WorldWideScience

Sample records for retronecine esters-type pyrrolizidine

  1. Quantitative analysis of total retronecine esters-type pyrrolizidine alkaloids in plant by high performance liquid chromatography

    International Nuclear Information System (INIS)

    Zhang Fang; Wang Changhong; Xiong Aizhen; Wang Wan; Yang Li; Branford-White, Christopher J.; Wang Zhengtao; Bligh, S.W. Annie

    2007-01-01

    Pyrrolizidine alkaloids (PAs) are alkaloids which typically contain a necine (7-hydroxy-1-hydroxymethyl-6,7-dihydro-5H-pyrrolizidine) base unit, and they can be found in one third of the higher plants around the world. They are hepatotoxic, mutagenic and carcinogenic and pose a threat to human health and safety. A specific, quick and sensitive method is therefore needed to detect and quantify the PAs sometimes in trace amount in herbs, tea or food products. Based on high performance liquid chromatography with prior derivatization of the alkaloids using o-chloranil and Ehrlich's reagent, we report an improved method for quantitative analysis of the total amount of retronecine esters-type pyrrolizidine alkaloids (RET-PAs) in a plant extract. The total quantitation of RET-PAs is achieved because of a common colored retronecine marker, a 7-ethoxy-1-ethoxylmethyl retronecine derivative, is produced with all the different RET-PAs during the derivatization reaction. The chemical identity of the common retronecine marker was characterized on-line by positive mode electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. The limit of detection using the improved method is 0.26 nmol mL -1 and the limit of quantitation is 0.79 nmol mL -1 . The advantages of this method are much enhanced sensitivity in detection and quantitation, and, no restriction on the choice of RET-PA as a calibration standard. Application of the developed method to the quantitation of total RET esters-type PAs in Senecio scandens from different regions of China is also reported

  2. Quantitative analysis of total retronecine esters-type pyrrolizidine alkaloids in plant by high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fang; Wang Changhong; Xiong Aizhen; Wang Wan; Yang Li [Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Zhangjiang Hi-Tech Park, Shanghai 201203 (China); Branford-White, Christopher J. [Institute for Health Research and Policy, London Metropolitan University, 166-220 Holloway Road, London N7 8DB (United Kingdom); Wang Zhengtao [Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Zhangjiang Hi-Tech Park, Shanghai 201203 (China); School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210038 (China)], E-mail: wangzt@shutcm.edu.cn; Bligh, S.W. Annie [Institute for Health Research and Policy, London Metropolitan University, 166-220 Holloway Road, London N7 8DB (United Kingdom)], E-mail: a.bligh@londonmet.ac.uk

    2007-12-12

    Pyrrolizidine alkaloids (PAs) are alkaloids which typically contain a necine (7-hydroxy-1-hydroxymethyl-6,7-dihydro-5H-pyrrolizidine) base unit, and they can be found in one third of the higher plants around the world. They are hepatotoxic, mutagenic and carcinogenic and pose a threat to human health and safety. A specific, quick and sensitive method is therefore needed to detect and quantify the PAs sometimes in trace amount in herbs, tea or food products. Based on high performance liquid chromatography with prior derivatization of the alkaloids using o-chloranil and Ehrlich's reagent, we report an improved method for quantitative analysis of the total amount of retronecine esters-type pyrrolizidine alkaloids (RET-PAs) in a plant extract. The total quantitation of RET-PAs is achieved because of a common colored retronecine marker, a 7-ethoxy-1-ethoxylmethyl retronecine derivative, is produced with all the different RET-PAs during the derivatization reaction. The chemical identity of the common retronecine marker was characterized on-line by positive mode electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. The limit of detection using the improved method is 0.26 nmol mL{sup -1} and the limit of quantitation is 0.79 nmol mL{sup -1}. The advantages of this method are much enhanced sensitivity in detection and quantitation, and, no restriction on the choice of RET-PA as a calibration standard. Application of the developed method to the quantitation of total RET esters-type PAs in Senecio scandens from different regions of China is also reported.

  3. A novel ultra-performance liquid chromatography hyphenated with quadrupole time of flight mass spectrometry method for rapid estimation of total toxic retronecine-type of pyrrolizidine alkaloids in herbs without requiring corresponding standards.

    Science.gov (United States)

    Zhu, Lin; Ruan, Jian-Qing; Li, Na; Fu, Peter P; Ye, Yang; Lin, Ge

    2016-03-01

    Nearly 50% of naturally-occurring pyrrolizidine alkaloids (PAs) are hepatotoxic, and the majority of hepatotoxic PAs are retronecine-type PAs (RET-PAs). However, quantitative measurement of PAs in herbs/foodstuffs is often difficult because most of reference PAs are unavailable. In this study, a rapid, selective, and sensitive UHPLC-QTOF-MS method was developed for the estimation of RET-PAs in herbs without requiring corresponding standards. This method is based on our previously established characteristic and diagnostic mass fragmentation patterns and the use of retrorsine for calibration. The use of a single RET-PA (i.e. retrorsine) for construction of calibration was based on high similarities with no significant differences demonstrated by the calibration curves constructed by peak areas of extract ion chromatograms of fragment ion at m/z 120.0813 or 138.0919 versus concentrations of five representative RET-PAs. The developed method was successfully applied to measure a total content of toxic RET-PAs of diversified structures in fifteen potential PA-containing herbs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Detection and quantification of pyrrolizidine alkaloids in antibacterial medical honeys.

    Science.gov (United States)

    Cramer, Luise; Beuerle, Till

    2012-12-01

    In recent years, there has been an increasing interest in antibacterial honey for wound care ranging from minor abrasions and burns to leg ulcers and surgical wounds. On the other hand, several recent studies demonstrated that honey for human consumption was contaminated with natural occurring, plant derived pyrrolizidine alkaloids.1,2-Unsaturated pyrrolizidine alkaloids are a group of secondary plant metabolites that show developmental, hepato-, and geno-toxicity as well as carcinogenic effects in animal models and in in vitro test systems. Hence, it was of particular interest to analyze the pyrrolizidine alkaloid content of medical honeys intended for wound care.19 different medical honey samples and/or batches were analyzed by applying a recently established pyrrolizidine alkaloid sum parameter method. 1,2-Unsaturated pyrrolizidine alkaloids were converted into the common necin backbone structures and were analyzed and quantified by GC-MS in the selected ion monitoring mode.All but one medical honey analyzed were pyrrolizidine alkaloid positive. The results ranged from 10.6 µg retronecine equivalents per kg to 494.5 µg retronecine equivalents/kg medical honey. The average pyrrolizidine alkaloid content of all positive samples was 83.6 µg retronecine equivalents/kg medical honey (average of all samples was 79.3 µg retronecine equivalents/kg medical honey). The limit of detection was 2.0 µg retronecine equivalents/kg medical honey, while the limit of quantification was 6.0 µg retronecine equivalents/kg medical honey (S/N > 7/1).Based on the data presented here and considering the fact that medical honeys can be applied to open wounds, it seems reasonable to discuss the monitoring of 1,2-unsaturated pyrrolizidine alkaloids in honey intended for wound treatment. Georg Thieme Verlag KG Stuttgart · New York.

  5. TOXIC PYRROLIZIDINE ALKALOIDS OF ECHIUM AMOENUM FISCH. & MEY.

    Directory of Open Access Journals (Sweden)

    MITRA MEHRABANI

    2006-06-01

    Full Text Available Toxic pyrrolizidine alkaloids are present in some species of Echium (Boraginaceae. In this study petals of Echium amoenum Fisch. & Mey. (Gol-e-Gavzaban as a popular herbal medicine in Iran, were investigated for pyrrolizidine alkaloids (PAs. The alkaloids were separated and purified by preparative TLC and characterized by IR, one and two dimensional 1H and 13C-NMR and Mass spectroscopy. Four toxic alkaloids namely: echimidine I, echimidine isomer II, 7-angeloyl retronecine III and 7-tigloyl retronecine IV were identified.

  6. Synthesis of [3,5-14C]trachelanthamidine and [5-3H]isoretronecanol and their incorporation into the retronecine moiety of riddelliine in Senecio riddellii

    International Nuclear Information System (INIS)

    Leete, E.; Rana, J.

    1986-01-01

    (+/-)-[3,5- 14 C]Trachelanthamidine and (+/-)-[5- 3 H]isoretronecanol, which are diastereomers, were prepared from potassium [ 14 C]cyanide and [5- 3 H]proline, respectively. These compounds and [1,4- 14 C]putrescine were administered to Senecio riddellii plants resulting in the formation of labeled riddelliine, in which almost all the radioactivity was located in its retronecine moiety. The activity of the beta-alanine obtained by degradation of the retronecine was consistent with specific labeling of this pyrrolizidine base at the expected positions. The extremely high absolute incorporation (15.1, 22.1%) of trachelanthamidine into riddelliine strongly favors this 1-hydroxymethylpyrrolizidine as the one on the main biosynthetic pathway to retronecine. The lower incorporation (0.75%) of isoretronecanol may represent a minor or aberrant pathway to retronecine

  7. Synthesis of (3,5-/sup 14/C)trachelanthamidine and (5-/sup 3/H)isoretronecanol and their incorporation into the retronecine moiety of riddelliine in Senecio riddellii

    Energy Technology Data Exchange (ETDEWEB)

    Leete, E.; Rana, J.

    1986-09-01

    (+/-)-(3,5-/sup 14/C)Trachelanthamidine and (+/-)-(5-/sup 3/H)isoretronecanol, which are diastereomers, were prepared from potassium (/sup 14/C)cyanide and (5-/sup 3/H)proline, respectively. These compounds and (1,4-/sup 14/C)putrescine were administered to Senecio riddellii plants resulting in the formation of labeled riddelliine, in which almost all the radioactivity was located in its retronecine moiety. The activity of the beta-alanine obtained by degradation of the retronecine was consistent with specific labeling of this pyrrolizidine base at the expected positions. The extremely high absolute incorporation (15.1, 22.1%) of trachelanthamidine into riddelliine strongly favors this 1-hydroxymethylpyrrolizidine as the one on the main biosynthetic pathway to retronecine. The lower incorporation (0.75%) of isoretronecanol may represent a minor or aberrant pathway to retronecine.

  8. Detection and Toxicity Evaluation of Pyrrolizidine Alkaloids in Medicinal Plants Gynura bicolor and Gynura divaricata Collected from Different Chinese Locations.

    Science.gov (United States)

    Chen, Jian; Lü, Han; Fang, Lian-Xiang; Li, Wei-Lin; Verschaeve, Luc; Wang, Zheng-Tao; De Kimpe, Norbert; Mangelinckx, Sven

    2017-02-01

    Two edible plants in Southeast Asia, Gynura bicolor and G. divaricata, are not only known to be nutritive but also useful as medicinal herbs. Previous phytochemical investigation of Gynura species showed the presence of hepatotoxic pyrrolizidine alkaloids (PAs), indicating the toxic risk of using these two plants. The present study was designed to analyze the distribution of PA components and tried to evaluate the preliminary toxicity of these two Gynura species. Eight samples of G. bicolor and G. divaricata from five different Chinese locations were collected and their specific PAs were qualitatively characterized by applying an UPLC/MS/MS spectrometry method. Using a pre-column derivatization HPLC method, the total retronecine ester-type PAs in their alkaloids extracts were quantitatively estimated as well. Finally, their genotoxicity was investigated with an effective high-throughput screening method referred to as Vitotox™ test and their potential cytotoxicity was tested on HepG2 cells. It was found that different types of PAs were widely present in Gynura species collected from south of China. Among them, no significant genotoxic effects were detected with serial concentrations through the present in vitro assay. However, the cytotoxicity assay of Gynura plants collected from Jiangsu displayed weak activity at the concentration of 100 mg/ml. It is important to note that this research validates in part the indication that the use of Gynura species requires caution. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  9. Pyrrolizidine alkaloid-derived DNA adducts as a common biological biomarker of pyrrolizidine alkaloid-induced tumorigenicity.

    Science.gov (United States)

    Xia, Qingsu; Zhao, Yuewei; Von Tungeln, Linda S; Doerge, Daniel R; Lin, Ge; Cai, Lining; Fu, Peter P

    2013-09-16

    Pyrrolizidine alkaloid-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. The U.S. National Toxicology Program (NTP) classified riddelliine, a tumorigenic pyrrolizidine alkaloid, as "reasonably anticipated to be a human carcinogen" in the NTP 12th Report on Carcinogens in 2011. We previously determined that four DNA adducts were formed in rats dosed with riddelliine. The structures of the four DNA adducts were elucidated as (i) a pair of epimers of 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine adducts (termed as DHP-dG-3 and DHP-dG-4) as the predominant adducts; and (ii) a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl)dehydrosupinidine adducts (termed as DHP-dA-3 and DHP-dA-4 adducts). In this study, we selected a nontumorigenic pyrrolizidine alkaloid, platyphylliine, a pyrrolizidine alkaloid N-oxide, riddelliine N-oxide, and nine tumorigenic pyrrolizidine alkaloids (riddelliine, retrorsine, monocrotaline, lycopsamine, retronecine, lasiocarpine, heliotrine, clivorine, and senkirkine) for study in animals. Seven of the nine tumorigenic pyrrolizidine alkaloids, with the exception of lycopsamine and retronecine, are liver carcinogens. At 8-10 weeks of age, female F344 rats were orally gavaged for 3 consecutive days with 4.5 and 24 μmol/kg body weight test article in 0.5 mL of 10% DMSO in water. Twenty-four hours after the last dose, the rats were sacrificed, livers were removed, and liver DNA was isolated for DNA adduct analysis. DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts were formed in the liver of rats treated with the individual seven hepatocarcinogenic pyrrolizidine alkaloids and riddelliine N-oxide. These DNA adducts were not formed in the liver of rats administered retronecine, the nontumorigenic pyrrolizidine alkaloid, platyphylliine, or vehicle control. These results indicate that this set of DNA adducts, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, is a common biological biomarker of

  10. Genotoxic Pyrrolizidine Alkaloids — Mechanisms Leading to DNA Adduct Formation and Tumorigenicity

    Directory of Open Access Journals (Sweden)

    Ming W. Chou

    2002-09-01

    Full Text Available Abstract: Plants that contain pyrrolizidine alkaloids are widely distributed in the world. Although pyrrolizidine alkaloids have been shown to be genotoxic and tumorigenic in experimental animals, the mechanisms of actions have not been fully understood. The results of our recent mechanistic studies suggest that pyrrolizidine alkaloids induce tumors via a genotoxic mechanism mediated by 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5Hpyrrolizine (DHP-derived DNA adduct formation. This mechanism may be general to most carcinogenic pyrrolizidine alkaloids, including the retronecine-, heliotridine-, and otonecinetype pyrrolizidine alkaloids. It is hypothesized that these DHP-derived DNA adducts are potential biomarkers of pyrrolizidine alkaloid tumorigenicity. The mechanisms that involve the formation of DNA cross-linking and endogenous DNA adducts are also discussed.

  11. Pyrrolizidine alkaloids.

    Science.gov (United States)

    Robertson, Jeremy; Stevens, Kiri

    2014-12-01

    This review covers pyrrolizidine alkaloids isolated from natural sources. Topics include: aspects of structure, isolation, and biological/pharmacological studies; total syntheses of necic acids, necine bases and closely-related non-natural analogues.

  12. Expedient pyrrolizidine synthesis by propargylsilane addition to N-acyliminium ions followed by gold-catalyzed α-allenyl amide cyclization

    NARCIS (Netherlands)

    Breman, A.C.; Dijkink, J.; van Maarseveen, J.H.; Kinderman, S.S.; Hiemstra, H.

    2009-01-01

    A reaction sequence, involving the addition of (substituted) propargylsilanes to lactate-derived N-acyliminium ions followed by gold-catalyzed cyclization of the resulting alpha-allenyl amide, is applied in expedient syntheses of pyrrolizidine alkaloids heliotridine and ent-retronecine in five steps

  13. Metabolic activation of pyrrolizidine alkaloids: insights into the structural and enzymatic basis.

    Science.gov (United States)

    Ruan, Jianqing; Yang, Mengbi; Fu, Peter; Ye, Yang; Lin, Ge

    2014-06-16

    Pyrrolizidine alkaloids (PAs) are natural toxins widely distributed in plants. The toxic potencies of different PAs vary significantly. PAs are mono- or diesters of necine acids with a necine base. On the basis of the necine bases, PAs are classified into three types: retronecine-type, otonecine-type, and platynecine-type. Hepatotoxic PAs contain an unsaturated necine base. PAs exert hepatotoxicity through metabolic activation by hepatic cytochromes P450s (CYPs) to generate reactive intermediates which form pyrrole-protein adducts. These adducts provide a mechanism-based biomarker to assess PA toxicity. In the present study, metabolic activation of 12 PAs from three structural types was investigated first in mice to demonstrate significant variations in hepatic metabolic activation of different PAs. Subsequently, the structural and enzymatic factors affecting metabolic activation of these PAs were further investigated by using human liver microsomes and recombinant human CYPs. Pyrrole-protein adducts were detected in the liver and blood of mice and the in vitro systems treated with toxic retronecine-type and otonecine-type PAs having unsaturated necine bases but not with a platynecine-type PA containing a saturated necine base. Retronecine-type PAs produced more pyrrole-protein adducts than otonecine-type PAs with similar necine acids, demonstrating that the structure of necine base affected PA toxic potency. Among retronecine-type PAs, open-ring diesters generated the highest amount of pyrrole-protein adducts, followed by macrocyclic diesters, while monoesters produced the least. Only CYP3A4 and CYP3A5 activated otonecine-type PAs, while all 10 CYPs studied showed the ability to activate retronecine-type PAs. Moreover, the contribution of major CYPs involved also varied significantly among retronecine-type PAs. In conclusion, our findings provide a scientific basis for predicting the toxicities of individual PAs in biological systems based on PA structural

  14. Activity of pyrrolizidine alkaloids against biofilm formation and Trichomonas vaginalis.

    Science.gov (United States)

    da Silva Negreiros Neto, Themístocles; Gardner, Dale; Hallwass, Fernando; Leite, Ana Jéssica Matias; de Almeida, Camila Guimarães; Silva, Laura Nunes; de Araújo Roque, Alan; de Bitencourt, Fernanda Gobbi; Barbosa, Euzébio Guimarães; Tasca, Tiana; Macedo, Alexandre José; de Almeida, Mauro Vieira; Giordani, Raquel Brandt

    2016-10-01

    Crotalaria genus belongs to the subfamily Papilionoideae comprising about 600 species spread throughout tropical, neotropical and subtropical regions. In this study, seeds of Crolatalaria pallida were used to the isolation of usaramine, a pyrrolizidine alkaloid. Thus, Pseudomonas aeruginosa and Staphylococcus epidermidis were utilized as strains to test some activities of this alkaloid, such as antibiofilm and antibacterial. Meanwhile, monocrotaline obtained from Crotalaria retusa seeds, was used as the starting material for synthesis of necine base derivatives with anti-Trichomonas vaginalis potential. Alkaloids were characterized by 1D and 2D NMR techniques and GC-MS analysis. Usaramine demonstrated a highlighted antibiofilm activity against S. epidermidis by reducing more than 50% of biofilm formation without killing the bacteria, thus it could be assumed as a prototype for the development of new antibiofilm molecules for pharmaceutical and industrial purposes. Monocrotaline activity against T. vaginalis was evaluated and results indicated inhibition of 80% on parasite growth at 1mg/mL, in addition, neither cytotoxicity against vaginal epithelial cells nor hemolytic activity were observed. On the other hand, retronecine showed no anti-T. vaginalis activity while azido-retronecine was more active than monocrotaline killing 85% of the parasites at 1mg/mL. In conclusion, pyrrolizidine alkaloids are suggested as promising prototypes for new drugs especially for topical use. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Pyrrolizidine alkaloids in herbal teas for infants, pregnant or lactating women.

    Science.gov (United States)

    Mädge, Inga; Cramer, Luise; Rahaus, Ines; Jerz, Gerold; Winterhalter, Peter; Beuerle, Till

    2015-11-15

    A general contamination of tea with pyrrolizidine alkaloids (PA) has just become known. Here, we report the application and modification of a new HPLC-ESI-MS/MS sum parameter method to quantitate PA content of herbal teas intended for infants, pregnant and lactating women. Using p-toluenesulfonyl isocyanate for derivatization and a stable isotope labeled internal standard, the total retronecine-/heliotridine-type PA content of the samples is expressed in form of a single sum parameter (retronecine equivalents: RE). The new methods were applied to analyze 44 tea samples for such consumer groups. Thirty eight products (86%) were tested PA positive showing PA concentrations ranging from 0 to 391 μg RE/kg (average: 50 μg RE/kg). The dataset is discussed in the view of the current discussion on PA in the food chain with special focus on those particular vulnerable consumer groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Pyrrolizidine alkaloids in the food chain: development, validation, and application of a new HPLC-ESI-MS/MS sum parameter method.

    Science.gov (United States)

    Cramer, Luise; Schiebel, Hans-Martin; Ernst, Ludger; Beuerle, Till

    2013-11-27

    Contamination of food and feed with pyrrolizidine alkaloids is currently discussed as a potential health risk. Here, we report the development of a new HPLC-ESI-MS/MS sum parameter method to quantitate the pyrrolizidine alkaloid content in complex food matrices. The procedure was validated for honey and culinary herbs. Isotopically labeled 7-O-9-O-dibutyroyl-[9,9-(2)H2]-retronecine was synthesized and utilized as an internal standard for validation and quantitation. The total pyrrolizidine alkaloid content of a sample is expressed as a single sum parameter: retronecine equivalents (RE). Ld/Lq for honey was 0.1 μg RE/kg/0.3 μg RE/kg. For culinary herbs, 1.0 μg RE/kg/3.0 μg RE/kg (dry weight, dw) and 0.1 μg RE/kg/0.3 μg RE/kg (fresh weight, fw) were determined, respectively. The new method was applied to analyze 21 herbal convenience products. Fifteen products (71%) were pyrrolizidine alkaloid positive showing pyrrolizidine alkaloid concentrations ranging from 0.9 to 74 μg RE/kg fw.

  17. Recognition of pyrrolizidine alkaloid esters in the invasive aquatic plant Gymnocoronis spilanthoides (Asteraceae).

    Science.gov (United States)

    Boppré, Michael; Colegate, Steven M

    2015-01-01

    The freshwater aquatic plant Gymnocoronis spilanthoides (Senegal tea plant, jazmín del bañado, Falscher Wasserfreund) is an invasive plant in many countries. Behavioural observations of pyrrolizidine alkaloid-pharmacophagous butterflies suggested the presence of pyrrolizidine alkaloids in the plant. To determine whether the attraction of the butterflies to the plant is an accurate indicator of pyrrolizidine alkaloids in G. spilanthoides. The alkaloid fraction of a methanolic extract of G. spilanthoides was analysed using HPLC with electrospray ionisation MS and MS/MS. Two HPLC approaches were used, that is, a C18 reversed-phase column with an acidic mobile phase, and a porous graphitic carbon column with a basic mobile phase. Pyrrolizidine alkaloids were confirmed, with the free base forms more prevalent than the N-oxides. The major alkaloids detected were lycopsamine and intermedine. The porous graphitic carbon HPLC column, with basic mobile phase conditions, resulted in better resolution of more pyrrolizidine alkaloids including rinderine, the heliotridine-based epimer of intermedine. Based on the MS/MS and high-resolution MS data, gymnocoronine was tentatively identified as an unusual C9 retronecine ester with 2,3-dihydroxy-2-propenylbutanoic acid. Among several minor-abundance monoester pyrrolizidines recognised, spilanthine was tentatively identified as an ester of isoretronecanol with the unusual 2-acetoxymethylbutanoic acid. The butterflies proved to be reliable indicators for the presence of pro-toxic 1,2-dehydropyrrolizidine alkaloids in G. spilanthoides, the first aquatic plant shown to produce these alkaloids. The presence of the anti-herbivory alkaloids may contribute to the plant's invasive capabilities and would certainly be a consideration in any risk assessment of deliberate utilisation of the plant. The prolific growth of the plant and the structural diversity of its pyrrolizidine alkaloids may make it ideal for investigating biosynthetic

  18. Pyrrolizidine alkaloids: occurrence, biology, and chemical synthesis.

    Science.gov (United States)

    Robertson, Jeremy; Stevens, Kiri

    2017-01-04

    Covering: 2013 up to the end of 2015This review covers the isolation and structure of new pyrrolizidines; pyrrolizidine biosynthesis; biological activity, including the occurrence of pyrrolizidines as toxic components or contaminants in foods and beverages; and formal and total syntheses of naturally-occurring pyrrolizidine alkaloids and closely related non-natural analogues.

  19. Boric Ester-Type Molten Salt via Dehydrocoupling Reaction

    Directory of Open Access Journals (Sweden)

    Noriyoshi Matsumi

    2014-11-01

    Full Text Available Novel boric ester-type molten salt was prepared using 1-(2-hydroxyethyl-3-methylimidazolium chloride as a key starting material. After an ion exchange reaction of 1-(2-hydroxyethyl-3-methylimidazolium chloride with lithium (bis-(trifluoromethanesulfonyl imide (LiNTf2, the resulting 1-(2-hydroxyethyl-3-methylimidazolium NTf2 was reacted with 9-borabicyclo[3.3.1]nonane (9-BBN to give the desired boric ester-type molten salt in a moderate yield. The structure of the boric ester-type molten salt was supported by 1H-, 13C-, 11B- and 19F-NMR spectra. In the presence of two different kinds of lithium salts, the matrices showed an ionic conductivity in the range of 1.1 × 10−4–1.6 × 10−5 S cm−1 at 51 °C. This was higher than other organoboron molten salts ever reported.

  20. Pyrrolizidine alkaloids from Heliotropium megalanthum.

    Science.gov (United States)

    Reina, M; Gonzalez-Coloma, A; Gutierrez, C; Cabrera, R; Henriquez, J; Villarroel, L

    1998-11-01

    Two pyrrolizidine alkaloids, megalanthonine (1) and lycopsamine (2), have been isolated from Heliotropium megalanthum. The structure of the novel compound 1 was determined by spectroscopic methods. The insecticidal, antifeedant, and antifungal effects of compounds 1 and 2 have been evaluated.

  1. Pyrrolizidine alkaloids from Heliotropium indicum

    International Nuclear Information System (INIS)

    Souza, Joao Sammy N.; Machado, Luciana L.; Pessoa, Otilia D.L.; Lemos, Telma L.G.; Braz-Filho, Raimundo; Overk, Cassia R.; Ping Yao; Cordell, Geoffrey A.

    2005-01-01

    Helindicine (1), a new pyrrolizidine alkaloid with unusual structural features, together with the known lycopsamine (2), were isolated from the roots of Heliotropium indicum (Boraginaceae). The structures were established by a combination of 1D and 2D NMR methods (COSY, HMQC, HMBC, and NOESY) and HREIMS. This is the first report of a lactone pyrrolizidine alkaloid in the genus Heliotropium. Compounds 1 and 2 were assayed for antioxidant activity and showed moderate activity. (author)

  2. Pyrrolizidine alkaloids from Heliotropium indicum

    OpenAIRE

    Souza,João Sammy N.; Machado,Luciana L.; Pessoa,Otília D. L.; Braz-Filho,Raimundo; Overk,Cassia R.; Yao,Ping; Cordell,Geoffrey A.; Lemos,Telma L. G.

    2005-01-01

    Helindicine (1), a new pyrrolizidine alkaloid with unusual structural features, together with the known lycopsamine (2), were isolated from the roots of Heliotropium indicum (Boraginaceae). The structures were established by a combination of 1D and 2D NMR methods (COSY, HMQC, HMBC, and NOESY) and HREIMS. This is the first report of a lactone pyrrolizidine alkaloid in the genus Heliotropium. Compounds 1 and 2 were assayed for antioxidant activity and showed moderate activity. Um novo alcaló...

  3. Pyrrolizidine alkaloids from Heliotropium indicum

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Joao Sammy N.; Machado, Luciana L.; Pessoa, Otilia D.L.; Lemos, Telma L.G. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: tlemos@dqoi.ufc.br; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais; Overk, Cassia R.; Ping Yao; Cordell, Geoffrey A. [University of Illinois at Chicago, IL (United States). College of Pharmacy. Dept. of Medicinal Chemistry and Pharmacognosy

    2005-11-15

    ndicine (1), a new pyrrolizidine alkaloid with unusual structural features, together with the known lycopsamine (2), were isolated from the roots of Heliotropium indicum (Boraginaceae). The structures were established by a combination of 1D and 2D NMR methods (COSY, HMQC, HMBC, and NOESY) and HREIMS. This is the first report of a lactone pyrrolizidine alkaloid in the genus Heliotropium. Compounds 1 and 2 were assayed for antioxidant activity and showed moderate activity. (author)

  4. Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Retrorsine, Leading to DNA Adduct Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Ming W. Chou

    2005-04-01

    tumorigenicity induced by retronecine-type pyrrolizidine alkaloids.

  5. Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Retrorsine, Leading to DNA Adduct Formation In Vivo

    Science.gov (United States)

    Wang, Yu-Ping; Fu, Peter P.; Chou, Ming W.

    2005-01-01

    retronecine-type pyrrolizidine alkaloids. PMID:16705803

  6. Diversity of pyrrolizidine alkaloids in native and invasive Senecio pterophorus (Asteraceae): implications for toxicity.

    Science.gov (United States)

    Castells, Eva; Mulder, Patrick P J; Pérez-Trujillo, Míriam

    2014-12-01

    Changes in plant chemical defenses after invasion could have consequences on the invaded ecosystems by modifying the interactions between plants and herbivores and facilitating invasion success. However, no comprehensive biogeographical studies have yet determined the phenotypic levels of plant chemical defenses, as consumed by local herbivores, covering large distributional areas of a species. Senecio pterophorus is a perennial shrub native to Eastern South Africa, expanded into Western South Africa and introduced into Australia and Europe. As other Asteraceae, S. pterophorus contains pyrrolizidine alkaloids (PAs) toxic to vertebrate and invertebrate herbivores. Here we analyzed S. pterophorus PAs by LC-MS/MS on foliage sampled across its entire distributional range, including the native and all non-native areas. PA concentrations and diversity was very high: we found 57 compounds belonging to 6 distinct necine base-types, including the highly toxic 1,2-unsaturated PAs (retronecine and otonecines) and the less toxic 1,2-saturated PAs (platynecine and rosmarinecines). Plants from different origins diverged in their PA absolute and relative concentrations. Rosmarinine was the most abundant compound in Australia and South Africa, but it was nearly absent in Europe. We characterized three plant chemotypes: retrorsine-senkirkine chemotype in Eastern South Africa, rosmarinine chemotype in Australia and Western South Africa, and acetylseneciphylline chemotype in Europe. PA absolute concentrations were highest in Australia. The increased absolute and relative concentrations of retronecine PAs from Australia and Europe, respectively, indicate that S. pterophorus is potentially more toxic in the invasive range than in the native range. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. New pyrrolizidine alkaloids from Heliotropium crassifolium.

    Science.gov (United States)

    Farsam, H; Yassa, N; Sarkhail, P; Shafiee, A

    2000-05-01

    Heliotropium crassifolium Boiss, (Boraginaceae) from a population of Ilam, western region of Iran was studied for pyrrolizidine alklaoids (PAs). Four alkaloids have been identified: europine 1, europine N-oxide 2 and a new pyrrolizidine alkaloids ilamine 3 and its N-oxide 4, respectively. Their structures were elucidated by IR, 1H-NMR and EIMS data.

  8. Defensive properties of pyrrolizidine alkaloids against microorganisms

    NARCIS (Netherlands)

    Joosten, L.; Van Veen, J.A.

    2011-01-01

    The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores

  9. Assessment of pyrrolizidine alkaloid-induced toxicity in an in vitro screening model.

    Science.gov (United States)

    Li, Yan Hong; Kan, Winnie Lai Ting; Li, Na; Lin, Ge

    2013-11-25

    Pyrrolizidine alkaloids (PAs) are a group of heterocyclic phytotoxins present in a wide range of plants. The consumption of PA-containing medicinal herbs or PA-contaminated foodstuffs has long been reported to cause human hepatotoxicity. However, the degrees of hepatotoxicity of different PAs are unknown, which makes it difficult to determine a universal threshold of toxic dose of individual PAs for safe regulation of PA-containing natural products. The aim of the present study is to develop a simple and convenient in vitro model to assess the hepatotoxicity of different PAs. Six common cytotoxicity assays were used to evaluate the hepatotoxicity of different PAs in human hepatocellular carcinoma HepG2 cells. The combination of MTT and bromodeoxyuridine incorporation (BrdU) assays demonstrated to be a suitable method to evaluate the toxic potencies of various PAs in HepG2 cells, and the results indicated that otonecine-type PA (clivorine: IC₂₀=0.013 ± 0.004 mM (MTT), 0.066 ± 0.031 mM (BrdU)) exhibited significantly higher cytotoxic and anti-proliferative effects than retronecine-type PA (retrorsine: IC₂₀=0.27 ± 0.07 mM (MTT), 0.19 ± 0.03 mM (BrdU)). While as expected, the known less toxic platyphylline-type PA (platyphylline: IC₂₀=0.85 ± 0.11 mM (MTT), 1.01 ± 0.40 mM (BrdU)) exhibited significantly less toxicity. The different cytotoxic and anti-proliferative potencies of various PAs in the same retronecine-type could also be discriminated by using the combined MTT and BrdU assays. In addition, the developed assays were further utilized to test alkaloid extract of Gynura segetum, a senecionine and seneciphylline-containing herb, the overall cytotoxicity of two PAs in the extract was comparable to that of these two PAs tested individually. Using the developed in vitro model, the cytotoxicity of different PAs and the extract of a PA-containing herb were investigated in parallel in one system, and their different hepatotoxic potencies were determined

  10. Importance of Pyrrolizidine Alkaloids in Bee Products

    OpenAIRE

    OZANSOY, GÖRKEM; KÜPLÜLÜ, ÖZLEM

    2017-01-01

    Pyrrolizidinealkaloids are one of the groups of harmful chemicals of plants, which arenatural toxins. Pyrrolizidine alkaloids found in about 3% of all floweringplants of widespread geographical distribution are known as one of thecomponents of the hepatotoxic group of plant origin and referred as hepatotoxicpyrrolizidine alkaloids. According to researches, bee products is regarded asone of the main food sources in the exposure of people to pyrrolizidinealkaloids. Consumption of pyrrolizidine ...

  11. Pyrrolizidine alkaloids in honey: comparison of analytical methods.

    Science.gov (United States)

    Kempf, M; Wittig, M; Reinhard, A; von der Ohe, K; Blacquière, T; Raezke, K-P; Michel, R; Schreier, P; Beuerle, T

    2011-03-01

    Pyrrolizidine alkaloids (PAs) are a structurally diverse group of toxicologically relevant secondary plant metabolites. Currently, two analytical methods are used to determine PA content in honey. To achieve reasonably high sensitivity and selectivity, mass spectrometry detection is demanded. One method is an HPLC-ESI-MS-MS approach, the other a sum parameter method utilising HRGC-EI-MS operated in the selected ion monitoring mode (SIM). To date, no fully validated or standardised method exists to measure the PA content in honey. To establish an LC-MS method, several hundred standard pollen analysis results of raw honey were analysed. Possible PA plants were identified and typical commercially available marker PA-N-oxides (PANOs). Three distinct honey sets were analysed with both methods. Set A consisted of pure Echium honey (61-80% Echium pollen). Echium is an attractive bee plant. It is quite common in all temperate zones worldwide and is one of the major reasons for PA contamination in honey. Although only echimidine/echimidine-N-oxide were available as reference for the LC-MS target approach, the results for both analytical techniques matched very well (n = 8; PA content ranging from 311 to 520 µg kg(-1)). The second batch (B) consisted of a set of randomly picked raw honeys, mostly originating from Eupatorium spp. (0-15%), another common PA plant, usually characterised by the occurrence of lycopsamine-type PA. Again, the results showed good consistency in terms of PA-positive samples and quantification results (n = 8; ranging from 0 to 625 µg kg(-1) retronecine equivalents). The last set (C) was obtained by consciously placing beehives in areas with a high abundance of Jacobaea vulgaris (ragwort) from the Veluwe region (the Netherlands). J. vulgaris increasingly invades countrysides in Central Europe, especially areas with reduced farming or sites with natural restorations. Honey from two seasons (2007 and 2008) was sampled. While only trace amounts of

  12. Tolerating Toxins: Grasshoppers that Feast on Pyrrolizidine Alkaloids §.

    Science.gov (United States)

    Housecroft, Catherine E

    2018-03-30

    The elegant grasshopper (Zonocerus elegans) and the variegated grasshopper (Z. variegatus) are among insects that deliberately consume and store pyrrolizidine alkaloids which are subsequently used in defence mechanisms.

  13. [Analysis of constituents of ester-type gum bases used as natural food additives].

    Science.gov (United States)

    Tada, Atsuko; Masuda, Aino; Sugimoto, Naoki; Yamagata, Kazuo; Yamazaki, Takeshi; Tanamoto, Kenichi

    2007-12-01

    The differences in the constituents of ten ester-type gum bases used as natural food additives in Japan (urushi wax, carnauba wax, candelilla wax, rice bran wax, shellac wax, jojoba wax, bees wax, Japan wax, montan wax, and lanolin) were investigated. Several kinds of gum bases showed characteristic TLC patterns of lipids. In addition, compositions of fatty acid and alcohol moieties of esters in the gum bases were analyzed by GC/MS after methanolysis and hydrolysis, respectively. The results indicated that the varieties of fatty acids and alcohols and their compositions were characteristic for each gum base. These results will be useful for identification and discrimination of the ester-type gum bases.

  14. Effects of antibacterial agents on in vitro ovine ruminal biotransformation of the hepatotoxic pyrrolizidine alkaloid jacobine.

    OpenAIRE

    Wachenheim, D E; Blythe, L L; Craig, A M

    1992-01-01

    Ingestion of pyrrolizidine alkaloids, naturally occurring plant toxins, causes illness and death in a number of animal species. Senecio jacobaea pyrrolizidine alkaloids cause significant economic losses due to livestock poisoning, particularly in the Pacific Northwest. Some sheep are resistant to pyrrolizidine alkaloid poisoning, because ovine ruminal biotransformation detoxifies free pyrrolizidine alkaloids in digesta. Antibacterial agents modify ruminal fermentation. Pretreatment with antib...

  15. Pyrrolizidine alkaloids and diterpenes from Villasenoria orcuttii

    Energy Technology Data Exchange (ETDEWEB)

    Arciniegas, Amira; Perez-Castorena, Ana L.; Gonzalez, Karina; Vivar, Alfonso Romo de, E-mail: alperezc@unam.mx [Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, DF (Mexico); Reyes-Lezama, Marisol [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico-Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, Estado de Mexico (Mexico); Villasenor, Jose Luis [Instituto de Biologia, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, DF, (Mexico)

    2013-07-15

    The chemical study of Villasenoria orcuttii, the only species of the genus Villasenoria, afforded three acyclic diterpenes, two of them described for the first time. Two pyrrolizidine alkaloids, florosenine and floridanine, among other known compounds were also isolated. The absolute configuration of floridanine was determined by X-ray analysis using anomalous dispersion with Cu K{sub {alpha}} radiation, and its {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) data were corrected. (author)

  16. Pyrrolizidine alkaloids of Senecio sp from Peru

    International Nuclear Information System (INIS)

    Ruiz Vasquez, Liliana; Reina Artiles, Matias; Gonzalez Coloma, Azucena; Cabrera Perez, Raimundo; Ruiz Mesia, Lastenia

    2011-01-01

    Six pyrrolizidine alkaloids (PAs) (two saturated macrocyclic, three unsaturated macrocyclic and one unsaturated seco-macrocyclic) were isolated from native Peruvian Senecio species. The structures of these alkaloids were established by a complete NMR spectroscopic analysis, chemical transformations and comparison of their NMR data with those published for similar alkaloids. Three PAs were then tested for antifungal activity against Fusarium moniliforme, F. (Sheldon), F. oxysporum fs. lycopersici (Scheldt) and F. solani (Mart), no significant activity being observed. (author)

  17. Pyrrolizidine alkaloids of Senecio sp from Peru

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Vasquez, Liliana; Reina Artiles, Matias [Instituto de Productos Naturales y Agrobiologia, CSIC, Tenerife (Spain); Gonzalez Coloma, Azucena [Instituto de Ciencias Agrarias (ICA), CSIC, Madrid (Spain); Cabrera Perez, Raimundo [Universidad de La Laguna (ULL), Tenerife (Spain). Unidad de Fitopatologia, Facultad de Biologia; Ruiz Mesia, Lastenia [Universidad Nacional de la Amazonia Peruana (LIPNAA-UNAP), AA.HH. Nuevo San Lorenzo, San Juan, Iquitos (Peru). Lab. de Investigacion en Productos Naturales Antiparasitarios de la Amazonia

    2011-07-01

    Six pyrrolizidine alkaloids (PAs) (two saturated macrocyclic, three unsaturated macrocyclic and one unsaturated seco-macrocyclic) were isolated from native Peruvian Senecio species. The structures of these alkaloids were established by a complete NMR spectroscopic analysis, chemical transformations and comparison of their NMR data with those published for similar alkaloids. Three PAs were then tested for antifungal activity against Fusarium moniliforme, F. (Sheldon), F. oxysporum fs. lycopersici (Scheldt) and F. solani (Mart), no significant activity being observed. (author)

  18. Pyrrolizidine Alkaloids from Onosmakaheirei Teppner (Boraginaceae

    Directory of Open Access Journals (Sweden)

    Ioanna Maria Orfanou

    2016-03-01

    Full Text Available The new pyrrolizidine alkaloid (PA 3΄-O-acetylechinatine N-oxide (7, along with two more known PAs (5, 6, two known flavonoids (3, 4, one known alkannin (1, two known triterpenoids, one known sterol, and allantoin (2 were isolated from the aerial parts of Onosma kaheirei. In addition, the retention indeces of the reduced PAs 6 and 7 were determined in a DB-5 WCOT column, to aid their detection by GC/MS in the future.

  19. Pyrrolizidine alkaloids of senecio sp from Peru

    Directory of Open Access Journals (Sweden)

    Liliana Ruiz Vásquez and Matías Reina Artiles

    2011-01-01

    Full Text Available Six pyrrolizidine alkaloids (PAs (two saturated macrocyclic, three unsaturated macrocyclic and one unsaturated seco-macrocyclic were isolated from native Peruvian Senecio species. The structures of these alkaloids were established by a complete NMR spectroscopic analysis, chemical transformations and comparison of their NMR data with those published for similar alkaloids. Three PAs were then tested for antifungal activity against Fusarium moniliforme, F. (Sheldon, F. oxysporum fs. lycopersici (Scheldt and F. solani (Mart, no significant activity being observed.

  20. Pyrrolizidine alkaloids and diterpenes from Villasenoria orcuttii

    International Nuclear Information System (INIS)

    Arciniegas, Amira; Pérez-Castorena, Ana L.; González, Karina; Vivar, Alfonso Romo de; Reyes-Lezama, Marisol; Villaseñor, José Luis

    2013-01-01

    The chemical study of Villasenoria orcuttii, the only species of the genus Villasenoria, afforded three acyclic diterpenes, two of them described for the first time. Two pyrrolizidine alkaloids, florosenine and floridanine, among other known compounds were also isolated. The absolute configuration of floridanine was determined by X-ray analysis using anomalous dispersion with Cu K α radiation, and its 1 H and 13 C nuclear magnetic resonance (NMR) data were corrected. (author)

  1. Detection of pyrrolizidine alkaloids using flow analysis with both acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence

    International Nuclear Information System (INIS)

    Gorman, Bree A.; Barnett, Neil W.; Bos, Richard

    2005-01-01

    For the first time, analytically useful chemiluminescence was elicited from the reactions of the pyrrolizidine alkaloids. Heliotrine, retronecine, supinine, monocrotaline and echinatine N-oxide yielded chemiluminescence upon reaction with tris(2,2'-bipyridyl)ruthenium(II) whilst lasiocarpine, its N-oxide and supinine elicited light upon reaction with acidic potassium permanganate. Detection limits for heliotrine were 1.25 x 10 -7 M and 9 x 10 -9 M for tris(2,2'-bipyridyl)ruthenium(III) perchlorate with flow injection analysis (FIA) and the silica-immobilised reagent (4-[4-(dichloromethylsilanyl)-butyl]-4'-methyl-2,2'-bipyridine)bis (2,2'-bipyridyl)ruthenium(II) with sequential injection analysis (SIA), respectively. Lasiocarpine was detectable at 1.4 x 10 -7 M using acidic potassium permanganate with FIA. Additionally, the silica-immobilised reagent was optimised with respect to the oxidant (ammonium ceric nitrate) concentration and the aspiration times which afforded a detection limit for codeine of 5 x 10 -10 M using SIA

  2. Detection of pyrrolizidine alkaloids using flow analysis with both acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Bree A. [School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217 (Australia); Barnett, Neil W. [School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217 (Australia)]. E-mail: barnie@deakin.edu.au; Bos, Richard [School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217 (Australia)

    2005-06-13

    For the first time, analytically useful chemiluminescence was elicited from the reactions of the pyrrolizidine alkaloids. Heliotrine, retronecine, supinine, monocrotaline and echinatine N-oxide yielded chemiluminescence upon reaction with tris(2,2'-bipyridyl)ruthenium(II) whilst lasiocarpine, its N-oxide and supinine elicited light upon reaction with acidic potassium permanganate. Detection limits for heliotrine were 1.25 x 10{sup -7} M and 9 x 10{sup -9} M for tris(2,2'-bipyridyl)ruthenium(III) perchlorate with flow injection analysis (FIA) and the silica-immobilised reagent (4-[4-(dichloromethylsilanyl)-butyl]-4'-methyl-2,2'-bipyridine)bis (2,2'-bipyridyl)ruthenium(II) with sequential injection analysis (SIA), respectively. Lasiocarpine was detectable at 1.4 x 10{sup -7} M using acidic potassium permanganate with FIA. Additionally, the silica-immobilised reagent was optimised with respect to the oxidant (ammonium ceric nitrate) concentration and the aspiration times which afforded a detection limit for codeine of 5 x 10{sup -10} M using SIA.

  3. Survey of pyrrolizidine alkaloids in seven varieties of Lappula squarrosa: An alternative source of heart-healthy vegetable oil.

    Science.gov (United States)

    Letsyo, Emmanuel; Jerz, Gerold; Winterhalter, Peter; Horn, Gert; Beuerle, Till

    2016-01-01

    Growing demand for heart-healthy omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is putting stress on wild fish stocks. There is now a compelling need for new and novel sources of non-traditional seed oils containing high stearidonic acid (SDA), a precursor of EPA and DHA, to reduce this demand. The seed oil of Lappula squarrosa is one of the richest sources of SDA, however, the plant has been found to contain toxic pyrrolizidine alkaloids (PAs). In this study, the PA concentrations of seven varieties (A-G) of Lappula squarrosa were analysed to determine the most suitable varieties for commercial seed oil production. Whilst the clean-up procedure for the PAs in the roots, flowers and leaves was on diatomaceous earth columns and finally analysed with GC-EI-MS, that of the seeds was through SCX-SPE and a more sensitive HPLC-ESI-MS/MS sum parameter method was used in the analysis. Altogether six PAs (supinine, amabiline, intermedine, lycopsamine and 3'-acetylintermedine) including one unknown retronecine-type PA were identified with variety C recording the lowest total PA concentration (4.64 mg seneciphylline equivalents (SE)/g dry weight (d.w.)). Besides, the total PA concentrations in the seeds of Lappula squarrosa varieties ranged between 2.88 μg PA/g and 10.36 μg PA/g d.w. Based solely on overall PA concentrations and PA distribution, variety D (5.95 mg SE/g d.w.) was found to be a potential candidate for commercial seed oil cultivation. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of the lycopsamine type in three Boraginaceae species.

    Science.gov (United States)

    Frölich, Cordula; Ober, Dietrich; Hartmann, Thomas

    2007-04-01

    Three species of the Boraginaceae were studied: greenhouse-grown plants of Heliotropium indicum and Agrobacterium rhizogenes transformed roots cultures (hairy roots) of Cynoglossum officinale and Symphytum officinale. The species-specific pyrrolizidine alkaloid (PA) profiles of the three systems were established by GC-MS. All PAs are genuinely present as N-oxides. In H. indicum the tissue-specific PA distribution revealed the presence of PAs in all tissues with the highest levels in the inflorescences which in a flowering plant may account for more than 70% of total plant alkaloid. The sites of PA biosynthesis vary among species. In H. indicum PAs are synthesized in the shoot but not roots whereas they are only made in shoots for C. officinale and in roots of S. officinale. Classical tracer studies with radioactively labelled precursor amines (e.g., putrescine, spermidine and homospermidine) and various necine bases (trachelanthamidine, supinidine, retronecine, heliotridine) and potential ester alkaloid intermediates (e.g., trachelanthamine, supinine) were performed to evaluate the biosynthetic sequences. It was relevant to perform these comparative studies since the key enzyme of the core pathway, homospermidine synthase, evolved independently in the Boraginaceae and, for instance, in the Asteraceae [Reimann, A., Nurhayati, N., Backenkohler, A., Ober, D., 2004. Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16, 2772-2784.]. These studies showed that the core pathway for the formation of trachelanthamidine from putrescine and spermidine via homospermidine is common to the pathway in Senecio ssp. (Asteraceae). In both pathways homospermidine is further processed by a beta-hydroxyethylhydrazine sensitive diamine oxidase. Further steps of PA biosynthesis starting with trachelanthamidine as common precursor occur in two successive stages. Firstly, the necine bases are structurally modified and either

  5. Pyrrolizidine alkaloids in honey: comparison of analytical methods

    NARCIS (Netherlands)

    Kempf, M.; Wittig, M.; Reinhard, A.; Ohe, von der K.; Blacquière, T.; Raezke, K.P.; Michel, R.; Schreier, P.; Beuerle, T.

    2011-01-01

    Pyrrolizidine alkaloids (PAs) are a structurally diverse group of toxicologically relevant secondary plant metabolites. Currently, two analytical methods are used to determine PA content in honey. To achieve reasonably high sensitivity and selectivity, mass spectrometry detection is demanded. One

  6. Activity of pyrrolizidine alkaloids against biofilm formation and Trichomonas vaginalis

    Science.gov (United States)

    Crotalaria genus belongs to the subfamily Papilionoideae comprising about 600 species spread throughout tropical, neotropical and subtropical regions. In this study, seeds of Crolatalaria pallida were used to the isolation of usaramine, a pyrrolizidine alkaloid. Thus, Pseudomonas aeruginosa and Stap...

  7. Interaction between Ester-Type Tea Catechins and Neutrophil Gelatinase-Associated Lipocalin: Inhibitory Mechanism.

    Science.gov (United States)

    Zhang, Wei; Li, Xiao; Hua, Fang; Chen, Wei; Wang, Wei; Chu, Gang-Xiu; Bao, Guan-Hu

    2018-02-07

    Tea is thought to alleviate neurotoxicity due to the antioxidative effect of ester-type tea catechins (ETC). Neutrophil gelatinase-associated lipocalin (NGAL) can sensitize β-amyloid (Aβ) induced neurotoxicity, and inhibitors of NGAL may relieve associated symptoms. As such, the interactions of ETC with NGAL were investigated by fluorescence spectrometry and molecular simulation. NGAL fluorescence is quenched regularly when being added with six processing types of tea infusion (SPTT) and ETC. Thermodynamic analyses suggest that ETC with more catechol moieties has a stronger binding capacity with NGAL especially in the presence of Fe 3+ . (-)-Epicatechin 3-O-caffeoate (ECC), a natural product isolated from Zijuan green tea, shows the strongest binding ability with NGAL (K d = 15.21 ± 8.68 nM in the presence of Fe 3+ ). All ETC are effective in protecting nerve cells against H 2 O 2 or Aβ 1-42 induced injury. The inhibitory mechanism of ETC against NGAL supports its potential use in attenuation of neurotoxicity.

  8. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore.

    Science.gov (United States)

    Martins, Carlos H Z; Cunha, Beatriz P; Solferini, Vera N; Trigo, José R

    2015-01-01

    Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense.

  9. Differential induction of apoptosis and autophagy by pyrrolizidine alkaloid clivorine in human hepatoma Huh-7.5 cells and its toxic implication

    Science.gov (United States)

    Fang, Shoucai; Ho, Wenzhe; Chen, Hui; Liang, Hao; Ye, Li; Tang, Jun

    2017-01-01

    Growing evidence suggests that the pyrrolizidine alkaloids (PAs)-induced hepatotoxicity is mediated by multiple cell death/defence modalities. However, the detailed mechanisms are still lacking. In this study, the hepatotoxic effects of four PAs including three retronecine-type ones (senecionine, seneciphylline and monocrotaline) and one otonecine-type (clivorine) on the proliferation of Huh-7.5 cells and the possible mechanisms were investigated. The results showed that all the PAs could inhibit cell proliferation and induce apoptosis in a concentration-dependent manner. Among them clivorine was the most significant one. In addition to its effect on apoptosis, clivorine treatment could promote autophagy in Huh-7.5 cells, as evidenced by the accumulation of autophagosomes, the enhancement of LC3B expression at the concentrations close to its IC0 value, and the increased conversion of LC3B-I to LC3B-II in the presence of lysosomal inhibitor (chloroquine) and decreased formation of green fluorescent protein (GFP)-LC3 positive puncta in the presence of autophagic sequestration inhibitor (3-methyladenine). Among the other tested PAs, senecionine and seneciphylline also activated autophagy at the same concentrations used for clivorine but monocrotaline did not. Furthermore, our study demonstrated that suppression or enhancement of autophagy resulted in the remarkable enhancement or suppression of senecionine, seneciphylline and clivorine-induced apoptosis at the concentration close to the IC10 for clivorine, respectively, indicating a protective role of autophagy against the PA-induced apoptosis at the low level of exposure. Collectively, our data suggest that PAs in different structures may exert different toxic disturbances on the liver cells. Apoptosis may be one of the most common models of the PA-induced cytotoxicity, while autophagy may be a structure-dependent defence model in the early stage of PA intoxication. Differential induction of apoptosis and autophagy

  10. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore.

    Directory of Open Access Journals (Sweden)

    Carlos H Z Martins

    Full Text Available Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae sequester N-oxides of pyrrolizidine alkaloids (PAs from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina, and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves which is reflected in the adult defense.

  11. Budd-Chiari syndrome secondary to toxic pyrrolizidine alkaloid exposure.

    Science.gov (United States)

    Wu, Janet S W; Poon, W T; Ma, C K; Chen, M L; Pang, K S; Mak, Tony W L; Chan, H B

    2013-12-01

    In this report, we describe a case of pyrrolizidine alkaloid-related Budd-Chiari syndrome in Hong Kong. A 10-month-old boy presented with ascites, right pleural effusion, and hepatomegaly after consumption of herbal drinks for 3 months. His clinical (including imaging) features were compatible with Budd-Chiari syndrome. Budd-Chiari syndrome is a rare disease entity in paediatric patients. In our case, extensive workup performed to look for the underlying cause of Budd-Chiari syndrome was unrevealing, except for toxic pyrrolizidine alkaloid exposure in his herbal drinks.

  12. Pyrrolizidine alkaloids from Heliotropium transoxanum Bunge

    Directory of Open Access Journals (Sweden)

    M. R. Delnavazi

    2016-02-01

    Full Text Available Background and objectives: The plants belonging to the genus Heliotropium L. (Boraginaceae are the main sources of toxic pyrrolizidine alkaloids (PAs. In the present study, we have investigated the PAs of the aerial parts of Heliotropium transoxanum Bunge, a perennial species native to Iran. Methods: Silica gel column chromatography and silica gel PTLC were applied for the isolation of PAs present in the total methanol extract of H. transoxanum. The structures of the isolated compounds were identified using 1H-NMR, 13C-NMR and EIMS spectral analyses. Results: Three PAs, heliotrine (1, lasiocarpine (2 and heliotrine N-oxide (3,with known mutagenic and genotoxic properties, were isolated from the aerial parts of H. transoxanum. Conclusion: The results of this study on the presence of toxic PAs in H. transoxanum introduce this herb as a poisonous species and also suggest it as an appropriate source for the isolation of heliotrine and lasiocarpine for further toxicological and pharmacological studies.

  13. Pyrrolizidine alkaloids in medicinal tea of Ageratum conyzoides

    Directory of Open Access Journals (Sweden)

    Cristiane F. Bosi

    2013-06-01

    Full Text Available It is now widely-recognized that the view that herbal remedies have no adverse effects and/or toxicity is incorrect; some traditionally-used plants can present toxicity. The well-established popular use of Ageratum conyzoides has led to its inclusion in a category of medicinal crude drugs created by the Brazilian Health Surveillance Agency. Ageratum belongs to the Eupatorieae tribe, Asteraceae, and is described as containing toxic pyrrolizidine alkaloids. Aqueous extracts of Ageratum conyzoides L. harvested in Brazil (commercial, flowering and non-flowering samples were prepared according to the prescribed method and analyzed by HPLC-HRMS. The pyrrolizidine alkaloids lycopsamine, dihydrolycopsamine, and acetyl-lycopsamine and their N-oxides, were detected in the analyzed extracts, lycopsamine and its N-oxide being known hepatotoxins and tumorigens. Together with the pyrrolizidine alkaloids identified by HPLC-HRMS, thirteen phenolic compounds were identified, notably, methoxylated flavonoids and chromenes. Toxicological studies on A. conyzoides are necessary, as is monitoring of its clinical use. To date, there are no established safety guidelines on pyrrolizidine alkaloids-containing plants, and their use in Brazil.

  14. Pyrrolizidine alkaloids in medicinal tea of Ageratum conyzoides

    Directory of Open Access Journals (Sweden)

    Cristiane F. Bosi

    2013-03-01

    Full Text Available It is now widely-recognized that the view that herbal remedies have no adverse effects and/or toxicity is incorrect; some traditionally-used plants can present toxicity. The well-established popular use of Ageratum conyzoides has led to its inclusion in a category of medicinal crude drugs created by the Brazilian Health Surveillance Agency. Ageratum belongs to the Eupatorieae tribe, Asteraceae, and is described as containing toxic pyrrolizidine alkaloids. Aqueous extracts of Ageratum conyzoides L. harvested in Brazil (commercial, flowering and non-flowering samples were prepared according to the prescribed method and analyzed by HPLC-HRMS. The pyrrolizidine alkaloids lycopsamine, dihydrolycopsamine, and acetyl-lycopsamine and their N-oxides, were detected in the analyzed extracts, lycopsamine and its N-oxide being known hepatotoxins and tumorigens. Together with the pyrrolizidine alkaloids identified by HPLC-HRMS, thirteen phenolic compounds were identified, notably, methoxylated flavonoids and chromenes. Toxicological studies on A. conyzoides are necessary, as is monitoring of its clinical use. To date, there are no established safety guidelines on pyrrolizidine alkaloids-containing plants, and their use in Brazil.

  15. Pyrrolizidine alkaloids from Bulgarian species of the genus Senecio

    Directory of Open Access Journals (Sweden)

    NADEZHDA KOSTOVA

    2006-12-01

    Full Text Available Nine Bulgarian species from the genus Senecio were studied phytochemically and/or by GC-MS analysis. Senecivernine-N-oxide was isolated and identified by spectral data for the first time. Different types of pyrrolizidine alkaloids were tested for cytotoxicity on murine lymphocytes. At a concentration of 100 µg/ml, the alkaloid retroisosenine showed immunosuppressive effect.

