye; Hilton, William; House, Samantha; Karimi, Masud; Kumimoto, Kevin; Lee, Rebekah; Lopez, Darryl; Odisho, George; Prasad, Ricky; Robbins, Holly Lyn; Sandhu, Tanveer; Selfridge, Tracy; Tsukashima, Kara; Yosif, Hani; Kokan, Nighat P.; Britt, Latia; Zoellner, Alycia; Spana, Eric P.; Chlebina, Ben T.; Chong, Insun; Friedman, Harrison; Mammo, Danny A.; Ng, Chun L.; Nikam, Vinayak S.; Schwartz, Nicholas U.; Xu, Thomas Q.; Burg, Martin G.; Batten, Spencer M.; Corbeill, Lindsay M.; Enoch, Erica; Ensign, Jesse J.; Franks, Mary E.; Haiker, Breanna; Ingles, Judith A.; Kirkland, Lyndsay D.; Lorenz-Guertin, Joshua M.; Matthews, Jordan; Mittig, Cody M.; Monsma, Nicholaus; Olson, Katherine J.; Perez-Aragon, Guillermo; Ramic, Alen; Ramirez, Jordan R.; Scheiber, Christopher; Schneider, Patrick A.; Schultz, Devon E.; Simon, Matthew; Spencer, Eric; Wernette, Adam C.; Wykle, Maxine E.; Zavala-Arellano, Elizabeth; McDonald, Mitchell J.; Ostby, Kristine; Wendland, Peter; DiAngelo, Justin R.; Ceasrine, Alexis M.; Cox, Amanda H.; Docherty, James E.B.; Gingras, Robert M.; Grieb, Stephanie M.; Pavia, Michael J.; Personius, Casey L.; Polak, Grzegorz L.; Beach, Dale L.; Cerritos, Heaven L.; Horansky, Edward A.; Sharif, Karim A.; Moran, Ryan; Parrish, Susan; Bickford, Kirsten; Bland, Jennifer; Broussard, Juliana; Campbell, Kerry; Deibel, Katelynn E.; Forka, Richard; Lemke, Monika C.; Nelson, Marlee B.; O'Keeffe, Catherine; Ramey, S. Mariel; Schmidt, Luke; Villegas, Paola; Jones, Christopher J.; Christ, Stephanie L.; Mamari, Sami; Rinaldi, Adam S.; Stity, Ghazal; Hark, Amy T.; Scheuerman, Mark; Silver Key, S. Catherine; McRae, Briana D.; Haberman, Adam S.; Asinof, Sam; Carrington, Harriette; Drumm, Kelly; Embry, Terrance; McGuire, Richard; Miller-Foreman, Drew; Rosen, Stella; Safa, Nadia; Schultz, Darrin; Segal, Matt; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Skuse, Gary; Paetkau, Don W.; Bridgman, Rachael K.; Brown, Charlotte M.; Carroll, Alicia R.; Gifford, Francesca M.; Gillespie, Julie Beth; Herman, Susan E.; Holtcamp, Krystal L.; Host, Misha A.; Hussey, Gabrielle; Kramer, Danielle M.; Lawrence, Joan Q.; Martin, Madeline M.; Niemiec, Ellen N.; O'Reilly, Ashleigh P.; Pahl, Olivia A.; Quintana, Guadalupe; Rettie, Elizabeth A.S.; Richardson, Torie L.; Rodriguez, Arianne E.; Rodriguez, Mona O.; Schiraldi, Laura; Smith, Joanna J.; Sugrue, Kelsey F.; Suriano, Lindsey J.; Takach, Kaitlyn E.; Vasquez, Arielle M.; Velez, Ximena; Villafuerte, Elizabeth J.; Vives, Laura T.; Zellmer, Victoria R.; Hauke, Jeanette; Hauser, Charles R.; Barker, Karolyn; Cannon, Laurie; Parsamian, Perouza; Parsons, Samantha; Wichman, Zachariah; Bazinet, Christopher W.; Johnson, Diana E.; Bangura, Abubakarr; Black, Jordan A.; Chevee, Victoria; Einsteen, Sarah A.; Hilton, Sarah K.; Kollmer, Max; Nadendla, Rahul; Stamm, Joyce; Fafara-Thompson, Antoinette E.; Gygi, Amber M.; Ogawa, Emmy E.; Van Camp, Matt; Kocsisova, Zuzana; Leatherman, Judith L.; Modahl, Cassie M.; Rubin, Michael R.; Apiz-Saab, Susana S.; Arias-Mejias, Suzette M.; Carrion-Ortiz, Carlos F.; Claudio-Vazquez, Patricia N.; Espada-Green, Debbie M.; Feliciano-Camacho, Marium; Gonzalez-Bonilla, Karina M.; Taboas-Arroyo, Mariela; Vargas-Franco, Dorianmarie; Montañez-Gonzalez, Raquel; Perez-Otero, Joseph; Rivera-Burgos, Myrielis; Rivera-Rosario, Francisco J.; Eisler, Heather L.; Alexander, Jackie; Begley, Samatha K.; Gabbard, Deana; Allen, Robert J.; Aung, Wint Yan; Barshop, William D.; Boozalis, Amanda; Chu, Vanessa P.; Davis, Jeremy S.; Duggal, Ryan N.; Franklin, Robert; Gavinski, Katherine; Gebreyesus, Heran; Gong, Henry Z.; Greenstein, Rachel A.; Guo, Averill D.; Hanson, Casey; Homa, Kaitlin E.; Hsu, Simon C.; Huang, Yi; Huo, Lucy; Jacobs, Sarah; Jia, Sasha; Jung, Kyle L.; Wai-Chee Kong, Sarah; Kroll, Matthew R.; Lee, Brandon M.; Lee, Paul F.; Levine, Kevin M.; Li, Amy S.; Liu, Chengyu; Liu, Max Mian; Lousararian, Adam P.; Lowery, Peter B.; Mallya, Allyson P.; Marcus, Joseph E.; Ng, Patrick C.; Nguyen, Hien P.; Patel, Ruchik; Precht, Hashini; Rastogi, Suchita; Sarezky, Jonathan M.; Schefkind, Adam; Schultz, Michael B.; Shen, Delia; Skorupa, Tara; Spies, Nicholas C.; Stancu, Gabriel; Vivian Tsang, Hiu Man; Turski, Alice L.; Venkat, Rohit; Waldman, Leah E.; Wang, Kaidi; Wang, Tracy; Wei, Jeffrey W.; Wu, Dennis Y.; Xiong, David D.; Yu, Jack; Zhou, Karen; McNeil, Gerard P.; Fernandez, Robert W.; Menzies, Patrick Gomez; Gu, Tingting; Buhler, Jeremy; Mardis, Elaine R.; Elgin, Sarah C.R.

    2017-01-01

    The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∼5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb) in D. ananassae. To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae. Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5′ ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains. PMID:28667019

  9. Molecular dynamics computer simulations based on NMR data

    International Nuclear Information System (INIS)

    Vlieg, J. de.

    1989-01-01

    In the work described in this thesis atom-atom distance information obtained from two-dimensional cuclear magnetic resonance is combined with molecular dynamics simulaitons. The simulation is used to improve the accuracy of a structure model constructed on the basis of NMR data. During the MD refinement the crude NMR structure is simultaneously optimized with respect to the atomic interaction function and to the set of atom-atom distances or other NMR information. This means that insufficient experimental data is completed with theoretical knowledge and the combination will lead to more reliable structures than would be obtained from one technique alone. (author). 191 refs.; 17 figs.; 12 schemes; 22 tabs

  10. Molecular interactions of nucleic acid bases. From ab initio calculations to molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří

    2002-01-01

    Roč. 223, - (2002), s. 212 ISSN 0065-7727. [Annual Meeting of the American Chemistry Society /223./. 07.04.2002-11.04.2002, Orlando ] Institutional research plan: CEZ:AV0Z5004920 Keywords : quantum chemistry * base pairing * base stacking Subject RIV: BO - Biophysics

  11. Hybrid nanomembrane-based capacitors for the determination of the dielectric constant of semiconducting molecular ensembles

    Science.gov (United States)

    Petrini, Paula A.; Silva, Ricardo M. L.; de Oliveira, Rafael F.; Merces, Leandro; Bof Bufon, Carlos C.

    2018-06-01

    Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al2O3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al2O3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.

  12. Hybrid nanomembrane-based capacitors for the determination of the dielectric constant of semiconducting molecular ensembles.

    Science.gov (United States)

    Petrini, Paula Andreia; Lopes da Silva, Ricardo Magno; de Oliveira, Rafael Furlan; Merces, Leandro; Bufon, Carlos César Bof

    2018-04-06

    Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscope (STM). The incorporation of molecular materials in devices is not a trivial task since the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (kCuPc) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al2O3 layers, and the CuPc molecular ensemble have been fabricated and evaluated. The Al2O3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (< 30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (kCuPc = 4.5 ± 0.5). These values suggest a mild contribution of molecular orientation in the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology. © 2018 IOP Publishing Ltd.

  13. Gliomatosis cerebri: Prognosis based on current molecular markers.

    Science.gov (United States)

    Maharaj, Monish M; Phan, Kevin; Xu, Joshua; Fairhall, Jacob; Reddy, Rajesh; Rao, Prashanth J V

    2017-09-01

    This study aims to review the literature and identify key molecular markers affecting the prognosis of Gliomatosis cerebri (2) to evaluate the level of evidence and identify outstanding markers requiring further study. A literature search was conducted across 5 major databases using the key terms: "Molecular markers" AND "Gliomatosis cerebri" OR "diffuse astrocytoma." Critical appraisal and data presentation was performed inline with the PRISMA guidelines. Following search strategy implementation, 11 studies were included in the final review process. Our data demonstrates significant prognostic value associated with IDH1 132H mutation and variable evidence surrounding the role of INA expression, MGMT promoter methylation and other factors. However, there are significant limitations in the level of evidence obtained. As the genetic basis for the pathogenesis of Gliomatosis cerebri continues to widen, there is little data on markers aside from IDH1 mutation available. IDH1 132H mutation has been demonstrated to have significant effect on survival, particularly in patients with Gliomatosis cerebri type 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    Science.gov (United States)

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. PET-based molecular nuclear neuro-imaging

    International Nuclear Information System (INIS)

    Kim, Jong Ho

    2004-01-01

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy

  16. PET-based molecular nuclear neuro-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho [Gil Medical Center, Gachon (Korea, Republic of)

    2004-04-01

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy.

  17. [Establishing Individualized Medicine for Intractable Cancer Based on Clinical Molecular Pathogenesis].

    Science.gov (United States)

    Jono, Hirofumi

    2018-01-01

     Although cancer treatment has dramatically improved with the development of molecular-targeted agents over the past decade, identifying eligible patients and predicting the therapeutic effects remain a major challenge. Because intratumoral heterogeneity represents genetic and molecular differences affecting patients' responses to these therapeutic agents, establishing individualized medicine based on precise molecular pathological analysis of tumors is urgently required. This review focuses on the pathogenesis of oral squamous cell carcinoma (OSCC), a common head and neck neoplasm, and introduces our approaches toward developing novel anticancer therapies particularly based on clinical molecular pathogenesis. Deeper understanding of more precise molecular pathogenesis in clinical settings may open up novel strategies for establishing individualized medicine for OSCC.

  18. Molecular basis of Acute Myelogenous Leukemia As bases moleculares da leucemia mielóide aguda

    Directory of Open Access Journals (Sweden)

    Eduardo M. Rego

    2002-01-01

    Full Text Available Acute Myelogenous Leukemia (AML is frequently associated with recurring chromosomal translocations, which lead to the fusion of two genes encoding transcription factors. As the moieties of these fusion proteins retain part of the functional domains of the wild-type proteins, they may interfere directly or indirectly with the transcriptional regulation of the leukemic cell, conferring survival advantage. The majority of the transcription factors commonly involved in recurring chromosomal translocations may be grouped in one of the following families: core binding factor (CBF, retinoic acid receptor alpha (RARalpha, homeobox (HOX family, and mixed lineage leukemia (MLL. In vivo analysis of the molecular basis of leukemogenesis through the generation of transgenic mouse models revealed that a common theme is the recruitment of transcriptional co-activators and co-repressors by these fusion proteins. However, the expression of the fusion protein is not sufficient to induce full blown leukemia, as evidenced in part by the long latencies required for disease development in the transgenic models of leukemia, and therefore, second mutagenic events may contribute to AML pathogenesis.A leucemia mielóide aguda (LMA está freqüentemente associada a translocações cromossômicas recorrentes. Em muitos casos, os genes presentes nos pontos de quebra cromossômica são conhecidos e, quase todos codificam para fatores de transcrição. O gene híbrido, resultante da justaposição de exons de genes distintos, codifica para proteínas de fusão. Como estas retêm a maior parte dos domínios funcionais das proteínas selvagens, elas interferem direta ou indiretamente com regulação da transcrição gênica, conferindo vantagem à sobrevivência das células leucêmicas. A maioria dos fatores de transcrição afetados pelas translocações cromossômicas associadas a LMA pode ser agrupada numa das seguintes famílias: dos core binding factors (CBF, do receptor

  19. Initiating Heavy-atom Based Phasing by Multi-Dimensional Molecular Replacement

    DEFF Research Database (Denmark)

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu

    2014-01-01

    -based approaches, which however may fail when only poorly diffracting derivative crystals are available, as often the case for e.g. membrane proteins. Here we present an approach for heavy atom site identification based on a Molecular Replacement Parameter Matrix (MRPM) search. It involves an n-dimensional search...... to test a wide spectrum of molecular replacement parameters, such as clusters of different conformations. The result is scored by the ability to identify heavy-atom positions, from anomalous difference Fourier maps, that allow meaningful phases to be determined. The strategy was successfully applied...... but correct molecular replacement solutions with maximum contrast to prime experimental phasing efforts....

  20. Molecular bases of cellular senescence: Hayflick phenomenon 50 years later

    Directory of Open Access Journals (Sweden)

    Patrycja Sosińska

    2016-03-01

    Full Text Available Normal human somatic cells have strictly limited proliferative capacity and reach a state of senescence when it becomes exhausted. It is believed that senescence is a response to extensive and irreparable DNA injury, localized in telomeric and/or non-telomeric regions of the genome. Main cause of this damage is oxidative stress, increasing due to deteriorated function of mitochondria. Senescent cells accumulate in tissues during aging, which is causatively linked with the development of various pathologies in elderly individuals, including cancer. This paper, prepared exactly 50 years after Leonard Hayflick’s discovery of the relationship between cellular senescence and organismal aging is aimed at presenting the current knowledge about molecular determinants of senescence, with particular emphasis paid to the role of oxidative stress, effectors of senescence at the level of cell cycle, markers of this phenomenon, and the effect of senescent cells on the development of certain age-related diseases.

  1. ChemPreview: an augmented reality-based molecular interface.

    Science.gov (United States)

    Zheng, Min; Waller, Mark P

    2017-05-01

    Human computer interfaces make computational science more comprehensible and impactful. Complex 3D structures such as proteins or DNA are magnified by digital representations and displayed on two-dimensional monitors. Augmented reality has recently opened another door to access the virtual three-dimensional world. Herein, we present an augmented reality application called ChemPreview with the potential to manipulate bio-molecular structures at an atomistic level. ChemPreview is available at https://github.com/wallerlab/chem-preview/releases, and is built on top of the Meta 1 platform https://www.metavision.com/. ChemPreview can be used to interact with a protein in an intuitive way using natural hand gestures, thereby making it appealing to computational chemists or structural biologists. The ability to manipulate atoms in real world could eventually provide new and more efficient ways of extracting structural knowledge, or designing new molecules in silico. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  3. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  4. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  5. Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations.

    Directory of Open Access Journals (Sweden)

    Xueli Zhang

    Full Text Available Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP, sequence-specific amplification polymorphism (SSAP and methylation-sensitive amplified polymorphism (MSAP were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4-39.8% and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed.

  6. Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations.

    Science.gov (United States)

    Zhang, Xueli; Ge, Xianhong; Shao, Yujiao; Sun, Genlou; Li, Zaiyun

    2013-01-01

    Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4-39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed.

  7. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress.

    Science.gov (United States)

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-07-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.

  8. Sub-30 nm patterning of molecular resists based on crosslinking through tip based oxidation

    Science.gov (United States)

    Lorenzoni, Matteo; Wagner, Daniel; Neuber, Christian; Schmidt, Hans-Werner; Perez-Murano, Francesc

    2018-06-01

    Oxidation Scanning Probe Lithography (o-SPL) is an established method employed for device patterning at the nanometer scale. It represents a feasible and inexpensive alternative to standard lithographic techniques such as electron beam lithography (EBL) and nanoimprint lithography (NIL). In this work we applied non-contact o-SPL to an engineered class of molecular resists in order to obtain crosslinking by electrochemical driven oxidation. By patterning and developing various resist formulas we were able to obtain a reliable negative tone resist behavior based on local oxidation. Under optimal conditions, directly written patterns can routinely reach sub-30 nm lateral resolution, while the final developed features result wider, approaching 50 nm width.

  9. Clinicopathological and Molecular Histochemical Review of Skull Base Metastasis from Differentiated Thyroid Carcinoma

    International Nuclear Information System (INIS)

    Matsuno, Akira; Murakami, Mineko; Hoya, Katsumi; Yamada, Shoko M.; Miyamoto, Shinya; Yamada, So; Son, Jae-Hyun; Nishido, Hajime; Ide, Fuyuaki; Nagashima, Hiroshi; Sugaya, Mutsumi; Hirohata, Toshio; Mizutani, Akiko; Okinaga, Hiroko; Ishii, Yudo; Tahara, Shigeyuki; Teramoto, Akira; Osamura, R. Yoshiyuki; Yamazaki, Kazuto; Ishida, Yasuo

    2013-01-01

    Skull base metastasis from differentiated thyroid carcinoma including follicular thyroid carcinoma (FTC) and papillary thyroid carcinoma (PTC) is a rare clinical entity. Eighteen FTC cases and 10 PTC cases showing skull base metastasis have been reported. The most common symptom of skull base metastasis from FTC and PTC is cranial nerve dysfunction. Bone destruction and local invasion to the surrounding soft tissues are common on radiological imaging. Skull base metastases can be the initial clinical presentation of FTC and PTC in the presence of silent primary sites. The possibility of skull base metastasis from FTC and PTC should be considered in patients with the clinical symptoms of cranial nerve dysfunction and radiological findings of bone destruction. A variety of genetic alterations in thyroid tumors have been identified to have a fundamental role in their tumorigenesis. Molecular histochemical studies are useful for elucidating the histopathological features of thyroid carcinoma. Recent molecular findings may provide novel molecular-based treatment strategies for thyroid carcinoma

  10. Molecular-based recursive partitioning analysis model for glioblastoma in the temozolomide era a correlative analysis based on nrg oncology RTOG 0525

    NARCIS (Netherlands)

    Bell, Erica Hlavin; Pugh, Stephanie L.; McElroy, Joseph P.; Gilbert, Mark R.; Mehta, Minesh; Klimowicz, Alexander C.; Magliocco, Anthony; Bredel, Markus; Robe, Pierre; Grosu, Anca L.; Stupp, Roger; Curran, Walter; Becker, Aline P.; Salavaggione, Andrea L.; Barnholtz-Sloan, Jill S.; Aldape, Kenneth; Blumenthal, Deborah T.; Brown, Paul D.; Glass, Jon; Souhami, Luis; Lee, R. Jeffrey; Brachman, David; Flickinger, John; Won, Minhee; Chakravarti, Arnab

    2017-01-01

    IMPORTANCE: There is a need for a more refined, molecularly based classification model for glioblastoma (GBM) in the temozolomide era. OBJECTIVE: To refine the existing clinically based recursive partitioning analysis (RPA) model by incorporating molecular variables. DESIGN, SETTING, AND

  11. Establishment of a Molecular Serotyping Scheme and a Multiplexed Luminex-Based Array for Enterobacter aerogenes.

    Science.gov (United States)

    Guo, Xi; Wang, Min; Wang, Lu; Wang, Yao; Chen, Tingting; Wu, Pan; Chen, Min; Liu, Bin; Feng, Lu

    2018-01-01

    Serotyping based on surface polysaccharide antigens is important for the clinical detection and epidemiological surveillance of pathogens. Polysaccharide gene clusters (PSgcs) are typically responsible for the diversity of bacterial surface polysaccharides. Through whole-genome sequencing and analysis, eight putative PSgc types were identified in 23 Enterobacter aerogenes strains from several geographic areas, allowing us to present the first molecular serotyping system for E. aerogenes . A conventional antigenic scheme was also established and correlated well with the molecular serotyping system that was based on PSgc genetic variation, indicating that PSgc-based molecular typing and immunological serology provide equally valid results. Further, a multiplex Luminex-based array was developed, and a double-blind test was conducted with 97 clinical specimens from Shanghai, China, to validate our array. The results of these analyses indicated that strains containing PSgc4 and PSgc7 comprised the predominant groups. We then examined 86 publicly available E. aerogenes strain genomes and identified an additional seven novel PSgc types, with PSgc10 being the most abundant type. In total, our study identified 15 PSgc types in E. aerogenes , providing the basis for a molecular serotyping scheme. From these results, differing epidemic patterns were identified between strains that were predominant in different regions. Our study highlights the feasibility and reliability of a serotyping system based on PSgc diversity, and for the first time, presents a molecular serotyping system, as well as an antigenic scheme for E. aerogenes , providing the basis for molecular diagnostics and epidemiological surveillance of this important emerging pathogen.

  12. Transforming bases to bytes: Molecular computing with DNA

    Indian Academy of Sciences (India)

    Despite the popular image of silicon-based computers for computation, an embryonic field of mole- cular computation is emerging, where molecules in solution perform computational ..... [4] Mao C, Sun W, Shen Z and Seeman N C 1999. A nanomechanical device based on the B-Z transition of DNA; Nature 397 144–146.

  13. Molecular Bases and Phenotypic Determinants of Aromatase Excess Syndrome

    Directory of Open Access Journals (Sweden)

    Maki Fukami

    2012-01-01

    Full Text Available Aromatase excess syndrome (AEXS is a rare autosomal dominant disorder characterized by gynecomastia. This condition is caused by overexpression of CYP19A1 encoding aromatase, and three types of cryptic genomic rearrangement around CYP19A1, that is, duplications, deletions, and inversions, have been identified in AEXS. Duplications appear to have caused CYP19A1 overexpression because of an increased number of physiological promoters, whereas deletions and inversions would have induced wide CYP19A1 expression due to the formation of chimeric genes consisting of a noncoding exon(s of a neighboring gene and CYP19A1 coding exons. Genotype-phenotype analysis implies that phenotypic severity of AEXS is primarily determined by the expression pattern of CYP19A1 and the chimeric genes and by the structural property of the fused exons with a promoter function (i.e., the presence or the absence of a natural translation start codon. These results provide novel information about molecular mechanisms of human genetic disorders and biological function of estrogens.

  14. Descifrando las bases moleculares de la resistencia cuantitativa

    Directory of Open Access Journals (Sweden)

    Camilo Lopez

    2011-05-01

    Full Text Available Uno de los factores mas importantes que afectan los cultivos son las enfermedades ocasionadas por los patógenos. La resistencia vegetal ha sido clásicamente dividida en dos tipos: i competa, vertical o cualitativa que es gobernada por un solo gen y ii incompleta, horizontal o cuantitativa la cual es gobernada por varios genes. Aunque la resistencia cuantitativa provee resistencia de amplio espectro y es durable, los mecanismo moleculares subyacentes no han sido estudiados en detalle. En esta revisión se propone un modelo basado en la co-localización de genes similares a los clásicos genes de resistencia cualitativa con QTLs (Quantitative Trait Loci para explicar el mecanismo involucrado en el reconocimiento del patógeno durante la resistencia cuantitativa. Además se presenta información acerca del progreso obtenido en los últimos tres años para entender este tipo de resistencia, que culminó con la clonación de varios genes asociados a la resistencia cuantitativa. En conjunto, estos datos proveen nuevas luces sobre la naturaleza genética de este tipo de resistencia y de cómo puede ser empleada en programas de mejoramiento genético.

  15. Structure-Function Based Molecular Relationships in Ewing's Sarcoma

    Science.gov (United States)

    2015-01-01

    Ewing's Sarcoma Oncogene (ews) on chromosome 22q12 is encoding a ubiquitously expressed RNA-binding protein (EWS) with unknown function that is target of tumor-specific chromosomal translocations in Ewing's sarcoma family of tumors. A model of transcription complex was proposed in which the heterodimer Rpb4/7 binds to EAD, connecting it to Core RNA Pol II. The DNA-binding domain, provided by EFP, is bound to the promoter. Rpb4/7 binds RNA, stabilizing the transcription complex. The complex Rpb4/7 can stabilize the preinitiation complexes by converting the conformation of RNA Pol II. EWS may change its conformation, so that NTD becomes accessible. Two different mechanisms of interaction between EWS and RNA Pol II are proposed: (I) an intermolecular EWS-EWS interaction between two molecules, pushing conformation from “closed” to “open” state, or (II) an intramolecular interaction inside the molecule of EWS, pushing conformation of the molecule from “closed” to “open” state. The modified forms of EWS may interact with Pol II subunits hsRpb5 and hsRpb7. The EWS and EFPs binding partners are described schematically in a model, an attempt to link the transcription with the splicing. The proposed model helps to understand the functional molecular interactions in cancer, to find new partners and ways to treat cancer. PMID:25688366

  16. QSAR models based on quantum topological molecular similarity.

    Science.gov (United States)

    Popelier, P L A; Smith, P J

    2006-07-01

    A new method called quantum topological molecular similarity (QTMS) was fairly recently proposed [J. Chem. Inf. Comp. Sc., 41, 2001, 764] to construct a variety of medicinal, ecological and physical organic QSAR/QSPRs. QTMS method uses quantum chemical topology (QCT) to define electronic descriptors drawn from modern ab initio wave functions of geometry-optimised molecules. It was shown that the current abundance of computing power can be utilised to inject realistic descriptors into QSAR/QSPRs. In this article we study seven datasets of medicinal interest : the dissociation constants (pK(a)) for a set of substituted imidazolines , the pK(a) of imidazoles , the ability of a set of indole derivatives to displace [(3)H] flunitrazepam from binding to bovine cortical membranes , the influenza inhibition constants for a set of benzimidazoles , the interaction constants for a set of amides and the enzyme liver alcohol dehydrogenase , the natriuretic activity of sulphonamide carbonic anhydrase inhibitors and the toxicity of a series of benzyl alcohols. A partial least square analysis in conjunction with a genetic algorithm delivered excellent models. They are also able to highlight the active site, of the ligand or the molecule whose structure determines the activity. The advantages and limitations of QTMS are discussed.

  17. The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements

    Directory of Open Access Journals (Sweden)

    Morales Maria E

    2005-02-01

    Full Text Available Abstract Background Of the major families of long terminal repeat (LTR retrotransposons, the Pao/BEL family is probably the least well studied. It is becoming apparent that numerous LTR retrotransposons and other mobile genetic elements have colonized the genome of the human blood fluke, Schistosoma mansoni. Results A proviral form of Sinbad, a new LTR retrotransposon, was identified in the genome of S. mansoni. Phylogenetic analysis indicated that Sinbad belongs to one of five discreet subfamilies of Pao/BEL like elements. BLAST searches of whole genomes and EST databases indicated that members of this clade occurred in species of the Insecta, Nematoda, Echinodermata and Chordata, as well as Platyhelminthes, but were absent from all plants, fungi and lower eukaryotes examined. Among the deuterostomes examined, only aquatic species harbored these types of elements. All four species of nematode examined were positive for Sinbad sequences, although among insect and vertebrate genomes, some were positive and some negative. The full length, consensus Sinbad retrotransposon was 6,287 bp long and was flanked at its 5'- and 3'-ends by identical LTRs of 386 bp. Sinbad displayed a triple Cys-His RNA binding motif characteristic of Gag of Pao/BEL-like elements, followed by the enzymatic domains of protease, reverse transcriptase (RT, RNAseH, and integrase, in that order. A phylogenetic tree of deduced RT sequences from 26 elements revealed that Sinbad was most closely related to an unnamed element from the zebrafish Danio rerio and to Saci-1, also from S. mansoni. It was also closely related to Pao from Bombyx mori and to Ninja of Drosophila simulans. Sinbad was only distantly related to the other schistosome LTR retrotransposons Boudicca, Gulliver, Saci-2, Saci-3, and Fugitive, which are gypsy-like. Southern hybridization and bioinformatics analyses indicated that there were about 50 copies of Sinbad in the S. mansoni genome. The presence of ESTs

  18. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanonetworks refer to a group of nanosized machines with very basic operational capabilities communicating to each other in order to accomplish more complex tasks such as in-body drug delivery, or chemical defense. Realizing reliable and high-rate communication between these nanomachines is a fundamental problem for the practicality of these nanonetworks. Recently, we have proposed a molecular communication method based on Förster Resonance Energy Transfer (FRET) which is a nonradiative excited state energy transfer phenomenon observed among fluorescent molecules, i.e., fluorophores. We have modeled the FRET-based communication channel considering the fluorophores as single-molecular immobile nanomachines, and shown its reliability at high rates, and practicality at the current stage of nanotechnology. In this study, for the first time in the literature, we investigate the network of mobile nanomachines communicating through FRET. We introduce two novel mobile molecular nanonetworks: FRET-based mobile molecular sensor/actor nanonetwork (FRET-MSAN) which is a distributed system of mobile fluorophores acting as sensor or actor node; and FRET-based mobile ad hoc molecular nanonetwork (FRET-MAMNET) which consists of fluorophore-based nanotransmitter, nanoreceivers and nanorelays. We model the single message propagation based on birth-death processes with continuous time Markov chains. We evaluate the performance of FRET-MSAN and FRET-MAMNET in terms of successful transmission probability and mean extinction time of the messages, system throughput, channel capacity and achievable communication rates.