  16. Pyrrolizidine alkaloids from Senecio jacobaea affect fungal growth

    NARCIS (Netherlands)

    Hol, W.H.G.; Van Veen, J.A.

    2002-01-01

    We investigated the growth-reducing effects of pyrrolizidine alkaloids (PAs) from Senecio jacobaea on nine plant-associated fungi (five strains of Fusarium oxysporum, two of F. sambucinum, and two of Trichoderma sp). Fungal growth was monitored on water agar media containing different concentrations

  17. Independent Recruitment of a Flavin-Dependent Monooxygenase for Safe Accumulation of Sequestered Pyrrolizidine Alkaloids in Grasshoppers and Moths

    OpenAIRE

    Wang, Linzhu; Beuerle, Till; Timbilla, James; Ober, Dietrich

    2012-01-01

    Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide,...

  18. Molekulare Identifizierung und Charakterisierung der Flavin-abhängigen Monooxygenasen in verschiedenen Pyrrolizidin-Alkaloid-adaptierten Insekten

    OpenAIRE

    Wang, Linzhu

    2013-01-01

    Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respect...

  19. Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety.

    Science.gov (United States)

    Moreira, Rute; Pereira, David M; Valentão, Patrícia; Andrade, Paula B

    2018-06-05

    Pyrrolizidine alkaloids (PA) are widely distributed in plants throughout the world, frequently in species relevant for human consumption. Apart from the toxicity that these molecules can cause in humans and livestock, PA are also known for their wide range of pharmacological properties, which can be exploited in drug discovery programs. In this work we review the current body of knowledge regarding the chemistry, toxicology, pharmacology and food safety of PA.

  20. Acetylcholinesterase inhibitory activity of pyrrolizidine alkaloids from Echium confusum Coincy.

    Science.gov (United States)

    Benamar, Houari; Tomassini, Lamberto; Venditti, Alessandro; Marouf, Abderrazak; Bennaceur, Malika; Serafini, Mauro; Nicoletti, Marcello

    2017-06-01

    Four pyrrolizidine alkaloids, namely 7-O-angeloyllycopsamine N-oxide 1, echimidine N-oxide 2, echimidine 3 and 7-O-angeloylretronecine 4, were isolated for the first time from the whole plant ethanolic extract of Echium confusum Coincy, through bioassay-guided approach. Their structures were determined by spectroscopic means. All the isolates compounds showed moderate activities in inhibiting AChE, with IC50 0.276-0.769.

  1. Pyrrolizidine and tropane alkaloids in teas and the herbal teas peppermint, rooibos and chamomile in the Israeli market.

    Science.gov (United States)

    Shimshoni, Jakob Avi; Duebecke, Arne; Mulder, Patrick P J; Cuneah, Olga; Barel, Shimon

    2015-01-01

    Dehydro pyrrolizidine alkaloids (dehydro PAs) are carcinogenic phytotoxins prevalent in the Boraginaceae, Asteraceae and Fabaceae families. Dehydro PAs enter the food and feed chain by co-harvesting of crops intended for human and animal consumption as well as by carry-over into animal-based products such as milk, eggs and honey. Recently the occurrence of dehydro PAs in teas and herbal teas has gained increasing attention from the EU, due to the high levels of dehydro PAs found in commercially available teas and herbal teas in Germany and Switzerland. Furthermore, several tropane alkaloids (TAs, e.g. scopolamine and hyoscyamine) intoxications due to the consumption of contaminated herbal teas were reported in the literature. The aim of the present study was to determine the dehydro PAs and TAs levels in 70 pre-packed teabags of herbal and non-herbal tea types sold in supermarkets in Israel. Chamomile, peppermint and rooibos teas contained high dehydro PAs levels in almost all samples analysed. Lower amounts were detected in black and green teas, while no dehydro PAs were found in fennel and melissa herbal teas. Total dehydro PAs concentrations in chamomile, peppermint and rooibos teas ranged from 20 to 1729 μg/kg. Except for black tea containing only mono-ester retrorsine-type dehydro PAs, all other teas and herbal teas showed mixed patterns of dehydro PA ester types, indicating a contamination by various weed species during harvesting and/or production. The TA levels per teabag were below the recommended acute reference dose; however, the positive findings of TAs in all peppermint tea samples warrant a more extensive survey. The partially high levels of dehydro PAs found in teas and herbal teas present an urgent warning letter to the regulatory authorities to perform routine quality control analysis and implement maximum residual levels for dehydro PAs.

  2. Recognition of pyrrolizidine alkaloid esters in the invasive aquatic plant Gymnocoronis spilanthoides (Asteraceae)

    Science.gov (United States)

    Introduction – The freshwater aquatic plant Gymnocoronis spilanthoides (Senegal tea plant, jazmín del bañado, Falscher Wasserfreund) is an invasive plant in many countries. Behavioural observations of pyrrolizidine alkaloid-pharmacophagous butterflies suggested the presence of pyrrolizidine alkaloid...

  3. Soil-borne microorganisms and soil-type affect pyrrolizidine alkaloids in Jacobaea vulgaris

    NARCIS (Netherlands)

    Joosten, L.; Mulder, P.P.J.; Klinkhamer, P.G.L.; Van Veen, J.A.

    2009-01-01

    Secondary metabolites like pyrrolizidine alkaloids (PAs) play a crucial part in plant defense. We studied the effects of soil-borne microorganisms and soil-type on pyrrolizidine alkaloids in roots and shoots of Jacobaea vulgaris. We used clones of two genotypes from a dune area (Meijendel),

  4. A concise route to pyrrolizidine alkaloids bearing the 1,2-amino alcohol functionality

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, C.; Aizpurua, J.M.; Roman, P.; Luque, A.; Martinez-Ripoll, M. [Facultad de Quimica, Departamento de Quimica Organica, Universidad del Pais Vascom San Sebastian (Spain)

    1996-10-01

    The first entry to optically pure 4-amino-3-hydroxy-pyrrolizidine and 4-amino-pyrrolizidine alkaloid frameworks is provided by a highly diastereoselective [2+2] cycloaddition of alkoxyketenes to N-Boc-prolinal imines as the key reaction.

  5. Ornithine decarboxylase, polyamines, and pyrrolizidine alkaloids in senecio and crotalaria.

    Science.gov (United States)

    Birecka, H; Birecki, M; Cohen, E J; Bitonti, A J; McCann, P P

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here-using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors-endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence-with relatively very high levels of these compounds-in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.

  6. Pyrrolizidine alkaloid-derived DNA adducts are common toxicological biomarkers of pyrrolizidine alkaloid N-oxides.

    Science.gov (United States)

    He, Xiaobo; Xia, Qingsu; Woodling, Kellie; Lin, Ge; Fu, Peter P

    2017-10-01

    There are 660 pyrrolizidine alkaloids (PAs) and PA N-oxides present in the plants, with approximately half being possible carcinogens. We previously reported that a set of four PA-derived DNA adducts is formed in the liver of rats administered a series of hepatocarcinogenic PAs and a PA N-oxide. Based on our findings, we hypothesized that this set of DNA adducts is a common biological biomarker of PA-induced liver tumor formation. In this study, we determined that rat liver microsomal metabolism of five hepatocarcinogenic PAs (lasiocarpine, retrorsine, riddelliine, monocrotaline, and heliotrine) and their corresponding PA N-oxides produced the same set of DNA adducts. Among these compounds, lasiocarpine N-oxide, retrorsine N-oxide, monocrotaline N-oxide, and heliotrine N-oxide are for first time shown to be able to produce these DNA adducts. These results further support the role of these DNA adducts as potential common biomarkers of PA-induced liver tumor initiation. Copyright © 2017. Published by Elsevier B.V.

  7. Pyrrolizidine alkaloid-derived DNA adducts are common toxicological biomarkers of pyrrolizidine alkaloid N-oxides

    Directory of Open Access Journals (Sweden)

    Xiaobo He

    2017-10-01

    Full Text Available There are 660 pyrrolizidine alkaloids (PAs and PA N-oxides present in the plants, with approximately half being possible carcinogens. We previously reported that a set of four PA-derived DNA adducts is formed in the liver of rats administered a series of hepatocarcinogenic PAs and a PA N-oxide. Based on our findings, we hypothesized that this set of DNA adducts is a common biological biomarker of PA-induced liver tumor formation. In this study, we determined that rat liver microsomal metabolism of five hepatocarcinogenic PAs (lasiocarpine, retrorsine, riddelliine, monocrotaline, and heliotrine and their corresponding PA N-oxides produced the same set of DNA adducts. Among these compounds, lasiocarpine N-oxide, retrorsine N-oxide, monocrotaline N-oxide, and heliotrine N-oxide are for first time shown to be able to produce these DNA adducts. These results further support the role of these DNA adducts as potential common biomarkers of PA-induced liver tumor initiation.

  8. Mass-spectrometry-directed analysis and purification of pyrrolizidine alkaloid cis/trans isomers in Gynura japonica.

    Science.gov (United States)

    Fang, Lianxiang; Xiong, Aizhen; Yang, Xiao; Cheng, Wenzhi; Yang, Li; Wang, Zhengtao

    2014-08-01

    Pyrrolizidine alkaloids are highly hepatotoxic natural chemicals that produce irreversible chronic and acute hepatotoxic effects on human beings. Purification of large amounts of pyrrolizidine alkaloids is necessary for toxicity studies. In this study, an efficient method for targeted analysis and purification of pyrrolizidine alkaloid cis/trans isomers from herbal materials was developed for the first time. Targeted analysis of the hepatotoxic pyrrolizidine alkaloids was performed by liquid chromatography with tandem mass spectrometry (precursor ion scan and daughter ion scan), and the purification of pyrrolizidine alkaloids was achieved with a mass-directed auto purification system. The extraction and preparative liquid chromatography conditions were optimized. The developed method was applied to analysis of Gynura japonica (Thunb.) Juel., a herbal medicine traditionally used for detumescence and relieving pain but is potentially hepatotoxic as it contains pyrrolizidine alkaloids. Twelve pyrrolizidine alkaloids (six cis/trans isomer pairs) were identified with reference compounds or characterized by liquid chromatography with tandem mass spectrometry, and five individual pyrrolizidine alkaloids, including (E)-seneciphylline, seneciphylline, integerrimine, senecionine, and seneciphyllinine, were prepared from G. japonica roots with high efficiency. The results of this work provide a new technique for the preparation of large amounts of pyrrolizidine alkaloid reference substances, which will also benefit toxicological studies of pyrrolizidine alkaloids and treatments for pyrrolizidine alkaloid-induced toxicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Carry-over of pyrrolizidine alkaloids from feed to milk in dairy cows.

    Science.gov (United States)

    Hoogenboom, L A P; Mulder, P P J; Zeilmaker, M J; van den Top, H J; Remmelink, G J; Brandon, E F A; Klijnstra, M; Meijer, G A L; Schothorst, R; Van Egmond, H P

    2011-03-01

    Pyrrolizidine alkaloids are toxins present in many plants belonging to the families of Asteraceae, Boraginaceae and Fabaceae. Particularly notorious are pyrrolizidine alkaloids present in ragwort species (Senecio), which are held responsible for hepatic disease in horses and cows and may lead to the death of the affected animals. In addition, these compounds may be transferred to edible products of animal origin and as such be a threat for the health of consumers. To investigate the possible transfer of pyrrolizidine alkaloids from contaminated feed to milk, cows were put on a ration for 3 weeks with increasing amounts (50-200 g day(-1)) of dried ragwort. Milk was collected and sampled twice a day; faeces and urine twice a week. For milk, a dose-related appearance of pyrrolizidine alkaloids was found. Jacoline was the major component in milk despite being a minor component in the ragwort material. Practically no N-oxides were observed in milk, notwithstanding the fact that they constituted over 80% of the pyrrolizidine alkaloids in ragwort. The overall carry-over of the pyrrolizidine alkaloids was estimated to be only around 0.1%, but for jacoline 4%. Notwithstanding the low overall carry-over, this may be relevant for consumer health considering the genotoxic and carcinogenic properties demonstrated for some of these compounds. Analysis of the faeces and urine samples indicated that substantial metabolism of pyrrolizidine alkaloids is taking place. The toxicity and potential transfer of metabolites to milk is unknown and remains to be investigated.

  10. 6-Azido hyacinthacine A2 gives a straightforward access to the first multivalent pyrrolizidine architectures.

    Science.gov (United States)

    D'Adamio, Giampiero; Parmeggiani, Camilla; Goti, Andrea; Moreno-Vargas, Antonio J; Moreno-Clavijo, Elena; Robina, Inmaculada; Cardona, Francesca

    2014-08-28

    The synthesis of the first multivalent pyrrolizidine iminosugars is reported. The key azido intermediates 4 and 31 were prepared after suitable synthetic elaboration of the cycloadduct obtained from 1,3-dipolar cycloaddition of D-arabinose derived nitrone to dimethylacrylamide. The key step of the strategy was the stereoselective installation of an azido moiety at C-6 of the pyrrolizidine skeleton. The click reaction with different monovalent and dendrimeric alkyne scaffolds allowed the preparation of a library of new mono- and multivalent pyrrolizidine compounds that were preliminarily assayed as glycosidase inhibitors towards a panel of commercially available glycosyl hydrolases.

  11. Diversity of Pyrrolizidine Alkaloids in the Boraginaceae Structures, Distribution, and Biological Properties

    Directory of Open Access Journals (Sweden)

    Assem El-Shazly

    2014-04-01

    Full Text Available Among the diversity of secondary metabolites which are produced by plants as means of defence against herbivores and microbes, pyrrolizidine alkaloids (PAs are common in Boraginaceae, Asteraceae and some other plant families. Pyrrolizidine alkaloids are infamous as toxic compounds which can alkylate DNA und thus cause mutations and even cancer in herbivores and humans. Almost all genera of the family Boraginaceae synthesize and store this type of alkaloids. This review reports the available information on the present status (literature up to early 2014 of the pyrrolizidine alkaloids in the Boraginaceae and summarizes the topics structure, distribution, chemistry, chemotaxonomic significance, and biological properties.

  12. Toxicoproteomic assessment of liver responses to acute pyrrolizidine alkaloid intoxication in rats.

    Science.gov (United States)

    Li, Yan-Hong; Tai, William Chi-Shing; Khan, Imran; Lu, Cheng; Lu, Yao; Wong, Wing-Yan; Chan, Wood-Yee; Wendy Hsiao, Wen-Luan; Lin, Ge

    2018-04-03

    A toxicoproteomic study was performed on liver of rats treated with retrorsine (RTS), a representative hepatotoxic pyrrolizidine alkaloid at a toxic dose (140 mg/kg) known to cause severe acute hepatotoxicity. By comparing current data with our previous findings in mild liver lesions of rats treated with a lower dose of RTS, seven proteins and three toxicity pathways of vascular endothelial cell death, which was further verified by observed sinusoidal endothelial cell losses, were found uniquely associated with retrorsine-induced hepatotoxicity. This toxicoproteomic study of acute pyrrolizidine alkaloid intoxication lays a foundation for future investigation to delineate molecular mechanisms of pyrrolizidine alkaloid-induced hepatotoxicity.

  13. Immunoassay approach for diagnosis of exposure to pyrrolizidine alkaloids.

    Science.gov (United States)

    Li, Na; Zhang, Fan; Lian, Wei; Wang, Huali; Zheng, Jiang; Lin, Ge

    2017-07-03

    Numerous pyrrolizidine alkaloid (PA) poisoning cases have been documented worldwide. Protein covalent binding with reactive metabolites generated from metabolic activation of PAs to form pyrrole-protein adducts is suggested to be a primary mechanism of PA-induced toxicities. The present study aimed to develop antibodies for diagnosis of PA exposure. Polyclonal antibodies were raised in rabbits and proven to specifically recognize pyrrole-protein adducts regardless of amino acid residues modified by the reactive metabolites of PAs. The developed antibodies were successfully applied to detect pyrrole-protein adducts in blood samples obtained from PA-treated rats and exhibited a potential for the clinical diagnosis of PA exposure.

  14. Structure, Biosynthesis, and Occurrence of Bacterial Pyrrolizidine Alkaloids.

    Science.gov (United States)

    Schimming, Olivia; Challinor, Victoria L; Tobias, Nicholas J; Adihou, Hélène; Grün, Peter; Pöschel, Laura; Richter, Christian; Schwalbe, Harald; Bode, Helge B

    2015-10-19

    Pyrrolizidine alkaloids (PAs) are widespread plant natural products with potent toxicity and bioactivity. Herein, the identification of bacterial PAs from entomopathogenic bacteria using differential analysis by 2D NMR spectroscopy (DANS) and mass spectrometry is described. Their biosynthesis was elucidated to involve a non-ribosomal peptide synthetase. The occurrence of these biosynthesis gene clusters in Gram-negative and Gram-positive bacteria indicates an important biological function in bacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of alcohol on skin permeation and metabolism of an ester-type prodrug in Yucatan micropig skin.

    Science.gov (United States)

    Fujii, Makiko; Ohara, Rieko; Matsumi, Azusa; Ohura, Kayoko; Koizumi, Naoya; Imai, Teruko; Watanabe, Yoshiteru

    2017-11-15

    We studied the effect that three alcohols, ethanol (EA), propanol (PA), and isopropanol (IPA), have on the skin permeation of p-hydroxy benzoic acid methyl ester (HBM), a model ester-type prodrug. HBM was applied to Yucatan micropig skin in a saturated phosphate buffered solution with or without 10% alcohol, and HBM and related materials in receptor fluid and skin were determined with HPLC. In the absence of alcohol, p-hydroxy benzoic acid (HBA), a metabolite of HBM, permeated the skin the most. The three alcohols enhanced the penetration of HBM at almost the same extent. The addition of 10% EA or PA to the HBM solution led to trans-esterification into the ethyl ester or propyl ester of HBA, and these esters permeated skin as well as HBA and HBM did. In contrast, the addition of 10% IPA promoted very little trans-esterification. Both hydrolysis and trans-esterification in the skin S9 fraction were inhibited by BNPP, an inhibitor of carboxylesterase (CES). Western blot and native PAGE showed the abundant expression of CES in micropig skin. Both hydrolysis and trans-esterification was simultaneously catalyzed by CES during skin permeation. Our data indicate that the alcohol used in dermal drug preparations should be selected not only for its ability to enhance the solubility and permeation of the drug, but also for the effect on metabolism of the drug in the skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Phytotoxicity Assessment of Certain Phytochemical Products Containing Pyrrolizidine Alkaloids

    Directory of Open Access Journals (Sweden)

    Cristina Șeremet Oana

    2013-10-01

    Full Text Available Introduction: Tussilago farfara (coltsfoot, Petasites hybridus (common butterbur, Senecio vernalis (eastern groundsel and Symphytum officinale (comfrey are species traditionally used in phytotherapy that besides the therapeutic compounds contain toxic pyrrolizidine alkaloids (PAs. The aim of the paper is to determine the total PAs content and the phytotoxicity of the above species. Material and methods: The quantitative determination of pyrrolizidine alkaloids is based on the stoichiometric reaction of protonated alkaloids with methyl orange. In acidic conditions the dye is released from the complex and its color is assessed spectrophotometrically using a linear regression curve of senecionine as a standard. The phytotoxicity was assessed by Triticum bioassay that studies the effect of the extracts (0.001-5.00%, w/v upon root elongation (inhibitory concentration - IC50 and on the karyokinetic film. Results: The highest amount of total PAs was found in Senecio vernalis (654.8 ± 35.96 μg/g dry plant and the lowest in Petasites hybridus. The lowest IC50 was found for Tussilago farfara followed by Petasites hybridus, Senecio vernalis, and Symphytum officinale. The results were supported by microscopic examination. Conclusions: The results of the spectrophotometric assay are consistent with the ones found in the literature. All extracts inhibited the elongation of the main root of wheat caryopses, however, no correlation between phytotoxicity and the PAs concentration could be emphasized

  17. Pyrrolizidine alkaloids in food and feed on the Belgian market.

    Science.gov (United States)

    Huybrechts, Bart; Callebaut, Alfons

    2015-01-01

    Pyrrolizidine alkaloids (PAs) are widely distributed plant toxins with species dependent hepatotoxic, carcinogenic, genotoxic and pneumotoxic risks. In a recent European Food Safety Authority (EFSA) opinion, only two data sets from one European country were received for honey, while one feed data set was included. No data are available for food or feed samples from the Belgian market. We developed an LC-MS/MS method, which allowed the detection and quantification of 16 PAs in a broad range of matrices in the sub ng g(-1) range. The method was validated in milk, honey and hay and applied to honey, tea (Camellia sinensis), scented tea, herbal tea, milk and feed samples bought on the Belgian market. The results confirmed that tea, scented tea, herbal tea and honey are important food sources of pyrrolizidine alkaloid contamination in Belgium. Furthermore, we detected PAs in 4 of 63 commercial milk samples. A high incidence rate of PAs in lucerne (alfalfa)-based horse feed and in rabbit feed was detected, while bird feed samples were less contaminated. We report for the first time the presence of monocrotaline, intermedine, lycopsamine, heliotrine and echimidine in cat food.

  18. The effects of comfrey derived pyrrolizidine alkaloids on rat liver.

    Science.gov (United States)

    Yeong, M L; Clark, S P; Waring, J M; Wilson, R D; Wakefield, S J

    1991-01-01

    Three groups of young adult rats were fed pyrrolizidine alkaloids derived from Russian comfrey to study the effects of the herb on the liver. Group I animals received a single dose of 200 mg/kg body wt, Group II 100 mg/kg three times a week for 3 weeks and Group III 50 mg/kg three times a week for 3 weeks. All rats showed light and electron-microscopic evidence of liver damage, the severity of which was dose dependent. There was swelling of hepatocytes and hemorrhagic necrosis of perivenular cells. There was a concomitant loss of sinusoidal lining cells with disruption of sinusoidal wall and the sinusoids were filled with cellular debris, hepatocyte organelles and red blood cells. Extravasation of red blood cells was evident. Terminal hepatic venules were narrowed by intimal proliferation, and in Group II and III, reiculin fibres radiated from these vessels. These appearances have been described in veno-occlusive disease due to pyrrolizidine alkaloids from other plant sources such as Senecio and Crotalaria. The safety of comfrey, a widely used herb, in relation to human consumption requires further investigation.

  19. Pyrrolizidine alkaloids from seven wild-growing Senecio species in Serbia and Montenegro

    Directory of Open Access Journals (Sweden)

    BORIS M. MANDIC

    2009-01-01

    Full Text Available The genus Senecio (family Asteraceae is one of the largest in the world. It comprises about 1100 species which are the rich source of pyrrolizidine alkaloids. Plants containing pyrrolizidine alkaloids are among the most important sources of human and animal exposure to plant toxins and carcinogens. The pyrrolizidine alkaloids of seven Senecio species (S. erucifolius, S. othonnae, S. wagneri, S. subalpinus, S. carpathicus, S. paludosus and S. rupestris were studied. Fourteen alkaloids were isolated and their structures determined from spectroscopic data (1H- and 13C-NMR, IR and MS. Five of them were identified in S. erucifolius, four in S. othonnae, two in S. wagneri, four in S. subalpinus, two in S. carpathicus, three in S. paludosus and three in S. rupestris. Seven pyrrolizidine alkaloids were found for the first time in particular species. The results have chemotaxonomic importance. The cytotoxic activity and antimicrobial activity of some alkaloids were also studied.

  20. Independent recruitment of a flavin-dependent monooxygenase for safe accumulation of sequestered pyrrolizidine alkaloids in grasshoppers and moths.

    Directory of Open Access Journals (Sweden)

    Linzhu Wang

    Full Text Available Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide, enabling the insects to avoid high concentrations of toxic pyrrolizidine alkaloids in the hemolymph. We have identified a pyrrolizidine alkaloid N-oxygenase, which is a flavin-dependent monooxygenase, of the grasshopper Zonocerus variegatus. After heterologous expression in E. coli, this enzyme shows high specificity for pyrrolizidine alkaloids of various structural types and for the tropane alkaloid atropine as substrates, a property that has been described previously for a pyrrolizidine alkaloid N-oxygenase of the arctiid moth Grammia geneura. Phylogenetic analyses of insect flavin-dependent monooxygenase sequences suggest that independent gene duplication events preceded the establishment of this specific enzyme in the lineages of the grasshoppers and of arctiid moths. Two further flavin-dependent monooxygenase sequences have been identified from Z. variegatus sharing amino acid identities of approximately 78% to the pyrrolizidine alkaloid N-oxygenase. After heterologous expression, both enzymes are also able to catalyze the N-oxygenation of pyrrolizidine alkaloids, albeit with a 400-fold lower specific activity. With respect to the high sequence identity between the three Z. variegatus sequences this ability to N-oxygenize pyrrolizidine alkaloids is interpreted as a relict of a former bifunctional ancestor gene of which one of the gene copies optimized this activity for the specific adaptation to pyrrolizidine alkaloid containing food plants.

  1. Independent recruitment of a flavin-dependent monooxygenase for safe accumulation of sequestered pyrrolizidine alkaloids in grasshoppers and moths.

    Science.gov (United States)

    Wang, Linzhu; Beuerle, Till; Timbilla, James; Ober, Dietrich

    2012-01-01

    Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide, enabling the insects to avoid high concentrations of toxic pyrrolizidine alkaloids in the hemolymph. We have identified a pyrrolizidine alkaloid N-oxygenase, which is a flavin-dependent monooxygenase, of the grasshopper Zonocerus variegatus. After heterologous expression in E. coli, this enzyme shows high specificity for pyrrolizidine alkaloids of various structural types and for the tropane alkaloid atropine as substrates, a property that has been described previously for a pyrrolizidine alkaloid N-oxygenase of the arctiid moth Grammia geneura. Phylogenetic analyses of insect flavin-dependent monooxygenase sequences suggest that independent gene duplication events preceded the establishment of this specific enzyme in the lineages of the grasshoppers and of arctiid moths. Two further flavin-dependent monooxygenase sequences have been identified from Z. variegatus sharing amino acid identities of approximately 78% to the pyrrolizidine alkaloid N-oxygenase. After heterologous expression, both enzymes are also able to catalyze the N-oxygenation of pyrrolizidine alkaloids, albeit with a 400-fold lower specific activity. With respect to the high sequence identity between the three Z. variegatus sequences this ability to N-oxygenize pyrrolizidine alkaloids is interpreted as a relict of a former bifunctional ancestor gene of which one of the gene copies optimized this activity for the specific adaptation to pyrrolizidine alkaloid containing food plants.

  2. Genotoxic Pyrrolizidine Alkaloids — Mechanisms Leading to DNA Adduct Formation and Tumorigenicity

    OpenAIRE

    Ming W. Chou; Ge Lin; Qingsu Xia; Peter P. Fu

    2002-01-01

    Abstract: Plants that contain pyrrolizidine alkaloids are widely distributed in the world. Although pyrrolizidine alkaloids have been shown to be genotoxic and tumorigenic in experimental animals, the mechanisms of actions have not been fully understood. The results of our recent mechanistic studies suggest that pyrrolizidine alkaloids induce tumors via a genotoxic mechanism mediated by 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5Hpyrrolizine (DHP)-derived DNA adduct formation. This mechanism may ...

  3. Detection of Pyrrolizidine Alkaloid DNA Adducts in Livers of Cattle Poisoned with Heliotropium europaeum.

    Science.gov (United States)

    Fu, Peter P; Xia, Qingsu; He, Xiaobo; Barel, Shimon; Edery, Nir; Beland, Frederick A; Shimshoni, Jakob A

    2017-03-20

    Pyrrolizidine alkaloids are among the most common poisonous plants affecting livestock, wildlife, and humans. Exposure of humans and livestock to toxic pyrrolizidine alkaloids through the intake of contaminated food and feed may result in poisoning, leading to devastating epidemics. During February 2014, 73 mixed breed female beef cows from the Galilee region of Israel were accidently fed pyrrolizidine alkaloid contaminated hay for 42 days, resulting in the sudden death of 24 cows over a period of 63 days. The remaining cows were slaughtered 2.5 months after the last ingestion of the contaminated hay. In this study, we report the histopathological analysis of the livers from five of the slaughtered cows and quantitation of pyrrolizidine alkaloid-derived DNA adducts from their livers and three livers of control cows fed with feed free of weeds producing pyrrolizidine alkaloids. Histopathological examination revealed that the five cows suffered from varying degrees of bile duct proliferation, fibrosis, and megalocytosis. Selected reaction monitoring HPLC-ES-MS/MS analysis indicated that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts were formed in all five livers. The livers from the three control cows did not have any liver damage nor any indication of DHP-DNA adduct formed. These results confirm that the toxicity observed in these cattle was caused by pyrrolizidine alkaloid poisoning and that pyrrolizidine alkaloid-derived DNA adducts could still be detected and quantified in the livers of the chronically poisoned cows 2.5 months after their last exposure to the contaminated feed, suggesting that DHP-derived DNA adducts can serve as biomarkers for pyrrolizidine alkaloid exposure and poisoning.

  4. [Pyrrolizidine alkaloids and seneciosis in farm animals. Part 1: occurrence, chemistry and toxicology].

    Science.gov (United States)

    Petzinger, E

    2011-01-01

    Pyrrolizidine alkaloids belong to a class of phytotoxins which are present in more than 6000 plant species. The disease seneciosis in farm animals represents the severe poisoning by pyrrolizidine alkaloids from plants of the genus Senecio. This form of poisoning has been known since the end of the 19th century in Germany, the USA, Canada and New Zealand, and is mainly caused by Senecio jacobaea and related Senecio spp. in farm animals, including poultry. Animal poisoning by pyrrolizidine alkaloids is of worldwide importance. In Germany poisoning of horses and cattle by Senecio jacobaea, which was earlier named Schweinsberg disease, is of renewed relevance for veterinary medicine. The disease occurs almost entirely as a consequence of chronic poisoning and in general ends fatally. The ultimate cause is the formation of toxic metabolites of pyrrolizidine alkaloids in the liver, and their covalent binding to nucleic acids and proteins leading to liver cirrhosis. Because many pyrrolizidine alkaloids possess mutagenic, and a few also carcinogenic properties, European and international authorities are concerned about possible residue levels in food of animal origin. The review addresses in its first part several aspects, being the occurrence, the chemistry, and the toxicology of pyrrolizidine alkaloids as well as animal intoxications by poisonous plants. In the second part (46) clinical characteristics of animal seneciosis, the therapeutic interventions, the significant species differences and a critical assessment of so-called nontoxic amounts of Senecio plants in animal fodder with reference to cumulative lethal toxin doses are presented.

  5. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    International Nuclear Information System (INIS)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D.

    1989-01-01

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the α-glucosidase amyloglucosidase (50% inhibition at 5.8 μM), but it did not inhibit β-glucosidase, α- or β-mannosidase, or α- or β-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc 3 Man 7-9 (GlcNAc) 2 -oligosaccharides

  6. Determination of pyrrolizidine alkaloids in commercial comfrey products (Symphytum sp.).

    Science.gov (United States)

    Betz, J M; Eppley, R M; Taylor, W C; Andrzejewski, D

    1994-05-01

    The presence of hepatotoxic pyrrolizidine alkaloids in comfrey (Symphytum sp.) and the widespread use of decoctions of this plant as a beverage (herbal tea) are of increasing concern. A method for the extraction and solid-phase concentration and capillary gas chromatographic determination of these alkaloids and their N-oxides in botanical materials has been developed and was applied to eleven comfrey-containing products purchased from retail health-food outlets in the Washington, DC, area during May-June 1989. Nine of the 11 products were found to contain measurable quantities of one or more of the alkaloids, in ranges from 0.1 to 400.0 ppm. Products containing comfrey leaf in combination with one or more other ingredients were found to contain the lowest alkaloid levels. Highest levels were found in bulk comfrey root, followed by bulk comfrey leaf. The species of the bulk material was verified by thin-layer chromatography and other means.

  7. Changes in plant defense chemistry (pyrrolizidine alkaloids) revealed through high-resolution spectroscopy

    Science.gov (United States)

    Carvalho, Sabrina; Macel, Mirka; Schlerf, Martin; Moghaddam, Fatemeh Eghbali; Mulder, Patrick P. J.; Skidmore, Andrew K.; van der Putten, Wim H.

    2013-06-01

    Plant toxic biochemicals play an important role in defense against natural enemies and often are toxic to humans and livestock. Hyperspectral reflectance is an established method for primary chemical detection and could be further used to determine plant toxicity in the field. In order to make a first step for pyrrolizidine alkaloids detection (toxic defense compound against mammals and many insects) we studied how such spectral data can estimate plant defense chemistry under controlled conditions. In a greenhouse, we grew three related plant species that defend against generalist herbivores through pyrrolizidine alkaloids: Jacobaea vulgaris, Jacobaea erucifolia and Senecio inaequidens, and analyzed the relation between spectral measurements and chemical concentrations using multivariate statistics. Nutrient addition enhanced tertiary-amine pyrrolizidine alkaloids contents of J. vulgaris and J. erucifolia and decreased N-oxide contents in S. inaequidens and J. vulgaris. Pyrrolizidine alkaloids could be predicted with a moderate accuracy. Pyrrolizidine alkaloid forms tertiary-amines and epoxides were predicted with 63% and 56% of the variation explained, respectively. The most relevant spectral regions selected for prediction were associated with electron transitions and Csbnd H, Osbnd H, and Nsbnd H bonds in the 1530 and 2100 nm regions. Given the relatively low concentration in pyrrolizidine alkaloids concentration (in the order of mg g-1) and resultant predictions, it is promising that pyrrolizidine alkaloids interact with incident light. Further studies should be considered to determine if such a non-destructive method may predict changes in PA concentration in relation to plant natural enemies. Spectroscopy may be used to study plant defenses in intact plant tissues, and may provide managers of toxic plants, food industry and multitrophic-interaction researchers with faster and larger monitoring possibilities.

  8. Pyrrolizidine Alkaloids from Symphytum sylvaticum Boiss. subsp. sepulcrale. (Boiss.& Bal.) Greuter & Burdetvar. sepulcrale and Symphytum aintabicum Hub.- Mor. & Wickens

    OpenAIRE

    KURUCU, Semra; KARTAL, Murat

    2002-01-01

    Pyrrolizidine alkaloid (Echimidine-N-oxide) was isolated from Symphytum sylvaticum Boiss. subsp. sepulcrale (Boiss. & Bal.) Greuter & Burdet var. sepulcrale and pyrrolizidine alkaloid (Echimidine) was isolated from Symphytum aintabicum Hub. - Mor. & Wickens. The structures of the isolated compounds were elucidated based on IR, EIMS, 1H, and 13C NMR analysis and also on 2D NMR (COSY, HMBC, HMQC) experiments.

  9. Evolutionary recruitment of a flavin-dependent monooxygenase for stabilization of sequestered pyrrolizidine alkaloids in arctiids.

    Science.gov (United States)

    Langel, Dorothee; Ober, Dietrich

    2011-09-01

    Pyrrolizidine alkaloids are secondary metabolites that are produced by certain plants as a chemical defense against herbivores. They represent a promising system to study the evolution of pathways in plant secondary metabolism. Recently, a specific gene of this pathway has been shown to have originated by duplication of a gene involved in primary metabolism followed by diversification and optimization for its specific function in the defense machinery of these plants. Furthermore, pyrrolizidine alkaloids are one of the best-studied examples of a plant defense system that has been recruited by several insect lineages for their own chemical defense. In each case, this recruitment requires sophisticated mechanisms of adaptations, e.g., efficient excretion, transport, suppression of toxification, or detoxification. In this review, we briefly summarize detoxification mechanism known for pyrrolizidine alkaloids and focus on pyrrolizidine alkaloid N-oxidation as one of the mechanisms allowing insects to accumulate the sequestered toxins in an inactivated protoxic form. Recent research into the evolution of pyrrolizidine alkaloid N-oxygenases of adapted arctiid moths (Lepidoptera) has shown that this enzyme originated by the duplication of a gene encoding a flavin-dependent monooxygenase of unknown function early in the arctiid lineage. The available data suggest several similarities in the molecular evolution of this adaptation strategy of insects to the mechanisms described previously for the evolution of the respective pathway in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Full structure assignments of pyrrolizidine alkaloid DNA adducts and mechanism of tumor initiation.

    Science.gov (United States)

    Zhao, Yuewei; Xia, Qingsu; Gamboa da Costa, Gonçalo; Yu, Hongtao; Cai, Lining; Fu, Peter P

    2012-09-17

    Pyrrolizidine alkaloid-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids are among the first chemical carcinogens identified in plants. Previously, we determined that metabolism of pyrrolizidine alkaloids in vivo and in vitro generated a common set of DNA adducts that are responsible for tumor induction. Using LC-ESI/MS/MS analysis, we previously determined that four DNA adducts (DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4) were formed in rats dosed with riddelliine, a tumorigenic pyrrolizidine alkaloid. Because of the lack of an adequate amount of authentic standards, the structures of DHP-dA-3 and DHP-dA-4 were not elucidated, and the structural assignment for DHP-dG-4 warranted further validation. In this study, we developed an improved synthetic methodology for these DNA adducts, enabling their full structural elucidation by mass spectrometry and NMR spectroscopy. We determined that DHP-dA-3 and DHP-dA-4 are a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl) dehydrosupinidine, while DHP-dG-4 is 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine, an epimer of DHP-dG-3. With the structures of these DNA adducts unequivocally elucidated, we conclude that cellular DNA preferentially binds dehydropyrrolizidine alkaloid, for example, dehydroriddelliine, at the C9 position of the necine base, rather than at the C7 position. We also determined that DHP-dA-3 and DHP-dA-4, as well as DHP-dG-3 and DHP-dG-4, are interconvertible. This study represents the first report with detailed structural assignments of the DNA adducts that are responsible for pyrrolizidine alkaloid tumor induction on the molecular level. A mechanism of tumor initiation by pyrrolizidine alkaloids is consequently fully determined.

  11. Pyrrolizidine Alkaloids: Metabolic Activation Pathways Leading to Liver Tumor Initiation.

    Science.gov (United States)

    Fu, Peter P

    2017-01-17

    Pyrrolizidine alkaloids (PAs) and PA N-oxides are a class of phytochemical carcinogens contained in over 6000 plant species spread around the world. It has been estimated that approximately half of the 660 PAs and PA N-oxides that have been characterized are cytotoxic, genotoxic, and tumorigenic. It was recently determined that a genotoxic mechanism of liver tumor initiation mediated by PA-derived DNA adducts is a common metabolic activation pathway of a number of PAs. We proposed this set of PA-derived DNA adducts could be a common biological biomarker of PA exposure and a potential biomarker of PA-induced liver tumor formation. We have also found that several reactive secondary pyrrolic metabolites can dissociate and interconvert to other secondary pyrrolic metabolites, resulting in the formation of the same exogenous DNA adducts. This present perspective reports the current progress on these new findings and proposes future research needed for obtaining a greater understanding of the role of this activation pathway and validating the use of this set of PA-derived DNA adducts as a biological biomarker of PA-induced liver tumor initiation.

  12. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    Energy Technology Data Exchange (ETDEWEB)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. (Univ. of Texas Health Science Center, San Antonio (USA))

    1989-03-07

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the {alpha}-glucosidase amyloglucosidase (50% inhibition at 5.8 {mu}M), but it did not inhibit {beta}-glucosidase, {alpha}- or {beta}-mannosidase, or {alpha}- or {beta}-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc{sub 3}Man{sub 7-9}(GlcNAc){sub 2}-oligosaccharides.

  13. Identification of Toxic Pyrrolizidine Alkaloids and Their Common Hepatotoxicity Mechanism

    Directory of Open Access Journals (Sweden)

    Xinmiao Yan

    2016-03-01

    Full Text Available Pyrrolizidine Alkaloids (PAs are currently one of the most important botanical hepatotoxic ingredients. Glutathion (GSH metabolism is the most reported pathway involved in hepatotoxicity mechanism of PAs. We speculate that, for different PAs, there should be a common mechanism underlying their hepatotoxicity in GSH metabolism. Computational methods were adopted to test our hypothesis in consideration of the limitations of current experimental approaches. Firstly, the potential targets of 22 PAs (from three major PA types in GSH metabolism were identified by reverse docking; Secondly, glutathione S-transferase A1 (GSTA1 and glutathione peroxidase 1 (GPX1 targets pattern was found to be a special characteristic of toxic PAs with stepwise multiple linear regressions; Furthermore, the molecular mechanism underlying the interactions within toxic PAs and these two targets was demonstrated with the ligand-protein interaction analysis; Finally, GSTA1 and GPX1 were proved to be significant nodes in GSH metabolism. Overall, toxic PAs could be identified by GSTA1 and GPX1 targets pattern, which suggests their common hepatotoxicity mechanism: the interfering of detoxication in GSH metabolism. In addition, all the strategies developed here could be extended to studies on toxicity mechanism of other toxins.

  14. Identification of Toxic Pyrrolizidine Alkaloids and Their Common Hepatotoxicity Mechanism.

    Science.gov (United States)

    Yan, Xinmiao; Kang, Hong; Feng, Jun; Yang, Yiyan; Tang, Kailin; Zhu, Ruixin; Yang, Li; Wang, Zhengtao; Cao, Zhiwei

    2016-03-07

    Pyrrolizidine Alkaloids (PAs) are currently one of the most important botanical hepatotoxic ingredients. Glutathion (GSH) metabolism is the most reported pathway involved in hepatotoxicity mechanism of PAs. We speculate that, for different PAs, there should be a common mechanism underlying their hepatotoxicity in GSH metabolism. Computational methods were adopted to test our hypothesis in consideration of the limitations of current experimental approaches. Firstly, the potential targets of 22 PAs (from three major PA types) in GSH metabolism were identified by reverse docking; Secondly, glutathione S-transferase A1 (GSTA1) and glutathione peroxidase 1 (GPX1) targets pattern was found to be a special characteristic of toxic PAs with stepwise multiple linear regressions; Furthermore, the molecular mechanism underlying the interactions within toxic PAs and these two targets was demonstrated with the ligand-protein interaction analysis; Finally, GSTA1 and GPX1 were proved to be significant nodes in GSH metabolism. Overall, toxic PAs could be identified by GSTA1 and GPX1 targets pattern, which suggests their common hepatotoxicity mechanism: the interfering of detoxication in GSH metabolism. In addition, all the strategies developed here could be extended to studies on toxicity mechanism of other toxins.

  15. Pyrrolizidine Alkaloid-Protein Adducts: Potential Non-invasive Biomarkers of Pyrrolizidine Alkaloid-Induced Liver Toxicity and Exposure.

    Science.gov (United States)

    Xia, Qingsu; Zhao, Yuewei; Lin, Ge; Beland, Frederick A; Cai, Lining; Fu, Peter P

    2016-08-15

    Pyrrolizidine alkaloids (PAs) are phytochemicals present in hundreds of plant species from different families widely distributed in many geographical regions around the world. PA-containing plants are probably the most common type of poisonous plants affecting livestock, wildlife, and humans. There have been many large-scale human poisonings caused by the consumption of food contaminated with toxic PAs. PAs require metabolic activation to generate pyrrolic metabolites to exert their toxicity. In this study, we developed a novel method to quantify pyrrole-protein adducts present in the blood. This method involves the use of AgNO3 in acidic ethanol to cleave the thiol linkage of pyrrole-protein (DHP-protein) adducts, and the resulting 7,9-di-C2H5O-DHP is quantified by HPLC-ES-MS/MS multiple reaction monitoring analysis in the presence of a known quantity of isotopically labeled 7,9-di-C2D5O-DHP internal standard. Using this method, we determined that diester-type PAs administered to rats produced higher levels of DHP-protein adducts than other types of PAs. The results suggest that DHP-protein adducts can potentially serve as minimally invasive biomarkers of PA exposure.

  16. Risk assessment for pyrrolizidine alkaloids detected in (herbal) teas and plant food supplements

    NARCIS (Netherlands)

    Chen, Lu; Mulder, Patrick P.J.; Louisse, Jochem; Peijnenburg, Ad; Wesseling, Sebas; Rietjens, Ivonne M.C.M.

    2017-01-01

    Pyrrolizidine alkaloids (PAs) are plant metabolites present in some botanical preparations, with especially 1,2-unsaturated PAs being of concern because they are genotoxic carcinogens. This study presents an overview of tumour data on PAs and points of departure (PODs) derived from them,

  17. Heliotropium europaeum Poisoning in Cattle and Analysis of its Pyrrolizidine Alkaloid Profile

    NARCIS (Netherlands)

    Shimshoni, J.A.; Mulder, P.P.J.; Bouznach, A.; Edery, N.; Pasval, I.; Barel, S.; Khaliq, M.A.E.; Perl, S.

    2015-01-01

    Pyrrolizidine alkaloids (PAs) are carcinogenic and genotoxic phytochemicals found exclusively in angiosperms. The ingestion of PA-containing plants often results in acute and chronic toxicities in man and livestock, targeting mainly the liver. During February 2014, a herd of 15-18-month-old

  18. Livestock Poisoning with Pyrrolizidine Alkaloid Containing Plants (Senecio, Crotalaria, Cynoglossum, Amsinckia, Heliotropium and Echium spp.)

    Science.gov (United States)

    Pyrrolizidine alkaloids (PAs) are potent liver toxins that have been identified in over 6,000 plants throughout the world. Alkaloids are nitrogen-based compounds with potent biological activity. About half of the identified PAs are toxic and several cause cancer (carcinogenic). PA-containing plants...

  19. Pyrrolizidine alkaloid-containing toxic plants (Scenecio, Crotalaria, Cynoglossum, Amsinckia, Heliotropium, and Echium spp.)

    Science.gov (United States)

    Pyrrolizidine alkaloid (PA) containing plants are found throughout the world and are probably the most common plant cause of poisoning of livestock, wildlife and humans. PAs are potent liver toxins that under some conditions can be carcinogenic. The objective of this paper is to briefly introduce hi...

  20. The Analysis of Pyrrolizidine Alkaloids in Jacobaea vulgaris; a Comparison of Extraction and Detection Methods

    NARCIS (Netherlands)

    Joosten, L.; Mulder, P.P.J.; Vrieling, K.; Veen, van der M.R.; Klinkhamer, P.G.L.

    2010-01-01

    Introduction – Pyrrolizidine alkaloids (PAs) serve an important function in plant defence. Objective – To compare different extraction methods and detection techniques, namely gas chromatography with nitrogen phosphorus detection (GC-NPD) and liquid chromatography tandem mass spectrometry (LC-MS/MS)

  1. EFSA (European Food Safety Authority), 2016. Dietary exposure assessment to pyrrolizidine alkaloids in the European population

    DEFF Research Database (Denmark)

    Petersen, Annette

    Chronic and acute dietary exposure to pyrrolizidine alkaloids (PAs) was estimated in the European population via the consumption of plant-derived foods. This resulted in highest estimates of mean chronic dietary exposure of 34.5–48.4 ng/kg body weight (bw) per day in ‘Toddlers’ (LB–UB) and 154...

  2. Seasonal variation in pyrrolizidine alkaloid concentration and plant development in Senecio madagascariensis poir. (Asteraceae) in Brazil

    Science.gov (United States)

    This chapter presents the results of studies conducted in the municipality of Eldorado do Sul, State of Rio Grande do Sul, Brazil, in July and October 2007 and January and May 2008 to measure the pyrrolizidine alkaloid (PA) concentrations of S. madagascariensis plant material (including leaves, flow...

  3. Structural elucidation and NMR assignments of a new pyrrolizidine alkaloid from Crotalaria vitellina Ker Gawl.

    Science.gov (United States)

    Casimiro Bezerra, Denise Aline; Fechine Tavares, Josean; dos Santos, Paula Ferreira; Castello Branco, Marianna Vieira Sobral; de Fátima Agra, Maria; Subrinho, Fernanda Lima; Braz-Filho, Raimundo; da Silva, Marcelo Sobral

    2013-08-01

    A new pyrrolizidine alkaloid, named crotavitelin, was isolated from fruits of Crotalaria vitellina, Fabaceae (Papilionoideae). The structure was established by spectroscopic techniques such as one-dimensional and two-dimensional NMR, IR, and MS. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Method for the determination of natural ester-type gum bases used as food additives via direct analysis of their constituent wax esters using high-temperature GC/MS

    Science.gov (United States)

    Tada, Atsuko; Ishizuki, Kyoko; Yamazaki, Takeshi; Sugimoto, Naoki; Akiyama, Hiroshi

    2014-01-01

    Natural ester-type gum bases, which are used worldwide as food additives, mainly consist of wax esters composed of long-chain fatty acids and long-chain fatty alcohols. There are many varieties of ester-type gum bases, and thus a useful method for their discrimination is needed in order to establish official specifications and manage their quality control. Herein is reported a rapid and simple method for the analysis of different ester-type gum bases used as food additives by high-temperature gas chromatography/mass spectrometry (GC/MS). With this method, the constituent wax esters in ester-type gum bases can be detected without hydrolysis and derivatization. The method was applied to the determination of 10 types of gum bases, including beeswax, carnauba wax, lanolin, and jojoba wax, and it was demonstrated that the gum bases derived from identical origins have specific and characteristic total ion chromatogram (TIC) patterns and ester compositions. Food additive gum bases were thus distinguished from one another based on their TIC patterns and then more clearly discriminated using simultaneous monitoring of the fragment ions corresponding to the fatty acid moieties of the individual molecular species of the wax esters. This direct high-temperature GC/MS method was shown to be very useful for the rapid and simple discrimination of varieties of ester-type gum bases used as food additives. PMID:25473499

  5. Method for the determination of natural ester-type gum bases used as food additives via direct analysis of their constituent wax esters using high-temperature GC/MS.

    Science.gov (United States)

    Tada, Atsuko; Ishizuki, Kyoko; Yamazaki, Takeshi; Sugimoto, Naoki; Akiyama, Hiroshi

    2014-07-01

    Natural ester-type gum bases, which are used worldwide as food additives, mainly consist of wax esters composed of long-chain fatty acids and long-chain fatty alcohols. There are many varieties of ester-type gum bases, and thus a useful method for their discrimination is needed in order to establish official specifications and manage their quality control. Herein is reported a rapid and simple method for the analysis of different ester-type gum bases used as food additives by high-temperature gas chromatography/mass spectrometry (GC/MS). With this method, the constituent wax esters in ester-type gum bases can be detected without hydrolysis and derivatization. The method was applied to the determination of 10 types of gum bases, including beeswax, carnauba wax, lanolin, and jojoba wax, and it was demonstrated that the gum bases derived from identical origins have specific and characteristic total ion chromatogram (TIC) patterns and ester compositions. Food additive gum bases were thus distinguished from one another based on their TIC patterns and then more clearly discriminated using simultaneous monitoring of the fragment ions corresponding to the fatty acid moieties of the individual molecular species of the wax esters. This direct high-temperature GC/MS method was shown to be very useful for the rapid and simple discrimination of varieties of ester-type gum bases used as food additives.

  6. Oral toxicity study of certain plant extracts containing pyrrolizidine alkaloids.

    Science.gov (United States)

    Şeremet, Oana Cristina; Bărbuceanu, Florica; Ionică, Floriana Elvira; Margină, Denisa Marilena; GuŢu, Claudia Maria; Olaru, Octavian Tudorel; Ilie, Mihaela; Gonciar, Veaceslav; Negreş, Simona; ChiriŢă, Cornel

    2016-01-01

    Pyrrolizidine alkaloids (PAs) are a class of toxic compounds which are found in plants. Poisoning caused by these toxins is associated with acute and chronic liver damage. Tussilago farfara (coltsfoot), Petasites hybridus (common butterbur), Senecio vernalis (eastern groundsel) and Symphytum officinale (comfrey) are traditional phytotherapic species, which beside the therapeutic bioactive compounds contain PAs. The aim of the paper was to assess the safety of some dry extracts obtained from these species. For the determination of acute toxicity, Organization for Economic Cooperation and Development (OECD) Guideline No. 423 was used. For the determination of repeated dose oral toxicity, Senecionis vernalis herba and Symphyti radix extracts (250 mg÷kg) were administrated, by gavage, for 28 days, and their effects on animal weight, liver and biliary functions, hepatic tissue and oxidative stress were investigated. After the acute toxicity testing, the dry extracts were placed in the GHS Category V (LD50>5000 mg÷kg, p.o.). For the subacute toxicity testing, no death or any signs of toxicity were observed. Also, no significant differences in biochemical parameters were observed between control and treated groups. The observed histopathological lesions were non-specific and were not consistent with the data reported in the literature for PAs exposure. In conclusion, the administration for 28 days, of the tested extracts, in a dose which correspond to a PAs concentration over the limits imposed in some countries, produced no hepatic and biliary toxic effects. Further studies, extended over a longer period of time, are needed in order to determine the safety of plant extracts containing PAs.

  7. Blood pyrrole-protein adducts as a diagnostic and prognostic index in pyrrolizidine alkaloid-hepatic sinusoidal obstruction syndrome.

    Science.gov (United States)

    Gao, Hong; Ruan, Jianqing Q; Chen, Jie; Li, Na; Ke, Changqiang Q; Ye, Yang; Lin, Ge; Wang, Jiyao Y

    2015-01-01

    The diagnosis of hepatic sinusoidal obstruction syndrome (HSOS) induced by pyrrolizidine alkaloids is mainly based on clinical investigation. There is currently no prognostic index. This study evaluated the quantitative measurement of blood pyrrole-protein adducts (PPAs) as a diagnostic and prognostic index for pyrrolizidine alkaloid-induced HSOS. Suspected drug-induced liver injury patients were prospectively recruited. Blood PPAs were quantitatively measured using ultra-performance liquid chromatography-tandem mass spectrometry. Patients' age, sex, biochemistry test results, and a detailed drug history were recorded. The patients were divided into two groups, ie, those with HSOS induced by pyrrolizidine alkaloid-containing drugs and those with liver injury induced by drugs without pyrrolizidine alkaloids. The relationship between herb administration, clinical outcomes, blood sampling time, and blood PPA concentration in pyrrolizidine alkaloid-associated HSOS patients was analyzed using multiple linear regression analysis. Forty patients met the entry criteria, among whom 23 had pyrrolizidine alkaloid-associated HSOS and 17 had liver injury caused by drugs without pyrrolizidine alkaloids. Among the 23 patients with pyrrolizidine alkaloid-associated HSOS, ten recovered, four developed chronic disease, eight died, and one underwent liver transplantation within 6 months after onset. Blood PPAs were detectable in 24 of 40 patients with concentrations from 0.05 to 74.4 nM. Sensitivity and specificity of the test for diagnosis of pyrrolizidine alkaloid-associated HSOS were 100% (23/23) and 94.1% (23/24), respectively. The positive predictive value was 95.8% and the negative predictive value was 100%, whereas the positive likelihood ratio was 23.81. The level of blood PPAs in the severe group (died or received liver transplantation) was significantly higher than that in the recovery/chronicity group (P=0.004). Blood PPAs measured by ultra-performance liquid

  8. Pro-toxic 1,2-Dehydropyrrolizidine alkaloid esters, including unprecedented 10-membered macrocyclic diesters, in the medicinally-used Alafia cf. caudata and Amphineurion marginatum (Apocynaceae: Apocynoideae: Nerieae and Apoc

    Science.gov (United States)

    The attraction of pyrrolizidine alkaloid-pharmacophagous insects indicated the presence of pro-toxic dehydropyrrolizidine alkaloids in Alafia cf. caudata Stapf (Nerieae: Alafinae) and Amphineurion marginatum (Roxb.) D.J. Middleton (Apocyneae: Amphineuriinae). Subsequently, monoesters of retronecine ...

  9. Toxic pyrrolizidine alkaloids in herbal medicines commonly used in Ghana.

    Science.gov (United States)

    Letsyo, Emmanuel; Jerz, Gerold; Winterhalter, Peter; Beuerle, Till

    2017-04-18

    Herbal medicines have been used for centuries for the management and treatment of various ailments due to the belief that they pose only little or no health risk and side effects, and also, in part, due to their availability, affordability and/or self-supply. However, the increasing information over the recent years on the occurrence of pyrrolizidine alkaloids (PAs) in honey, herbal food and tea products has raised concerns about the safety of herbal medicines with respect to contamination. To this day, little is known on the occurrence of toxic PAs in herbal medicines, especially in tropical West Africa. The aim of this study was therefore to determine the PA content of 70 well-known and widely patronized plant-derived medicinal preparations, which are commercialized in Ghana and some West African countries, in order to ascertain their potential health risk. PAs of the herbal medicinal products, sourced from specialized drugstores and mostly regulatory approved, were analyzed for their PA content by a HPLC-ESI-MS/MS sum parameter method. The results show that a total of 60% of the analyzed herbal products were PA positive, indicating an average PA-concentration of 25.0μg/kg. The maximum PA level (1290.0μg/kg) was attributed to a regulatory-approved herbal medicine not known, according to the list of declared ingredients, to contain PA-plant parts. Interestingly, higher PA content (average, 30.2μg/kg) was detected in regulatory-approved herbal medicines, in contrast to lower amount (average, 8.0μg/kg) detected in non-regulatory-approved products. The findings of this study clearly demonstrate that herbal medicines containing PA plants as ingredients, as well as some of those containing plant species not known to produce PAs, are likely to contain hepatotoxic PA at levels higher than the daily dose in food and herbal medicinal products proposed by the European Medicines Agency (i.e. 0.35μg PA per day for 50kg adult and 0.14μg PA per day for 20kg children

  10. Detection of pyrrolizidine alkaloids in German licensed herbal medicinal teas.

    Science.gov (United States)

    Schulz, M; Meins, J; Diemert, S; Zagermann-Muncke, P; Goebel, R; Schrenk, D; Schubert-Zsilavecz, M; Abdel-Tawab, M

    2015-06-01

    Because of the hepatotoxic, mutagenic, and cancerogenic effects of pyrrolizidine alkaloids (PAs) the German Federal Institute for Risk Assessment (BfR) recommends not to exceed a daily PA intake of 0.007 µg/kg body weight (0.42 µg/60 kg adult). In a recent study conducted by the BfR, up to 5647 µg PA/kg dried herbal material were detected in tea products marketed as food. The present study aimed at elucidating whether medicinal teas licensed or registered as medicinal products contain PAs as well. One hundred sixty-nine different commercially available medicinal teas, i.e. 19 nettle (Urtica dioica L.), 12 fennel (Foeniculum vulgare Mill.), 14 chamomile (Matricaria recutita L.), 11 melissa (Melissa officinalis L.) and 4 peppermint (Mentha piperita L.) teas as well as 109 tea mixtures were analyzed for the presence of 23 commercially available PAs. LC/MS was used for the determination of the PAs In general, the total PA contents ranging 0-5668 µg/kg. Thirty percent of the tested single-ingredient tea products and 56.9% of the tested medicinal tea mixtures were found to contain PA concentrations above the limit of quantification (LOQ) of 10 µg/kg. In 11 medicinal teas PA contents >300 µg/kg dry herb were determined thus exceeding the recommended limit for PA intake by BfR. In addition three products of the investigated tea mixtures revealed extremely high PA contents of 4227, 5137, and 5668 µg/kg. Generally, single-ingredient tea products contained much less or even no detectable amounts of PAs when compared to the tea mixtures. PAs in the range between 13 and 1080 µg/kg were also detected in five analyzed aqueous herbal infusions of the medicinal tea mixture products with the highest PA content. Two out of the five investigated herbal infusions exceeded the recommended BfR limit for PA intake. This study demonstrates clearly that also medicinal teas licensed as medicinal products may partly contain high amounts of PAs exceeding current recommendations. For

  11. Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis.

    Science.gov (United States)

    Sievert, Christian; Beuerle, Till; Hollmann, Julien; Ober, Dietrich

    2015-09-01

    Progress has recently been made in the elucidation of pathways of secondary metabolism. However, because of its diversity, genetic information concerning biosynthetic details is still missing for many natural products. This is also the case for the biosynthesis of pyrrolizidine alkaloids. To close this gap, we tested strategies using tissues that express this pathway in comparison to tissues in which this pathway is not expressed. As many pathways of secondary metabolism are known to be induced by jasmonates, the pyrrolizidine alkaloid-producing species Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale of the Boraginales order were treated with methyl jasmonate. An effect on pyrrolizidine alkaloid levels and on transcript levels of homospermidine synthase, the first specific enzyme of pyrrolizidine alkaloid biosynthesis, was not detectable. Therefore, a method was developed by making use of the often observed cell-specific production of secondary compounds. H. indicum produces pyrrolizidine alkaloids exclusively in the shoot. Homospermidine synthase is expressed only in the cells of the lower leaf epidermis and the epidermis of the stem. Suggesting that the whole pathway of pyrrolizidine alkaloid biosynthesis might be localized in these cells, we have isolated single cells of the upper and lower epidermis by laser-capture microdissection. The resulting cDNA preparations have been used in a subtractive transcriptomic approach. Quantitative real-time polymerase chain reaction has shown that the resulting library is significantly enriched for homospermidine-synthase-coding transcripts providing a valuable source for the identification of further genes involved in pyrrolizidine alkaloid biosynthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Suspected pyrrolizidine alkaloid hepatotoxicosis in wild southern hairy-nosed wombats (Lasiorhinus latifrons).

    Science.gov (United States)

    Woolford, Lucy; Fletcher, Mary T; Boardman, Wayne S J

    2014-07-30

    Southern hairy-nosed wombats (Lasiorhinus latifrons) inhabiting degraded habitat in South Australia were recently identified with extensive hair loss and dermatitis and were in thin to emaciated body condition. Pathological and clinicopathological investigations on affected juvenile wombats identified a toxic hepatopathy suggestive of plants containing pyrrolizidine alkaloids, accompanied by photosensitive dermatitis. Hepatic disease was suspected in additional wombats on the basis of serum biochemical analysis. Preliminary toxicological analysis performed on scats and gastrointestinal contents from wombats found in this degraded habitat identified a number of toxic pyrrolizidine alkaloids consistent with ingestion of Heliotropeum europaeum. Although unpalatable, ingestion may occur by young animals due to decreased availability of preferred forages in degraded habitats and the emergence of weeds around the time of weaning of naive animals. Habitat degradation leading to malnutrition and ingestion of toxic weed species is a significant welfare issue in this species.

  13. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase

    Science.gov (United States)

    Ober, Dietrich; Hartmann, Thomas

    1999-01-01

    Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown to be derived from the deoxyhypusine synthase (DHS) gene, which is highly conserved among all eukaryotes and archaebacteria. DHS catalyzes the first step in the activation of translation initiation factor 5A (eIF5A), which is essential for eukaryotic cell proliferation and which acts as a cofactor of the HIV-1 Rev regulatory protein. Sequence comparison provides direct evidence for the evolutionary recruitment of an essential gene of primary metabolism (DHS) for the origin of the committing step (HSS) in the biosynthesis of pyrrolizidine alkaloids. PMID:10611289

  14. Analysis, separation, and bioassay of pyrrolizidine alkaloids from comfrey (Symphytum officinale).

    Science.gov (United States)

    Couet, C E; Crews, C; Hanley, A B

    1996-01-01

    Pyrrolizidine alkaloids have been linked to liver and lung cancers and a range of other deleterious effects. As with many natural toxicants, major problems arise in determining the effects of the different members of the class and the importance of various forms of ingestion. In this study we have investigated the levels of pyrrolizidine alkaloids in comfrey (Symphytum officinale), determined the levels in different parts of the plant and in herbal remedies, separated the alkaloids into two main groups--the principal parent alkaloids and the corresponding N-oxides--and, finally, carried out a simple bioassay based upon the mutagenic capability of the separated compounds in a human cell line. We conclude that the part of the plant ingested is important in terms of alkaloid challenge and that the effect of two of the major groups of alkaloids individually is different from that of alkaloids in the whole plant extract.

  15. Pyrrolizidine alkaloid-containing toxic plants (Senecio, Crotalaria, Cynoglossum, Amsinckia, Heliotropium, and Echium spp.).

    Science.gov (United States)

    Stegelmeier, Bryan L

    2011-07-01

    Pyrrolizidine alkaloid (PA)-containing plants are found throughout the world and are probably the most common plant cause of poisoning of livestock, wildlife, and humans. PAs are potent liver toxins that under some conditions can be carcinogenic. This article briefly introduces high-risk North American PA-containing plants, summarizing their toxicity and subsequent pathology. Current diagnostic techniques, treatments, and strategies to avoid losses to PA poisoning are also reviewed. Published by Elsevier Inc.

  16. POISONING OF CHICKENS AND DUCKS BY PYRROLIZIDINE ALKALOIDS OF HELIOTROPIUM EUROPAEUM.

    Science.gov (United States)

    Pass, D A; Hogg, G G; Russell, R G; Edgar, J A; Tence, I M; Rikard-Bell, L

    1979-05-01

    The disease produced by feeding chickens and ducks a commercial poultry feed containing heliotrine and lasiocarpine, pyrrolizidine alkaloids of Heliotropium europaeum, is described. Illthrift, ascites and degenerative lesions in the liver were the major findings. Similar lesions occurred in chickens fed a diet containing H. europaeum. The source of the alkaloids in commercial poultry feed was probably the seeds of H. europaeum harvested with wheat.

  17. Crotalaria medicaginea associated with horse deaths in northern Australia: new pyrrolizidine alkaloids.

    Science.gov (United States)

    Fletcher, Mary T; Hayes, Patricia Y; Somerville, Michael J; De Voss, James J

    2011-11-09

    Crotalaria medicaginea has been implicated in horse poisoning in grazing regions of central-west Queensland, which resulted in the deaths of more than 35 horses from hepatotoxicosis in 2010. Liver pathology was suggestive of pyrrolizidine alkaloidosis, and we report here the isolation of two previously uncharacterized pyrrolizidine alkaloids from C. medicaginea plant specimens collected from pastures where the horses died. The first alkaloid was shown by mass spectometric and NMR analyses to be 1β,2β-epoxy-7β-hydroxy-1α-methoxymethyl-8α-pyrrolizidine, which, like other alkaloids previously isolated from C. medicaginea, lacks the requisite functionality for hepatotoxcity. The second alkaloid isolated in this investigation was a new macrocyclic diester of otonecine, which we have named cromedine. The (1)H and (13)C NMR spectra of cromedine were fully assigned by 2D NMR techniques and allowed the constitution of the macrocyclic diester to be assigned unambiguously. C. medicaginea specimens implicated in this investigation do not belong to any of the three recognized Australian varieties (C. medicaginea var. neglecta, C. medicaginea var. medicaginea, and C. medicaginea var. linearis) and appear to be a local variant or form, referred to here as C. medicaginea (chemotype cromedine).

  18. Induction of Morphological Changes in Human Embryo Liver Cells by the Pyrrolizidine Alkaloid Lasiocarpine

    Science.gov (United States)

    Armstrong, Sylvia J.; Zuckerman, A. J.; Bird, R. G.

    1972-01-01

    The pyrrolizidine alkaloids have been implicated in the aetiology of liver disease in man and in animals. Studies of the effects of lasiocarpine indicate that they have several and perhaps independent effects on human liver cells in culture. These may be summarized as follows: 1. Nuclear and nucleolar changes which are probably related to the alkylation of DNA and ensuing inhibition of nucleic acid and protein synthesis. 2. The induction of possible chromosomal damage and mutation. 3. A generalized reduction of the metabolic activities of the cells due to membrane and mitochondrial damage, and to alkylation and inactivation of cell enzymes and proteins. 4. A long-term inhibition of mitosis leading to the formation of giant cells (“megalocytes”). The morphological effects induced by a number of the pyrrolizidine alkaloids were very similar but the pattern of metabolic changes varied somewhat. It is believed that the hepatotoxic effects are not due to the pyrrolizidine alkaloids themselves but to metabolic derivatives formed by the cell. ImagesFigs. 3-5Figs. 1-2 PMID:5032090

  19. Sensitive determination of pyrrolizidine alkaloids in Tussilago farfara L. by field-amplified, sample-stacking, sweeping micellar electrokinetic chromatography.

    Science.gov (United States)

    Cao, Kun; Xu, Yi; Mu, Xiuni; Zhang, Qing; Wang, Renjie; Lv, Junjiang

    2016-11-01

    Pyrrolizidine alkaloids are the toxic components in Tussilago farfara L. Due to the lack of standard substances for quantitative analysis and traces of pyrrolizidine alkaloids in total alkaloids, the full quality control of Tussilago farfara L has been limited. In this study, we aimed to solve the difficulty of determination of pyrrolizidine alkaloids and identify more components in the total alkaloids. An on-line preconcentration method has been applied to improve determining sensitivity of pyrrolizidine alkaloids in Tussilago farfara L. in which included field-amplified sample stacking and sweeping in micellar electrokinetic capillary chromatography. The main parameters that affected separation and stacking efficiency were investigated in details. Under the optimal conditions, the sensitivity enhancement factors obtained by the developed method for the analytes were from 15- to 12-fold, the limits of detection of senkirkine and senecionine were 2∼5 μg/L. Senkirkine and senecionine have been detected in alkaloids (c) of Tussilago farfara L, along ferulic acid methyl ester and methyl caffeate. The developed method was also applied to the analysis of acid extraction (a) of Tussilago farfara L, and senkirkine could be detected directly. The results indicated that the developed method is feasible for the analysis of pyrrolizidine alkaloids in Tussilago farfara L with good recoveries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Blood pyrrole-protein adducts as a diagnostic and prognostic index in pyrrolizidine alkaloid-hepatic sinusoidal obstruction syndrome

    Directory of Open Access Journals (Sweden)

    Gao H

    2015-08-01

    Full Text Available Hong Gao,1,* Jianqing Q Ruan,2,* Jie Chen,1 Na Li,2 Changqiang Q Ke,3 Yang Ye,3–5 Ge Lin,2,4,5 Jiyao Y Wang1,61Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 2School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong; 3Shanghai Institute of Materia Medica, Shanghai, People’s Republic of China; 4Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai Institute of Materia Medica, 5Chinese University of Hong Kong, Hong Kong; 6Center of Evidence-Based Medicine Fudan University, Shanghai, People’s Republic of China*These authors contributed equally to this work and share first authorship Background: The diagnosis of hepatic sinusoidal obstruction syndrome (HSOS induced by pyrrolizidine alkaloids is mainly based on clinical investigation. There is currently no prognostic index. This study evaluated the quantitative measurement of blood pyrrole-protein adducts (PPAs as a diagnostic and prognostic index for pyrrolizidine alkaloid-induced HSOS.Methods: Suspected drug-induced liver injury patients were prospectively recruited. Blood PPAs were quantitatively measured using ultra-performance liquid chromatography-tandem mass spectrometry. Patients’ age, sex, biochemistry test results, and a detailed drug history were recorded. The patients were divided into two groups, ie, those with HSOS induced by pyrrolizidine alkaloid-containing drugs and those with liver injury induced by drugs without pyrrolizidine alkaloids. The relationship between herb administration, clinical outcomes, blood sampling time, and blood PPA concentration in pyrrolizidine alkaloid-associated HSOS patients was analyzed using multiple linear regression analysis.Results: Forty patients met the entry criteria, among whom 23 had pyrrolizidine alkaloid-associated HSOS and 17 had liver injury caused by drugs without pyrrolizidine alkaloids. Among the 23

  1. Anti-inflammatory Activity of Pyrrolizidine Alkaloids from the Leaves of Madhuca pasquieri (Dubard).

    Science.gov (United States)

    Hoang, Le Son; Tran, Manh Hung; Lee, Joo Sang; To, Dao Cuong; Nguyen, Van Thu; Kim, Jeong Ah; Lee, Jeong Hyung; Woo, Mi Hee; Min, Byung Sun

    2015-01-01

    A novel pyrrolizidine alkaloids, madhumidine A (1), and two known alkaloids, lindelofidine benzoic acid ester (2) and minalobine B (3) were isolated from the leaves of Madhuca pasquieri (Dubard) H. J. LAM. The chemical structures of these alkaloids were established mainly by NMR techniques and mass spectrometry. Their anti-inflammatory activity was evaluated against lipopolysaccharide-induced nitric oxide production in macrophage RAW264.7 cell. In addition, the cytotoxic activity of all isolated compounds was tested against a panel of cancer cell lines.

  2. Determination of pyrrolizidine alkaloids in selected feed materials with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Kowalczyk, Ewelina; Kwiatek, Krzysztof

    2017-05-01

    1,2-Dehydropyrrolizidine alkaloids are known to be toxic to many animals and humans. To provide safety of feeds a method based on gas chromatography-mass spectrometry enabling the determination of a content of 1,2-unsaturated PAs in feed materials was developed. After extraction with aqueous solution of HCl and purification of the extract, 1,2-unsaturated alkaloids are reduced to their common backbone structures and subsequently derivatised with heptafluorobutyric anhydride (HFBA). The method was validated according to SANTE/11945/2015. All received parameters are consistent with the document requirements as recovery of a final compound retronecine derivative was from 81.8% to 94.4% when retrosine was used for spiking and from 72.7% to 85.5% when retrorsine N-oxide was spiked. The repeatability was calculated as relative standards deviation and ranged from 7.5% to 14.4%, for N-oxide was from 7.9% to 15.4%. The reproducibility was in the range from 14.2% to 16.3% and from 17.0% to 18.1% for free base and N-oxide respectively. The limit of quantification was determined as 10 µg kg - 1 . Good linearity of the method was obtained with coefficient of determination R 2  > 0.99. The method was applied to 35 silage and two hay samples analysis.

  3. Metabolic activation of pyrrolizidine alkaloids leading to phototoxicity and photogenotoxicity in human HaCaT keratinocytes.

    Science.gov (United States)

    Wang, Chia-Chi; Xia, Qingsu; Li, Meng; Wang, Shuguang; Zhao, Yuewei; Tolleson, William H; Yin, Jun-Jie; Fu, Peter P

    2014-01-01

    Pyrrolizidine alkaloids, produced by a large number of poisonous plants with wide global distribution, are associated with genotoxicity, tumorigenicity, and hepatotoxicity in animals and humans. Mammalian metabolism converts pyrrolizidine alkaloids to reactive pyrrolic metabolites (dehydropyrrolizidine alkaloids) that form covalent protein and DNA adducts. Although a mechanistic understanding is currently unclear, pyrrolizidine alkaloids can cause secondary (hepatogenous) photosensitization and induce skin cancer. In this study, the phototoxicity of monocrotaline, riddelliine, dehydromonocrotaline, dehydroriddelliine, and dehydroretronecine (DHR) in human HaCaT keratinocytes under ultraviolet A (UVA) irradiation was determined. UVA irradiation of HaCaT cells treated with dehydromonocrotaline, dehydroriddelline, and DHR resulted in increased release of lactate dehydrogenase and enhanced photocytotoxicity proportional to the UVA doses. UVA-induced photochemical DNA damage also increased proportionally with dehydromonocrotaline and dehydroriddelline. UVA treatment potentiated the formation of 8-hydroxy-2'-deoxyguanosine DNA adducts induced by dehydromonocrotaline in HaCaT skin keratinocytes. Using electron spin resistance trapping, we found that UVA irradiation of dehydromonocrotaline and dehydroriddelliine generates reactive oxygen species (ROS), including hydroxyl radical, singlet oxygen, and superoxide, and electron transfer reactions, indicating that cytotoxicity and genotoxicity of these compounds could be mediated by ROS. Our results suggest that dehydropyrrolizidine alkaloids formed or delivered to the skin cause pyrrolizidine alkaloid-induced secondary photosensitization and possible skin cancer.

  4. 2,6-Lutidine-isatinecate, a semi-synthetic pyrrolizidine alkaloid: X-ray and N. M. R. studies

    Energy Technology Data Exchange (ETDEWEB)

    Drewes, S.E.; Field, J.S.; Pitchford, A.T.; Van Rooyen, P.H.; Dillen, J.L.M.

    1985-09-01

    A semi-synthetic pyrrolizidine alkaloid has been prepared from a necic acid and a pyridine base moiety. N.M.R. and X-ray analyses of this compound were carried out in order to establish the relationship between the structure and chemical shift.

  5. Preparation of tritium labelled synthanecine A and its bis-N-ethylcarbamate

    International Nuclear Information System (INIS)

    Mattocks, A.R.

    1982-01-01

    A procedure is described for incorporating tritium into the 3-CH 2 side chain of synthanecine A, and preparing the carbamate, 2,3-bis-N-ethylcarbamoyloxymethyl-1-methyl-3-pyrroline, a hepatotoxic pyrrolizidine alkaloid analogue. The pyrrolizidine amino alcohol, retronecine, can be tritium labelled in a similar way. (author)

  6. Preparation of tritium labelled synthanecine A and its bis-N-ethylcarbamate

    Energy Technology Data Exchange (ETDEWEB)

    Mattocks, A.R. (Medical Research Council, Carshalton (UK))

    1982-04-01

    A procedure is described for incorporating tritium into the 3-CH/sub 2/ side chain of synthanecine A, and preparing the carbamate, 2,3-bis-N-ethylcarbamoyloxymethyl-1-methyl-3-pyrroline, a hepatotoxic pyrrolizidine alkaloid analogue. The pyrrolizidine amino alcohol, retronecine, can be tritium labelled in a similar way.

  7. In vitro biotransformation of pyrrolizidine alkaloids in different species. Part I: Microsomal degradation.

    Science.gov (United States)

    Kolrep, Franziska; Numata, Jorge; Kneuer, Carsten; Preiss-Weigert, Angelika; Lahrssen-Wiederholt, Monika; Schrenk, Dieter; These, Anja

    2018-03-01

    Pyrrolizidine alkaloids (PA) are secondary metabolites of certain flowering plants. The ingestion of PAs may result in acute and chronic effects in man and livestock with hepatotoxicity, mutagenicity, and carcinogenicity being identified as predominant effects. Several hundred PAs sharing the diol pyrrolizidine as a core structure are formed by plants. Although many congeners may cause adverse effects, differences in the toxic potency have been detected in animal tests. It is generally accepted that PAs themselves are biologically and toxicologically inactive and require metabolic activation. Consequently, a strong relationship between activating metabolism and toxicity can be expected. Concerning PA susceptibility, marked differences between species were reported with a comparatively high susceptibility in horses, while goat and sheep seem to be almost resistant. Therefore, we investigated the in vitro degradation rate of four frequently occurring PAs by liver enzymes present in S9 fractions from human, pig, cow, horse, rat, rabbit, goat, and sheep liver. Unexpectedly, almost no metabolic degradation of any PA was observed for susceptible species such as human, pig, horse, or cow. If the formation of toxic metabolites represents a crucial bioactivation step, the found inverse conversion rates of PAs compared to the known susceptibility require further investigation.

  8. Safety assessment of food and herbal products containing hepatotoxic pyrrolizidine alkaloids: interlaboratory consistency and the importance of N-oxide determination.

    Science.gov (United States)

    Cao, Yu; Colegate, Steven M; Edgar, John A

    2008-01-01

    Two recent mass spectrometry-based reports concerning Senecio scandens yielded remarkably dissimilar pyrrolizidine alkaloid constituents. In both studies, and in a related analysis of Senecio scandens and Tussilago farfara using micellar electrokinetic chromatography, the presence of hazardous N-oxides of the alkaloids was either not considered or was inadequately considered. This raises concerns about the effectiveness of the methodologies used in these, and similar, studies in assessing the pyrrolizidine alkaloid content and the safety of food, food supplements and medicines for human use. To highlight essential analytical requirements for confident assessment of pyrrolizidine alkaloid-related safety of food and herbal products for human use. Direct infusion-ESI MS and HPLC-ESI MS were used to analyse samples derived from liquid-liquid partitioning experiments and from strong cation exchange, solid-phase extraction of pyrrolizidine alkaloids and their N-oxides. A simple solvent partitioning experiment using pure senecionine and senecionine-N-oxide, two constituents reported in one of the mass spectrometry-based studies of S. scandens, clearly demonstrated the inadequacy of the reported method to detect and quantitate hazardous pyrrolizidine alkaloid N-oxide components. A preliminary LCMS analysis of commercially-prepared extracts of comfrey roots (Symphytum officinale and S. uplandicum s. l.) was used as a model to highlight the analytical importance of N-oxides in the safety assessment of pyrrolizidine alkaloid-containing medicinal herbs. This study highlighted significant differences in the reported identification of pyrrolizidine alkaloids from the same plant species, and clearly demonstrated the inadequacy of some procedures to include N-oxides in the assessment of pyrrolizidine alkaloid-related safety of food and herbal products.

  9. Toxic pyrrolizidine alkaloids provide a warning sign to overuse of the ethnomedicine Arnebia benthamii.

    Science.gov (United States)

    Ahmad, Latif; He, Yi; Hao, Jia-Chen; Semotiuk, Andrew; Liu, Quan-Ru; Mazari, Paras

    2018-01-10

    From early times man has used medicinal plants for the treatment of various ailments and basic health care needs. The use of herbal medicines has increased day by day and with this, so do reports of adverse events, poisoning, and suspected toxicity. Similarly, the indigenous communities of Neelum Valley in Azad Kashmir commonly use Arnebia benthamii (Wall. ex G.Don) I.M.Johnst. for medicinal purposes to treat various human aliments. Besides their medicinal uses, it also contains hepatotoxic pyrrolizidine alkaloids (PAs). This explorative study underscores two major aspects about this herbal medicine. Firstly we aimed to document the traditional therapeutic uses of Arnebia benthamii in Neelum Valley, Azad Kashmir. Secondly, to determine the presence or absence of hepatotoxic pyrrolizidine alkaloids and if they are within the suggested limit for the use of herbs in excess. Interviews, group discussions, and inquiries were carried out from July to September 2016 with local indigenous and elder people. In the laboratory, the plant was investigated for pyrrolizidine alkaloids by using high performance liquid chromatography (HPLC). A total of 30 respondents were interviewed. They explained the preferred preparation, parts used, and treatment indications. Treatment of fever along with kidney and liver problems are the three principle uses. Among the different parts of Arnebia benthamii, 43% respondents preferred aerial parts for the herbal formulation, followed by whole plants, and leaves. Decoction was the major mode of preparation and all herbal preparations were administrated orally. This study reports, for the first time according to our literature review, a study of Arnebia benthamii with regard to PA determination. By using column Zorbax SB-Aq and acetonitrile-water gradient as the mobile phase, HPLC results showed that the aerial parts of the plant were PA positive, and (1) Europine, Heliotrine (2), Lycopsamine (3), and Echimidine (4) were identified. This study

  10. The first report of pyrrolizidine alkaloid poisoning in a gazelle (Gazella Subgutturosa) - histopathologic diagnosis.

    Science.gov (United States)

    Khordadmehr, Monireh; Rezazadeh, Fereydoon; Ashrafi-Helan, Javad; Hosseini-Ghomi, Mir Mohsen

    2016-03-01

    Pyrrolizidine alkaloids (PAs) are natural phytotoxins found in thousands of plant species around the world. They are probably the most common poisonous plants affecting livestock, wildlife and humans. The disease occurs almost entirely as a consequence of chronic poisoning and in general ends fatally. In the present study, PAs poisoning was investigated in a gazelle with hepatic encephalopathy associated with severe neurologic signs. The main clinical signs included head pressing, progressive depression and weakness, ataxia and reluctance to move, turn the head to the left and to paddle, hyperesthesia and decreased food intake. Histopathological examination revealed major lesions in the liver consisting of severe hepatocyte megalocytosis and hypertrophy with nuclei enlargement, mild bile duct hyperplasia, centriacinar fatty change and hepatocellular necrosis. Moreover, pulmonary congestion and edema with endothelium necrosis and alveolar septa thickening, severe congestion in vessels of the brain and meninges, and myocardial necrosis were observed.

  11. 7-cysteine-pyrrole conjugate: A new potential DNA reactive metabolite of pyrrolizidine alkaloids.

    Science.gov (United States)

    He, Xiaobo; Xia, Qingsu; Ma, Liang; Fu, Peter P

    2016-01-01

    Pyrrolizidine alkaloids (PAs) require metabolic activation to exert cytotoxicity, genotoxicity, and tumorigenicity. We previously reported that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts are responsible for PA-induced liver tumor formation in rats. In this study, we determined that metabolism of riddelliine and monocrotaline by human or rat liver microsomes produced 7-cysteine-DHP and DHP. The metabolism of 7-glutathionyl-DHP by human and rat liver microsomes also generated 7-cysteine-DHP. Further, reaction of 7-cysteine-DHP with calf thymus DNA in aqueous solution yielded the described DHP-derived DNA adducts. This study represents the first report that 7-cysteine-DHP is a new PA metabolite that can lead to DNA adduct formation.

  12. UPLC-MS/MS method for determination of selected pyrrolizidine alkaloids in feed.

    Science.gov (United States)

    Bolechová, Martina; Cáslavský, Josef; Pospíchalová, Markéta; Kosubová, Petra

    2015-03-01

    Alkaloids known as secondary metabolites are grouped by typical structural characteristics into large families such as pyrrolizidine alkaloids (PAs) comprising more than 350 individual heterocyclic compounds. The PAs present a serious health risk to human and livestock; hence there is a need for methods that allow these dangerous plant toxins to be determined. In this study, a fast, reliable and sensitive approach is proposed to identify and quantify PAs in feed samples. PAs including monocrotaline, senkirkine, senecionine, seneciphylline and retrorsine were determined by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Sample preparation was based on a modified QuEChERS approach. The mean recovery, precision, matrix effects and limits of quantification were assessed for three matrices within the method validation. The presented method was used to inspect 41 various feed samples, where the presence of PAs was expected. Roughages and feed for rabbits contained the highest levels of PAs, in general. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Variability of Pyrrolizidine Alkaloid Occurrence in Species of the Grass Subfamily Pooideae (Poaceae)

    Science.gov (United States)

    Wesseling, Anne-Maria; Demetrowitsch, Tobias J.; Schwarz, Karin; Ober, Dietrich

    2017-01-01

    Pyrrolizidine alkaloids (PAs) are a class of secondary metabolites found in various unrelated angiosperm lineages including cool-season grasses (Poaceae, subfamily Pooideae). Thesinine conjugates, saturated forms of PA that are regarded as non-toxic, have been described to occur in the two grass species Lolium perenne and Festuca arundinacea (Poaceae, subfamily Pooideae). In a wider screen, we tested various species of the Pooideae lineage, grown under controlled conditions, for their ability to produce thesinine conjugates or related structures. Using an LC-MS based targeted metabolomics approach we were able to show that PA biosynthesis in grasses is limited to a group of very closely related Pooideae species that produce a limited diversity of PA structures. High variability in PA levels was observed even between individuals of the same species. These individual accumulation patterns are discussed with respect to a possible function and evolution of this type of alkaloid. PMID:29250094

  14. Variability of Pyrrolizidine Alkaloid Occurrence in Species of the Grass Subfamily Pooideae (Poaceae

    Directory of Open Access Journals (Sweden)

    Anne-Maria Wesseling

    2017-11-01

    Full Text Available Pyrrolizidine alkaloids (PAs are a class of secondary metabolites found in various unrelated angiosperm lineages including cool-season grasses (Poaceae, subfamily Pooideae. Thesinine conjugates, saturated forms of PA that are regarded as non-toxic, have been described to occur in the two grass species Lolium perenne and Festuca arundinacea (Poaceae, subfamily Pooideae. In a wider screen, we tested various species of the Pooideae lineage, grown under controlled conditions, for their ability to produce thesinine conjugates or related structures. Using an LC-MS based targeted metabolomics approach we were able to show that PA biosynthesis in grasses is limited to a group of very closely related Pooideae species that produce a limited diversity of PA structures. High variability in PA levels was observed even between individuals of the same species. These individual accumulation patterns are discussed with respect to a possible function and evolution of this type of alkaloid.

  15. Sesquiterpenes, flavonoids, shikimic acid derivatives and pyrrolizidine alkaloids from Senecio kingii Hook.

    Science.gov (United States)

    Ruiz-Vásquez, Liliana; Reina, Matías; López-Rodríguez, M; Giménez, Cristina; Cabrera, Raimundo; Cuadra, Pedro; Fajardo, Víctor; González-Coloma, Azucena

    2015-09-01

    Twenty-four compounds including eleven eremophilanolides (1-11), one eremophilane (13), five shikimic acid derivatives (14-18), six flavonoids (19-24), and the macrocyclic unsaturated pyrrolizidine alkaloid integerrimine (25) were isolated from Senecio kingii, an endemic species from the Magallanes Region (Chile). Compounds 3, 5, 6, 8-11 and 13-18 have not been previously reported as natural products. Their molecular structures were determined by NMR spectroscopic analysis and comparison with published NMR data. An X-ray-analysis of compound 3 has been performed. Their insecticidal and antifungal activities were tested, being compound 3 the strongest insect antifeedant. Compounds 6, 9 and 18 were moderate antifungals. Published by Elsevier Ltd.

  16. The first report of pyrrolizidine alkaloid poisoning in a gazelle (Gazella Subgutturosa) – histopathologic diagnosis

    Science.gov (United States)

    Khordadmehr, Monireh; Ashrafi-Helan, Javad; Hosseini-Ghomi, Mir Mohsen

    2016-01-01

    Pyrrolizidine alkaloids (PAs) are natural phytotoxins found in thousands of plant species around the world. They are probably the most common poisonous plants affecting livestock, wildlife and humans. The disease occurs almost entirely as a consequence of chronic poisoning and in general ends fatally. In the present study, PAs poisoning was investigated in a gazelle with hepatic encephalopathy associated with severe neurologic signs. The main clinical signs included head pressing, progressive depression and weakness, ataxia and reluctance to move, turn the head to the left and to paddle, hyperesthesia and decreased food intake. Histopathological examination revealed major lesions in the liver consisting of severe hepatocyte megalocytosis and hypertrophy with nuclei enlargement, mild bile duct hyperplasia, centriacinar fatty change and hepatocellular necrosis. Moreover, pulmonary congestion and edema with endothelium necrosis and alveolar septa thickening, severe congestion in vessels of the brain and meninges, and myocardial necrosis were observed. PMID:28652845

  17. 7-Glutathione-pyrrole and 7-cysteine-pyrrole are potential carcinogenic metabolites of pyrrolizidine alkaloids.

    Science.gov (United States)

    He, Xiaobo; Xia, Qingsu; Fu, Peter P

    2017-04-03

    Many pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic phytochemicals. Metabolism of PAs in vivo generates four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts that have been proposed to be responsible for PA-induced liver tumor formation in rats. In this present study, we determined that the same set of DHP-DNA adducts was formed upon the incubation of 7-glutathione-DHP and 7-cysteine-DHP with cultured human hepatocarcinoma HepG2 cells. These results suggest that 7-glutathione-DHP and 7-cysteine-DHP are reactive metabolites of PAs that can bind to cellular DNA to form DHP-DNA adducts in HepG2 cells, and can potentially initiate liver tumor formation.

  18. Complete 1H NMR assignments of pyrrolizidine alkaloids and a new eudesmanoid from Senecio polypodioides.

    Science.gov (United States)

    Villanueva-Cañongo, Claudia; Pérez-Hernández, Nury; Hernández-Carlos, Beatriz; Cedillo-Portugal, Ernestina; Joseph-Nathan, Pedro; Burgueño-Tapia, Eleuterio

    2014-05-01

    Chemical investigation of the aerial parts of Senecio polypodioides lead to the isolation of the new eudesmanoid 1β-angeloyloxyeudesm-7-ene-4β,9α-diol (1) and the known dirhamnosyl flavonoid lespidin (3), while from roots, the known 7β-angeloyloxy-1-methylene-8α-pyrrolizidine (5) and sarracine N-oxide (6), as well as the new neosarracine N-oxide (8), were obtained. The structure of 1 and 8 was elucidated by spectral means. Complete assignments of the (1)H NMR data for 5, 6, sarracine (7), and 8 were made using one-dimensional and two-dimensional NMR experiments and by application of the iterative full spin analysis of the PERCH NMR software. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Detection of high levels of pyrrolizidine-N-oxides in the endangered plant Cryptantha crassipes (Terlingua Creek cat's-eye) using HPLC-ESI-MS.

    Science.gov (United States)

    Williams, Maria T; Warnock, Bonnie J; Betz, Joseph M; Beck, John J; Gardner, Dale R; Lee, Stephen T; Molyneux, Russell J; Colegate, Steven M

    2011-01-01

    A previous investigation of pyrrolizidine alkaloids produced by nine species of Cryptantha identified at least two chemotypes within the genus. Other research has postulated that pyrrolizidine-N-oxide concentrations increase as the growing conditions become harsher, particularly with respect to water availability. Cryptantha crassipes is an endangered plant with a very limited distribution range within a dry, harsh Texan ecosystem. To determine the pyrrolizidine alkaloid (and their N-oxides) profile and concentrations in Cryptantha crassipes. Methanolic extracts of Cryptantha crassipes were partitioned into dilute sulphuric acid and the alkaloids concentrated using strong cation exchange, solid-phase extraction columns. Extracts were analysed using reversed-phase high-pressure liquid chromatography coupled to electrospray ionisation ion trap mass spectrometry. The N-oxides of lycopsamine and intermedine were the major pyrrolizidine alkaloids detected in Cryptantha crassipes. Smaller to trace amounts of other pyrrolizidine alkaloids observed were: the 7- and 3'-acetylated derivatives and the 1,2-dihydro analogs of lycopsamine-N-oxide and/or intermedine-N-oxide; a pair of unidentified N-oxides, isobaric with lycopsamine-N-oxide; and the N-oxides of leptanthine, echimiplatine, amabiline, echiumine and dihydroechiumine. Only trace amounts, if any, of the parent free base pyrrolizidine alkaloids were detected. The concentration of pyrrolizidine alkaloids was estimated to be 3-5% of the dry weight of milled leaves, or 10-50 times the levels previously reported for similar chemotypes. The high levels of the N-oxides of lycopsamine and intermedine establish the genus chemotype of the endangered Cryptantha crassipes and support earlier data linking high levels of N-oxides to dry, harsh growing conditions. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Penibruguieramine A, a novel pyrrolizidine alkaloid from the endophytic fungus Penicillium sp. GD6 associated with Chinese mangrove Bruguiera gymnorrhiza.

    Science.gov (United States)

    Zhou, Zhen-Fang; Kurtán, Tibor; Yang, Xiao-Hong; Mándi, Attila; Geng, Mei-Yu; Ye, Bo-Ping; Taglialatela-Scafati, Orazio; Guo, Yue-Wei

    2014-03-07

    A novel pyrrolizidine alkaloid, penibruguieramine A (1), characterized by an unprecedented 1-alkenyl-2-methyl-8-hydroxymethylpyrrolizidin-3-one skeleton, was isolated from the endophytic fungus Penicillium sp. GD6, associated with the Chinese mangrove Bruguiera gymnorrhiza. The absolute configuration of penibruguieramine A (1) was established by TDDFT ECD calculations of the vacuum and solution conformers, exploiting the transitions of the lactam chromophore. A plausible pathway for its biosynthesis has been proposed.

  1. Chemical Diversity Investigation of Hepatotoxic Pyrrolizidine Alkaloids in Qianliguang (Senecio scandens and Related Species by UHPLC-QTOF-MS

    Directory of Open Access Journals (Sweden)

    Lin Zhu

    2015-04-01

    Full Text Available Objective: Qianliguang (Senecio scandens is a common Chinese medicinal herb. Qianliguang-containing herbal proprietary products are registered as over-the-counter remedies in China and exported to Western countries. The presence of hepatotoxic pyrrolizidine alkaloids (PAs has raised concerns about the safety of using Qianliguang and its products. The present study aims at investigation of different types of PAs present in Qianliguang collected from representative locations in China.

  2. Quantification of pyrrolizidine alkaloids in North American plants and honey by LC-MS: single laboratory validation.

    Science.gov (United States)

    Mudge, Elizabeth M; Jones, A Maxwell P; Brown, Paula N

    2015-01-01

    Pyrrolizidine alkaloids (PAs) are a class of naturally occurring compounds produced by many flowering plants around the World. Their presence as contaminants in food systems has become a significant concern in recent years. For example, PAs are often found as contaminants in honey through pollen transfer. A validated method was developed for the quantification of four pyrrolizidine alkaloids and one pyrrolizidine alkaloid N-oxide in plants and honey grown and produced in British Columbia. The method was optimised for extraction efficiency from the plant materials and then subjected to a single-laboratory validation to assess repeatability, accuracy, selectivity, LOD, LOQ and method linearity. The PA content in plants ranged from1.0 to 307.8 µg/g with repeatability precision between 3.8 and 20.8% RSD. HorRat values were within acceptable limits and ranged from 0.62 to 1.63 for plant material and 0.56-1.82 for honey samples. Method accuracy was determined through spike studies with recoveries ranging from 84.6 to 108.2% from the raw material negative control and from 82.1-106.0 % for the pyrrolizidine alkaloids in corn syrup. Based on the findings in this single-laboratory validation, this method is suitable for the quantitation of lycopsamine, senecionine, senecionine N-oxide, heliosupine and echimidine in common comfrey (Symphytum officinale), tansy ragwort (Senecio jacobaea), blueweed (Echium vulgare) and hound's tongue (Cynoglossum officinale) and for PA quantitation in honey and found that PA contaminants were present at low levels in BC honey.

  3. 1,3-Oxazin-6-one Derivatives and Bohemamine-Type Pyrrolizidine Alkaloids from a Marine-Derived Streptomyces spinoverrucosus.

    Science.gov (United States)

    Fu, Peng; La, Scott; MacMillan, John B

    2016-03-25

    Two new 1,3-oxazin-6-one derivatives (1 and 2) and six new bohemamine-type pyrrolizidine alkaloids (3-8) were isolated from the marine-derived Streptomyces spinoverrucosus strain SNB-048. Their structures including the absolute configurations were fully elucidated on the basis of spectroscopic analysis, ECD spectra, quantum chemical calculations, and chemical methods. Compounds 1 and 2 possess a γ-lactam moiety and a 1,3-oxazin-6-one system.

  4. Cytotoxicity of pyrrolizidine alkaloid in human hepatic parenchymal and sinusoidal endothelial cells: Firm evidence for the reactive metabolites mediated pyrrolizidine alkaloid-induced hepatotoxicity.

    Science.gov (United States)

    Yang, Mengbi; Ruan, Jianqing; Fu, Peter P; Lin, Ge

    2016-01-05

    Pyrrolizidine alkaloids (PAs) widely distribute in plants and can cause hepatic sinusoidal obstruction syndrome (HSOS), which typically presents as a primary sinusoidal endothelial cell damage. It is well-recognized that after ingestion, PAs undergo hepatic cytochromes P450 (CYPs)-mediated metabolic activation to generate dehydropyrrolizidine alkaloids (DHPAs), which are hydrolyzed to dehydroretronecine (DHR). DHPAs and DHR are reactive metabolites having same core pyrrole moiety, and can bind proteins to form pyrrole-protein adducts, which are believed as the primary cause for PA-induced HSOS. However, to date, the direct evidences supporting the toxicity of DHPAs and DHR in the liver, in particular in the sinusoidal endothelial cells, are lacking. Using human hepatic sinusoidal endothelial cells (HSEC) and HepG2 (representing hepatic parenchymal cells), cells that lack CYPs activity, this study determined the direct cytotoxicity of dehydromonocrotaline, a representative DHPA, and DHR, but no cytotoxicity of the intact PA (monocrotaline) in both cell lines, confirming that reactive metabolites mediate PA intoxication. Comparing with HepG2, HSEC had significantly lower basal glutathione (GSH) level, and was significantly more susceptible to the reactive metabolites with severer GSH depletion and pyrrole-protein adducts formation. The toxic potency of two reactive metabolites was also compared. DHPA was more reactive than DHR, leading to severer toxicity. In conclusion, our results unambiguously provided the first direct evidence for the critical role of DHPA and DHR in the reactive metabolites-mediated PA-induced hepatotoxicity, which occurs predominantly in HSEC due to severe GSH depletion and the significant formation of pyrrole-protein adducts in HSEC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Influence of grass pellet production on pyrrolizidine alkaloids occurring in Senecio aquaticus-infested grassland.

    Science.gov (United States)

    Gottschalk, Christoph; Ostertag, Johannes; Meyer, Karsten; Gehring, Klaus; Thyssen, Stefan; Gareis, Manfred

    2018-04-01

    1,2-Dehydro-pyrrolizidine alkaloids (PA) and their N-oxides (PANO) exhibit acute and chronic toxic effects on the liver and other organs and therefore are a hazard for animal and human health. In certain regions of Germany, an increasing spread of Senecio spp. (ragwort) on grassland and farmland areas has been observed during the last years leading to a PA/PANO-contamination of feed and food of animal and plant origin. This project was carried out to elucidate whether the process of grass pellet production applying hot air drying influences the content of PA and PANO. Samples of hay (n = 22) and grass pellets (n = 28) originated from naturally infested grassland (around 10% and 30% dominance of Senecio aquaticus) and from a trial plot with around 50% dominance. Grass pellets were prepared from grass originating from exactly the same plots as the hay samples. The samples were analysed by liquid chromatography-tandem mass spectrometry for PA/PANO typically produced by this weed. The results of the study revealed that PA/PANO levels (predominantly sum of senecionine, seneciphylline, erucifoline and their N-oxides) in hay ranged between 2.1 and 12.6 mg kg -1 dry matter in samples with 10% and 30% dominance of S. aquaticus, respectively. Samples from the trial plot (50% dominance) had levels of up to 52.9 mg kg -1 . Notably, the hot air drying process during the production of grass pellets did not lead to a reduction of PA/PANO levels. Instead, the levels in grass pellets with 10% and 30% S. aquaticus ranged from 3.1 to 55.1 mg kg -1 . Grass pellets from the trial plot contained up to 96.8 mg kg -1 . In conclusion, hot air drying and grass pellet production did not affect PA/PANO contents in plant material and therefore, heat-dried products cannot be regarded as safe in view of the toxic potential of 1,2-dehydro-pyrrolizidine alkaloids.

  6. The synthesis of 3H-putrescine and subsequent biosynthesis of 3H-jacobine, a pyrrolizidine alkaloid from Senecio jacobaea

    International Nuclear Information System (INIS)

    Reed, R.L.; Buhler, D.R.; Oregon State Univ., Corvallis

    1988-01-01

    A new method was developed for the preparation of tritiated putrescine dihydrochloride ([2,3- 3 H]-1,4-diaminobutane dihydro-chloride) from succinonitrile (1,4-butanedinitrile) and 3 H 2 O, with a radiochemical yield of 16%. Tritiated jacobine and other pyrrolizidine alkaloids were then biosynthesized in Senecio jacobaea using 3 H-putrescine-2HCl as the precursor with a radiochemical yield of 0.9% into total pyrrolizidine alkaloids. Jacobine accounted for 36% of the total. This synthetic method provides a relatively inexpensive source for the preparation of these labelled compounds. (author)

  7. Transfer of pyrrolizidine alkaloids from various herbs to eggs and meat in laying hens.

    Science.gov (United States)

    Mulder, Patrick P J; de Witte, Susannah L; Stoopen, Geert M; van der Meulen, Jan; van Wikselaar, Piet G; Gruys, Erik; Groot, Maria J; Hoogenboom, Ron L A P

    2016-12-01

    To investigate the potential transfer of pyrrolizidine alkaloids (PAs), laying hens were fed for 14 days with diets containing 0.5% of dried common ragwort, common groundsel, narrow-leaved ragwort or viper's bugloss, or 0.1% of common heliotrope. This resulted in total PA levels in feed of respectively 5.5, 11.1, 53.1, 5.9 and 21.7 mg kg - 1 , with varying composition. PAs were transferred to eggs, in particular yolk, with steady-state levels of respectively 12, 21, 216, 2 and 36 µg kg - 1 . Overall transfer rates for the sum of PAs were estimated between 0.02% and 0.23%, depending on the type of PAs in the feed. In animals slaughtered shortly after the last exposure, levels in meat were slightly lower than those in eggs, levels in livers somewhat higher. When switched to clean feed, levels in eggs gradually decreased, but after 14 days were still above detection limits in the hens exposed to higher PA levels. Similar was the case for meat and especially kidneys and livers. It is concluded that the intake of PA containing herbs by laying hens may result in levels in eggs and meat that could be of concern for consumers, and as such should be avoided.

  8. Fate of pyrrolizidine alkaloids during processing of milk of cows treated with ragwort.

    Science.gov (United States)

    de Nijs, Monique; Mulder, Patrick P J; Klijnstra, Mirjam D; Driehuis, Frank; Hoogenboom, Ron L A P

    2017-12-01

    To investigate the fate of pyrrolizidine alkaloids (PAs) during milk processing, milk of cows treated via rumen fistula with a mixture of 84% (w/w) ragwort (Jacobaea vulgaris, syn. Senecio jacobaea) and 16% narrow-leaved ragwort (Senecio inaequidens) was processed using laboratory scale heating systems with industrial settings. Pasteurised and sterilised (UHT) milk were produced, as well as set-type yoghurt and cheese. Samples were analysed for 29 PAs using LC-MS/MS, of which 11 PAs were detected above LOQ in the samples (0.1 µg l -1 ). Alterations in the PA concentration and composition between the standardised milk and the corresponding end-product(s) were evaluated. The heat treatments applied for pasteurisation and UHT sterilisation to prepare semi-skimmed consumption milk did not affect the PA levels in the end-products. In yoghurt, after fermentation of standardised milk (6 h, pH 4.4), 73% of total PAs were recovered. The PA concentration, specifically dehydrojacoline, was decreased, although not quantifiable, during cheese production. A further decrease of 38% during 6 weeks of ripening was observed. The results show that the PA concentration of natural contaminated cow's milk is not affected by heat treatment applied for pasteurised and sterilised milk, but that microbial fermentation of the milk leads to a lowered PA concentration in yoghurt and cheese. This is probably due to microbiological degradation, since PAs are fairly stable under acidic conditions.

  9. Risk assessment for pyrrolizidine alkaloids detected in (herbal) teas and plant food supplements.

    Science.gov (United States)

    Chen, Lu; Mulder, Patrick P J; Louisse, Jochem; Peijnenburg, Ad; Wesseling, Sebas; Rietjens, Ivonne M C M

    2017-06-01

    Pyrrolizidine alkaloids (PAs) are plant metabolites present in some botanical preparations, with especially 1,2-unsaturated PAs being of concern because they are genotoxic carcinogens. This study presents an overview of tumour data on PAs and points of departure (PODs) derived from them, corroborating that the BMDL 10 for lasiocarpine represents a conservative POD for risk assessment. A risk assessment using this BMDL 10 and mean levels of PAs reported in literature for (herbal) teas, indicates that consumption of one cup of tea a day would result in MOE values lower than 10 000 for several types of (herbal) teas, indicating a priority for risk management for these products A refined risk assessment using interim relative potency (REP) factors showed that based on the mean PA levels, 7(54%) of 13 types of (herbal) teas and 1 (14%) of 7 types of plant food supplements (PFS) resulted in MOE values lower than 10 000, indicating a priority for risk management also for these products in particular. This includes both preparations containing PA-producing and non-PA-producing plants. Our study provides insight in the current state-of-the art and limitations in the risk assessment of PA-containing food products, especially (herbal) teas and PFS, indicating that PAs in food presents a field of interest for current and future risk management. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Heliotropium europaeum poisoning in cattle and analysis of its pyrrolizidine alkaloid profile.

    Science.gov (United States)

    Shimshoni, Jakob Avi; Mulder, Patrick P J; Bouznach, Arieli; Edery, Nir; Pasval, Israel; Barel, Shimon; Abd-El Khaliq, Mohammed; Perl, Samuel

    2015-02-11

    Pyrrolizidine alkaloids (PAs) are carcinogenic and genotoxic phytochemicals found exclusively in angiosperms. The ingestion of PA-containing plants often results in acute and chronic toxicities in man and livestock, targeting mainly the liver. During February 2014, a herd of 15-18-month-old mixed-breed beef cattle (n = 73) from the Galilee region in Israel was accidently fed hay contaminated with 12% Heliotropium europaeum (average total PA intake was 33 mg PA/kg body weight/d). After 42 d of feed ingestion, sudden death occurred over a time period of 63 d with a mortality rate of 33%. Necropsy and histopathological examination revealed fibrotic livers and moderate ascites, as well as various degrees of hyperplasia and fibrosis of bile duct epithelial cells. Elevated γ-glutamyl-transferase and alkaline phosphatase levels were indicative of severe liver damage. Comprehensive PA profile determination of the contaminated hay and of native H. europaeum by LC-MS/MS revealed the presence of 30 PAs and PA-N-oxides, including several newly reported PAs and PA-N-oxides of the rinderine and heliosupine class. Heliotrine- and lasiocarpine-type PAs constituted 80% and 18% of the total PAs, respectively, with the N-oxides being the most abundant form (92%). The PA profile of the contaminated hay showed very strong resemblance to that of H. europaeum.

  11. Pyrrolizidine Alkaloids from Echium vulgare in Honey Originate Primarily from Floral Nectar.

    Science.gov (United States)

    Lucchetti, Matteo A; Glauser, Gaetan; Kilchenmann, Verena; Dübecke, Arne; Beckh, Gudrun; Praz, Christophe; Kast, Christina

    2016-06-29

    Pyrrolizidine alkaloids (PAs) in honey can be a potential human health risk. So far, it has remained unclear whether PAs in honey originate from pollen or floral nectar. We obtained honey, nectar, and plant pollen from two observation sites where Echium vulgare L. was naturally abundant. The PA concentration of honey was determined by targeted analysis using a high pressure liquid chromatography-mass spectrometry system (HPLC-MS/MS), allowing the quantification of six different PAs and PA-N-oxides present in E. vulgare. Echium-type PAs were detected up to 0.153 μg/g in honey. Nectar and plant pollen were analyzed by nontargeted analysis using ultrahigh pressure liquid chromatography-high resolution-mass spectrometry (UHPLC-HR-MS), allowing the detection of 10 alkaloids in small size samples. Echium-type PAs were detected between 0.3-95.1 μg/g in nectar and 500-35000 μg/g in plant pollen. The PA composition in nectar and plant pollen was compared to the composition in honey. Echimidine (+N-oxide) was the main alkaloid detected in honey and nectar samples, while echivulgarine (+N-oxide) was the main PA found in plant pollen. These results suggest that nectar contributes more significantly to PA contamination in honey than plant pollen.

  12. 7-N-Acetylcysteine-pyrrole conjugate-A potent DNA reactive metabolite of pyrrolizidine alkaloids.

    Science.gov (United States)

    He, Xiaobo; Ma, Liang; Xia, Qingsu; Fu, Peter P

    2016-10-01

    Plants containing pyrrolizidine alkaloids (PAs) are widespread throughout the world and are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form reactive dehydropyrrolizidine alkaloids (dehydro-PAs) that are capable of alkylating cellular DNA and proteins, form (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA and DHP-protein adducts, and lead to cytotoxicity, genotoxicity, and tumorigenicity. In this study, we determined that the metabolism of riddelliine and monocrotaline by human and rat liver microsomes in the presence of N-acetylcysteine both produced 7-N-acetylcysteine-DHP (7-NAC-DHP) and DHP. Reactions of 7-NAC-DHP with 2'-deoxyguanosine (dG), 2'-deoxyadenosine (dA), and calf thymus DNA in aqueous solution followed by enzymatic hydrolysis yielded DHP-dG and/or DHP-dA adducts. These results indicate that 7-NAC-DHP is a reactive metabolite that can lead to DNA adduct formation. Copyright © 2016. Published by Elsevier B.V.

  13. Interactions between Plant Metabolites Affect Herbivores: A Study with Pyrrolizidine Alkaloids and Chlorogenic Acid

    Science.gov (United States)

    Liu, Xiaojie; Vrieling, Klaas; Klinkhamer, Peter G.L.

    2017-01-01

    The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs), and chlorogenic acid (CGA), on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions. PMID:28611815

  14. A survey of Senecio spp. affecting livestock in Uruguay and their associated pyrrolizidine alkaloid content

    Directory of Open Access Journals (Sweden)

    Juan Agustín García

    2018-02-01

    Full Text Available ABSTRACT: In Eastern Uruguay there has been a significant increase of seneciosis in grazing livestock with most affected localities related to counties neighboring the Brazilian border. A survey in 28 farms associated with poisoning outbreaks in grazing cattle in Eastern Uruguay was carried out. Fifty populations of Senecio plants were collected for alkaloid analysis and species identification. Four species were identified: S. oxyphyllus DC, S. madagascariensis Poir, S. brasiliensis (Spreng. Less., and S. selloi DC. Alkaloids were identified by a combination of GC-MS and HPLC-MS analysis and included: retrorsine in S. oxyphyllus; retrorsine, usaramine, and senecivernine/senecionine in S. selloi; retrorsine, senecivernine/senecionine, integerrimine, and usaramine in S. madagascariensis; and integerrimine, retrorsine and senecionine in S. brasiliensis. Total mean alkaloid concentration was reported to be highest in S. brasiliensis (17.6mg/g followed by S. oxyphyllus (6.2mg/g, S. selloi (1.8mg/g and S. madagascariensis (0.6mg/g. Alkaloid concentrations were also reported to be higher in 2015 vs. 2016 probably due to a common environmental factor. The species S. oxyphyllus and S. madagascariensis were not previously recognized as toxic plants in Eastern Uruguay. Particularly, S. oxyphyllus was present in 82% of the farms surveyed and occurred in high density with relative high concentrations of pyrrolizidine alkaloids suggesting S. oxyphyllus may be the main species involved in the reported outbreaks of seneciosis.

  15. Interspecific transfer of pyrrolizidine alkaloids: An unconsidered source of contaminations of phytopharmaceuticals and plant derived commodities.

    Science.gov (United States)

    Nowak, Melanie; Wittke, Carina; Lederer, Ines; Klier, Bernhard; Kleinwächter, Maik; Selmar, Dirk

    2016-12-15

    Many plant derived commodities contain traces of toxic pyrrolizidine alkaloids (PAs). The main source of these contaminations seems to be the accidental co-harvest of PA-containing weeds. Yet, based on the insights of the newly described phenomenon of the horizontal transfer of natural products, it is very likely that the PA-contaminations may also be due to an uptake of the alkaloids from the soil, previously being leached out from rotting PA-plants. The transfer of PAs was investigated using various herbs, which had been mulched with dried plant material from Senecio jacobaea. All of the acceptor plants exhibited marked concentrations of PAs. The extent and the composition of the imported PAs was dependent on the acceptor plant species. These results demonstrate that PAs indeed are leached out from dried Senecio material into the soil and confirm their uptake by the roots of the acceptor plants and the translocation into the leaves. Copyright © 2016. Published by Elsevier Ltd.

  16. Characterization of hepatic DNA damage induced in rats by the pyrrolizidine alkaloid monocrotaline

    Energy Technology Data Exchange (ETDEWEB)

    Petry, T.W.; Bowden, G.T.; Huxtable, R.J.; Sipes, I.G.

    1984-04-01

    Hepatic DNA damage induced by the pyrrolizidine alkaloid monocrotaline was evaluated following i.p. administration to adult male Sprague-Dawley rats. Animals were treated with various doses ranging upward from 5 mg/kg, and hepatic nuclei were isolated 4 hr later. Hepatic nuclei were used as the DNA source in all experiments. DNA damage was characterized by the alkaline elution technique. A mixture of DNA-DNA interstrand cross-links and DNA-protein cross-links was induced. Following an injection of monocrotaline, 30 mg/kg i.p., DNA-DNA interstrand cross-linking reached a maximum within 12 hr or less and thereafter decreased over a protracted period of time. By 96 hr postadministration, the calculated cross-linking factor was no longer statistically different from zero. No evidence for the induction of DNA single-strand breaks was observed, although the presence of small numbers of DNA single-strand breaks could have been masked by the overwhelming predominance of DNA cross-links. These DNA cross-links may be related to the hepatocarcinogenic, hepatotoxic, and/or antimitotic effects of monocrotaline.

  17. Interactions between Plant Metabolites Affect Herbivores: A Study with Pyrrolizidine Alkaloids and Chlorogenic Acid

    Directory of Open Access Journals (Sweden)

    Xiaojie Liu

    2017-05-01

    Full Text Available The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs, and chlorogenic acid (CGA, on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions.

  18. Are effects of common ragwort in the Ames test caused by pyrrolizidine alkaloids?

    Science.gov (United States)

    Bovee, Toine F H; Helsdingen, Richard J R; Hoogenboom, Ron L A P; de Nijs, Monique W C M; Liu, Xiaojie; Vrieling, Klaas; Klinkhamer, Peter G L; Peijnenburg, Ad A C M; Mulder, Patrick P J

    2015-08-01

    It has previously been demonstrated by others that acetone extracts of Senecio jacobaea (syn. Jacobaea vulgaris, common or tansy ragwort) test positive in the Salmonella/microsome mutagenicity test (Ames test). Pyrrolizidine alkaloids (PAs) are thought to be responsible for these mutagenic effects. However, it was also observed that the major PA present in common ragwort, jacobine, produced a negative response (with and without the addition of rat liver S9) in Salmonella test strains TA98, TA100, TA1535 and TA1537. To investigate which compounds in the plant extracts were responsible for the positive outcome, the present study investigated the contents and mutagenic effects of methanol and acetone extracts prepared from dried ground S. jacobaea and Senecio inaequidens (narrow-leafed ragwort). Subsequently, a fractionation approach was set up in combination with LC-MS/MS analysis of the fractions. It was shown that the positive Ames test outcomes of S. jacobaea extracts are unlikely to be caused by PAs, but rather by the flavonoid quercetin. This study also demonstrates the importance of identifying compounds responsible for positive test results in bioassays. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Diagnostic performance of Contrast-enhanced CT in Pyrrolizidine Alkaloids-induced Hepatic Sinusoidal Obstructive Syndrome

    Science.gov (United States)

    Kan, Xuefeng; Ye, Jin; Rong, Xinxin; Lu, Zhiwen; Li, Xin; Wang, Yong; Yang, Ling; Xu, Keshu; Song, Yuhu; Hou, Xiaohua

    2016-01-01

    Hepatic sinusoidal obstruction syndrome (HSOS) can be caused by pyrrolizidine alkaloids(PAs)-containing herbals. Since PAs exposure is obscure and clinical presentation of HSOS is unspecific, it is challenge to establish the diagnosis of PAs-induced HSOS. Gynura segetum is one of the most wide-use herbals containing PAs. The aim of our study is to describe the features of contrast-enhanced computed tomography (CT) in gynura segetum-induced HSOS, and then determine diagnostic performance of radiological signs. We retrospectively analyzed medical records and CT images of HSOS patients (71 cases) and the controls (222 cases) enrolled from January 1, 2008, to Oct 31, 2015. The common findings of contrast CT in PAs-induced HSOS included: ascites (100%), hepatomegaly (78.87%), gallbladder wall thickening (86.96%), pleural effusion (70.42%), hepatic vein narrowing (87.32%), patchy liver enhancement (92.96%), and heterogeneous hypoattenuation (100%); of these signs, patchy enhancement and heterogeneous hypoattenuation were valuable features. Then, the result of diagnostic performance demonstrated that contrast CT possessed better performance in diagnosing PAs-induced HSOS compared with various parameters of Seattle criteria. In conclusion, the patients with PAs-induced HSOS display distinct radiologic features at CT-scan, which reveals that contrast-enhanced CT provides an effective noninvasive method for diagnosing PAs-induced HSOS. PMID:27897243

  20. Risk assessment on the use of herbal medicinal products containing pyrrolizidine alkaloids.

    Science.gov (United States)

    Allgaier, Clemens; Franz, Stephanie

    2015-11-01

    Pyrrolizidine alkaloids (PA) are common plantal toxins directed against insect herbivores. Unsaturated PAs are known to be hepatotoxic. Many of the PAs are in addition mutagenic and some may possibly be carcinogenic for humans. The risk of an exposure to PAs associated with their occurrence in herbal medicinal products and in foodstuff is under current discussion. The present risk assessment for herbal medicinal products containing PAs is based on a margin of safety derivation for foodstuff indicating that a life-long exposure to maximally 0.007 μg/kg bw/day is not expected to be associated with safety concerns. This approach offers a possibility to estimate the potential risk of PA-containing herbal medicinal products irrespective of the route of administration. It assumes PA levels in the final herbal medicinal product below 0.01 ppm and considers for dermal administration a 100% skin penetration of the PAs reflecting a worst-case scenario. As a result, the calculated margins of safety show a potential exposure using herbal medicinal products 70-, 45.5-, and 19.3-fold lower on a one-day base and 608-, 396-, and 168- fold lower on a one-year base for adults, children aged 12 years, and children aged 4 years, respectively, than the thresholds considered acceptable for foodstuff. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Pyrrolizidine alkaloids in floral honeys of tropical Ghana: a health risk assessment.