  19. New molecular descriptors based on local properties at the molecular surface and a boiling-point model derived from them.

    Science.gov (United States)

    Ehresmann, Bernd; de Groot, Marcel J; Alex, Alexander; Clark, Timothy

    2004-01-01

    New molecular descriptors based on statistical descriptions of the local ionization potential, local electron affinity, and the local polarizability at the surface of the molecule are proposed. The significance of these descriptors has been tested by calculating them for the Maybridge database in addition to our set of 26 descriptors reported previously. The new descriptors show little correlation with those already in use. Furthermore, the principal components of the extended set of descriptors for the Maybridge data show that especially the descriptors based on the local electron affinity extend the variance in our set of descriptors, which we have previously shown to be relevant to physical properties. The first nine principal components are shown to be most significant. As an example of the usefulness of the new descriptors, we have set up a QSPR model for boiling points using both the old and new descriptors.

  20. Integrative pathway knowledge bases as a tool for systems molecular medicine.

    Science.gov (United States)

    Liang, Mingyu

    2007-08-20

    There exists a sense of urgency to begin to generate a cohesive assembly of biomedical knowledge as the pace of knowledge accumulation accelerates. The urgency is in part driven by the emergence of systems molecular medicine that emphasizes the combination of systems analysis and molecular dissection in the future of medical practice and research. A potentially powerful approach is to build integrative pathway knowledge bases that link organ systems function with molecules.

  1. Molecular MR Imaging of CD44 in Breast Cancer with Hyaluronan-Based Contrast Agents

    Science.gov (United States)

    2009-09-01

    linear polysaccharide composed of alternating (β-1,4)-linked d- glucuronic acid and (β-1,3) N-acetyl-d-glucosamine residues with molecular weights as...enzymatic reactions in-vivo that generate polysaccharides of decreasing sizes, which in principle may facilitate the timely excretion of HA based...14CO2) or in urine (as low molecular weight HA or monosaccharide fragments). The same authors also reported that the total amount of excretion into

  2. Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.

    Science.gov (United States)

    Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao

    2015-04-01

    Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Three decades of structure- and property-based molecular design

    DEFF Research Database (Denmark)

    Müller, Klaus

    2014-01-01

    of bioinformatics. It describes the strategic shift to large compound libraries and high-throughput screening with the development of novel compound storage and ultra-high-throughput screening facilities, as well as the strategic return to focused screening of small motif-based compound libraries...

  4. Multi-scale calculation of the electric properties of organic-based devices from the molecular structure

    KAUST Repository

    Li, Haoyuan; Qiu, Yong; Duan, Lian

    2016-01-01

    A method is proposed to calculate the electric properties of organic-based devices from the molecular structure. The charge transfer rate is obtained using non-adiabatic molecular dynamics. The organic film in the device is modeled using

  5. Molecular Engineering of Technetium and Rhenium Based Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zubieta, J.

    2003-01-01

    The research was based on the observation that despite the extraordinarily rich coordination chemistry of technetium and rhenium and several notable successes in reagent design, the extensive investigations by numerous research groups on a variety of N 2 S 2 and N 3 S donor type ligands and on HYNIC have revealed that the chemistries of these ligands with Tc and Re are rather complex, giving rise to considerable difficulties in the development of reliable procedures for the development of radiopharmaceutical reagents

  6. New polynomial-based molecular descriptors with low degeneracy.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available In this paper, we introduce a novel graph polynomial called the 'information polynomial' of a graph. This graph polynomial can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic polynomial of a graph, we perform a numerical study using real chemical databases. We obtain that the novel descriptors do have a high discrimination power.

  7. TARGET-ORIENTED GENERIC FINGERPRINT-BASED MOLECULAR REPRESENTATION

    OpenAIRE

    Petr Skoda; David Hoksza

    2014-01-01

    The screening of chemical libraries is an important step in the drug discovery process. The existing chemical libraries contain up to millions of compounds. As the screening at such scale is expensive, the virtual screening is often utilized. There exist several variants of virtual screening and ligand-based virtual screening is one of them. It utilizes the similarity of screened chemical compounds to known compounds. Besides the employed similarity measure, another aspect grea...

  8. Tunable separations based on a molecular size effect for biomolecules by poly(ethylene glycol) gel-based capillary electrophoresis.

    Science.gov (United States)

    Kubo, Takuya; Nishimura, Naoki; Furuta, Hayato; Kubota, Kei; Naito, Toyohiro; Otsuka, Koji

    2017-11-10

    We report novel capillary gel electrophoresis (CGE) with poly(ethylene glycol) (PEG)-based hydrogels for the effective separations of biomolecules containing sugars and DNAs based on a molecular size effect. The gel capillaries were prepared in a fused silica capillary modified with 3-(trimethoxysilyl)propylmethacrylate using a variety of the PEG-based hydrogels. After the fundamental evaluations in CGE regarding the separation based on the molecular size effect depending on the crosslinking density, the optimized capillary provided the efficient separation of glucose ladder (G1 to G20). In addition, another capillary showed the successful separation of DNA ladder in the range of 10-1100 base pair, which is superior to an authentic acrylamide-based gel capillary. For both glucose and DNA ladders, the separation ranges against the molecular size were simply controllable by alteration of the concentration and/or units of ethylene oxide in the PEG-based crosslinker. Finally, we demonstrated the separations of real samples, which included sugars carved out from monoclonal antibodies, mAbs, and then the efficient separations based on the molecular size effect were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Molecular monolayers for electrical passivation and functionalization of silicon-based solar energy devices

    NARCIS (Netherlands)

    Veerbeek, Janneke; Firet, Nienke J.; Vijselaar, Wouter; Elbersen, R.; Gardeniers, Han; Huskens, Jurriaan

    2017-01-01

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based

  10. Molecular typing of Staphylococcus aureus based on coagulase gene.

    Science.gov (United States)

    Javid, Faizan; Taku, Anil; Bhat, Mohd Altaf; Badroo, Gulzar Ahmad; Mudasir, Mir; Sofi, Tanveer Ahmad

    2018-04-01

    This study was conducted to study the coagulase gene-based genetic diversity of Staphylococcus aureus , isolated from different samples of cattle using restriction fragment length polymorphism (RFLP) and their sequence-based phylogenetic analysis. A total of 192 different samples from mastitic milk, nasal cavity, and pus from skin wounds of cattle from Military Dairy Farm, Jammu, India, were screened for the presence of S. aureus . The presumptive isolates were confirmed by nuc gene-based polymerase chain reaction (PCR). The confirmed S. aureus isolates were subjected to coagulase ( coa ) gene PCR. Different coa genotypes observed were subjected to RFLP using restriction enzymes Hae111 and Alu1 , to obtain the different restriction patterns. One isolate from each restriction pattern was sequenced. These sequences were aligned for maximum homology using the Bioedit softwareandsimilarity in the sequences was inferred with the help of sequence identity matrix. Of 192 different samples,39 (20.31%) isolates of S. aureus were confirmed by targeting nuc gene using PCR. Of 39 S. aureus isolates, 25 (64.10%) isolates carried coa gene. Four different genotypes of coa gene, i.e., 514 bp, 595 bp, 757 bp, and 802 bp were obtained. Two coa genotypes, 595 bp (15 isolates) and 802 bp (4 isolates), were observed in mastitic milk. 514 bp (2 isolates) and 757 bp (4 isolates) coa genotypes were observed from nasal cavity and pus from skin wounds, respectively. On RFLP using both restriction enzymes, four different restriction patterns P1, P2, P3, and P4 were observed. On sequencing, four different sequences having unique restriction patterns were obtained. The most identical sequences with the value of 0.810 were found between isolate S. aureus 514 (nasal cavity) and S. aureus 595 (mastitic milk), and thus, they are most closely related. While as the most distant sequences with the value of 0.483 were found between S. aureus 514 and S. aureus 802 isolates. The study, being localized

  11. Prospects of luminescence based molecular scale logic gates and logic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Speiser, Shammai, E-mail: speiser@technion.ac.il

    2016-01-15

    In recent years molecular electronics has emerged as a rapidly growing research field. The aim of this review is to introduce this subject as a whole with special emphasis on molecular scale potential devices and applications. As a particular example we will discuss all optical molecular scale logic gates and logic circuits based on molecular fluorescence and electronic excitation transfer processes. Charge and electronic energy transfers (ET and EET) are well-studied examples whereby different molecules can signal their state from one (the donor, D) to the other (the acceptor, A). We show how a half-adder logic circuit can be implemented on one molecule that can communicate its logic output as input to another half-adder molecule. This is achieved as an electronic energy transfer from a donor to an acceptor, thus implementing a molecular full adder. We discuss a specific pair, the rhodamine–azulene, for which there is considerable spectroscopic data, but the scheme is general enough to allow a wide choice of D and A pairs. We present results based on this pair, in which, for the first time, an all optical half-adder and full-adder logic circuits are implemented. - Highlights: • Molecular scale logic • Photoquenching • Full adder.

  12. Prospects of luminescence based molecular scale logic gates and logic circuits

    International Nuclear Information System (INIS)

    Speiser, Shammai

    2016-01-01

    In recent years molecular electronics has emerged as a rapidly growing research field. The aim of this review is to introduce this subject as a whole with special emphasis on molecular scale potential devices and applications. As a particular example we will discuss all optical molecular scale logic gates and logic circuits based on molecular fluorescence and electronic excitation transfer processes. Charge and electronic energy transfers (ET and EET) are well-studied examples whereby different molecules can signal their state from one (the donor, D) to the other (the acceptor, A). We show how a half-adder logic circuit can be implemented on one molecule that can communicate its logic output as input to another half-adder molecule. This is achieved as an electronic energy transfer from a donor to an acceptor, thus implementing a molecular full adder. We discuss a specific pair, the rhodamine–azulene, for which there is considerable spectroscopic data, but the scheme is general enough to allow a wide choice of D and A pairs. We present results based on this pair, in which, for the first time, an all optical half-adder and full-adder logic circuits are implemented. - Highlights: • Molecular scale logic • Photoquenching • Full adder

  13. Electronic shift register memory based on molecular electron-transfer reactions

    Science.gov (United States)

    Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.

    1989-01-01

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.

  14. Surface based detection schemes for molecular interferometry experiments - implications and possible applications

    Science.gov (United States)

    Juffmann, Thomas; Milic, Adriana; Muellneritsch, Michael; Arndt, Markus

    2011-03-01

    Surface based detection schemes for molecular interferometry experiments might be crucial in the search for the quantum properties of larger and larger objects since they provide single particle sensitivity. Here we report on molecular interferograms of different biomolecules imaged using fluorescence microscopy. Being able to watch the build-up of an interferogram live and in situ reveals the matter-wave behavior of these complex molecules in an unprecedented way. We examine several problems encountered due to van-der-Waals forces between the molecules and the diffraction grating and discuss possible ways to circumvent these. Especially the advent of ultra-thin (1-100 atomic layers) diffraction masks might path the way towards molecular holography. We also discuss other possible applications such as coherent molecular microscopy.

  15. Large resistance change on magnetic tunnel junction based molecular spintronics devices

    Science.gov (United States)

    Tyagi, Pawan; Friebe, Edward

    2018-05-01

    Molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies provided insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.

  16. Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling.

    Science.gov (United States)

    Karthik, Govindasamy-Muralidharan; Rantalainen, Mattias; Stålhammar, Gustav; Lövrot, John; Ullah, Ikram; Alkodsi, Amjad; Ma, Ran; Wedlund, Lena; Lindberg, Johan; Frisell, Jan; Bergh, Jonas; Hartman, Johan

    2017-11-29

    Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based patient stratification. In diagnostic applications the specimen profiled should be representative of the expression profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can arise during tumor evolution. Currently it is not established to what extent a random sampling approach may influence molecular breast cancer diagnostics. In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor) from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other. Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6 breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications. Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their molecular subtype classifications. Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to have an impact on molecular diagnostics for most patients.

  17. Molecular MRI based on hyper-polarized xenon

    International Nuclear Information System (INIS)

    Tassali, Nawal

    2012-01-01

    Magnetic Resonance Imaging (MRI) has a high importance in medicine as it enables the observation of the organs inside the body without the use of radiative or invasive techniques. However it is known to suffer from poor sensitivity. To circumvent this limitation, a key solution resides in the use of hyper-polarized species. Among the entities with which we can drastically increase nuclear polarization, xenon has very specific properties through its interactions with its close environment that lead to a wide chemical shift bandwidth. The goal is thus to use it as a tracer. This PhD thesis focuses on the concept of 129 Xe MRI-based sensors for the detection of biological events. In this approach, hyper-polarized xenon is vectorized to biological targets via functionalized host systems, and then localized thanks to fast dedicated MRI sequences. The conception and set-up of a spin-exchange optical pumping device is first described. Then studies about the interaction of the hyper-polarized noble gas with new cryptophanes susceptible to constitute powerful host molecules are detailed. Also the implementation of recent MRI sequences optimized for the transient character of the hyper-polarization and taking profit of the xenon in-out exchange is described. Applications of this approach for the detection of metallic ions and cellular receptors are studied. Finally, our first in vivo results on a small animal model are presented. (author) [fr

  18. Recent advances in molecular electronics based on carbon nanotubes.

    Science.gov (United States)

    Bourgoin, Jean-Philippe; Campidelli, Stéphane; Chenevier, Pascale; Derycke, Vincent; Filoramo, Arianna; Goffman, Marcelo F

    2010-01-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field.

  19. Molecular Phylogenetic: Organism Taxonomy Method Based on Evolution History

    Directory of Open Access Journals (Sweden)

    N.L.P Indi Dharmayanti

    2011-03-01

    Full Text Available Phylogenetic is described as taxonomy classification of an organism based on its evolution history namely its phylogeny and as a part of systematic science that has objective to determine phylogeny of organism according to its characteristic. Phylogenetic analysis from amino acid and protein usually became important area in sequence analysis. Phylogenetic analysis can be used to follow the rapid change of a species such as virus. The phylogenetic evolution tree is a two dimensional of a species graphic that shows relationship among organisms or particularly among their gene sequences. The sequence separation are referred as taxa (singular taxon that is defined as phylogenetically distinct units on the tree. The tree consists of outer branches or leaves that represents taxa and nodes and branch represent correlation among taxa. When the nucleotide sequence from two different organism are similar, they were inferred to be descended from common ancestor. There were three methods which were used in phylogenetic, namely (1 Maximum parsimony, (2 Distance, and (3 Maximum likehoood. Those methods generally are applied to construct the evolutionary tree or the best tree for determine sequence variation in group. Every method is usually used for different analysis and data.

  20. Detecting Molecular Properties by Various Laser-Based Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, Tse-Ming [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  1. Biomedical wellness monitoring system based upon molecular markers

    Science.gov (United States)

    Ingram, Whitney

    2012-06-01

    We wish to assist caretakers with a sensor monitoring systems for tracking the physiological changes of homealone patients. One goal is seeking biomarkers and modern imaging sensors like stochastic optical reconstruction microscopy (STORM), which has achieved visible imaging at the nano-scale range. Imaging techniques like STORM can be combined with a fluorescent functional marker in a system to capture the early transformation signs from wellness to illness. By exploiting both microscopic knowledge of genetic pre-disposition and the macroscopic influence of epigenetic factors we hope to target these changes remotely. We adopt dual spectral infrared imaging for blind source separation (BSS) to detect angiogenesis changes and use laser speckle imaging for hypertension blood flow monitoring. Our design hypothesis for the monitoring system is guided by the user-friendly, veteran-preferred "4-Non" principles (noninvasive, non-contact, non-tethered, non-stop-to-measure) and by the NIH's "4Ps" initiatives (predictive, personalized, preemptive, and participatory). We augment the potential storage system with the recent know-how of video Compressive Sampling (CSp) from surveillance cameras. In CSp only major changes are saved, which reduces the manpower cost of caretakers and medical analysts. This CSp algorithm is based on smart associative memory (AM) matrix storage: change features and detailed scenes are written by the outer-product and read by the inner product without the usual Harsh index for image searching. From this approach, we attempt to design an effective household monitoring approach to save healthcare costs and maintain the quality of life of seniors.

  2. Spin-polarized transport properties of a pyridinium-based molecular spintronics device

    Science.gov (United States)

    Zhang, J.; Xu, B.; Qin, Z.

    2018-05-01

    By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.

  3. Molecular basis sets - a general similarity-based approach for representing chemical spaces.

    Science.gov (United States)

    Raghavendra, Akshay S; Maggiora, Gerald M

    2007-01-01

    A new method, based on generalized Fourier analysis, is described that utilizes the concept of "molecular basis sets" to represent chemical space within an abstract vector space. The basis vectors in this space are abstract molecular vectors. Inner products among the basis vectors are determined using an ansatz that associates molecular similarities between pairs of molecules with their corresponding inner products. Moreover, the fact that similarities between pairs of molecules are, in essentially all cases, nonzero implies that the abstract molecular basis vectors are nonorthogonal, but since the similarity of a molecule with itself is unity, the molecular vectors are normalized to unity. A symmetric orthogonalization procedure, which optimally preserves the character of the original set of molecular basis vectors, is used to construct appropriate orthonormal basis sets. Molecules can then be represented, in general, by sets of orthonormal "molecule-like" basis vectors within a proper Euclidean vector space. However, the dimension of the space can become quite large. Thus, the work presented here assesses the effect of basis set size on a number of properties including the average squared error and average norm of molecular vectors represented in the space-the results clearly show the expected reduction in average squared error and increase in average norm as the basis set size is increased. Several distance-based statistics are also considered. These include the distribution of distances and their differences with respect to basis sets of differing size and several comparative distance measures such as Spearman rank correlation and Kruscal stress. All of the measures show that, even though the dimension can be high, the chemical spaces they represent, nonetheless, behave in a well-controlled and reasonable manner. Other abstract vector spaces analogous to that described here can also be constructed providing that the appropriate inner products can be directly

  4. Fabrication of tunnel junction-based molecular electronics and spintronics devices

    International Nuclear Information System (INIS)

    Tyagi, Pawan

    2012-01-01

    Tunnel junction-based molecular devices (TJMDs) are highly promising for realizing futuristic electronics and spintronics devices for advanced logic and memory operations. Under this approach, ∼2.5 nm molecular device elements bridge across the ∼2-nm thick insulator of a tunnel junction along the exposed side edge(s). This paper details the efforts and insights for producing a variety of TJMDs by resolving multiple device fabrication and characterization issues. This study specifically discusses (i) compatibility between tunnel junction test bed and molecular solutions, (ii) optimization of the exposed side edge profile and insulator thickness for enhancing the probability of molecular bridging, (iii) effect of fabrication process-induced mechanical stresses, and (iv) minimizing electrical bias-induced instability after the device fabrication. This research will benefit other researchers interested in producing TJMDs efficiently. TJMD approach offers an open platform to test virtually any combination of magnetic and nonmagnetic electrodes, and promising molecules such as single molecular magnets, porphyrin, DNA, and molecular complexes.

  5. Fast parallel molecular algorithms for DNA-based computation: factoring integers.

    Science.gov (United States)

    Chang, Weng-Long; Guo, Minyi; Ho, Michael Shan-Hui

    2005-06-01

    The RSA public-key cryptosystem is an algorithm that converts input data to an unrecognizable encryption and converts the unrecognizable data back into its original decryption form. The security of the RSA public-key cryptosystem is based on the difficulty of factoring the product of two large prime numbers. This paper demonstrates to factor the product of two large prime numbers, and is a breakthrough in basic biological operations using a molecular computer. In order to achieve this, we propose three DNA-based algorithms for parallel subtractor, parallel comparator, and parallel modular arithmetic that formally verify our designed molecular solutions for factoring the product of two large prime numbers. Furthermore, this work indicates that the cryptosystems using public-key are perhaps insecure and also presents clear evidence of the ability of molecular computing to perform complicated mathematical operations.

  6. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    Science.gov (United States)

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  7. Design, synthesis, conformational and molecular docking study of some novel acyl hydrazone based molecular hybrids as antimalarial and antimicrobial agents.

    Science.gov (United States)

    Kumar, Parvin; Kadyan, Kulbir; Duhan, Meenakshi; Sindhu, Jayant; Singh, Vineeta; Saharan, Baljeet Singh

    2017-11-14

    Acyl hydrazones are an important class of heterocyclic compounds promising pharmacological characteristics. Malaria is a life-threatening mosquito-borne blood disease caused by a plasmodium parasite. In some places, malaria can be treated and controlled with early diagnosis. However, some countries lack the resources to do this effectively. The present work involves the design and synthesis of some novel acyl hydrazone based molecular hybrids of 1,4-dihydropyridine and pyrazole (5a-g). These molecular hybrids were synthesised by condensation of 1,4-dihydropyridin-4-yl-phenoxyacetohydrazides with differently substituted pyrazole carbaldehyde. The final compound (5) showed two conformations (the major, E, s-cis and the minor, E, s-trans) as revealed by NMR spectral data and further supported by the energy calculations (MOPAC2016 using PM7 method). All the synthesised compounds were screened for their in vitro antimalarial activities against chloroquine-sensitive malaria parasite Plasmodium falciparum (3D7) and antimicrobial activity against Gram positive bacteria i.e. Bacillus cereus, Gram negative bacteria i.e. Escherichia coli and antifungal activity against one yeast i.e. Aspergillus niger. All these compounds were found more potent than chloroquine and clotrimazole, the standard drugs. In vitro antiplasmodial IC 50 value of the most potent compound 5d was found to be 4.40 nM which is even less than all the three reference drugs chloroquine (18.7 nM), pyrimethamine (11 nM) and artimisinin (6 nM). In silico binding study of compound 5d with plasmodial cysteine protease falcipain-2 indicated the inhibition of falcipain-2 as the probable reason for the antimalarial potency of compound 5d. All the compounds had shown good to excellent antimicrobial and antifungal activities.

  8. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.

    Science.gov (United States)

    Miyoshi, Daisuke; Nakamura, Kaori; Tateishi-Karimata, Hisae; Ohmichi, Tatsuo; Sugimoto, Naoki

    2009-03-18

    It has been revealed recently that molecular crowding, which is one of the largest differences between in vivo and in vitro conditions, is a critical factor determining the structure, stability, and function of nucleic acids. However, the effects of molecular crowding on Watson-Crick and Hoogsteen base pairs remain unclear. In order to investigate directly and quantitatively the molecular crowding effects on base pair types in nucleic acids, we designed intramolecular parallel- and antiparallel-stranded DNA duplexes consisting of Hoogsteen and Watson-Crick base pairs, respectively, as well as an intramolecular parallel-stranded triplex containing both types of base pairs. Thermodynamic analyses demonstrated that the values of free energy change at 25 degrees C for Hoogsteen base-pair formations decreased from +1.45 +/- 0.15 to +1.09 +/- 0.13 kcal mol(-1), and from -1.89 +/- 0.13 to -2.71 +/- 0.11 kcal mol(-1) in the intramolecular duplex and triplex, respectively, when the concentration of PEG 200 (polyethylene glycol with average molecular weight 200) increased from 0 to 20 wt %. However, corresponding values for Watson-Crick formation in the duplex and triplex increased from -10.2 +/- 0.2 to -8.7 +/- 0.1 kcal mol(-1), and from -10.8 +/- 0.2 to -9.2 +/- 0.2 kcal mol(-1), respectively. Furthermore, it was revealed that the opposing effects of molecular crowding on the Hoogsteen and Watson-Crick base pairs were due to different behaviors of water molecules binding to the DNA strands.

  9. Base de linhas moleculares para síntese espectral estelar

    Science.gov (United States)

    Milone, A.; Sanzovo, G.

    2003-08-01

    A análise das abundâncias quí micas fotosféricas em estrelas do tipo solar ou tardia, através do cálculo teórico de seus espectros, emprega a espectroscopia de alta resolução e necessita de uma base representativa de linhas atômicas e moleculares com suas respectivas constantes bem determinadas. Nesse trabalho, utilizamos como ponto de partida as extensas listas de linhas espectrais de sistemas eletrônicos de algumas moléculas diatômicas compiladas por Kurucz para a construção de uma base de linhas moleculares para a sí ntese espectral estelar. Revisamos as determinações dos fatores rotacionais de Honl-London das forças de oscilador das linhas moleculares, para cada banda vibracional de alguns sistemas eletrônicos, seguindo a regra usual de normalização. Usamos as forças de oscilador eletrônicas da literatura. Os fatores vibracionais de Franck-Condon de cada banda foram especialmente recalculados empregando-se novas constantes moleculares. Reproduzimos, com êxito, as absorções espectrais de determinadas bandas eletrônicas-vibracionais das espécies moleculares C12C12, C12N14 e Mg24H em espectros de estrelas de referência como o Sol e Arcturus.

  10. Well-Defined Polyethylene-Based Random, Block, and Bilayered Molecular Cobrushes

    KAUST Repository

    Zhang, Hefeng

    2015-06-09

    Novel well-defined polyethylene-based random, block, and bilayered molecular cobrushes were synthesized through the macromonomer strategy. Two steps were involved in this approach: (i) synthesis of norbornyl-terminated macromonomers of polyethylene (PE), polycaprolactone (PCL), poly(ethylene oxide) (PEO), and polystyrene (PS), as well as polyethylene-b-polycaprolactone (PE-b-PCL), by esterification of the hydroxyl-terminated precursors (PE, PCL, PEO, PS, and PE-b-PCL) with 5-norbornene-2-carboxylic acid and (ii) ring-opening metathesis (co)polymerization of the resulting macromonomers to afford the PE-based molecular cobrushes. The PE-macromonomers were synthesized by polyhomologation of dimethylsulfoxonium methylide, while the others by anionic polymerization. Proton nuclear magnetic resonance spectroscopy (1H NMR) and high-temperature gel permeation chromatography (HT-GPC) were used to imprint the molecular characteristics of all macromonomers and molecular brushes and differential scanning calorimetry (DSC) for the thermal properties. The bilayered molecular cobrushes of P(PE-b-PCL) adopt a wormlike morphology on silica wafer as visualized by atomic force microscopy (AFM). © 2015 American Chemical Society.

  11. A facile molecularly imprinted polymer-based fluorometric assay for detection of histamine

    DEFF Research Database (Denmark)

    Feng, Xiaotong; Ashley, Jon; Zhou, Tongchang

    2018-01-01

    urgently needed. In this paper, we developed a facile and cost-effective molecularly imprinted polymer (MIP)-based fluorometric assay to directly quantify histamine. Histamine-specific MIP nanoparticles (nanoMIPs) were synthesized using a modified solid-phase synthesis method. They were then immobilized...

  12. Reversible, high molecular weight palladium and platinum coordination polymers based on phosphorus ligands

    NARCIS (Netherlands)

    Paulusse, J.M.J.; Huijbers, J.P.J.; Sijbesma, R.P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  13. Reversible, High Molecular Weight Palladium and Platinum Coordination Polymers Based on Phosphorus Ligands

    NARCIS (Netherlands)

    Paulusse, Jos Marie Johannes; Huijbers, Jeroen P.J.; Sijbesma, Rint P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  14. Refinement of homology-based protein structures by molecular dynamics simulation techniques

    NARCIS (Netherlands)

    Fan, H; Mark, AE

    The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to

  15. Molecularly imprinted fluorescent probe based on FRET for selective and sensitive detection of doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhifeng, E-mail: 897061147@qq.com [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Deng, Peihong; Li, Junhua [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Xu, Li [Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Tang, Siping [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China)

    2017-04-15

    Highlights: • FRET-based molecularly imprinted probe for detection of doxorubicin was prepared. • The detection limit of the probe was 13.8 nM for doxorubicin. • The FRET-based probe had a higher selectivity for the template than ordinary MIMs. - Abstract: In this work, a new type of fluorescent probe for detection of doxorubicin has been constructed by the combined use of fluorescence resonance energy transfer (FRET) technology and molecular imprinting technique (MIT). Using doxorubicin as the template, the molecularly imprinted polymer thin layer was fabricated on the surfaces of carbon dot (CD) modified silica by sol-gel polymerization. The excitation energy of the fluorescent donor (CDs) could be transferred to the fluorescent acceptor (doxorubicin). The FRET based fluorescent probe demonstrated high sensitivity and selectivity for doxorubicin. The detection limit was 13.8 nM. The fluorescent probe was successfully applied for detecting doxorubicin in doxorubicin-spiked plasmas with a recovery of 96.8–103.8%, a relative standard deviation (RSD) of 1.3–2.8%. The strategy for construction of FRET-based molecularly imprinted materials developed in this work is very promising for analytical applications.

  16. Theoretical treatment of molecular photoionization based on the R-matrix method

    International Nuclear Information System (INIS)

    Tashiro, Motomichi

    2012-01-01

    The R-matrix method was implemented to treat molecular photoionization problem based on the UK R-matrix codes. This method was formulated to treat photoionization process long before, however, its application has been mostly limited to photoionization of atoms. Application of the method to valence photoionization as well as inner-shell photoionization process will be presented.

  17. Molecular modeling of the conductivity changes of the emeraldine base polyaniline due to protonic acid doping

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, C.K.Y.; Zhang, G.

    2012-01-01

    We propose a molecular modeling strategy, which is capable of predicting the conductivity change of emeraldine base polyaniline polymer due to different degree of protonic acid doping. The method is comprised of two key steps: (1) generating the amorphous unit cells with given number of polymer

  18. Encapsulation and solid state sequestration of gases by calix[6]arene-based molecular containers.

    Science.gov (United States)

    Lavendomme, Roy; Ajami, Daniela; Moerkerke, Steven; Wouters, Johan; Rissanen, Kari; Luhmer, Michel; Jabin, Ivan

    2017-06-13

    Two calix[6]arene-based molecular containers were synthesized in high yields. These containers can encapsulate small guests through a unique "rotating door" complexation process. The sequestration of greenhouse gases is clearly demonstrated. They can be stored in the solid state for long periods and released via dissolution of the inclusion complex.

  19. Fast parallel DNA-based algorithms for molecular computation: the set-partition problem.

    Science.gov (United States)

    Chang, Weng-Long

    2007-12-01

    This paper demonstrates that basic biological operations can be used to solve the set-partition problem. In order to achieve this, we propose three DNA-based algorithms, a signed parallel adder, a signed parallel subtractor and a signed parallel comparator, that formally verify our designed molecular solutions for solving the set-partition problem.

  20. Photo- and electro-chromism of diarylethene modified ITO electrodes - towards molecular based read-write-erase information storage

    NARCIS (Netherlands)

    Areephong, J.; Browne, W.R.; Katsonis, N.; Feringa, B.L.

    2006-01-01

    Molecular memory devices based on dithienylethene switch modified ITO electrodes undergo reversible ring opening/closing both photo- and electro-chemically with non-destructive electrochemical readout.

  1. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    Science.gov (United States)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  2. Radiation-chemical yields of molecular hydrogen formation in cyclohexane based alcohols

    International Nuclear Information System (INIS)

    Val'ter, A.I.; Kovalev, G.V.

    1988-01-01

    Molecular hydrogen radiation-chemical yields in γ-irradiated cyclohexanol, 1.2-cis- and 1.2-trans-cyclohexandiols and inositol are determined within the general problem frameworks of radiolysis mechanism for cyclohexanering-base alcohols. Irradiation was conducted at 77 and 293 K, dose rate - 4 Gy/s. Hydrogen concentration in all irradiated alcohols depends linearly on the dose. Radiation-chemical yields of H 2 and of stabilized radicals, as well, in the irradiated crystalline alcohols are analyzed depending on the irradiation temperature, alcohol molecular structure

  3. pyPcazip: A PCA-based toolkit for compression and analysis of molecular simulation data

    Directory of Open Access Journals (Sweden)

    Ardita Shkurti

    2016-01-01

    Full Text Available The biomolecular simulation community is currently in need of novel and optimised software tools that can analyse and process, in reasonable timescales, the large generated amounts of molecular simulation data. In light of this, we have developed and present here pyPcazip: a suite of software tools for compression and analysis of molecular dynamics (MD simulation data. The software is compatible with trajectory file formats generated by most contemporary MD engines such as AMBER, CHARMM, GROMACS and NAMD, and is MPI parallelised to permit the efficient processing of very large datasets. pyPcazip is a Unix based open-source software (BSD licenced written in Python.

  4. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P., E-mail: ss_zhaop@ujn.edu.c [School of Science, University of Jinan, Jinan 250022 (China); Liu, D.S. [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Department of Physics, Jining University, Qufu 273155 (China); Wang, P.J.; Zhang, Z. [School of Science, University of Jinan, Jinan 250022 (China); Fang, C.F.; Ji, G.M. [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2011-02-15

    By applying non-equilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT), we have investigated the electronic transport properties of the anthraquinone-based molecular switch. The molecule that comprises the switch can be converted between the hydroquinone (HQ) and anthraquinone (AQ) forms via redox reactions. The transmission spectra of these two forms are remarkably distinctive. Our results show that the current through the HQ form is significantly larger than that through the AQ form, which suggests that this system has attractive potential application in future molecular switch technology.

  5. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch

    International Nuclear Information System (INIS)

    Zhao, P.; Liu, D.S.; Wang, P.J.; Zhang, Z.; Fang, C.F.; Ji, G.M.

    2011-01-01

    By applying non-equilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT), we have investigated the electronic transport properties of the anthraquinone-based molecular switch. The molecule that comprises the switch can be converted between the hydroquinone (HQ) and anthraquinone (AQ) forms via redox reactions. The transmission spectra of these two forms are remarkably distinctive. Our results show that the current through the HQ form is significantly larger than that through the AQ form, which suggests that this system has attractive potential application in future molecular switch technology.

  6. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta

    OpenAIRE

    Chaudhury, Sidhartha; Lyskov, Sergey; Gray, Jeffrey J.

    2010-01-01

    Summary: PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactive...

  7. Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization

    Directory of Open Access Journals (Sweden)

    Hsu Hui-Chi

    2011-04-01

    Full Text Available Abstract Background Optimizing treatment through microarray-based molecular subtyping is a promising method to address the problem of heterogeneity in breast cancer; however, current application is restricted to prediction of distant recurrence risk. This study investigated whether breast cancer molecular subtyping according to its global intrinsic biology could be used for treatment customization. Methods Gene expression profiling was conducted on fresh frozen breast cancer tissue collected from 327 patients in conjunction with thoroughly documented clinical data. A method of molecular subtyping based on 783 probe-sets was established and validated. Statistical analysis was performed to correlate molecular subtypes with survival outcome and adjuvant chemotherapy regimens. Heterogeneity of molecular subtypes within groups sharing the same distant recurrence risk predicted by genes of the Oncotype and MammaPrint predictors was studied. Results We identified six molecular subtypes of breast cancer demonstrating distinctive molecular and clinical characteristics. These six subtypes showed similarities and significant differences from the Perou-Sørlie intrinsic types. Subtype I breast cancer was in concordance with chemosensitive basal-like intrinsic type. Adjuvant chemotherapy of lower intensity with CMF yielded survival outcome similar to those of CAF in this subtype. Subtype IV breast cancer was positive for ER with a full-range expression of HER2, responding poorly to CMF; however, this subtype showed excellent survival when treated with CAF. Reduced expression of a gene associated with methotrexate sensitivity in subtype IV was the likely reason for poor response to methotrexate. All subtype V breast cancer was positive for ER and had excellent long-term survival with hormonal therapy alone following surgery and/or radiation therapy. Adjuvant chemotherapy did not provide any survival benefit in early stages of subtype V patients. Subtype V was

  8. Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization

    International Nuclear Information System (INIS)

    Kao, Kuo-Jang; Chang, Kai-Ming; Hsu, Hui-Chi; Huang, Andrew T

    2011-01-01

    Optimizing treatment through microarray-based molecular subtyping is a promising method to address the problem of heterogeneity in breast cancer; however, current application is restricted to prediction of distant recurrence risk. This study investigated whether breast cancer molecular subtyping according to its global intrinsic biology could be used for treatment customization. Gene expression profiling was conducted on fresh frozen breast cancer tissue collected from 327 patients in conjunction with thoroughly documented clinical data. A method of molecular subtyping based on 783 probe-sets was established and validated. Statistical analysis was performed to correlate molecular subtypes with survival outcome and adjuvant chemotherapy regimens. Heterogeneity of molecular subtypes within groups sharing the same distant recurrence risk predicted by genes of the Oncotype and MammaPrint predictors was studied. We identified six molecular subtypes of breast cancer demonstrating distinctive molecular and clinical characteristics. These six subtypes showed similarities and significant differences from the Perou-Sørlie intrinsic types. Subtype I breast cancer was in concordance with chemosensitive basal-like intrinsic type. Adjuvant chemotherapy of lower intensity with CMF yielded survival outcome similar to those of CAF in this subtype. Subtype IV breast cancer was positive for ER with a full-range expression of HER2, responding poorly to CMF; however, this subtype showed excellent survival when treated with CAF. Reduced expression of a gene associated with methotrexate sensitivity in subtype IV was the likely reason for poor response to methotrexate. All subtype V breast cancer was positive for ER and had excellent long-term survival with hormonal therapy alone following surgery and/or radiation therapy. Adjuvant chemotherapy did not provide any survival benefit in early stages of subtype V patients. Subtype V was consistent with a unique subset of luminal A intrinsic

  9. Severe childhood asthma and allergy to furry animals: refined assessment using molecular-based allergy diagnostics.

    Science.gov (United States)

    Konradsen, Jon R; Nordlund, Björn; Onell, Annica; Borres, Magnus P; Grönlund, Hans; Hedlin, Gunilla

    2014-03-01

    Allergy to cats and dogs and polysensitization towards these animals are associated with severe childhood asthma. Molecular-based allergy diagnostics offers new opportunities for improved characterization and has been suggested to be particularly useful in patients with polysensitization and/or severe asthma. The aim was to use extract- and molecular-based allergy diagnostics to compare patterns of IgE sensitization towards aeroallergens in children with problematic severe and controlled asthma. Children with a positive ImmunoCAP towards any furry animal (cat, dog or horse) were recruited from a Nationwide Swedish study on severe childhood asthma. Severe (n = 37, age 13 years) and controlled (n = 28, age 14 years) asthmatics underwent assessment of allergic sensitization by ImmunoCap (kUA /l) and immunosolid-phase allergen chip (ISAC). In addition, Asthma Control Test, spirometry and a methacholine challenge were performed. Children with severe asthma had lower asthma control (p Molecular-based allergy diagnostics revealed a more complex molecular spreading of allergen components in children with the most severe disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Realizing tunable molecular thermal devices based on photoisomerism—Is it possible?

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Raghavan; Sasikumar, Kiran; Keblinski, Pawel, E-mail: keblip@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-01-14

    In this work, we address the question if it is possible to tune the thermal conductance through photoisomerism-capable molecular junctions. Using non-equilibrium molecular dynamics simulations, we study heat flow due to phonons between two silicon leads connected via two classes of photoisomeric molecules—(a) azobenzene and (b) Spiropyran (SP)–Merocyanine (MC) isomers. For the case of azobenzene, isomeric states with different conformations are realized via mechanical strain, while in the case of SP-MC, via a hybridization change. Based on the phononic contribution to thermal conductance, we observe that the thermal conductance of both junctions is rather insensitive to the isomeric state, thereby rendering the tunability of molecular thermal devices rather difficult. Consistent with these observations, the vibrational density of states for different configurations yields very similar spectra. We note that including the effect of electronic contribution to thermal conductance could enhance the tunability of thermal properties, albeit weakly.

  11. Possibility of gas sensor based on C{sub 20} molecular devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wenkai [School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025 (China); Yang, Chuanlu, E-mail: yangchuanlu@126.com [School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025 (China); Zou, Dongqing [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Sun, Zhaopeng [School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025 (China); Ji, Guomin [Electrical and Computer Engineering, The University of Oklahoma, Norman, Tulsa, OK 74078 (United States)

    2017-06-09

    We theoretically investigate the possibility of diatomic gas detection (NO, CO, O{sub 2}) by making use of the transport properties of the C{sub 20} molecular junctions. The calculations are performed by using nonequilibrium Green's function (NEGF) formalism in combination with density functional theory (DFT). In this work, we systematically study the most stable adsorption structural configurations, adsorption energy, and the transport properties on C{sub 20} molecular junctions with these diatomic gas molecules. It is found that NO and O{sub 2} gas molecule can be detected selectively. We suggest its possibility of nanosensors for highly sensitive and selective based on C{sub 20} molecular junction systems. - Highlights: • The most favorable adsorption site is investigated. • The mechanism of gas sensors is revealed. • NO and O{sub 2} gas molecules can be detected by C{sub 20} selectively.

  12. Possibility of gas sensor based on C_2_0 molecular devices

    International Nuclear Information System (INIS)

    Zhao, Wenkai; Yang, Chuanlu; Zou, Dongqing; Sun, Zhaopeng; Ji, Guomin

    2017-01-01

    We theoretically investigate the possibility of diatomic gas detection (NO, CO, O_2) by making use of the transport properties of the C_2_0 molecular junctions. The calculations are performed by using nonequilibrium Green's function (NEGF) formalism in combination with density functional theory (DFT). In this work, we systematically study the most stable adsorption structural configurations, adsorption energy, and the transport properties on C_2_0 molecular junctions with these diatomic gas molecules. It is found that NO and O_2 gas molecule can be detected selectively. We suggest its possibility of nanosensors for highly sensitive and selective based on C_2_0 molecular junction systems. - Highlights: • The most favorable adsorption site is investigated. • The mechanism of gas sensors is revealed. • NO and O_2 gas molecules can be detected by C_2_0 selectively.

  13. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  14. Recurrent emergence of structural variants of LTR retrotransposon CsRn1 evolving novel expression strategy and their selective expansion in a carcinogenic liver fluke, Clonorchis sinensis.

    Science.gov (United States)

    Kim, Seon-Hee; Kong, Yoon; Bae, Young-An

    2017-06-01

    Autonomous retrotransposons, in which replication and transcription are coupled, encode the essential gag and pol genes as a fusion or separate overlapping form(s) that are expressed in single transcripts regulated by a common upstream promoter. The element-specific expression strategies have driven development of relevant translational recoding mechanisms including ribosomal frameshifting to satisfy the protein stoichiometry critical for the assembly of infectious virus-like particles. Retrotransposons with different recoding strategies exhibit a mosaic distribution pattern across the diverse families of reverse transcribing elements, even though their respective distributions are substantially skewed towards certain family groups. However, only a few investigations to date have focused on the emergence of retrotransposons evolving novel expression strategy and causal genetic drivers of the structural variants. In this study, the bulk of genomic and transcribed sequences of a Ty3/gypsy-like CsRn1 retrotransposon in Clonorchis sinensis were analyzed for the comprehensive examination of its expression strategy. Our results demonstrated that structural variants with single open reading frame (ORF) have recurrently emerged from precedential CsRn1 copies encoding overlapping gag-pol ORFs by a single-nucleotide insertion in an upstream region of gag stop codon. In the parasite genome, some of the newly evolved variants appeared to undergo proliferative burst as active master lineages together with their ancestral copies. The genetic event was similarly observed in Opisthorchis viverrini, the closest neighbor of C. sinensis, whereas the resulting structural variants might have failed to overcome purifying selection and comprised minor remnant copies in the Opisthorchis genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Effect of Pulsed Streamer-like Discharge in Liquid on Transcriptional Activation of Retrotransposon Genes of a Red Alga, Porphyra Yezoensis

    OpenAIRE

    Ohno, T.; Li, Z.; Lin, X.F.; Zhang, W.B.; Takano, H.; Takio, S.; Namihira, T.; Akiyama, H.; オオノ, ツヨシ; ナミヒラ, タカオ; アキヤマ, ヒデノリ; 大野, 剛史; 浪平, 隆男; 秋山, 秀典

    2007-01-01

    Retrotransposons are mobile genetic elements thataccomplished transposition via an RNA intermediate.These elements can be transcriptionally activated by stressfactors, such as UV light, ozone, pathogens, woundingand drought. A red alga, porphyra yezoensis has recentlybeen recognized as a model plant for fundamental andapplied study in marine biological science. In this paper,pulsed streamer-like discharge in liquid was used as a newstress condition, and the transcription level of a copia-like...

  16. Current applications of molecular imaging and luminescence-based techniques in traditional Chinese medicine.

    Science.gov (United States)

    Li, Jinhui; Wan, Haitong; Zhang, Hong; Tian, Mei

    2011-09-01

    Traditional Chinese medicine (TCM), which is fundamentally different from Western medicine, has been widely investigated using various approaches. Cellular- or molecular-based imaging has been used to investigate and illuminate the various challenges identified and progress made using therapeutic methods in TCM. Insight into the processes of TCM at the cellular and molecular changes and the ability to image these processes will enhance our understanding of various diseases of TCM and will provide new tools to diagnose and treat patients. Various TCM therapies including herbs and formulations, acupuncture and moxibustion, massage, Gua Sha, and diet therapy have been analyzed using positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging and ultrasound and optical imaging. These imaging tools have kept pace with developments in molecular biology, nuclear medicine, and computer technology. We provide an overview of recent developments in demystifying ancient knowledge - like the power of energy flow and blood flow meridians, and serial naturopathies - which are essential to visually and vividly recognize the body using modern technology. In TCM, treatment can be individualized in a holistic or systematic view that is consistent with molecular imaging technologies. Future studies might include using molecular imaging in conjunction with TCM to easily diagnose or monitor patients naturally and noninvasively. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Organic Photovoltaic Devices Based on Oriented n-Type Molecular Films Deposited on Oriented Polythiophene Films.

    Science.gov (United States)

    Mizokuro, Toshiko; Tanigaki, Nobutaka; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki

    2018-04-01

    The molecular orientation of π-conjugated molecules has been reported to significantly affect the performance of organic photovoltaic devices (OPVs) based on molecular films. Hence, the control of molecular orientation is a key issue toward the improvement of OPV performance. In this research, oriented thin films of an n-type molecule, 3,4,9,10-Perylenetetracarboxylic Bisbenzimida-zole (PTCBI), were formed by deposition on in-plane oriented polythiophene (PT) films. Orientation of the PTCBI films was evaluated by polarized UV-vis spectroscopy and 2D-Grazing incidence X-ray diffraction. Results indicated that PTCBI molecules on PT film exhibit nearly edge-on and in-plane orientation (with molecular long axis along the substrate), whereas PTCBI molecules without PT film exhibit neither. OPVs composed of PTCBI molecular film with and without PT were fabricated and evaluated for correlation of orientation with performance. The OPVs composed of PTCBI film with PT showed higher power conversion efficiency (PCE) than that of film without PT. The experiment indicated that in-plane orientation of PTCBI molecules absorbs incident light more efficiently, leading to increase in PCE.

  18. In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors.

    Science.gov (United States)

    Mahapatra, Manoj Kumar; Bera, Krishnendu; Singh, Durg Vijay; Kumar, Rajnish; Kumar, Manoj

    2018-04-01

    Protein tyrosine phosphatase 1B (PTP1B) has been identified as a negative regulator of insulin and leptin signalling pathway; hence, it can be considered as a new therapeutic target of intervention for the treatment of type 2 diabetes. Inhibition of this molecular target takes care of both diabetes and obesity, i.e. diabestiy. In order to get more information on identification and optimization of lead, pharmacophore modelling, atom-based 3D QSAR, docking and molecular dynamics studies were carried out on a set of ligands containing thiazolidine scaffold. A six-point pharmacophore model consisting of three hydrogen bond acceptor (A), one negative ionic (N) and two aromatic rings (R) with discrete geometries as pharmacophoric features were developed for a predictive 3D QSAR model. The probable binding conformation of the ligands within the active site was studied through molecular docking. The molecular interactions and the structural features responsible for PTP1B inhibition and selectivity were further supplemented by molecular dynamics simulation study for a time scale of 30 ns. The present investigation has identified some of the indispensible structural features of thiazolidine analogues which can further be explored to optimize PTP1B inhibitors.

  19. Computing molecular fluctuations in biochemical reaction systems based on a mechanistic, statistical theory of irreversible processes.

    Science.gov (United States)

    Kulasiri, Don

    2011-01-01

    We discuss the quantification of molecular fluctuations in the biochemical reaction systems within the context of intracellular processes associated with gene expression. We take the molecular reactions pertaining to circadian rhythms to develop models of molecular fluctuations in this chapter. There are a significant number of studies on stochastic fluctuations in intracellular genetic regulatory networks based on single cell-level experiments. In order to understand the fluctuations associated with the gene expression in circadian rhythm networks, it is important to model the interactions of transcriptional factors with the E-boxes in the promoter regions of some of the genes. The pertinent aspects of a near-equilibrium theory that would integrate the thermodynamical and particle dynamic characteristics of intracellular molecular fluctuations would be discussed, and the theory is extended by using the theory of stochastic differential equations. We then model the fluctuations associated with the promoter regions using general mathematical settings. We implemented ubiquitous Gillespie's algorithms, which are used to simulate stochasticity in biochemical networks, for each of the motifs. Both the theory and the Gillespie's algorithms gave the same results in terms of the time evolution of means and variances of molecular numbers. As biochemical reactions occur far away from equilibrium-hence the use of the Gillespie algorithm-these results suggest that the near-equilibrium theory should be a good approximation for some of the biochemical reactions. © 2011 Elsevier Inc. All rights reserved.

  20. MOLECULAR COMPLEXES OF SULPHUR DIOXIDE WITH N,O-CONTAINING ORGANIC BASES (REVIEW

    Directory of Open Access Journals (Sweden)

    R. E. Khoma

    2016-10-01

    Full Text Available The literature data on the synthesis, stoichiometry, structure and relative stability of molecular  complexes of sulphur dioxide with N,O-containing organic bases have been systematized and  generalized. It was shown that the yield of the reaction product of sulfur dioxide with organic  bases (such as amines are strongly influenced by the conditions of synthesis: the nature of  the solvent (basicity, polarity, the temperature and SO2:L ratio in the reaction medium. The stoichiometry of SO2*nL molecular complexes depends on ligand denticity, as well as its  ability to H-bonding. The reaction of the sulfur oxide (IV with organic bases can give S←N and S←O complexes. With the increase of the value of base proton affinity the decrease ΔrSN values has been marked. Characteristic parameter Δr SN = r SN – a1(rS+ rN (where rSNis the S←N donor-acceptor bond length has been determined by microwave spectroscopy and X-ray analysis, rSand rNwere the tabulated values of the homopolar covalent radii of sulphur and nitrogen heteroatoms. The dependence of formation enthalpy of molecular complexes of basic amines and spectral characteristics has been noted; enthalpy-entropy compensation for S←N and S←O complex-es has been stated. Despite the limited experimental data on the thermodynamics of complex formation and the lengths of donor-acceptor bonds for the same compounds it has been found bond S←N strength in SO2 molecular complexes to depend on the intrinsic value of ΔrSN. The contribution of van der Waals forces and charge transfer forces to the formation of molecular complexes of sulphur dioxide has been stated.

  1. Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice

    Czech Academy of Sciences Publication Activity Database

    Nagaki, K.; Neumann, Pavel; Zhang, D.; Ouyang, S.; Buell, C.R.; Cheng, Z.; Jiang, J.

    2005-01-01

    Roč. 22, - (2005), s. 845-855 ISSN 0737-4038 Institutional research plan: CEZ:AV0Z5051902 Keywords : rice * chromosomes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.233, year: 2005

  2. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene.

    Science.gov (United States)

    Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui

    2014-05-20

    As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account

  3. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hanhui [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Collaborative Innovation Center of Advanced Aero-Engine, Hangzhou 310027 (China); Liu, Ningning [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Ku, Xiaoke, E-mail: xiaokeku@zju.edu.cn [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Fan, Jianren [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2017-05-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, the difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.

  4. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    International Nuclear Information System (INIS)

    Jin, Hanhui; Liu, Ningning; Ku, Xiaoke; Fan, Jianren

    2017-01-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, the difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.

  5. Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.

    Science.gov (United States)

    Potemkin, Andrey V; Grishina, Maria A; Potemkin, Vladimir A

    2017-01-01

    In 1979, R.D.Cramer and M.Milne made a first realization of 3D comparison of molecules by aligning them in space and by mapping their molecular fields to a 3D grid. Further, this approach was developed as the DYLOMMS (Dynamic Lattice- Oriented Molecular Modelling System) approach. In 1984, H.Wold and S.Wold proposed the use of partial least squares (PLS) analysis, instead of principal component analysis, to correlate the field values with biological activities. Then, in 1988, the method which was called CoMFA (Comparative Molecular Field Analysis) was introduced and the appropriate software became commercially available. Since 1988, a lot of 3D QSAR methods, algorithms and their modifications are introduced for solving of virtual drug discovery problems (e.g., CoMSIA, CoMMA, HINT, HASL, GOLPE, GRID, PARM, Raptor, BiS, CiS, ConGO,). All the methods can be divided into two groups (classes):1. Methods studying the exterior of molecules; 2) Methods studying the interior of molecules. A series of grid-based computational technologies for Continual Molecular Interior analysis (CoMIn) are invented in the current paper. The grid-based analysis is fulfilled by means of a lattice construction analogously to many other grid-based methods. The further continual elucidation of molecular structure is performed in various ways. (i) In terms of intermolecular interactions potentials. This can be represented as a superposition of Coulomb, Van der Waals interactions and hydrogen bonds. All the potentials are well known continual functions and their values can be determined in all lattice points for a molecule. (ii) In the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum

  6. Pre-examination factors affecting molecular diagnostic test results and interpretation: A case-based approach.

    Science.gov (United States)

    Payne, Deborah A; Baluchova, Katarina; Peoc'h, Katell H; van Schaik, Ron H N; Chan, K C Allen; Maekawa, Masato; Mamotte, Cyril; Russomando, Graciela; Rousseau, François; Ahmad-Nejad, Parviz

    2017-04-01

    Multiple organizations produce guidance documents that provide opportunities to harmonize quality practices for diagnostic testing. The International Organization for Standardization ISO 15189 standard addresses requirements for quality in management and technical aspects of the clinical laboratory. One technical aspect addresses the complexities of the pre-examination phase prior to diagnostic testing. The Committee for Molecular Diagnostics of the International Federation for Clinical Chemistry and Laboratory Medicine (also known as, IFCC C-MD) conducted a survey of international molecular laboratories and determined ISO 15189 to be the most referenced guidance document. In this review, the IFCC C-MD provides case-based examples illustrating the value of select pre-examination processes as these processes relate to molecular diagnostic testing. Case-based examples in infectious disease, oncology, inherited disease and pharmacogenomics address the utility of: 1) providing information to patients and users, 2) designing requisition forms, 3) obtaining informed consent and 4) maintaining sample integrity prior to testing. The pre-examination phase requires extensive and consistent communication between the laboratory, the healthcare provider and the end user. The clinical vignettes presented in this paper illustrate the value of applying select ISO 15189 recommendations for general laboratory to the more specialized area of Molecular Diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Genetic variability of hull-less barley accessions based on molecular and quantitative data

    Directory of Open Access Journals (Sweden)

    Ricardo Meneses Sayd

    2015-02-01

    Full Text Available The objective of this work was to characterize and quantify the genetic, molecular, and agronomic variability of hull-less barley genotypes, for the selection of parents and identification of genotypes adapted to the irrigated production system in the Brazilian Cerrado. Eighteen hull-less barley accessions were evaluated, and three covered barley accessions served as reference. The characterization was based on 157 RAPD molecular markers and ten agronomic traits. Genetic distance matrices were obtained based on molecular markers and quantitative traits. Graphic grouping and dispersion analyses were performed. Genetic, molecular, and agronomic variability was high among genotypes. Ethiopian accessions were genetically more similar, and the Brazilian ones were genetically more distant. For agronomic traits, two more consistent groupings were obtained, one with the most two-rowed materials, and the other with six-rowed materials. The more diverging materials were the two-rowed CI 13453, CN Cerrado 5, CN Cerrado 1, and CN Cerrado 2. The PI 356466, CN Cerrado 1, PI 370799, and CI 13453 genotypes show agronomic traits of interest and, as genetically different genotypes, they are indicated for crossing, in breeding programs.

  8. Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer.