    Science.gov (United States)

    Letsyo, Emmanuel; Jerz, Gerold; Winterhalter, Peter; Dübecke, Arne; von der Ohe, Werner; von der Ohe, Katharina; Beuerle, Till

    2017-12-01

    There is a vast amount of information about the nutritional and medicinal properties of honey as a result of its numerous benefits. However, honeys have been found to be contaminated with hepatotoxic and carcinogenic pyrrolizidine alkaloids (PAs) on account of bees foraging on PA-containing plants. This study deals with the analysis of PAs in tropical honeys emanating from different agro-ecological zones of Ghana in order to assess its potential health risk. PAs of 48 honey samples were analysed using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The results show that a total of 85% of the honeys from various agro-ecological zones were PA positive including all honeys from supermarkets. The highest concentration of PAs was 2639 μg kg -1 , while the average PA concentration of the samples was 283 μg kg -1 . The study also found Chromolaena odorata pollens in majority of the honeys, thus indicating the plant as major source of PA contamination of honeys in the tropical regions.

  2. 7-N-Acetylcysteine-pyrrole conjugate—A potent DNA reactive metabolite of pyrrolizidine alkaloids

    Directory of Open Access Journals (Sweden)

    Xiaobo He

    2016-10-01

    Full Text Available Plants containing pyrrolizidine alkaloids (PAs are widespread throughout the world and are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form reactive dehydropyrrolizidine alkaloids (dehydro-PAs that are capable of alkylating cellular DNA and proteins, form (±-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP-DNA and DHP-protein adducts, and lead to cytotoxicity, genotoxicity, and tumorigenicity. In this study, we determined that the metabolism of riddelliine and monocrotaline by human and rat liver microsomes in the presence of N-acetylcysteine both produced 7-N-acetylcysteine-DHP (7-NAC-DHP and DHP. Reactions of 7-NAC-DHP with 2′-deoxyguanosine (dG, 2′-deoxyadenosine (dA, and calf thymus DNA in aqueous solution followed by enzymatic hydrolysis yielded DHP-dG and/or DHP-dA adducts. These results indicate that 7-NAC-DHP is a reactive metabolite that can lead to DNA adduct formation.

  3. Optimisation of isolation procedure for pyrrolizidine alkaloids from Rindera umbellata Bunge.

    Science.gov (United States)

    Mandić, Boris M; Vlajić, Marina D; Trifunović, Snežana S; Simić, Milena R; Vujisić, Ljubodrag V; VuČković, Ivan M; Novaković, Miroslav M; Nikolić-Mandić, Snežana D; Tešević, Vele V; Vajs, Vlatka V; Milosavljević, Slobodan M

    2015-01-01

    Procedure for isolation of pyrrolizidine alkaloids (PAs) from Rindera umbellata Bunge plant species was optimised. Different extraction media (methanol, ethanol and sulphuric acid), concentration and volume of sulphuric acid, pH of PA solution for alkaline extraction, extraction time and techniques (maceration, ultrasonic and overhead rotary mixer assisted extraction) were investigated. The yields of six PAs (7-angeloyl heliotridane, 7-angeloyl heliotridine, lindelofine, 7-angeloyl rinderine, punctanecine and heliosupine) were monitored by GC-MS/FID. The best results for the isolation all of six PAs were obtained when the extraction was performed with 1 M sulphuric acid (30 mL per 1.00 g of dried sample) by overhead rotary mixer during three days. Optimal pH value for alkaline extraction of PAs with CH₂Cl₂ was 9, and the extraction should be performed with four portions of 30 mL of CH₂Cl₂. This procedure could be also useful for a plant sample preparation for GC and LC analyses of PAs.

  4. Quercetin prevents pyrrolizidine alkaloid clivorine-induced liver injury in mice by elevating body defense capacity.

    Directory of Open Access Journals (Sweden)

    Lili Ji

    Full Text Available Quercetin is a plant-derived flavonoid that is widely distributed in nature. The present study is designed to analyze the underlying mechanism in the protection of quercetin against pyrrolizidine alkaloid clivorine-induced acute liver injury in vivo. Serum transaminases, total bilirubin analysis, and liver histological evaluation demonstrated the protection of quercetin against clivorine-induced liver injury. Terminal dUTP nick end-labeling assay demonstrated that quercetin reduced the increased amount of liver apoptotic cells induced by clivorine. Western-blot analysis of caspase-3 showed that quercetin inhibited the cleaved activation of caspase-3 induced by clivorine. Results also showed that quercetin reduced the increase in liver glutathione and lipid peroxidative product malondialdehyde induced by clivorine. Quercetin reduced the enhanced liver immunohistochemical staining for 4-hydroxynonenal induced by clivorine. Results of the Mouse Stress and Toxicity PathwayFinder RT2 Profiler PCR Array demonstrated that the expression of genes related with oxidative or metabolic stress and heat shock was obviously altered after quercetin treatment. Some of the alterations were confirmed by real-time PCR. Our results demonstrated that quercetin prevents clivorine-induced acute liver injury in vivo by inhibiting apoptotic cell death and ameliorating oxidative stress injury. This protection may be caused by the elevation of the body defense capacity induced by quercetin.

  5. Quercetin Prevents Pyrrolizidine Alkaloid Clivorine-Induced Liver Injury in Mice by Elevating Body Defense Capacity

    Science.gov (United States)

    Ji, Lili; Ma, Yibo; Wang, Zaiyong; Cai, Zhunxiu; Pang, Chun; Wang, Zhengtao

    2014-01-01

    Quercetin is a plant-derived flavonoid that is widely distributed in nature. The present study is designed to analyze the underlying mechanism in the protection of quercetin against pyrrolizidine alkaloid clivorine-induced acute liver injury in vivo. Serum transaminases, total bilirubin analysis, and liver histological evaluation demonstrated the protection of quercetin against clivorine-induced liver injury. Terminal dUTP nick end-labeling assay demonstrated that quercetin reduced the increased amount of liver apoptotic cells induced by clivorine. Western-blot analysis of caspase-3 showed that quercetin inhibited the cleaved activation of caspase-3 induced by clivorine. Results also showed that quercetin reduced the increase in liver glutathione and lipid peroxidative product malondialdehyde induced by clivorine. Quercetin reduced the enhanced liver immunohistochemical staining for 4-hydroxynonenal induced by clivorine. Results of the Mouse Stress and Toxicity PathwayFinder RT2 Profiler PCR Array demonstrated that the expression of genes related with oxidative or metabolic stress and heat shock was obviously altered after quercetin treatment. Some of the alterations were confirmed by real-time PCR. Our results demonstrated that quercetin prevents clivorine-induced acute liver injury in vivo by inhibiting apoptotic cell death and ameliorating oxidative stress injury. This protection may be caused by the elevation of the body defense capacity induced by quercetin. PMID:24905073

  6. Synergistic effects of pyrrolizidine alkaloids and lipopolysaccharide on preterm delivery and intrauterine fetal death in mice.

    Science.gov (United States)

    Guo, Yu; Ma, Zhenguo; Kou, Hao; Sun, Rongze; Yang, Hanxiao; Smith, Charles Vincent; Zheng, Jiang; Wang, Hui

    2013-08-29

    Preterm birth is the leading cause of death for newborn infants, and lipopolysaccharide (LPS) is commonly used to induce preterm delivery in experimental animals. Pyrrolizidine alkaloids (PAs) are widespread and occur in foods, herbs, and other plants. This study was to investigate the synergistic effects of LPS and two representative PAs, retrorsine (RTS) and monocrotaline (MCT), on preterm delivery and fetal death. Pregnant Kunming mice were divided into seven groups: control, RTS, MCT, LPS, RTS+LPS and two MCT+LPS groups. Animals in PAs and PAs+LPS groups were dosed intragastrically with RTS (10mg/kg) or MCT (20 mg/kg or 60 mg/kg) from gestational day (GD) 9 to GD16; mice given LPS were injected intraperitoneally with 150 μg/kg on GD15.5. Latencies to delivery, numbers of pups live and dead at birth were recorded, and livers of live neonates were collected. The incidence of LPS-induced preterm birth was enhanced in dams pretreated with MCT, and combination of PAs and LPS increased fetal mortality from PAs. The enhancement of LPS-induced preterm delivery and fetal demise in animals exposed chronically to PAs and other substances found in foods and beverages consumed widely by humans merits further focused investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Determination of pyrrolizidine alkaloids in comfrey by liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Liu, Feng; Wan, Sow Yin; Jiang, Zhangjian; Li, Sam Fong Yau; Ong, Eng Shi; Osorio, Jhon Carlos Castaño

    2009-12-15

    Symphytum officinale L. (comfrey) is a medicinal plant commonly used in decoctions and aliments. Besides therapeutic bioactive compounds present in the herb, it is found to contain hepatotoxic pyrrolizidine alkaloids (PAs), such as lycopsamine and others. In the present study, PAs such as lycopsamine, echimidine and lasiocarpine were determined using electrospray liquid chromatography-mass spectrometry (LC-MS) with the method precision (relative standard deviation, RSD) comfrey followed by the comparison with heating under reflux with the RSD ranging from 2.49% to 19.32%. Our results showed a higher extraction efficiency for heating under reflux compared with PHWE. It was proposed that the lower extraction efficiency for PHWE was attributable to dissolved nitrogen from air which caused the reduction in the solubility of lycopsamine in the compressed hot solvent. In this study, quantitative analysis of PAs in comfrey was demonstrated. In addition, it was found that the use of subcritical water for extractions depended on the physical properties of the dissolved solutes and their tendency to degrade under the chosen extraction conditions.

  8. Regio- and Stereoselective Cascades via Aldol Condensation and 1,3-Dipolar Cycloaddition for Construction of Functional Pyrrolizidine Derivatives.

    Science.gov (United States)

    Mao, Zhuo-Ya; Liu, Yi-Wen; Han, Pan; Dong, Han-Qing; Si, Chang-Mei; Wei, Bang-Guo; Lin, Guo-Qiang

    2018-02-16

    An efficient and step-economical approach to access functionalized pyrrolizidine derivatives by a one-pot tandem sequence, including an aldol condensation and subsequent 1,3-dipolar cycloaddition process, has been developed, starting from acetone, aldehyde, and proline. A number of substituted aromatic aldehydes were amenable to this transformation, and the desired products, racemic 7a-7w and chiral 9a-9m, were obtained with excellent regioselectivities and outstanding diastereoselectivities. Moreover, in situ NMR studies revealed MgSO 4 could effectively promote the aldol condensation pathway in this tandem process.

  9. Pyrrolizidine alkaloids from Liparis nervosa with inhibitory activities against LPS-induced NO production in RAW264.7 macrophages.

    Science.gov (United States)

    Huang, Shuai; Zhou, Xian-li; Wang, Cui-juan; Wang, You-song; Xiao, Feng; Shan, Lian-hai; Guo, Zhi-yun; Weng, Jie

    2013-09-01

    Six pyrrolizidine alkaloids were isolated from the whole herb of Liparis nervosa together with two previously known ones. Their structures were elucidated by extensive spectroscopic analyses and chemical reactions. The cytotoxicity of the isolates was evaluated against A549, HepG2, and MCF-7 human cancer cell lines; however, no significant growth inhibition was observed. All compounds were evaluated for the inhibition of LPS-induced nitric oxide (NO) production in RAW264.7 macrophages, and most significantly inhibited NO production with IC50 values in the range of 2.16-38.25 μM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Characterization and screening of pyrrolizidine alkaloids and N-oxides from various parts of many botanicals and dietary supplements using liquid chromatography high resolution mass spectrometry

    Science.gov (United States)

    The UHPLC-QToF-MS analysis of pyrrolizidine alkaloids from various parts of 37 botanicals and 7 dietary supplements was performed. A separation by LC was achieved using a reversed-phase column and a gradient of water/acetonitrile each containing formic acid as the mobile phase. MS-MS detection was u...

  11. 2,6-Lutidine-isatinecate, a semi-synthetic pyrrolizidine alkaloid: X-ray and n.m.r. studies

    International Nuclear Information System (INIS)

    Drewes, S.E.; Field, J.S.; Pitchford, A.T.; Van Rooyen, P.H.; Dillen, J.L.M.

    1985-01-01

    A semi-synthetic pyrrolizidine alkaloid has been prepared from a necic acid and a pyridine base moiety. N.m.r. and X-ray analyses of this compound were carried out in order to establish the relationship between the structure and chemical shift

  12. A field investigation into a suspected outbreak of pyrrolizidine alkaloid toxicosis in horses in western Queensland.

    Science.gov (United States)

    Robinson, B; Gummow, B

    2015-03-01

    A disease outbreak investigation was conducted in western Queensland to investigate a rare suspected outbreak of pyrrolizidine alkaloid (PA) toxicosis in horses. Thirty five of 132 horses depastured on five properties on the Mitchell grass plains of western Queensland died in the first six months of 2010. Clinical-pathological findings were consistent with PA toxicosis. A local variety of Crotalaria medicaginea was the only hepatotoxic plant found growing on affected properties. Pathology reports and departure and arrival dates of two brood mares provided evidence of a pre wet season exposure period. All five affected properties experienced a very dry spring and early summer preceded by a large summer wet season. The outbreak was characterised as a point epidemic with a sudden peak of deaths in March followed by mortalities steadily declining until the end of June. The estimated morbidity (serum IGG>50IU/L) rate was 76%. Average crude mortality was 27% but higher in young horses (67%) and brood mares (44%). Logistic regression analysis showed that young horses and brood mares and those grazing denuded pastures in December were most strongly associated with dying whereas those fed hay and/or grain based supplements were less likely to die. This is the first detailed study of an outbreak of PA toxicosis in central western Queensland and the first to provide evidence that environmental determinants were associated with mortality, that the critical exposure period was towards the end of the dry season, that supplementary feeding is protective and that denuded pastures and the horses physiological protein requirement are risk factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Pyrrolizidine alkaloid variation in Senecio vulgaris populations from native and invasive ranges

    Science.gov (United States)

    Nguyen, Viet-Thang; Ndihokubwayo, Noel; Ge, Jiwen; Mulder, Patrick P.J.

    2017-01-01

    Biological invasion is regarded as one of the greatest environmental problems facilitated by globalization. Some hypotheses about the invasive mechanisms of alien invasive plants consider the plant–herbivore interaction and the role of plant defense in this interaction. For example, the “Shift Defense Hypothesis” (SDH) argues that introduced plants evolve higher levels of qualitative defense chemicals and decreased levels of quantitative defense, as they are released of the selective pressures from specialist herbivores but still face attack from generalists. Common groundsel (Senecio vulgaris), originating from Europe, is a cosmopolitan invasive plant in temperate regions. As in other Senecio species, S. vulgaris contains pyrrolizidine alkaloids (PAs) as characteristic qualitative defense compounds. In this study, S. vulgaris plants originating from native and invasive ranges (Europe and China, respectively) were grown under identical conditions and harvested upon flowering. PA composition and concentration in shoot and root samples were determined using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). We investigated the differences between native and invasive S. vulgaris populations with regard to quantitative and qualitative variation of PAs. We identified 20 PAs, among which senecionine, senecionine N-oxide, integerrimine N-oxide and seneciphylline N-oxide were dominant in the roots. In the shoots, in addition to the 4 PAs dominant in roots, retrorsine N-oxide, spartioidine N-oxide and 2 non-identified PAs were also prevalent. The roots possessed a lower PA diversity but a higher total PA concentration than the shoots. Most individual PAs as well as the total PA concentration were strongly positively correlated between the roots and shoots. Both native and invasive S. vulgaris populations shared the pattern described above. However, there was a slight trend indicating lower PA diversity and lower total PA concentration in invasive S. vulgaris

  14. First evidence of pyrrolizidine alkaloid N-oxide-induced hepatic sinusoidal obstruction syndrome in humans.

    Science.gov (United States)

    Yang, Mengbi; Ruan, Jianqing; Gao, Hong; Li, Na; Ma, Jiang; Xue, Junyi; Ye, Yang; Fu, Peter Pi-Cheng; Wang, Jiyao; Lin, Ge

    2017-12-01

    Pyrrolizidine alkaloids (PAs) are among the most potent phytotoxins widely distributed in plant species around the world. PA is one of the major causes responsible for the development of hepatic sinusoidal obstruction syndrome (HSOS) and exerts hepatotoxicity via metabolic activation to form the reactive metabolites, which bind with cellular proteins to generate pyrrole-protein adducts, leading to hepatotoxicity. PA N-oxides coexist with their corresponding PAs in plants with varied quantities, sometimes even higher than that of PAs, but the toxicity of PA N-oxides remains unclear. The current study unequivocally identified PA N-oxides as the sole or predominant form of PAs in 18 Gynura segetum herbal samples ingested by patients with liver damage. For the first time, PA N-oxides were recorded to induce HSOS in human. PA N-oxide-induced hepatotoxicity was further confirmed on mice orally dosed of herbal extract containing 170 μmol PA N-oxides/kg/day, with its hepatotoxicity similar to but potency much lower than the corresponding PAs. Furthermore, toxicokinetic study after a single oral dose of senecionine N-oxide (55 μmol/kg) on rats revealed the toxic mechanism that PA N-oxides induced hepatotoxicity via their biotransformation to the corresponding PAs followed by the metabolic activation to form pyrrole-protein adducts. The remarkable differences in toxicokinetic profiles of PAs and PA N-oxides were found and attributed to their significantly different hepatotoxic potency. The findings of PA N-oxide-induced hepatotoxicity in humans and rodents suggested that the contents of both PAs and PA N-oxides present in herbs and foods should be regulated and controlled in use.

  15. Gene expression changes induced by the tumorigenic pyrrolizidine alkaloid riddelliine in liver of Big Blue rats

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Liu, Ruqing; Fuscoe, James C; Chen, Tao

    2007-01-01

    Background Pyrrolizidine alkaloids (PAs) are probably the most common plant constituents that poison livestock, wildlife, and humans worldwide. Riddelliine is isolated from plants grown in the western United States and is a prototype of genotoxic PAs. Riddelliine was used to investigate the genotoxic effects of PAs via analysis of gene expression in the target tissue of rats in this study. Previously we observed that the mutant frequency in the liver of rats gavaged with riddelliine was 3-fold higher than that in the control group. Molecular analysis of the mutants indicated that there was a statistically significant difference between the mutational spectra from riddelliine-treated and control rats. Results Riddelliine-induced gene expression profiles in livers of Big Blue transgenic rats were determined. The female rats were gavaged with riddelliine at a dose of 1 mg/kg body weight 5 days a week for 12 weeks. Rat whole genome microarray was used to perform genome-wide gene expression studies. When a cutoff value of a two-fold change and a P-value less than 0.01 were used as gene selection criteria, 919 genes were identified as differentially expressed in riddelliine-treated rats compared to the control animals. By analysis with the Ingenuity Pathway Analysis Network, we found that these significantly changed genes were mainly involved in cancer, cell death, tissue development, cellular movement, tissue morphology, cell-to-cell signaling and interaction, and cellular growth and proliferation. We further analyzed the genes involved in metabolism, injury of endothelial cells, liver abnormalities, and cancer development in detail. Conclusion The alterations in gene expression were directly related to the pathological outcomes reported previously. These results provided further insight into the mechanisms involved in toxicity and carcinogenesis after exposure to riddelliine, and permitted us to investigate the interaction of gene products inside the signaling networks

  16. Pyrrolizidine alkaloid variation in Senecio vulgaris populations from native and invasive ranges

    Directory of Open Access Journals (Sweden)

    Dandan Cheng

    2017-08-01

    Full Text Available Biological invasion is regarded as one of the greatest environmental problems facilitated by globalization. Some hypotheses about the invasive mechanisms of alien invasive plants consider the plant–herbivore interaction and the role of plant defense in this interaction. For example, the “Shift Defense Hypothesis” (SDH argues that introduced plants evolve higher levels of qualitative defense chemicals and decreased levels of quantitative defense, as they are released of the selective pressures from specialist herbivores but still face attack from generalists. Common groundsel (Senecio vulgaris, originating from Europe, is a cosmopolitan invasive plant in temperate regions. As in other Senecio species, S. vulgaris contains pyrrolizidine alkaloids (PAs as characteristic qualitative defense compounds. In this study, S. vulgaris plants originating from native and invasive ranges (Europe and China, respectively were grown under identical conditions and harvested upon flowering. PA composition and concentration in shoot and root samples were determined using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS. We investigated the differences between native and invasive S. vulgaris populations with regard to quantitative and qualitative variation of PAs. We identified 20 PAs, among which senecionine, senecionine N-oxide, integerrimine N-oxide and seneciphylline N-oxide were dominant in the roots. In the shoots, in addition to the 4 PAs dominant in roots, retrorsine N-oxide, spartioidine N-oxide and 2 non-identified PAs were also prevalent. The roots possessed a lower PA diversity but a higher total PA concentration than the shoots. Most individual PAs as well as the total PA concentration were strongly positively correlated between the roots and shoots. Both native and invasive S. vulgaris populations shared the pattern described above. However, there was a slight trend indicating lower PA diversity and lower total PA concentration in

  17. A rapid cleanup method for the isolation and concentration of pyrrolizidine alkaloids in comfrey root.

    Science.gov (United States)

    Gray, Dean E; Porter, Andrew; O'Neill, Terry; Harris, Roger K; Rottinghaus, George E

    2004-01-01

    Preparations from comfrey (Symphytum officinale and S. x uplandicum) root and leaf contain varying levels of the hepatotoxic pyrrolizidine alkaloids (PAs). Reference compounds for comfrey are not commercially available, and there is currently no rapid extraction or analytical method capable of determining low levels in raw materials or as adulterants in commercially available extracts. A solid-phase extraction (SPE) method was developed using an Ergosil cleanup column that specifically binds the PAs. With this method, powdered comfrey root was extracted by sonication and shaking with basic chloroform. The extract was applied to the cleanup column under vacuum, washed with 2 mL acetone-chloroform (8 + 2, v/v) followed by 2 mL petroleum ether to remove excess chloroform. The column was dried under vacuum, and the PAs were eluted with 2 successive 1 mL aliquots methanol. Percent recoveries of the PAs following Ergosil SPE had an overall average of 96.8%, with RSD of 3.8% over a range of 1.0 to 25.0 g extracted in 100 mL. Average precision of the method (n = 3 over 4 extraction concentrations) gave an overall RSD of 6.0% for the 5 alkaloids, with a range of 0.8% (5 g in 100 mL) to 11.2% (25 g in 100 mL). Recovery optimization testing showed that 1.0 g comfrey root extracted in 100 mL yielded the greatest recovery (% dry weight) of the PAs, with an extraction efficiency and accuracy of 94.2%, and RSD of 1.7% (n = 9). The unique properties of the Ergosil cleanup column provide rapid sample cleanup, volume reduction, and concentration of PAs from comfrey extracts, and allow the eluant to be analyzed directly by traditional chromatographic methods.

  18. Incidence of Pyrrolizidine Alkaloids in Herbal Medicines from German Retail Markets: Risk Assessments and Implications to Consumers.

    Science.gov (United States)

    Letsyo, Emmanuel; Jerz, Gerold; Winterhalter, Peter; Lindigkeit, Rainer; Beuerle, Till

    2017-12-01

    The occurrence of potentially toxic pyrrolizidine alkaloids (PAs) in herbal medicines (HMs) is currently intensely being discussed in Europe. Pyrrolizidine alkaloids, particularly the 1,2-unsaturated PAs, are undesired compounds in HMs due to their potential hepatotoxic and carcinogenic properties. In this study, 98 widely patronized HMs from six popular German retail supermarkets/drugstores, as well as from pharmacies, were analyzed by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry for the presence of PAs. The results showed that about 63% of the HMs were PA positive, whereas the average PA concentration of the samples was 201 μg/kg, the highest concentration of PAs (3270 μg/kg) was attributed to a product that was purchased from the pharmacy and contained Hypericum perforatum L. (St. John's Wort) as an active ingredient. In addition, H. perforatum-containing products were frequently contaminated with PAs from Echium spp., while both Cynara cardunculus L. products and fixed-combination products of Gentiana lutea L., Rumex acetosa L., Verbena officinalis L., Sambucus nigra L., and Primula veris L. products were commonly contaminated with PAs of Senecio spp. The study showed that H. perforatum, C. cardunculus, Urtica dioica L., and fixed-combination products were frequently contaminated with PA levels above the recommended values of both the German and European Medicines Agencies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Is comfrey root more than toxic pyrrolizidine alkaloids? Salvianolic acids among antioxidant polyphenols in comfrey (Symphytum officinale L.) roots.

    Science.gov (United States)

    Trifan, Adriana; Opitz, Sebastian E W; Josuran, Roland; Grubelnik, Andreas; Esslinger, Nils; Peter, Samuel; Bräm, Sarah; Meier, Nadja; Wolfram, Evelyn

    2018-02-01

    Comfrey root preparations are used for the external treatment of joint distortions and myalgia, due to its analgesic and anti-inflammatory properties. Up to date, key activity-determining constituents of comfrey root extracts have not been completely elucidated. Therefore, we applied different approaches to further characterize a comfrey root extract (65% ethanol). The phenolic profile of comfrey root sample was characterized by HPLC-DAD-QTOF-MS/MS. Rosmarinic acid was identified as main phenolic constituent (7.55 mg/g extract). Moreover, trimers and tetramers of caffeic acid (isomers of salvianolic acid A, B and C) were identified and quantified for the first time in comfrey root. In addition, pyrrolizidine alkaloids were evaluated by HPLC-QQQ-MS/MS and acetylintermedine, acetyllycopsamine and their N-oxides were determined as major pyrrolizidine alkaloids in the comfrey root sample. Lastly, the antioxidant activity was determined using four assays: DPPH and ABTS radicals scavenging assays, reducing power assay and 15-lipoxygenase inhibition assay. Comfrey root extract exhibited significant antioxidant activities when compared to known antioxidants. Thus, comfrey root is an important source of phenolic compounds endowed with antioxidant activity which may contribute to the overall bioactivity of Symphytum preparations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Content of pyrrolizidine alkaloids in the leaves of coltsfoot (Tussilago farfara L. in Poland

    Directory of Open Access Journals (Sweden)

    Artur Adamczak

    2013-11-01

    Full Text Available Coltsfoot (Tussilago farfara L. is a common species, widely used in European and Chinese traditional medicine for the treatment of respiratory diseases. However, raw material from this plant contains hepatotoxic pyrrolizidine alkaloids (PAs. The aim of the study was to determine the variability of the level of PAs (senkirkine and senecionine in leaves of coltsfoot originated from natural populations in Poland. In the phytochemical analysis, 20 samples of T. farfara were used. This plant material was obtained from the Garden of Medicinal Plants in Plewiska near Poznań and originated from different regions of Poland. Coltsfoot leaves were harvested in the middle of July of 2010 and then dried at room temperature. The alkaloid content was detected using the HPLC-DAD method. The amount of PAs in leaves of T. farfara changed in a wide range from 0.06 to 1.04 μg g−1 of dry matter (DM. The content of senkirkine and senecionine was positively correlated (r = 0.68, P = 0.001. There was no statistically significant correlation between the amount of PAs as well as leaf weight and water content in leaves of T. farfara. Our results showed that a medium-sized leaf of coltsfoot (0.33 g DM may contain from 0.02 to 0.34 μg of PAs (on average 0.14 μg. The level of PAs was not associated with the region of Poland, but phytochemical similarity of samples was usually visible at the local scale. Coltsfoot leaves are characterized by a high variability of the content of toxic PAs, much higher than in the case of the main active compounds, especially flavonoids and mucilage. This phytochemical variability is mainly genetically determined (samples came from a garden collection, and it can be increased by environmental factors. Our investigations indicate that Polish natural populations of T. farfara may provide raw material with a low level of toxic PAs.

  1. Case Report. The first report of pyrrolizidine alkaloid poisoning in a gazelle (Gazella Subgutturosa – histopathologic diagnosis

    Directory of Open Access Journals (Sweden)

    Khordadmehr Monireh

    2016-03-01

    Full Text Available Pyrrolizidine alkaloids (PAs are natural phytotoxins found in thousands of plant species around the world. They are probably the most common poisonous plants affecting livestock, wildlife and humans. The disease occurs almost entirely as a consequence of chronic poisoning and in general ends fatally. In the present study, PAs poisoning was investigated in a gazelle with hepatic encephalopathy associated with severe neurologic signs. The main clinical signs included head pressing, progressive depression and weakness, ataxia and reluctance to move, turn the head to the left and to paddle, hyperesthesia and decreased food intake. Histopathological examination revealed major lesions in the liver consisting of severe hepatocyte megalocytosis and hypertrophy with nuclei enlargement, mild bile duct hyperplasia, centriacinar fatty change and hepatocellular necrosis. Moreover, pulmonary congestion and edema with endothelium necrosis and alveolar septa thickening, severe congestion in vessels of the brain and meninges, and myocardial necrosis were observed.

  2. Blood Pyrrole-Protein Adducts--A Biomarker of Pyrrolizidine Alkaloid-Induced Liver Injury in Humans.

    Science.gov (United States)

    Ruan, Jianqing; Gao, Hong; Li, Na; Xue, Junyi; Chen, Jie; Ke, Changqiang; Ye, Yang; Fu, Peter Pi-Cheng; Zheng, Jiang; Wang, Jiyao; Lin, Ge

    2015-01-01

    Pyrrolizidine alkaloids (PAs) induce liver injury (PA-ILI) and is very likely to contribute significantly to drug-induced liver injury (DILI). In this study we used a newly developed ultra-high performance liquid chromatography-triple quadrupole-mass spectrometry (UHPLC-MS)-based method to detect and quantitate blood pyrrole-protein adducts in DILI patients. Among the 46 suspected DILI patients, 15 were identified as PA-ILI by the identification of PA-containing herbs exposed. Blood pyrrole-protein adducts were detected in all PA-ILI patients (100%). These results confirm that PA-ILI is one of the major causes of DILI and that blood pyrrole-protein adducts quantitated by the newly developed UHPLC-MS method can serve as a specific biomarker of PA-ILI.

  3. The chemical profile of pyrrolizidine alkaloids from selected greek endemic boraginaceae plants determined by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Damianakos, Harilaos; Jeziorek, Malgorzata; Pietrosiuk, Agnieszka; Chinou, Ioanna

    2014-01-01

    Four Greek endemic Boraginaceae plants, Onosma erecta Sibth. & Sm., Onosma kaheirei Teppner, Onosma leptantha Heldr., and Cynoglossum columnae L. (aerial parts), were screened for their content of pyrrolizidine alkaloids (PAs). TLC with the Mattocks-Molyneux visualization reagent was used as a preliminary qualitative test for PA or PA N-oxide detection. The extracts of the species found to contain PAs and their N-oxides were further analyzed by GC/MS, so as to identify their structures by means of the mass spectra and retention index values of known PAs already published in the literature. Twenty-three PAs were identified. For additional peaks, recognized as possible PAs by their MS pattern, no exact structures were tentatively suggested, as a result of lack of matching literature data. Furthermore, a quantitative PA profile of the species was obtained.

  4. A Straightforward Route to Enantiopure Pyrrolizidines and Indolizidines by Cycloaddition to Pyrroline N-Oxides Derived from the Chiral Pool

    Directory of Open Access Journals (Sweden)

    Alberto Brandi

    1998-12-01

    Full Text Available Enantiomerically pure, five membered cyclic nitrones, easily obtained in large amounts from protected hydroxyacids and aminoacids such as D- and L-tartaric, L-malic, and L-aspartic acids, give cycloaddition reactions with a good diastereocontrol. The adducts of L-malic and L-aspartic acids derived from addition of nitrones to dimethyl maleate and g-crotonolactone were easily converted into enantiopure pyrrolizidinones, which can be transformed into polyhydroxypyrrolidines or polyhydroxypyrrolizidines, both interesting compounds as potential glycosidase inhibitors. The method is suitable for natural products synthesis as exemplified by a straightforward and convenient access to the pyrrolizidine alkaloid necine base (–-hastanecine, as well as to indolizidine alkaloids, i.e. (+- lentiginosine.

  5. Simultaneous analysis of hepatotoxic pyrrolizidine alkaloids and N-oxides in comfrey root by LC-ion trap mass spectrometry.

    Science.gov (United States)

    Wuilloud, Jorgelina C A; Gratze, Samuel R; Gamble, Bryan M; Wolnik, Karen A

    2004-02-01

    The purpose of the current study was to develop a LC-MS(n) method for the analysis of pyrrolizidine alkaloids (PAs) in comfrey. Published data presents an extensive list of PAs and their N-oxides present in comfrey. However, standards are not commercially available for any of the PAs typically present in comfrey. Those PAs that are not stereoisomers were readily resolved on a C(18) column using a water-acetonitrile gradient as the mobile phase. The use of a selective technique, LC-MS/MS, allowed us to identify groups of PAs and their N-oxides, as well as identify the number of PAs present in each group, including those that were not completely resolved chromatographically.

  6. Mortality supposedly due to intoxication by pyrrolizidine alkaloids from Heliotropium indicum in a horse population in Costa Rica: a case report.

    Science.gov (United States)

    van Weeren, P R; Morales, J A; Rodríguez, L L; Cedeño, H; Villalobos, J; Poveda, L J

    1999-04-01

    This article describes a case of massive mortality among horses which was probably due to intoxication by pyrrolizidine alkaloids from Heliotropium indicum. Over 4 years more than 75% of a population of about 110 horses on a farm in Costa Rica died after showing nervous neurological symptoms. Two clinical manifestations were encountered, an acute and a chronic one, both with a fatal outcome. Pathological findings in 2 horses coincided with those reported in the literature for intoxication by pyrrolizidine alkaloids and were not specific for VEE. However Venezuelan equine encephalitis (VEE) was the main differential diagnosis and could not completely be excluded because this disease was endemic in the region and VEE titres were found to be high. Taxonomic and toxicological investigations implicated Heliotropium indicum as the most probable principal cause of the intoxication.

  7. Pyrrolizidine Alkaloids and Fatty Acids from the Endemic Plant Species Rindera umbellata and the Effect of Lindelofine-N-oxide on Tubulin Polymerization

    Directory of Open Access Journals (Sweden)

    Vlatka V. Vajs

    2013-09-01

    Full Text Available The examination of the aerial parts, roots, and seeds of the endemic plant Rindera umbellata is reported in this paper for the first time. Phytochemical investigation of R. umbellata led to the isolation and characterization of ten pyrrolizidine alkaloids and eleven fatty acids in the form of triglycerides. Pyrrolizidine alkaloids 1–9 were found in the aerial parts, 7 and 8 in the roots, and 6–10, together with eleven fatty acids, in the seeds of this plant species. The structures of compounds 1–10 were established based on spectroscopic studies (1H- and 13C-NMR, 2D NMR, IR and CI-MS. After trans-esterification, methyl esters of the fatty acids were analyzed using GC-MS. The effect of lindelofine-N-oxide (7 on tubulin polymerization was determined.

  8. Development of an Analytical Method for Analyzing Pyrrolizidine Alkaloids in Different Groups of Food by UPLC-MS/MS.

    Science.gov (United States)

    Chung, Stephen W C; Lam, Chi-Ho

    2018-03-21

    Suspected nontargeted pyrrolizidine alkaloids (PAs), without analytical reference standard, were observed and interfered with the determination of targeted PAs in complex food matrices, especially for spices samples. Selectivity and applicability of multiple reaction monitoring (MRM) transitions, multistage fragmentation (MS3), and MRM with differential ion mobility spectrometry (DMS) for eliminating false positive identifications were evaluated. Afterward, a selective and sensitive LC-MS/MS method for the determination of 15 PAs and 13 PA N-oxides in foodstuffs was developed. The sample preparation and cleanup are applicable to a wide range of foodstuffs, including cereal products, dairy products, meat, eggs, honey, tea infusion, and spices. Freezing-out of the raw extract and the water/acetonitrile washing steps in a solid phase extraction was found to efficiently remove complex matrices. The method was validated at 0.05 μg kg -1 for general food and 0.5 μg kg -1 for spices, with reference to the Eurachem Guide. The estimated limit of quantifications of different PAs was in the range of 0.010-0.087 μg kg -1 for general food and 0.04-0.76 μg kg -1 for spices. Isotopically labeled PAs were used as internal standards to correct the variation of PAs/PANs performance in different food commodities. Matrix effects observed in complex food matrices could be reduced by solvent dilution. Recoveries of PAs and PA N-oxides were all seen within 50-120%.

  9. Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium spp. Invaders in Australia—A Case of Novel Weapons?

    Directory of Open Access Journals (Sweden)

    Dominik Skoneczny

    2015-11-01

    Full Text Available Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs and their N-oxides (PANOs was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17 by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. Several previously unreported PAs were also found at trace levels. Field-grown populations of both species were also evaluated for PA production and highly toxic echimidine N-oxide was amongst the most abundant PANOs in foliage of both species. PAs in field and glasshouse plants were more abundant in the more widely invasive species, E. plantagineum, and may provide competitive advantage by increasing the plant’s capacity to deter natural enemies in its invaded range through production of novel weapons.

  10. The Role of Astrocytes in Metabolism and Neurotoxicity of the Pyrrolizidine Alkaloid Monocrotaline, the Main Toxin of Crotalaria retusa

    Science.gov (United States)

    Pitanga, Bruno Penas Seara; Nascimento, Ravena P.; Silva, Victor Diógenes A.; Costa, Silvia L.

    2012-01-01

    The metabolic interactions and signaling between neurons and glial cells are necessary for the development and maintenance of brain functions and structures and for neuroprotection, which includes protection from chemical attack. Astrocytes are essential for cerebral detoxification and present an efficient and specific cytochrome P450 enzymatic system. Whilst Crotalaria (Fabaceae, Leguminosae) plants are used in popular medicine, they are considered toxic and can cause damage to livestock and human health problems. Studies in animals have shown cases of poisoning by plants from the genus Crotalaria, which induced damage to the central nervous system. This finding has been attributed to the toxic effects of the pyrrolizidine alkaloid (PA) monocrotaline (MCT). The involvement of P450 enzymatic systems in MCT hepatic and pulmonary metabolism and toxicity has been elucidated, but little is known about the pathways implicated in the bioactivation of these systems and the direct contribution of these systems to brain toxicity. This review will present the main toxicological aspects of the Crotalaria genus that are established in the literature and recent findings describing the mechanisms involved in the neurotoxic effects of MCT, which was extracted from Crotalaria retusa, and its interaction with neurons in isolated astrocytes. PMID:22876233

  11. Disturbance of gene expression in primary human hepatocytes by hepatotoxic pyrrolizidine alkaloids: A whole genome transcriptome analysis.

    Science.gov (United States)

    Luckert, Claudia; Hessel, Stefanie; Lenze, Dido; Lampen, Alfonso

    2015-10-01

    1,2-unsaturated pyrrolizidine alkaloids (PA) are plant metabolites predominantly occurring in the plant families Asteraceae and Boraginaceae. Acute and chronic PA poisoning causes severe hepatotoxicity. So far, the molecular mechanisms of PA toxicity are not well understood. To analyze its mode of action, primary human hepatocytes were exposed to a non-cytotoxic dose of 100 μM of four structurally different PA: echimidine, heliotrine, senecionine, senkirkine. Changes in mRNA expression were analyzed by a whole genome microarray. Employing cut-off values with a |fold change| of 2 and a q-value of 0.01, data analysis revealed numerous changes in gene expression. In total, 4556, 1806, 3406 and 8623 genes were regulated by echimidine, heliotrine, senecione and senkirkine, respectively. 1304 genes were identified as commonly regulated. PA affected pathways related to cell cycle regulation, cell death and cancer development. The transcription factors TP53, MYC, NFκB and NUPR1 were predicted to be activated upon PA treatment. Furthermore, gene expression data showed a considerable interference with lipid metabolism and bile acid flow. The associated transcription factors FXR, LXR, SREBF1/2, and PPARα/γ/δ were predicted to be inhibited. In conclusion, though structurally different, all four PA significantly regulated a great number of genes in common. This proposes similar molecular mechanisms, although the extent seems to differ between the analyzed PA as reflected by the potential hepatotoxicity and individual PA structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. UPLC TOF MS for sensitive quantification of naturally occurring pyrrolizidine alkaloids in Petasites hybridus extract (Ze 339).

    Science.gov (United States)

    Schenk, Alexander; Siewert, Beate; Toff, Stephan; Drewe, Jürgen

    2015-08-01

    Due to increasing regulatory awareness of their hepatotoxic, genotoxic and possibly carcinogenic potential, pyrrolizidine alkaloid (PA) content has to be thoroughly monitored in herbal medicinal preparations. Recently, new very low PA regulatory threshold concentrations have been requested by the authorities. Therefore, a highly sensitive and reproducible UPLC TOF MS method for the quantification of the PAs senkirkine, senecionine, seneciphylline, senecionine-N-oxide and seneciphylline-N-oxide in a CO2-extract of Petasites hybridus leaves (Ze 339) has been developed. The limit of quantification (LOQ) was 2ppb for all PAs. Recovery at the LOQ was between 88.9 and 141.9%, the repeatability precision between 3.5 and 13.6%. Linearity of the five PAs showed correlation coefficients between 0.9995 and 0.9998 and coefficients of variation between 7.44 and 8.56%. A working range between 2 ppb and 200 ppb could be fixed. In the tested batches of the P. hybridus extract Ze 339, the absence of PAs could be demonstrated. In conclusion, this assay allows to determine trace PA concentrations in P. hybridus extract Ze 339, making it suitable for analytical PA monitoring in accordance with regulatory requirements. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. The role of astrocytes in metabolism and neurotoxicity of the pyrrolizidine alkaloid monocrotaline, the main toxin of Crotalaria retusa.

    Directory of Open Access Journals (Sweden)

    Bruno Penas Seara Pitanga

    2012-08-01

    Full Text Available The metabolic interactions and signalling between neurons and glial cells are necessary for the development and maintenance of brain functions and structures and for neuroprotection, which includes protection from chemical attack. Astrocytes are essential for cerebral detoxification and present an efficient and specific cytochrome P450 enzymatic system. Whilst Crotalaria (Fabaceae, Leguminosae plants are used in popular medicine, they are considered toxic and can cause damage to livestock and human health problems. Studies in animals have shown cases of poisoning by plants from the genus Crotalaria, which induced damage to the central nervous system. This finding has been attributed to the toxic effects of the pyrrolizidine alkaloid (PA monocrotaline (MCT. The involvement of P450 enzymatic systems in MCT hepatic and pulmonary metabolism and toxicity has been elucidated, but little is known about the pathways implicated in the bioactivation of these systems and the direct contribution of these systems to brain toxicity. This review will present the main toxicological aspects of the Crotalaria genus that are established in the literature and recent findings describing the mechanisms involved in the neurotoxic effects of MCT, which was extracted from C. retusa, and its interaction with neurons in isolated astrocytes.

  14. Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium spp. Invaders in Australia—A Case of Novel Weapons?

    Science.gov (United States)

    Skoneczny, Dominik; Weston, Paul A.; Zhu, Xiaocheng; Gurr, Geoff M.; Callaway, Ragan M.; Weston, Leslie A.

    2015-01-01

    Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17) by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. Several previously unreported PAs were also found at trace levels. Field-grown populations of both species were also evaluated for PA production and highly toxic echimidine N-oxide was amongst the most abundant PANOs in foliage of both species. PAs in field and glasshouse plants were more abundant in the more widely invasive species, E. plantagineum, and may provide competitive advantage by increasing the plant’s capacity to deter natural enemies in its invaded range through production of novel weapons. PMID:26561809

  15. Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium spp. Invaders in Australia--A Case of Novel Weapons?

    Science.gov (United States)

    Skoneczny, Dominik; Weston, Paul A; Zhu, Xiaocheng; Gurr, Geoff M; Callaway, Ragan M; Weston, Leslie A

    2015-11-06

    Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17) by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. Several previously unreported PAs were also found at trace levels. Field-grown populations of both species were also evaluated for PA production and highly toxic echimidine N-oxide was amongst the most abundant PANOs in foliage of both species. PAs in field and glasshouse plants were more abundant in the more widely invasive species, E. plantagineum, and may provide competitive advantage by increasing the plant's capacity to deter natural enemies in its invaded range through production of novel weapons.

  16. Identification of a Second Site of Pyrrolizidine Alkaloid Biosynthesis in Comfrey to Boost Plant Defense in Floral Stage.

    Science.gov (United States)

    Kruse, Lars H; Stegemann, Thomas; Sievert, Christian; Ober, Dietrich

    2017-05-01

    Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites that are found in several distantly related families of the angiosperms. The first specific step in PA biosynthesis is catalyzed by homospermidine synthase (HSS), which has been recruited several times independently by duplication of the gene encoding deoxyhypusine synthase, an enzyme involved in the posttranslational activation of the eukaryotic initiation factor 5A. HSS shows highly diverse spatiotemporal gene expression in various PA-producing species. In comfrey ( Symphytum officinale ; Boraginaceae), PAs are reported to be synthesized in the roots, with HSS being localized in cells of the root endodermis. Here, we show that comfrey plants activate a second site of HSS expression when inflorescences start to develop. HSS has been localized in the bundle sheath cells of specific leaves. Tracer feeding experiments have confirmed that these young leaves express not only HSS but the whole PA biosynthetic route. This second site of PA biosynthesis results in drastically increased PA levels within the inflorescences. The boost of PA biosynthesis is proposed to guarantee optimal protection especially of the reproductive structures. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Distinct cell-specific expression of homospermidine synthase involved in pyrrolizidine alkaloid biosynthesis in three species of the boraginales.

    Science.gov (United States)

    Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich

    2012-07-01

    Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant's chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature.

  18. Quantification of the Pyrrolizidine Alkaloid Jacobine in Crassocephalum crepidioides by Cation Exchange High-Performance Liquid Chromatography.

    Science.gov (United States)

    Rozhon, Wilfried; Kammermeier, Lukas; Schramm, Sebastian; Towfique, Nayeem; Adebimpe Adedeji, N; Adesola Ajayi, S; Poppenberger, Brigitte

    2018-01-01

    Pyrrolizidine alkaloids (PAs) are secondary plant metabolites with considerable hepatoxic, tumorigenic and genotoxic potential. For separation, reversed phase chromatography is commonly used because of its excellent compatibility with detection by mass spectrometry. However, reversed phase chromatography has a low selectivity for PAs. The objective of this work was to investigate the suitability of cation exchange chromatography for separation of PAs and to develop a rapid method for quantification of jacobine in Crassocephalum crepidioides that is suitable for analysis of huge sample numbers as required for mutant screening procedures. We demonstrate that cation exchange chromatography offers excellent selectivity for PAs allowing their separation from most other plant metabolites. Due to the high selectivity, plant extracts can be directly analysed after simple sample preparation. Detection with UV at 200 nm instead of mass spectrometry can be applied, which makes the method very simple and cost-effective. The recovery rate of the method exceeded 95%, the intra-day and inter-day standard deviations were below 7% and the limit of detection and quantification were 1 mg/kg and 3 mg/kg, respectively. The developed method is sufficiently sensitive for reproducible detection of jacobine in C. crepidioides. Simple sample preparation and rapid separation allows for quantification of jacobine in plant material in a high-throughput manner. Thus, the method is suitable for genetic screenings and may be applicable for other plant species, for instance Jacobaea maritima. In addition, our results show that C. crepidioides cannot be considered safe for human consumption. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Multiple heart-cutting two dimensional liquid chromatography quadrupole time-of-flight mass spectrometry of pyrrolizidine alkaloids.

    Science.gov (United States)

    van de Schans, Milou G M; Blokland, Marco H; Zoontjes, Paul W; Mulder, Patrick P J; Nielen, Michel W F

    2017-06-23

    Pyrrolizidine alkaloids (PAs) and their and the corresponding N-oxides (PAs-ox) are genotoxic plant metabolites which can be present as unwanted contaminants in food products of herbal origin like tea and food supplements. PAs and PAs-ox come in a wide variety of molecular structures including many structural isomers. For toxicity assessment it is important to determine the composition of a sample and to resolve all isomeric PAs and PAs-ox, which is currently not possible in one liquid or gas chromatographic (LC or GC) run. In this study an online two dimensional liquid chromatography quadrupole time-of-flight mass spectrometry (2D-LC QToF-MS) method was developed to resolve isomeric PAs and PAs-ox. After comprehensive column and mobile phase selection a polar endcapped C 18 column was used at pH 3 in the first dimension, and a cross-linked C 18 column at pH 10 in the second dimension. Injection solvents, column IDs, flow rates and temperatures were carefully optimized. The method with column selection valve switching described in this study was able to resolve and visualize 20 individual PAs/PAs-ox (6 sets of isomers) in one 2D-LC QToF-MS run. Moreover, it was shown that all isomeric PAs/PAs-ox could be unambiguously annotated. The method was shown to be applicable for the determination and quantification of isomeric PAs/PAs-ox in plant extracts and could be easily extended to include other PAs and PAs-ox. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Occurrence of pyrrolizidine alkaloids in animal- and plant-derived food: results of a survey across Europe.

    Science.gov (United States)

    Mulder, Patrick P J; López, Patricia; Castelari, Massimo; Bodi, Dorina; Ronczka, Stefan; Preiss-Weigert, Angelika; These, Anja

    2018-01-01

    Pyrrolizidine alkaloids (PAs) are secondary metabolites of plant families such as Asteraceae or Boraginaceae and are suspected to be genotoxic carcinogens. Recent investigations revealed their frequent occurrence in honey and particularly in tea. To obtain a comprehensive overview of the PA content in animal- and plant-derived food from the European market, and to provide a basis for future risk analysis, a total of 1105 samples were collected in 2014 and 2015. These comprised milk and milk products, eggs, meat and meat products, (herbal) teas, and (herbal) food supplements collected in supermarkets, retail shops, and via the internet. PAs were detected in a large proportion of plant-derived foods: 91% of the (herbal) teas and 60% of the food supplements contained at least one individual PA. All types of (herbal) teas investigated were found to contain PAs, with a mean concentration of 460 µg kg -1 dry tea (corresponding to 6.13 µg L -1 in [herbal] tea infusion). The highest mean concentrations were found in rooibos tea (599 µg kg -1 dry tea, 7.99 µg L -1 tea infusion) and the lowest in camomile tea (274 µg kg -1 dry tea, 3.65 µg L -1 tea infusion). Occurrence of PAs in food supplements was found to be highly variable, but in comparable ranges as for (herbal) tea. The highest concentrations were present in supplements containing plant material from known PA-producing plants. In contrast, only 2% of the animal-derived products, in particular 6% of milk samples and 1% of egg samples, contained PAs. Determined levels in milk were relatively low, ranged between 0.05 and 0.17 µg L -1 and only trace amounts of 0.10-0.12 µg kg -1 were found in eggs. No PAs were detected in the other animal-derived products.

  1. Identification of a new reactive metabolite of pyrrolizidine alkaloid retrorsine: (3H-pyrrolizin-7-yl)methanol.

    Science.gov (United States)

    Fashe, Muluneh M; Juvonen, Risto O; Petsalo, Aleksanteri; Rahnasto-Rilla, Minna; Auriola, Seppo; Soininen, Pasi; Vepsäläinen, Jouko; Pasanen, Markku

    2014-11-17

    Pyrrolizidine alkaloids (PAs) such as retrorsine are common food contaminants that are known to be bioactivated by cytochrome P450 enzymes to putative hepatotoxic, genotoxic, and carcinogenic metabolites known as dehydropyrrolizidine alkaloids (DHPs). We compared how both electrochemical (EC) and human liver microsomal (HLM) oxidation of retrorsine could produce short-lived intermediate metabolites; we also characterized a toxicologically important metabolite, (3H-pyrrolizin-7-yl)methanol. The EC cell was coupled online or offline to a liquid chromatograph/mass spectrometer (LC/MS), whereas the HLM oxidation was performed in 100 mM potassium phosphate (pH 7.4) in the presence of NADPH at 37 °C. The EC cell oxidation of retrorsine produced 12 metabolites, including dehydroretrorsine (m/z 350, [M + H(+)]), which was degraded to a new reactive metabolite at m/z 136 ([M + H(+)]). The molecular structure of this small metabolite was determined using high-resolution mass spectrometry and NMR spectroscopy followed by chemical synthesis. In addition, we also identified another minor but reactive metabolite at m/z 136, an isomer of (3H-pyrrolizin-7-yl)methanol. Both (3H-pyrrolizin-7-yl)methanol and its minor isomer were also observed after HLM oxidation of retrorsine and other hepatotoxic PAs such as lasiocarpine and senkirkin. In the presence of reduced glutathione (GSH), each isomer formed identical GSH conjugates at m/z 441 and m/z 730 in the negative ESI-MS. Because (3H-pyrrolizine-7-yl)methanol) and its minor isomer subsequently reacted with GSH, it is concluded that (3H-pyrrolizin-7-yl)methanol may be a common toxic metabolite arising from PAs.

  2. Interim relative potency factors for the toxicological risk assessment of pyrrolizidine alkaloids in food and herbal medicines.

    Science.gov (United States)

    Merz, Karl-Heinz; Schrenk, Dieter

    2016-11-30

    Pyrrolizidine alkaloids (PAs) are among the most potent natural toxins occurring in a broad spectrum of plant species from various families. Recently, findings of considerable contamination of teas/herbal infusions prepared from non-PA plants have been reported. These are obviously due to cross-contamination with minor amounts of PA plants and can affect both food and herbal medicines. Another source of human exposure is honey collected from PA plants. These findings illustrate the requirement for a comprehensive risk assessment of PAs, hampered by the enormous number of different PA congeners occurring in nature. Up to now, risk assessment is based on the carcinogenicity of certain PAs after chronic application to rats using the sum of detected PAs as dose metric. Because of the well-documented large structure-dependent differences between sub-groups of PA congeners with respect to their genotoxicity and (cyto)toxicity, however, this procedure is inadequate. Here we provide an overview of recent attempts to assess the risk of PA exposure and the available literature on the toxic effects and potencies of different congeners. Based on these considerations, we have derived interim Relative Potency (REP) factors for a number of abundant PAs suggesting a factor of 1.0 for cyclic di-esters and open-chain di-esters with 7S configuration, of 0.3 for mono-esters with 7S configuration, of 0.1 for open-chain di-esters with 7R configuration and of 0.01 for mono-esters with 7R configuration. For N-oxides we suggest to apply the REP factor of the corresponding PA. We are confident that the use of these values can provide a more scientific basis for PA risk assessment until a more detailed experimental analysis of the potencies of all relevant congeners can be carried out. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Simultaneous determination of sesquiterpenes and pyrrolizidine alkaloids from the rhizomes of Petasites hybridus (L.) G.M. et Sch. and dietary supplements using UPLC-UV and HPLC-TOF-MS methods.

    Science.gov (United States)

    Avula, Bharathi; Wang, Yan-Hong; Wang, Mei; Smillie, Troy J; Khan, Ikhlas A

    2012-11-01

    UPLC-UV and HPLC-TOF-MS methods have been developed for the analysis of major sesquiterpenes and pyrrolizidine alkaloids from rhizomes of Petasites hybridus (L.) G.M. et Sch. (Family, Asteracea) and dietary supplements claiming to contain P. hybridus. The best results were obtained with Acquity UPLC™ HSS T3 (100 mm × 2.1 mm, I.D., 1.8 μm) column system using a gradient elution with a mobile phase consisting of ammonium formate (50mM) and acetonitrile (0.05% formic acid) at a constant flow rate of 0.25 mL/min via UPLC-UV. The newly developed method was validated according to the ICH guidelines with respect to specificity, linearity, accuracy and precision. The limits of detection were found to be 5 μg/mL and 0.1 μg/mL for pyrrolizidine alkaloids and sesquiterpenes, respectively by UPLC-UV and 0.001 and 0.01 μg/mL, respectively using HPLC-TOF-MS. The methods were successfully used to analyze different P. hybridus market products, as well as to distinguish between two other Petasites species. The total content of petasins was found to be in the range of 0.02-11.6 mg/dosage form for 15 dietary supplements and no petasins were detected in an additional six dietary supplements. Additionally, pyrrolizidine alkaloids, which are considered to be toxic for the liver, were detected in seven dietary supplements. The amount of petasin in seven dietary supplements was found to be within limits of label claim and no pyrrolizidine alkaloids were detected. HPLC-mass spectrometry coupled with electrospray ionization (ESI) interface method is described for the identification and confirmation of sesquiterpenes and pyrrolizidine alkaloids from plant extracts and dietary supplements that claim to contain P. hybridus as well as different species of Petasites. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Statement on the risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements

    DEFF Research Database (Denmark)

    Petersen, Annette

    day to assess the carcinogenic risks of PAs, and concluded that there is a possible concern for human health related to the exposure to PAs, in particular for frequent and high consumers of tea and herbal infusions. The Panel noted that consumption of food supplements based on PA-producing plants......, including the development of more sensitive and specific analytical methods. A recommendation was also issued on the generation of data to identify the toxic and carcinogenic potency of the PAs commonly found in food.......EFSA was asked by the European Commission to deliver a scientific opinion on the risks for human health related to the presence of pyrrolizidine alkaloids (PAs) in honey, tea, herbal infusions and food supplements and to identify the PAs of relevance in the aforementioned food commodities...

  5. Investigation of pyrrolizidine alkaloids and their N-oxides in commercial comfrey-containing products and botanical materials by liquid chromatography electrospray ionization mass spectrometry.

    Science.gov (United States)

    Altamirano, Jorgelina C; Gratz, Samuel R; Wolnik, Karen A

    2005-01-01

    Pyrrolizidine alkaloids (PAs) and their N-oxides are found in several plant families throughout the world. PAs are potentially toxic to the liver and/or lungs in humans and may cause acute liver failure, cirrhosis, pneumonitis, or pulmonary hypertension. PAs are also carcinogenic to animals, and they have been linked to the development of hepatocellular and skin squamous cell carcinomas as well as liver angiosarcomas. According to experimental studies, the quantity of PAs in some herbal teas and dietary supplements is sufficient to be carcinogenic in exposed individuals. A method for the extraction and identification of PAs and their N-oxides in botanical materials and commercial comfrey-containing products has been developed using liquid chromatography electrospray ionization mass spectrometry. Following optimization of the extraction procedure and the chromatographic conditions, the method was applied to the analysis of 10 herbal remedies. All of the products that were labeled to contain comfrey were found to contain measurable quantities of PAs.