    Science.gov (United States)

    Ahn, Byeong-Cheol

    2016-01-01

    Molecular imaging based personalized therapy has been a fascinating concept for individualized therapeutic strategy, which is able to attain the highest efficacy and reduce adverse effects in certain patients. Theranostics, which integrates diagnostic testing to detect molecular targets for particular therapeutic modalities, is one of the key technologies that contribute to the success of personalized medicine. Although the term "theranostics" was used after the second millennium, its basic principle was applied more than 70 years ago in the field of thyroidology with radioiodine molecular imaging. Differentiated thyroid cancer, which arises from follicular cells in the thyroid, is the most common endocrine malignancy, and theranostic radioiodine has been successfully applied to diagnose and treat differentiated thyroid cancer, the applications of which were included in the guidelines published by various thyroid or nuclear medicine societies. Through better pathophysiologic understanding of thyroid cancer and advancements in nuclear technologies, theranostic radioiodine contributes more to modern tailored personalized management by providing high therapeutic effect and by avoiding significant adverse effects in differentiated thyroid cancer. This review details the inception of theranostic radioiodine and recent radioiodine applications for differentiated thyroid cancer management as a prototype of personalized medicine based on molecular imaging.

  9. Molecular dynamics based enhanced sampling of collective variables with very large time steps

    Science.gov (United States)

    Chen, Pei-Yang; Tuckerman, Mark E.

    2018-01-01

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  10. 3D-QSAR, molecular docking, and molecular dynamic simulations for prediction of new Hsp90 inhibitors based on isoxazole scaffold.

    Science.gov (United States)

    Abbasi, Maryam; Sadeghi-Aliabadi, Hojjat; Amanlou, Massoud

    2018-05-01

    Heat shock protein 90(Hsp90), as a molecular chaperone, play a crucial role in folding and proper function of many proteins. Hsp90 inhibitors containing isoxazole scaffold are currently being used in the treatment of cancer as tumor suppressers. Here in the present studies, new compounds based on isoxazole scaffold were predicted using a combination of molecular modeling techniques including three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamic (MD) simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were also done. The steric and electrostatic contour map of CoMFA and CoMSIA were created. Hydrophobic, hydrogen bond donor and acceptor of CoMSIA model also were generated, and new compounds were predicted by CoMFA and CoMSIA contour maps. To investigate the binding modes of the predicted compounds in the active site of Hsp90, a molecular docking simulation was carried out. MD simulations were also conducted to evaluate the obtained results on the best predicted compound and the best reported Hsp90 inhibitors in the 3D-QSAR model. Findings indicate that the predicted ligands were stable in the active site of Hsp90.

  11. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping.

    Science.gov (United States)

    Song, Jinzhao; Pandian, Vikram; Mauk, Michael G; Bau, Haim H; Cherry, Sara; Tisi, Laurence C; Liu, Changchun

    2018-04-03

    Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).

  12. Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.

    Science.gov (United States)

    Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong

    2014-09-01

    PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Molecular-based tumour subtypes of canine mammary carcinomas assessed by immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Sarli Giuseppe

    2010-01-01

    Full Text Available Abstract Background Human breast cancer is classified by gene expression profile into subtypes consisting of two hormone (oestrogen and/or progesterone receptor-positive types (luminal-like A and luminal-like B and three hormone receptor-negative types [human epidermal growth factor receptor 2-expressing, basal-like, and unclassified ("normal-like"]. Immunohistochemical surrogate panels are also proposed to potentially identify the molecular-based groups. The present study aimed to apply an immunohistochemical panel (anti-ER, -PR, -ERB-B2, -CK 5/6 and -CK14 in a series of canine malignant mammary tumours to verify the molecular-based classification, its correlation with invasion and grade, and its use as a prognostic aid in veterinary practice. Results Thirty-five tumours with luminal pattern (ER+ and PR+ were subgrouped into 13 A type and 22 B type, if ERB-B2 positive or negative. Most luminal-like A and basal-like tumours were grade 1 carcinomas, while the percentage of luminal B tumours was higher in grades 2 and 3 (Pearson Chi-square P = 0.009. No difference in the percentage of molecular subtypes was found between simple and complex/mixed carcinomas (Pearson Chi-square P = 0.47. No significant results were obtained by survival analysis, even if basal-like tumours had a more favourable prognosis than luminal-like lesions. Conclusion The panel of antibodies identified only three tumour groups (luminal-like A and B, and basal-like in the dog. Even though canine mammary tumours may be a model of human breast cancer, the existence of the same carcinoma molecular subtypes in women awaits confirmation. Canine mammary carcinomas show high molecular heterogeneity, which would benefit from a classification based on molecular differences. Stage and grade showed independent associations with survival in the multivariate regression, while molecular subtype grouping and histological type did not show associations. This suggests that caution should be

  14. Friction in Carborane-Based Molecular Rotors Driven by Gas Flow or Electric Field: Classical Molecular Dynamics

    Czech Academy of Sciences Publication Activity Database

    Prokop, Alexandr; Vacek, Jaroslav; Michl, Josef

    2012-01-01

    Roč. 6, č. 3 (2012), s. 1901-1914 ISSN 1936-0851 R&D Projects: GA ČR GA203/09/1802; GA MŠk ME09020 Institutional research plan: CEZ:AV0Z40550506 Keywords : molecular rotors * molecular dynamics * potential energy barriers * friction * intramolecular vibrational redistribution Subject RIV: CC - Organic Chemistry Impact factor: 12.062, year: 2012

  15. Reactivity of etoricoxib based on computational study of molecular orbitals, molecular electrostatic potential surface and Mulliken charge analysis

    Science.gov (United States)

    Sachdeva, Ritika; Soni, Abhinav; Singh, V. P.; Saini, G. S. S.

    2018-05-01

    Etoricoxib is one of the selective cyclooxygenase inhibitor drug which plays a significant role in the pharmacological management of arthritis and pain. The theoretical investigation of its reactivity is done using Density Functional Theory calculations. Molecular Electrostatic Potential Surface of etoricoxib and its Mulliken atomic charge distribution are used for the prediction of its electrophilic and nucleophilic sites. The detailed analysis of its frontier molecular orbitals is also done.

  16. Diaspora, a large family of Ty3-gypsy retrotransposons in Glycine max, is an envelope-less member of an endogenous plant retrovirus lineage.

    Science.gov (United States)

    Yano, Sho T; Panbehi, Bahman; Das, Arpita; Laten, Howard M

    2005-05-05

    The chromosomes of higher plants are littered with retrotransposons that, in many cases, constitute as much as 80% of plant genomes. Long terminal repeat retrotransposons have been especially successful colonizers of the chromosomes of higher plants and examinations of their function, evolution, and dispersal are essential to understanding the evolution of eukaryotic genomes. In soybean, several families of retrotransposons have been identified, including at least two that, by virtue of the presence of an envelope-like gene, may constitute endogenous retroviruses. However, most elements are highly degenerate and are often sequestered in regions of the genome that sequencing projects initially shun. In addition, finding potentially functional copies from genomic DNA is rare. This study provides a mechanism to surmount these issues to generate a consensus sequence that can then be functionally and phylogenetically evaluated. Diaspora is a multicopy member of the Ty3-gypsy-like family of LTR retrotransposons and comprises at least 0.5% of the soybean genome. Although the Diaspora family is highly degenerate, and with the exception of this report, is not represented in the Genbank nr database, a full-length consensus sequence was generated from short overlapping sequences using a combination of experimental and in silico methods. Diaspora is 11,737 bp in length and contains a single 1892-codon ORF that encodes a gag-pol polyprotein. Phylogenetic analysis indicates that it is closely related to Athila and Calypso retroelements from Arabidopsis and soybean, respectively. These in turn form the framework of an endogenous retrovirus lineage whose members possess an envelope-like gene. Diaspora appears to lack any trace of this coding region. A combination of empirical sequencing and retrieval of unannotated Genome Survey Sequence database entries was successfully used to construct a full-length representative of the Diaspora family in Glycine max. Diaspora is presently the

  17. Sputum-Based Molecular Biomarkers for the Early Detection of Lung Cancer: Limitations and Promise

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Connie E. [Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine. 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Tchou-Wong, Kam-Meng; Rom, William N., E-mail: william.rom@nyumc.org [Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine. 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2011-07-19

    Lung cancer is the leading cause of cancer deaths, with an overall survival of 15% at five years. Biomarkers that can sensitively and specifically detect lung cancer at early stage are crucial for improving this poor survival rate. Sputum has been the target for the discovery of non-invasive biomarkers for lung cancer because it contains airway epithelial cells, and molecular alterations identified in sputum are most likely to reflect tumor-associated changes or field cancerization caused by smoking in the lung. Sputum-based molecular biomarkers include morphology, allelic imbalance, promoter hypermethylation, gene mutations and, recently, differential miRNA expression. To improve the sensitivity and reproducibility of sputum-based biomarkers, we recommend standardization of processing protocols, bronchial epithelial cell enrichment, and identification of field cancerization biomarkers.

  18. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  19. Baseline staging tests based on molecular subtype is necessary for newly diagnosed breast cancer.

    Science.gov (United States)

    Chen, Xuesong; Sun, Lichun; Cong, Yingying; Zhang, Tingting; Lin, Qiushi; Meng, Qingwei; Pang, Hui; Zhao, Yanbin; Li, Yu; Cai, Li; Dong, Xiaoqun

    2014-03-17

    Bone scanning (BS), liver ultrasonography (LUS), and chest radiography (CXR) are commonly recommended for baseline staging in patients with newly diagnosed breast cancer. The purpose of this study is to demonstrate whether these tests are indicated for specific patient subpopulation based on clinical staging and molecular subtype. A retrospective study on 5406 patients with newly diagnosed breast cancer was conducted to identify differences in occurrence of metastasis based on clinical staging and molecular subtypes. All patients had been evaluated by BS, LUS and CXR at diagnosis. Complete information on clinical staging was available in 5184 patients. For stage I, II, and III, bone metastasis rate was 0%, 0.6% and 2.7%, respectively (P diagnosed breast cancer.

  20. Potential of luminescence based molecular animal imaging in research areas pertaining to cancer biology and therapy

    International Nuclear Information System (INIS)

    Yadav, Hansa D.; Shetake, Neena G.; Balla Murali, M.S.; Kumar, Amit; Pandey, B.N.

    2017-01-01

    Animal imaging is getting tremendous importance in biomedical research areas including drug delivery, radiobiology and cancer research. Even though, imaging techniques like CT, PET, SPECT, MRI are available for experimental animals, luminescence-based molecular imaging is still considered as crucial and common tool for biomedical laboratories due to easy handling/maintenance, cost effectiveness and various strategies available to manipulate the molecules/cells employed for imaging purposes. The Molecular Animal Imaging System available in our laboratory is being utilized for various cancer research activities including measurement of tumor growth kinetics, angiogenesis, therapeutic efficacy evaluation and metastasis studies. Moreover, the imaging system is also been used for radio-luminescence imaging based on Cherenkov radiation of radio-pharmaceuticals. (author)

  1. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin

    OpenAIRE

    Zhang,Chunjing; Zhong,Shian; Yang,Zhengpeng

    2008-01-01

    Cellulose acetate-based molecularly imprinted polymeric membranes were prepared using vanillin as template molecule. The microscopic structure of the resultant polymeric membranes was characterized by SEM and FTIR spectroscopy, and the selective binding properties and separation capacity of the membranes for vanillin and o-vanillin were tested with binding experiments and separate experiments, respectively. The results showed that the vanillin-imprinted polymeric membranes displayed higher bi...

  2. Sensors based on carbon nanotube field-effect transistors and molecular recognition approaches

    OpenAIRE

    Cid Salavert, Cristina Carlota

    2009-01-01

    The general objective of this thesis is to develop chemical sensors whose sensing capacities are based on the principle of molecular recognition and where the transduction is carried out by single-walled carbon nanotubes (SWCNT).The sensing device used is the carbon nanotube field-effect transistor (CNTFET). The new structure of the CNTFET allows nanotubes to be integrated at the surface of the devices, thus exploiting SWCNTs' sensitivity to changes in their environment. The functionalization...

  3. Electrochemical control of quantum interference in anthraquinone-based molecular switches

    DEFF Research Database (Denmark)

    Markussen, Troels; Schiøtz, Jakob; Thygesen, Kristian Sommer

    2010-01-01

    Using first-principles calculations we analyze the electronic transport properties of a recently proposed anthraquinone-based electrochemical switch. Robust conductance on/off ratios of several orders of magnitude are observed due to destructive quantum interference present in the anthraquinone...... of hopping via the localized orbitals. The topology of the tight-binding model, which is dictated by the symmetries of the molecular orbitals, determines the amount of quantum interference....

  4. Feasibility study of molecular memory device based on DNA using methylation to store information

    International Nuclear Information System (INIS)

    Jiang, Liming; Al-Dirini, Feras; Qiu, Wanzhi; Skafidas, Efstratios; Hossain, Faruque M.; Evans, Robin

    2016-01-01

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibrium Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.

  5. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  6. Feasibility study of molecular memory device based on DNA using methylation to store information

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liming; Al-Dirini, Feras [Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia); Center for Neural Engineering (CfNE), The University of Melbourne, Carlton 3053 (Australia); National ICT Australia, The University of Melbourne, Parkville 3010 (Australia); Qiu, Wanzhi; Skafidas, Efstratios, E-mail: sskaf@unimelb.edu.au [Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia); Center for Neural Engineering (CfNE), The University of Melbourne, Carlton 3053 (Australia); Hossain, Faruque M. [Center for Neural Engineering (CfNE), The University of Melbourne, Carlton 3053 (Australia); Evans, Robin [Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia)

    2016-07-14

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibrium Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.

  7. Thermophysical Properties of Homologous Tetracyanoborate-Based Ionic Liquids Using Experiments and Molecular Dynamics Simulations.

    Science.gov (United States)

    Koller, Thomas M; Ramos, Javier; Schulz, Peter S; Economou, Ioannis G; Rausch, Michael H; Fröba, Andreas P

    2017-04-27

    Thermophysical properties of low-viscosity ionic liquids (ILs) based on the tetracyanoborate ([B(CN) 4 ] - ) anion carrying a homologous series of 1-alkyl-3-methylimidazolium ([AMIM] + ) cations [EMIM] + (ethyl), [BMIM] + (butyl), [HMIM] + (hexyl), [OMIM] + (octyl), and [DMIM] + (decyl) were investigated by experimental methods and molecular dynamics (MD) simulations at atmospheric pressure and various temperatures. Spectroscopic methods based on nuclear magnetic resonance and surface light scattering were applied to measure the ion self-diffusion coefficients and dynamic viscosity, respectively. In terms of MD simulations, a nonpolarizable molecular model for [EMIM][B(CN) 4 ] developed by optimization to experimental data was transferred to the other homologous ILs. For the appropriate description of the inter- and intramolecular interactions, precise and approximate force fields (FFs) were tested regarding their transferability within the homologous IL series, aiming at reducing the computational effort in molecular simulations. It is shown that at comparable simulated and experimental densities, the calculated and measured data for viscosity and self-diffusion coefficients of the ILs agree well mostly within combined uncertainties, but deviate stronger for longer-chained ILs using an overly coarse FF model. For the [B(CN) 4 ] - -based ILs studied, a comparison with literature data, the influence of varying alkyl chain length in the cation on their structural and thermophysical properties, and a correlation between self-diffusivity and viscosity are discussed.

  8. Characterization-Based Molecular Design of Bio-Fuel Additives Using Chemometric and Property Clustering Techniques

    International Nuclear Information System (INIS)

    Hada, Subin; Solvason, Charles C.; Eden, Mario R.

    2014-01-01

    In this work, multivariate characterization data such as infrared spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis allowed capturing important features of the molecular architecture from enormous amount of complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods based on characterization (cGCM) data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive, which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  9. The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available In order to investigate the influence of the molecular karyotype based on single nucleotide polymorphism (SNP microarray on embryonic development potential in preimplantation genetic diagnosis (PGD, we retrospectively analyzed the clinical data generated by PGD using embryos retrieved from parents with chromosome rearrangements in our center. In total, 929 embryos from 119 couples had exact diagnosis and development status. The blastocyst formation rate of balanced molecular karyotype embryos was 56.6% (276/488, which was significantly higher than that of genetic imbalanced embryos 24.5% (108/441 (P35 respectively. Blastocyst formation rates of male and female embryos were 44.5% (183/411 and 38.8% (201/518 respectively, with no significant difference between them (P>0.05. The rates of balanced molecular karyotype embryos vary from groups of embryos with different cell numbers at 68 hours after insemination. The blastocyst formation rate of embryos with 6-8 cells (48.1% was significantly higher than that of embryos with 8 cells (42.9% (P8 cells, embryos with 6-8 blastomeres have higher rate of balanced molecular karyotype and blastocyst formation.

  10. Synthesis and Guest Recognition of Switchable Pt-Salphen Based Molecular Tweezers

    Directory of Open Access Journals (Sweden)

    Lorien Benda

    2018-04-01

    Full Text Available Molecular tweezers are artificial receptors that have an open cavity generated by two recognition units pre-organized by a spacer. Switchable molecular tweezers, using a stimuli-responsive spacer, are particularly appealing as prototypes of the molecular machines that combine mechanical motion and allosteric recognition properties. In this present study, the synthesis of switchable molecular tweezers composed of a central terpyridine unit substituted in 4,4″ positions by two Pt(II-salphen complexes is reported. The terpyridine ligand can be reversibly converted upon Zn(II coordination from a free ‘U’-shaped closed form to a coordinated ‘W’ open form. This new substitution pattern enables a reverse control of the mechanical motion compared to the previously reported 6,6″ substituted terpyridine-based tweezers. Guest binding studies with aromatic guests showed an intercalation of coronene in the cavity created by the Pt-salphen moieties in the closed conformation. The formation of 1:1 host-guest complex was investigated by a combination of NMR studies and DFT calculations.

  11. Characterization-Based Molecular Design of Bio-Fuel Additives Using Chemometric and Property Clustering Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Subin; Solvason, Charles C.; Eden, Mario R., E-mail: edenmar@auburn.edu [Department of Chemical Engineering, Auburn University, Auburn, AL (United States)

    2014-06-10

    In this work, multivariate characterization data such as infrared spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis allowed capturing important features of the molecular architecture from enormous amount of complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods based on characterization (cGCM) data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive, which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  12. Characterization-Based Molecular Design of Biofuel Additives Using Chemometric and Property Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Subin eHada

    2014-06-01

    Full Text Available In this work, multivariate characterization data such as infrared (IR spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis (PCA allowed capturing important features of the molecular architecture from complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods (GCM based on characterization data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  13. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  14. Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome

    Czech Academy of Sciences Publication Activity Database

    Kubát, Z.; Žlůvová, J.; Vogel, I.; Kováčová, V.; Čermák, T.; Čegan, R.; Hobza, Roman; Vyskot, B.; Kejnovský, E.

    2014-01-01

    Roč. 202, č. 2 (2014), s. 662-678 ISSN 0028-646X R&D Projects: GA ČR GAP501/12/2220 Institutional support: RVO:61389030 Keywords : epigenetics * genome size * long terminal repeat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.672, year: 2014

  15. Gene expression-based molecular diagnostic system for malignant gliomas is superior to histological diagnosis.

    Science.gov (United States)

    Shirahata, Mitsuaki; Iwao-Koizumi, Kyoko; Saito, Sakae; Ueno, Noriko; Oda, Masashi; Hashimoto, Nobuo; Takahashi, Jun A; Kato, Kikuya

    2007-12-15

    Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.

  16. Construction of the Fock Matrix on a Grid-Based Molecular Orbital Basis Using GPGPUs.

    Science.gov (United States)

    Losilla, Sergio A; Watson, Mark A; Aspuru-Guzik, Alán; Sundholm, Dage

    2015-05-12

    We present a GPGPU implementation of the construction of the Fock matrix in the molecular orbital basis using the fully numerical, grid-based bubbles representation. For a test set of molecules containing up to 90 electrons, the total Hartree-Fock energies obtained from reference GTO-based calculations are reproduced within 10(-4) Eh to 10(-8) Eh for most of the molecules studied. Despite the very large number of arithmetic operations involved, the high performance obtained made the calculations possible on a single Nvidia Tesla K40 GPGPU card.

  17. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    International Nuclear Information System (INIS)

    Zhao Peng; Zhang Ying; Wang Pei-Ji; Zhang Zhong; Liu De-Sheng

    2011-01-01

    Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C 60 nanotube caps. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels

    International Nuclear Information System (INIS)

    Meng, Liang; Meng, Pinjia; Zhang, Qingqing; Wang, Yanji

    2013-01-01

    Graphical abstract: A novel label-free colorimetric chemosensor: with the increase in the concentration of ketamine, the Bragg diffraction peak of MIPHs gradually shifted to the longer wavelength region. Accompanying the peak shift, the color change of MIPHs was also observed obviously: from green to red. Highlights: ► We developed the label-free colorimetric MIPHs for handy and fast screening of ketamine. ► The obvious color change of MIPHs was observed upon ketamine. ► The MIPHs exhibited good sensing abilities in an aqueous environment. ► The sensing mechanisms of the water-compatible MIPHs were investigated. ► The MIPHs were employed to screening ketamine in real biological samples. -- Abstract: A novel label-free colorimetric chemosensor was developed for handy and fast screening of ketamine with high sensitivity and specificity based on molecularly imprinted photonic hydrogels (MIPHs) that combined the colloidal-crystal with molecular imprinting technique. The unique inverse opal arrays with a thin polymer wall in which the imprinted nanocavities of ketamine moleculars distributed allowed high sensitive, quick responsive, specific detection of the target analyte, and good regenerating ability in an aqueous environment. Due to the hierarchical inverse opal structural characteristics, the specific ketamine molecular recognition process can induce obvious swelling of the MIPHs to be directly transferred into visually perceptible optical signal (change in color) which can be detected by the naked eye through Bragg diffractive shifts of ordered macroporous arrays. In order to enhance the recognition ability in aqueous environments, the MIPHs were designed as water-compatible and synthesized in a water–methanol system. The molecular recognition mechanisms were investigated. The proposed MIPHs were successfully employed to screen trace level ketamine in human urine and saliva samples, exhibiting high sensitivity, rapid response, and specificity in the

  19. Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Liang [Department of Forensic Science, People' s Public Security University of China, Beijing (China); Meng, Pinjia, E-mail: mengpinjia@163.com [Department of Forensic Science, People' s Public Security University of China, Beijing (China); Zhang, Qingqing; Wang, Yanji [Department of Forensic Science, People' s Public Security University of China, Beijing (China)

    2013-04-10

    Graphical abstract: A novel label-free colorimetric chemosensor: with the increase in the concentration of ketamine, the Bragg diffraction peak of MIPHs gradually shifted to the longer wavelength region. Accompanying the peak shift, the color change of MIPHs was also observed obviously: from green to red. Highlights: ► We developed the label-free colorimetric MIPHs for handy and fast screening of ketamine. ► The obvious color change of MIPHs was observed upon ketamine. ► The MIPHs exhibited good sensing abilities in an aqueous environment. ► The sensing mechanisms of the water-compatible MIPHs were investigated. ► The MIPHs were employed to screening ketamine in real biological samples. -- Abstract: A novel label-free colorimetric chemosensor was developed for handy and fast screening of ketamine with high sensitivity and specificity based on molecularly imprinted photonic hydrogels (MIPHs) that combined the colloidal-crystal with molecular imprinting technique. The unique inverse opal arrays with a thin polymer wall in which the imprinted nanocavities of ketamine moleculars distributed allowed high sensitive, quick responsive, specific detection of the target analyte, and good regenerating ability in an aqueous environment. Due to the hierarchical inverse opal structural characteristics, the specific ketamine molecular recognition process can induce obvious swelling of the MIPHs to be directly transferred into visually perceptible optical signal (change in color) which can be detected by the naked eye through Bragg diffractive shifts of ordered macroporous arrays. In order to enhance the recognition ability in aqueous environments, the MIPHs were designed as water-compatible and synthesized in a water–methanol system. The molecular recognition mechanisms were investigated. The proposed MIPHs were successfully employed to screen trace level ketamine in human urine and saliva samples, exhibiting high sensitivity, rapid response, and specificity in the

  20. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui; Ding, Bo; Mishra, Gyan Prakash; Zhou, Bo; Yang, Hongmei; Bellizzi, Maria Del Rosario; Chen, Songbiao; Meyers, Blake C.; Peng, Zhaohua; Zhu, Jian-Kang; Wang, Guoliang

    2011-01-01

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  1. Hybridogenesis and a potential case of R2 non-LTR retrotransposon horizontal transmission in Bacillus stick insects (Insecta Phasmida).

    Science.gov (United States)

    Scavariello, Claudia; Luchetti, Andrea; Martoni, Francesco; Bonandin, Livia; Mantovani, Barbara

    2017-02-06

    Horizontal transfer (HT) is an event in which the genetic material is transferred from one species to another, even if distantly related, and it has been demonstrated as a possible essential part of the lifecycle of transposable elements (TEs). However, previous studies on the non-LTR R2 retrotransposon, a metazoan-wide distributed element, indicated its vertical transmission since the Radiata-Bilateria split. Here we present the first possible instances of R2 HT in stick insects of the genus Bacillus (Phasmida). Six R2 elements were characterized in the strictly bisexual subspecies B. grandii grandii, B. grandii benazzii and B. grandii maretimi and in the obligatory parthenogenetic taxon B. atticus. These elements were compared with those previously retrieved in the facultative parthenogenetic species B. rossius. Phylogenetic inconsistencies between element and host taxa, and age versus divergence analyses agree and support at least two HT events. These HT events can be explained by taking into consideration the complex Bacillus reproductive biology, which includes also hybridogenesis, gynogenesis and androgenesis. Through these non-canonical reproductive modes, R2 elements may have been transferred between Bacillus genomes. Our data suggest, therefore, a possible role of hybridization for TEs survival and the consequent reshaping of involved genomes.

  2. Contrasted patterns of evolution of the LINE-1 retrotransposon in perissodactyls: the history of a LINE-1 extinction.

    Science.gov (United States)

    Sookdeo, Akash; Hepp, Crystal M; Boissinot, Stéphane

    2018-01-01

    LINE-1 (L1) is the dominant autonomously replicating non-LTR retrotransposon in mammals. Although our knowledge of L1 evolution across the tree of life has considerably improved in recent years, what we know of L1 evolution in mammals is biased and comes mostly from studies in primates (mostly human) and rodents (mostly mouse). It is unclear if patterns of evolution that are shared between those two groups apply to other mammalian orders. Here we performed a detailed study on the evolution of L1 in perissodactyls by making use of the complete genome of the domestic horse and of the white rhinoceros. This mammalian order offers an excellent model to study the extinction of L1 since the rhinoceros is one of the few mammalian species to have lost active L1. We found that multiple L1 lineages, carrying different 5'UTRs, have been simultaneously active during the evolution of perissodactyls. We also found that L1 has continuously amplified and diversified in horse. In rhinoceros, L1 was very prolific early on. Two successful families were simultaneously active until ~20my ago but became extinct suddenly at exactly the same time. The general pattern of L1 evolution in perissodactyls is very similar to what was previously described in mouse and human, suggesting some commonalities in the way mammalian genomes interact with L1. We confirmed the extinction of L1 in rhinoceros and we discuss several possible mechanisms.

  3. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui

    2011-09-06

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  4. Water models based on a single potential energy surface and different molecular degrees of freedom

    Science.gov (United States)

    Saint-Martin, Humberto; Hernández-Cobos, Jorge; Ortega-Blake, Iván

    2005-06-01

    Up to now it has not been possible to neatly assess whether a deficient performance of a model is due to poor parametrization of the force field or the lack of inclusion of enough molecular properties. This work compares several molecular models in the framework of the same force field, which was designed to include many-body nonadditive effects: (a) a polarizable and flexible molecule with constraints that account for the quantal nature of the vibration [B. Hess, H. Saint-Martin, and H. J. C. Berendsen, J. Chem. Phys. 116, 9602 (2002), H. Saint-Martin, B. Hess, and H. J. C. Berendsen, J. Chem. Phys. 120, 11133 (2004)], (b) a polarizable and classically flexible molecule [H. Saint-Martin, J. Hernández-Cobos, M. I. Bernal-Uruchurtu, I. Ortega-Blake, and H. J. C. Berendsen, J. Chem. Phys. 113, 10899 (2000)], (c) a polarizable and rigid molecule, and finally (d) a nonpolarizable and rigid molecule. The goal is to determine how significant the different molecular properties are. The results indicate that all factors—nonadditivity, polarizability, and intramolecular flexibility—are important. Still, approximations can be made in order to diminish the computational cost of the simulations with a small decrease in the accuracy of the predictions, provided that those approximations are counterbalanced by the proper inclusion of an effective molecular property, that is, an average molecular geometry or an average dipole. Hence instead of building an effective force field by parametrizing it in order to reproduce the properties of a specific phase, a building approach is proposed that is based on adequately restricting the molecular flexibility and/or polarizability of a model potential fitted to unimolecular properties, pair interactions, and many-body nonadditive contributions. In this manner, the same parental model can be used to simulate the same substance under a wide range of thermodynamic conditions. An additional advantage of this approach is that, as the force

  5. Electron induced conformational changes of an imine-based molecular switch on a Au(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Lotze, Christian; Henningsen, Nils; Franke, Katharina; Schulze, Gunnar; Pascual, Jose Ignacio [Inst. f. Experimentalphysik, Freie Universitaet Berlin (Germany); Luo, Ying; Haag, Rainer [Inst. f. Organische Chemie, Freie Universitaet Berlin (Germany)

    2009-07-01

    Azobenzene-based molecules exhibit a cis-trans configurational photoisomerisation in solution. Recently, the adsorption properties of azobenzene derivatives have been investigated on different metal surfaces in order to explore the possible changes in the film properties induced by external stimuli. In azobenzene, the diazo-bridge is a key group for the isomerization process. Its interaction with a metal surface is dominated through the N lone-pair electrons, which reduces the efficiency of the conformational change. In order to reduce the molecule-surface interaction, we explore an alternative molecular architecture by substituting the diazo-bridge (-N=N-) of azobenzene by an imine-group (-N=CH-). We have investigated the imine-based compound para-carboxyl-di-benzene-imine (PCI) adsorbed on a Au(111) surface. The carboxylic terminations mediates the formation of strongly bonded molecular dimers, which align in ordered rows preferentially following the fcc regions of the Au(111) herringbone reconstruction. Low temperature scanning tunneling microscopy was used to induce conformational changes between trans and cis state of individual molecules in a molecular monolayer.

  6. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-01-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, ∼4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  7. Initiating heavy-atom-based phasing by multi-dimensional molecular replacement.

    Science.gov (United States)

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul

    2016-03-01

    To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts.

  8. Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers.

    Science.gov (United States)

    Blanco, Guillermo; Díaz de Tuesta, Juan A

    2018-04-13

    Salmonella can play an important role as a disease agent in wildlife, which can then act as carriers and reservoirs of sanitary importance at the livestock-human interface. Transmission from livestock to avian scavengers can occur when these species consume contaminated carcasses and meat remains in supplementary feeding stations and rubbish dumps. We compared the performance of PCR-based detection with conventional culture-based methods to detect Salmonella in the faeces of red kites (Milvus milvus) and griffon vultures (Gyps fulvus) in central Spain. The occurrence of culturable Salmonella was intermediate in red kites (1.9%, n=52) and high in griffon vultures (26.3%, n=99). These proportions were clearly higher with PCR-based detection (13.5% and 40.4%, respectively). Confirmation cultures failed to grow Salmonella in all faecal samples positive by the molecular assay but negative by the initial conventional culture in both scavenger species, indicating the occurrence of false (non-culturable) positives by PCR-based detection. This suggests that the molecular assay is highly sensitive to detecting viable Salmonella in cultures, but also partial genomes and dead or unviable bacteria from past infections or contamination. Thus, the actual occurrence of Salmonella in a particular sampling time period can be underestimated when using only culture detection. The serovars found in the scavenger faeces were among the most frequently isolated in pigs from Spain and other EU countries, especially those generally recognized as swine-adapted monophasic variants of S. Typhimurium. Because the studied species obtain much of their food from pig carcasses, this livestock may be the primary source of Salmonella via direct ingestion of infected carcasses and indirectly via contamination due to the unsanitary conditions found in supplementary feeding stations established for scavenger conservation. Combining culture- and molecular-based detection is encouraged to understand the

  9. Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.

    Science.gov (United States)

    Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B

    2018-05-03

    Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Successful Treatment of Advanced Metastatic Prostate Cancer following Chemotherapy Based on Molecular Profiling

    Directory of Open Access Journals (Sweden)

    Charles E. Myers

    2012-03-01

    Full Text Available After Taxotere fails, treatment options for metastatic prostate cancer are limited. The three drugs with FDA approval in this setting, Jevtana, Provenge and Zytiga, are associated with median survivals of less than 2 years. In part, the impact on survival is the result of low response rates, indicating a significant proportion of patients exhibiting de novo resistance to these agents. An alternate approach is to let treatment selection be governed by gene expression profiling so that the treatment is tailored to the specific patient. Here, we report a case of metastatic prostate cancer with a dramatic response to treatment selected based on molecular profiling. This patient had failed LHRH agonist, bicalutamide, Taxotere, and doxorubicin. Molecular profiling showed overexpression of the androgen receptor and he had a dramatic response of measurable disease to second-line hormonal therapy with ketoconazole, estrogen and Leukine.

  11. Single molecular switch based on thiol tethered iron(II)clathrochelate on gold

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Subramanian [Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Voloshin, Yan Z. [Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow (Russian Federation); Radecka, Hanna [Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Radecki, Jerzy [Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland)], E-mail: radecki@pan.olsztyn.pl

    2009-09-30

    Molecular electronics has been associated with high density nano-electronic devices. Developments of molecular electronic devices were based on reversible switching of molecules between the two conductive states. In this paper, self-assembled monolayers of dodecanethiol (DDT) and thiol tethered iron(II)clathrochelate (IC) have been prepared on gold film. The electrochemical and electronic properties of IC molecules inserted into the dodecanethiol monolayer (IC-DDT SAM) were investigated using voltammetric, electrochemical impedance spectroscopy (EIS), scanning tunneling microscopy (STM) and cross-wire tunneling measurements. The voltage triggered switching behaviour of IC molecules on mixed SAM was demonstrated. Deposition of polyaniline on the redox sites of IC-DDT SAM using electrochemical polymerization of aniline was performed in order to confirm that this monolayer acts as nano-patterned semiconducting electrode surface.

  12. Surface plasmon resonance based optical fiber riboflavin sensor by using molecularly imprinted gel

    Science.gov (United States)

    Verma, Roli; Gupta, Banshi D.

    2013-05-01

    We report the fabrication and characterization of surface plasmon resonance (SPR) based optical fiber riboflavin/vitamin B2 sensor using combination of colloidal crystal templating and molecularly imprinted gel. The sensor works on spectral interrogation method. The operating range of the sensor lies from 0 μg/ml to 320 μg/ml, the suitable amount of intakes of riboflavin recommended for different age group. The SPR spectra show blue shift with increasing concentration of riboflavin, which is due to the interaction of riboflavin molecule over specific binding sites caused by molecular imprinting. The present sensor has many advantageous features such as fast response, small probe size, low cost and can be used for remote/online monitoring.

  13. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    Science.gov (United States)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  14. Molecular characterisation of lumpy skin disease virus and sheeppox virus based on P32 gene

    Directory of Open Access Journals (Sweden)

    P.M.A.Rashid

    2017-06-01

    Full Text Available Lumpy skin disease virus (LSDV and sheeppox virus (SPV have a considerable economic impact on the cattle and small ruminant industry. They are listed in group A of contagious disease by the World Organization for Animal Health (OIE. This study addressed molecular characterisation of first LSDV outbreak and an endemic SPV in Kurdistan region of Iraq based on P32 gene. The results indicated that P32 gene can be successfully used for diagnosis of LSDV. The phylogenic and molecular analysis showed that there may be a new LSDV isolate circulating in Kurdistan which uniquely shared the same characteristic amino acid sequence with SPV and GPV, leucine at amino acid position 51 in P32 gene as well as few genetically distinct SPV causing pox disease in Kurdistan sheep. This study provided sequence information of P32 gene for several LSDV isolates, which positively affects the epidemiological study of Capripoxvirus

  15. Self-consistent field theory based molecular dynamics with linear system-size scaling

    Energy Technology Data Exchange (ETDEWEB)

    Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  16. A room-temperature non-volatile CNT-based molecular memory cell

    Science.gov (United States)

    Ye, Senbin; Jing, Qingshen; Han, Ray P. S.

    2013-04-01

    Recent experiments with a carbon nanotube (CNT) system confirmed that the innertube can oscillate back-and-forth even under a room-temperature excitation. This demonstration of relative motion suggests that it is now feasible to build a CNT-based molecular memory cell (MC), and the key to bring the concept to reality is the precision control of the moving tube for sustained and reliable read/write (RW) operations. Here, we show that by using a 2-section outertube design, we are able to suitably recalibrate the system energetics and obtain the designed performance characteristics of a MC. Further, the resulting energy modification enables the MC to operate as a non-volatile memory element at room temperatures. Our paper explores a fundamental understanding of a MC and its response at the molecular level to roadmap a novel approach in memory technologies that can be harnessed to overcome the miniaturization limit and memory volatility in memory technologies.

  17. Molecular dynamics simulation based on the multi-component molecular orbital method: Application to H5O2+,D5O2+,andT5O2+

    International Nuclear Information System (INIS)

    Ishimoto, Takayoshi; Koyama, Michihisa

    2012-01-01

    Graphical abstract: Molecular dynamics method based on multi-component molecular orbital method was applied to basic hydrogen bonding systems, H 5 O 2 + , and its isotopomers (D 5 O 2 + andT 5 O 2 + ). Highlights: ► Molecular dynamics method with nuclear quantum effect was developed. ► Multi-component molecular orbital method was used as ab initio MO calculation. ► Developed method applied to basic hydrogen bonding system, H 5 O 2 + , and isotopomers. ► O ⋯ O vibrational stretching reflected to the distribution of protonic wavefunctions. ► H/D/T isotope effect was also analyzed. - Abstract: We propose a molecular dynamics (MD) method based on the multi-component molecular orbital (MC M O) method, which takes into account the quantum effect of proton directly, for the detailed analyses of proton transfer in hydrogen bonding system. The MC M O based MD (MC M O-MD) method is applied to the basic structures, H 5 O 2 + (called “Zundel ion”), and its isotopomers (D 5 O 2 + andT 5 O 2 + ). We clearly demonstrate the geometrical difference of hydrogen bonded O ⋯ O distance induced by H/D/T isotope effect because the O ⋯ O in H-compound was longer than that in D- or T-compound. We also find the strong relation between stretching vibration of O ⋯ O and the distribution of hydrogen bonded protonic wavefunction because the protonic wavefunction tends to delocalize when the O ⋯ O distance becomes short during the dynamics. Our proposed MC M O-MD simulation is expected as a powerful tool to analyze the proton dynamics in hydrogen bonding systems.

  18. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs.

    Science.gov (United States)

    Huang, Wei; Chen, Liqing; Kang, Lin; Jin, Mingji; Sun, Ping; Xin, Xin; Gao, Zhonggao; Bae, You Han

    2017-06-01

    Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    Science.gov (United States)

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  20. A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery.

    Science.gov (United States)

    Hellerstein, Marc K

    2008-01-01

    Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.

  1. NONLINEAR OPTICAL MOLECULAR CRYSTAL BASED ON 2,6-DIAMINOPYRIDINE: SYNTHESIS AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    I. M. Pavlovetc

    2014-05-01

    Full Text Available The paper deals with investigation of a new nonlinear optical material based on nonlinear optical chromophore (4-Nitrophenol and aminopyridine (2,6-Diaminopyridine. Calculation results are presented for molecular packing in the crystalline compound, based on the given components. According to these results the finite material must have a noncentrosymmetric lattice, which determines the presence of the second order nonlinear optical response. Investigations carried out in this work confirm these calculations. Results of experiments are given describing the co-crystallization of these components and the following re-crystallization of the obtained material. In order to get a monocrystal form, the optimal conditions for the synthesis of molecular crystals based on these components are determined. Sufficiently large homogeneous crystals are obtained, that gave the possibility to record their spectra in the visible and near infrared parts of the spectrum, to determine their nonlinear optical properties and the level of homogeneity. Their optical (optical transmission and optical laser damage threshold and nonlinear optical properties are presented. For observation and measurement of the nonlinear optical properties an installation was built which implements the comparative method for measurements of nonlinear optical properties. A potassium titanyl oxide phosphate crystal was used as a sample for comparison. Results are given for the conversion efficiency of the primary laser radiation in the second optical harmonic relative to the signal obtained on the potassium titanyl oxide phosphate crystal. Obtained results show that the molecular co-crystal based on 2,6-Diaminopyridine is a promising nonlinear optical material for generating the second optical harmonic on the Nd: YAG laser (532 nm.

  2. A novel approach for differentiating pathogenic and non-pathogenic Leptospira based on molecular fingerprinting.

    Science.gov (United States)

    Xiao, Di; Zhang, Cuicai; Zhang, Huifang; Li, Xiuwen; Jiang, Xiugao; Zhang, Jianzhong

    2015-04-24

    Leptospirosis is a worldwide, deadly zoonotic disease. Pathogenic Leptospira causes leptospirosis. The rapid and accurate identification of pathogenic and non-pathogenic Leptospira strains is essential for appropriate therapeutic management and timely intervention for infection control. The molecular fingerprint is a simple and rapid alternative tool for microorganisms identification, which is based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this study, molecular fingerprint was performed to identify pathogenic strains of Leptospira. Phylogenetic analysis based on 16S rRNA gene sequences was used as the reference method. In addition, a label-free technique was used to reveal the different proteins of pathogenic or non-pathogenic Leptospira. A reference database was constructed using 30 Leptospira strains, including 16 pathogenic strains and 14 non-pathogenic strains. Two super reference spectra that were associated with pathogenicity were established. Overall, 33 Leptospira strains were used for validation, and 32 of 33 Leptospira strains could be identified on the species level and all the 33 could be classified as pathogenic or non-pathogenic. The super reference spectra and the major spectra projection (MSP) dendrogram correctly categorized the Leptospira strains into pathogenic and non-pathogenic groups, which was consistent with the 16S rRNA reference methods. Between the pathogenic and non-pathogenic strains, 108 proteins were differentially expressed. molecular fingerprint is an alternative to conventional molecular identification and can rapidly distinguish between pathogenic and non-pathogenic Leptospira strains. Therefore, molecular fingerprint may play an important role in the clinical diagnosis, treatment, surveillance, and tracking of epidemic outbreaks of leptospirosis. Leptospirosis is a worldwide zoonosis that is caused by spirochetes of the genus Leptospira. Leptospirosis is a serious zoonotic

  3. Systematic studies of Australian stipoid grasses (Austrostipa based on micro-morphological and molecular characteristics

    Directory of Open Access Journals (Sweden)

    BETTY MAULIYA BUSTAM

    2010-01-01

    Full Text Available Bustam BM (2010 Systematic studies of Australian stipoid grasses (Austrostipa based on micro-morphological and molecular characteristics. Biodiversitas 11: 9-14. This research is one of many studies on stipoid grasses organized by the International Stipeae Working Group (ISWG. This research tested the subgeneric classification of Austrostipa proposed by Jacobs and Everett (1996 and tested how informative the micro morphological characters used. Data were collected from herbarium specimens of 36 species (33 species of Austrostipa, two species of Hesperostipa and one species of Anemanthele at Royal Botanic Gardens, Sydney. Twenty eight micro morphological characters were used. The data were collected from both adaxial and abaxial surfaces of leaves, and from the lemma epidermis using a scanning electron microscope (SEM. ISWG provided the molecular data. Parsimony analysis and a distance method (Unweighteic Pair Group with Arithmatic Mean: UPGMA were used to analyze mico morphological and molecular data separately. Only UPGMA analysis was used to analyze the combined data. The results support the monophyly of Austrostipa. However, there is a little support for the subgeneric classification of Austrostipa proposed by Jacobs and Everett (1996, other than for the consistent recognition of Falcatae. The characters for comparisons between genera are too homoplasious at this level and do not contain enough information for analyses at subgeneric level, a problem apparently shared with the DNA sequences.

  4. Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences.

    Science.gov (United States)

    Kochzius, Marc; Söller, Rainer; Khalaf, Maroof A; Blohm, Dietmar

    2003-09-01

    This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) "Pterois" clade (Pterois miles and Pterois volitans), and (2) "Pteropterus-Dendrochirus" clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the "Pteropterus-Dendrochirus" clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4-8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.

  5. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.

    Science.gov (United States)

    Simeone, Felice Carlo; Rampi, Maria Anita

    2010-01-01

    Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of

  6. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    Science.gov (United States)

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  7. Investigating the binding behaviour of two avidin-based testosterone binders using molecular recognition force spectroscopy.

    Science.gov (United States)

    Rangl, Martina; Leitner, Michael; Riihimäki, Tiina; Lehtonen, Soili; Hytönen, Vesa P; Gruber, Hermann J; Kulomaa, Markku; Hinterdorfer, Peter; Ebner, Andreas

    2014-02-01

    Molecular recognition force spectroscopy, a biosensing atomic force microscopy technique allows to characterise the dissociation of ligand-receptor complexes at the molecular level. Here, we used molecular recognition force spectroscopy to study the binding capability of recently developed testosterone binders. The two avidin-based proteins called sbAvd-1 and sbAvd-2 are expected to bind both testosterone and biotin but differ in their binding behaviour towards these ligands. To explore the ligand binding and dissociation energy landscape of these proteins, we tethered biotin or testosterone to the atomic force microscopy probe while the testosterone-binding protein was immobilized on the surface. Repeated formation and rupture of the ligand-receptor complex at different pulling velocities allowed determination of the loading rate dependence of the complex-rupturing force. In this way, we obtained the molecular dissociation rate (k(off)) and energy landscape distances (x(β)) of the four possible complexes: sbAvd-1-biotin, sbAvd-1-testosterone, sbAvd-2-biotin and sbAvd-2-testosterone. It was found that the kinetic off-rates for both proteins and both ligands are similar. In contrast, the x(β) values, as well as the probability of complex formations, varied considerably. In addition, competitive binding experiments with biotin and testosterone in solution differ significantly for the two testosterone-binding proteins, implying a decreased cross-reactivity of sbAvd-2. Unravelling the binding behaviour of the investigated testosterone-binding proteins is expected to improve their usability for possible sensing applications. Copyright © 2014 John Wiley & Sons, Ltd.

  8. A retrotransposon-driven Dicer isoform directs endogenous small interfering RNA production in mouse oocytes

    Czech Academy of Sciences Publication Activity Database

    Flemr, Matyáš; Malík, Radek; Franke, V.; Nejepínská, Jana; Sedláček, Radislav; Vlahovicek, K.; Svoboda, Petr

    2013-01-01

    Roč. 155, č. 4 (2013), s. 807-816 ISSN 0092-8674 R&D Projects: GA ČR GAP305/10/2215; GA ČR(CZ) GBP305/12/G034; GA ČR GA204/09/0085; GA MŠk(CZ) LM2011032; GA MŠk ED1.1.00/02.0109 Grant - others:AV ČR(CZ) M200521202 Institutional support: RVO:68378050 Keywords : Dicer * miRNA * RNAi * mouse oocytes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 33.116, year: 2013

  9. Determination of liquid's molecular interference function based on X-ray diffraction and dual-energy CT in security screening

    International Nuclear Information System (INIS)

    Zhang, Li; YangDai, Tianyi

    2016-01-01

    A method for deriving the molecular interference function (MIF) of an unknown liquid for security screening is presented. Based on the effective atomic number reconstructed from dual-energy computed tomography (CT), equivalent molecular formula of the liquid is estimated. After a series of optimizations, the MIF and a new effective atomic number are finally obtained from the X-ray diffraction (XRD) profile. The proposed method generates more accurate results with less sensitivity to the noise and data deficiency of the XRD profile. - Highlights: • EDXRD combined with dual-energy CT has been utilized for deriving the molecular interference function of an unknown liquid. • The liquid's equivalent molecular formula is estimated based on the effective atomic number reconstructed from dual-energy CT. • The proposed method provides two ways to estimate the molecular interference function: the simplified way and accurate way. • A new effective atomic number of the liquid could be obtained.

  10. Radiation chemical yields for formation of molecular hydrogen in alcohols based on the cyclohexane ring

    International Nuclear Information System (INIS)

    Val'ter, A.I.; Kovalev, G.V.

    1989-01-01

    Within the framework of the general problem of studying the radiolysis mechanism for alcohols based on the cyclohexane ring, we have determined the yields of molecular hydrogen in γ-irradiated cyclohexanol, 1,2-cis- and 1,2-trans-cyclohexanediols, and inositol (cyclohexanehexol). The cyclohexanol and also powders of the polyols were placed into ampuls, deaerated in a vacuum apparatus and irradiated with 60 Co γ-rays at 77 K and 293 K. After irradiation, the samples were heated up to 373 K (the polyol crystals were heated until melting) and the hydrogen evolved from the liquid phase was determined by gas chromatography

  11. The rational development of molecularly imprinted polymer-based sensors for protein detection.

    Science.gov (United States)

    Whitcombe, Michael J; Chianella, Iva; Larcombe, Lee; Piletsky, Sergey A; Noble, James; Porter, Robert; Horgan, Adrian

    2011-03-01

    The detection of specific proteins as biomarkers of disease, health status, environmental monitoring, food quality, control of fermenters and civil defence purposes means that biosensors for these targets will become increasingly more important. Among the technologies used for building specific recognition properties, molecularly imprinted polymers (MIPs) are attracting much attention. In this critical review we describe many methods used for imprinting recognition for protein targets in polymers and their incorporation with a number of transducer platforms with the aim of identifying the most promising approaches for the preparation of MIP-based protein sensors (277 references).

  12. The Design of a Molecular Assembly Line Based on Biological Molecules

    Science.gov (United States)

    2003-06-01

    parenthesis in figure 1.8 is a bi-stable toggle switch. Introduction: Molecular assembly lines O=P-O- O O HOH H0P-0- O -O- 4 Polymerase HO H--- O HHO ...sample. Therefore, the samples are self-consistent. From here on, the calculated temperature based on FAM emission MNSowmm" RF Biology: Results and...irradiation for one hour. Figure 2.11 shows the fluorescence spectra of FAM emission (4 scans averaged over 200 seconds) in a 300MHz field. The increased

  13. Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual.

    Science.gov (United States)

    Cao, Xu; Zhang, Bin; Liu, Fei; Wang, Xin; Bai, Jing

    2011-12-01

    Limited-projection fluorescence molecular tomography (FMT) can greatly reduce the acquisition time, which is suitable for resolving fast biology processes in vivo but suffers from severe ill-posedness because of the reconstruction using only limited projections. To overcome the severe ill-posedness, we report a reconstruction method based on the projected restarted conjugate gradient normal residual. The reconstruction results of two phantom experiments demonstrate that the proposed method is feasible for limited-projection FMT. © 2011 Optical Society of America

  14. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  15. Course-based undergraduate research experiences in molecular biosciences-patterns, trends, and faculty support.

    Science.gov (United States)

    Wang, Jack T H

    2017-08-15

    Inquiry-driven learning, research internships and course-based undergraduate research experiences all represent mechanisms through which educators can engage undergraduate students in scientific research. In life sciences education, the benefits of undergraduate research have been thoroughly evaluated, but limitations in infrastructure and training can prevent widespread uptake of these practices. It is not clear how faculty members can integrate complex laboratory techniques and equipment into their unique context, while finding the time and resources to implement undergraduate research according to best practice guidelines. This review will go through the trends and patterns in inquiry-based undergraduate life science projects with particular emphasis on molecular biosciences-the research-aligned disciplines of biochemistry, molecular cell biology, microbiology, and genomics and bioinformatics. This will provide instructors with an overview of the model organisms, laboratory techniques and research questions that are adaptable for semester-long projects, and serve as starting guidelines for course-based undergraduate research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Mass Spectrometry-based Approaches to Understand the Molecular Basis of Memory

    Directory of Open Access Journals (Sweden)

    Arthur Henriques Pontes

    2016-10-01

    Full Text Available The central nervous system is responsible for an array of cognitive functions such as memory, learning, language and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS have enable the identification and quantification of thousand of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.

  17. Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices.

    Science.gov (United States)

    Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan

    2017-01-11

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.

  18. Cell adhesion monitoring of human induced pluripotent stem cell based on intrinsic molecular charges

    Science.gov (United States)

    Sugimoto, Haruyo; Sakata, Toshiya

    2014-01-01

    We have shown a simple way for real-time, quantitative, non-invasive, and non-label monitoring of human induced pluripotent stem (iPS) cell adhesion by use of a biologically coupled-gate field effect transistor (bio-FET), which is based on detection of molecular charges at cell membrane. The electrical behavior revealed quantitatively the electrical contacts of integrin-receptor at the cell membrane with RGDS peptide immobilized at the gate sensing surface, because that binding site was based on cationic α chain of integrin. The platform based on the bio-FET would provide substantial information to evaluate cell/material bio-interface and elucidate biding mechanism of adhesion molecules, which could not be interpreted by microscopic observation.

  19. Matched molecular pair-based data sets for computer-aided medicinal chemistry

    Science.gov (United States)

    Bajorath, Jürgen

    2014-01-01

    Matched molecular pairs (MMPs) are widely used in medicinal chemistry to study changes in compound properties including biological activity, which are associated with well-defined structural modifications. Herein we describe up-to-date versions of three MMP-based data sets that have originated from in-house research projects. These data sets include activity cliffs, structure-activity relationship (SAR) transfer series, and second generation MMPs based upon retrosynthetic rules. The data sets have in common that they have been derived from compounds included in the ChEMBL database (release 17) for which high-confidence activity data are available. Thus, the activity data associated with MMP-based activity cliffs, SAR transfer series, and retrosynthetic MMPs cover the entire spectrum of current pharmaceutical targets. Our data sets are made freely available to the scientific community. PMID:24627802

  20. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate.

    Science.gov (United States)

    Zia, Khalid Mahmood; Anjum, Sohail; Zuber, Mohammad; Mujahid, Muhammad; Jamil, Tahir

    2014-05-01

    The present research work was performed to synthesize a new series of chitosan based polyurethane elastomers (PUEs) using poly(ɛ-caprolactone) (PCL). The chitosan based PUEs were prepared by step-growth polymerization technique using poly(ɛ-caprolactone) (PCL) and 2,4-toluene diisocyanate (TDI). In the second step the PU prepolymer was extended with different mole ratios of chitosan and 1,4-butane diol (BDO). Molecular engineering was carried out during the synthesis. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed chitosan based PUEs structure. Internal morphology of the prepared PUEs was studied using SEM analysis. The SEM images confirmed the incorporation of chitosan molecules into the PU backbone. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    Science.gov (United States)

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  2. Film-based Sensors with Piezoresistive Molecular Conductors as Active Components Strain Damage and Thermal Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Laukhina

    2011-02-01

    Full Text Available The article is addressed to the development of flexible all-organic bi layer (BL film-based sensors being capable of measuring strain as a well-defined electrical signal in a wide range of elongations and temperature. The purpose was achieved by covering polycarbonate films with the polycrystalline layer of a high piezoresistive organic molecular conductor. To determine restrictions for sensor applications, the effect of monoaxial strain on the resistance and texture of the sensing layers of BL films was studied. The experiments have shown that the maximum strain before fracture is about 1 %. A thermal regeneration of the sensing layer of the BL film-based sensors that were damaged by cyclic load is also described. These sensors are able to take the place of conventional metal-based strain and pressure gages in low cost innovative controlling and monitoring technologies.

  3. A symmetry-controlled and face-driven approach for the assembly of cerium-based molecular polyhedra.

    Science.gov (United States)

    Liu, Yang; Lin, Zhihua; He, Cheng; Zhao, Liang; Duan, Chunying

    2010-12-14

    A well-defined Ce-based molecular tetrahedron and a cube-like architecture were achieved via self-assembly by incorporating NOO tridentate chelators into the rationally designed ligands with C(3) or C(2v) symmetries, respectively.

  4. Recent research in flaxseed (oil seed) on molecular structure and metabolic characteristics of protein, heat processing-induced effect and nutrition with advanced synchrotron-based molecular techniques.

    Science.gov (United States)

    Doiron, Kevin J; Yu, Peiqiang

    2017-01-02

    Advanced synchrotron radiation-based infrared microspectroscopy is able to reveal feed and food structure feature at cellular and molecular levels and simultaneously provides composition, structure, environment, and chemistry within intact tissue. However, to date, this advanced synchrotron-based technique is still seldom known to food and feed scientists. This article aims to provide detailed background for flaxseed (oil seed) protein research and then review recent progress and development in flaxseed research in ruminant nutrition in the areas of (1) dietary inclusion of flaxseed in rations; (2) heat processing effect; (3) assessing dietary protein; (4) synchrotron-based Fourier transform infrared microspectroscopy as a tool of nutritive evaluation within cellular and subcellular dimensions; (5) recent synchrotron applications in flaxseed research on a molecular basis. The information described in this paper gives better insight in flaxseed research progress and update.