  6. Analysis of herbal teas made from the leaves of comfrey (Symphytum officinale): reduction of N-oxides results in order of magnitude increases in the measurable concentration of pyrrolizidine alkaloids.

    Science.gov (United States)

    Oberlies, Nicholas H; Kim, Nam-Cheol; Brine, Dolores R; Collins, Bradley J; Handy, Robert W; Sparacino, Charles M; Wani, Mansukh C; Wall, Monroe E

    2004-10-01

    To determine the relative quantities of two hepatotoxic pyrrolizidine alkaloids, symphytine and echimidine, in teas prepared from comfrey leaves (Symphytum officinale), and to determine the potential contribution of the N-oxide forms of these alkaloids to levels of the parent alkaloids. Comfrey leaves were purchased from three commercial sources and used to prepare tea in a manner consistent with the methods used by consumers. An extraction scheme was devised for extraction of the alkaloids, and a gas chromatographic method was developed to quantify the two major alkaloids, symphytine and echimidine. Recognising that the N-oxide derivatives of these alkaloids have also been identified in comfrey preparations, chemical reduction was applied to determine the total quantities of the alkaloids as free bases and as N-oxide derivatives. The concentration of symphytine and echimidine varied considerably between teas prepared from leaves purchased from the different vendors of plant material. Moreover, a much higher concentration of symphytine was found in the tea when steps were included to reduce N-oxides prior to analysis. The treatment of pure symphytine with hot water did not generate the N-oxide derivative de novo. Since the pyrrolizidine alkaloids are known to be hepatotoxic, consumption of herbal teas made from comfrey leaves may be ill-advised. The concentration of pyrrolizidine alkaloids in such teas may be underestimated substantially unless the concentration of N-oxides is taken into consideration.

  7. Bioactivity Studies of β-Lactam Derived Polycyclic Fused Pyrroli-Dine/Pyrrolizidine Derivatives in Dentistry: In Vitro, In Vivo and In Silico Studies.

    Directory of Open Access Journals (Sweden)

    Gowri Meiyazhagan

    Full Text Available The antibacterial activity of β-lactam derived polycyclic fused pyrrolidine/pyrrolizidine derivatives synthesized by 1, 3-dipolar cycloaddition reaction was evaluated against microbes involved in dental infection. Fifteen compounds were screened; among them compound 3 showed efficient antibacterial activity in an ex vivo dentinal tubule model and in vivo mice infectious model. In silico docking studies showed greater affinity to penicillin binding protein. Cell damage was observed under Scanning Electron Microscopy (SEM which was further proved by Confocal Laser Scanning Microscope (CLSM and quantified using Flow Cytometry by PI up-take. Compound 3 treated E. faecalis showed ROS generation and loss of membrane integrity was quantified by flow cytometry. Compound 3 was also found to be active against resistant E. faecalis strains isolated from failed root canal treatment cases. Further, compound 3 was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non mutagenic. It was concluded that β-lactam compound 3 exhibited promising antibacterial activity against E. faecalis involved in root canal infections and the mechanism of action was deciphered. The results of this research can be further implicated in the development of potent antibacterial medicaments with applications in dentistry.

  8. Bioactivity Studies of β-Lactam Derived Polycyclic Fused Pyrroli-Dine/Pyrrolizidine Derivatives in Dentistry: In Vitro, In Vivo and In Silico Studies

    Science.gov (United States)

    Winfred, Sofi Beaula; Mannivanan, Bhavani; Bhoopalan, Hemadev; Shankar, Venkatesh; Sekar, Sathiya; Venkatachalam, Deepa Parvathi; Pitani, Ravishankar; Nagendrababu, Venkateshbabu; Thaiman, Malini; Devivanayagam, Kandaswamy; Jayaraman, Jeyakanthan; Ragavachary, Raghunathan; Venkatraman, Ganesh

    2015-01-01

    The antibacterial activity of β-lactam derived polycyclic fused pyrrolidine/pyrrolizidine derivatives synthesized by 1, 3-dipolar cycloaddition reaction was evaluated against microbes involved in dental infection. Fifteen compounds were screened; among them compound 3 showed efficient antibacterial activity in an ex vivo dentinal tubule model and in vivo mice infectious model. In silico docking studies showed greater affinity to penicillin binding protein. Cell damage was observed under Scanning Electron Microscopy (SEM) which was further proved by Confocal Laser Scanning Microscope (CLSM) and quantified using Flow Cytometry by PI up-take. Compound 3 treated E. faecalis showed ROS generation and loss of membrane integrity was quantified by flow cytometry. Compound 3 was also found to be active against resistant E. faecalis strains isolated from failed root canal treatment cases. Further, compound 3 was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non mutagenic. It was concluded that β-lactam compound 3 exhibited promising antibacterial activity against E. faecalis involved in root canal infections and the mechanism of action was deciphered. The results of this research can be further implicated in the development of potent antibacterial medicaments with applications in dentistry. PMID:26185985

  9. A Balanced Risk-Benefit Analysis to Determine Human Risks Associated with Pyrrolizidine Alkaloids (PA)-The Case of Tea and Herbal Infusions.

    Science.gov (United States)

    Habs, Michael; Binder, Karin; Krauss, Stefan; Müller, Karolina; Ernst, Brigitte; Valentini, Luzia; Koller, Michael

    2017-07-07

    Humans are exposed to pyrrolizidine alkaloids (PA) through different sources, mainly from contaminated foodstuff. Teas and herbal infusions (T&HI) can be contaminated by PA producing weed. PA can possess toxic, mutagenic, genotoxic, and carcinogenic properties. Thus, possible health risks for the general population are under debate. There is a strong safety record for T&HI and additionally epidemiological evidence for the preventive effects of regular tea consumption on cardiovascular events and certain types of cancer. There is no epidemiological evidence, however, for human risks of regular low dose PA exposure. Recommended regulatory PA-threshold values are based on experimental data only, accepting big uncertainties. If a general risk exists through PA contaminated T&HI, it must be small compared to other frequently accepted risks of daily living and the proven health effects of T&HI. Decision making should be based on a balanced riskbenefit analysis. Based on analyses of the scientific data currently available, it is concluded that the benefits of drinking T&HI clearly outweigh the negligible health risk of possible PA contamination. At the same time, manufacturers must continue their efforts to secure good product quality and to be transparent on their measures of quality control and risk communication.

  10. Cell-Specific Expression of Homospermidine Synthase, the Entry Enzyme of the Pyrrolizidine Alkaloid Pathway in Senecio vernalis, in Comparison with Its Ancestor, Deoxyhypusine Synthase1

    Science.gov (United States)

    Moll, Stefanie; Anke, Sven; Kahmann, Uwe; Hänsch, Robert; Hartmann, Thomas; Ober, Dietrich

    2002-01-01

    Pyrrolizidine alkaloids (PAs) are constitutive plant defense compounds with a sporadic taxonomic occurrence. The first committed step in PA biosynthesis is catalyzed by homospermidine synthase (HSS). Recent evidence confirmed that HSS evolved by gene duplication from deoxyhypusine synthase (DHS), an enzyme involved in the posttranslational activation of the eukaryotic translation initiation factor 5A. To better understand the evolutionary relationship between these two enzymes, which are involved in completely different biological processes, we studied their tissue-specific expression. RNA-blot analysis, reverse transcriptase-PCR, and immunolocalization techniques demonstrated that DHS is constitutively expressed in shoots and roots of Senecio vernalis (Asteraceae), whereas HSS expression is root specific and restricted to distinct groups of endodermis and neighboring cortex cells located opposite to the phloem. All efforts to detect DHS by immunolocalization failed, but studies with promoter-β-glucuronidase fusions confirmed a general expression pattern, at least in young seedlings of tobacco (Nicotiana tabacum). The expression pattern for HSS differs completely from its ancestor DHS due to the adaptation of HSS to the specific requirements of PA biosynthesis. PMID:12226485

  11. Structure-activity relationship in the passage of different pyrrolizidine alkaloids through the gastrointestinal barrier: ABCB1 excretes heliotrine and echimidine.

    Science.gov (United States)

    Hessel, Stefanie; Gottschalk, Christoph; Schumann, Dania; These, Anja; Preiss-Weigert, Angelika; Lampen, Alfonso

    2014-05-01

    1,2-Unsaturated pyrrolizidine alkaloids (PA) are found in plants such as Asteraceae and Boraginaceae families. Acute PA poisoning via contaminated food or feed causes severe damage to liver depending on species-specific oral bioavailability. For assessing PA bioavailability, their passage across the intestinal barrier was investigated using Caco-2 cells. Differentiated Caco-2 cells were exposed in transport chambers to the PA heliotrine (Hn), echimidine (Em), senecionine (Sc), and senkirkine (Sk). Cell supernatants were analyzed by LC-MS/MS. PA pass Caco-2 monolayer from the apical into basolateral compartment depending on their chemical structure. Compared to the cyclic diesters Sc and Sk with a passage rate of 47% ± 4 and 40% ± 3, respectively, the transferred amount of the monoester Hn (32% ± 3) and open-chained diester Em (13% ± 2) was substantially lower. This suggested an active transport of Hn and Em. Using Madin-Darby canine kidney II/P-glycoprotein (ABCB1)-overexpressing cells, the active excretion of Hn and Em by ABCB1 from the gastrointestinal epithelium into the gut lumen was shown. PA cross the intestinal barrier structure-dependently. The passage of the noncyclic PA Hn and Em is reduced by an ABCB1-driven efflux into the gastrointestinal lumen resulting in a decreased oral bioavailability. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Identification of a Second Site of Pyrrolizidine Alkaloid Biosynthesis in Comfrey to Boost Plant Defense in Floral Stage1,2[OPEN

    Science.gov (United States)

    Stegemann, Thomas; Sievert, Christian

    2017-01-01

    Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites that are found in several distantly related families of the angiosperms. The first specific step in PA biosynthesis is catalyzed by homospermidine synthase (HSS), which has been recruited several times independently by duplication of the gene encoding deoxyhypusine synthase, an enzyme involved in the posttranslational activation of the eukaryotic initiation factor 5A. HSS shows highly diverse spatiotemporal gene expression in various PA-producing species. In comfrey (Symphytum officinale; Boraginaceae), PAs are reported to be synthesized in the roots, with HSS being localized in cells of the root endodermis. Here, we show that comfrey plants activate a second site of HSS expression when inflorescences start to develop. HSS has been localized in the bundle sheath cells of specific leaves. Tracer feeding experiments have confirmed that these young leaves express not only HSS but the whole PA biosynthetic route. This second site of PA biosynthesis results in drastically increased PA levels within the inflorescences. The boost of PA biosynthesis is proposed to guarantee optimal protection especially of the reproductive structures. PMID:28275146

  13. An Outbreak of Hepatic Veno-Occlusive Disease in Western Afghanistan Associated with Exposure to Wheat Flour Contaminated with Pyrrolizidine Alkaloids

    Directory of Open Access Journals (Sweden)

    Faizullah Kakar

    2010-01-01

    Full Text Available Pyrrolizidine alakloids (PAs are known to cause hepatic veno-occlusive disease (VOD. Outbreaks have occurred in Western Afghanistan since 1974, the latest in February 2008. We conducted an outbreak investigation using a case-control design. Sixty-seven cases of VOD were compared with 199 community controls. Consumption of bread was strongly associated with disease (adjusted odds ratio: 35.8 [95%CI: 7.6–168.2]. Toxic doses of PA were found in plant extracts and in samples of wheat flour taken from the study area. Compared to wheat flour there was 1000 times less PA in milk and whey and in water samples the PA content was zero. Although direct analysis was not possible, contaminated wheat flour used to make bread was the likely source of PA causing the outbreak. Eating a more varied diet including meat and fruit may be protective. Prevention and control measures will rely on community awareness and agricultural interventions to ensure safety of the food supply.

  14. A Balanced Risk–Benefit Analysis to Determine Human Risks Associated with Pyrrolizidine Alkaloids (PA)—The Case of Tea and Herbal Infusions

    Science.gov (United States)

    Habs, Michael; Binder, Karin; Krauss, Stefan; Müller, Karolina; Ernst, Brigitte; Valentini, Luzia; Koller, Michael

    2017-01-01

    Humans are exposed to pyrrolizidine alkaloids (PA) through different sources, mainly from contaminated foodstuff. Teas and herbal infusions (T&HI) can be contaminated by PA producing weed. PA can possess toxic, mutagenic, genotoxic, and carcinogenic properties. Thus, possible health risks for the general population are under debate. There is a strong safety record for T&HI and additionally epidemiological evidence for the preventive effects of regular tea consumption on cardiovascular events and certain types of cancer. There is no epidemiological evidence, however, for human risks of regular low dose PA exposure. Recommended regulatory PA-threshold values are based on experimental data only, accepting big uncertainties. If a general risk exists through PA contaminated T&HI, it must be small compared to other frequently accepted risks of daily living and the proven health effects of T&HI. Decision making should be based on a balanced riskbenefit analysis. Based on analyses of the scientific data currently available, it is concluded that the benefits of drinking T&HI clearly outweigh the negligible health risk of possible PA contamination. At the same time, manufacturers must continue their efforts to secure good product quality and to be transparent on their measures of quality control and risk communication. PMID:28686224

  15. Development and validation of a QuEChERS method coupled to liquid chromatography and high resolution mass spectrometry to determine pyrrolizidine and tropane alkaloids in honey.

    Science.gov (United States)

    Martinello, Marianna; Borin, Alice; Stella, Roberto; Bovo, Davide; Biancotto, Giancarlo; Gallina, Albino; Mutinelli, Franco

    2017-11-01

    Awareness about pyrrolizidine alkaloids (PAs) and tropane alkaloids (TAs) in food was recently raised by the European Food Safety Authority stressing the lack of data and gaps of knowledge required to improve the risk assessment strategy. The present study aimed at the elaboration and validation of a method to determine PAs and TAs in honey. QuEChERS sample treatment and liquid chromatography coupled to hybrid high resolution mass spectrometry, were used. The method resulted in good linearity (R 2 >0.99) and low limits of detection and quantification, ranging from 0.04 to 0.2µgkg -1 and from 0.1 to 0.7µgkg -1 respectively. Recoveries ranged from 92.3 to 114.8% with repeatability lying between 0.9 and 15.1% and reproducibility between 1.1 and 15.6%. These performances demonstrate the selectivity and sensitivity of the method for simultaneous trace detection and quantification of PAs and TAs in honey, verified through the analysis of forty commercial samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A Balanced Risk–Benefit Analysis to Determine Human Risks Associated with Pyrrolizidine Alkaloids (PA—The Case of Tea and Herbal Infusions

    Directory of Open Access Journals (Sweden)

    Michael Habs

    2017-07-01

    Full Text Available Humans are exposed to pyrrolizidine alkaloids (PA through different sources, mainly from contaminated foodstuff. Teas and herbal infusions (T&HI can be contaminated by PA producing weed. PA can possess toxic, mutagenic, genotoxic, and carcinogenic properties. Thus, possible health risks for the general population are under debate. There is a strong safety record for T&HI and additionally epidemiological evidence for the preventive effects of regular tea consumption on cardiovascular events and certain types of cancer. There is no epidemiological evidence, however, for human risks of regular low dose PA exposure. Recommended regulatory PA-threshold values are based on experimental data only, accepting big uncertainties. If a general risk exists through PA contaminated T&HI, it must be small compared to other frequently accepted risks of daily living and the proven health effects of T&HI. Decision making should be based on a balanced riskbenefit analysis. Based on analyses of the scientific data currently available, it is concluded that the benefits of drinking T&HI clearly outweigh the negligible health risk of possible PA contamination. At the same time, manufacturers must continue their efforts to secure good product quality and to be transparent on their measures of quality control and risk communication.

  17. An Outbreak of Hepatic Veno-Occlusive Disease in Western Afghanistan Associated with Exposure to Wheat Flour Contaminated with Pyrrolizidine Alkaloids

    Science.gov (United States)

    Kakar, Faizullah; Akbarian, Zarif; Leslie, Toby; Mustafa, Mir Lais; Watson, John; van Egmond, Hans P.; Omar, Mohammad Fahim; Mofleh, Jawad

    2010-01-01

    Pyrrolizidine alakloids (PAs) are known to cause hepatic veno-occlusive disease (VOD). Outbreaks have occurred in Western Afghanistan since 1974, the latest in February 2008. We conducted an outbreak investigation using a case-control design. Sixty-seven cases of VOD were compared with 199 community controls. Consumption of bread was strongly associated with disease (adjusted odds ratio: 35.8 [95%CI: 7.6–168.2]). Toxic doses of PA were found in plant extracts and in samples of wheat flour taken from the study area. Compared to wheat flour there was 1000 times less PA in milk and whey and in water samples the PA content was zero. Although direct analysis was not possible, contaminated wheat flour used to make bread was the likely source of PA causing the outbreak. Eating a more varied diet including meat and fruit may be protective. Prevention and control measures will rely on community awareness and agricultural interventions to ensure safety of the food supply. PMID:20652038

  18. Characterization and screening of pyrrolizidine alkaloids and N-oxides from botanicals and dietary supplements using UHPLC-high resolution mass spectrometry.

    Science.gov (United States)

    Avula, Bharathi; Sagi, Satyanarayanaraju; Wang, Yan-Hong; Zweigenbaum, Jerry; Wang, Mei; Khan, Ikhlas A

    2015-07-01

    The UHPLC-QToF-MS analysis of pyrrolizidine alkaloids (PAs) from various parts of 37 botanicals and 7 products was performed. A separation by LC was achieved using a reversed-phase column and a gradient of water/acetonitrile each containing formic acid as the mobile phase. MS-MS detection was used because of its high selectivity, and ability to provide structural information. Free base and N-oxides were observed by this method. PAs were analyzed and detected in plants from three different families, viz., Asteraceae, Boraginaceae and Fabaceae. The Asteraceae family was found to contain senecionine and lycopsamine type PAs. The Boraginaceae family contained lycopsamine and heliotrine type PAs and the Fabaceae family contained senecionine and monocrotaline type PAs. These PAs may serve as important markers for the detection of these plant materials in food and dietary supplements. PAs were identified in 44 samples by comparing their retention times, accurate mass and mass fragmentation patterns with those of 25 reference standards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. An Outbreak of Hepatic Veno-Occlusive Disease in Western Afghanistan Associated with Exposure to Wheat Flour Contaminated with Pyrrolizidine Alkaloids

    International Nuclear Information System (INIS)

    Kakar, F.; Akbarian, Z.; Mustafa, M.L.; Omar, M.F.; Mofleh, J.; Toby Leslie, T.; Watson, J.; Egmond, H.P.V.

    2010-01-01

    Pyrrolizidine alkaloids (PAs) are known to cause hepatic veno-occlusive disease (VOD). Outbreaks have occurred in Western Afghanistan since 1974, the latest in February 2008. We conducted an outbreak investigation using a case-control design. Sixty-seven cases of VOD were compared with 199 community controls. Consumption of bread was strongly associated with disease (adjusted odds ratio: 35.8 [95%CI: 7.6 168.2]). Toxic doses of PA were found in plant extracts and in samples of wheat flour taken from the study area. Compared to wheat flour there was 1000 times less PA in milk and whey and in water samples the PA content was zero. Although direct analysis was not possible, contaminated wheat flour used to make bread was the likely source of PA causing the outbreak. Eating a more varied diet including meat and fruit may be protective. Prevention and control measures will rely on community awareness and agricultural interventions to ensure safety of the food supply.

  20. Distinct Cell-Specific Expression of Homospermidine Synthase Involved in Pyrrolizidine Alkaloid Biosynthesis in Three Species of the Boraginales1[C][W][OA

    Science.gov (United States)

    Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich

    2012-01-01

    Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant’s chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature. PMID:22566491

  1. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    International Nuclear Information System (INIS)

    Ji Lili; Chen Ying; Liu Tianyu; Wang Zhengtao

    2008-01-01

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 μM)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability. Polyubiquitination of Bcl-xL was detected after incubation with 100 μM clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 μM) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway

  2. Chemical fingerprinting identifies Echium vulgare, Eupatorium cannabinum and Senecio spp. as plant species mainly responsible for pyrrolizidine alkaloids in bee-collected pollen.

    Science.gov (United States)

    Kast, Christina; Kilchenmann, Verena; Reinhard, Hans; Droz, Benoit; Lucchetti, Matteo Angelo; Dübecke, Arne; Beckh, Gudrun; Zoller, Otmar

    2018-02-01

    Various studies have shown that bee-collected pollen sold as nutritional supplements may contain toxic pyrrolizidine alkaloids (PAs) and, thus, pose a potential health risk for consumers. The level of contamination may vary according to its geographical and botanical origin. Here, the PA content of pollen produced in Switzerland was studied and 32 commercially available bee-collected pollen supplements produced between 2010 and 2014 were analysed. In addition, at what time period bees collect PA-containing pollen was investigated. Hence, this study looked into the occurrence of PAs in pollen samples collected daily during two-to-three consecutive seasons. Furthermore, the PA spectrum in pollen was compared to the spectrum found in flower heads of PA-plants to unambiguously identify plants responsible for PA contamination of pollen. The PA concentration of commercial and daily collected pollen was determined by target analysis using an HPLC-MS/MS system, allowing the detection of 18 different PAs and PA N-oxides found in the genera Echium, Eupatorium and Senecio, while the comparison of the PA spectrum in pollen and flower heads was performed by LC-HR-MS, allowing the detection of all PA types in a sample, including saturated, non-carcinogenic PAs. Of the commercially available pollen, 31% contained PAs with a mean concentration of 319 ng/g, mainly Echium- and Eupatorium-type PAs, while the PA concentrations were below the limit of quantitation (LOQ) in 69% of the pollen samples. Bees collected pollen containing Echium-type PAs mainly in June and July, while they gathered pollen containing Eupatorium-type PAs from mid-July to August. Senecio-type PAs appeared from June to September. Comparison of the PA array in pollen and plants identified E. vulgare and E. cannabinum as the main plants responsible for PA contamination of Swiss bee-collected pollen, and to a lesser extent also identified plants belonging to the genus Senecio.

  3. Investigation of targeted pyrrolizidine alkaloids in traditional Chinese medicines and selected herbal teas sourced in Ireland using LC-ESI-MS/MS.

    Science.gov (United States)

    Griffin, Caroline T; Gosetto, Francesca; Danaher, Martin; Sabatini, Stefano; Furey, Ambrose

    2014-01-01

    Publications linking hepatotoxicity to the use of herbal preparations are escalating. Herbal teas, traditional Chinese medicines (TCMs) and dietary supplements have been shown to contain pyrrolizidine alkaloids (PAs). Acute PA toxicosis of the liver can result in sinusoidal-obstruction syndrome, also known as veno-occlusive disease (VOD). This paper describes a sensitive and robust method for the detection of targeted PAs and their N-oxides (PANOs) in herbal products (selected herbal teas and TCMs) sourced within Ireland. The sample preparation includes a simple acidic extraction with clean-up via solid-phase extraction (SPE). Sample extracts were accurately analysed by using LC-ESI-MS/MS applying for the first time a pentafluorophenyl (PFP) core-shell column to the chromatographic separation of PAs and PANOs. The method was validated for selectivity, taking into consideration matrix effects, specificity, linearity, precision and trueness. Limits of detection (LOD) and limits of quantitation (LOQ) were quantified for all PAs and PANOs ranging from 0.4 to 1.9 µg kg⁻¹ and from 1.3 to 6.3 µg kg⁻¹, respectively. In this study 10 PAs and four PANOs were targeted because they are commercially available as reference standards. Therefore, this study can only report the levels of these PAs and PANOs analysed in the herbal teas and TCMs. The results reported represent the minimum levels of PAs and PANOs present in the samples analysed; commercially available herbal teas (n = 18) and TCMs (n = 54). A total of 50% herbal teas and 78% Chinese medicines tested positive for one or more PAs and/or PANOs included within this study, ranging from 10 to 1733 and from 13 to 3668 µg kg⁻¹, respectively.

  4. Investigation of pyrrolizidine alkaloids including their respective N-oxides in selected food products available in Hong Kong by liquid chromatography electrospray ionisation mass spectrometry.

    Science.gov (United States)

    Chung, Stephen W C; Lam, Aaron C H

    2017-07-01

    This study determined the levels of pyrrolizidine alkaloids (PAs), including their respective N-oxides, in foodstuffs available in Hong Kong by liquid chromatography-electrospray ionisation tandem mass spectrometry. A total of 234 samples (48 food items) were collected randomly from a local market and analysed. About 50% of samples were found to contain detectable amount of PAs. Amongst the 48 food items, PAs were not detected in 11 food items, including barley flour, beef, cattle liver, pork, pig liver, chicken meat, chicken liver, milk, non-fermented tea, Melissa tea and linden tea. For those found to contain detectable PAs, the summed PA content ranged up to 11,000 µg kg -1 . The highest sum of PA content among the 37 food items calculated with lower bound was cumin seed, then followed by oregano, tarragon and herbs de Provence with ranges of 2.5-11,000, 1.5-5100, 8.0-3300 and 18-1300 µg kg -1 respectively. Among the samples, the highest sum of PA content was detected in a cumin seed sample (11,000 µg kg -1 ), followed by an oregano (5100 µg kg -1 ), a tarragon (3300 µg kg -1 ) and a herbs de Provence (1300 µg kg -1 ). In general, the results of this study agreed well with other published results in peer-reviewed journals, except that the total PAs in honey and specific tea infusion in this study were comparatively lower.

  5. Clivorine, an otonecine pyrrolizidine alkaloid from Ligularia species, impairs neuronal differentiation via NGF-induced signaling pathway in cultured PC12 cells.

    Science.gov (United States)

    Xiong, Aizhen; Yan, Artemis Lu; Bi, Cathy W C; Lam, Kelly Y C; Chan, Gallant K L; Lau, Kitty K M; Dong, Tina T X; Lin, Huangquan; Yang, Li; Wang, Zhengtao; Tsim, Karl W K

    2016-08-15

    Pyrrolizidine alkaloids (PAs) are commonly found in many plants including those used in medical therapeutics. The hepatotoxicities of PAs have been demonstrated both in vivo and in vitro; however, the neurotoxicities of PAs are rarely mentioned. In this study, we aimed to investigate in vitro neurotoxicities of clivorine, one of the PAs found in various Ligularia species, in cultured PC12 cells. PC12 cell line was employed to first elucidate the neurotoxicity and the underlying mechanism of clivorine, including cell viability and morphology change, neuronal differentiation marker and signaling pathway. PC12 cells were challenged with series concentrations of clivorine and/or nerve growth factor (NGF). The cell lysates were collected for MTT assay, trypan blue staining, immunocytofluorescent staining, qRT-PCR and western blotting. Clivorine inhibited cell proliferation and neuronal differentiation evidenced by MTT assay and dose-dependently reducing neurite outgrowth, respectively. In addition, clivorine decreased the level of mRNAs encoding for neuronal differentiation markers, e.g. neurofilaments and TrkA (NGF receptor). Furthermore, clivorine reduced the NGF-induced the phosphorylations of TrkA, protein kinase B and cAMP response element-binding protein in cultured PC12 cells. Taken together, our results suggest that clivorine might possess neurotoxicities in PC12 cells via down-regulating the NGF/TrkA/Akt signaling pathway. PAs not only damage the liver, but also possess neurotoxicities, which could possibly result in brain disorders, such as depression. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice.

    Science.gov (United States)

    Zhu, Lin; Xue, Junyi; Xia, Qingsu; Fu, Peter P; Lin, Ge

    2017-02-01

    Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α ) and 301 h (~12.5 days, t 1/2β ). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α ) and 1736 h (~72.3 days, t 1/2β ). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.

  7. Comparison of the anti-inflammatory active constituents and hepatotoxic pyrrolizidine alkaloids in two Senecio plants and their preparations by LC-UV and LC-MS.

    Science.gov (United States)

    Chen, Pinghong; Wang, Yi; Chen, Lulin; Jiang, Wei; Niu, Yan; Shao, Qing; Gao, Lu; Zhao, Quancheng; Yan, Licheng; Wang, Shufang

    2015-11-10

    Two Senecio plants, Senecio cannabifolius Less. and its variety S. cannabifolius Less. var. integrifolius (Kiodz.) Kidam., were both used as the raw material of Feining granule, a traditional Chinese medicine product for treating respiratory diseases. In this study, the chemical profiles of these two plants were investigated and compared by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). A total number of 83 constituents, including 55 organic acids, 11 flavonoids, 4 alkaloids, 3 terpenes and 10 other types of compounds, were characterized. The results indicated that the levels of most flavonoids were higher in S. cannabifolius than in S. cannabifolius var. integrifolius, however, the levels of hepatotoxic pyrrolizidine alkaloids (PAs) were higher in S. cannabifolius var. integrifolius than in S. cannabifolius. Fifteen constituents were evaluated on lipopolysaccharides (LPS) induced RAW 264.7 cells, and eleven of them showed inhibition effect against nitric oxide (NO) production. Finally, the levels of ten major constituents (including seven anti-inflammatory active ones) and two PAs in Feining granule from two Senecio plants were determined and compared by the LC-UV and LC-MS methods, respectively. It was found that one organic acid (homogentisic acid) and two PAs (seneciphylline and senecionine) had higher contents in the preparation of S. cannabifolius var. integrifolius than in that of S. cannabifolius, however, the situations were inverse for the levels of four organic acids and flavonoids (chlorogenic acid, hyperoside, isoquercitrin, and isochlorogenic acid B). Based on the above results, S. cannabifolius might be a better raw material for Feining granule than S. cannabifolius var. integrifolius, because it contained more anti-inflammatory constituents and less hepatotoxic PAs than the latter. However, more pharmacological evaluations should be carried out to support the selection. The results in this study were helpful

  8. Development of a fast isocratic LC-MS/MS method for the high-throughput analysis of pyrrolizidine alkaloids in Australian honey.

    Science.gov (United States)

    Griffin, Caroline T; Mitrovic, Simon M; Danaher, Martin; Furey, Ambrose

    2015-01-01

    Honey samples originating from Australia were purchased and analysed for targeted pyrrolizidine alkaloids (PAs) using a new and rapid isocratic LC-MS/MS method. This isocratic method was developed from, and is comparable with, a gradient elution method and resulted in no loss of sensitivity or reduction in chromatographic peak shape. Isocratic elution allows for significantly shorter run times (6 min), eliminates the requirement for column equilibration periods and, thus, has the advantage of facilitating a high-throughput analysis which is particularly important for regulatory testing laboratories. In excess of two hundred injections are possible, with this new isocratic methodology, within a 24-h period which is more than 50% improvement on all previously published methodologies. Good linear calibrations were obtained for all 10 PAs and four PA N-oxides (PANOs) in spiked honey samples (3.57-357.14 µg l(-1); R(2) ≥ 0.9987). Acceptable inter-day repeatability was achieved for the target analytes in honey with % RSD values (n = 4) less than 7.4%. Limits of detection (LOD) and limits of quantitation (LOQ) were achieved with spiked PAs and PANOs samples; giving an average LOD of 1.6 µg kg(-1) and LOQ of 5.4 µg kg(-1). This method was successfully applied to Australian and New Zealand honey samples sourced from supermarkets in Australia. Analysis showed that 41 of the 59 honey samples were contaminated by PAs with the mean total sum of PAs being 153 µg kg(-1). Echimidine and lycopsamine were predominant and found in 76% and 88%, respectively, of the positive samples. The average daily exposure, based on the results presented in this study, were 0.051 µg kg(-1) bw day(-1) for adults and 0.204 µg kg(-1) bw day(-1) for children. These results are a cause for concern when compared with the proposed European Food Safety Authority (EFSA), Committee on Toxicity (COT) and Bundesinstitut für Risikobewertung (BfR - Federal Institute of Risk Assessment Germany) maximum

  9. Intoxicação por alcaloides pirrolizidínicos em ruminantes e equinos no Brasil Poisoning by pyrrolizidine alkaloids in ruminants and horses in Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo B. Lucena

    2010-05-01

    Full Text Available Casos de intoxicação por alcaloides pirrolizidínicos (APs em ruminantes e equinos foram investigados retrospectivamente através do acesso aos arquivos de dois laboratórios de diagnóstico veterinário no Sul e Nordeste brasileiro. Os dados obtidos foram comparados com aqueles retirados da literatura concernentes a surtos dessa toxicose no Brasil, onde ela é associada com a ingestão de plantas que contêm APs dos gêneros Senecio, Crotalaria e Echium. Formas aguda e crônica da toxicose foram encontradas. A doença aguda foi observada em associação com a ingestão de Crotalaria retusa em ovinos e caprinos. C. retusa e Senecio spp. também foram responsáveis pela intoxicação crônica em bovinos, equinos e ovinos. A intoxicação por APs é uma importante causa de morte em animais pecuários no Brasil. Essa é a principal causa de morte em bovinos na região Central do Rio Grande do Sul e uma das principais causas de morte em equinos na Paraíba. A epidemiologia, os sinais clínicos, a patologia e a importância da intoxicação por APs são descritos e discutidos.Cases of poisoning by pyrrolizidine alkaloids (PAs in ruminants and horses were surveilled retrospectively by accessing the files of two veterinary diagnostic laboratories in southern and northeastern Brazil. The data obtained were compared with those withdrawn from the literature and pertaining to outbreaks of the toxicosis in Brazil where it is associated with the ingestion of PAs-containing plants from the genera Senecio, Crotalaria and Echium. Acute and chronic forms of the toxicosis were encountered. Acute disease was observed in association with the ingestion of Crotalaria retusa in sheep and goats. C. retusa and Senecio spp. were also responsible for chronic poisoning in cattle, horses and sheep. PAs poisoning is an important cause of death in livestock in Brazil. It is the major cause of death in cattle in the Central region of Rio Grande do Sul and one of the major

  10. Effective application of freezing lipid precipitation and SCX-SPE for determination of pyrrolizidine alkaloids in high lipid foodstuffs by LC-ESI-MS/MS.

    Science.gov (United States)

    Yoon, Soo Hwan; Kim, Min-Sun; Kim, Sang Hoon; Park, Hyun Mee; Pyo, Heesoo; Lee, Yong Moon; Lee, Kyung-Tae; Hong, Jongki

    2015-06-15

    Pyrrolizidine alkaloids (PAs) are naturally occurring plant toxins associated with serious hepatic disease in humans and animals. In this study, rapid and sensitive analytical method was developed for the determination of 9 toxic PAs in popularly high lipid foodstuffs by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). PAs in lipid foodstuff were effectively purified by freezing lipid precipitation (FLP) and strong cation exchange (SCX)-solid-phase extraction (SPE). Especially, FLP could easily remove the large amounts of triacylglycerols in the lipid sample extract and effectively combine with SPE cleanup. During the FLP procedure, over 77% of the lipids in the foodstuff extracts were rapidly eliminated without any significant loss of the PAs with over 81% recovery. The elimination efficiency of lipids by FLP was tested with LC-atmospheric chemical ionization (APCI)-MS. For further purification, SCX-SPE cartridge could successfully purify PAs from the remaining interfering substances by the variation pH with 5% NH4OH in methanol. For precise quantification and confirmation of PAs in complicate sample matrices, appropriate transition ions in LC-MS/MS-multiple-ion reaction monitoring (MRM) mode were selected on the basis of MS/MS fragmentation pathways of PAs. The established analytical method was validated in terms of the linearity, limits of detection (LOD), and quantification (LOQ), precision, and accuracy. The method was deemed satisfactory by inter- and intra-day validation and exhibited both high accuracy and precision (relative standard deviation<11.06%). Overall limits of detection and quantitation of PAs were approximately 0.06-0.60ng/mL at a signal-to-noise ratio (S/N) of 3 and were about 0.20-1.99ng/mL at a S/N of 10 for all foodstuffs. The established method was successfully applied for the monitoring of toxic PAs in several types of high lipid foodstuffs such as soybeans, seed oil, milk, and margarine. Copyright

  11. Screening and identification of metabolites of two kinds of main active ingredients and hepatotoxic pyrrolizidine alkaloids in rat after lavage Farfarae Flos extract by UHPLC-Q-TOF-MS mass spectrometry.

    Science.gov (United States)

    Cheng, Xiaoye; Liao, Man; Diao, Xinpeng; Sun, Yupeng; Zhang, Lantong

    2018-02-01

    Farfarae Flos, the dried flower buds of Tussilago farfara L., is usually used to treat coughs, bronchitic and asthmatic conditions as an important traditional Chinese medicine. Tussilagone and methl butyric acid tussilagin ester are seen as representatives of two kinds of active substances. In addition, the pyrrolizidine alkaloids, mainly senkirkine and senecionine, present in the herb can be hepatoxic. In this study, a rapid and sensitive ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry method was successfully applied to identify the metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine. A total of 35, 37, 18 and nine metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine in rats were tentatively identified. Hydrolysis, oxidation, reduction and demethylation were the major metabolic reactions for tussilagone and methl butyric acid tussilagin ester. The main biotransformation routes of senkirkine and senecionine were identified as demethylation, N-methylation, oxidation and reduction. This study is the first reported analysis and characterization of the metabolites and the proposed metabolic pathways might provide further understanding of the metabolic fate of the chemical constituents after oral administration of Farfarae Flos extract in vivo. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Ultra-Performance Liquid Chromatography Hyphenated with Quadrupole-Orbitrap Mass Spectrometry for Simultaneous Determination of Necine-Core-Structure Pyrrolizidine Alkaloids in Crotalaria sessiliflora L. without all Corresponding Standards.

    Science.gov (United States)

    Zhang, Wei; Huai, Wenbei; Zhang, Yi; Shen, Jincan; Tang, Xunyou; Xie, Xiujuan; Wang, Ke; Fan, Huajun

    2017-09-01

    Crotalaria sessiliflora L. is a Chinese traditional herb for treatment of cutaneum carcinoma and cervical carcinoma. In addition to monocrotaline, coexisting pyrrolizidine alkaloids (PAs) also require further quantification for quality control and pharmaceutical uses of the herb. To establish a UPLC-Q-Orbitrap/MS method of simultaneous determination of coexisting PAs with same parent structure for quality control and comprehensive researches of Crotalaria sessiliflora L. PAs in Crotalaria sessiliflora L. were analysed by UPLC-Q-Orbitrap/MS method. Coexisting PAs were identified by mass data of full MS-dd-MS 2 based on the characteristic fragmentation pattern and necine-core structure. Moreover, quantification of PAs was conducted by parallel reaction monitoring (PRM) mode using m/z 138, m/z 120 and m/z 94 from identical necine-core structure as quantitative ions with single monocrotaline standard for accurate calibration. Five PAs, named monocrotaline, retrorsine, senecionine, integerrimine, O-9-angeloylretronecine, were indentified and confirmed. Quantitative ions of m/z 138, m/z 120 and m/z 94 were used for quantification of PAs containing the necine-core structure in Crotalaria sessiliflora L. The results demonstrated that contents, precision and recoveries of the five PAs mentioned earlier were respectively 3.307-30.35 μg/g, 1.1-4.5% and 88.91-92.33% while using m/z 120 as the best quantitative ion. The UPLC-Q-Orbitrap/MS method was established for simultaneous determination of five PAs in Crotalaria sessiliflora L. without all corresponding standards, and was proved that it was simple, convenient and effective for comprehensive quality control and pharmaceutical uses. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Evidence for arginine as the endogenous precursor of necines in heliotropium.

    Science.gov (United States)

    Birecka, H; Birecki, M; Frohlich, M W

    1987-05-01

    In pyrrolizidine alkaloid-bearing Heliotropium angiospermum and H. indicum shoots exposed, in the light, to (14)C-labeled CO(2) for 44 hours, the incorporation of (14)C into 1,2-epoxy-1-hydroxymethylpyrrolizidine and retronecine amounted to 0.23 and 0.15%, respectively, of the total carbon assimilated. Treatment of the shoots with alpha-dl-difluoromethylornithine, the specific ornithine decarboxylase inhibitor, at 1 to 2 millimolar had no effect on (14)C incorporation into the necines. In contrast, alpha-dl-difluoromethylarginine, the specific arginine decarboxylase inhibitor, prevented the incorporation of (14)C into the necines of both species; the inhibitor did not affect the absolute incorporation of (14)C from exogenous [1,4-(14)C] putrescine in either species. Thus, arginine is the only apparent endogenous precursor of the putrescine channeled into pyrrolizidines, at least in these two Heliotropium species that exhibited a relatively much higher in vitro activity of arginine decarboxylase than of ornithine decarboxylase. However, within 28 hours after administration, not only exogenous l-[5-(14)C]arginine, but also exogenous l-[5-(14)C]ornithine exhibited significant incorporation of their label into the necines, incorporation that could be partially prevented by both inhibitors. Neither inhibitor affected the rates of (14)C-labeled CO(2) assimilation, transformation of labeled assimilates into ethanol-insoluble compounds, or the very high degree of conversion of the introduced amino acids into other compounds. Methodology related to alkaloid biosynthetic studies is discussed.

  14. Evidence for Arginine as the Endogenous Precursor of Necines in Heliotropium1

    Science.gov (United States)

    Birecka, Helena; Birecki, Mieczyslaw; Frohlich, M. W.

    1987-01-01

    In pyrrolizidine alkaloid-bearing Heliotropium angiospermum and H. indicum shoots exposed, in the light, to 14C-labeled CO2 for 44 hours, the incorporation of 14C into 1,2-epoxy-1-hydroxymethylpyrrolizidine and retronecine amounted to 0.23 and 0.15%, respectively, of the total carbon assimilated. Treatment of the shoots with α-dl-difluoromethylornithine, the specific ornithine decarboxylase inhibitor, at 1 to 2 millimolar had no effect on 14C incorporation into the necines. In contrast, α-dl-difluoromethylarginine, the specific arginine decarboxylase inhibitor, prevented the incorporation of 14C into the necines of both species; the inhibitor did not affect the absolute incorporation of 14C from exogenous [1,4-14C] putrescine in either species. Thus, arginine is the only apparent endogenous precursor of the putrescine channeled into pyrrolizidines, at least in these two Heliotropium species that exhibited a relatively much higher in vitro activity of arginine decarboxylase than of ornithine decarboxylase. However, within 28 hours after administration, not only exogenous l-[5-14C]arginine, but also exogenous l-[5-14C]ornithine exhibited significant incorporation of their label into the necines, incorporation that could be partially prevented by both inhibitors. Neither inhibitor affected the rates of 14C-labeled CO2 assimilation, transformation of labeled assimilates into ethanol-insoluble compounds, or the very high degree of conversion of the introduced amino acids into other compounds. Methodology related to alkaloid biosynthetic studies is discussed. PMID:16665402

  15. Pyrrolizidine alkaloids in food: a spectrum of potential health consequences.

    Science.gov (United States)

    Edgar, J A; Colegate, S M; Boppré, M; Molyneux, R J

    2011-03-01

    Contamination of grain with 1,2-dehydropyrrolizidine ester alkaloids (dehydroPAs) and their N-oxides is responsible for large incidents of acute and subacute food poisoning, with high morbidity and mortality, in Africa and in central and south Asia. Herbal medicines and teas containing dehydroPAs have also caused fatalities in both developed and developing countries. There is now increasing recognition that some staple and widely consumed foods are sometimes contaminated by dehydroPAs and their N-oxides at levels that, while insufficient to cause acute poisoning, greatly exceed maximum tolerable daily intakes and/or maximum levels determined by a number of independent risk assessment authorities. This suggests that there may have been cases of disease in the past not recognised as resulting from dietary exposure to dehydroPAs. A review of the literature shows that there are a number of reports of liver disease where either exposure to dehydroPAs was suspected but no source was identified or a dehydroPA-aetiology was not considered but the symptoms and pathology suggests their involvement. DehydroPAs also cause progressive, chronic diseases such as cancer and pulmonary arterial hypertension but proof of their involvement in human cases of these chronic diseases, including sources of exposure to dehydroPAs, has generally been lacking. Growing recognition of hazardous levels of dehydroPAs in a range of common foods suggests that physicians and clinicians need to be alert to the possibility that these contaminants may, in some cases, be a possible cause of chronic diseases such as cirrhosis, pulmonary hypertension and cancer in humans.

  16. Senecio grisebachii Baker: Pyrrolizidine alkaloids and experimental poisoning in calves

    Science.gov (United States)

    The main objectives of this study were to determine the 1,2-dehydropyrrolizidine alkaloid (DHPA) content in Senecio grisebachii Baker (Compositae), to experimentally demonstrate its toxicity in calves and to describe the main clinical and pathological findings of this toxicity. S. grisebachii plants...

  17. Pyrrolizidine alkaloids in food: A spectrum of potential health consequences

    Science.gov (United States)

    Contamination of grain with 1,2-dehydropyrrolizidine ester alkaloids (dehydroPAs) and their N-oxides is responsible for large incidents of acute and subacute food poisoning, with high morbidity and mortality, in Africa and in central and south Asia. Herbal medicines and teas containing dehydroPAs ha...

  18. Pyrrolizidine Alkaloids: Testing for Toxic Constituents of Comfrey.

    Science.gov (United States)

    Vollmer, John J.; And Others

    1987-01-01

    Discusses the possibilities of toxins present in medicinal herbs. Describes an experiment in which toxic constituents can be selectively detected by thin-layer chromatography and NMR spectroscopy. (TW)

  19. Pyrrolizidine alkaloid toxicity in livestock: A paradigm for human poisoning

    Science.gov (United States)

    Livestock poisoning, primarily liver damage, caused by consumption of plants containing 1,2-dehydropyrro-lizidine ester alkaloids (dehydroPAs), and the corresponding N-oxides, is a relatively common occurrence worldwide. Because of the economic impact, extensive investigations...

  20. Pyrrolizidine Alkaloids from Ligularia sibirica Cass. and Tephroseris integrifolia L.

    OpenAIRE

    Wiedenfeld, Helmut; Narantuya, S.; Dumaa, M.; Monhbaatar, A.

    2003-01-01

    Tussilagine, isotussilagine, neo-tussilagine and neo-isotussilagine were isolated from Ligularia sibirica whereas Tephroseris integrifolia was found to contain senkirkine, otosenine, hydroxysenkirkine and 07-angeloylheliotridine. The structures were determined using spectroscopical methods (GC-MS

  1. Pyrrolizidine Alkaloids: Potential Role in the Etiology of Cancers, Pulmonary Hypertension, Congenital Anomalies, and Liver Disease.

    Science.gov (United States)

    Edgar, John A; Molyneux, Russell J; Colegate, Steven M

    2015-01-20

    Large outbreaks of acute food-related poisoning, characterized by hepatic sinusoidal obstruction syndrome, hemorrhagic necrosis, and rapid liver failure, occur on a regular basis in some countries. They are caused by 1,2-dehydropyrrolizidine alkaloids contaminating locally grown grain. Similar acute poisoning can also result from deliberate or accidental consumption of 1,2-dehydropyrrolizidine alkaloid-containing herbal medicines, teas, and spices. In recent years, it has been confirmed that there is also significant, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids in many countries due to consumption of common foods such as honey, milk, eggs, salads, and meat. The level of 1,2-dehydropyrrolizidine alkaloids in these foods is generally too low and too intermittent to cause acute toxicity. However, these alkaloids are genotoxic and can cause slowly developing chronic diseases such as pulmonary arterial hypertension, cancers, cirrhosis, and congenital anomalies, conditions unlikely to be easily linked with dietary exposure to 1,2-dehydropyrrolizidine alkaloids, especially if clinicians are unaware that such dietary exposure is occurring. This Perspective provides a comprehensive review of the acute and chronic toxicity of 1,2-dehydropyrrolizidine alkaloids and their potential to initiate certain chronic diseases, and suggests some associative considerations or indicators to assist in recognizing specific cases of diseases that may have resulted from dietary exposure to these hazardous natural substances. If it can be established that low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids is a significant cause of some of these costly and debilitating diseases, then this should lead to initiatives to reduce the level of these alkaloids in the food chain.

  2. Natural and experimental poisoning of goats with the pyrrolizidine alkaloid-producing plant Crotalaria retusa L

    Science.gov (United States)

    Crotalaria retusa L. (rattleweed), estimated to contain about 4.96% monocrotaline (MCT) in the seed, was associated with a natural poisoning outbreak in goats. The poisoning was experimentally reproduced by the administration of C. retusa seeds containing approximately 4.49% of MCT. Thus, 1 of 3 goa...

  3. CHARACTERIZATION OF RUMEN BACTERIAL PYRROLIZIDINE ALKALOID BIOTRANSFORMATION IN RUMINANTS OF VARIOUS SPECIES. (R825689C006)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. Pyrrolizidine alkaloids: Potential role in the etiology of cancers, pulmonary hypertension, congenital anomalies, and liver disease

    Science.gov (United States)

    Large outbreaks of acute food-related poisoning, characterized by hepatic sinusoidal obstruction syndrome, hemorrhagic necrosis, and rapid liver failure, occur on a regular basis in some countries. They are caused by 1,2-dehydropyrrolizidine alkaloids contaminating locally grown grain. Similar acute...

  5. Changes in plant defense chemistry (pyrrolizidine alkaloids) revealed through high-resolution spectroscopy

    NARCIS (Netherlands)

    Carvalho, S.; Macel, M.; Schlerf, M.; Eghbali Moghaddam, F.; Mulder, P.P.J.; Skidmore, A.K.; Van der Putten, W.H.

    2013-01-01

    Plant toxic biochemicals play an important role in defense against natural enemies and often are toxic to humans and livestock. Hyperspectral reflectance is an established method for primary chemical detection and could be further used to determine plant toxicity in the field. In order to make a

  6. Persistence of echimidine, a hepatotoxic pyrrolizidine alkaloid, from honey into mead

    Science.gov (United States)

    Honey produced by bees foraging on Echium plantagineum is known to contain dehydropyrrolizidine alkaloids characteristic of the plant. Following a prolific growth of E. plantagineum in the wake of Australian bushfires, two samples of mead, a fermented drink made from honey, and the honey used to pre...

  7. A survey of Senecio spp. affecting livestock in Uruguay and their associated pyrrolizidine alkaloid content

    Science.gov (United States)

    In Eastern Uruguay there has been a significant increase of seneciosis in grazing livestock with most affected localities related to counties neighboring the Brazilian border. A survey in 28 farms associated with poisoning outbreaks in grazing cattle in Eastern Uruguay was carried out. Fifty populat...

  8. Pyrrolizidine alkaloids pyrrolams A-D: A survey of synthetic efforts, biological activity, and studies on their stability

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Tilve, S.G.

    in the presence of HMDS (10 equiv.) and TMSCl (cat.) under refluxing condition. Finally, the installation of the double bond using selenyl chemistry (addition/elimination strategy) provided (R)-pyrrolam A 1 (Scheme 3). 7 stepsfromL-proline 12% overall yield N...) PCC/NaOAc, CH 2 Cl 2 , Ph 3 P=CHCOOEt, 7 h, rt, 76%; (c) i) H 2 , 10%Pd/C, EtOH, 12 h; ii) NaOEt (cat.), EtOH, heat, 6 h, 67% (2 steps); (d) LDA, THF, PhSeCl, -78 o C; (e) H 2 O 2 , NaOH, THF, 0 o C, 30 min, 61% (2 steps). Next approach from our...

  9. EFFECTS OF ANTIBACTERIAL AGENTS ON IN VITRO OVINE RUMINAL BIODEGRADATION OF THE HEPATOTOXIC PYRROLIZIDINE ALKALOID, JACOBINE. (R825689C006)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Poisonous plants contaminating edible ones and toxic substances in plant foods. Part 3. Pyrrolizidine alkaloids from Heliotropium digynum Forssk. (= H. luteum, Poir.).

    Science.gov (United States)

    Hammouda, F M; Rizk, A M; Ismail, S I; Atteya, S Z; Ghaleb, H A; Madkour, M K; Pohland, A E; Wood, G

    1984-10-01

    Investigation of the alkaloidal constituents of Heliotropium digynum resulted in the isolation of four alkaloids viz. heliotrine, europine, lasiocarpine and 7-angelylheliotrine. Moreover, HPLC and GLC showed the probable presence of heliotridine and some other unidentified minor constituents. A summary of the pharmacotoxicity and biological activity of the ethanolic extract, total alkaloids with special reference to heliotrine is presented.

  11. The comparative toxicity of a reduced, crude comfrey (Symphytum officinale) alkaloid extract and the pure, comfrey-derived pyrrolizidine alkaloids, lycopsamine and intermedine in chicks (Gallus gallus domesticus).

    Science.gov (United States)

    Brown, Ammon W; Stegelmeier, Bryan L; Colegate, Steven M; Gardner, Dale R; Panter, Kip E; Knoppel, Edward L; Hall, Jeffery O

    2016-05-01

    Comfrey (Symphytum officinale), a commonly used herb, contains dehydropyrrolizidine alkaloids that, as a group of bioactive metabolites, are potentially hepatotoxic, pneumotoxic, genotoxic and carcinogenic. Consequently, regulatory agencies and international health organizations have recommended comfrey be used for external use only. However, in many locations comfrey continues to be ingested as a tisane or as a leafy vegetable. The objective of this work was to compare the toxicity of a crude, reduced comfrey alkaloid extract to purified lycopsamine and intermedine that are major constituents of S. officinale. Male, California White chicks were orally exposed to daily doses of 0.04, 0.13, 0.26, 0.52 and 1.04 mmol lycopsamine, intermedine or reduced comfrey extract per kg bodyweight (BW) for 10 days. After another 7 days chicks were euthanized. Based on clinical signs of poisoning, serum biochemistry, and histopathological analysis the reduced comfrey extract was more toxic than lycopsamine and intermedine. This work suggests a greater than additive effect of the individual alkaloids and/or a more potent toxicity of the acetylated derivatives in the reduced comfrey extract. It also suggests that safety recommendations based on purified compounds may underestimate the potential toxicity of comfrey. Published 2015. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  12. One-azabicyclic compounds. 22. Stereochemistry and /sup 13/C NMR spectra of salts of pyrrolizidine and its homologs with protonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, O.A.; Skvortsov, I.M.

    1986-06-01

    /sup 13/C NMR spectra were obtained for pyrrolizidinium salts and their homologs and their signals were assigned. With the exception of highly strained cis-3,8-H-cis-5,8-H-3,5-dimethylpyrrolizidine (VI), all the bases studied upon their direct mixing with CF/sub 3/CO/sub 2/H form salts only with cis-fused rings in the cation. Mixtures of salts with cis- and trans-fused pyrrolizidinium fragments are formed upon the reaction of cis-3,8-H-methyl- (III) and cis-3,8-H-cis-5,8-H-3,5-dimethylpyrrolizidine (VI) under conditions close to those for kinetically-controlled amine protonation. The /sup 13/C NMR spectra of the isomeric pyrrolizidinium salts obtained as a result of the absorption of base VI by sulfuric acid were used to evaluate the conformational equilibrium in the starting compound VI. The /sup 13/C NMR chemical shifts of unsubstituted trans-fused pyrrolizidinium salts were predicted.

  13. METABOLISM OF TOXIC PYRROLIZIDINE ALKALOIDS FROM TANSY RAGWORT, SENECIO JACOBAEA, IN BOVINE RUMINAL FLUID UNDER ANAEROBIC CONDITIONS. (R825689C006)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Carcinogenic effects of riddelliine on P53 knockout mice

    Science.gov (United States)

    Riddelliine is a pyrrolizidine alkaloid found in Senecio riddellii and several other Senecio spp. Pyrrolizidine alkaloids are a group of over 600 toxins, found in more than 6,000 plants worldwide. As a result they are likely the most economically significant plant toxin in the world, affecting a wi...

  15. Simultaneous determination of sesquiterpenes and pyrrolizidine alkaloids from the rhizomes of petasites hybridus (L.) G.M. et Sch. and dietary supplements using UPLC-UV and LC-TOF methods

    Science.gov (United States)

    Common Butterbur (Petasites hybridus) is a herbaceous perennial plant in the family Asteraceae, native to Europe and northern Asia. Petasites hybridus exists in two chemo-varieties: those containing petasins and those with furano-petasins which have been reported to be effective in reducing the occ...

  16. Environ: E00764 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available E00764 Echinacea Medicinal herb Caffeic acid derivatives, Echinacoside [CPD:C10450... Isobutyramide, Essential ... oil, Pyrrolizidine alkaloid Echinacea angustifolia [TAX:308558], Echinacea pallida [TAX:53749], Echina...cea purpurea [TAX:53751] ... Asteraceae Echinacea aerial part a

  17. A Simple Tall Fescue Seed Extraction and Partial Purification of Ergovaline

    Science.gov (United States)

    There are several substances present in the tall fescue/endophyte association (Lolium arundinaceum /Neotyphodium coenophialum) that have biological activity. These include the pyrrolizidine and ergot alkaloids plus peramine. Of these compounds only the ergot alkaloids have significant mammalian to...

  18. Alcalóides pirrolizidínicos em espécies do gênero Senecio

    Directory of Open Access Journals (Sweden)

    Silva Chana de Medeiros da

    2006-01-01

    Full Text Available Senecio species contain a large variety of secondary metabolites and many of these plants afford pyrrolizidine alkaloids. This paper is a review of the literature, describing 62 pyrrolizidine alkaloids already isolated in 62 of more than 2000 species of Senecio, distributed worldwide. The structure-activity relationships involving their toxicity are also discussed, since some Senecio species used for medicinal purposes are responsible for causing serious adverse effects.

  19. Alcalóides pirrolizidínicos em espécies do gênero Senecio

    Directory of Open Access Journals (Sweden)

    Chana de Medeiros da Silva

    2006-10-01

    Full Text Available Senecio species contain a large variety of secondary metabolites and many of these plants afford pyrrolizidine alkaloids. This paper is a review of the literature, describing 62 pyrrolizidine alkaloids already isolated in 62 of more than 2000 species of Senecio, distributed worldwide. The structure-activity relationships involving their toxicity are also discussed, since some Senecio species used for medicinal purposes are responsible for causing serious adverse effects.

  20. (1′S-4-(3,4-Dichlorophenyl-1′-(3,5-dimethoxyphenyl-1,2,3,4-tetrahydronaphthalene-2-spiro-2′-pyrrolizidine-3′-spiro-3′′-indoline-1,2′′-dione

    Directory of Open Access Journals (Sweden)

    S. Sriman Narayanan

    2008-10-01

    Full Text Available In the title compound C37H32Cl2N2O4, the unsubstituted pyrrolidine ring shows a twist conformation whereas the substituted pyrrolidine ring shows an envelope conformation. The dimethoxy benzene ring is perpendicular to the tetralone ring, making a dihedral angle of 89.94 (5°. Molecules are linked into centrosymmetric dimers by N—H...O hydrogen bonds and the crystal structure is stabilized by C—H...π interactions and C—H...O hydrogen bonds. One methoxy group is disordered over two positions with the site occupancy factors of 0.84 (2 and 0.16 (2.

  1. (1S,1′S,2′R,4a'S,9a'S,9b'R-1′-Acetyloxy-2,4′-dioxo-2′,4′,4a',7′,8′,9′,9a',9b'-octahydro-1′H,2H-spiro[acenaphthylene-1,5′-pyrano[4,3-a]pyrrolizin]-2′-ylmethyl acetate

    Directory of Open Access Journals (Sweden)

    S. Santhiya

    2013-11-01

    Full Text Available In the title compound C26H25NO7, the mean plane through the lactone-substituted ring of the pyrrolizidine moiety forms dihedral angles of 78.46 (6 and 58.28 (8° with the acenaphthylene moiety and the sugar based-lactone ring, respectively. The sum of the angles at the the N atom of the pyrrolizidine ring (335.0° is in accordance with sp3 hybridization. Some atoms of the acetate group are disordered and were refined using a split model [occupancy ratio 0.673 (10:0.327 (10].

  2. 78 FR 13313 - Codex Alimentarius Commission: Meeting of the Codex Committee on Contaminants in Foods

    Science.gov (United States)

    2013-02-27

    ... Practice for Weed Control to Prevent and Reduce Pyrrolizidine Alkaloid Contamination in Food and Feed... DEPARTMENT OF AGRICULTURE Food Safety and Inspection Service [Docket No. FSIS-2013-0011] Codex Alimentarius Commission: Meeting of the Codex Committee on Contaminants in Foods AGENCY: Office of the Under...

  3. Butterfly extracts show antibacterial activity

    Science.gov (United States)

    Extracts of several British butterfly species were tested and shown to possess powerful bactericidal activity against the gram-positive bacteria Staphylococcus aureus (S. aureus). The active compounds were identified as hydroxylated pyrrolizidine alkaloids (PAs) related to loline with nitrogen at C-...

  4. Alkaloids in the human food chain - Natural occurrence and possible adverse effects

    NARCIS (Netherlands)

    Koleva, I.; Beek, van T.A.; Soffers, A.E.M.F.; Dusemund, B.; Rietjens, I.

    2012-01-01

    Alkaloid-containing plants are an intrinsic part of the regular Western diet. The present paper summarizes the occurrence of alkaloids in the food chain, their mode of action and possible adverse effects including a safety assessment. Pyrrolizidine alkaloids are a reason for concern because of their

  5. Dehydropyrrolizidine alkaloid toxicity, cytotoxicity, and carcinogenicity

    Science.gov (United States)

    Dehyro-pyrrolizidine alkaloid (PA)-containing plants compose about 5% of the world’s flowering plants and they commonly poison livestock, wildlife and humans. Previous work has produced considerable understanding of PA toxicity, species susceptibility, conditions and routes of exposure, toxin metab...

  6. Buffalo calves intoxicated with Ageratum houstonianum mill

    Science.gov (United States)

    Ageratum houstonianum Mill, a noxious weed has been reported to contain pyrrolizidine alkaloids, saponins, triterpens and coumarin. It is an invasive weed that is commonly found in the pasturelands of tropical and subtropical regions. The objectives of this work were to verify the toxicity of A. ho...

  7. Browse Title Index

    African Journals Online (AJOL)

    Items 251 - 300 of 316 ... Vol 11 (2007), Pyrrolizidine Alkaloids From Cynoglossum furcatam, Abstract. S Ravi, T Ravikumar, A J Lakshmanan. Vol 7 (2003), QUAFRINOIC ACIDS: TWO NEW TRITERPENIODS FROM QUASSIA AFRICANA STEM BARK, Abstract. EO Ajaiyeoba, HC Krebs. Vol 13 (2009), Quality control of ...

  8. An in vitro comparison of the cytotoxic potential of selected dehydropyrrolizidine alkaloids and some N-oxides

    Science.gov (United States)

    Plants containing dehydro-pyrrolizidine alkaloids (PAs) can be found throughout the world and their invasive, weedy nature often results in PA contamination of feed and food. Other PA-containing plants may be purposefully or accidentally included in food or herbal preparations. Poisoning can be acu...

  9. Author Details

    African Journals Online (AJOL)

    Lakshmanan, A J. Vol 11 (2007) - Articles Pyrrolizidine Alkaloids From Cynoglossum furcatam. Abstract. ISSN: 1118-6267. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News.

  10. 32 East and Central African Journal of Pharmaceutical Sciences Vol ...

    African Journals Online (AJOL)

    admin

    pyrrolizidine alkaloids, nitrosamines and tannins. Nitrites commonly distributed in plants can easily be converted to nitrosamines. These substances have been found in beers and other plant derived beverages. Some unidentified chemicals in smoke from firewood commonly used by rural people are implicated in.

  11. 2018-02-19T13:29:16Z https://www.ajol.info/index.php/all/oai oai:ojs ...

    African Journals Online (AJOL)

    19T13:29:16Z wajpdr:ART Acute and Subchronic Oral Toxicity of Aqueous Extract of Ageratum Conyzoides Linn Nyunaï, N Abdennebi, EH Bickii, J Manguelle-Dicoum, AM Njifutié, N Ageratum conyzoides, aqueous extract, pyrrolizidine alkaloids; ...

  12. ALKALOIDAL COMPOSITION AND TOXICITY STUDIES OF THREE ...

    African Journals Online (AJOL)

    Mattock's test for unsaturated pyrrolizidine alkaloids (hepatotoxic) revealed that only C. retusa contained these alkaloids amongst the three species. This indicated that this is a potentially toxic specie. The alkaloids of C. retusa were toxic to albino (Wistar) rats. Marked microscopic lesions were found, principally in the liver.

  13. Isolation of symlandine from the roots of common comfrey (Symphytum officinale) using countercurrent chromatography.

    Science.gov (United States)

    Kim, N C; Oberlies, N H; Brine, D R; Handy, R W; Wani, M C; Wall, M E

    2001-02-01

    Three pyrrolizidine alkaloids, symlandine, symphytine, and echimidine (1-3), were isolated from the roots of Symphytum officinale using a one-step countercurrent chromatography procedure. The structures of 1-3 were confirmed by several spectroscopic techniques including 2D NMR methods. This is the first description of the separation of symlandine (1) from its stereoisomer, symphytine (2).

  14. Plant regeneration through organogenesis and shoot proliferation in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Effect of 2,4-D, NAA and BA (in MS medium) on Trichodesma indicum callus induction and shoot .... Structure/activity relationships of the fenotoxic potentcies of sixteen pyrrolizidine ... In vitro propagation of Cordia verbe- ...

  15. Dgroup: DG00298 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available hloride (JP17/USP) ... Neuropsychiatric agent ... DG02030 ... Anesthetics ... DG01675 ... Local anesthetic ... DG01674 ... Esterified local anestheti...c ... DG01675 ... Local anesthetic ... DG01674 ... Esterified local anesthetic ATC code: C05AD05 N01BA02 S01HA05 Anesth...etic (local) Ester-type SCN1A [HSA:6323] [KO:K04833] SCN

  16. Dgroup: DG00296 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ine hydrochloride (JP17/USP) ... Neuropsychiatric agent ... DG02030 ... Anesthetics ... DG01675 ... Local anesthetic ... ...DG01674 ... Esterified local anesthetic ... DG01675 ... Local anesthetic ... DG01674 ... Esterified local anesthetic ATC c...ode: C05AD02 D04AB06 N01BA03 S01HA03 Anesthetic (local) Ester-type SCN1A [HSA:632

  17. Possibilities and limitations of sup 1 H and sup 13 C nuclear magnetic resonance spectroscopy for the identification and the quantitative determination of some naturally occurring carcinogenic risk factors. [Senecio vulgaris; Senecio vernalis; Senecio jacobaea; Euphorbia ingens

    Energy Technology Data Exchange (ETDEWEB)

    Pieters, L.

    1988-01-01

    The aim of this work was to develop a phytochemical screening method for some selected carcinogenic or tumor-promoting principles in higher plants. The pyrrolizidine alkaloids from some Senecio species (Compositae or Asteraceae), and the diterpene ester from Croton tiglium L. and Euphorbia ingens E. Mey (Euphorbiaceae) were chosen as representatives of both groups. The possibilities and limitations of {sup 1}H and {sup 13}C nuclear magnetic resonance spectroscopy ({sup 1}H and {sup 13}C NMR) for the analysis of mixtures of carcinogenic pyrrolizidine alkaloids were compared with high performance liquid chromatography, and gas chromatography with high performance liquid chromatography, and gas chromatography was well as gas chromatography - mass spectrometry. Senecio vulgaris L., Senecio vernalis Waldst. and Kit. and Senecio jacobaea L. were investigated.

  18. Absolute configuration, stability, and interconversion of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine valine adducts and their phenylthiohydantoin derivatives

    Directory of Open Access Journals (Sweden)

    Xiao Jiang

    2015-06-01

    Full Text Available Pyrrolizidine alkaloid-containing plants are widespread in the world and probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids require metabolic activation to form dehydropyrrolizidine alkaloids that bind to cellular proteins and DNA leading to hepatotoxicity, genotoxicity, and tumorigenicity. At present, it is not clear how dehydropyrrolizidine alkaloids bind to cellular amino acids and proteins to induced toxicity. We previously reported that reaction of dehydromonocrotaline with valine generated four highly unstable 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP-derived valine (DHP-valine adducts that upon reaction with phenyl isothiocyanate (PITC formed four DHP-valine-PITC adduct isomers. In this study, we report the absolute configuration and stability of DHP-valine and DHP-valine-PITC adducts, and the mechanism of interconversion between DHP-valine-PITC adducts.

  19. Crystal structure of 2′-[(2′,4′-difluorobiphenyl-4-ylcarbonyl]-1′-phenyl-1′,2′,5′,6′,7′,7a'-hexahydrospiro[indole-3,3′-pyrrolizin]-2(1H-one

    Directory of Open Access Journals (Sweden)

    M. Fathimunnisa

    2015-08-01

    Full Text Available In the title pyrrolizidine derivative, C33H26F2N2O2, both pyrrolidine rings of the pyrrolizidine moiety adopt an envelope conformation. The difluorophenyl group is oriented at an angle of 54.3 (1° with respect to the oxindole moiety. The crystal packing features an N—H...O hydrogen bond, which forms an R22(8 motif, and a C—H...O interaction, which generates a C(8 chain along [010]. In addition, this chain structure is stabilized by C—H...π interactions. In one of the pyrrolidine rings, the methylene group forming the flap of an envelope and the H atoms of the adjacent methylene groups are disordered over two sets of sites, with site-occupancy factors of 0.571 (4 and 0.429 (4

  20. Comfrey: assessing the low-dose health risk.

    Science.gov (United States)

    Abbott, P J

    The regular use of comfrey as part of the diet or for medicinal purposes may be a potential health risk as a result of the presence of naturally-occurring pyrrolizidine alkaloids. The majority of these alkaloids are hepatotoxic in both animals and humans, and some have been shown to induce tumours in experimental animals. In this article, the toxic properties of pyrrolizidine alkaloids are reviewed briefly, with particular reference to their presence in comfrey. The acute and long-term health risks at the normally-low levels of comfrey consumption are evaluated and discussed. On the basis of the data that are available currently, the small but significant long-term risk that is associated with the consumption of comfrey justifies the need to limit its intake. This is being achieved by controls under various state Poisons Acts, but also requires further education on the potential dangers of naturally-occurring chemicals of plant origin.

  1. Studium interakce cytochromů P450 s potravními karcinogeny

    OpenAIRE

    Brabencová, Eliška

    2011-01-01

    Humans are exposed to various carcinogens during their life. One of the main sources of carcinogens is a human diet which plays an important role in the cancer development. This bachelor thesis deals with carcinogens that are formed during a technological food processing or cooking of food - polycyclic aromatic hydrocarbons, heterocyclic amines and nitrosamines, then carcinogens produced by fungi - mycotoxins, and carcinogens that are produced by plants - safrole, estragole and pyrrolizidine ...

  2. The chemistry of antipredator defense by secondary compounds in neotropical lepidoptera: facts, perspectives and caveats

    OpenAIRE

    Trigo, José R.

    2000-01-01

    Chemical defense against predation in butterflies and moths has been studied since nineteenth century. A classical example is that of the larvae of the monarch butterfly Danaus plexippus, which feed on leaves of Asclepias curassavica (Asclepiadaceae), sequestering cardenolides. The adults are protected against predation by birds. Several other substances may be involved in chemical defense, such as iridoid glycosides, cyanogenic glycosides, glucosinolates, pyrrolizidine and tropane alkaloids,...

  3. 2′-Hydroxymethyl-1′-(4-methylphenyl-2′-nitro-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one

    Directory of Open Access Journals (Sweden)

    S. Sathya

    2012-02-01

    Full Text Available In the title compound, C22H23N3O4, the tolyl ring is almost perpendicular [83.86 (7°] to the best plane through the eight atoms of the pyrrolizidine ring system. The molecular conformation is stabilized by an intramolecular O—H...O hydrogen bond. The crystal packing features inversion dimers with R22(8 motifs linked by pairs of N—H...O hydrogen bonds.

  4. Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the arctiids (lepidoptera.

    Directory of Open Access Journals (Sweden)

    Sven Sehlmeyer

    2010-05-01

    Full Text Available Insects experience a wide array of chemical pressures from plant allelochemicals and pesticides and have developed several effective counterstrategies to cope with such toxins. Among these, cytochrome P450 monooxygenases are crucial in plant-insect interactions. Flavin-dependent monooxygenases (FMOs seem not to play a central role in xenobiotic detoxification in insects, in contrast to mammals. However, the previously identified senecionine N-oxygenase of the arctiid moth Tyria jacobaeae (Lepidoptera indicates that FMOs have been recruited during the adaptation of this insect to plants that accumulate toxic pyrrolizidine alkaloids. Identification of related FMO-like sequences of various arctiids and other Lepidoptera and their combination with expressed sequence tag (EST data and sequences emerging from the Bombyx mori genome project show that FMOs in Lepidoptera form a gene family with three members (FMO1 to FMO3. Phylogenetic analyses suggest that FMO3 is only distantly related to lepidopteran FMO1 and FMO2 that originated from a more recent gene duplication event. Within the FMO1 gene cluster, an additional gene duplication early in the arctiid lineage provided the basis for the evolution of the highly specific biochemical, physiological, and behavioral adaptations of these butterflies to pyrrolizidine-alkaloid-producing plants. The genes encoding pyrrolizidine-alkaloid-N-oxygenizing enzymes (PNOs are transcribed in the fat body and the head of the larvae. An N-terminal signal peptide mediates the transport of the soluble proteins into the hemolymph where PNOs efficiently convert pro-toxic pyrrolizidine alkaloids into their non-toxic N-oxide derivatives. Heterologous expression of a PNO of the generalist arctiid Grammia geneura produced an N-oxygenizing enzyme that shows noticeably expanded substrate specificity compared with the related enzyme of the specialist Tyria jacobaeae. The data about the evolution of FMOs within lepidopteran insects

  5. 2′-Methyl-2′-nitro-1′-phenyl-2′,3′,5′,6′,7′,7a'-hexahydrospiro[indoline-3,3′-1′H-pyrrolizin]-2-one

    Directory of Open Access Journals (Sweden)

    Yaghoub Sarrafi

    2008-08-01

    Full Text Available The title compound, C21H21N3O3, was synthesized by a multi-component 1,3-dipolar cycloaddition of azomethine ylide, derived from isatin and proline by a decarboxylative route, and (E-1-phenyl-2-nitropropene. In the molecule, the spiro junction links a planar oxindole ring and a pyrrolidine ring in an envelope conformation. The molecular packing is stabilized by an intermolecular N—H...N interaction of the oxindole and pyrrolizidine rings.

  6. Dietary alkaloids and the development of androconial organs in Estigmene acrea

    Directory of Open Access Journals (Sweden)

    Jason W. Davenport

    2003-01-01

    Full Text Available Male salt marsh moths, Estigmene acrea (Lepidoptera: Arctiidae, possess inflatable androconial organs called coremata. Prior to mating males form aggregations and inflate their coremata en masse. The communal display attracts additional males and females for the purpose of mating. The coremata are known to carry the plant-derived dihydropyrrolizine, hydroxydanaidal. This pheromonal substance is derived from secondary plant chemicals called pyrrolizidine alkaloids found in the larval diet.

  7. Comparison of gene expression profiles altered by comfrey and riddelliine in rat liver

    OpenAIRE

    Fuscoe James; Dial Stacey; Mei Nan; Guo Lei; Chen Tao

    2007-01-01

    Abstract Background Comfrey (Symphytum officinale) is a perennial plant and has been consumed by humans as a vegetable, a tea and an herbal medicine for more than 2000 years. It, however, is hepatotoxic and carcinogenic in experimental animals and hepatotoxic in humans. Pyrrolizidine alkaloids (PAs) exist in many plants and many of them cause liver toxicity and/or cancer in humans and experimental animals. In our previous study, we found that the mutagenicity of comfrey was associated with th...

  8. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale)

    OpenAIRE

    Mei Nan; Guo Lei; Zhang Lu; Shi Leming; Sun Yongming; Fung Chris; Moland Carrie L; Dial Stacey L; Fuscoe James C; Chen Tao

    2006-01-01

    Abstract Background Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. Results In this study, we identified comfrey...

  9. Mutagenicity of comfrey (Symphytum Officinale) in rat liver

    OpenAIRE

    Mei, N; Guo, L; Fu, P P; Heflich, R H; Chen, T

    2005-01-01

    Comfrey is a rat liver toxin and carcinogen that has been used as a vegetable and herbal remedy by humans. In order to evaluate the mechanisms underlying its carcinogenicity, we examined the mutagenicity of comfrey in the transgenic Big Blue rat model. Our results indicate that comfrey is mutagenic in rat liver and the types of mutations induced by comfrey suggest that its tumorigenicity results from the genotoxicity of pyrrolizidine alkaloids in the plant.

  10. Mutagenicity of comfrey (Symphytum Officinale) in rat liver.

    Science.gov (United States)

    Mei, N; Guo, L; Fu, P P; Heflich, R H; Chen, T

    2005-03-14

    Comfrey is a rat liver toxin and carcinogen that has been used as a vegetable and herbal remedy by humans. In order to evaluate the mechanisms underlying its carcinogenicity, we examined the mutagenicity of comfrey in the transgenic Big Blue rat model. Our results indicate that comfrey is mutagenic in rat liver and the types of mutations induced by comfrey suggest that its tumorigenicity results from the genotoxicity of pyrrolizidine alkaloids in the plant.

  11. Activities of arginine and ornithine decarboxylases in various plant species.

    Science.gov (United States)

    Birecka, H; Bitonti, A J; McCann, P P

    1985-10-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to V(max), ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. alpha-Difluoromethylornithine and alpha-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  12. Activities of Arginine and Ornithine Decarboxylases in Various Plant Species 1

    Science.gov (United States)

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species. No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed. In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum. PMID:16664442

  13. [Development of technology for the substance of poly[3-(3,4-dihydroxyphenyl) glyceric acid] from Symphytum asperum].

    Science.gov (United States)

    Gokadze, S I; Barbakadze, V V; Gogilashvili, L M; Amiranashvili, L Sh; Bakuridze, A Dzh

    2013-05-01

    Comfrey (Symphytum L.) is used to treat bone fractures, tendon injuries, ulcer lesions of gastrointestinal tract. It promotes wound healing, accelerates exudates resorption in lungs and reduces joints' inflammation. In Georgian folk medicine, herbal remedies from comfrey are used to accelerate regeneration processes. Comfrey contains hepatotoxic and carcinogenic pyrrolizidine alkaloids, besides the main active ingredient is poly [3 - (3,4-dihydroxyphenyl) glyceric acid] (PDPGA). The aim of present work was to develop a technology for the substance - poly [3-(3,4dihydroxyphenyl) glyceric acid] (PDPGA) from comfrey stems, free of toxic pyrrolizidine alkaloids. During the investigation the optimal conditions for extraction and purification have been established: on the first stage pyrrolizidine alkaloids were removed from plant material by supercritical extraction; then the crude polysaccharides' fraction was obtained by water extraction (raw materials/extragent ratio was 1:15 at 90oC, the procedure was carried twice for 60 and 90 minutes). The isolation of the final product - PDPGA from crude polysaccharides' fraction was carried out by ultrafiltration on membrane filters. Based on the results of the investigation the technological scheme for the substance has been developed.

  14. Annihilation Prediction for Lanchester-Type Models of Modern Warfare

    OpenAIRE

    Brown, G.G.; Taylor, J.

    1983-01-01

    Operations Research, 31, p.752. This paper introduces important new functions for analytic solution of Launch-ester-type equations of modern warfare for combat between two homogeneous forces modeled by power attrtition-rate coefficients with "no offset". Tabulations of these Lanchester-Clifford-Schlatii (or LCS) functions allow one to study this particular variable-coefficient model almost as easily and thoroughly as Lanchester's classic constant-coefficient one. LCS functions allow one ...

  15. HELIOTROPIUM EUROPAEUM TOHUMLARINDA GC-MS İLE PİROLİZİDİN ALKALOİTLERİNİN TAYİNİ

    OpenAIRE

    TOSUN, Fatma; TAMER, Uğur

    2004-01-01

    In the current research, alkaloid extract obtained from the seeds of' Heliotropium europaeum L. collected from Köprübaşı (Diyarbakır, Turkey) was analysed by using GC-MS method. The total pyrrolizidine alkaloid and tertiary base content of the seeds of Heliotropium europaeum were found to be 0.28 % and 0.02 % respectively. Higher percentage of alkaloids were present as N-oxides (92.86 % of the alkaloids). Alkaloids found in the tertiary base fraction and total alkaloid fraction were iden...

  16. Pulmonary veno-occlusive disease in a female gardener.

    Science.gov (United States)

    Rodríguez Rodríguez, Paula; Pedraza Serrano, Fernando; Morán Caicedo, Liliana Patricia; Rodríguez de Guzmán, Maria Carmen; Cebollero Presmanes, María; de Miguel Díez, Javier

    2014-01-01

    Pulmonary veno-occlusive disease (PVOD) is a subgroup of pulmonary arterial hypertension with a poor prognosis. The diagnosis is usually delayed and treatment options other than lung transplantation are unfortunately limited. We report the case of 51-year-old female gardener diagnosed with PVOD by open lung biopsy before her death. Although there are many reported cases of hepatic veno-occlusive disease due to toxic agents present in nature, such as pyrrolizidine alkaloid exposure, to date this has not been linked to PVOD. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  17. A novel alkaloid isolated from Crotalaria paulina and identified by NMR and DFT calculations

    Science.gov (United States)

    Oliveira, Ramon Prata; Demuner, Antonio Jacinto; Alvarenga, Elson Santiago; Barbosa, Luiz Claudio Almeida; de Melo Silva, Thiago

    2018-01-01

    Pyrrolizidine alkaloids (PAs) are secondary metabolites found in Crotalaria genus and are known to have several biological activities. A novel macrocycle bislactone alkaloid, coined ethylcrotaline, was isolated and purified from the aerial parts of Crotalaria paulina. The novel macrocycle was identified with the aid of high resolution mass spectrometry and advanced nuclear magnetic resonance techniques. The relative stereochemistry of the alkaloid was defined by comparing the calculated quantum mechanical hydrogen and carbon chemical shifts of eight candidate structures with the experimental NMR data. The best fit between the eight candidate structures and the experimental NMR chemical shifts was defined by the DP4 statistical analyses and the Mean Absolute Error (MAE) calculations.

  18. Assessing Mutagenicity of Methanolic Exteract of Borage Flower (Echium amuenum Using Ames Bioassay

    Directory of Open Access Journals (Sweden)

    Meysam Moosavi

    2014-08-01

    Full Text Available Background: pyrrolizidine alkaloids have been isolated from Echium amuenum. These alkaloids knowing as hepatotoxic, damage the liver. Mutagenicity of pure pyrrolizidine alkaloids has been identified. Thus, the mutagenic effect of the methanolic flower extract was tested using Amest test. Materials and Methods: The long maceration process (for 48 hrs is carried out in order to extract all constitutes. Thin layer chromatography (TLC method was used to evaluate aflatoxin B1 contamination and histidine amino acid presence. Minimum inhibitory concentration (MIC was determined with the dilution method. Salmonella typhimurium strain TA100 was used to determination of mutagenicity. The genotype was confirmed by using histidine requirement, R- factor presence, rfa and uvrB mutations tests. The mutagenicity assay was performed by four extract concentrations (0.25, 0.5, 0.75 and 1mg/ml. Sodium azide (NaN3 and methanol were used as the mutagens (positive control and negative control, respectively in the absence or presence of liver-metabolizing enzymes. Results: The data indicate that Echium amuenum has not significant mutagenic activity against negative control. The presence of liver-metabolizing enzymes did not exhibit a significant change against the properties of extract. Conclusion: It seems that this extensive used plant in traditional medicine, doesn’t contain mutagenic or genotoxic effect in usual doses.

  19. Probing the Influence of Linker Length and Flexibility in the Design and Synthesis of New Trehalase Inhibitors

    Directory of Open Access Journals (Sweden)

    Giampiero D’Adamio

    2018-02-01

    Full Text Available This work aims to synthesize new trehalase inhibitors selective towards the insect trehalase versus the porcine trehalase, in view of their application as potentially non-toxic insecticides and fungicides. The synthesis of a new pseudodisaccharide mimetic 8, by means of a stereoselective α-glucosylation of the key pyrrolizidine intermediate 13, was accomplished. The activity of compound 8 as trehalase inhibitor towards C. riparius trehalase was evaluated and the results showed that 8 was active in the μM range and showed a good selectivity towards the insect trehalase. To reduce the overall number of synthetic steps, simpler and more flexible disaccharide mimetics 9–11 bearing a pyrrolidine nucleus instead of the pyrrolizidine core were synthesized. The biological data showed the key role of the linker chain’s length in inducing inhibitory properties, since only compounds 9 (α,β-mixture, bearing a two-carbon atom linker chain, maintained activity as trehalase inhibitors. A proper change in the glucosyl donor-protecting groups allowed the stereoselective synthesis of the β-glucoside 9β, which was active in the low micromolar range (IC50 = 0.78 μM and 12-fold more potent (and more selective than 9α towards the insect trehalase.

  20. The efficacy and safety of comfrey.

    Science.gov (United States)

    Stickel, F; Seitz, H K

    2000-12-01

    Herbal medication has gathered increasing recognition in recent years with regard to both treatment options and health hazards. Pyrrolizidine alkaloids have been associated with substantial toxicity after their ingestion as tea and in the setting of contaminated cereals have led to endemic outbreaks in Jamaica, India and Afghanistan. In Western Europe, comfrey has been applied for inflammatory disorders such as arthritis, thrombophlebitis and gout and as a treatment for diarrhoea. Only recently was the use of comfrey leaves recognized as a substantial health hazard with hepatic toxicity in humans and carcinogenic potential in rodents. These effects are most likely due to various hepatotoxic pyrrolizidine alkaloids such as lasiocarpine and symphytine, and their related N-oxides. The mechanisms by which toxicity and mutagenicity are conveyed are still not fully understood, but seem to be mediated through a toxic mechanism related to the biotransformation of alkaloids by hepatic microsomal enzymes. This produces highly reactive pyrroles which act as powerful alkylating agents. The main liver injury caused by comfrey (Symphytum officinale) is veno-occlusive disease, a non-thrombotic obliteration of small hepatic veins leading to cirrhosis and eventually liver failure. Patients may present with either acute or chronic clinical signs with portal hypertension, hepatomegaly and abdominal pain as the main features. Therapeutic approaches include avoiding intake and, if hepatic failure is imminent, liver transplantation. In view of the known serious hazards and the ban on distributing comfrey in Germany and Canada, it is difficult to understand why comfrey is still freely available in the United States.

  1. Biodegradation of polyurethanes; Polyurethane no biseibutsu bunkai

    Energy Technology Data Exchange (ETDEWEB)

    Kinpara, N; Ando, M; Ohira, Z [Suzuki Motor Corp., Shizuoka (Japan); Nakajima, T; Nakahara, T [University of Tsukuba, Tsukuba (Japan)

    1997-10-01

    Different types of Polyurethane (PUR) are used for various industrial products and are used in increasing quantities every year. We experimented with biodegradation of PURs to dispose of industrial wastes. 2 strains of fungi and 1 strain of bacteria which were seemed to have the ability to degrade PURs well were isolated from various soils and waste water. These strains could degrade ester-type PUR and PUR made from a mixture of ester and ether. However, these strains could not degrade ether-type PUR. From Scanning Electron Microscopy observation, it is suggested that the microbial degradation proceeded in at least 2 patterns. 4 refs., 8 figs., 2 tabs.

  2. Electron bombardment cross-linking of coating materials. Pt.2. Analysis of patent literature on formulating radiation-hardenable binders

    International Nuclear Information System (INIS)

    Mileo, J.-C.

    1976-01-01

    The process of drying paints and varnishes by electron irradiation is analyzed from the chemical standpoint. A review is made of the different methods of producing radiation hardenable resins that have resulted in abundant patent literature. These resins are classified according to the nature of the reactive unsaturations they contain: unsaturations of the maleic ester type; simple (meth)acrylic esters and amides; β-hydroxyl (meth)acrylic esters, their (un)saturated esters and other derivatives; siloxanes; maleimides; allylic unsaturations; saturated resins [fr

  3. Pro-toxic dehydropyrrolizidine alkaloids in the traditional Andean herbal medicine “asmachilca”

    Science.gov (United States)

    Colegate, Steven M.; Boppré, Michael; Monzón, Julio; Betz, Joseph M.

    2015-01-01

    Ethnopharmacological relevance Asmachilca is a Peruvian medicinal herb preparation ostensibly derived from Eupatorium gayanum Wedd. = Aristeguietia gayana (Wedd.) R.M. King & H. Rob. (Asteraceae: Eupatorieae). Decoctions of the plant have a reported bronchodilation effect that is purported to be useful in the treatment of respiratory allergies, common cold and bronchial asthma. However, its attractiveness to pyrrolizidine alkaloid-pharmacophagous insects indicated a potential for toxicity for human consumers. Aim of the study To determine if commercial asmachilca samples, including fully processed herbal teas, contain potentially toxic 1,2-dehydropyrrolizidine alkaloids. Materials and methods Two brands of “Asmachilca” herbal tea bags and four other commercial samples of botanical materials for preparing asmachilca medicine were extracted and analyzed using HPLC-esi(+)MS and MS/MS for the characteristic retention times and mass spectra of known dehydropyrrolizidine alkaloids. Other suspected dehydropyrrolizidine alkaloids were tentatively identified based on MS/MS profiles and high resolution molecular weight determinations. Further structure elucidation of isolated alkaloids was based on 1D and 2D NMR spectroscopy. Results Asmachilca attracted many species of moths which are known to pharmacophagously gather dehydropyrrolizidine alkaloids. Analysis of 5 of the asmachilca samples revealed the major presence of the dehydropyrrolizidine alkaloid monoesters rinderine and supinine, and their N-oxides. The 6th sample was very similar but did not contain supinine or its N-oxide. Small quantities of other dehydropyrrolizidine alkaloid monoesters, including echinatine and intermedine, were also detected. In addition, two major metabolites, previously undescribed, were isolated and identified as dehydropyrrolizidine alkaloid monoesters with two “head-to-tail” linked viridifloric and/or trachelanthic acids. Estimates of total pyrrolizidine alkaloid and N

  4. Scientific Opinion on the safety of refined Buglossoides oil as a novel food ingredient

    DEFF Research Database (Denmark)

    Tetens, Inge

    2015-01-01

    . With the exceptions of SDA and GLA, these FAs are widely present in common foods. The NFI is intended to be used in a range of foods and food supplements to provide approximately 200 mg of SDA per day. Upon digestion, FAs are used primarily as an energy source. ALA and SDA can be elongated and desaturated to produce......Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on refined Buglossoides oil as a novel food ingredient (NFI) in the context of Regulation (EC) No 258/97. The NFI is produced from the seeds...... eicosapentaenoic acid. In human studies using various sources of SDA, no increase or small increases in SDA were observed in blood cell membranes or in total plasma. The proposed specifications for pyrrolizidine alkaloids and erucic acid, which are undesirable substances,do not give rise to concern in view...

  5. Development of spermatic granuloma in albino rats following administration of water extract of Heliotropium bacciferum Forssk.

    Science.gov (United States)

    Alanazi, Khalid; Alahmadi, Bassam A; Alhimaidi, Ahmed; Abou-Tarboush, Faisal M; Farah, Mohammad Abul; Mahmoud, Ahmed; Alfaifi, Mohamed

    2016-01-01

    A spermatic granuloma is a chronic inflammatory reaction produced in response to extravasated sperm within the intertubular connective tissue. The present study investigates the possible toxic effects of water extract of Heliotropium bacciferum on the reproductive system of male albino rats and the associated potential for the development of spermatic granulomas. H. bacciferum is a herbal plant used in traditional medicine and reported to have cytotoxic effects due to pyrrolizidine alkaloids. Histological examinations revealed no changes in the tissues of the testes, although, some changes were detected in the cauda epididymis, the most important of which was the development of small lesions of spermatic granulomas. Clear gaps were observed between the epithelial linings of the epididymal tubules.

  6. Toxicity of dietary Heliotropium dolosum seed to mice.

    Science.gov (United States)

    Eröksüz, Y; Eröksüz, H; Ozer, H; Sener, B; Tosun, F; Akyüz, C

    2001-06-01

    Experimental pyrrolizidine alkaloid intoxication was produced in inbred Swiss mice. Animals were fed diets containing 0, 1, 3, 5, or 10% Heliotropium dolosum seed for 24 w. The seeds contained 0.13% total alkaloid concentration composed of 4 specific components: lasiocarpine (78.79%), heliosupine (11.96%), echimidine (5.43%), and heliotrine (3.82%). Deaths occurred in all dosed groups and increased with dietary seed concentration. Massive to submassive liver necrosis together with sinusoidal congestion, and hemorrhage or multifocal hepatocytic necrosis was limited to animals which survived 5 w. Intranuclear eosinophilic inclusions in hepatocytes and bile duct and ductular cell hyperplasia were the most noticeable lesions in the 1, 3, and 5% groups. There was mild to moderate renal tubular megalocytosis in the 3, 5, and 10% groups. It seems likely that H dolosum seed, at least to a limited extent, constitutes a health hazard for certain animal species.

  7. DNA minor groove alkylating agents.

    Science.gov (United States)

    Denny, W A

    2001-04-01

    Recent work on a number of different classes of anticancer agents that alkylate DNA in the minor groove is reviewed. There has been much work with nitrogen mustards, where attachment of the mustard unit to carrier molecules can change the normal patterns of both regio- and sequence-selectivity, from reaction primarily at most guanine N7 sites in the major groove to a few adenine N3 sites at the 3'-end of poly(A/T) sequences in the minor groove. Carrier molecules discussed for mustards are intercalators, polypyrroles, polyimidazoles, bis(benzimidazoles), polybenzamides and anilinoquinolinium salts. In contrast, similar targeting of pyrrolizidine alkylators by a variety of carriers has little effect of their patterns of alkylation (at the 2-amino group of guanine). Recent work on the pyrrolobenzodiazepine and cyclopropaindolone classes of natural product minor groove binders is also reviewed.

  8. Methods to obtain radiolabelled monocrotaline

    International Nuclear Information System (INIS)

    Lame, M.W.; Morin, D.; Wilson, D.W.; Segall, H.J.

    1996-01-01

    Crotalaria spectabilis, a plant found in many areas of the world is associated with the pyrrolizidine alkaloid monocrotaline. Monocrotaline when injected subcutaneously in Sprague Dawley rats has been utilized for years to create a condition known to mimic pulmonary hypertension in humans. We attempted to determine the optimum conditions for the biosynthesis of radiolabelled monocrotaline. Our work describes the plant growth conditions and the time periods associated with the production of radiolabelled monocrotaline. In addition, the incorporation of 14 CO 2 or [2,3- 3 H]-putrescine dihydrochloride and the specific activity plus the amount(s) of recovered radiolabelled monocrotaline are discussed. We conclude that the most efficient and cost effective method for the biosynthesis of radiolabelled monocrotaline is still the utilization of 14 CO 2 . (author)

  9. Toxic pyrrolizidinalkaloids as undesired contaminants in food and feed: degradation of the PAs from Senecio jacobaea in silage.

    Science.gov (United States)

    Becerra-Jiminez, J; Kuschak, M; Roeder, E; Wiedenfeld, H

    2013-07-01

    Pyrrolizidine alkaloids (PAs) can show a hazardous potential for men and animals. They can act as cancerogenic, mutagenic, teratogenic and fetotoxic agents. One pathway of a human intoxication is its occurence as contaminants in food and feed. Here, the contamination of cereals already led to severe and fatal intoxication episodes. Besides this, milk is of special concern as it is the main food for children which show a very high susceptibility for a PA intoxication. Milk can contain PAs in case the milk producing animals have access to contaminated feed. In this context it is of special interest whether the PA content of contaminated silage remains stable during the ensiling procedure or show a more or less high level of decomposition. We could show that ensiling will not lead to PA-free silage.

  10. Sinusoidal obstruction syndrome.

    Science.gov (United States)

    Valla, Dominique-Charles; Cazals-Hatem, Dominique

    2016-09-01

    Sinusoidal obstruction syndrome (SOS) is characterized by damage to small hepatic vessels affecting particularly sinusoidal endothelium. Damaged sinusoids can be associated with a partial or complete occlusion of small hepatic veins, hence the previous denomination of hepatic veno-occlusive disease (VOD). Exposure to certain exogenous toxins appears to be specific to this condition and is frequently included in its definition. Typical histopathological features of SOS in a liver biopsy specimen are presented in the text. The purpose of this article is to provide an overview on the different entities corresponding to this general definition. Such entities include: (i) liver disease related to pyrrolizidine alcaloids; (ii) liver injury related to conditioning for hematopoietic stem cell transplantation; (iii) vascular liver disease occurring in patients treated with chemotherapy for liver metastasis of colorectal cancer; and (iv) other liver diseases related to toxic agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Plant profile, phytochemistry and pharmacology of Cordia dichotoma (Indian cherry): a review.

    Science.gov (United States)

    Jamkhande, Prasad G; Barde, Sonal R; Patwekar, Shailesh L; Tidke, Priti S

    2013-12-01

    More than half of the world's population relies on the traditional medicine and major role of the traditional medicine including the use of plant extract and their active constituents. Among them, Cordia dichotoma Forst., a small to moderate size plant of family Boragenaceae, commonly called bhokar, lasura, gonda, Indian cherry and shlesmataka. Plant parts such as leaves, fruit, bark and seed have been reported for possessing antidiabetic, antiulcer, anti-inflammatory, immune-modulator and analgesic activity. Screening of fruit, leaves and seed shows the presence of pyrrolizidine alkaloids, coumarins, flavonoids, saponins, terpenes and sterols. Present review focuses on details of geographical distribution, physicochemical parameters, phytoconstituents and pharmacological properties of Cordia dichotoma reported so far. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  12. [Plants as a source of natural harmful substances].

    Science.gov (United States)

    Czerwiecki, Ludwik

    2005-01-01

    In this review the several data concerning phytotoxins as natural harmful substances of plants and phycotoxins--toxicants of algae were described. For example plants are source of pyrrolizidine alkaloids, glycoalkaloids, glucosinolates as well as glycosides, saponine and psolarens. Possible adverse effects of phytoestrogens as endocrine disruptors versus beneficial influence these substances on human organism were mentioned. About lectins as possible factors of some diseases was reported, as well as some proteins as allergens of soy and peanuts was mentioned. Accumulated by shellfish and fish the most important phycotoxins such as saxitoxin, okadaic acid, brevetoxins and ciguatoxins were described. Phycotoxins produced several poisoning symptoms. Microcystins and nodularin--cyanobacterial phycotoxins of freshwater, was mentioned. In conclusion, the need of limitation of permissible levels of some plant toxicants, development of analytical methods as well as knowledge of influence of some technological processes on toxic plant substances was highlighted. The importance of balanced diet as a tool of defense against plant toxicants was concluded.

  13. Human Acid β-Glucosidase Inhibition by Carbohydrate Derived Iminosugars: Towards New Pharmacological Chaperones for Gaucher Disease.

    Science.gov (United States)

    Parmeggiani, Camilla; Catarzi, Serena; Matassini, Camilla; D'Adamio, Giampiero; Morrone, Amelia; Goti, Andrea; Paoli, Paolo; Cardona, Francesca

    2015-09-21

    A collection of carbohydrate-derived iminosugars belonging to three structurally diversified sub-classes (polyhydroxylated pyrrolidines, piperidines, and pyrrolizidines) was evaluated for inhibition of human acid β-glucosidase (glucocerebrosidase, GCase), the deficient enzyme in Gaucher disease. The synthesis of several new pyrrolidine analogues substituted at the nitrogen or α-carbon atom with alkyl chains of different lengths suggested an interpretation of the inhibition data and led to the discovery of two new GCase inhibitors at sub-micromolar concentration. In the piperidine iminosugar series, two N-alkylated derivatives were found to rescue the residual GCase activity in N370S/RecNcil mutated human fibroblasts (among which one up to 1.5-fold). This study provides the starting point for the identification of new compounds in the treatment of Gaucher disease. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of milk from goat fed Crotalaria spectabilis seeds on growing rats

    Directory of Open Access Journals (Sweden)

    Rosane Maria Trindade de Medeiros

    1999-01-01

    Full Text Available Seeds of Crotalaria spectabilis, containing the pyrrolizidine alkaloid (PA monocrotaline (MCT, were fed to a lactating dairy goat. Milk from this goat was fed to rats for 8 weeks to determine whether MCT or its toxic metabolites are transferred into the goat’s milk. Rats from the experimental group showed significantly higher (p<0.05 serum levels of ALT, AST, GGT and LDH and less weight gains (p<0.05 than control rats. The most significant lesions in rats consuming the experimental ration were mild to moderate interstitial pneumonia and a vacuolar degeneration and occasionally necrosis of periportal hepatocytes. The results of this study indicate that the PA and/or its metabolites are eliminated in milk.

  15. Toxicosis by Plant Alkaloids in Humans and Animals in Colombia

    Directory of Open Access Journals (Sweden)

    Gonzalo J. Diaz

    2015-12-01

    Full Text Available Due to its tropical location, chains of mountains, inter-Andean valleys, Amazon basin area, eastern plains and shores on both the Atlantic and Pacific Oceans, Colombia has many ecosystems and the second largest plant biodiversity in the world. Many plant species, both native and naturalized, are currently recognized as toxic for both animals and humans, and some of them are known to cause their toxic effects due to their alkaloid content. Among these, there are plants containing the hepatotoxic pyrrolizidine alkaloids, neurotoxins such as the indolizidine alkaloid swainsonine and the piperidine alkaloids coniine and γ-coniceine and tropane alkaloids. Unfortunately, the research in toxic plants in Colombia is not nearly proportional to its plant biodiversity and the scientific information available is only very scarce. The present review aims at summarizing the scarce information about plant alkaloid toxicosis in animals and humans in Colombia.

  16. TLC densitometric method for screening of lycopsamine in comfrey root (Symphytum officinale L. extracts using retrorsine as a reference compound

    Directory of Open Access Journals (Sweden)

    Janeš Damjan

    2014-12-01

    Full Text Available Due to severe toxicity of pyrrolizidine alkaloids, their quantification in medicinal products is very important. The idea of this research was to use retrorsine as a surrogate reference compound instead of lycopsamine reference or lycopsamine isolated from comfrey. A method for the analysis of lycopsamine in extracts of comfrey roots was developed and validated, employing thin layer chromatography, derivatisation with Dann-Mattocks reagent followed by densitometric analysis. The new method showed linearity within 0.70 to 7.0 μg of lycopsamine per application of 10 μL of a solution. It has also been proven to be specific and precise (repeatability RSD 2-4 % within the plate. The method was successfully employed for quantification of lycopsamine in comfrey root and comfrey root medicinal products such as ointments.

  17. Toxicosis by Plant Alkaloids in Humans and Animals in Colombia

    Science.gov (United States)

    Diaz, Gonzalo J.

    2015-01-01

    Due to its tropical location, chains of mountains, inter-Andean valleys, Amazon basin area, eastern plains and shores on both the Atlantic and Pacific Oceans, Colombia has many ecosystems and the second largest plant biodiversity in the world. Many plant species, both native and naturalized, are currently recognized as toxic for both animals and humans, and some of them are known to cause their toxic effects due to their alkaloid content. Among these, there are plants containing the hepatotoxic pyrrolizidine alkaloids, neurotoxins such as the indolizidine alkaloid swainsonine and the piperidine alkaloids coniine and γ-coniceine and tropane alkaloids. Unfortunately, the research in toxic plants in Colombia is not nearly proportional to its plant biodiversity and the scientific information available is only very scarce. The present review aims at summarizing the scarce information about plant alkaloid toxicosis in animals and humans in Colombia. PMID:26690479

  18. Lack of effect of deferoxamine, dimethyl sulfoxide, and catalase on monocrotaline pyrrole pulmonary injury

    Energy Technology Data Exchange (ETDEWEB)

    Bruner, L.H.; Johnson, K.; Carpenter, L.J.; Roth, R.A.

    1987-01-01

    Monocrotaline pyrrole (MCTP) is a reactive metabolite of the pyrrolizidine alkaloid monocrotaline. MCTP given intravenously to rats causes pulmonary hypertension and right ventricular hypertrophy. Lesions in lungs after MCTP treatment contain macrophages and neutrophils, which may contribute to the damage by generation of reactive oxygen metabolites. Rats were treated with MCTP and agents known to protect against oxygen radical-mediated damage in acute models of neutrophil-dependent lung injury. Rats received MCTP and deferoxamine mesylate (DF), dimethyl sulfoxide (DMSO), or polyethylene glycol-coupled catalase (PEG-CAT). MCTP/vehicle-treated controls developed lung injury manifested as increased lung weight, release of lactate dehydrogenase into the airway, and sequestration of SVI-labeled bovine serum albumin in the lungs. Cotreatment of rats with DF, DMSO, or PEG-CAT did not protect against the injury due to MCTP. These results suggest that toxic oxygen metabolites do not play an important role in the pathogenesis of MCTP-induced pulmonary injury.

  19. Methods to obtain radiolabelled monocrotaline

    Energy Technology Data Exchange (ETDEWEB)

    Lame, M.W.; Morin, D.; Wilson, D.W.; Segall, H.J. [University of California, Davis, CA (United States)

    1996-12-01

    Crotalaria spectabilis, a plant found in many areas of the world is associated with the pyrrolizidine alkaloid monocrotaline. Monocrotaline when injected subcutaneously in Sprague Dawley rats has been utilized for years to create a condition known to mimic pulmonary hypertension in humans. We attempted to determine the optimum conditions for the biosynthesis of radiolabelled monocrotaline. Our work describes the plant growth conditions and the time periods associated with the production of radiolabelled monocrotaline. In addition, the incorporation of {sup 14}CO{sub 2} or [2,3-{sup 3}H]-putrescine dihydrochloride and the specific activity plus the amount(s) of recovered radiolabelled monocrotaline are discussed. We conclude that the most efficient and cost effective method for the biosynthesis of radiolabelled monocrotaline is still the utilization of {sup 14}CO{sub 2}. (author).

  20. TLC densitometric method for screening of lycopsamine in comfrey root (Symphytum officinale L.) extracts using retrorsine as a reference compound.

    Science.gov (United States)

    Janeš, Damjan; Kreft, Samo

    2014-12-01

    Due to severe toxicity of pyrrolizidine alkaloids, their quantification in medicinal products is very important. The idea of this research was to use retrorsine as a surrogate reference compound instead of lycopsamine reference or lycopsamine isolated from comfrey. A method for the analysis of lycopsamine in extracts of comfrey roots was developed and validated, employing thin layer chromatography, derivatisation with Dann-Mattocks reagent followed by densitometric analysis. The new method showed linearity within 0.70 to 7.0 μg of lycopsamine per application of 10 μL of a solution. It has also been proven to be specific and precise (repeatability RSD 2-4 % within the plate). The method was successfully employed for quantification of lycopsamine in comfrey root and comfrey root medicinal products such as ointments.

  1. Hepatic veno-occlusive disease associated with comfrey ingestion.

    Science.gov (United States)

    Yeong, M L; Swinburn, B; Kennedy, M; Nicholson, G

    1990-01-01

    A 23 year old man presented with hepatic veno-occlusive disease and severe portal hypertension and subsequently died from liver failure. Light microscopy and hepatic angiography showed occlusion of sublobular veins and small venous radicles of the liver, associated with widespread haemorrhagic necrosis of hepatocytes. The patient had been on a predominantly vegetarian diet and, prior to his illness, took comfrey leaves which are known to contain hepatotoxic pyrrolizidine alkaloids. Comfrey is widely used as a herbal remedy, but so far has only been implicated in two other documented cases of human hepatic veno-occlusive disease. A possible causal association of comfrey and this patient's veno-occlusive disease is suggested by the temporal relationship of the ingestion of comfrey to his presentation, the histological changes in the liver and the exclusion of other known causes of the disease.

  2. A Validated, Rapid HPLC-ESI-MS/MS Method for the Determination of Lycopsamine.

    Science.gov (United States)

    Jedlinszki, Nikoletta; Csupor, Dezső

    2015-07-01

    The aim of the present work was to develop and validate an HPLC-MS/MS method for the determination of a major pyrrolizidine alkaloid of comfrey (lycopsamine) in aqueous samples as a basis for the development of a method for the determination of absorption of lycopsamine by human skin. A linear calibration curve was established in the range of 1.32-440 ng. The intraday precision during the 3-day validation period ranged between 0.57 and 2.48% while the interday precision was 1.70% and 1.95% for quality control samples. LOD was 0.014 ng and recovery was above 97%. The lycopsamine content of the samples stored for 9 and 25 days at 22 degrees C, 10 degrees C and -25 degrees C did not vary. These results underline the good repeatability and accuracy of our method and allow the analysis of samples with very low lycopsamine content.

  3. Improved method for isolation of lycopsamine from roots of comfrey (Symphytum officinale).

    Science.gov (United States)

    Janes, Damjan; Kalamar, Bostjan; Kreft, Samo

    2012-07-01

    An improved method for the isolation and purification of pyrrolizidine alkaloids from comfrey (Symphytum officinale L.) roots was developed, introducing very fast, selective and ion residue-free reduction of N-oxides followed by ion-exchange chromatography giving a non-aqueous solution of alkaloids, from which solvents can be easily removed. With this procedure the use of large volumes of organic solvents, very slow reduction of N-oxides and input of additional impurities was avoided. Lycopsamine, which proved to be the major alkaloid, was additionally purified by preparative layer chromatography (PLC) and high performance liquid chromatography (HPLC). The identity of the alkaloid was confirmed by (I)H NMR spectroscopy and mass spectrometry.

  4. Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    Science.gov (United States)

    Cogni, Rodrigo; Trigo, José R.; Futuyma, Douglas J.

    2011-01-01

    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation. PMID:22220208

  5. Risks associated with consumption of herbal teas.

    Science.gov (United States)

    Manteiga, R; Park, D L; Ali, S S

    1997-01-01

    Plants have been used for medicinal purposes for centuries. Health-oriented individuals are turning to herbal teas as alternatives to caffeinated beverages such as coffee, tea, and cocoa and for low-caloric supplements. The popularity of herbal tea consumption has increased significantly during the past two decades in the U.S. Hundreds of different teas made up of varied mixtures of roots, leaves, seeds, barks, or other parts of shrubs, vines, or trees are sold in health food stores. Although chemists have been characterizing toxic plant constituents for over 100 years, toxicological studies of herbal teas have been limited and, therefore, the safety of many of these products is unknown. Plants synthesize secondary metabolites that are not essential in the production of energy and whose role may be in the defense mechanisms as plant toxins to their interactions with other plants, herbivores, and parasites. Pyrrolizidine alkaloids (PAs) were among the first naturally occurring carcinogens identified in plant products, and their presence in herbal teas is a matter of public health significance. Some herbal tea mixtures and single-ingredient herbal teas have been analyzed for toxic/mutagenic potential by bioassay and chromatographic techniques. Numerous human and animal intoxications have been associated with naturally occurring components, including pyrrolizidine alkaloids, tannins, and safrole. Thus, the prevention of human exposure to carcinogens or mutagens present in herbal tea mixture extracts is crucial. Preparation of infusion drinks prepared from plants appears to concentrate biologically active compounds and is a major source of PA poisoning. The quantity and consumption over a long period of time is of major concern. It is recommended that widespread consumption of herbal infusions should be minimized until data on the levels and varieties of carcinogens, mutagens, and toxicants are made available.

  6. Varying herbivore population structure correlates with lack of local adaptation in a geographic variable plant-herbivore interaction.

    Directory of Open Access Journals (Sweden)

    Rodrigo Cogni

    Full Text Available Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries vary at the regional scale, while other traits (trichomes and nitrogen content just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation.

  7. Self-medication as adaptive plasticity: increased ingestion of plant toxins by parasitized caterpillars.

    Directory of Open Access Journals (Sweden)

    Michael S Singer

    Full Text Available Self-medication is a specific therapeutic behavioral change in response to disease or parasitism. The empirical literature on self-medication has so far focused entirely on identifying cases of self-medication in which particular behaviors are linked to therapeutic outcomes. In this study, we frame self-medication in the broader realm of adaptive plasticity, which provides several testable predictions for verifying self-medication and advancing its conceptual significance. First, self-medication behavior should improve the fitness of animals infected by parasites or pathogens. Second, self-medication behavior in the absence of infection should decrease fitness. Third, infection should induce self-medication behavior. The few rigorous studies of self-medication in non-human animals have not used this theoretical framework and thus have not tested fitness costs of self-medication in the absence of disease or parasitism. Here we use manipulative experiments to test these predictions with the foraging behavior of woolly bear caterpillars (Grammia incorrupta; Lepidoptera: Arctiidae in response to their lethal endoparasites (tachinid flies. Our experiments show that the ingestion of plant toxins called pyrrolizidine alkaloids improves the survival of parasitized caterpillars by conferring resistance against tachinid flies. Consistent with theoretical prediction, excessive ingestion of these toxins reduces the survival of unparasitized caterpillars. Parasitized caterpillars are more likely than unparasitized caterpillars to specifically ingest large amounts of pyrrolizidine alkaloids. This case challenges the conventional view that self-medication behavior is restricted to animals with advanced cognitive abilities, such as primates, and empowers the science of self-medication by placing it in the domain of adaptive plasticity theory.

  8. Hepatocyte membrane injury and bleb formation following low dose comfrey toxicity in rats.

    Science.gov (United States)

    Yeong, M L; Wakefield, S J; Ford, H C

    1993-04-01

    Comfrey, a popular herbal remedy, contains hepatotoxic pyrrolizidine alkaloids and has been implicated in recent human toxicity. Although alkaloids from other plant sources have been extensively researched, studies on the hepatotoxic effects of comfrey alkaloids are scant. The effects of high dose comfrey toxicity have been studied and the present investigation was undertaken to identify changes associated with relatively low dose toxicity. Eight young adult rats were dosed weekly for six weeks with 50 mg/kg of comfrey derived alkaloids. The animals were dissected one week after the last dose and the livers examined by light and electron microscopy. Changes at the light microscopic level showed vascular congestion, mild zone 3 necrosis and loss of definition of hepatocyte cellular membranes. Extensive ultrastructural abnormalities were identified in the form of endothelial sloughing and the loss of hepatocyte microvilli. A striking finding was florid bleb formation on the sinusoidal borders of hepatocytes. Many blebs were shed into the space of Disse and extruded to fill, and sometimes occlude, sinusoidal lumina. Platelets were frequently found in areas of bleb formation. There was evidence of late damage in collagenization of Disse's space. Hepatocyte bleb formation is known to occur under a variety of pathological conditions but there is little to no information in the literature on the effects, if any, of bleb formation on fibrogenesis and the microcirculation and its role in the pathogenesis of liver disease. The pyrrolizidine alkaloids of comfrey may serve as an experimental tool to study the process of bleb formation and the intimate relationship between hepatocyte and sinusoidal injury in the liver.

  9. Biodegradation of polyester. Polyester no bunkai sei

    Energy Technology Data Exchange (ETDEWEB)

    Tokiwa, Y. (Agency of Industrial Science and Technology, Tokyo (Japan). Fermentation Research Inst.)

    1991-09-10

    Penicillium sp. 14-3 and penicillium sp. 26-1 can degrade various kinds of polyester. The results of studies made on hydrolysis of polyester by enzyme, hydrolysis of polyester by various kinds of lipase, and degradation of ester type polyurethane by microbes and lipase are introduced. For the improvement of physical properties of aliphatic polyester, aromatic-aliphatic polyester copolymers (CPE) have been synthesized to study the biodegradability. Copolymer in which a number of polyamide (nylon) are alternately introduced (CPAE) to aliphatic polyester has been developed. The result of studies made on the degradability of a blended body of PCL and natural high polymer, and on the collapsibility by lipase of high polymer materials including aliphatic polyamide are introduced. 26 refs., 5 figs., 1 tab.

  10. Synthesis and Characterization of Novel Polyurethanes Based on Vegetable Oils Amide and Ester Polyols

    Directory of Open Access Journals (Sweden)

    Vladimir YAKUSHIN

    2014-09-01

    Full Text Available Amide and ester type polyols were synthesized from rapeseed, sunflower and castor oils, and two types of ethanolamine (diethanolamine and triethanolamine at different molar ratio. Poly(urethane amides and polyester urethanes based on the synthesized polyols were prepared. The effect of the chemical structure of the obtained polyurethanes on density, glass transition temperature, thermal stability and mechanical properties was investigated. The influence of the content of OH groups in the synthesized polyols on the specified characteristics was estimated. It has been found that poly(urethane amides have better mechanical characteristics, but their thermal stability is lower than that of polyester urethanes. The chemical structure of the synthesized polyols and polyurethanes is qualitatively confirmed by IR-spectroscopy data. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4532

  11. Biodiesel. A revision of the obtaining process by means of the transesterification of vegetables oils

    International Nuclear Information System (INIS)

    Benjumea, Pedro Nel; Agudelo, Jhon Ramiro; Zapata, Paula A; Mendoza, Raul

    2003-01-01

    Biodiesel is a fuel made from raw materials of renewable origin such as vegetable oils and animal fats. It can be used as an alternative fuel to diesels for use in diesel engines. biodiesel is produced by transesterification of large branched triglycerides into smaller, straight chain molecules of alkyl esters, using a low molecular weight alcohol and an adequate catalyst. The objective of this work is to make an overview about production technology of biodiesel. Research work has been focused in the following variables that affect yield and purity of alkyl esters: type of raw material, type and quantity of catalyst, type of alcohol, molar ratio of alcohol to vegetable oil and reaction temperature

  12. The toxicity of Senecio inaequidens DC.

    Directory of Open Access Journals (Sweden)

    A.F.P. Dimande

    2007-06-01

    Full Text Available This study was designed to confirm the toxicity of a plant implicated in an outbreak of poisoning of stock in Frankfort, Free State Province, South Africa. Cows died acutely after being introduced into a camp, where an abundant, green shrublet was noted to be heavily grazed. This plant was subsequently identified as Senecio inaequidens DC. (Asteraceae by the South African National Biodiversity Institute (SANBI. Extraction and chemical analyses for pyrrolizidine alkaloids (PAs in Senecio inaequidens revealed the presence of 4 different compounds, namely retrorsine and senecionine (known to be hepatotoxic and 2 unidentified compounds. The average total PA (free base plus N-oxide concentration in plant parts of S. inaequidens collected at Frankfort during the outbreak was 0.81 %, compared with the total alkaloid content in the dried, milled S. inaequidens plant material, collected 7 weeks after the outbreak, of only 0.18 %. Male Sprague-Dawley rats (n=4, aged 8-9 weeks, were dosed per os. Each rat received a different dose of the crude Senecio inaequidens extract, ranging from 0.049 mg/g body weight (b.w. to 0.25 mg/g b.w. No clinical signs were observed in the rat receiving the lowest dose. Rats receiving higher doses showed depression, an unsteady gait, pilo-erection and jaundice, which was particularly noticeable in the ears. Clinical chemistry evaluation revealed an increase in the activities of ALP (except Rat 4, AST and GGT in all animals. Total serum bilirubin, creatinine and urea concentrations were also elevated. All rats had low serum globulin concentrations with an A/G ratio above 1.2. Post mortem examination of the rats revealed marked hepatic lesions. Histopathologically, these changes were characterised by necrosis (variable in extent of the centrilobular and midzonal hepatocytes (but sparing the portal hepatocytes, with extensive haemorrhage and congestion. Proliferation of the bile ducts, fibrosis and oedema were also present

  13. Antiviral Action of Hydromethanolic Extract of Geopropolis from Scaptotrigona postica against Antiherpes Simplex Virus (HSV-1

    Directory of Open Access Journals (Sweden)

    Guilherme Rabelo Coelho

    2015-01-01

    Full Text Available The studies on chemical composition and biological activity of propolis had focused mainly on species Apis mellifera L. (Hymenoptera: Apidae. There are few studies about the uncommon propolis collected by stingless bees of the Meliponini tribe known as geopropolis. The geopropolis from Scaptotrigona postica was collected in the region of Barra do Corda, Maranhão state, Brazil. The chemical analysis of hydromethanolic extract of this geopropolis (HMG was carried out through HPLC-DAD-ESI-MS/MS and the main constituents found were pyrrolizidine alkaloids and C-glycosyl flavones. The presence of alkaloids in extracts of propolis is detected for the first time in this sample. The antiviral activity of HMG was evaluated through viral DNA quantification experiments and electron microscopy experiments. Quantification of viral DNA from herpes virus showed reduction of about 98% in all conditions and concentration tested of the HMG extract. The results obtained were corroborated by transmission electron microscopy, in which the images did not show particle or viral replication complex. The antiviral activity of C-glycosyl flavones was reported for a variety of viruses, being observed at different points in the viral replication. This work is the first report about the antiviral activity of geopropolis from Scaptotrigona postica, in vitro, against antiherpes simplex virus (HSV.