  5. A network-based biomarker approach for molecular investigation and diagnosis of lung cancer

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2011-01-01

    Full Text Available Abstract Background Lung cancer is the leading cause of cancer deaths worldwide. Many studies have investigated the carcinogenic process and identified the biomarkers for signature classification. However, based on the research dedicated to this field, there is no highly sensitive network-based method for carcinogenesis characterization and diagnosis from the systems perspective. Methods In this study, a systems biology approach integrating microarray gene expression profiles and protein-protein interaction information was proposed to develop a network-based biomarker for molecular investigation into the network mechanism of lung carcinogenesis and diagnosis of lung cancer. The network-based biomarker consists of two protein association networks constructed for cancer samples and non-cancer samples. Results Based on the network-based biomarker, a total of 40 significant proteins in lung carcinogenesis were identified with carcinogenesis relevance values (CRVs. In addition, the network-based biomarker, acting as the screening test, proved to be effective in diagnosing smokers with signs of lung cancer. Conclusions A network-based biomarker using constructed protein association networks is a useful tool to highlight the pathways and mechanisms of the lung carcinogenic process and, more importantly, provides potential therapeutic targets to combat cancer.

  6. NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps.

    Science.gov (United States)

    Kuperstein, Inna; Cohen, David P A; Pook, Stuart; Viara, Eric; Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei

    2013-10-07

    Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps.

  7. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    Science.gov (United States)

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  8. Triplet-Based Codon Organization Optimizes the Impact of Synonymous Mutation on Nucleic Acid Molecular Dynamics.

    Science.gov (United States)

    Babbitt, Gregory A; Coppola, Erin E; Mortensen, Jamie S; Ekeren, Patrick X; Viola, Cosmo; Goldblatt, Dallan; Hudson, André O

    2018-02-01

    Since the elucidation of the genetic code almost 50 years ago, many nonrandom aspects of its codon organization remain only partly resolved. Here, we investigate the recent hypothesis of 'dual-use' codons which proposes that in addition to allowing adjustment of codon optimization to tRNA abundance, the degeneracy in the triplet-based genetic code also multiplexes information regarding DNA's helical shape and protein-binding dynamics while avoiding interference with other protein-level characteristics determined by amino acid properties. How such structural optimization of the code within eukaryotic chromatin could have arisen from an RNA world is a mystery, but would imply some preadaptation in an RNA context. We analyzed synonymous (protein-silent) and nonsynonymous (protein-altering) mutational impacts on molecular dynamics in 13823 identically degenerate alternative codon reorganizations, defined by codon transitions in 7680 GPU-accelerated molecular dynamic simulations of implicitly and explicitly solvated double-stranded aRNA and bDNA structures. When compared to all possible alternative codon assignments, the standard genetic code minimized the impact of synonymous mutations on the random atomic fluctuations and correlations of carbon backbone vector trajectories while facilitating the specific movements that contribute to DNA polymer flexibility. This trend was notably stronger in the context of RNA supporting the idea that dual-use codon optimization and informational multiplexing in DNA resulted from the preadaptation of the RNA duplex to resist changes to thermostability. The nonrandom and divergent molecular dynamics of synonymous mutations also imply that the triplet-based code may have resulted from adaptive functional expansion enabling a primordial doublet code to multiplex gene regulatory information via the shape and charge of the minor groove.

  9. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis.

    Science.gov (United States)

    Yang, Qian; Li, Jinhua; Wang, Xiaoyan; Peng, Hailong; Xiong, Hua; Chen, Lingxin

    2018-07-30

    One pressing concern today is to construct sensors that can withstand various disturbances for highly selective and sensitive detecting trace analytes in complicated samples. Molecularly imprinted polymers (MIPs) with tailor-made binding sites are preferred to be recognition elements in sensors for effective targets detection, and fluorescence measurement assists in highly sensitive detection and user-friendly control. Accordingly, molecular imprinting-based fluorescence sensors (MI-FL sensors) have attracted great research interest in many fields such as chemical and biological analysis. Herein, we comprehensively review the recent advances in MI-FL sensors construction and applications, giving insights on sensing principles and signal transduction mechanisms, focusing on general construction strategies for intrinsically fluorescent or nonfluorescent analytes and improvement strategies in sensing performance, particularly in sensitivity. Construction strategies are well overviewed, mainly including the traditional indirect methods of competitive binding against pre-bound fluorescent indicators, employment of fluorescent functional monomers and embedding of fluorescence substances, and novel rational designs of hierarchical architecture (core-shell/hollow and mesoporous structures), post-imprinting modification, and ratiometric fluorescence detection. Furthermore, MI-FL sensor based microdevices are discussed, involving micromotors, test strips and microfluidics, which are more portable for rapid point-of-care detection and in-field diagnosing. Finally, the current challenges and future perspectives of MI-FL sensors are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A sol-gel based molecular imprint incorporating carbon dots for fluorometric determination of nicotinic acid

    International Nuclear Information System (INIS)

    Zuo, Pengli; Gao, Junfa; Liu, Jianha; Zhao, Mingming; Zhao, Jiahong; Peng, Jun; Zuo, Pengjian; He, Hua

    2016-01-01

    We are introducing functionalized carbon dots (C-dots) coated with a shell of molecularly imprinted sol-gel as a new tool in molecular imprint-based detection. Specifically, an imprint recognizing nicotinic acid (NA) was prepared in two steps. The first involves pyrolytic decomposition of citric acid in the presence of aminopropyltriethoxysilane to yield triethoxysilyl-modified C-dots with a typical size of 2.8 ± 1.1 nm. These are then polycondensed in the presence of tetraethoxysilane and NA at room temperature to give spherical silica nanoparticles (SiNPs) with a typical size of ∼300 nm and containing C-dots and NA in the silica matrix. NA was then removed by extraction. The resulting SiNPs are well permeable to NA, photostable, display strong blue luminescence and can bind NA fairly selectively. The fluorometric detection scheme is based on the finding that increasing concentrations of NA quench the fluorescence of the C-dots in the SiNPs. NA can be determined by this method in the 0.5 to 10.5 μM concentration range, with a 12.6 nM detection limit. The composite was successfully utilized as a fluorescent probe for the determination of NA in spiked human urine samples. The method is believed to have a wider scope in being applicable to other analytes that are capable of quenching the fluorescence of C-dots. (author)

  11. Hydrazone based molecular glasses for solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Aich, R.; Tran-Van, F.; Goubard, F.; Beouch, L.; Michaleviciute, A.; Grazulevicius, J.V.; Ratier, B.; Chevrot, C.

    2008-01-01

    Biscarbazole and terthiophene based molecular glasses with hydrazone functional goups (named respectively 2CzMPH and 3TDPH) have been synthesized and the thermal, optical and electrochemical properties have been studied. Differential scanning calorimetry characterizations confirm the metastable amorphous properties of these molecules with glass transition temperatures at 80 deg. C for the 3TDPH and 93 deg. C for the 2CzMPH. Their electrochemical properties have been studied and showed the effect of the conjugated hydrazone groups on the electronic delocalization of the structures. The concept of solid state dye-sensitized solar cells using hydrazone based molecular glasses has been verified with the elaboration of a SnO 2 : F/nc-TiO 2 /Ru-dye/2CzMPH /Au devices. Under full sunlight (98 mW/cm 2 , air mass 1.5) the I-V characterization of the device give a short circuit photocurrents I sc = 0.42 mA/cm 2 , open circuit voltage V oc = 500 mV with a fill factor of 0.35

  12. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    Science.gov (United States)

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (S P n), and physical measurement to verify the performance of our study method on both accuracy and efficiency. PMID:20445737

  13. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    Directory of Open Access Journals (Sweden)

    Kuan Peng

    2010-01-01

    Full Text Available As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SPn, and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  14. Study on photon transport problem based on the platform of molecular optical simulation environment.

    Science.gov (United States)

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SP(n)), and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  15. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    Science.gov (United States)

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  16. Hydrazone based molecular glasses for solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aich, R. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France); Ecole Electricite de Production et Methodes Industrielles, Cergy Pontoise (France); Tran-Van, F. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France)], E-mail: francois.tran-van@u-cergy.fr; Goubard, F.; Beouch, L. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France); Michaleviciute, A.; Grazulevicius, J.V. [Department of Organic Technology, Kaunas University of Technology, Radvilenu Plentas 19, Kaunas LT-50254 (Lithuania); Ratier, B. [X-LIM., departement MINACOM, UMR 6172, Faculte des Sciences, 123 av. Albert Thomas 87060 Limoges cedex France (France); Chevrot, C. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France)

    2008-08-30

    Biscarbazole and terthiophene based molecular glasses with hydrazone functional goups (named respectively 2CzMPH and 3TDPH) have been synthesized and the thermal, optical and electrochemical properties have been studied. Differential scanning calorimetry characterizations confirm the metastable amorphous properties of these molecules with glass transition temperatures at 80 deg. C for the 3TDPH and 93 deg. C for the 2CzMPH. Their electrochemical properties have been studied and showed the effect of the conjugated hydrazone groups on the electronic delocalization of the structures. The concept of solid state dye-sensitized solar cells using hydrazone based molecular glasses has been verified with the elaboration of a SnO{sub 2}: F/nc-TiO{sub 2}/Ru-dye/2CzMPH /Au devices. Under full sunlight (98 mW/cm{sup 2}, air mass 1.5) the I-V characterization of the device give a short circuit photocurrents I{sub sc} = 0.42 mA/cm{sup 2}, open circuit voltage V{sub oc} = 500 mV with a fill factor of 0.35.

  17. Molecular systematics of Dendrobium (Orchidaceae, Dendrobieae) from mainland Asia based on plastid and nuclear sequences.

    Science.gov (United States)

    Xiang, Xiao-Guo; Schuiteman, André; Li, De-Zhu; Huang, Wei-Chang; Chung, Shih-Wen; Li, Jian-Wu; Zhou, Hai-Lang; Jin, Wei-Tao; Lai, Yang-Jun; Li, Zhen-Yu; Jin, Xiao-Hua

    2013-12-01

    Dendrobium is one of the three largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae. Based on five DNA markers and a broad sampling of Dendrobium and its relatives from mainland Asia (109 species), our results indicate that mainland Asia Dendrobium is divided into eight clades (with two unplaced species) that form polytomies along the spine of the cladogram. Both Dendrobium and Epigeneium are well supported as monophyletic, whereas sect. Dendrobium, sect. Densiflora, sect. Breviflores, sect. Holochrysa, are paraphyletic/polyphyletic. Many ignored phylogenetic relationships, such as the one of major clades formed by D. jenkinsii and D. lindleyi (two members of sect. Densiflora), the Aphyllum group, the Devonianum group, the Catenatum group, the Crepidatum group, and the Dendrobium moniliforme complex are well supported by both molecular and morphological evidence. Based on our data, we propose to broaden sect. Dendrobium to include sect. Stuposa, sect. Breviflores, and sect. Holochrysa and to establish a new section to accommodate D. jenkinsii and D. lindleyi. Our results indicated that it is preferable to use a broad generic concept of Dendrobium and to pursue an improved infrageneric classification at sectional level, taking into account both morphology and current molecular findings. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Carbon Molecular Sieve Membranes Derived from Tröger's Base-Based Microporous Polyimide for Gas Separation.

    Science.gov (United States)

    Wang, Zhenggong; Ren, Huiting; Zhang, Shenxiang; Zhang, Feng; Jin, Jian

    2018-03-09

    Carbon molecular sieve (CMS)-based membranes have attracted great attention because of their outstanding gas-separation performance. The polymer precursor is a key point for the preparation of high-performance CMS membranes. In this work, a microporous polyimide precursor containing a Tröger's base unit was used for the first time to prepare CMS membranes. By optimizing the pyrolysis procedure and the soaking temperature, three TB-CMS membranes were obtained. Gas-permeation tests revealed that the comprehensive gas-separation performance of the TB-CMS membranes was greatly enhanced relative to that of most state-of-the-art CMS membranes derived from polyimides reported so far. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang

    2015-03-24

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  20. Fuzzy method of recognition of high molecular substances in evidence-based biology

    Science.gov (United States)

    Olevskyi, V. I.; Smetanin, V. T.; Olevska, Yu. B.

    2017-10-01

    Nowadays modern requirements to achieving reliable results along with high quality of researches put mathematical analysis methods of results at the forefront. Because of this, evidence-based methods of processing experimental data have become increasingly popular in the biological sciences and medicine. Their basis is meta-analysis, a method of quantitative generalization of a large number of randomized trails contributing to a same special problem, which are often contradictory and performed by different authors. It allows identifying the most important trends and quantitative indicators of the data, verification of advanced hypotheses and discovering new effects in the population genotype. The existing methods of recognizing high molecular substances by gel electrophoresis of proteins under denaturing conditions are based on approximate methods for comparing the contrast of electrophoregrams with a standard solution of known substances. We propose a fuzzy method for modeling experimental data to increase the accuracy and validity of the findings of the detection of new proteins.

  1. The importance of the rotor in hydrazone-based molecular switches

    Directory of Open Access Journals (Sweden)

    Xin Su

    2012-06-01

    Full Text Available The pH-activated E/Z isomerization of a series of hydrazone-based systems having different functional groups as part of the rotor (R = COMe, CN, Me, H, was studied. The switching efficiency of these systems was compared to that of a hydrazone-based molecular switch (R = COOEt whose E/Z isomerization is fully reversible. It was found that the nature of the R group is critical for efficient switching to occur; the R group should be a moderate H-bond acceptor in order to (i provide enough driving force for the rotor to move upon protonation, and (ii stabilize the obtained Z configuration, to achieve full conversion.

  2. Selective detection of heavy metal ions by calixarene-based fluorescent molecular sensors

    Science.gov (United States)

    Zhang, Haitao; Faye, Djibril; Zhang, Han; Lefevre, Jean-Pierre; Delaire, J. A.; Leray, Isabelle

    2012-06-01

    The synthesis, spectroscopic characterization and complexing properties of calixarene-based fluorescent sensors are reported. The calixarene bearing four dansyl fluorophores (Calix-DANS4) exhibits a very high affinity for the detection of lead. A fluorimetric micro-device based on the use of a Y-shape microchannel was developed and allows lead detection with a 5 ppb detection limit. For mercury detection, a fluorescent molecular sensor containing a calixarene anchored with four 8-quinolinoloxy groups (Calix-Q) has been synthesized. The absorption and fluorescence spectra of this sensor are sensitive to the presence of metal cations. An efficient fluorescence quenching is observed upon mercury complexation because of a photoinduced electron transfer from the fluorophore to the bound mercury. Calix-Q shows a high selectivity towards Hg2+ over interfering cations (Na+, K+, Ca2+, Cu2+, Zn2+, Cd2+ and Pb2+) and a 70 ppb sensitivity.

  3. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang; Cai, Rong; Pham, Tony T.; Forrest, Katherine A.; Hogan, Adam; Nugent, Patrick S.; Williams, Kia R.; Wojtas, Łukasz; Luebke, Ryan; Weselinski, Lukasz Jan; Zaworotko, Michael J.; Space, Brian; Chen, Yusheng; Eddaoudi, Mohamed; Shi, Xiaodong; Ma, Shengqian

    2015-01-01

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  4. MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations.

    Science.gov (United States)

    Hospital, Adam; Andrio, Pau; Fenollosa, Carles; Cicin-Sain, Damjan; Orozco, Modesto; Gelpí, Josep Lluís

    2012-05-01

    MDWeb and MDMoby constitute a web-based platform to help access to molecular dynamics (MD) in the standard and high-throughput regime. The platform provides tools to prepare systems from PDB structures mimicking the procedures followed by human experts. It provides inputs and can send simulations for three of the most popular MD packages (Amber, NAMD and Gromacs). Tools for analysis of trajectories, either provided by the user or retrieved from our MoDEL database (http://mmb.pcb.ub.es/MoDEL) are also incorporated. The platform has two ways of access, a set of web-services based on the BioMoby framework (MDMoby), programmatically accessible and a web portal (MDWeb). http://mmb.irbbarcelona.org/MDWeb; additional information and methodology details can be found at the web site ( http://mmb.irbbarcelona.org/MDWeb/help.php)

  5. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  6. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    Science.gov (United States)

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  7. Molecular bases of the ABO blood groups of Indians from the Brazilian Amazon region.

    Science.gov (United States)

    Franco, R F; Simões, B P; Guerreiro, J F; Santos, S E; Zago, M A

    1994-01-01

    Phenotype studies of ABO blood groups in most Amerindian populations revealed the exclusive presence of group O. Since group O is the result of the absence of glycosyltransferase activity, its molecular bases may be heterogeneous. We carried out ABO blood group genotyping by analysis of DNA of 30 Indians from 2 Amazonian tribes (Yanomami and Arara), and compared the findings with other populations (Caucasians and Blacks). Two segments of the glycosyltransferase gene were amplified by PCR and digested with KpnI or AluI to detect deletion or base change at positions 258 and 700, respectively. For all subjects, the gene basis of blood group O is the deletion of a single nucleotide at position 258 of the glycosyltransferase A gene, similar to that observed in Caucasoids and Negroids. DNA sequencing of limited regions of the gene supports this conclusion. This finding does not exclude, however, that a heterogeneity of the O allele may be revealed by a more extensive analysis.

  8. Cucurbiturils: molecular nanocapsules for time-resolved fluorescence-based assays.

    Science.gov (United States)

    Marquez, Cesar; Huang, Fang; Nau, Werner M

    2004-03-01

    A new fluorescent host-guest system based on the inclusion of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) into the cavity of the molecular container compound cucurbit[7]uril (CB7) has been designed which possesses an exceedingly long-lived emission (690 ns in aerated water). The large binding constant of (4 +/- 1) x 10(5) M(-1) along with the resistance of the CB7.DBO complex toward external fluorescence quenchers allow the use of CB7 as an enhancer in time-resolved fluorescence-based assays, e.g., to screen enzyme activity or inhibition by using DBO-labeled peptides as substrates. The response of CB7.DBO to different environmental conditions and possible quenchers are described.

  9. Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation

    Science.gov (United States)

    Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa

    2018-06-01

    Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.

  10. Molecular and cell-based therapies for muscle degenerations: a road under construction.

    Science.gov (United States)

    Berardi, Emanuele; Annibali, Daniela; Cassano, Marco; Crippa, Stefania; Sampaolesi, Maurilio

    2014-01-01

    Despite the advances achieved in understanding the molecular biology of muscle cells in the past decades, there is still need for effective treatments of muscular degeneration caused by muscular dystrophies and for counteracting the muscle wasting caused by cachexia or sarcopenia. The corticosteroid medications currently in use for dystrophic patients merely help to control the inflammatory state and only slightly delay the progression of the disease. Unfortunately, walkers and wheel chairs are the only options for such patients to maintain independence and walking capabilities until the respiratory muscles become weak and the mechanical ventilation is needed. On the other hand, myostatin inhibition, IL-6 antagonism and synthetic ghrelin administration are examples of promising treatments in cachexia animal models. In both dystrophies and cachectic syndrome the muscular degeneration is extremely relevant and the translational therapeutic attempts to find a possible cure are well defined. In particular, molecular-based therapies are common options to be explored in order to exploit beneficial treatments for cachexia, while gene/cell therapies are mostly used in the attempt to induce a substantial improvement of the dystrophic muscular phenotype. This review focuses on the description of the use of molecular administrations and gene/stem cell therapy to treat muscular degenerations. It reviews previous trials using cell delivery protocols in mice and patients starting with the use of donor myoblasts, outlining the likely causes for their poor results and briefly focusing on satellite cell studies that raise new hope. Then it proceeds to describe recently identified stem/progenitor cells, including pluripotent stem cells and in relationship to their ability to home within a dystrophic muscle and to differentiate into skeletal muscle cells. Different known features of various stem cells are compared in this perspective, and the few available examples of their use in

  11. Interpretation of pH-activity profiles for acid-base catalysis from molecular simulations.

    Science.gov (United States)

    Dissanayake, Thakshila; Swails, Jason M; Harris, Michael E; Roitberg, Adrian E; York, Darrin M

    2015-02-17

    The measurement of reaction rate as a function of pH provides essential information about mechanism. These rates are sensitive to the pK(a) values of amino acids directly involved in catalysis that are often shifted by the enzyme active site environment. Experimentally observed pH-rate profiles are usually interpreted using simple kinetic models that allow estimation of "apparent pK(a)" values of presumed general acid and base catalysts. One of the underlying assumptions in these models is that the protonation states are uncorrelated. In this work, we introduce the use of constant pH molecular dynamics simulations in explicit solvent (CpHMD) with replica exchange in the pH-dimension (pH-REMD) as a tool to aid in the interpretation of pH-activity data of enzymes and to test the validity of different kinetic models. We apply the methods to RNase A, a prototype acid-base catalyst, to predict the macroscopic and microscopic pK(a) values, as well as the shape of the pH-rate profile. Results for apo and cCMP-bound RNase A agree well with available experimental data and suggest that deprotonation of the general acid and protonation of the general base are not strongly coupled in transphosphorylation and hydrolysis steps. Stronger coupling, however, is predicted for the Lys41 and His119 protonation states in apo RNase A, leading to the requirement for a microscopic kinetic model. This type of analysis may be important for other catalytic systems where the active forms of the implicated general acid and base are oppositely charged and more highly correlated. These results suggest a new way for CpHMD/pH-REMD simulations to bridge the gap with experiments to provide a molecular-level interpretation of pH-activity data in studies of enzyme mechanisms.

  12. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design.

    Science.gov (United States)

    Zhou, Zhenpeng; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Cheng Zhi; Li, Na

    2014-02-15

    A new metal-enhanced fluorescence (MEF) based platform was developed on the basis of distance-dependent fluorescence quenching-enhancement effect, which combined the easiness of Ag-thiol chemistry with the MEF property of noble-metal structures as well as the molecular beacon design. For the given sized AgNPs, the fluorescence enhancement factor was found to increase with a d(6) dependency in agreement with fluorescence resonance energy transfer mechanism at shorter distance and decrease with a d(-3) dependency in agreement with plasmonic enhancement mechanism at longer distance between the fluorophore and the AgNP surface. As a proof of concept, the platform was demonstrated by a sensitive detection of mercuric ions, using thymine-containing molecular beacon to tune silver nanoparticle (AgNP)-enhanced fluorescence. Mercuric ions were detected via formation of a thymine-mercuric-thymine structure to open the hairpin, facilitating fluorescence recovery and AgNP enhancement to yield a limit of detection of 1 nM, which is well below the U.S. Environmental Protection Agency regulation of the Maximum Contaminant Level Goal (10nM) in drinking water. Since the AgNP functioned as not only a quencher to reduce the reagent blank signal but also an enhancement substrate to increase fluorescence of the open hairpin when target mercuric ions were present, the quenching-enhancement strategy can greatly improve the detection sensitivity and can in principle be a universal approach for various targets when combined with molecular beacon design. © 2013 Elsevier B.V. All rights reserved.

  13. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation.

    Science.gov (United States)

    Liu, Xiaofeng; Bai, Fang; Ouyang, Sisheng; Wang, Xicheng; Li, Honglin; Jiang, Hualiang

    2009-03-31

    Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105-112). Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 A to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 +/- 0.18 seconds per molecule) renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms other four multiple conformer generators in the case of

  14. Molecular phylogeny of Anopheles hyrcanus group (Diptera: Culicidae) based on mtDNA COI.

    Science.gov (United States)

    Fang, Yuan; Shi, Wen-Qi; Zhang, Yi

    2017-05-08

    The Anopheles hyrcanus group, which includes at least 25 species, is widely distributed in the Oriental and Palearctic regions. Some group members have been incriminated as vectors of malaria and other mosquito-borne diseases. It is difficult to identify Hyrcanus Group members by morphological features. Thus, molecular phylogeny has been proposed as an important complementary method to traditional morphological taxonomy. Based on the GenBank database and our original study data, we used 466 mitochondrial DNA COI sequences belonging to 18 species to reconstruct the molecular phylogeny of the Hyrcanus Group across its worldwide geographic range. The results are as follows. 1) The average conspecific K2P divergence was 0.008 (range 0.002-0.017), whereas sequence divergence between congroup species averaged 0.064 (range 0.026-0.108). 2) The topology of COI tree of the Hyrcanus Group was generally consistent with classical morphological taxonomy in terms of species classification, but disagreed in subgroup division. In the COI tree, the group was divided into at least three main clusters. The first cluster contained An. nimpe; the second was composed of the Nigerrimus Subgroup and An. argyropus; and the third cluster was comprised of the Lesteri Subgroup and other unassociated species. 3) Phylogenetic analysis of COI indicated that ancient hybridizations probably occurred among the three closely related species, An. sinensis, An. belenrae, and An. kleini. 4) The results supported An. paraliae as a probable synonym of An. lesteri, and it was possible that An. pseudopictus and An. hyrcanus were the same species, as evident from their extremely low interspecific genetic divergence (0.020 and 0.007, respectively) and their phylogenetic positions. In summary, we reconstructed the molecular phylogeny and analysed genetic divergence of the Hyrcanus Group using mitochondrial COI sequences. Our results suggest that in the future of malaria surveillance, we should not only pay

  15. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation

    Directory of Open Access Journals (Sweden)

    Li Honglin

    2009-03-01

    Full Text Available Abstract Background Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. Results The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105–112. Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. Conclusion On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms

  16. Molecular characterization of Fagaceae species using inter-primer binding site (iPBS) markers.

    Science.gov (United States)

    Coutinho, João Paulo; Carvalho, Ana; Martín, Antonio; Lima-Brito, José

    2018-04-01

    Retrotransposons (RTNs) contribute for genome evolution, influencing its size and structure. We investigated the utility of the RTN-based markers inter-primer binding site (iPBS) for the molecular characterization of 25 Fagaceae species from genera Castanea, Fagus and Quercus. The assessment of genetic diversity, relationships and structure, as well as taxonomic classification of Fagaceae based on molecular data is important for definition of conservation, forestry management strategies and discrimination among natural hybrids and their parents since natural hybridization may increase with the climate changes. Here, iPBS primers designed by other authors were tested alone and combined. Some of them were discriminative, revealed polymorphism within and among taxa allowing the production of a total of 150 iPBS markers. In addition, several monomorphic iPBS markers were also amplified in each taxon. The UPGMA dendrogram based on the pooled iPBS data revealed 27% of genetic similarity among species. The individuals were clustered per genus and most of the oaks per infrageneric group corroborating the adopted taxonomy. Globally, the iPBS markers demonstrated suitability for DNA fingerprinting, determination of phylogenies and taxonomic discrimination in Fagaceae, and could constitute a useful and alternative tool for germplasm characterization, and for definition of conservation strategies and forestry management. Moreover, these markers would be useful for fingerprinting natural hybrids that share morphological similarities with their parents. Since iPBS markers could also enable insights about RTNs evolution, an eventual correlation among iPBS polymorphism, variability of RTN insertions and/or genome size in Fagaceae is discussed.

  17. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    International Nuclear Information System (INIS)

    Yu, P.

    2008-01-01

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  18. Molecular dynamics study of some non-hydrogen-bonding base pair DNA strands

    Science.gov (United States)

    Tiwari, Rakesh K.; Ojha, Rajendra P.; Tiwari, Gargi; Pandey, Vishnudatt; Mall, Vijaysree

    2018-05-01

    In order to elucidate the structural activity of hydrophobic modified DNA, the DMMO2-D5SICS, base pair is introduced as a constituent in different set of 12-mer and 14-mer DNA sequences for the molecular dynamics (MD) simulation in explicit water solvent. AMBER 14 force field was employed for each set of duplex during the 200ns production-dynamics simulation in orthogonal-box-water solvent by the Particle-Mesh-Ewald (PME) method in infinite periodic boundary conditions (PBC) to determine conformational parameters of the complex. The force-field parameters of modified base-pair were calculated by Gaussian-code using Hartree-Fock /ab-initio methodology. RMSD Results reveal that the conformation of the duplex is sequence dependent and the binding energy of the complex depends on the position of the modified base-pair in the nucleic acid strand. We found that non-bonding energy had a significant contribution to stabilising such type of duplex in comparison to electrostatic energy. The distortion produced within strands by such type of base-pair was local and destabilised the duplex integrity near to substitution, moreover the binding energy of duplex depends on the position of substitution of hydrophobic base-pair and the DNA sequence and strongly supports the corresponding experimental study.

  19. A WAO - ARIA - GA²LEN consensus document on molecular-based allergy diagnostics.

    Science.gov (United States)

    Canonica, Giorgio Walter; Ansotegui, Ignacio J; Pawankar, Ruby; Schmid-Grendelmeier, Peter; van Hage, Marianne; Baena-Cagnani, Carlos E; Melioli, Giovanni; Nunes, Carlos; Passalacqua, Giovanni; Rosenwasser, Lanny; Sampson, Hugh; Sastre, Joaquin; Bousquet, Jean; Zuberbier, Torsten

    2013-10-03

    Molecular-based allergy (MA) diagnostics is an approach used to map the allergen sensitization of a patient at a molecular level, using purified natural or recombinant allergenic molecules (allergen components) instead of allergen extracts. Since its introduction, MA diagnostics has increasingly entered routine care, with currently more than 130 allergenic molecules commercially available for in vitro specific IgE (sIgE) testing.MA diagnostics allows for an increased accuracy in allergy diagnosis and prognosis and plays an important role in three key aspects of allergy diagnosis: (1) resolving genuine versus cross-reactive sensitization in poly-sensitized patients, thereby improving the understanding of triggering allergens; (2) assessing, in selected cases, the risk of severe, systemic versus mild, local reactions in food allergy, thereby reducing unnecessary anxiety for the patient and the need for food challenge testing; and (3) identifying patients and triggering allergens for specific immunotherapy (SIT).Singleplex and multiplex measurement platforms are available for MA diagnostics. The Immuno-Solid phase Allergen Chip (ISAC) is the most comprehensive platform currently available, which involves a biochip technology to measure sIgE antibodies against more than one hundred allergenic molecules in a single assay. As the field of MA diagnostics advances, future work needs to focus on large-scale, population-based studies involving practical applications, elucidation and expansion of additional allergenic molecules, and support for appropriate test interpretation. With the rapidly expanding evidence-base for MA diagnosis, there is a need for allergists to keep abreast of the latest information. The aim of this consensus document is to provide a practical guide for the indications, determination, and interpretation of MA diagnostics for clinicians trained in allergology.

  20. Molecular-level architectural design using benzothiadiazole-based polymers for photovoltaic applications.

    Science.gov (United States)

    Viswanathan, Vinila N; Rao, Arun D; Pandey, Upendra K; Kesavan, Arul Varman; Ramamurthy, Praveen C

    2017-01-01

    A series of low band gap, planar conjugated polymers, P1 (PFDTBT), P2 (PFDTDFBT) and P3 (PFDTTBT), based on fluorene and benzothiadiazole, was synthesized. The effect of fluorine substitution and fused aromatic spacers on the optoelectronic and photovoltaic performance was studied. The polymer, derived from dithienylated benzothiodiazole and fluorene, P1 , exhibited a highest occupied molecular orbital (HOMO) energy level at -5.48 eV. Density functional theory (DFT) studies as well as experimental measurements suggested that upon substitution of the acceptor with fluorine, both the HOMO and lowest unoccupied molecular orbital (LUMO) energy levels of the resulting polymer, P2 , were lowered, leading to a higher open circuit voltage and short circuit current with an overall improvement of more than 110% for the photovoltaic devices. Moreover, a decrease in the torsion angle between the units was also observed for the fluorinated polymer P2 due to the enhanced electrostatic interaction between the fluorine substituents and sulfur atoms, leading to a high hole mobility. The use of a fused π-bridge in polymer P3 for the enhancement of the planarity as compared to the P1 backbone was also studied. This enhanced planarity led to the highest observed mobility among the reported three polymers as well as to an improvement in the device efficiency by more than 40% for P3 .

  1. Method for assessing the reliability of molecular diagnostics based on multiplexed SERS-coded nanoparticles.

    Directory of Open Access Journals (Sweden)

    Steven Y Leigh

    Full Text Available Surface-enhanced Raman scattering (SERS nanoparticles have been engineered to generate unique fingerprint spectra and are potentially useful as bright contrast agents for molecular diagnostics. One promising strategy for biomedical diagnostics and imaging is to functionalize various particle types ("flavors", each emitting a unique spectral signature, to target a large multiplexed panel of molecular biomarkers. While SERS particles emit narrow spectral features that allow them to be easily separable under ideal conditions, the presence of competing noise sources and background signals such as detector noise, laser background, and autofluorescence confounds the reliability of demultiplexing algorithms. Results obtained during time-constrained in vivo imaging experiments may not be reproducible or accurate. Therefore, our goal is to provide experimentalists with a metric that may be monitored to enforce a desired bound on accuracy within a user-defined confidence level. We have defined a spectral reliability index (SRI, based on the output of a direct classical least-squares (DCLS demultiplexing routine, which provides a measure of the reliability of the computed nanoparticle concentrations and ratios. We present simulations and experiments to demonstrate the feasibility of this strategy, which can potentially be utilized for a range of instruments and biomedical applications involving multiplexed SERS nanoparticles.

  2. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study

    Science.gov (United States)

    Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul

    2009-10-01

    Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.

  3. Magnetic-graphene based molecularly imprinted polymer nanocomposite for the recognition of bovine hemoglobin.

    Science.gov (United States)

    Guo, Junxia; Wang, Yuzhi; Liu, Yanjin; Zhang, Cenjin; Zhou, Yigang

    2015-11-01

    The protein imprinted technique combining surface imprinting and nanomaterials has been an attractive strategy for recognition and rapid separation of proteins. In this work, magnetic-graphene (MG) was chosen as the supporting substrate for the magnetic nanomaterials, which served to absorb the targeting imprinting molecules, bovine hemoglobin (BHb). Acryl amide (AAm) with a high affinity to BHb and N,N'- methylenebisacrylamide (MBA) were selected as the functional monomer and cross-linking agent, respectively. After in-situ polymerization, the proposed magnetic-graphene based molecularly imprinted polymer (MG-MIP) was obtained with a further extraction step of imprinted BHb. Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), raman spectroscopy(RS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) were employed to characterize the resulted MG-MIP. The maximum adsorption capability (Qmax) was determined by Langmuir Isotherm Plots and was 186.73 mg/g for imprinted nanomaterials (MIP) with an imprinting factor of 1.96. The selectivity of MG-MIP was investigated by using several proteins that are different in molecular mass and isoelectric points as the reference. The results showed that the shape memory effect of imprinted cavities, the size of proteins and the charge effect of proteins were the major factors for the selective recognition. The proposed method was also employed to specifically capture BHb from a binary protein mixture. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode.

    Science.gov (United States)

    Lakshmi, Dhana; Prasad, Bhim Bali; Sharma, Piyush Sindhu

    2006-09-15

    Molecularly imprinted polymers (MIP) have been elucidated to work as artificial receptors. In our present study, a MIP was applied as a molecular recognition element to a chemical sensor. We have constructed a creatinine sensor based on a MIP layer selective for creatinine and its differential pulse, cathodic stripping voltammetric detection (DPCSV) on a hanging mercury drop electrode (HMDE). The creatinine sensor was fabricated by the drop coating of dimethylformamide (DMF) solution of a creatinine-imprinted polymer onto the surface of HMDE. The modified-HMDE, preanodised in neutral medium at +0.4V versus Ag/AgCl for 120s, exhibited a marked enhancement in DPCSV current in comparison to the less anodised (

  5. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging

    Science.gov (United States)

    Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen

    2017-09-01

    Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.

  6. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  7. Molecular Bases of PDE4D Inhibition by Memory-Enhancing GEBR Library Compounds.

    Science.gov (United States)

    Prosdocimi, Tommaso; Mollica, Luca; Donini, Stefano; Semrau, Marta S; Lucarelli, Anna Paola; Aiolfi, Egidio; Cavalli, Andrea; Storici, Paola; Alfei, Silvana; Brullo, Chiara; Bruno, Olga; Parisini, Emilio

    2018-05-01

    Selected members of the large rolipram-related GEBR family of type 4 phosphodiesterase (PDE4) inhibitors have been shown to facilitate long-term potentiation and to improve memory functions without causing emetic-like behavior in rodents. Despite their micromolar-range binding affinities and their promising pharmacological and toxicological profiles, few if any structure-activity relationship studies have been performed to elucidate the molecular bases of their action. Here, we report the crystal structure of a number of GEBR library compounds in complex with the catalytic domain of PDE4D as well as their inhibitory profiles for both the long PDE4D3 isoform and the catalytic domain alone. Furthermore, we assessed the stability of the observed ligand conformations in the context of the intact enzyme using molecular dynamics simulations. The longer and more flexible ligands appear to be capable of forming contacts with the regulatory portion of the enzyme, thus possibly allowing some degree of selectivity between the different PDE4 isoforms.

  8. Fluorescent molecularly imprinted polymer based on Navicula sp. frustules for optical detection of lysozyme.

    Science.gov (United States)

    Lim, Guat Wei; Lim, Jit Kang; Ahmad, Abdul Latif; Chan, Derek Juinn Chieh

    2016-03-01

    The direct correlation between disease and lysozyme (LYZ) levels in human body fluids makes the sensitive and convenient detection of LYZ the focus of scientific research. Fluorescent molecularly imprinted polymer has emerged as a new alternative for LYZ detection in order to resolve the limitation of immunoassays, which are expensive, unstable, require complex preparation, and are time consuming. In this study, a novel fluorescence molecularly imprinted polymer based on Navicula sp. frustules (FITC-MIP) has been synthesized via post-imprinting treatment for LYZ detection. Navicula sp. frustules were used as supported material because of their unique properties of moderate surface area, reproducibility, and biocompatibility, to address the drawbacks of nanoparticle core material with low adsorption capacity. The FITC acts as recognition signal and optical readout, whereas MIP provides LYZ selectivity. The synthesized FITC-MIP showed a response time as short as 5 min depending on the concentration of LYZ. It is found that the LYZ template can significantly quench the fluorescence intensity of FITC-MIP linearly within a concentration range of 0 to 0.025 mg mL(-1), which is well described by Stern-Volmer equation. The FITC-MIP can selectively and sensitively detect down to 0.0015 mg mL(-1) of LYZ concentration. The excellent sensing performance of FITC-MIP suggests that FITC-MIP is a potential biosensor in clinical diagnosis applications.

  9. Development and characterization of an electrochemical sensor for furosemide detection based on electropolymerized molecularly imprinted polymer.

    Science.gov (United States)

    Kor, Kamalodin; Zarei, Kobra

    2016-01-01

    A novel electrochemical sensor based on a molecularly imprinted polymer, poly(o-phenylenediamine) (PoPD), has been developed for selective and sensitive detection of furosemide. The sensor was prepared by incorporating of furosemide as template molecules during the electropolymerization of o-phenylenediamine on a gold electrode. To develop the molecularly imprinted polymer (MIP), the template molecules were removed from the modified electrode's surface by washing it with 0.25 mol L(-1) NaOH solution. The imprinted layer was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM). The sensor's preparation conditions including furosemide concentration, the number of CV cycles in the electropolymerization process, extraction solution of the template from the imprinted film, the incubation time and the pH level were optimized. The incubation of the MIP-modified electrode, with respect to furosemide concentration, resulted in a suppression of the K4[Fe(CN)6] oxidation process. Under the optimal experimental conditions, the response of the imprinted sensor was linear in the range of 1.0×10(-7)-7.0×10(-6) mol L(-1) of furosemide. The detection limit was obtained as 7.0×10(-8) mol L(-1) for furosemide by using this sensor. The sensor was successfully used to determine the furosemide amount in the tablet and in human urine samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A Vertical Channel Model of Molecular Communication based on Alcohol Molecules

    Directory of Open Access Journals (Sweden)

    Pengfei Lu

    2016-05-01

    Full Text Available The study of Molecular Communication(MC is more and more prevalence, and channel model of MC plays an important role in the MC System. Since different propagation environment and modulation techniques produce different channel model, most of the research about MC are in horizontal direction,but in nature the communications between nano machines are in short range and some of the information transportation are in the vertical direction, such as transpiration of plants, biological pump in ocean, and blood transportation from heart to brain. Therefore, this paper we propose a vertical channel model which nano-machines communicate with each other in the vertical direction based on pure diffusion. We rst propose a vertical molecular communication model, we mainly considered the gravity as the factor, though the channel model is also affected by other main factors, such as the ow of the medium, the distance between the transmitter and the receiver, the delay or sensitivity of the transmitter and the receiver. Secondly, we set up a test-bed for this vertical channel model, in order to verify the difference between the theory result and the experiment data. At last, we use the data we get from the experiment and the non-linear least squares method to get the parameters to make our channel model more accurate.

  11. Molecular-level architectural design using benzothiadiazole-based polymers for photovoltaic applications

    Science.gov (United States)

    Viswanathan, Vinila N; Rao, Arun D; Pandey, Upendra K; Kesavan, Arul Varman

    2017-01-01

    A series of low band gap, planar conjugated polymers, P1 (PFDTBT), P2 (PFDTDFBT) and P3 (PFDTTBT), based on fluorene and benzothiadiazole, was synthesized. The effect of fluorine substitution and fused aromatic spacers on the optoelectronic and photovoltaic performance was studied. The polymer, derived from dithienylated benzothiodiazole and fluorene, P1, exhibited a highest occupied molecular orbital (HOMO) energy level at −5.48 eV. Density functional theory (DFT) studies as well as experimental measurements suggested that upon substitution of the acceptor with fluorine, both the HOMO and lowest unoccupied molecular orbital (LUMO) energy levels of the resulting polymer, P2, were lowered, leading to a higher open circuit voltage and short circuit current with an overall improvement of more than 110% for the photovoltaic devices. Moreover, a decrease in the torsion angle between the units was also observed for the fluorinated polymer P2 due to the enhanced electrostatic interaction between the fluorine substituents and sulfur atoms, leading to a high hole mobility. The use of a fused π-bridge in polymer P3 for the enhancement of the planarity as compared to the P1 backbone was also studied. This enhanced planarity led to the highest observed mobility among the reported three polymers as well as to an improvement in the device efficiency by more than 40% for P3. PMID:28546844

  12. Phylogenetic reconstruction of Syntermitinae (Isoptera, Termitidae based on morphological and molecular data.

    Directory of Open Access Journals (Sweden)

    Mauricio M Rocha

    Full Text Available The subfamily Syntermitinae comprises a group of Neotropical termites with 18 genera and 101 species described. It has been considered a natural group, but relationships among the genera within the subfamily remain uncertain, and some genera appear to be non-monophyletic. Here, we provide a comprehensive phylogeny including six Neotropical species of Termitinae as outgroup, 42 Syntermitinae species as ingroup, 92 morphological characters (from external and internal anatomy of soldier and worker castes and 117 molecular sequences (109 obtained for this study and 8 from GenBank of 4 gene regions (41 and 22 from Cytochrome Oxidase I and II respectively, 19 from Cytochrome b, and 35 from 16S rDNA. Morphological and molecular data were analyzed in combination, with the Bayesian inference method, and the important aspects of termite biology, defense and feeding habits are discussed based on the resulting tree. Although useful for providing diagnostic characters, the morphology of the soldier caste reveals several cases of convergence; whereas the feeding habit shows indications of evolutionary significance.

  13. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection.

    Science.gov (United States)

    Smolinska-Kempisty, K; Ahmad, O Sheej; Guerreiro, A; Karim, K; Piletska, E; Piletsky, S

    2017-10-15

    Here we present a potentiometric sensor for cocaine detection based on molecularly imprinted polymer nanoparticles (nanoMIPs) produced by the solid-phase imprinting method. The composition of polymers with high affinity for cocaine was optimised using molecular modelling. Four compositions were selected and polymers prepared using two protocols: chemical polymerisation in water and UV-initiated polymerisation in organic solvent. All synthesised nanoparticles had very good affinity to cocaine with dissociation constants between 0.6nM and 5.3nM. Imprinted polymers produced in organic solvent using acrylamide as a functional monomer demonstrated the highest yield and affinity, and so were selected for further sensor development. For this, nanoparticles were incorporated within a PVC matrix which was then used to prepare an ion-selective membrane integrated with a potentiometric transducer. It was demonstrated that the sensor was able to quantify cocaine in blood serum samples in the range of concentrations between 1nM and 1mM. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Chemodosimeter-based fluorescent detection of L-cysteine after extracted by molecularly imprinted polymers.

    Science.gov (United States)

    Cai, Xiaoqiang; Li, Jinhua; Zhang, Zhong; Wang, Gang; Song, Xingliang; You, Jinmao; Chen, Lingxin

    2014-03-01

    A chemodosimeter-based fluorescent detection method coupled with molecularly imprinted polymers (MIPs) extraction was developed for determination of L-cysteine (L-Cys) by combining molecular imprinting technique with fluorescent chemodosimeter. The MIPs prepared by precipitation polymerization with L-Cys as template, possessed high specific surface area of 145 m(2)/g and good thermal stability without decomposition lower than 300 °C, and were successfully applied as an adsorbent with excellent selectivity for L-Cys over other amino acids, and enantioselectivity was also demonstrated. A novel chemodosimeter, rhodamine B1, was synthesized for discriminating L-Cys from its structurally similar homocysteine and glutathione as well as various possibly co-existing biospecies in aqueous solutions with notable fluorescence enhancement when adding L-Cys. As L-Cys was added with increasing concentrations, an emission band peaked at 580 nm occurred and significantly increased in fluorescence intensity, by which the L-Cys could be sensed optically. High detectability up to 12.5 nM was obtained. An excellent linearity was found within the wide range of 0.05-50 μM (r=0.9996), and reasonable relative standard deviations ranging from 0.3% to 3.5% were attained. Such typical features as high selectivity, high sensitivity, easy operation and low cost enabled this MIPs-fluorometry to be potentially applicable for routine detection of trace L-Cys. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Nonequilibrium molecular dynamics simulation of coupling between nanoparticles and base-fluid in a nanofluid

    International Nuclear Information System (INIS)

    Kang, Hongbo; Zhang, Yuwen; Yang, Mo; Li, Ling

    2012-01-01

    The intent of this study is to examine nonequilibrium heat transfer in a copper–argon nanofluid by molecular dynamics simulation. Two different methods, the physical definition method and the curve fitting method, are introduced to calculate the coupling factor between nanoparticles and base fluid. The results show that the coupling factors obtained by these two methods are consistent. The coupling factor is proportional to the volume fraction of the nanoparticle and inversely proportional to nanoparticle diameter. In the temperature range of 90–200 K, the coupling factor is not affected by temperature. The nanoparticle aggregation results in a decrease of the coupling factor. -- Highlights: ► Nonequilibrium heat transfer in a copper–argon nanofluid is investigated by molecular dynamics simulation. ► The coupling factor is proportion to the volume fraction of the nanoparticle and inverse proportion to nanoparticle diameter. ► In the temperature range of 90–200 K, there is no temperature effect on the coupling factor. ► The nanoparticle aggregation results in a decrease of the coupling factor.

  16. Phylogenetic Study of Haemonchus Species from Iran Based On Morpho-Molecular Characterization.

    Directory of Open Access Journals (Sweden)

    Behnam Meshgi

    2015-06-01

    Full Text Available Haemonchosis has a negative effect on the farming industry throughout the world, especially in the tropic and sub-tropic countries. The present study was carried out to differentiate Haemonchus species from its main hosts in Iran, including sheep, goat and camel.The identification took place based on the morphometrics of the spicules and molecular characters. Two hundred seventy adult male nematodes were collected from the abomasums of different ruminants (90 samples from each animal at the slaughterhouses from different localities in Iran. Samples were morphologically identified according to the spicules' morphometric measurements. In the section on molecular study, 10 samples of each Haemonchus isolates were genetically examined. A simple PCR-restriction fragment length polymorphism (PCR-RFLP assay of the second internal transcribed spacer of ribosomal DNA (ITS2-rDNA were described to confirm the PCR results.PCR-RFLP profile obtained from the restriction enzyme HPa1 in H. contortus and H. longistipes indicated 1 (278 bp and 2 (113 and 135 bp different fragments, respectively. The morphological parameters clearly distinguish H. contortus from H. longistipes. Moreover, regarding the ITS2-rDNA, sequences of 295 bp and 314 bp were obtained from H. contortus and H. longistipes, respectively.The genotypic results are in agreement with the phenotypic findings of both species.

  17. An Atomistic Carbide-Derived Carbon Model Generated Using ReaxFF-Based Quenched Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Matthew W. Thompson

    2017-10-01

    Full Text Available We report a novel atomistic model of carbide-derived carbons (CDCs, which are nanoporous carbons with high specific surface areas, synthesis-dependent degrees of graphitization, and well-ordered, tunable porosities. These properties make CDCs viable substrates in several energy-relevant applications, such as gas storage media, electrochemical capacitors, and catalytic supports. These materials are heterogenous, non-ideal structures and include several important parameters that govern their performance. Therefore, a realistic model of the CDC structure is needed in order to study these systems and their nanoscale and macroscale properties with molecular simulation. We report the use of the ReaxFF reactive force field in a quenched molecular dynamics routine to generate atomistic CDC models. The pair distribution function, pore size distribution, and adsorptive properties of this model are reported and corroborated with experimental data. Simulations demonstrate that compressing the system after quenching changes the pore size distribution to better match the experimental target. Ring size distributions of this model demonstrate the prevalence of non-hexagonal carbon rings in CDCs. These effects may contrast the properties of CDCs against those of activated carbons with similar pore size distributions and explain higher energy densities of CDC-based supercapacitors.

  18. Fletcher-Reeves based Particle Swarm Optimization for prediction of molecular structure.

    Science.gov (United States)

    Agrawal, Shikha; Silakari, Sanjay

    2014-04-01

    The determination of the most stable conformers of a molecule can be formulated as a global optimization problem. Knowing the stable conformers of a molecule is important because it allows us to understand its properties and behavior based on its structure. The most stable conformation is that involving the global minimum of potential energy. The problem of finding this global minimum is highly complex, and is computationally difficult because of the number of local minima, which grows exponentially with molecular size. In this paper, we propose a hybrid approach combining Particle Swarm Optimization (PSO) and the Fletcher-Reeves algorithm to minimize the potential energy function. The proposed hybrid algorithm is applied to a simplified molecular potential energy function in problems with up to 100 degrees of freedom and also to a realistic potential energy function modeling a pseudoethane molecule. The computational results for both the cases show that the proposed method performs significantly better than the other algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Phylogenetic reconstruction of Syntermitinae (Isoptera, Termitidae) based on morphological and molecular data.

    Science.gov (United States)

    Rocha, Mauricio M; Morales-Corrêa E Castro, Adriana C; Cuezzo, Carolina; Cancello, Eliana M

    2017-01-01

    The subfamily Syntermitinae comprises a group of Neotropical termites with 18 genera and 101 species described. It has been considered a natural group, but relationships among the genera within the subfamily remain uncertain, and some genera appear to be non-monophyletic. Here, we provide a comprehensive phylogeny including six Neotropical species of Termitinae as outgroup, 42 Syntermitinae species as ingroup, 92 morphological characters (from external and internal anatomy of soldier and worker castes) and 117 molecular sequences (109 obtained for this study and 8 from GenBank) of 4 gene regions (41 and 22 from Cytochrome Oxidase I and II respectively, 19 from Cytochrome b, and 35 from 16S rDNA). Morphological and molecular data were analyzed in combination, with the Bayesian inference method, and the important aspects of termite biology, defense and feeding habits are discussed based on the resulting tree. Although useful for providing diagnostic characters, the morphology of the soldier caste reveals several cases of convergence; whereas the feeding habit shows indications of evolutionary significance.

  20. A molecular-mechanics based finite element model for strength prediction of single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Meo, M.; Rossi, M.

    2007-01-01

    The aim of this work was to develop a finite element model based on molecular mechanics to predict the ultimate strength and strain of single wallet carbon nanotubes (SWCNT). The interactions between atoms was modelled by combining the use of non-linear elastic and torsional elastic spring. In particular, with this approach, it was tried to combine the molecular mechanics approach with finite element method without providing any not-physical data on the interactions between the carbon atoms, i.e. the CC-bond inertia moment or Young's modulus definition. Mechanical properties as Young's modulus, ultimate strength and strain for several CNTs were calculated. Further, a stress-strain curve for large deformation (up to 70%) is reported for a nanotube Zig-Zag (9,0). The results showed that good agreement with the experimental and numerical results of several authors was obtained. A comparison of the mechanical properties of nanotubes with same diameter and different chirality was carried out. Finally, the influence of the presence of defects on the strength and strain of a SWNT was also evaluated. In particular, the stress-strain curve a nanotube with one-vacancy defect was evaluated and compared with the curve of a pristine one, showing a reduction of the ultimate strength and strain for the defected nanotube. The FE model proposed demonstrate to be a reliable tool to simulate mechanical behaviour of carbon nanotubes both in the linear elastic field and the non-linear elastic field

  1. Genetic Diversity Analysis of Tagetes Species Using PCR Based Molecular Markers

    International Nuclear Information System (INIS)

    Shahzadi, I.; Ahmad, R.; Waheed, U.; Shah, M. F.

    2016-01-01

    Tagetes is a genus of medicinally important wild and cultivated plants containing several chemical compounds. Lack of information on variation at molecular level present in Tagetes species is paramount to understand the genetic basis of medicinally important compounds. Current study aims at finding genetic variability in Tagetes species using random and specific molecular markers. Two primer systems including 25 RAPD and 3 STS (limonene gene) were used to ascertain genetic diversity of 15 Tagetes genotypes belonging to different species. We found that 20 of the 25 tested RAPD primers generated stable band patterns with 167 loci of amplification products. The proportion of polymorphic bands was 95.21 percent for RAPD primers. Three STS primers generated a total of 29 amplification products, of which 96.55 percent were polymorphic. Homology of genotypes was 53.18 percent and 51.11 percent with RAPD and STS primers respectively. The dendrogram obtained revealed that the range of overall genetic distances estimated was 22 percent to 100 percent through RAPD and 9 percent to 100 percent through STS markers. The findings help to establish that PCR-based assay such as RAPD and STS could be used successfully for estimation of genetic diversity of different genotypes of Tagetes that can be used for selection of parents for improvement of the species. (author)

  2. Hierarchical Conformational Analysis of Native Lysozyme Based on Sub-Millisecond Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    Full Text Available Hierarchical organization of free energy landscape (FEL for native globular proteins has been widely accepted by the biophysics community. However, FEL of native proteins is usually projected onto one or a few dimensions. Here we generated collectively 0.2 milli-second molecular dynamics simulation trajectories in explicit solvent for hen egg white lysozyme (HEWL, and carried out detailed conformational analysis based on backbone torsional degrees of freedom (DOF. Our results demonstrated that at micro-second and coarser temporal resolutions, FEL of HEWL exhibits hub-like topology with crystal structures occupying the dominant structural ensemble that serves as the hub of conformational transitions. However, at 100 ns and finer temporal resolutions, conformational substates of HEWL exhibit network-like topology, crystal structures are associated with kinetic traps that are important but not dominant ensembles. Backbone torsional state transitions on time scales ranging from nanoseconds to beyond microseconds were found to be associated with various types of molecular interactions. Even at nanoseconds temporal resolution, the number of conformational substates that are of statistical significance is quite limited. These observations suggest that detailed analysis of conformational substates at multiple temporal resolutions is both important and feasible. Transition state ensembles among various conformational substates at microsecond temporal resolution were observed to be considerably disordered. Life times of these transition state ensembles are found to be nearly independent of the time scales of the participating torsional DOFs.

  3. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb.

    Science.gov (United States)

    Sun, Binghua; Ni, Xinjiong; Cao, Yuhua; Cao, Guangqun

    2017-05-15

    A fast and selective electrochemical sensor for determination of hemoglobin (Hb) was developed based on magnetic molecularly imprinted nanoparticles modified on the magnetic glassy carbon electrode. The nanoparticles Fe 3 O 4 @SiO 2 with a magnetic core and a molecularly imprinted shell had regular structures and good monodispersity. Hb could be determined directly by electrochemical oxidization with the modified electrode. A magnetic field increased electrochemical response to Hb by two times. Imprinting Hb on the surface of Fe 3 O 4 @SiO 2 shortened the response time within 7min. Under optimum conditions, the imprinting factor toward the non-imprinted sensor was 2.8, and the separation factor of Hb to horseradish peroxidase was 2.6. The oxidation peak current had a linear relationship with Hb concentration ranged from 0.005mg/ml to 0.1mg/ml with a detection limit (S/N =3) of 0.0010mg/ml. The sensors were successfully applied to analysis of Hb in whole blood samples with recoveries between 95.7% and 105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. An Adhesive Patch-Based Skin Biopsy Device for Molecular Diagnostics and Skin Microbiome Studies.