  14. European medicinal and edible plants associated with subacute and chronic toxicity part I: Plants with carcinogenic, teratogenic and endocrine-disrupting effects.

    Science.gov (United States)

    Kristanc, Luka; Kreft, Samo

    2016-06-01

    In recent decades, the use of herbal medicines and food products has been widely embraced in many developed countries. These products are generally highly accepted by consumers who often believe that "natural" equals "safe". This is, however, an oversimplification because several botanicals have been found to contain toxic compounds in concentrations harmful to human health. Acutely toxic plants are in most cases already recognised as dangerous as a result of their traditional use, but plants with subacute and chronic toxicity are difficult or even impossible to detect by traditional use or by clinical research studies. In this review, we systematically address major issues including the carcinogenicity, teratogenicity and endocrine-disrupting effects associated with the use of herbal preparations with a strong focus on plant species that either grow natively or are cultivated in Europe. The basic information regarding the molecular mechanisms of the individual subtypes of plant-induced non-acute toxicity is given, which is followed by a discussion of the pathophysiological and clinical characteristics. We describe the genotoxic and carcinogenic effects of alkenylbenzenes, pyrrolizidine alkaloids and bracken fern ptaquiloside, the teratogenicity issues regarding anthraquinone glycosides and specific alkaloids, and discuss the human health concerns regarding the phytoestrogens and licorice consumption in detail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. European medicinal and edible plants associated with subacute and chronic toxicity part II: Plants with hepato-, neuro-, nephro- and immunotoxic effects.

    Science.gov (United States)

    Kristanc, Luka; Kreft, Samo

    2016-06-01

    A tremendous surge of public interest in natural therapies has been reported in the past several decades in both developing and developed countries. Furthermore, edible wild-growing plants whose use had long been associated with poverty and famine have also gained in popularity among people in developed countries. An important fraction of herbal products evade all control measures and are generally perceived as safe. However, this may not always be true. It is important to recognize that some plants are not associated with acute toxicity but rather produce more insidious problems, which develop only with long-term exposure. In this review, we continue a systematic analysis of the subacute and chronic toxicity associated with the use of herbal preparations. The hepato-, neuro-, nephro- and immunotoxicity of plant species that either grow natively or are cultivated in Europe are discussed in some detail. The basic concepts regarding the molecular mechanisms implicated in their nonacute toxicity and their pathophysiological, clinical and epidemiological characteristics are included. Among others, we discuss the hepatotoxicity of pyrrolizidine alkaloids, the nephrotoxicity of aristolochic acid, the lathyrism associated with neurotoxin swainsonine, thiamine depletion and thyroid dysfunction of herbal cause, and finally address also the immunosuppressive effects of cannabinoids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Review article: herbal and dietary supplement hepatotoxicity.

    Science.gov (United States)

    Bunchorntavakul, C; Reddy, K R

    2013-01-01

    Herbal and dietary supplements are commonly used throughout the World. There is a tendency for underreporting their ingestion by patients and the magnitude of their use is underrecognised by Physicians. Herbal hepatotoxicity is not uncommonly encountered, but the precise incidence and manifestations have not been well characterised. To review the epidemiology, presentation and diagnosis of herbal hepatotoxicity. This review will mainly discuss single ingredients and complex mixtures of herbs marketed under a single label. A Medline search was undertaken to identify relevant literature using search terms including 'herbal', 'herbs', 'dietary supplement', 'liver injury', 'hepatitis' and 'hepatotoxicity'. Furthermore, we scanned the reference lists of the primary and review articles to identify publications not retrieved by electronic searches. The incidence rates of herbal hepatotoxicity are largely unknown. The clinical presentation and severity can be highly variable, ranging from mild hepatitis to acute hepatic failure requiring transplantation. Scoring systems for the causality assessment of drug-induced liver injury may be helpful, but have not been validated for herbal hepatotoxicity. Hepatotoxicity features of commonly used herbal products, such as Ayurvedic and Chinese herbs, black cohosh, chaparral, germander, greater celandine, green tea, Herbalife, Hydroxycut, kava, pennyroyal, pyrrolizidine alkaloids, skullcap, and usnic acid, have been individually reviewed. Furthermore, clinically significant herb-drug interactions are also discussed. A number of herbal medicinal products are associated with a spectrum of hepatotoxicity events. Advances in the understanding of the pathogenesis and the risks involved are needed to improve herbal medicine safety. © 2012 Blackwell Publishing Ltd.

  17. Uptake of plant-derived specific alkaloids allows males of a butterfly to copulate.

    Science.gov (United States)

    Honda, Keiichi; Matsumoto, Junya; Sasaki, Ken; Tsuruta, Yoshiaki; Honda, Yasuyuki

    2018-04-03

    Certain butterflies utilize plant-acquired alkaloids for their own chemical defense and/or for producing male sex pheromone; a trait known as pharmacophagy. Males of the danaine butterfly, Parantica sita, have been reported to ingest pyrrolizidine alkaloids (PAs) as adults to produce two PA-derived sex pheromone components, viz. danaidone (major) and 7R-hydroxydanaidal. We found, however, that not all PAs that can be precursors for the pheromone serve for mating success of males. Here we show that although the sex pheromone is regarded as a requisite for successful mating, uptake of specific PA(s) (lycopsamine-type PAs) is also imperative for the males to achieve copulation. The increase in the levels of two biogenic amines, octopamine and/or serotonin, in the brain and thoracic ganglia of males fed with specific PA(s) suggested that these alkaloids most likely enhance male mating activity. The results can present new evidence for the evolutionary provenance of pharmacophagous acquisition of PAs in PA-adapted insects.

  18. DNA cross-linking by dehydromonocrotaline lacks apparent base sequence preference.

    Science.gov (United States)

    Rieben, W Kurt; Coulombe, Roger A

    2004-12-01

    Pyrrolizidine alkaloids (PAs) are ubiquitous plant toxins, many of which, upon oxidation by hepatic mixed-function oxidases, become reactive bifunctional pyrrolic electrophiles that form DNA-DNA and DNA-protein cross-links. The anti-mitotic, toxic, and carcinogenic action of PAs is thought to be caused, at least in part, by these cross-links. We wished to determine whether the activated PA pyrrole dehydromonocrotaline (DHMO) exhibits base sequence preferences when cross-linked to a set of model duplex poly A-T 14-mer oligonucleotides with varying internal and/or end 5'-d(CG), 5'-d(GC), 5'-d(TA), 5'-d(CGCG), or 5'-d(GCGC) sequences. DHMO-DNA cross-links were assessed by electrophoretic mobility shift assay (EMSA) of 32P endlabeled oligonucleotides and by HPLC analysis of cross-linked DNAs enzymatically digested to their constituent deoxynucleosides. The degree of DNA cross-links depended upon the concentration of the pyrrole, but not on the base sequence of the oligonucleotide target. Likewise, HPLC chromatograms of cross-linked and digested DNAs showed no discernible sequence preference for any nucleotide. Added glutathione, tyrosine, cysteine, and aspartic acid, but not phenylalanine, threonine, serine, lysine, or methionine competed with DNA as alternate nucleophiles for cross-linking by DHMO. From these data it appears that DHMO exhibits no strong base preference when forming cross-links with DNA, and that some cellular nucleophiles can inhibit DNA cross-link formation.

  19. Evaluation of certain food additives and contaminants. Eightieth report of the Joint FAO/WHO Expert Committee on Food Additives.

    Science.gov (United States)

    2016-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives and contaminants and to prepare specifications for identity and purity. The first part of the report contains a brief description of general considerations addressed at the meeting, including updates on matters of interest to the work of the Committee. A summary follows of the Committee's evaluations of technical, toxicological and/or dietary exposure data for seven food additives (benzoates; lipase from Fusarium heterosporum expressed in Ogataea polymorpha; magnesium stearate; maltotetraohydrolase from Pseudomonas stutzeri expressed in Bacillus licheniformis; mixed β-glucanase, cellulase and xylanase from Rasamsonia emersonii; mixed β-glucanase and xylanase from Disporotrichum dimorphosporum; polyvinyl alcohol (PVA)- polyethylene glycol (PEG) graft copolymer) and two groups of contaminants (non-dioxin-like polychlorinated biphenyls and pyrrolizidine alkaloids). Specifications for the following food additives were revised or withdrawn: advantame; annatto extracts (solavnt extracted bixin, ad solvent-extracted norbixin); food additives containing aluminium and/or silicon (aluminium silicate; calcium aluminium silicate; calcium silicate; silicon dioxide, amorphous; sodium aluminium silicate); and glycerol ester of gum rosin. Annexed to the report are tables or text summarizing the toxicological and dietary exposure information and information on specifications as well as the Committees recommendations on the food additives and contaminants considered at this meeting.

  20. The chemistry of antipredator defense by secondary compounds in neotropical lepidoptera: facts, perspectives and caveats

    Directory of Open Access Journals (Sweden)

    Trigo José R.

    2000-01-01

    Full Text Available Chemical defense against predation in butterflies and moths has been studied since nineteenth century. A classical example is that of the larvae of the monarch butterfly Danaus plexippus, which feed on leaves of Asclepias curassavica (Asclepiadaceae, sequestering cardenolides. The adults are protected against predation by birds. Several other substances may be involved in chemical defense, such as iridoid glycosides, cyanogenic glycosides, glucosinolates, pyrrolizidine and tropane alkaloids, aristolochic acids, glycosidase inhibitors and pyrazines. The acquisition of these substances by lepidopterans can be due to sequestration from larval or adult host plants or de novo biosynthesis. Many Lepidoptera are known to be unpalatable, including the butterflies Troidini (Papilionidae, Pierinae (Pieridae, Eurytelinae, Melitaeinae, Danainae, Ithomiinae, Heliconiinae and Acraeinae (Nymphalidae, and Arctiidae moths, but knowledge of the chemical substances responsible for property is often scarce. This review discusses mainly three topics: field and laboratory observations on rejection of butterflies and moths by predators, correlation between unpalatability and chemicals found in these insects, and bioassays that test the activity of these chemicals against predators. Perspectives and future directions are suggested for this subject.

  1. Investigation of Symphytum cordatum alkaloids by liquid-liquid partitioning, thin-layer chromatography and liquid chromatography-ion-trap mass spectrometry

    International Nuclear Information System (INIS)

    Mroczek, Tomasz; Ndjoko-Ioset, Karine; Glowniak, Kazimierz; Mietkiewicz-Capala, Agnieszka; Hostettmann, Kurt

    2006-01-01

    From the alkalised crude extract of Symphytum cordatum (L.) W.K. roots, pyrrolizidine alkaloids (PAs) were extracted as free tertiary bases and polar N-oxides in a merely one-step liquid-liquid partitioning (LLP) in separation funnel and subsequently pre-fractionated by preparative multiple-development (MD) thin-layer chromatography (TLC) on silica gel plates. In this way three alkaloid fractions of different polarities and retention on silica gel plates were obtained as: the most polar N-oxides of the highest retention, the tertiary bases of medium retention, and diesterified N-oxides of the lowest retention. The former fraction was reduced into free bases by sodium hydrosulfite and purified by LLP on Extrelut-NT3 cartridge. It was further analysed together with the two other fractions by high-performance liquid chromatography (HPLC)-ion-trap mass spectrometry with atmospheric pressure chemical ionization (APCI) interface on XTerra C 18 column using a gradient elution. Based on MS n spectra, 18 various alkaloids have been tentatively determined for the first time in this plant as the following types of structure: echimidine-N-oxide (three diasteroisomers), 7-sarracinyl-9-viridiflorylretronecine (two diasteroisomers), echimidine (two diasteroisomers), lycopsamine (two diasteroisomers), dihydroechinatine-N-oxide, dihydroheliospathuline-N-oxide, lycopsamine-N-oxide (three diasteroisomers), 7-acetyllycopsamine-N-oxide, symphytine-N-oxide (two diasteroisomers) and 2'',3''-epoxyechiumine-N-oxide

  2. [Perceived risks of food contaminants].

    Science.gov (United States)

    Koch, Severine; Lohmann, Mark; Epp, Astrid; Böl, Gaby-Fleur

    2017-07-01

    Food contaminants can pose a serious health threat. In order to carry out adequate risk communication measures, the subjective risk perception of the public must be taken into account. In this context, the breadth of the topic and insufficient terminological delimitations from residues and food additives make an elaborate explanation of the topic to consumers indispensable. A representative population survey used language adequate for lay people and a clear definition of contaminants to measure risk perceptions with regard to food contaminants among the general public. The study aimed to assess public awareness of contaminants and the perceived health risks associated with them. In addition, people's current knowledge and need for additional information, their attitudes towards contaminants, views on stakeholder accountability, as well as compliance with precautionary measures, such as avoiding certain foods to reduce health risks originating from contaminants, were assessed. A representative sample of 1001 respondents was surveyed about food contaminants via computer-assisted telephone interviewing. The majority of respondents rated contaminants as a serious health threat, though few of them spontaneously mentioned examples of undesirable substances in foods that fit the scientific or legal definition of contaminants. Mercury and dioxin were the most well-known contaminants. Only a minority of respondents was familiar with pyrrolizidine alkaloids. The present findings highlight areas that require additional attention and provide implications for risk communication geared to specific target groups.

  3. Antiviral Action of Hydromethanolic Extract of Geopropolis from Scaptotrigona postica against Antiherpes Simplex Virus (HSV-1).

    Science.gov (United States)

    Coelho, Guilherme Rabelo; Mendonça, Ronaldo Zucatelli; Vilar, Karina de Senna; Figueiredo, Cristina Adelaide; Badari, Juliana Cuoco; Taniwaki, Noemi; Namiyama, Gisleine; de Oliveira, Maria Isabel; Curti, Suely Pires; Evelyn Silva, Patricia; Negri, Giuseppina

    2015-01-01

    The studies on chemical composition and biological activity of propolis had focused mainly on species Apis mellifera L. (Hymenoptera: Apidae). There are few studies about the uncommon propolis collected by stingless bees of the Meliponini tribe known as geopropolis. The geopropolis from Scaptotrigona postica was collected in the region of Barra do Corda, Maranhão state, Brazil. The chemical analysis of hydromethanolic extract of this geopropolis (HMG) was carried out through HPLC-DAD-ESI-MS/MS and the main constituents found were pyrrolizidine alkaloids and C-glycosyl flavones. The presence of alkaloids in extracts of propolis is detected for the first time in this sample. The antiviral activity of HMG was evaluated through viral DNA quantification experiments and electron microscopy experiments. Quantification of viral DNA from herpes virus showed reduction of about 98% in all conditions and concentration tested of the HMG extract. The results obtained were corroborated by transmission electron microscopy, in which the images did not show particle or viral replication complex. The antiviral activity of C-glycosyl flavones was reported for a variety of viruses, being observed at different points in the viral replication. This work is the first report about the antiviral activity of geopropolis from Scaptotrigona postica, in vitro, against antiherpes simplex virus (HSV).

  4. Evaluation of antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137 isolated from mangrove soil in Malaysia

    Directory of Open Access Journals (Sweden)

    Hooi-Leng eSer

    2015-12-01

    Full Text Available A well characterized strain, Streptomyces pluripotens MUSC 137 was isolated from mangrove soil at Tanjung Lumpur, Malaysia. The biological activities of this particular strain of Streptomyces were then explored. For experimentation, the extract of fermentation was prepared by using solvent extraction method. The antioxidant activity was examined by using DPPH assay. The cytotoxicity activity of extract was assessed against selected human cancer cell lines, namely colon cancer cells (HCT-116, Caco-2, SW480 & HT-29, breast cancer cell (MCF-7, lung cancer cell (A549, prostate cancer cell (DU145 and cervical cancer cell (Ca Ski. The results showed MUSC 137 extract possessed significant antioxidant activity and cytotoxic effect against some of the tested cancer cell lines. Lowest IC50 was recorded in MCF-7 cells (61.33 ± 17.10 µg/mL, followed by HCT-116 and A549. Subsequently, the extract was subjected to chemical analysis using GC-MS, which led to the identification of chemical constituents present in the extract of MUSC 137. The analysis resulted in the identification of chemical constituents including deferoxamine and pyrrolizidines related-compounds which may responsible for antioxidant and cytotoxic activities observed. The result of the present investigation is the first report on the potential antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137.

  5. Toxicity of dietary Heliotropium circinatum to rats.

    Science.gov (United States)

    Eröksüz, H; Eröksüz, Y; Ozer, H; Ceribasi, A O; Tosun, F; Tamer, U; Kizilay, C Akyüz

    2003-08-01

    Pyrrolizidine alkaloid intoxication was produced in adult, male rats by feeding different levels (0, 1, 3, 5 or 10%) of Heliotropium circinatum for 20 w. Combined GC-MS revealed 0.15% total alkaloid content in the plant material of which 12% and 88% were basic and N-oxide forms, respectively. The specific alkaloids identified were europine (67.33%), heliotrine (16.34%), lasiocarpine (8.12%), heleurine (4.18%), echinatine (1.56%), 7-angeylheliotrine (1.19%), and an unknown alkaloid (1.28%). Neither mortality nor significant clinical changes occurred in test groups. Mild to moderate, dose-related hepatic megalocytosis was the most prominent histopathological finding. In addition to chronic hepatotoxicity, notable medial thickening occurred in the pulmonary arterioles and arteries of the high-dosed groups. This study indicated that H. circinatum plant has limited toxic potential in rats with mild to moderate histological changes and no mortality at the dosing levels, total doses, or time of exposure employed.

  6. Genotoxic action of an aqueous extract of Heliotropium curassavicum var. argentinum.

    Science.gov (United States)

    Carballo, M; Mudry, M D; Larripa, I B; Villamil, E; D'Aquino, M

    1992-06-16

    Heliotropium curassavicum var. argentinum is widely employed in gout, rheumatism, neuralgias, arteriosclerotic disorders, muscular algias, phlebitis, varix and other illnesses. In order to analyze the genotoxic effect produced in vitro by this medicinal plant, chromosomal aberrations (CA), mitotic index (MI) and anaphase delay (AD) were studied in the CHO cell line, with and without the addition of S9 mix. Prepared according to the Argentine pharmacopeia 0.1, 1, 10 and 100 micrograms/ml plant decoction (aqueous extract) were assayed. One hundred cells per culture were studied for CA and AD, while MI was calculated for 2000 nuclei. The results revealed a significant increase in the percentage of abnormal metaphases (p less than 0.001) and in total aberrations (p less than 0.001). Both the MI and the AD affected the cell cycle. All results were enhanced by the addition of an S9 fraction. The toxic effect could be associated with pyrrolizidine alkaloids and their N-oxides, which through a process of in vitro metabolism become activated by microsomal oxidation and change into pyrrolic derivatives.

  7. Indicine N-oxide binds to tubulin at a distinct site and inhibits the assembly of microtubules: a mechanism for its cytotoxic activity.

    Science.gov (United States)

    Appadurai, Prakash; Rathinasamy, Krishnan

    2014-02-10

    Indicine N-oxide, a pyrrolizidine alkaloid present in the plant Heliotropium indicum had shown promising cytotoxic activity in various tumor models. The compound exhibited severe toxicity to hepatocytes and bone marrow cells. The present work was aimed to evaluate the molecular mechanism of the toxicity of indicine N-oxide. We found that indicine N-oxide inhibited the proliferation of various cancer cell lines in a concentration dependent manner with IC50 ranging from 46 to 100 μM. At the half maximal inhibitory concentration it blocked the cell cycle progression at mitosis without significantly altering the organization of the spindle and interphase microtubules. The toxicities of the compound at higher concentrations are attributed to its severe depolymerizing effect on both the interphase and spindle microtubules. Binding studies using purified goat brain tubulin indicated that indicine N-oxide binds to tubulin at a distinct site not shared by colchicine or taxol. It decreased the polymer mass of both purified tubulin and MAP-rich tubulin. It was found to induce cleavage of DNA using pUC18 plasmid. The interactions of indicine N-oxide on DNA were also confirmed by computational analysis; which predicted its binding site at the minor groove of DNA. These studies bring to light that the toxicities of indicine N-oxide were due to its DNA damaging effects and depolymerization of microtubules. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Phase I study of indicine N-oxide in patients with advanced cancer.

    Science.gov (United States)

    Ohnuma, T; Sridhar, K S; Ratner, L H; Holland, J F

    1982-07-01

    Indicine N-oxide is a pyrrolizidine alkaloid isolated from Heliotropium indicum, one of the widely used herbs in Ayurvedic medicine. Thirty-seven patients with solid tumors received the drug: 15 men and 22 women (mean age, 53 years). All had had prior chemotherapy, and 25 had had prior radiotherapy. Eighty-four percent had a performance status of 0-3 (Cancer and Leukemia Group B criteria). The drug was given as a short infusion over 15 minutes and repeated with a median interval of 4 weeks. Doses were escalated from 1 to 9 g/m2. A total of 55 courses were evaluable. Dose-limiting toxic effects were leukopenia and thrombocytopenia, and the toxicity was cumulative with repeated doses. Other toxic effects included nausea and vomiting, anemia, and hepatic dysfunction. The hematologic toxicity tended to be more pronounced in patients with hepatic dysfunction, poor marrow reserve, and heavy prior chemotherapy and radiotherapy. There were no complete or partial responses. One patient with skin melanoma and another with ovarian carcinoma had improvement lasting 2 months. The maximally tolerated dose is 9 g/m2 in our population. A recommended dose for therapeutic study is 7 g/m2. High-risk patients should be started at a dose of 5 g/m2. The treatment may be repeated at 4-week intervals with close monitoring of wbc and platelet counts. Dose reductions may be necessary for repeated courses.

  9. Arbuscular Mycorrhizal Fungi and Plant Chemical Defence: Effects of Colonisation on Aboveground and Belowground Metabolomes.

    Science.gov (United States)

    Hill, Elizabeth M; Robinson, Lynne A; Abdul-Sada, Ali; Vanbergen, Adam J; Hodge, Angela; Hartley, Sue E

    2018-02-01

    Arbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots. Metabolomics analyses revealed that 33 compounds were significantly increased in the root tissue of AMF colonised plants, including seven blumenols, plant-derived compounds known to be associated with AMF colonisation. One of these was a novel structure conjugated with a malonyl-sugar and uronic acid moiety, hitherto an unreported combination. Such structural modifications of blumenols could be significant for their previously reported functional roles associated with the establishment and maintenance of AM colonisation. Pyrrolizidine alkaloids (PAs), key anti-herbivore defence compounds in ragwort, dominated the metabolomic profiles of root and shoot extracts. Analyses of the metabolomic profiles revealed an increase in four PAs in roots (but not shoots) of AMF colonised plants, with the potential to protect colonised plants from below-ground organisms.

  10. Alkaloids in the human food chain--natural occurrence and possible adverse effects.

    Science.gov (United States)

    Koleva, Irina I; van Beek, Teris A; Soffers, Ans E M F; Dusemund, Birgit; Rietjens, Ivonne M C M

    2012-01-01

    Alkaloid-containing plants are an intrinsic part of the regular Western diet. The present paper summarizes the occurrence of alkaloids in the food chain, their mode of action and possible adverse effects including a safety assessment. Pyrrolizidine alkaloids are a reason for concern because of their bioactivation to reactive alkylating intermediates. Several quinolizidine alkaloids, β-carboline alkaloids, ergot alkaloids and steroid alkaloids are active without bioactivation and mostly act as neurotoxins. Regulatory agencies are aware of the risks and have taken or are considering appropriate regulatory actions for most alkaloids. These vary from setting limits for the presence of a compound in feed, foods and beverages, trying to define safe upper limits, advising on a strategy aiming at restrictions in use, informing the public to be cautious or taking specific plant varieties from the market. For some alkaloids known to be present in the modern food chain, e.g., piperine, nicotine, theobromine, theophylline and tropane alkaloids risks coming from the human food chain are considered to be low if not negligible. Remarkably, for many alkaloids that are known constituents of the modern food chain and of possible concern, tolerable daily intake values have so far not been defined. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Alkaloids from single skins of the Argentinian toad Melanophryniscus rubriventris (ANURA, BUFONIDAE): An unexpected variability in alkaloid profiles and a profusion of new structures.

    Science.gov (United States)

    Garraffo, H Martin; Andriamaharavo, Nirina R; Vaira, Marcos; Quiroga, María F; Heit, Cecilia; Spande, Thomas F

    2012-12-01

    GC-MS analysis of single-skins of ten Melanophryniscus rubriventris toads (five collections of two toads each) captured during their breeding season in NW Argentina has revealed a total of 127 alkaloids of which 56 had not been previously detected in any frog or toad. Included among these new alkaloids are 23 new diastereomers of previously reported alkaloids. What is particularly distinguishing about the alkaloid profiles of these ten collections is the occurrence of many of the alkaloids, whether known or new to us, in only one of the ten skins sampled, despite two skins being obtained from each breeding site of the five populations. Many of the alkaloids are of classes known to have structures with branched-chains (e.g. pumiliotoxins and tricyclic structures) that are considered to derive from dietary mites. A large number of previously reported and new alkaloids are also of unclassified structures. Only a very few 3,5-disubstituted-indolizidine or -pyrrolizidine alkaloids are observed that have a straight-chain carbon skeleton and are likely derived from ant prey. The possible relationship of these collections made during the toad's brief breeding episodes to sequestration of dietary arthropods and individual alkaloid profiles is discussed.

  12. NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids.

    Science.gov (United States)

    Leiss, Kirsten A; Choi, Young H; Abdel-Farid, Ibrahim B; Verpoorte, Robert; Klinkhamer, Peter G L

    2009-02-01

    Western flower thrips (Frankliniella occidentalis) has become a key insect pest of agricultural and horticultural crops worldwide. Little is known about host plant resistance to thrips. In this study, we investigated thrips resistance in F (2) hybrids of Senecio jacobaea and Senecio aquaticus. We identified thrips-resistant hybrids applying three different bioassays. Subsequently, we compared the metabolomic profiles of these hybrids applying nuclear magnetic resonance spectroscopy (NMR). The new developments of NMR facilitate a wide range coverage of the metabolome. This makes NMR especially suitable if there is no a priori knowledge of the compounds related to herbivore resistance and allows a holistic approach analyzing different chemical compounds simultaneously. We show that the metabolomes of thrips-resistant and -susceptible hybrids differed considerably. Thrips-resistant hybrids contained higher amounts of the pyrrolizidine alkaloids (PA), jacobine, and jaconine, especially in younger leaves. Also, a flavanoid, kaempferol glucoside, accumulated in the resistant plants. Both PAs and kaempferol are known for their inhibitory effect on herbivores. In resistant and susceptible F (2) hybrids, young leaves showed less thrips damage than old leaves. Consistent with the optimal plant defense theory, young leaves contained increased levels of primary metabolites such as sucrose, raffinose, and stachyose, but also accumulated jacaranone as a secondary plant defense compound. Our results prove NMR as a promising tool to identify different metabolites involved in herbivore resistance. It constitutes a significant advance in the study of plant-insect relationships, providing key information on the implementation of herbivore resistance breeding strategies in plants.

  13. Lack of effect of deferoxamine, dimethyl sulfoxide, and catalase on monocrotaline pyrrole pulmonary injury

    International Nuclear Information System (INIS)

    Bruner, L.H.; Johnson, K.; Carpenter, L.J.; Roth, R.A.

    1987-01-01

    Monocrotaline pyrrole (MCTP) is a reactive metabolite of the pyrrolizidine alkaloid monocrotaline. MCTP given intravenously to rats causes pulmonary hypertension and right ventricular hypertrophy. Lesions in lungs after MCTP treatment contain macrophages and neutrophils, which may contribute to the damage by generation of reactive oxygen metabolites. Rats were treated with MCTP and agents known to protect against oxygen radical-mediated damage in acute models of neutrophil-dependent lung injury. Rats received MCTP and deferoxamine mesylate (DF), dimethyl sulfoxide (DMSO), or polyethylene glycol-coupled catalase (PEG-CAT). MCTP/vehicle-treated controls developed lung injury manifested as increased lung weight, release of lactate dehydrogenase into the airway, and sequestration of 125 I-labeled bovine serum albumin in the lungs. Cotreatment of rats with DF, DMSO, or PEG-CAT did not protect against the injury due to MCTP. These results suggest that toxic oxygen metabolites do not play an important role in the pathogenesis of MCTP-induced pulmonary injury

  14. Nursing protects honeybee larvae from secondary metabolites of pollen.

    Science.gov (United States)

    Lucchetti, Matteo A; Kilchenmann, Verena; Glauser, Gaetan; Praz, Christophe; Kast, Christina

    2018-03-28

    The pollen of many plants contains toxic secondary compounds, sometimes in concentrations higher than those found in the flowers or leaves. The ecological significance of these compounds remains unclear, and their impact on bees is largely unexplored. Here, we studied the impact of pyrrolizidine alkaloids (PAs) found in the pollen of Echium vulgare on honeybee adults and larvae. Echimidine, a PA present in E. vulgare pollen, was isolated and added to the honeybee diets in order to perform toxicity bioassays. While adult bees showed relatively high tolerance to PAs, larvae were much more sensitive. In contrast to other bees, the honeybee larval diet typically contains only traces of pollen and consists predominantly of hypopharyngeal and mandibular secretions produced by nurse bees, which feed on large quantities of pollen-containing bee bread. We quantified the transfer of PAs to nursing secretions produced by bees that had previously consumed bee bread supplemented with PAs. The PA concentration in these secretions was reduced by three orders of magnitude as compared to the PA content in the nurse diet and was well below the toxicity threshold for larvae. Our results suggest that larval nursing protects honeybee larvae from the toxic effect of secondary metabolites of pollen. © 2018 The Authors.

  15. Molecular mechanisms of toxicity of important food-borne phytotoxins.

    Science.gov (United States)

    Rietjens, Ivonne M C M; Martena, Martijn J; Boersma, Marelle G; Spiegelenberg, Wim; Alink, Gerrit M

    2005-02-01

    At present, there is an increasing interest for plant ingredients and their use in drugs, for teas, or in food supplements. The present review describes the nature and mechanism of action of the phytochemicals presently receiving increased attention in the field of food toxicology. This relates to compounds including aristolochic acids, pyrrolizidine alkaloids, beta-carotene, coumarin, the alkenylbenzenes safrole, methyleugenol and estragole, ephedrine alkaloids and synephrine, kavalactones, anisatin, St. John's wort ingredients, cyanogenic glycosides, solanine and chaconine, thujone, and glycyrrhizinic acid. It can be concluded that several of these phytotoxins cause concern, because of their bioactivation to reactive alkylating intermediates that are able to react with cellular macromolecules causing cellular toxicity, and, upon their reaction with DNA, genotoxicity resulting in tumors. Another group of the phytotoxins presented is active without the requirement for bioactivation and, in most cases, these compounds appear to act as neurotoxins interacting with one of the neurotransmitter systems. Altogether, the examples presented illustrate that natural does not equal safe and that in modern society adverse health effects, upon either acute or chronic exposure to phytochemicals, can occur as a result of use of plant- or herb-based foods, teas, or other extracts.

  16. Personal Care Products Are Only One of Many Exposure Routes of Natural Toxic Substances to Humans and the Environment

    Directory of Open Access Journals (Sweden)

    Thomas D. Bucheli

    2018-01-01

    Full Text Available The special issue “A Critical View on Natural Substances in Personal Care Products” is dedicated to addressing the multidisciplinary special challenges of natural ingredients in personal care products (PCP and addresses also environmental exposure. In this perspective article, we argue that environmental exposure is probably not so much dominated by PCP use, but in many cases by direct emission from natural or anthropogenically managed vegetation, including agriculture. In support of this hypothesis, we provide examples of environmental fate and behaviour studies for compound classes that are either listed in the International Nomenclature of Cosmetics Ingredients (INCI or have been discussed in a wider context of PCP applications and have been classified as potentially harmful to humans and the environment. Specifically, these include estrogenic isoflavones, the carcinogenic ptaquiloside and pyrrolizidine alkaloids, saponins, terpenes and terpenoids, such as artemisinin, and mycotoxins. Research gaps and challenges in the domains of human and environmental exposure assessment of natural products common to our currently rather separated research communities are highlighted.

  17. Investigation of Symphytum cordatum alkaloids by liquid-liquid partitioning, thin-layer chromatography and liquid chromatography-ion-trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mroczek, Tomasz [Department of Pharmacognosy with Medicinal Plants Laboratory, Medical University, 1 Chodzki St., 20-093 Lublin (Poland)]. E-mail: tmroczek@pharmacognosy.org; Ndjoko-Ioset, Karine [Laboratoire de Pharmacognosie et Phytochimie, Ecole de Pharmacie Geneve-Lausanne, Universite de Geneve, Quai Ernest-Ansermet 30, CH-1211 Geneva 4 (Switzerland); Glowniak, Kazimierz [Department of Pharmacognosy with Medicinal Plants Laboratory, Medical University, 1 Chodzki St., 20-093 Lublin (Poland); Mietkiewicz-Capala, Agnieszka [Department of Pharmacognosy with Medicinal Plants Laboratory, Medical University, 1 Chodzki St., 20-093 Lublin (Poland); Hostettmann, Kurt [Laboratoire de Pharmacognosie et Phytochimie, Ecole de Pharmacie Geneve-Lausanne, Universite de Geneve, Quai Ernest-Ansermet 30, CH-1211 Geneva 4 (Switzerland)

    2006-05-04

    From the alkalised crude extract of Symphytum cordatum (L.) W.K. roots, pyrrolizidine alkaloids (PAs) were extracted as free tertiary bases and polar N-oxides in a merely one-step liquid-liquid partitioning (LLP) in separation funnel and subsequently pre-fractionated by preparative multiple-development (MD) thin-layer chromatography (TLC) on silica gel plates. In this way three alkaloid fractions of different polarities and retention on silica gel plates were obtained as: the most polar N-oxides of the highest retention, the tertiary bases of medium retention, and diesterified N-oxides of the lowest retention. The former fraction was reduced into free bases by sodium hydrosulfite and purified by LLP on Extrelut-NT3 cartridge. It was further analysed together with the two other fractions by high-performance liquid chromatography (HPLC)-ion-trap mass spectrometry with atmospheric pressure chemical ionization (APCI) interface on XTerra C{sub 18} column using a gradient elution. Based on MS {sup n} spectra, 18 various alkaloids have been tentatively determined for the first time in this plant as the following types of structure: echimidine-N-oxide (three diasteroisomers), 7-sarracinyl-9-viridiflorylretronecine (two diasteroisomers), echimidine (two diasteroisomers), lycopsamine (two diasteroisomers), dihydroechinatine-N-oxide, dihydroheliospathuline-N-oxide, lycopsamine-N-oxide (three diasteroisomers), 7-acetyllycopsamine-N-oxide, symphytine-N-oxide (two diasteroisomers) and 2'',3''-epoxyechiumine-N-oxide.

  18. Studies of Silyl-Transfer Photochemical Reactions of N-[(Trimethylsilyl)alkyl]saccharins

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Won; Oh, Sun Wha; Park, Hea Jung; Yoon, Ung Chan [Pusan National University, Busan (Korea, Republic of); Kim, Dong Uk [Daegu National University of Education, Daegu (Korea, Republic of); Xue, Jin Ying [Harbin Normal University, Harbin (China); Mariano, Patrick S. [University of New Mexico, Albuquerque (United States)

    2010-09-15

    Photochemical studies of N-[(trimethylsilyl)alkyl]saccharins were carried out to investigate their photochemical behavior. Depending on the nature of the substrate and the solvent system employed, reactions of these substances can take place by either SET-promoted silyl migration from carbon to either the amide carbonyl or sulfonyl oxygen or by a N-S homolysis route. The results of the current studies show that an azomethine ylide, arising from a SET-promoted silyl migration pathway, is generated in photoreactions of N-[(trimethylsilyl)methyl]saccharin and this intermediate reacts to give various photoproducts depending on the conditions employed. In addition, irradiation of N-[(trimethylsily)ethyl]saccharin produces an excited state that reacts through two pathways, the relative importance is governed by solvent polarity and protic nature. Finally, photoirradiation of N-[(trimethylsilyl)propyl]saccharin in a highly polar solvent system comprised of 35% aqueous MeOH gives rise to formation of a tricyclic pyrrolizidine and saccharin that generated via competitive SET-promoted silyl transfer and γ-hydrogen abstraction pathways.

  19. Nursing protects honeybee larvae from secondary metabolites of pollen

    Science.gov (United States)

    Lucchetti, Matteo A.; Kilchenmann, Verena; Glauser, Gaetan; Praz, Christophe

    2018-01-01

    The pollen of many plants contains toxic secondary compounds, sometimes in concentrations higher than those found in the flowers or leaves. The ecological significance of these compounds remains unclear, and their impact on bees is largely unexplored. Here, we studied the impact of pyrrolizidine alkaloids (PAs) found in the pollen of Echium vulgare on honeybee adults and larvae. Echimidine, a PA present in E. vulgare pollen, was isolated and added to the honeybee diets in order to perform toxicity bioassays. While adult bees showed relatively high tolerance to PAs, larvae were much more sensitive. In contrast to other bees, the honeybee larval diet typically contains only traces of pollen and consists predominantly of hypopharyngeal and mandibular secretions produced by nurse bees, which feed on large quantities of pollen-containing bee bread. We quantified the transfer of PAs to nursing secretions produced by bees that had previously consumed bee bread supplemented with PAs. The PA concentration in these secretions was reduced by three orders of magnitude as compared to the PA content in the nurse diet and was well below the toxicity threshold for larvae. Our results suggest that larval nursing protects honeybee larvae from the toxic effect of secondary metabolites of pollen. PMID:29563265

  20. Methyl 11-hydroxy-9-[1-(4-methoxyphenyl-4-oxo-3-phenoxyazetidin-2-yl]-18-oxo-10-oxa-2-azapentacyclo[9.7.0.01,8.02,6.012,17]octadeca-12(17,13,15-triene-8-carboxylate

    Directory of Open Access Journals (Sweden)

    S. Sundaramoorthy

    2012-07-01

    Full Text Available In the title compound, C34H32N2O8, one of the pyrrolidine rings in the pyrrolizidine ring system adopts a twist conformation, whereas the other ring adopts an envelope conformation (C atom as flap. The five-membered ring in the indene ring system and the fused furan ring also adopt envelope conformations (C and O atoms as flaps, respectively. The β-lactam ring makes dihedral angles of 23.41 (2 and 25.98 (2°, respectively, with the attached methoxyphenyl and phenoxy rings. The molecular conformation is stabilized by an intramolecular O—H...N hydrogen bond, generating an S(5 motif. In the crystal, molecules are linked into C(12 chains running along the a axis by C—H...O hydrogen bonds. The structure is further consolidated by weak intermolecular C—H...π and π–π interactions [centroid–centroid distance = 3.7987 (14 Å].

  1. Studies of Silyl-Transfer Photochemical Reactions of N-[(Trimethylsilyl)alkyl]saccharins

    International Nuclear Information System (INIS)

    Cho, Dae Won; Oh, Sun Wha; Park, Hea Jung; Yoon, Ung Chan; Kim, Dong Uk; Xue, Jin Ying; Mariano, Patrick S.

    2010-01-01

    Photochemical studies of N-[(trimethylsilyl)alkyl]saccharins were carried out to investigate their photochemical behavior. Depending on the nature of the substrate and the solvent system employed, reactions of these substances can take place by either SET-promoted silyl migration from carbon to either the amide carbonyl or sulfonyl oxygen or by a N-S homolysis route. The results of the current studies show that an azomethine ylide, arising from a SET-promoted silyl migration pathway, is generated in photoreactions of N-[(trimethylsilyl)methyl]saccharin and this intermediate reacts to give various photoproducts depending on the conditions employed. In addition, irradiation of N-[(trimethylsily)ethyl]saccharin produces an excited state that reacts through two pathways, the relative importance is governed by solvent polarity and protic nature. Finally, photoirradiation of N-[(trimethylsilyl)propyl]saccharin in a highly polar solvent system comprised of 35% aqueous MeOH gives rise to formation of a tricyclic pyrrolizidine and saccharin that generated via competitive SET-promoted silyl transfer and γ-hydrogen abstraction pathways

  2. A micro-Raman spectroscopic investigation of leukemic U-937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine

    Science.gov (United States)

    le Roux, Karlien; Prinsloo, Linda C.; Hussein, Ahmed A.; Lall, Namrita

    In South Africa traditional medicine plays an important role in primary health care and therefore it is very important that the medicinal use of plants is scientifically tested for toxicity and effectiveness. It was established that the ethanolic extract of the leaves of Crotalaria agatiflora, as well as the isolated compound madurensine, is moderately toxic against leukemic U-937 cells. Light microscopic investigations indicated that symptoms of cell death are induced during treatments, but flow cytometry analysis of treated cells, using annexin-V and propidium iodide, showed that apoptosis and necrosis are insignificantly induced. The Raman results suggested that protein extraction and DNA melting occur in the cells during treatment with the ethanolic extracts (IC50 value 73.9 μg/mL), drastically changing the molecular content of the cells. In contrast, treatment with madurensine (IC50 value 136.5 μg/mL), an isolated pyrrolizidine alkaloid from the ethanolic extract of the leaves, did not have the same effect. The results are also compared to that of cells treated with actinomycin D, a compound known to induce apoptosis. The investigation showed that micro-Raman spectroscopy has great promise to be used for initial screening of samples to determine the effects of different treatments on cancerous cell lines together with conventional methods. The results highlight the fact that for many natural products used for medicinal purposes, the therapeutic effect of the crude plant extract tends to be significantly more effective than the particular action of its individual constituents.

  3. Toxicokinetic comparison of 14C-monocrotaline and 14C-senecionine in the rat

    International Nuclear Information System (INIS)

    Estep, J.E.; Lame', M.W.; Morin, D.; Segall, H.J.; Wilson, D.W.

    1990-01-01

    Two commonly studied macrocyclic pyrrolizidine alkaloids (PAs) are monocrotaline (MCT) and senecionine (SEN). Both PAs exhibit hepatic, renal and pulmonary toxicity, but SEN primarily causes centrol lobular necrosis of the liver while MCT promotes the development of pulmonary hypertension with decreased liver necrosis. Previous work in our laboratory has shown that MCT (60mg/kg IV) is sequestered in the red blood cell (RBC). To determine if this retention could play a role in MCT pulmonary toxicity, we compared the toxicokinetics of MCT with SEN. Both compounds exhibited a similar decline in plasma concentration (as measured by carbon 14) by the end of seven hours. The decrease in radioactivity associated with RBC's differed significantly with MCT declining from 144.34 to 81.46 nmol MCT-equivalents/gm of RBC's, while SEN decreased from 108.55 to 26.18 nmol SEN-equivalents/gm. Fortyfour versus 12 percent of the radioactivity was excreted in the bile for SEN and MCT dosed rats, respectively. In the absence of bile duct cannulation, plasma and RBC levels of radioactivity were identical to cannulated animals receiving MCT while SEN dosed animals exhibited almost twice the radioactivity associated with the RBC's, suggesting enterohepatic recirculation. The results of these studies suggest that the RBC-MCT complex is involved in MCT pulmonary toxicity

  4. Bioremediation of trinitrotolulene by a ruminal microorganism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin; Williamson, K.J.; Craig, A.M. [Oregon State Univ., Corvallis, OR (United States)

    1995-10-01

    2,4,6-trinitrotoluene (TNT) has been widely used for the production of explosives because of its low boiling point, high stability, low impact sensitivity, and safe manufacture. More than 1,100 military facilities, each potentially contaminated with munitions waste, are expected to require treatment of more than one million cubic yards of contaminated soils. The cost associated with remediation of these sites has been estimated to be in excess of $1.5 billion. Recently, researchers have studied ruminal microorganisms in relation to their ability to degrade xenobiotic compounds. Many of these organisms are strict anaerobes with optimal redox potentials as low as -420 mV. Ruminal organisms have been shown capable of destroying some pesticides, such as parathion, p-nitrophenol, and biphenyl-type compounds; thiono isomers, and nitrogen-containing heterocyclic plant toxins such as the pyrrolizidine alkaloids. Many of these compounds have structures similar to TNT. A TNT-degrading ruminal microorganism has been isolated from goat rumen fluid with successive enrichments on triaminotoluene (TAT) and TNT. The isolate, designated G.8, utilizes nitrate and lactate as the primary energy source. G.8 was able to tolerate and metabolite levels of TNT up to the saturation point of 125 mg/l.

  5. METABOLISM, GENOTOXICITY, AND CARCINOGENICITY OF COMFREY

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Fu, Peter P.; Fuscoe, James C.; Luan, Yang; Chen, Tao

    2018-01-01

    Comfrey has been consumed by humans as a vegetable and a tea and used as an herbal medicine for more than 2000 years. Comfrey, however, produces hepatotoxicity in livestock and humans and carcinogenicity in experimental animals. Comfrey contains as many as 14 pyrrolizidine alkaloids (PA), including 7-acetylintermedine, 7-acetyllycopsamine, echimidine, intermedine, lasiocarpine, lycopsamine, myoscorpine, symlandine, symphytine, and symviridine. The mechanisms underlying comfrey-induced genotoxicity and carcinogenicity are still not fully understood. The available evidence suggests that the active metabolites of PA in comfrey interact with DNA in liver endothelial cells and hepatocytes, resulting in DNA damage, mutation induction, and cancer development. Genotoxicities attributed to comfrey and riddelliine (a representative genotoxic PA and a proven rodent mutagen and carcinogen) are discussed in this review. Both of these compounds induced similar profiles of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts and similar mutation spectra. Further, the two agents share common mechanisms of drug metabolism and carcinogenesis. Overall, comfrey is mutagenic in liver, and PA contained in comfrey appear to be responsible for comfrey-induced toxicity and tumor induction. PMID:21170807

  6. Biomarkers for ragwort poisoning in horses: identification of protein targets

    Directory of Open Access Journals (Sweden)

    Beynon Robert J

    2008-08-01

    Full Text Available Abstract Background Ingestion of the poisonous weed ragwort (Senecio jacobea by horses leads to irreversible liver damage. The principal toxins of ragwort are the pyrrolizidine alkaloids that are rapidly metabolised to highly reactive and cytotoxic pyrroles, which can escape into the circulation and bind to proteins. In this study a non-invasive in vitro model system has been developed to investigate whether pyrrole toxins induce specific modifications of equine blood proteins that are detectable by proteomic methods. Results One dimensional gel electrophoresis revealed a significant alteration in the equine plasma protein profile following pyrrole exposure and the formation of a high molecular weight protein aggregate. Using mass spectrometry and confirmation by western blotting the major components of this aggregate were identified as fibrinogen, serum albumin and transferrin. Conclusion These findings demonstrate that pyrrolic metabolites can modify equine plasma proteins. The high molecular weight aggregate may result from extensive inter- and intra-molecular cross-linking of fibrinogen with the pyrrole. This model has the potential to form the basis of a novel proteomic strategy aimed at identifying surrogate protein biomarkers of ragwort exposure in horses and other livestock.

  7. Metabolism, genotoxicity, and carcinogenicity of comfrey.

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Fu, Peter P; Fuscoe, James C; Luan, Yang; Chen, Tao

    2010-10-01

    Comfrey has been consumed by humans as a vegetable and a tea and used as an herbal medicine for more than 2000 years. Comfrey, however, produces hepatotoxicity in livestock and humans and carcinogenicity in experimental animals. Comfrey contains as many as 14 pyrrolizidine alkaloids (PA), including 7-acetylintermedine, 7-acetyllycopsamine, echimidine, intermedine, lasiocarpine, lycopsamine, myoscorpine, symlandine, symphytine, and symviridine. The mechanisms underlying comfrey-induced genotoxicity and carcinogenicity are still not fully understood. The available evidence suggests that the active metabolites of PA in comfrey interact with DNA in liver endothelial cells and hepatocytes, resulting in DNA damage, mutation induction, and cancer development. Genotoxicities attributed to comfrey and riddelliine (a representative genotoxic PA and a proven rodent mutagen and carcinogen) are discussed in this review. Both of these compounds induced similar profiles of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts and similar mutation spectra. Further, the two agents share common mechanisms of drug metabolism and carcinogenesis. Overall, comfrey is mutagenic in liver, and PA contained in comfrey appear to be responsible for comfrey-induced toxicity and tumor induction.

  8. Absence of mutagenic effects of a particular Symphytum officinale L. liquid extract in the bacterial reverse mutation assay.

    Science.gov (United States)

    Benedek, Birgit; Ziegler, Andreas; Ottersbach, Peter

    2010-03-01

    Comfrey (Symphytum officinale L.) root is traditionally used for the topical treatment of contusions, strains and sprains. Besides allantoin and rosmarinic acid, which are discussed as pharmacologically active principles, the drug contains pyrrolizidine alkaloids (PAs) known for their hepatotoxic, carcinogenic and mutagenic properties. The topical herbal medicinal products Kytta-Salbe f and Kytta-Plasma f contain a PA-free liquid extract from comfrey root as active substance. The aim of this study was to demonstrate the absence of genotoxic effects of this special extract in the bacterial reverse mutation assay (Ames test). Briefly, comfrey root liquid extract was investigated for its ability to induce gene mutations in Salmonella typhimurium strains TA 98, TA 100, TA 102, TA 1535 and TA 1537 with and without metabolic activation using the mammalian microsomal fraction S9 mix. Reference mutagens were used to check the validity of the experiments. Comfrey root fluid extract showed no biologically relevant increases in revertant colony numbers of any of the five tester strains, neither in the presence nor in the absence of metabolic activation. In conclusion, the comfrey root fluid extract contained in Kytta-Salbe f and Kytta-Plasma f was not mutagenic in the bacterial reverse mutation assay. (c) 2009 John Wiley & Sons, Ltd.

  9. Penetration of lycopsamine from a comfrey ointment through human epidermis.

    Science.gov (United States)

    Jedlinszki, Nikoletta; Balázs, Boglárka; Csányi, Erzsébet; Csupor, Dezső

    2017-02-01

    Mutagenic and teratogenic pyrrolizidine alkaloids (PAs) have been identified in several plant species. The industrially most important PA-containing plant is Symphytum officinale (common comfrey). The application of its root is restricted in several countries due to its PA content. In medicines, the daily alkaloid quantity and duration of treatment may be limited even in case of topical application. Due to the confirmed good absorption of PAs from the gastrointestinal tract, the prohibition of oral use is justified, however the limitation of external application is not supported by relevant data. Penetration experiments on human skin are not available to be a rational basis for limitation. The aim of our work was to carry out pharmacokinetic studies on the diffusion and penetration of lycopsamine (a main PA of comfrey) from a Symphytum product through a synthetic membrane and human skin. Investigations were carried out on vertical Franz diffusion cell and lycopsamine was quantified by a validated LC-MS method. The amount of lycopsamine diffused through a synthetic membrane varied between 0.11% and 0.72% (within 24 h). On human epidermis, the rate of penetration was lower (0.04-0.22%). Our results may contribute to the more realistic toxicological assessment of externally applied PA-containing products. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Formulation and in vitro/in vivo evaluation of levodopa transdermal delivery systems.

    Science.gov (United States)

    Lee, Kyung Eun; Choi, Yun Jung; Oh, Byu Ree; Chun, In Koo; Gwak, Hye Sun

    2013-11-18

    This study aims to investigate the feasibility of Levodopa transdermal delivery systems (TDSs). Levodopa TDSs were formulated using various vehicles and permeation enhancers, and in vitro permeation and in vivo pharmacokinetic studies were carried out. In the in vitro study, ester-type vehicles showed relatively high enhancing effects; propylene glycol monocaprylate and propylene glycol monolaurate showed the highest permeation fluxes from both solution and pressure sensitive adhesive (PSA) TDS formulations. Lag time was dramatically shortened with PSA TDS formulations as compared with solution formulations. In the in vivo study, the addition of fatty acids increased blood drug concentrations regardless of the kind or concentration of fatty acid; the AUCinf increased up to 8.7 times as compared with propylene glycol (PG) alone. PSA TDS containing 10% linoleic acid exhibited prolonged Tmax as compared with oral form. Total clearance of L-dopa from PSA TDSs was significantly lower than from oral form (up to 86.8 times). Especially, PSA TDS containing 10% linoleic acid (LOA) revealed 76.2 fold higher AUCinf than oral administration. Based on our results, the L-dopa PSA TDS containing PG with 10% LOA could be used as a good adjuvant therapy for Parkinson's disease patients who experience symptom fluctuation by L-dopa oral administration. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A spectrophotometric study of the reaction of copigmentation of malvin and tannic acid

    Directory of Open Access Journals (Sweden)

    JASMINA M. DIMITRIC-MARKOVIC

    1999-10-01

    Full Text Available The reaction of copigmentation of malvidin 3,5-diglucoside and tannic acid of the ester type was studied. The interactions of these molecules were observed via UV-VIS absorption spectroscopy. It was established that the pH of the medium, the concentration of the copigmentating molecules, and the temperature affect the copigmentation process. The calculated equilibrium constant of the reaction of pH 3.00 is K = 226.9, and at pH 3.65 it is K = 277.0. The change of the Gibbs free energy in pH 3.00 buffer is DG = -13.4 kJ/mol, and in pH 3.65 buffer it is DG = -13.9 kJ/mol. The stoichiometric ratio of the components in the copigment is 1:1, at both pH values. It is evident from the calculated values of the thermodynamic functions that the process is thermodynamically favorable in the lower temperature range. Temperature appears as the basic parameter of the thermodynamic feasability of the process, since the copigmentation process is exothermic (DHpH=3.00 = - 41.6 kJ/mol and DHpH=3.65 = - 41.6 kJ/mol and proceeds with a decrease in entropy (DSpH=3.00 = - 94.4 J/mol K and DSpH=3.65 = -92.7 J/mol K.

  12. Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers.

    Science.gov (United States)

    Wu, Guo-min; Liu, Di; Liu, Gui-feng; Chen, Jian; Huo, Shu-ping; Kong, Zhen-wu

    2015-01-01

    Thermoset nanocomposites were prepared from a waterborne terpene-maleic ester type epoxy resin (WTME) and cellulose nanowhiskers (CNWs). The curing behaviors of WTME/CNWs nanocomposites were measured with rotational rheometer. The results show that the storage modulus (G') of WTME/CNWs nanocomposites increased with the increase of CNWs content. Observations by scanning electron microscopy (SEM) demonstrate that the incorporation of CNWs in WTME matrix caused microphase separation and destroyed the compactness of the matrix. This effect leads to the glass transition temperatures (Tg) of WTME/CNWs nanocomposites slightly decrease with the increase of CNWs content, which were confirmed by both DSC and DMA tests. The mechanical properties of WTME/CNWs nanocomposites were investigated by tensile testing. The Yong's modulus (E) and tensile strength (σb) of the nanocomposites were significantly reinforced by the addition of CNWs. These results indicate that CNWs exhibit excellent reinforcement effect on WTME matrix, due to the formation and increase of interfacial interaction by hydrogen bonds between CNWs nano-filler and the WTME matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Interaction of 3‧,4‧,6‧-trimyristoyl-uridine derivative as potential anticancer drug with phospholipids of tumorigenic and non-tumorigenic cells

    Science.gov (United States)

    Salis, Luiz Fernando Grosso; Jaroque, Guilherme Nuñez; Escobar, Jhon Fernando Berrío; Giordani, Cristiano; Martinez, Alejandro Martinez; Fernández, Diana Margarita Márquez; Castelli, Francesco; Sarpietro, Maria Grazia; Caseli, Luciano

    2017-12-01

    Investigating the mechanism of action of drugs whose pharmaceutical activity is associated with cell membranes is fundamental to comprehending the biochemical and biophysical processes that occur on membrane surfaces. In this work, we investigated the interaction of an ester-type derivative of uridine, 3‧,4‧,6‧-trimyristoyl uridine, with models for cell membranes formed by lipid monolayers at the air-water interface. For that, selected lipids have been chosen in order to mimic tumorigenic and non-tumorigenic cells. For mixed monolayers with 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dihexadecanoyl-sn-glycero-3-phospho-L-serine (DPPS), the surface pressure-area isotherms exhibited a noticeable shift to lower areas in relation to the areas predicted for ideal mixtures, indicating a condensation of the monolayer structure. Changes in the viscoelastic properties of the interfacial film could be inferred by analyzing the compressibility modulus of the monolayer. Structural and morphological changes were also evidenced by using vibrational spectroscopy and Brewster angle microscopy, respectively, with distinctive effects on DPPC and DPPS. As conclusion we can state that the lipid composition of the monolayer modulates the interaction with this lipophilic drug, which may have important implications in understanding how this drug acts on specific sites of the cellular membrane.

  14. Development of lidocaine gels for enhanced local anesthetic action.

    Science.gov (United States)

    Shin, Sang-Chul; Cho, Cheong-Weon; Yang, Kyu-Ho

    2004-12-09

    In relieving local pains, lidocaine, one of ester type local anesthetics, has been used. To develop the lidocaine gels of enhanced local anesthetic effects, hydroxypropyl methylcellulose (HPMC) based bioadhesive polymer gel containing an enhancer was formulated. As the drug concentration in the gels increased up to 3%, the permeation rate of drug linearly increased, thereafter reaching a plateau. As the temperature of surrounding solutions increased, the permeation of drug increased. The activation energy of drug permeation was 3.29 kcal/mol for lidocaine. The permeation rate of drug through skin was studied using various enhancers, such as glycols, non-ionic surfactants, and bile salts. Among the enhancers studied, diethylene glycol showed the greatest enhancing effects on drug permeation through skin. The analgesic activity was examined using a tail-flick analgesimeter. In the area under the efficacy curve (AUEC) of the rat-tail flick tests, lidocaine gel containing diethylene glycol showed about 3.89-fold increase in analgesic activity compared with the control. The addition of vasoconstrictor in the gels prolonged the analgesic effects. The result of this study supports that the bioadhesive gel with efficient anesthetic effect could be developed using HPMC with combination of enhancer and vasoconstrictor.