    Science.gov (United States)

    Yao, Zuxu; Moy, Ronald; Allen, Talisha; Jansen, Burkhard

    2017-10-01

    A number of diagnoses in clinical dermatology are currently histopathologically confirmed and this image recognition-based confirmation generally requires surgical biopsies. The increasing ability of molecular pathology to corroborate or correct a clinical diagnosis based on objective gene expression, mutation analysis, or molecular microbiome data is on the horizon and would be further supported by a tool or procedure to collect samples non-invasively. This study characterizes such a tool in form of a 'bladeless' adhesive patch-based skin biopsy device. The performance of this device was evaluated through a variety of complementary technologies including assessment of sample biomass, electron microscopy demonstrating the harvesting of layers of epidermal tissue, and isolation of RNA and DNA from epidermal skin samples. Samples were obtained by application of adhesive patches to the anatomical area of interest. Biomass assessment demonstrated collection of approximately 0.3mg of skin tissue per adhesive patch and electron microscopy confirmed the nature of the harvested epidermal skin tissue. The obtained tissue samples are stored in a stable fashion on adhesive patches over a wide range of temperatures (-80oC to +60oC) and for extended periods of time (7 days or more). Total human RNA, human genomic DNA and microbiome DNA yields were 23.35 + 15.75ng, 27.72 + 20.71ng and 576.2 + 376.8pg, respectively, in skin samples obtained from combining 4 full patches collected non-invasively from the forehead of healthy volunteers. The adhesive patch skin sampling procedure is well tolerated and provides robust means to obtain skin tissue, RNA, DNA, and microbiome samples without involving surgical biopsies. The non-invasively obtained skin samples can be shipped cost effectively at ambient temperature by mail or standard courier service, and are suitable for a variety of molecular analyses of the skin microbiome as well as of keratinocytes, T cells, dendritic cells

  5. DNA-based molecular markers as tools for the discovery of γ-induced mutants in cereals and soybean

    International Nuclear Information System (INIS)

    Bondarenco, E.; Bondarenco, V.; Barbacar, N.; Coretchi, L.

    2009-01-01

    γ-induced mutagenesis is one of the present techniques effective in producing crops with enhanced quality and novel properties. The fast detection of mutants can be nowadays assured by the employment of DNA-based molecular markers. Different kinds of molecular markers are being widely used all over the world to monitor DNA sequence variation and identification of desired traits. In the given paper we present a short overview of the types of molecular markers and the first steps of the attempt of their use for mutants' characterization in the Republic of Moldova (authors)

  6. Well-Defined Polyethylene-Based Random, Block, and Bilayered Molecular Cobrushes

    KAUST Repository

    Zhang, Hefeng; Zhang, Zhen; Gnanou, Yves; Hadjichristidis, Nikolaos

    2015-01-01

    by anionic polymerization. Proton nuclear magnetic resonance spectroscopy (1H NMR) and high-temperature gel permeation chromatography (HT-GPC) were used to imprint the molecular characteristics of all macromonomers and molecular brushes and differential

  7. Complete sequence of Tvv1, a family of Ty 1 copia-like retrotransposons of Vitis vinifera L., reconstituted by chromosome walking.

    Science.gov (United States)

    Pelsy, F.; Merdinoglu, D.

    2002-09-01

    A chromosome-walking strategy was used to sequence and characterize retrotransposons in the grapevine genome. The reconstitution of a family of retroelements, named Tvv1, was achieved by six successive steps. These elements share a single, highly conserved open reading frame 4,153 nucleotides-long, putatively encoding the gag, pro, int, rt and rh proteins. Comparison of the Tvv1 open reading frame coding potential with those of drosophila copia and tobacco Tnt1, revealed that Tvv1 is closely related to Ty 1 copia-like retrotransposons. A highly variable untranslated leader region, upstream of the open reading frame, allowed us to differentiate Tvv1 variants, which represent a family of at least 28 copies, in varying sizes. This internal region is flanked by two long terminal repeats in direct orientation, sized between 149 and 157 bp. Among elements theoretically sized from 4,970 to 5,550 bp, we describe the full-length sequence of a reference element Tvv1-1, 5,343 nucleotides-long. The full-length sequence of Tvv1-1 compared to pea PDR1 shows a 53.3% identity. In addition, both elements contain long terminal repeats of nearly the same size in which the U5 region could be entirely absent. Therefore, we assume that Tvv1 and PDR1 could constitute a particular class of short LTRs retroelements.

  8. Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion.

    Science.gov (United States)

    Leprinc, A S; Grandbastien, M A; Christian, M

    2001-11-01

    Active retrotransposons have been identified in Nicotiana plumbaginifolia by their ability to disrupt the nitrate reductase gene in chlorate-resistant mutants selected from protoplast-derived cultures. In mutants E23 and F97, two independent insertions of Tnp2, a new retrotransposon closely related to the tobacco Tnt1 elements, were detected in the nitrate reductase gene. These two Tnp2 elements are members of the Tnt1B subfamily which shows that Tnt1B elements can be active and mutagenic in the N. plumbaginifolia genome. Furthermore, these results suggest that Tnt1B is the most active family of Tntl elements in N. plumbaginifolia, whereas in tobacco only members of the Tnt1A subfamily were found inserted in the nitrate reductase gene. The transcriptional regulations of Tnp2 and Tnt1A elements are most probably different due to non-conserved U3 regions. Our results thus support the hypothesis that different Nicotiana species contain different active Tntl subfamilies and that only one active Tntl subfamily might be maintained in each of these species. The Tnp2 insertion found in the F97 mutant was found to be spliced out of the nitrate reductase mRNA by activation of cryptic donor and acceptor sites in the nitrate reductase and the Tnp2 sequences respectively.

  9. Triple-helix molecular switch-based aptasensors and DNA sensors.

    Science.gov (United States)

    Bagheri, Elnaz; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad; Taghdisi, Seyed Mohammad

    2018-07-15

    Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nitrogen-doped graphene quantum dots-based fluorescence molecularly imprinted sensor for thiacloprid detection.

    Science.gov (United States)

    Liu, Yang; Cao, Nan; Gui, Wenying; Ma, Qiang

    2018-06-01

    In this paper, a test strip-based sensor was developed for thiacloprid quantitative detection based on PDA molecularly imprinted polymer (MIP) and nitrogen-doped graphene quantum dots (N-GQDs). Thiacloprid is a new type of nicotine insecticide, which can block the normal neurotransmitter delivery process in insects. In the sensing system, N-GQDs were immersed into filter paper at first. Then, dopamine (DA) with thiacloprid can be self-polymerized on test strip surface to form the uniform PDA film. After removed thiacloprid template, the established poly dopamine (PDA) MIP can selectively recognize thiacloprid. As a result, captured thiacloprid can enhance the fluorescence intensity of N-GQDs into the test strip. As a result, the fluorescence intensity of N-GQDs can be linearly related within a certain range of thiacloprid concentration. Under the optimum conditions, the proposed sensor for thiacloprid detection exhibited a linear ranging from 0.1 mg/L to 10 mg/L with a low detection limit of 0.03 mg/L. The N-GQDs based test strip-based sensor for thiaclopridis reported for the first time. The sensing system has high selectivity to thiacloprid and provides new opportunities in the pesticide detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. XML-based approaches for the integration of heterogeneous bio-molecular data.

    Science.gov (United States)

    Mesiti, Marco; Jiménez-Ruiz, Ernesto; Sanz, Ismael; Berlanga-Llavori, Rafael; Perlasca, Paolo; Valentini, Giorgio; Manset, David

    2009-10-15

    The today's public database infrastructure spans a very large collection of heterogeneous biological data, opening new opportunities for molecular biology, bio-medical and bioinformatics research, but raising also new problems for their integration and computational processing. In this paper we survey the most interesting and novel approaches for the representation, integration and management of different kinds of biological data by exploiting XML and the related recommendations and approaches. Moreover, we present new and interesting cutting edge approaches for the appropriate management of heterogeneous biological data represented through XML. XML has succeeded in the integration of heterogeneous biomolecular information, and has established itself as the syntactic glue for biological data sources. Nevertheless, a large variety of XML-based data formats have been proposed, thus resulting in a difficult effective integration of bioinformatics data schemes. The adoption of a few semantic-rich standard formats is urgent to achieve a seamless integration of the current biological resources.

  12. Optimization and performance evaluation of a conical mirror based fluorescence molecular tomography imaging system

    Science.gov (United States)

    Zhao, Yue; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    We performed numerical simulations and phantom experiments with a conical mirror based fluorescence molecular tomography (FMT) imaging system to optimize its performance. With phantom experiments, we have compared three measurement modes in FMT: the whole surface measurement mode, the transmission mode, and the reflection mode. Our results indicated that the whole surface measurement mode performed the best. Then, we applied two different neutral density (ND) filters to improve the measurement's dynamic range. The benefits from ND filters are not as much as predicted. Finally, with numerical simulations, we have compared two laser excitation patterns: line and point. With the same excitation position number, we found that the line laser excitation had slightly better FMT reconstruction results than the point laser excitation. In the future, we will implement Monte Carlo ray tracing simulations to calculate multiple reflection photons, and create a look-up table accordingly for calibration.

  13. Nanotubule and Tour Molecule Based Molecular Electronics: Suggestion for a Hybrid Approach

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Recent experimental and theoretical attempts and results indicate two distinct broad pathways towards future molecular electronic devices and architectures. The first is the approach via Tour type ladder molecules and their junctions which can be fabricated with solution phase chemical approaches. Second are fullerenes or nanotubules and their junctions which may have better conductance, switching and amplifying characteristics but can not be made through well controlled and defined chemical means. A hybrid approach combining the two pathways to take advantage of the characteristics of both is suggested. Dimension and scale of such devices would be somewhere in between isolated molecule and nanotubule based devices but it maybe possible to use self-assembly towards larger functional and logicalunits.

  14. A micro seismometer based on molecular electronic transducer technology for planetary exploration

    International Nuclear Information System (INIS)

    Huang, Hai; Tang, Rui; Carande, Bryce; Oiler, Jonathan; Zaitsev, Dmitri; Agafonov, Vadim; Yu, Hongyu

    2013-01-01

    This letter describes an implementation of micromachined seismometer based on molecular electronic transducer (MET) technology. As opposed to a solid inertial mass, MET seismometer senses the movement of liquid electrolyte relative to fixed electrodes. The employment of micro-electro-mechanical systems techniques reduces the internal size of the sensing cell to 1μm and improves the reproducibility of the device. For operating bias of 600 mV, a sensitivity of 809 V/(m/s 2 ) was measured under acceleration of 400μg(g≡9.81m/s 2 ) at 0.32 Hz. A −115 dB (relative to (m/s 2 )/√(Hz)) noise level at 1 Hz was achieved. This work develops an alternative paradigm of seismic sensing device with small size, high sensitivity, low noise floor, high shock tolerance, and independence of installation angle, which is promising for next generation seismometers for planetary exploration.

  15. Self-Assembling Molecular Logic Gates Based on DNA Crossover Tiles.

    Science.gov (United States)

    Campbell, Eleanor A; Peterson, Evan; Kolpashchikov, Dmitry M

    2017-07-05

    DNA-based computational hardware has attracted ever-growing attention due to its potential to be useful in the analysis of complex mixtures of biological markers. Here we report the design of self-assembling logic gates that recognize DNA inputs and assemble into crossover tiles when the output signal is high; the crossover structures disassemble to form separate DNA stands when the output is low. The output signal can be conveniently detected by fluorescence using a molecular beacon probe as a reporter. AND, NOT, and OR logic gates were designed. We demonstrate that the gates can connect to each other to produce other logic functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular Simulations of Graphene-Based Electric Double-Layer Capacitors

    Science.gov (United States)

    Kalluri, Raja K.; Konatham, Deepthi; Striolo, Alberto

    2011-03-01

    Towards deploying renewable energy sources it is crucial to develop efficient and cost-effective technologies to store electricity. Traditional batteries are plagued by a number of practical problems that at present limit their widespread applicability. One possible solution is represented by electric double-layer capacitors (EDLCs). To deploy EDLCs at the large scale it is necessary to better understand how electrolytes pack and diffuse within narrow charged pores. We present here simulation results for the concentrated aqueous solutions of NaCl, CsCl, and NaI confined within charged graphene-based porous materials. We discuss how the structure of confined water, the salt concentration, the ions size, and the surface charge density determine the accumulation of electrolytes within the porous network. Our results, compared to data available for bulk systems, are critical for relating macroscopic observations to molecular-level properties of the confined working fluids. Research supported by the Department of Energy.

  17. Molecular performance of commercial MTG variety oil palm based on RAPD markers

    Science.gov (United States)

    Putri, L. A. P.; Setyo, I. E.; Basyuni, M.; Bayu, E. S.; Setiado, H.; Reynaldi, N. F.; Laia, H.; Puteri, S. A. K.; Arifiyanto, D.; Syahputra, I.

    2018-02-01

    The oil palm, an economically important tree in Indonesia, has been one of the world’s major sources of edible oil and a significant precursor of biodiesel fuel. This research is conducted by taking individual tree sample of commercial MTG variety germplasm oil palm one years old. The purpose of this research is to analyse molecular performance of some oil palm MTG variety based on RAPD markers. In this experiment, the DNA profile diversity was assessed using markers of oil palm’s random RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11). A total of 15 trees commercial MTG oil palm variety were used for analysis. The results of the experiment indicated out of 4 RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11) showed polymorphic of PCR product. These preliminary results demonstrated RAPD marker can be used to evaluate genetic relatedness among trees of commercial MTG variety oil palm and detecting either genetic variants or mislabelled.

  18. A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing

    DEFF Research Database (Denmark)

    Zhu, Yansong; Jha, Abhinav K.; Dreyer, Jakob K.

    2017-01-01

    Fluorescence molecular tomography (FMT) is a promising tool for real time in vivo quantification of neurotransmission (NT) as we pursue in our BRAIN initiative effort. However, the acquired image data are noisy and the reconstruction problem is ill-posed. Further, while spatial sparsity of the NT...... matrix coherence. The resultant image data are input to a homotopy-based reconstruction strategy that exploits sparsity via ℓ1 regularization. The reconstructed image is then input to a maximum-likelihood expectation maximization (MLEM) algorithm that retains the sparseness of the input estimate...... and improves upon the quantitation by accurate Poisson noise modeling. The proposed reconstruction method was evaluated in a three-dimensional simulated setup with fluorescent sources in a cuboidal scattering medium with optical properties simulating human brain cortex (reduced scattering coefficient: 9.2 cm-1...

  19. Fragment-based drug discovery and molecular docking in drug design.

    Science.gov (United States)

    Wang, Tao; Wu, Mian-Bin; Chen, Zheng-Jie; Chen, Hua; Lin, Jian-Ping; Yang, Li-Rong

    2015-01-01

    Fragment-based drug discovery (FBDD) has caused a revolution in the process of drug discovery and design, with many FBDD leads being developed into clinical trials or approved in the past few years. Compared with traditional high-throughput screening, it displays obvious advantages such as efficiently covering chemical space, achieving higher hit rates, and so forth. In this review, we focus on the most recent developments of FBDD for improving drug discovery, illustrating the process and the importance of FBDD. In particular, the computational strategies applied in the process of FBDD and molecular-docking programs are highlighted elaborately. In most cases, docking is used for predicting the ligand-receptor interaction modes and hit identification by structurebased virtual screening. The successful cases of typical significance and the hits identified most recently are discussed.

  20. Wilsonosiphonia gen. nov. (Rhodomelaceae, Rhodophyta) based on molecular and morpho-anatomical characters.

    Science.gov (United States)

    Bustamante, Danilo E; Won, Boo Yeon; Miller, Kathy Ann; Cho, Tae Oh

    2017-04-01

    Morphological, anatomical, and molecular sequence data were used to assess the establishment and phylogenetic position of the genus Wilsonosiphonia gen. nov. Phylogenies based on rbcL and concatenated rbcL and cox1 loci support recognition of Wilsonosiphonia gen. nov., sister to Herposiphonia. Diagnostic features for Wilsonosiphonia are rhizoids located at distal ends of pericentral cells and taproot-shaped multicellular tips of rhizoids. Wilsonosiphonia includes three species with diagnostic rbcL and cox1 sequences, Wilsonosiphonia fujiae sp. nov. (the generitype), W. howei comb. nov., and W. indica sp. nov. These three species resemble each other in external morphology, but W. fujiae is distinguished by having two tetrasporangia per segment rather than one, W. indica by having abundant and persistent trichoblasts, and W. howei by having few and deciduous trichoblasts. © 2017 Phycological Society of America.

  1. A multifunctional molecularly imprinted polymer-based biosensor for direct detection of doxycycline in food samples

    DEFF Research Database (Denmark)

    Ashley, Jon; Feng, Xiaotong; Sun, Yi

    2018-01-01

    In this study, we developed a new type of multifunctional molecularly imprinted polymer (MIP) composite as an all-in-one biosensor for the low-cost, rapid and sensitive detection of doxycycline in pig plasma. The MIP composite consisted of a magnetic core for ease of manipulation, and a shell...... of fluorescent MIPs for selective recognition of doxycycline. By simply incorporating a small amount of fluorescent monomer (fluorescein-Oacrylate), the fluorescent MIP layer was successfully grafted onto the magnetic core via a surface imprinting technique. The resultant MIP composites showed significant....... The multifunctional MIP composites were used to directly extract doxycycline from spiked pig plasma samples and quantify the antibiotics based on the quenched fluorescence signals. Recoveries of doxycycline were found in the range of 88–107%....

  2. Atomistic simulations of TeO₂-based glasses: interatomic potentials and molecular dynamics.

    Science.gov (United States)

    Gulenko, Anastasia; Masson, Olivier; Berghout, Abid; Hamani, David; Thomas, Philippe

    2014-07-21

    In this work we present for the first time empirical interatomic potentials that are able to reproduce TeO2-based systems. Using these potentials in classical molecular dynamics simulations, we obtained first results for the pure TeO2 glass structure model. The calculated pair distribution function is in good agreement with the experimental one, which indicates a realistic glass structure model. We investigated the short- and medium-range TeO2 glass structures. The local environment of the Te atom strongly varies, so that the glass structure model has a broad Q polyhedral distribution. The glass network is described as weakly connected with a large number of terminal oxygen atoms.

  3. Molecular design and theoretical characterization of benzodithiophene based organic photovoltaic materials

    Science.gov (United States)

    Bhattacharya, Labanya; Sahu, Sridhar

    2018-05-01

    Two different oligomers, containing methyl substituted Benzodithiophene (BDT) as donor unit, fluorinated thiophene as the π-bridge unit and two different kinds of acceptors based on fluorinated benzothiadiazole, fluorinated benzoselenadiazole units are designed for bulk heterojunction (BHJ) organic solar cell (OSC). The ground and excited state properties of those donor-π-acceptor-π-donor (D-π-A-π-D) oligomeric configurations are characterized via density functional (DFT) and time dependent density functional theory (TD-DFT). The parameters such as dipole moment (ρ), chemical potential (µ), electronegativity (χ), frontier molecular orbital (FMO) analysis, HOMO-LUMO gap, open circuit voltage (Voc) and driving force (ΔE) are calculated to analyze geometrical, electronic structural, quantum chemical and photovoltaic properties of the compounds. In addition, optical absorption spectra are also presented for the optical characterization of the compounds.

  4. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials

    Science.gov (United States)

    G. Rodrigo, Sergio; Martín-Moreno, L.

    2016-10-01

    A system for the detection of spectral signatures of chemical compounds at the Terahertz regime is presented. The system consists on a holey metal film whereby the presence of a given substance provokes the appearance of spectral features in transmission and reflection induced by the molecular specimen. These induced effects can be regarded as an extraordinary optical transmission phenomenon called absorption-induced transparency (AIT). The phenomenon consist precisely in the appearance of peaks in transmission and dips in reflection after sputtering of a chemical compound onto an initially opaque holey metal film. The spectral signatures due to AIT occur unexpectedly close to the absorption energies of the molecules. The presence of a target, a chemical compound, would be thus revealed as a strong drop in reflectivity measurements. We theoretically predict the AIT based system would serve to detect amounts of hydrocyanic acid (HCN) at low rate concentrations.

  5. [Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].

    Science.gov (United States)

    Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V

    2011-01-01

    Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic

  6. A model for self-diffusion of guanidinium-based ionic liquids: a molecular simulation study.

    Science.gov (United States)

    Klähn, Marco; Seduraman, Abirami; Wu, Ping

    2008-11-06

    We propose a novel self-diffusion model for ionic liquids on an atomic level of detail. The model is derived from molecular dynamics simulations of guanidinium-based ionic liquids (GILs) as a model case. The simulations are based on an empirical molecular mechanical force field, which has been developed in our preceding work, and it relies on the charge distribution in the actual liquid. The simulated GILs consist of acyclic and cyclic cations that were paired with nitrate and perchlorate anions. Self-diffusion coefficients are calculated at different temperatures from which diffusive activation energies between 32-40 kJ/mol are derived. Vaporization enthalpies between 174-212 kJ/mol are calculated, and their strong connection with diffusive activation energies is demonstrated. An observed formation of cavities in GILs of up to 6.5% of the total volume does not facilitate self-diffusion. Instead, the diffusion of ions is found to be determined primarily by interactions with their immediate environment via electrostatic attraction between cation hydrogen and anion oxygen atoms. The calculated average time between single diffusive transitions varies between 58-107 ps and determines the speed of diffusion, in contrast to diffusive displacement distances, which were found to be similar in all simulated GILs. All simulations indicate that ions diffuse by using a brachiation type of movement: a diffusive transition is initiated by cleaving close contacts to a coordinated counterion, after which the ion diffuses only about 2 A until new close contacts are formed with another counterion in its vicinity. The proposed diffusion model links all calculated energetic and dynamic properties of GILs consistently and explains their molecular origin. The validity of the model is confirmed by providing an explanation for the variation of measured ratios of self-diffusion coefficients of cations and paired anions over a wide range of values, encompassing various ionic liquid classes

  7. Molecular Allergen-Specific IgE Assays as a Complement to Allergen Extract-Based Sensitization Assessment

    NARCIS (Netherlands)

    Aalberse, Rob C.; Aalberse, Joost A.

    2015-01-01

    Molecular allergen-based component-resolved diagnostic IgE antibody tests have emerged in the form of singleplex assays and multiplex arrays. They use both native and recombinant allergen molecules, sometimes in combination with each other, to supplement allergen extract-based IgE antibody analyses.

  8. High-Performance Near-Infrared Phototransistor Based on n-Type Small-Molecular Organic Semiconductor

    KAUST Repository

    Li, Feng

    2016-12-13

    A solution-processed near-infrared (NIR) organic phototransistor (OPT) based on n-type organic small molecular material BODIPY-BF2 has been successfully fabricated. Its unprecedented performance, as well as its easy fabrication and good stability, mark this BODIPY-BF2 based OPT device as a very promising candidate for optoelectronic applications in the NIR regime.

  9. High-Performance Near-Infrared Phototransistor Based on n-Type Small-Molecular Organic Semiconductor

    KAUST Repository

    Li, Feng; Chen, Yin; Ma, Chun; Buttner, Ulrich; Leo, Karl; Wu, Tao

    2016-01-01

    A solution-processed near-infrared (NIR) organic phototransistor (OPT) based on n-type organic small molecular material BODIPY-BF2 has been successfully fabricated. Its unprecedented performance, as well as its easy fabrication and good stability, mark this BODIPY-BF2 based OPT device as a very promising candidate for optoelectronic applications in the NIR regime.

  10. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus.

    Science.gov (United States)

    Auvinet, J; Graça, P; Belkadi, L; Petit, L; Bonnivard, E; Dettaï, A; Detrich, W H; Ozouf-Costaz, C; Higuet, D

    2018-05-09

    The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1, Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1, nine of Gypsy, and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus, were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My). As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that

  11. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity

    Science.gov (United States)

    Fernandes, E.K.K.; Keyser, C.A.; Chong, J.P.; Rangel, D.E.N.; Miller, M.P.; Roberts, D.W.

    2010-01-01

    Aims: The genetic relationships and conidial tolerances to high and low temperatures were determined for isolates of several Metarhizium species and varieties. Methods and Results: Molecular-based techniques [AFLP and rDNA (ITS1, ITS2 and 5??8S) gene sequencing] were used to characterize morphologically identified Metarhizium spp. isolates from a wide range of sources. Conidial suspensions of isolates were exposed to wet heat (45 ?? 0??2??C) and plated on potato dextrose agar plus yeast extract (PDAY) medium. After 8-h exposure, the isolates divided clearly into two groups: (i) all isolates of Metarhizium anisopliae var. anisopliae (Ma-an) and Metarhizium from the flavoviride complex (Mf) had virtually zero conidial relative germination (RG), (ii) Metarhizium anisopliae var. acridum (Ma-ac) isolates demonstrated high heat tolerance (c. 70-100% RG). Conidial suspensions also were plated on PDAY and incubated at 5??C for 15 days, during which time RGs for Ma-an and Ma-ac isolates were virtually zero, whereas the two Mf were highly cold active (100% RG). Conclusions: Heat and cold exposures can be used as rapid tools to tentatively identify some important Metarhizium species and varieties. Significance and Impact of the Study: Identification of Metarhizium spp. currently relies primarily on DNA-based methods; we suggest a simple temperature-based screen to quickly obtain tentative identification of isolates as to species or species complexes. ?? 2009 The Society for Applied Microbiology.

  12. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta.

    Science.gov (United States)

    Chaudhury, Sidhartha; Lyskov, Sergey; Gray, Jeffrey J

    2010-03-01

    PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactively, using iPython and (ii) script-based, using Python scripting. Interactive mode contains a number of help features and is ideal for beginners while script-mode is best suited for algorithm development. PyRosetta has similar computational performance to Rosetta, can be easily scaled up for cluster applications and has been implemented for algorithms demonstrating protein docking, protein folding, loop modeling and design. PyRosetta is a stand-alone package available at http://www.pyrosetta.org under the Rosetta license which is free for academic and non-profit users. A tutorial, user's manual and sample scripts demonstrating usage are also available on the web site.

  13. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Recognition of dual targets by a molecular beacon-based sensor: subtyping of influenza A virus.

    Science.gov (United States)

    Lee, Chun-Ching; Liao, Yu-Chieh; Lai, Yu-Hsuan; Lee, Chang-Chun David; Chuang, Min-Chieh

    2015-01-01

    A molecular beacon (MB)-based sensor to offer a decisive answer in combination with information originated from dual-target inputs is designed. The system harnesses an assistant strand and thermodynamically favored designation of unpaired nucleotides (UNs) to process the binary targets in "AND-gate" format and report fluorescence in "off-on" mechanism via a formation of a DNA four-way junction (4WJ). By manipulating composition of the UNs, the dynamic fluorescence difference between the binary targets-coexisting circumstance and any other scenario was maximized. Characteristic equilibrium constant (K), change of entropy (ΔS), and association rate constant (k) between the association ("on") and dissociation ("off") states of the 4WJ were evaluated to understand unfolding behavior of MB in connection to its sensing capability. Favorable MB and UNs were furthermore designed toward analysis of genuine genetic sequences of hemagglutinin (HA) and neuraminidase (NA) in an influenza A H5N2 isolate. The MB-based sensor was demonstrated to yield a linear calibration range from 1.2 to 240 nM and detection limit of 120 pM. Furthermore, high-fidelity subtyping of influenza virus was implemented in a sample of unpurified amplicons. The strategy opens an alternative avenue of MB-based sensors for dual targets toward applications in clinical diagnosis.

  15. Molecular characterization of a peanut variety and its derivatives based on SSR and COP analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaoping REN; Boshou LIAO; Huifang JIANG; Zhongyuan YUAN; Yuning CHEN; Xiaojing ZHOU; Li HUANG; Jiaquan HUANG; Yong LEI; Liying YAN

    2016-01-01

    Despite the economic importance of the peanut,no studies have been carried out to determine the correlation between genetic distances based on molecular markers and on coefficient of parentage (COP) data.In this study,simple sequence repeat (SSR) and pedigree data were used to assess the genetic distance between the Fuhuasheng variety and its derivative cultivars.A total of 39 SSR polymorphism primers were used,and 151 bands were obtained,with an average of 2.04 bands in each primer.The genetic SSR-based distance (GD) values ranged from 0.02 to 0.81,while the COP-based GD ranged from 0.25 to 0.98.Certain Fuhuasheng loci displayed higher transmission rates.These loci or nearby chromosomal regions might be associated with desirable traits in Fuhuasheng variety,thus being frequently selected in breeding programs.Therefore,it can be suggested that COP analysis should be the preferred method for estimating genetic diversity invarieties with available complete pedigree information and parents.In this case,marker analysis would provide the best estimations.

  16. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta

    Science.gov (United States)

    Chaudhury, Sidhartha; Lyskov, Sergey; Gray, Jeffrey J.

    2010-01-01

    Summary: PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactively, using iPython and (ii) script-based, using Python scripting. Interactive mode contains a number of help features and is ideal for beginners while script-mode is best suited for algorithm development. PyRosetta has similar computational performance to Rosetta, can be easily scaled up for cluster applications and has been implemented for algorithms demonstrating protein docking, protein folding, loop modeling and design. Availability: PyRosetta is a stand-alone package available at http://www.pyrosetta.org under the Rosetta license which is free for academic and non-profit users. A tutorial, user's manual and sample scripts demonstrating usage are also available on the web site. Contact: pyrosetta@graylab.jhu.edu PMID:20061306

  17. Bio-AIMS Collection of Chemoinformatics Web Tools based on Molecular Graph Information and Artificial Intelligence Models.

    Science.gov (United States)

    Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro

    2015-01-01

    The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.

  18. Synthesis and characterization of sugar