  15. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents

    Directory of Open Access Journals (Sweden)

    J.B. Calixto

    2000-02-01

    Full Text Available This review highlights the current advances in knowledge about the safety, efficacy, quality control, marketing and regulatory aspects of botanical medicines. Phytotherapeutic agents are standardized herbal preparations consisting of complex mixtures of one or more plants which contain as active ingredients plant parts or plant material in the crude or processed state. A marked growth in the worldwide phytotherapeutic market has occurred over the last 15 years. For the European and USA markets alone, this will reach about $7 billion and $5 billion per annum, respectively, in 1999, and has thus attracted the interest of most large pharmaceutical companies. Insufficient data exist for most plants to guarantee their quality, efficacy and safety. The idea that herbal drugs are safe and free from side effects is false. Plants contain hundreds of constituents and some of them are very toxic, such as the most cytotoxic anti-cancer plant-derived drugs, digitalis and the pyrrolizidine alkaloids, etc. However, the adverse effects of phytotherapeutic agents are less frequent compared with synthetic drugs, but well-controlled clinical trials have now confirmed that such effects really exist. Several regulatory models for herbal medicines are currently available including prescription drugs, over-the-counter substances, traditional medicines and dietary supplements. Harmonization and improvement in the processes of regulation is needed, and the general tendency is to perpetuate the German Commission E experience, which combines scientific studies and traditional knowledge (monographs. Finally, the trend in the domestication, production and biotechnological studies and genetic improvement of medicinal plants, instead of the use of plants harvested in the wild, will offer great advantages, since it will be possible to obtain uniform and high quality raw materials which are fundamental to the efficacy and safety of herbal drugs.

  16. Herbal hepatotoxicity in traditional and modern medicine: actual key issues and new encouraging steps

    Science.gov (United States)

    Teschke, Rolf; Eickhoff, Axel

    2015-01-01

    Plants are natural producers of chemical substances, providing potential treatment of human ailments since ancient times. Some herbal chemicals in medicinal plants of traditional and modern medicine carry the risk of herb induced liver injury (HILI) with a severe or potentially lethal clinical course, and the requirement of a liver transplant. Discontinuation of herbal use is mandatory in time when HILI is first suspected as diagnosis. Although, herbal hepatotoxicity is of utmost clinical and regulatory importance, lack of a stringent causality assessment remains a major issue for patients with suspected HILI, while this problem is best overcome by the use of the hepatotoxicity specific CIOMS (Council for International Organizations of Medical Sciences) scale and the evaluation of unintentional reexposure test results. Sixty five different commonly used herbs, herbal drugs, and herbal supplements and 111 different herbs or herbal mixtures of the traditional Chinese medicine (TCM) are reported causative for liver disease, with levels of causality proof that appear rarely conclusive. Encouraging steps in the field of herbal hepatotoxicity focus on introducing analytical methods that identify cases of intrinsic hepatotoxicity caused by pyrrolizidine alkaloids, and on omics technologies, including genomics, proteomics, metabolomics, and assessing circulating micro-RNA in the serum of some patients with intrinsic hepatotoxicity. It remains to be established whether these new technologies can identify idiosyncratic HILI cases. To enhance its globalization, herbal medicine should universally be marketed as herbal drugs under strict regulatory surveillance in analogy to regulatory approved chemical drugs, proving a positive risk/benefit profile by enforcing evidence based clinical trials and excellent herbal drug quality. PMID:25954198

  17. Senecio brasiliensis (Asteraceae poisoning in Murrah buffaloes in Rio Grande do Sul Intoxicação natural por Senecio brasiliensis (Asteraceae em bubalinos no Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    André M.R. Corrêa

    2008-03-01

    Full Text Available Thirteen (14.4% out of 90 Murrah buffaloes (Bubalus bubalis became ill after con-sumption of Senecio brasiliensis, and 11 (12.2% of them died. The buffaloes were kept in a highly Senecio brasiliensis infested area. The poisoning occurred in June-August 2006 on a farm in the county of Nova Prata, Rio Grande do Sul, southern Brazil. Clinical signs included weakness, apathy, progressive weight loss, permanent decubitus, and diarrhea. Necropsy was performed in 2 of the 11 buffaloes that died. The pathological findings were typical of poisoning by pyrrolizidine alkaloids. High infestation of pastures with S. brasiliensis, severe drought, and consequent starvation were the main epidemiological factors associated with the poisoning here described.Descreve-se a ocorrência de um surto de intoxicação espontânea por Senecio brasiliensis em búfalos Murrah (Bubalus bubalis em uma propriedade localizada no município de Nova Prata, Estado do Rio Grande do Sul, no período de junho a agosto de 2006. De um total de 90 búfalos, 13 adoeceram e 11 morreram. Os animais eram mantidos em áreas de pastoreio altamente infestadas por S. brasiliensis. Os principais sinais clínicos relatados foram letargia, apatia, emagrecimento progressivo, diarréia e decúbito permanente. Necropsia foi feita em dois dos 11 animais mortos. As lesões foram características de intoxicações por alcalóides pirrolizidínicos. A grande quantidade da planta, forte estiagem e desnutrição conseqüente foram os principais achados epidemiológicos associados com a mortalidade.

  18. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Science.gov (United States)

    Röder, Gregory; Rahier, Martine; Naisbit, Russell E

    2011-05-04

    Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae) that possesses constitutive chemical defence (pyrrolizidine alkaloids) and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae). Plants were induced in the field using chemical elicitors of the jasmonic acid (JA) and salicylic acid (SA) pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  19. Herbal hepatotoxicity in traditional and modern medicine: actual key issues and new encouraging steps.

    Science.gov (United States)

    Teschke, Rolf; Eickhoff, Axel

    2015-01-01

    Plants are natural producers of chemical substances, providing potential treatment of human ailments since ancient times. Some herbal chemicals in medicinal plants of traditional and modern medicine carry the risk of herb induced liver injury (HILI) with a severe or potentially lethal clinical course, and the requirement of a liver transplant. Discontinuation of herbal use is mandatory in time when HILI is first suspected as diagnosis. Although, herbal hepatotoxicity is of utmost clinical and regulatory importance, lack of a stringent causality assessment remains a major issue for patients with suspected HILI, while this problem is best overcome by the use of the hepatotoxicity specific CIOMS (Council for International Organizations of Medical Sciences) scale and the evaluation of unintentional reexposure test results. Sixty five different commonly used herbs, herbal drugs, and herbal supplements and 111 different herbs or herbal mixtures of the traditional Chinese medicine (TCM) are reported causative for liver disease, with levels of causality proof that appear rarely conclusive. Encouraging steps in the field of herbal hepatotoxicity focus on introducing analytical methods that identify cases of intrinsic hepatotoxicity caused by pyrrolizidine alkaloids, and on omics technologies, including genomics, proteomics, metabolomics, and assessing circulating micro-RNA in the serum of some patients with intrinsic hepatotoxicity. It remains to be established whether these new technologies can identify idiosyncratic HILI cases. To enhance its globalization, herbal medicine should universally be marketed as herbal drugs under strict regulatory surveillance in analogy to regulatory approved chemical drugs, proving a positive risk/benefit profile by enforcing evidence based clinical trials and excellent herbal drug quality.

  20. Practical application of in silico fragmentation based residue screening with ion mobility high-resolution mass spectrometry.

    Science.gov (United States)

    Kaufmann, Anton; Butcher, Patrick; Maden, Kathry; Walker, Stephan; Widmer, Mirjam

    2017-07-15

    A screening concept for residues in complex matrices based on liquid chromatography coupled to ion mobility high-resolution mass spectrometry LC/IMS-HRMS is presented. The comprehensive four-dimensional data (chromatographic retention time, drift time, mass-to-charge and ion abundance) obtained in data-independent acquisition (DIA) mode was used for data mining. An in silico fragmenter utilizing a molecular structure database was used for suspect screening, instead of targeted screening with reference substances. The utilized data-independent acquisition mode relies on the MS E concept; where two constantly alternating HRMS scans (low and high fragmentation energy) are acquired. Peak deconvolution and drift time alignment of ions from the low (precursor ion) and high (product ion) energy scan result in relatively clean product ion spectra. A bond dissociation in silico fragmenter (MassFragment) supplied with mol files of compounds of interest was used to explain the observed product ions of each extracted candidate component (chromatographic peak). Two complex matrices (fish and bovine liver extract) were fortified with 98 veterinary drugs. Out of 98 screened compounds 94 could be detected with the in silico based screening approach. The high correlation among drift time and m/z value of equally charged ions was utilized for an orthogonal filtration (ranking). Such an orthogonal ion mobility based filter removes multiply charged ions (e.g. peptides and proteins from the matrix) as well as noise and artefacts. Most significantly, this filtration dramatically reduces false positive findings but hardly increases false negative findings. The proposed screening approach may offer new possibilities for applications where reference compounds are hardly or not at all commercially available. Such areas may be the analysis of metabolites of drugs, pyrrolizidine alkaloids, marine toxins, derivatives of sildenafil or novel designer drugs (new psychoactive substances

  1. Tier-2 studies on monocrotaline immunotoxicity in C57BL/6 mice.

    Science.gov (United States)

    Deyo, J A; Kerkvliet, N I

    1991-01-01

    Monocrotaline (MCT) is a member of a class of naturally occurring phytotoxins known as pyrrolizidine alkaloids, and is a toxicological concern to both man and his livestock. The purpose of these studies was to evaluate the effect of a 14-day oral MCT (0-100 mg/kg per day) exposure on the functional integrity of various immunocyte effector systems in C57BL/6 mice, as well as to investigate potential mechanisms for its immunotoxicity. Decreases in lymphoid organ weights and cellularity, and resident peritoneal exudate cell (PEC) number were only observed after exposure to the highest dose of 100 mg/kg MCT. This dose also inhibited NK cell cytotoxicity, while the total number of NK lytic units per spleen was decreased (-53%) after exposure to 50 mg/kg MCT. Following i.p. injection of SRBC, the percentage of PEC macrophages containing engulfed SRBC was significantly increased in MCT-exposed mice, while the percentage of large vacuolated (activated) macrophages was decreased in a dose-dependent manner. Exposure to MCT significantly decreased the total number of Ig+ cells without altering the number of CD4+ and CD8+ cells. The antibody responses (PFC/10(6) spleen cells) to two T cell-independent antigens, TNP-LPS and DNP-Ficoll, were significantly decreased at all MCT doses, and the degree of suppression of both responses was identical at coincident doses. MCT exposure (25 mg/kg) significantly suppressed the blastogenic response to the T cell mitogen concanavalin A (-38%), and to the B cell mitogen lipopolysaccharide (-58%). These results indicate that exposure to MCT can alter the functional integrity of various immune effector responses in a dose-dependent manner, and suggest that the B cell may be a relatively more sensitive target of MCT immunotoxicity compared to T cells, macrophages and NK cells.

  2. Sinusoidal Obstruction Syndrome (Hepatic Veno-Occlusive Disease)

    Science.gov (United States)

    Fan, Cathy Q.; Crawford, James M.

    2014-01-01

    Hepatic sinusoidal obstruction syndrome (SOS) is an obliterative venulitis of the terminal hepatic venules, which in its more severe forms imparts a high risk of mortality. SOS, also known as veno-occlusive disease (VOD), occurs as a result of cytoreductive therapy prior to hematopoietic stem cell transplantation (HSCT), following oxaliplatin-containing adjuvant or neoadjuvant chemotherapy for colorectal carcinoma metastatic to the liver and treated by partial hepatectomy, in patients taking pyrrolizidine alkaloid-containing herbal remedies, and in other particular settings such as the autosomal recessive condition of veno-occlusive disease with immunodeficiency (VODI). A central pathogenic event is toxic destruction of hepatic sinusoidal endothelial cells (SEC), with sloughing and downstream occlusion of terminal hepatic venules. Contributing factors are SEC glutathione depletion, nitric oxide depletion, increased intrahepatic expression of matrix metalloproteinases and vascular endothelial growth factor (VEGF), and activation of clotting factors. The clinical presentation of SOS includes jaundice, development of right upper-quadrant pain and tender hepatomegaly, ascites, and unexplained weight gain. Owing to the potentially critical condition of these patients, transjugular biopsy may be the preferred route for liver biopsy to exclude other potential causes of liver dysfunction and to establish a diagnosis of SOS. Treatment includes rigorous fluid management so as to avoid excessive fluid overload while avoiding too rapid diuresis or pericentesis, potential use of pharmaceutics such as defibrotide, coagulolytic agents, or methylprednisolone, and liver transplantation. Proposed strategies for prevention and prophylaxis include reduced-intensity conditioning radiation for HSCT, treatment with ursodeoxycholic acid, and inclusion of bevacizumab with oxaliplatin-based chemotherapeutic regimes. While significant progress has been made in understanding the pathogenesis

  3. Gastroprotective effect of Senecio candicans DC on experimental ulcer models.

    Science.gov (United States)

    Hariprasath, Lakshmanan; Raman, Jegadeesh; Nanjian, Raaman

    2012-03-06

    Senecio candicans DC (Asteraceae) is used as a remedy for gastric ulcer and stomach pain in the Nilgiris district, Tamil Nadu for which no scientific evidence exists. The present study was performed to evaluate the gastroprotective effects and acute oral toxicity of aqueous leaf extract of Senecio candicans (AESC) in experimental models. The antiulcerogenic activity of AESC was performed in two different ulcer models viz., pylorus-ligated model and ethanol-induced model using Wistar albino rats. Acute toxicity study was also performed to get information on the admissible dose for treatment of ulcer. Preliminary phytochemical screening of AESC was performed to find the active principles present, which are thus responsible for the antiulcerogenic activity. DPPH assay was performed to confirm the antioxidant activity of AESC. The acute toxicity study did not show any mortality up to 2500mg/kg b.w. of AESC. Both the ulcer models showed gastroprotective effect comparable to that of the standard Omeprazole. The results of antioxidant enzymes, histopathology sections, ATPase and mucus content of gastric secretion showed that several mechanisms are involved in the gastroprotective effect. The preliminary phytochemical screening revealed the presence of alkaloids, flavonoids and steroids in AESC. The DPPH assay confirmed the antioxidant activity of AESC. The traditional consumption of AESC for the treatment of gastric ulcer is thus true, the antioxidant constituents present in the extract plays a major role in the gastroprotective activity, but since Senecio species are known for the presence of pyrrolizidine alkaloids, a detailed study in future is required to describe the safe dose for a prolonged period. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Phylogeny and evolution of pharmacophagy in tiger moths (Lepidoptera: Erebidae: Arctiinae.

    Directory of Open Access Journals (Sweden)

    Jennifer M Zaspel

    Full Text Available The focus of this study was to reconstruct a phylogenetic hypothesis for the moth subfamily Arctiinae (tiger moths, woolly bears to investigate the evolution of larval and adult pharmacophagy of pyrrolizidine alkaloids (PAs and the pathway to PA chemical specialization in Arctiinae. Pharmacophagy, collection of chemicals for non-nutritive purposes, is well documented in many species, including the model species Utetheisa ornatrix L. A total of 86 exemplar ingroup species representing tiger moth tribes and subtribes (68 genera and nine outgroup species were selected. Ingroup species included the most species-rich generic groups to represent the diversity of host-plant associations and pharmacophagous behaviors found throughout Arctiinae. Up to nine genetic markers were sequenced: one mitochondrial (COI barcode region, one nuclear rRNA (D2 region, 28S rRNA, and seven nuclear protein-coding gene fragments: elongation factor 1-α protein, wingless, ribosomal protein subunit S5, carbamoylphosphate synthase domain regions, glyceraldehyde-3-phosphate dehydrogenase, isocitrate dehydrogenase and cytosolic malate dehydrogenase. A total of 6984 bp was obtained for most species. These data were analyzed using model-based phylogenetic methods: maximum likelihood (ML and Bayesian inference (BI. Ancestral pharmacophagous behaviors and obligate PA associations were reconstructed using the resulting Bayes topology and Reconstructing Ancestral States in Phylogenies (RASP software. Our results corroborate earlier studies on the evolution of adult pharmacophagous behaviors, suggesting that this behavior arose multiple times and is concentrated in the phaegopterine-euchromiine-ctenuchine clade (PEC. Our results suggest that PA specialization may have arisen early in the phylogeny of the subfamily and that facultative larval pharmacophagous behaviors are the derived condition.

  5. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    Science.gov (United States)

    Reidinger, Stefan; Eschen, René; Gange, Alan C.; Finch, Paul; Bezemer, T. Martijn

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF colonization levels of individual ragwort ( Senecio jacobaea) plants growing in grassland plots that were originally sown with 15 or 4 plant species, or were unsown. We measured the concentrations of carbon, nitrogen and pyrrolizidine alkaloids (PAs), and assessed the presence of aboveground insect herbivores on the sampled plants. Total AMF colonization and colonization by arbuscules was lower in plots sown with 15 species than in plots sown with 4 species and unsown plots. AMF colonization was positively related to the cover of oxeye daisy ( Leucanthemum vulgare) and a positive relationship between colonization by arbuscules and the occurrence of a specialist seed-feeding fly ( Pegohylemyia seneciella) was found. The occurrence of stem-boring, leaf-mining and sap-sucking insects was not affected by AMF colonization. Total PA concentrations were negatively related to colonization levels by vesicles, but did not differ among the sowing treatments. No single factor explained the observed differences in AMF colonization among the sowing treatments or insect herbivore occurrence on S. jacobaea. However, correlations across the treatments suggest that some of the variation was due to the abundance of one plant species, which is known to stimulate AMF colonization of neighbouring plants, while AMF colonization was related to the occurrence of a specialist insect herbivore. Our results thus illustrate that in natural systems, the ecosystem impact of AMF through their influence on the occurrence of specialist insects can be recognised, but they also highlight the confounding effect of neighbouring plant species identity. Hence, our results emphasise the importance of field

  6. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response

    International Nuclear Information System (INIS)

    Mukhopadhyay, Somshuvra; Shah, Mehul; Patel, Kirit; Sehgal, Pravin B.

    2006-01-01

    The pyrrolizidine alkaloid monocrotaline (MCT) initiates pulmonary hypertension by inducing a 'megalocytosis' phenotype in target pulmonary arterial endothelial, smooth muscle and Type II alveolar epithelial cells. In cultured endothelial cells, a single exposure to the pyrrolic derivative of monocrotaline (MCTP) results in large cells with enlarged endoplasmic reticulum (ER) and Golgi and increased vacuoles. However, these cells fail to enter mitosis. Largely based upon data from endothelial cells, we proposed earlier that a disruption of the trafficking and mitosis-sensor functions of the Golgi (the 'Golgi blockade' hypothesis) may represent the subcellular mechanism leading to MCTP-induced megalocytosis. In the present study, we investigated the applicability of the Golgi blockade hypothesis to epithelial cells. MCTP induced marked megalocytosis in cultures of lung A549 and breast MCF-7 cells. This was associated with a change in the distribution of the cis-Golgi scaffolding protein GM130 from a discrete juxtanuclear localization to a circumnuclear distribution consistent with an anterograde block of GM130 trafficking to/through the Golgi. There was also a loss of plasma membrane caveolin-1 and E-cadherin, cortical actin together with a circumnuclear accumulation of clathrin heavy chain (CHC) and α-tubulin. Flotation analyses revealed losses/alterations in the association of caveolin-1, E-cadherin and CHC with raft microdomains. Moreover, megalocytosis was accompanied by an enhanced unfolded protein response (UPR) as evidenced by nuclear translocation of Ire1α and glucose regulated protein 58 (GRP58/ER-60/ERp57) and a circumnuclear accumulation of PERK kinase and protein disulfide isomerase (PDI). These data further support the hypothesis that an MCTP-induced Golgi blockade and enhanced UPR may represent the subcellular mechanism leading to enlargement of ER and Golgi and subsequent megalocytosis

  7. Inhibition of Drp1 protects against senecionine-induced mitochondria-mediated apoptosis in primary hepatocytes and in mice

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-08-01

    Full Text Available Pyrrolizidine alkaloids (PAs are a group of compounds found in various plants and some of them are widely consumed in the world as herbal medicines and food supplements. PAs are potent hepatotoxins that cause irreversible liver injury in animals and humans. However, the mechanisms by which PAs induce liver injury are not clear. In the present study, we determined the hepatotoxicity and molecular mechanisms of senecionine, one of the most common toxic PAs, in primary cultured mouse and human hepatocytes as well as in mice. We found that senecionine administration increased serum alanine aminotransferase levels in mice. H&E and TUNEL staining of liver tissues revealed increased hemorrhage and hepatocyte apoptosis in liver zone 2 areas. Mechanistically, senecionine induced loss of mitochondrial membrane potential, release of mitochondrial cytochrome c as well as mitochondrial JNK translocation and activation prior to the increased DNA fragmentation and caspase-3 activation in primary cultured mouse and human hepatocytes. SP600125, a specific JNK inhibitor, and ZVAD-fmk, a general caspase inhibitor, alleviated senecionine-induced apoptosis in primary hepatocytes. Interestingly, senecionine also caused marked mitochondria fragmentation in hepatocytes. Pharmacological inhibition of dynamin-related protein1 (Drp1, a protein that is critical to regulate mitochondrial fission, blocked senecionine-induced mitochondrial fragmentation and mitochondrial release of cytochrome c and apoptosis. More importantly, hepatocyte-specific Drp1 knockout mice were resistant to senecionine-induced liver injury due to decreased mitochondrial damage and apoptosis. In conclusion, our results uncovered a novel mechanism of Drp1-mediated mitochondrial fragmentation in senecionine-induced liver injury. Targeting Drp1-mediated mitochondrial fragmentation and apoptosis may be a potential avenue to prevent and treat hepatotoxicity induced by PAs. Keywords: Senecionine, Drp1

  8. Red blood cells augment transport of reactive metabolites of monocrotaline from liver to lung in isolated and tandem liver and lung preparations

    Energy Technology Data Exchange (ETDEWEB)

    Pan, L.C.; Lame, M.W.; Morin, D.; Wilson, D.W.; Segall, H.J. (Department of Veterinary Pharmacology, University of California, Davis (United States))

    1991-09-01

    Monocrotaline (MCT) is a pyrrolizidine alkaloid that causes pulmonary hypertension in rats by mechanisms which remain largely unknown. MCT is thought to be activated in the liver to a reactive intermediate that is transported to the lung where it causes endothelial injury. The authors previous pharmacokinetic work demonstrated significant sequestration of radioactivity in red blood cells (RBCs) of rats treated with (14C)MCT. To determine whether this RBC sequestration might be important in the transport of reactive MCT metabolites, they compared the effect of inclusion of RBCs in the perfusion buffer on the extent of covalent binding of (14C)MCT to rat lungs in tandem liver-lung preparations. The potential effect of RBCs in stabilizing reactive intermediates was evaluated by preperfusion of isolated liver preparations with (14C)MCT with and without RBCs, separation and washing of the RBC fraction, and subsequent (90 min later) perfusion of washed RBCs or buffer alone in isolated perfused lungs. Covalent binding to lung tissues was determined by exhaustive methanol/chloroform extractions of unbound label from homogenized lung tissue followed by scintillation counting of residual 14C. Covalent binding was expressed as picomole MCT molecular weight equivalents/mg protein. Comparison of the relative capability of these isolated organ preparations for conversion of MCT to polar metabolites was done by extraction and HPLC analysis of perfusate at the end of the experiment. Isolated livers converted 65-85% of MCT to polar metabolites compared with less than 5% conversion in the isolated lungs. Inclusion of RBCs in the buffer of tandem lung liver preparations perfused with 400 microM (14C)MCT increased the covalent binding to the lung from 97 {plus minus} 25 (buffer alone) to 182 {plus minus} 36 (buffer + RBC) pmol/mg protein.

  9. Red blood cells augment transport of reactive metabolites of monocrotaline from liver to lung in isolated and tandem liver and lung preparations

    International Nuclear Information System (INIS)

    Pan, L.C.; Lame, M.W.; Morin, D.; Wilson, D.W.; Segall, H.J.

    1991-01-01

    Monocrotaline (MCT) is a pyrrolizidine alkaloid that causes pulmonary hypertension in rats by mechanisms which remain largely unknown. MCT is thought to be activated in the liver to a reactive intermediate that is transported to the lung where it causes endothelial injury. The authors previous pharmacokinetic work demonstrated significant sequestration of radioactivity in red blood cells (RBCs) of rats treated with [14C]MCT. To determine whether this RBC sequestration might be important in the transport of reactive MCT metabolites, they compared the effect of inclusion of RBCs in the perfusion buffer on the extent of covalent binding of [14C]MCT to rat lungs in tandem liver-lung preparations. The potential effect of RBCs in stabilizing reactive intermediates was evaluated by preperfusion of isolated liver preparations with [14C]MCT with and without RBCs, separation and washing of the RBC fraction, and subsequent (90 min later) perfusion of washed RBCs or buffer alone in isolated perfused lungs. Covalent binding to lung tissues was determined by exhaustive methanol/chloroform extractions of unbound label from homogenized lung tissue followed by scintillation counting of residual 14C. Covalent binding was expressed as picomole MCT molecular weight equivalents/mg protein. Comparison of the relative capability of these isolated organ preparations for conversion of MCT to polar metabolites was done by extraction and HPLC analysis of perfusate at the end of the experiment. Isolated livers converted 65-85% of MCT to polar metabolites compared with less than 5% conversion in the isolated lungs. Inclusion of RBCs in the buffer of tandem lung liver preparations perfused with 400 microM [14C]MCT increased the covalent binding to the lung from 97 ± 25 (buffer alone) to 182 ± 36 (buffer + RBC) pmol/mg protein

  10. Hyperspectral reflectance of leaves and flowers of an outbreak species discriminates season and successional stage of vegetation

    Science.gov (United States)

    Carvalho, Sabrina; Schlerf, Martin; van der Putten, Wim H.; Skidmore, Andrew K.

    2013-10-01

    Spectral reflectance can be used to assess large-scale performances of plants in the field based on plant nutrient balance as well as composition of defence compounds. However, plant chemical composition is known to vary with season - due to its phenology - and it may even depend on the succession stage of its habitat. Here we investigate (i) how spectral reflectance could be used to discriminate successional and phenological stages of Jacobaea vulgaris in both leaf and flower organs and (ii) if chemical content estimation by reflectance is flower or leaf dependent. We used J. vulgaris, which is a natural outbreak plant species on abandoned arable fields in north-western Europe and studied this species in a chronosequence representing successional development during time since abandonment. The chemical content and reflectance between 400 and 2500 nm wavelengths of flowers and leaves were measured throughout the season in fields of different successional ages. The data were analyzed with multivariate statistics for temporal discrimination and estimation of chemical contents in both leaf and flower organs. Two main effects were revealed by spectral reflectance measurements: (i) both flower and leaf spectra show successional and seasonal changes, but the pattern is complex and organ specific (ii) flower head pyrrolizidine alkaloids, which are involved in plant defence against herbivores, can be detected through hyperspectral reflectance.We conclude that spectral reflectance of both leaves and flowers can provide information on plant performance during season and successional stages. As a result, remote sensing studies of plant performance in complex field situations will benefit from considering hyperspectral reflectance of different plant organs. This approach may enable more detailed studies on the link between spectral information and plant defence dynamics both aboveground and belowground.

  11. Excess L-arginine restores endothelium-dependent relaxation impaired by monocrotaline pyrrole

    International Nuclear Information System (INIS)

    Cheng Wei; Oike, Masahiro; Hirakawa, Masakazu; Ohnaka, Keizo; Koyama, Tetsuya; Ito, Yushi

    2005-01-01

    The pyrrolizidine alkaloid plant toxin monocrotaline pyrrole (MCTP) causes pulmonary hypertension in experimental animals. The present study aimed to examine the effects of MCTP on the endothelium-dependent relaxation. We constructed an in vitro disease model of pulmonary hypertension by overlaying MCTP-treated bovine pulmonary artery endothelial cells (CPAEs) onto pulmonary artery smooth muscle cell-embedded collagen gel lattice. Acetylcholine (Ach) induced a relaxation of the control CPAEs-overlaid gels that were pre-contracted with noradrenaline, and the relaxation was inhibited by L-NAME, an inhibitor of NO synthase (NOS). In contrast, when MCTP-treated CPAEs were overlaid, the pre-contracted gels did not show a relaxation in response to Ach in the presence of 0.5 mM L-arginine. Expression of endothelial NOS protein, Ach-induced Ca 2+ transients and cellular uptake of L-[ 3 H]arginine were significantly smaller in MCTP-treated CPAEs than in control cells, indicating that these changes were responsible for the impaired NO production in MCTP-treated CPAEs. Since cellular uptake of L-[ 3 H]arginine linearly increased according to its extracellular concentration, we hypothesized that the excess concentration of extracellular L-arginine might restore NO production in MCTP-treated CPAEs. As expected, in the presence of 10 mM L-arginine, Ach showed a relaxation of the MCTP-treated CPAEs-overlaid gels. These results indicate that the impaired NO production in damaged endothelial cells can be reversed by supplying excess L-arginine

  12. Detection of Riddelliine-Derived DNA Adducts in Blood of Rats Fed Riddelliine

    Directory of Open Access Journals (Sweden)

    Ming W. Chou

    2002-09-01

    Full Text Available Abstract: We have previously shown that riddelliine, a naturally occurring genotoxic pyrrolizidine alkaloid, induces liver tumors in rats and mice through a genotoxic mechanism mediated by the formation of a set of eight 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5Hpyrrolizine ( DHP-derived DNA adducts. In this study we report the formation of these DHP-derived DNA adducts in blood DNA of rats fed riddelliine. In an adduct formation and removal experiment, male and female F344 rats (8 weeks of age were administered riddelliine by gavage at a single dose of 10.0 mg/kg body weight in 0.1 M phosphate buffer. At 8, 24, 48, and 168 hrs after dosing, the levels of DHP-derived DNA adduct in blood and liver were determined by 32P-postlabeling/HPLC. Maximum DNA adduct formation occurred at 48 hr after treatment. From 48 to 168 hours, the adduct levels in female rat blood were 4-fold greater than those in male rats. In a dose response experiment, female rats were gavaged 0.1 and 1.0 mg/kg doses of riddelliine for three consecutive days and the DHPderived DNA adducts in blood DNA were assayed. The levels of the DHP-derived DNA adducts in blood of rats receiving 0.1 and 1.0 mg/kg doses were 12.9 and 51.8 adducts/107 nucleotides. These results suggest that: (i leucocyte DNA can bind with DHP to form a set of DHP-derived DNA adducts generated in liver; (ii DHP-derived DNA adducts in blood can serve as a potential non-invasive biomarkers for assessing the exposure to riddelliine.

  13. Herbal hepatotoxicity in traditional and modern medicine: Actual key issues and new encouraging steps

    Directory of Open Access Journals (Sweden)

    Rolf eTeschke

    2015-04-01

    Full Text Available Plants are natural producers of chemical substances, providing potential treatment of human ailments since ancient times. Some herbal chemicals in medicinal plants of traditional and modern medicine carry the risk of herb induced liver injury (HILI with a severe or potentially lethal clinical course, and the requirement of a liver transplant. Discontinuation of herbal use is mandatory in time when HILI is first suspected as diagnosis. Although herbal hepatotoxicity is of utmost clinical and regulatory importance, lack of a stringent causality assessment remains a major issue for patients with suspected HILI, while this problem is best overcome by the use of the hepatotoxicity specific CIOMS (Council for International Organizations of Medical Sciences scale and the evaluation of unintentional reexposure test results. Sixty five different commonly used herbs, herbal drugs, and herbal supplements and 111 different herbs or herbal mixtures of the traditional Chinese medicine (TCM are reported causative for liver disease, with levels of causality proof that appear rarely conclusive. Encouraging steps in the field of herbal hepatotoxicity focus on introducing analytical methods that identify cases of intrinsic hepatotoxicity caused by pyrrolizidine alkaloids, and on omics technologies, including genomics, proteomics, metabolomics, and assessing circulating micro-RNA in the serum of some patients with intrinsic hepatotoxicity. It remains to be established whether these new technologies can identify idiosyncratic HILI cases. To enhance its globalization, herbal medicine should universally be marketed as herbal drugs under strict regulatory surveillance in analogy to regulatory approved chemical drugs, proving a positive risk/benefit profile by enforcing evidence based clinical trials and excellent herbal drug quality.

  14. Liver inflammation during monocrotaline hepatotoxicity

    International Nuclear Information System (INIS)

    Copple, Bryan L.; Ganey, Patricia E.; Roth, Robert A.

    2003-01-01

    Monocrotaline (MCT) is a pyrrolizidine alkaloid (PA) plant toxin that causes hepatotoxicity in humans and animals. Human exposure occurs from consumption of contaminated grains and herbal teas and medicines. Intraperitoneal injection (i.p.) of 300 mg/kg MCT in rats produced time-dependent hepatic parenchymal cell (HPC) injury beginning at 12 h. At this time, an inflammatory infiltrate consisting of neutrophils (PMNs) appeared in areas of hepatocellular injury, and activation of the coagulation system occurred. PMN accumulation was preceded by up-regulation of the PMN chemokines cytokine-induced neutrophil chemoattractant-1 (CINC-1) and macrophage inflammatory protein-2 (MIP-2) in the liver. The monocyte chemokine, monocyte chemoattractant protein-1 (MCP-1), was also upregulated. Inhibition of Kupffer cell function with gadolinium chloride (GdCl 3 ) significantly reduced CINC-1 protein in plasma after MCT treatment but had no effect on hepatic PMN accumulation. Since inflammation can contribute to either pathogenesis or resolution of tissue injury, we explored inflammatory factors as a contributor to MCT hepatotoxicity. To test the hypothesis that PMNs contribute to MCT-induced HPC injury, rats were depleted of PMNs with a rabbit anti-PMN serum prior to MCT treatment. Anti-PMN treatment reduced hepatic PMN accumulation by 80% but had no effect on MCT-induced HPC injury or activation of the coagulation system. To test the hypothesis that Kupffer cells and/or tumor necrosis factor-α (TNF-α) are required for MCT-induced HPC injury, rats were treated with either GdCl 3 to inhibit Kupffer cell function or pentoxifylline (PTX) to prevent synthesis of TNF-α. Neither treatment prevented MCT-induced HPC injury. Results from these studies suggest that PMNs, Kupffer cells and TNF-α are not critical mediators of MCT hepatotoxicity. Accordingly, although inflammation occurs in the liver after MCT treatment, it is not required for HPC injury and possibly occurs secondary to

  15. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Directory of Open Access Journals (Sweden)

    Gregory Röder

    2011-05-01

    Full Text Available Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae that possesses constitutive chemical defence (pyrrolizidine alkaloids and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae. Plants were induced in the field using chemical elicitors of the jasmonic acid (JA and salicylic acid (SA pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  16. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale).

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Zhang, Lu; Shi, Leming; Sun, Yongming Andrew; Fung, Chris; Moland, Carrie L; Dial, Stacey L; Fuscoe, James C; Chen, Tao

    2006-09-06

    Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. In this study, we identified comfrey-induced gene expression profile in the livers of rats. Groups of 6 male transgenic Big Blue rats were fed a basal diet and a diet containing 8% comfrey roots, a dose that resulted in liver tumors in a previous carcinogenicity bioassay. The animals were treated for 12 weeks and sacrificed one day after the final treatment. We used a rat microarray containing 26,857 genes to perform genome-wide gene expression studies. Dietary comfrey resulted in marked changes in liver gene expression, as well as in significant decreases in the body weight and increases in liver mutant frequency. When a two-fold cutoff value and a P-value less than 0.01 were selected, 2,726 genes were identified as differentially expressed in comfrey-fed rats compared to control animals. Among these genes, there were 1,617 genes associated by Ingenuity Pathway Analysis with particular functions, and the differentially expressed genes in comfrey-fed rat livers were involved in metabolism, injury of endothelial cells, and liver injury and abnormalities, including liver fibrosis and cancer development. The gene expression profile provides us a better understanding of underlying mechanisms for comfrey-induced hepatic toxicity. Integration of gene expression changes with known pathological changes can be used to formulate a mechanistic scheme for comfrey-induced liver toxicity and tumorigenesis.

  17. Comparison of gene expression profiles altered by comfrey and riddelliine in rat liver.

    Science.gov (United States)

    Guo, Lei; Mei, Nan; Dial, Stacey; Fuscoe, James; Chen, Tao

    2007-11-01

    Comfrey (Symphytum officinale) is a perennial plant and has been consumed by humans as a vegetable, a tea and an herbal medicine for more than 2000 years. It, however, is hepatotoxic and carcinogenic in experimental animals and hepatotoxic in humans. Pyrrolizidine alkaloids (PAs) exist in many plants and many of them cause liver toxicity and/or cancer in humans and experimental animals. In our previous study, we found that the mutagenicity of comfrey was associated with the PAs contained in the plant. Therefore, we suggest that carcinogenicity of comfrey result from those PAs. To confirm our hypothesis, we compared the expression of genes and processes of biological functions that were altered by comfrey (mixture of the plant with PAs) and riddelliine (a prototype of carcinogenic PA) in rat liver for carcinogenesis in this study. Groups of 6 Big Blue Fisher 344 rats were treated with riddelliine at 1 mg/kg body weight by gavage five times a week for 12 weeks or fed a diet containing 8% comfrey root for 12 weeks. Animals were sacrificed one day after the last treatment and the livers were isolated for gene expression analysis. The gene expressions were investigated using Applied Biosystems Rat Whole Genome Survey Microarrays and the biological functions were analyzed with Ingenuity Analysis Pathway software. Although there were large differences between the significant genes and between the biological processes that were altered by comfrey and riddelliine, there were a number of common genes and function processes that were related to carcinogenesis. There was a strong correlation between the two treatments for fold-change alterations in expression of drug metabolizing and cancer-related genes. Our results suggest that the carcinogenesis-related gene expression patterns resulting from the treatments of comfrey and riddelliine are very similar, and PAs contained in comfrey are the main active components responsible for carcinogenicity of the plant.

  18. Metabolism of 7-14C-2,3,5 triodobenzoic acid (TIBA) in soybeans plant (Glycine max)

    International Nuclear Information System (INIS)

    Sant'Anna, R.; Ohlrogge, A.J.; Christian, J.E.

    1975-01-01

    A metabolic study was done in mature seeds of field grown soybeans sprayed with 7- 14 C-2,3,5 triiodobenzoic acid (TIBA) at the onset of flowering. Seed extraction with 95% alcohol yielded only 65% of the total radioactivity present. No further studies were performed on the ethanol insoluble fraction. Upon acid base purification of the 14 C seed extracts, the ether phase (pH 9,0) contained about 70% of the activity suggesting the existence of a low polarity compound(s). Acid hydrolysis of the alcoholic extracts increased the radioactivity in the ether soluble fraction, while the basic treatment decreased it about the same level as for free TIBA. The latter behaviour seemed to indicate hydrolysis of a conjugation product(s). Alumina column chromatography was unsuccessful for separating the oil-activity combination; however, three radioactive peaks were obtained. The first two peaks degrated to form the last one, which coincided with the TIBA peak. When the alcoholic extracts were run in a Sephadex LH-20 column, oils, proteins and pigments separated from the radioactivity. Two main peaks appeared for the 14 C seeds extracts. Peak I was essentially unaltered when it was co-cromatographed with the standard 14 C-TIBA, peak II was indistinguishable from the TIBA peak. Although the work did not reach the final stage of caracterization, postulation was made for a conjugate nature of the ester type for peak I and the correspondence of peak II with free TIBA or TIBA in mixture with related compounds, such as 2,5 DIBA and 3,5 DIBA, products of its deiodination [pt

  19. Plant Secondary Metabolites Modulate Insect Behavior-Steps Toward Addiction?

    Directory of Open Access Journals (Sweden)

    Michael Wink

    2018-04-01

    Full Text Available Plants produce a diversity of secondary metabolites (PSMs that serve as defense compounds against herbivores and microorganisms. In addition, some PSMs attract animals for pollination and seed dispersal. In case of pollinating insects, PSMs with colors or terpenoids with fragrant odors attract pollinators in the first place, but when they arrive at a flower, they are rewarded with nectar, so that the pollinators do not feed on flowers. In order to be effective as defense chemicals, PSMs evolved as bioactive substances, that can interfere with a large number of molecular targets in cells, tissues and organs of animals or of microbes. The known functions of PSMs are summarized in this review. A number of PSMs evolved as agonists or antagonists of neuronal signal transduction. Many of these PSMs are alkaloids. Several of them share structural similarities to neurotransmitters. Evidence for neuroactive and psychoactive PSMs in animals will be reviewed. Some of the neuroactive PSMs can cause addiction in humans and other vertrebrates. Why should a defense compound be addictive and thus attract more herbivores? Some insects are food specialists that can feed on plants that are normally toxic to other herbivores. These specialists can tolerate the toxins and many are stored in the insect body as acquired defense chemicals against predators. A special case are pyrrolizidine alkaloids (PAs that are neurotoxic and mutagenic in vertebrates. PAs are actively sequestered by moths of the family Arctiidae and a few other groups of arthropods. In arctiids, PAs are not only used for defense, but also serve as morphogens for the induction of male coremata and as precursors for male pheromones. Caterpillars even feed on filter paper impregnated with pure PAs (that modulate serotonin receptors in vertebrates and maybe even in insects and thus show of behavior with has similarities to addiction in vertebrates. Not only PA specialists, but also many monophagous

  20. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland?

    Science.gov (United States)

    Canty, Mary J; Fogarty, Ursula; Sheridan, Michael K; Ensley, Steve M; Schrunk, Dwayne E; More, Simon J

    2014-01-01

    Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as 'ergot alkaloid intoxication'. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of a

  1. The hepatotoxicity of Ageratum conyzoides leaf in experimental rats

    Directory of Open Access Journals (Sweden)

    Yulvian Sani

    1998-03-01

    extract from 29 .2 IU/1 to 15 .1 IU/I and from 15 .9 IU/1 to 8.9 IU/1 with retrorsin, but both enzymes appeared higher than control rats . The analysis of toxic compound in A. conyzoides leaf showed that the Rf value was similar to retrrorsin showing the leaf containing pyrrolizidine alkaloid compounds.

  2. Dynamics of the weed infestation with Senecio vulgaris after a single entry from seeds

    Directory of Open Access Journals (Sweden)

    Söchting, Hans-Peter

    2014-02-01

    Full Text Available Due to a short generation time associated with a high seed production and a quick germination, which is possible throughout the year, Senecio vulgaris is especially in horticultural crops one of the most important weed species. Like all ragwort species, also Senecio vulgaris contains pyrrolizidine alkaloids which are converted in the liver to harmful substances. For this reason an accidental consumption of this species should be avoided completely. Belonging to the Compositae, chemical control of this weed species in vegetable crops, particularly in lettuce, is difficult. Based on a field-grown model experiment the emergence behavior and growth of Senecio vulgaris in leafy lettuce was studied. The first step was the contamination of the trial plots with Senecio seeds. For this purpose Senecio plants were planted at three different densities (1, 2 and 10 plants m2 in the designated plots. All plots were covered with fleece in order to prevent an unregulated dispersal of seeds. After seed maturity the fleece was removed, plants were cut into small pieces and the plant material including the seeds was incorporated into the soil. Then different leafy lettuces crops (rocket, asia green, spinach, lamb´s lettuce were cultivated in a six-crop sequence over two years (three crop sopecies per year. The development of Senecio vulgaris and the resulting possible contamination of the lettuces with Senecio leaves was recorded. From the date of removing the fleece on seed-production a shedding of Senecio plants was prevented to avoid further contamination. Also the entry from outside the plots was excluded. Depending on the initial plant density, the 71, 55 and 216 Senecio plants m2 which emerged after the first sowing of lettuce dropped to 7, 9 and 16 plants m2 after the sixth sowing. Thus, the density of S. vulgaris plants rapidly decreased but there was still a significant potential of emerging seedlings potentially contaminating the lettuce crops after

  3. Synthesis and phototoxicity of isomeric 7,9-diglutathione pyrrole adducts: Formation of reactive oxygen species and induction of lipid peroxidation

    Directory of Open Access Journals (Sweden)

    Liang Ma

    2015-09-01

    Full Text Available Pyrrolizidine alkaloids (PAs are hepatotoxic, genotoxic, and carcinogenic in experimental animals. Because of their widespread distribution in the world, PA-containing plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Upon metabolism, PAs generate reactive dehydro-PAs and other pyrrolic metabolites that lead to toxicity. Dehydro-PAs are known to react with glutathione (GSH to form 7-GSH-(+/−-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (7-GS-DHP in vivo and in vitro and 7,9-diGS-DHP in vitro. To date, the phototoxicity of GS-DHP adducts has not been well studied. In this study, we synthesized 7-GS-DHP, a tentatively assigned 9-GS-DHP, and two enantiomeric 7,9-diGS-DHP adducts by reaction of dehydromonocrotaline with GSH. The two 7,9-diGS-DHPs were separated by high performance liquid chromatography (HPLC and their structures were characterized by 1H nuclear magnetic resonance (NMR and 1H–1H correlation spectroscopy (COSY NMR spectral analysis. Photoirradiation of 7-GS-DHP, 9-GS-DHP, and the two 7,9-diGS-DHPs as well as dehydromonocrotaline, dehydroheliotrine, and the 7-R enantiomer of DHP (DHR, by UVA light at 0 J/cm2, 14 J/cm2, and 35 J/cm2 in the presence of a lipid, methyl linoleate, all resulted in lipid peroxidation in a light dose-responsive manner. The levels of lipid peroxidation induced by the two isomeric 7,9-diGS-DHPs were significantly higher than that by 7-GS-DHP and 9-GS-DHP. When 7,9-diGS-DHP was irradiated in the presence of sodium azide (NaN3, the level of lipid peroxidation decreased; lipid peroxidation was enhanced when methanol was replaced by deuterated methanol. These results suggest that singlet oxygen is a product induced by the irradiation of 7,9-diGS-DHP. When irradiated in the presence of superoxide dismutase (SOD, the level of lipid peroxidation decreased, indicating that lipid peroxidation is also mediated by superoxide. These results indicate that lipid

  4. Patogênese, sinais clínicos e patologia das doenças causadas por plantas hepatotóxicas em ruminantes e eqüinos no Brasil Pathogenesis, clinical signs and pathology of diseases caused by hepatotoxic plants in ruminants and horses in Brazil

    Directory of Open Access Journals (Sweden)

    Julio Cesar A. Santos

    2008-01-01

    Full Text Available Plantas que causam lesões hepáticas em ruminantes e eqüinos constituem um grupo importante de plantas tóxicas no Brasil. Em geral essas plantas podem ser divididas em três grandes grupos: plantas que causam necrose hepática aguda; plantas que causam fibrose hepática; e plantas que causam fotossensibilização. Em algumas dessas plantas os princípios tóxicos já foram identificados. Das plantas que causam necrose hepática aguda, os carboxiatractilosídeos estão presentes em Cestrum parqui e Xanthium cavanillesi. Os alcalóides pirrolizidínicos estão presentes nas plantas que causam fibrose hepática (Senecio spp., Echium plantagineum, Heliotropum spp. e Crotalaria spp.. Das plantas que causam fotossensibilização hepatógena são conhecidos os furanossesquiterpenos em Myoporum spp., triterpenos em Lantana spp., e saponinas esteroidais em Brachiaria spp. e Panicum spp. O quadro clínicopatológico dessas intoxicações e o mecanismo geral da insuficiência hepática, incluindo meios de diagnóstico, são descritos neste artigo de revisão.Plants causing hepatic lesions in ruminants and horses constitute one important group of poisonous plants in Brazil. These plants can be placed in three major groups: plants causing acute liver necrosis; plants causing liver fibrosis; and plants causing hepatogenous photosensitization. For some of these plants the toxic principles are known. Cestrum parqui and Xanthium cavanillesi that cause acute liver necrosis contain carboxy-atractylosides. Senecio spp., Crotalaria spp., and Echium plantagineum that cause liver fibrosis contain pyrrolizidine alkaloids. As for the group of plants causing hepatogenous photosensibilization, Myoporum spp. contain furanosesquiterpenes, Lantana spp contain triterpenes, and Brachiaria spp. and Panicum spp. contain steroidal saponins. The clinical and pathologic features of the toxicosis caused by these phytotoxins, general mechanisms of production for the production of

  5. Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO2 surface for dye-sensitized solar cell applications.

    Science.gov (United States)

    Prajongtat, Pongthep; Suramitr, Songwut; Nokbin, Somkiat; Nakajima, Koichi; Mitsuke, Koichiro; Hannongbua, Supa

    2017-09-01

    Structural and electronic properties of eight isolated azo dyes (ArNNAr', where Ar and Ar' denote the aryl groups containing benzene and naphthalene skeletons, respectively) were investigated by density functional theory (DFT) based on the B3LYP/6-31G(d,p) and TD-B3LYP/6-311G(d,p) methods The effect of methanol solvent on the structural and electronic properties of the azo dyes was elucidated by employing a polarizable continuum model (PCM). Then, the azo dyes adsorbed onto the anatase TiO 2 (101) slab surface through a carboxyl group. The geometries and electronic structures of the adsorption complexes were determined using periodic DFT based on the PWC/DNP method. The calculated adsorption energies indicate that the adsorbed dyes preferentially take configuration of the bidentate bridging rather than chelating or monodentate ester-type geometries. Furthermore, the azo compounds having two carboxyl groups are coordinated to the TiO 2 surface more preferentially through the carboxyl group connecting to the benzene skeleton than through that connecting to the naphthalene skeleton. The dihedral angles (Φ B-N ) between the benzene- and naphthalene-skeleton moieties are smaller than 10° for the adsorbed azo compounds containing one carboxyl group. In contrast, Φ B-N > 30° are obtained for the adsorbed azo compounds containing two carboxyl groups. The almost planar conformations of the former appear to strengthen both π-electrons conjugation and electronic coupling between low-lying unoccupied molecular orbitals of the azo dyes and the conduction band of TiO 2 . On the other hand, such coupling is very weak for the latter, leading to a shift of the Fermi level of TiO 2 in the lower-energy direction. The obtained results are useful to the design and synthesize novel azo-dye-based molecules that give rise to higher photovoltaic performances of the dye-sensitized solar cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hydrocarbon emission fingerprints from contemporary vehicle/engine technologies with conventional and new fuels

    Science.gov (United States)

    Montero, Larisse; Duane, Matthew; Manfredi, Urbano; Astorga, Covadonga; Martini, Giorgio; Carriero, Massimo; Krasenbrink, Alois; Larsen, B. R.

    2010-06-01

    The present paper presents results from the analysis of 29 individual C 2-C 9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0-85% ethanol), and mineral diesel in various blends (0-100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies. An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach. The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km -1 for LD and mopeds and mg kW h -1 for HD, all normalised to fuel consumption: mg dm -3 fuel) of the harmful HCs, benzene and 1,3-butadiene. Another important finding is a strong linear correlation of the regulated "total" hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO 3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in

  7. Chrysoperla externa (Neuroptera: Chrysopidae and Utetheisa ornatrix (Lepidoptera: Arctiidae on organically grown Crotalaria juncea (Fabaceae Chrysoperla externa (Neuroptera: Chrysopidae e Utetheisa ornatrix (Lepidoptera: Arctiidae sobre Crotalaria juncea (Fabaceae cultivada organicamente

    Directory of Open Access Journals (Sweden)

    M.A. Costa

    2012-09-01

    Full Text Available Chrysoperla externa (Neuroptera: Chrysopidae larvae can avoid foraging on plants of Crotalaria juncea (Fabaceae after the issuance of floral buds, when the prey of Utetheisa ornatrix (Lepidoptera: Arctiidae incorporate toxic pyrrolizidine alkaloids from this plant. This reduces the predation and favors increasing the number of adults and eggs of this defoliator on crops of this plant. The aim of the present paper was to evaluate some biological and ecological aspects of C. externa and U. ornatrix on the organic crop of C. juncea in the EMBRAPA Maize and Sorghum in Sete Lagoas, Minas Gerais State, Brazil. Chrysoperla externa and U. ornatrix were more abundant in the vegetative and flowering stages of C. juncea, respectively, with caterpillars of this defoliator feeding on leaves and seeds of this plant. The duration of the stages/instars, survival, lifetime fecundity, and oviposition showed that the branches of C. juncea are a suitable food for U. ornatrix. The abundance of adults and larvae of C. externa was lower in the flowering and pods stages of C. juncea, respectively, when the postures of U. ornatrix are present, probably due to the toxicity of the eggs of this prey to this predator. During these stages, C. externa may be reared with alternative hosts, and when the crops of C. juncea are scarce, an artificial diet should be used for rearing this defoliator in the laboratory for biological research and the development of biological control tactics.Larvas de Chrysoperla externa (Neuroptera: Chrysopidae podem evitar o forrageamento sobre plantas de Crotalaria juncea (Fabaceae após a emissão de botões florais, quando presas de Utetheisa ornatrix (Lepidoptera: Arctiidae incorporam alcalóides pirrolizidínicos tóxicos dessa planta. Isso reduz a predação e favorece o aumento do número de adultos e ovos desse desfolhador sobre cultivos dessa planta. O objetivo deste trabalho foi avaliar alguns aspectos biológicos e ecológicos de C

  8. Variación en la producción de alcaloides en inflorescencias de Senecio Grisebachii por deficiencia de nutrientes Alkaloid production changes due to nutrient deficiencies in Senecio Grisebachii inflorescences

    Directory of Open Access Journals (Sweden)

    Margarita A Yaber Grass

    2009-06-01

    Full Text Available Senecio grisebachii Baker es una maleza que invade pasturas naturales y cultivos en el sur de Brasil, Uruguay, y provincias mesopotámicas y Buenos Aires en la Argentina y es considerada tóxica debido a la presencia de alcaloides pirrolizidínicos (APs en sus tejidos. Se evaluó el efecto de la deficiencia de nitrógeno y de fósforo sobre el perfil de APs en inflorescencias de esta maleza. Se realizó un ensayo utilizando un diseño completamente aleatorizado con 10 repeticiones, en el cual las plantas, que crecieron en hidroponia desde mayo hasta octubre, fueron regadas con solución de nutrientes en las que las concentraciones de N o de P reducidas en un 50% respecto del control. La cuantificación de APs en las inflorescencias de S. grisebachii por CG y CG-EM, demuestra un aumento significativo en el contenido total de APs, en los tratamientos con déficit en N o P (1,33 y 1,34 mg g-1 de materia seca, respectivamente, comparados con el control 0,35 mg g-1. Se identificaron siete APs y sus concentraciones variaron entre tratamientos. Senecionina resultó el alcaloide mayoritario en el tratamiento déficit de N, mientras senecifilina resultó más abundante en los tratamientos control y con déficit de P, seguidos en todos los casos por integerrimina y cantidades menores de espartiodina, jacobina, jacozina y retrorsina.Senecio grisebachii Baker is a weed that invades natural pastures and crops in southern Brazil, Uruguay, the mesopotamic provinces and Buenos Aires in Argentina, and is considered to be toxic because of the presence of pyrrolizidine alkaloids (PAs in its tissues. The effects of nitrogen and phosphorus deficiency was evaluated on the APs patterns of the weed inflorescences. A completely randomized design with 10 repetitions was used in an experiment where plants growing in hydroponics from May to October were irrigated with a nutrient solution containing 50% P or N concentrations with respect to the control treatment. PAs

  9. The chemistry and pharmacology of Ligularia przewalskii: A review.

    Science.gov (United States)

    Liu, Shi-Jun; Tang, Zhi-Shu; Liao, Zhi-Xin; Cui, Chun-Li; Liu, Hong-Bo; Liang, Yan-Ni; Zhang, Yu; Xu, Hong-Bo; Zhang, Dong-Bo; Zheng, Ya-Ting; Shi, Huan-Xian; Li, Shi-Ying

    2018-06-12

    Ligularia przewalskii (Maxim.) Diels (LP) (called zhangyetuowu in Chinese), is generally found in moist forest areas in the western regions of China. The root, leaves and flower of LP are utilized as a common traditional medicine in China. It has been utilized conventionally in herbal remedies for the remedy of haemoptysis, asthma, pulmonary phthisis, jaundice hepatitis, food poisoning, bronchitis, cough, fever, wound healing, measles, carbuncle, swelling and phlegm diseases. The review aims to provide a systematic summary of LP and to reveal the correlation between the traditional uses and pharmacological activities in order to provide updated, comprehensive and categorized information and identify the therapeutic potential for its use as a new medicine. The relevant data were searched by using the keywords "Ligularia przewalskii" "phytochemistry", "pharmacology", "Traditional uses", and "Toxicity" in "Scopus", "Scifinder", "Springer", "Pubmed", "Wiley", "Web of Science", "China Knowledge Resource Integrated databases (CNKI)", "Ph.D." and "M.Sc. dissertations", and a hand-search was done to acquire peer-reviewed articles and reports about LP. The plant taxonomy was validated by the databases "The Plant List", "Flora Reipublicae Popularis Sinicae", "A Collection of Qinghai Economic Plants", "Inner Mongolia plant medicine Chi", Zhonghua-bencao and the Standard of Chinese herbal medicine in Gansu. Based on the traditional uses, the chemical nature and biological effects of LP have been the focus of research. In modern research, approximately seventy-six secondary metabolites, including thirty-eight terpenoids, nine benzofuran derivatives, seven flavonoids, ten sterols and others, were isolated from this plant. They exhibit anti-inflammatory, antioxidative, anti-bacterial and anti-tumour effects, and so on. Currently, there is no report on the toxicity of LP, but hepatotoxic pyrrolizidine alkaloids (HPA) were first detected with LC/MS n in LP, and they have potential

  10. Exploration of Gamburtsev Subglacial Mountains, East Antarctica: Background and Plans for the Near Future

    Science.gov (United States)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Li, Yuansheng; Cao, Pinlu; Xu, Huiwen; Zheng, Zhichuan; Wang, Rusheng; Zhang, Nan; Markov, Alexey; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Gong, Da; Hong, Jialing; Liu, Chunpeng; Han, Junjie; Yu, Chengfeng; Wang, Lili

    2014-05-01

    drilling of upper permeable snow-firn layer with bottom-air reverse circulation; (2) reaming; (3) casing installation; (4) fluid core drilling of glacial ice with bottom-fluid reverse circulation; (5) bedrock core drilling. All drilling equipment will be installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that is transported to the chosen site with crawler-tractor. The new approaches of subglacial bedrock drilling technology are connected with utilization of environmental friendly, low-toxic drilling fluids, e.g. low-molecular dimethyl siloxane oils or ester type. They have suitable density-viscosity properties, and can be consider as a viable alternative for drilling in glacial ice and subglacial bedrock. According to approved schedule, the first field tests are planned to carry out just outside Zhongshan Station near Antarctic coast in season 2015-2016. Next season 2016-2017 the movable drilling shelter is planned to be transported to the chosen drilling site in the GSM region, and drilling to the bedrock would be finished during two seasons.

  11. Risco sanitário do mel no Brasil em relação a novas ameaças: resíduos e contaminantes químicos emergentes | Honey health risk in Brazil related to new threats: emerging chemical residues and contaminants

    Directory of Open Access Journals (Sweden)

    Thiago Bousquet Bandini

    2017-02-01

    describe some emerging chemical residues and contaminants and their aspects related to Health Surveillance. Honey is a substance that, beyond being used as food since the beginning of human civilization, also has therapeutic and pharmacothecnical applications. Brazil is among the major world producers and exporters of honey and this production play a relevant socio-economic role in the country. Like other products of animal origin, honey is subject to the presence of residues of substances used in the protection of swarms and contaminants from the environment. Despite the presence of substances in honey with potential impact on health is expected by health agencies, it is required to update as to which substances should or should not be monitored. This review lists examples of classes of substances that are not currently monitored, considered as “emerging” for not being regulated properly in Brazil and in many parts of the world. For the emerging contaminants covered here, scientific publications with national data are scarce or non-existent when it comes to honey, showing that new scientific knowledge production is needed in this area. It is recommended further study of the occurrence of quinolones, pyrrolizidine alkaloids, grayanotoxins and substances used in the production of polymers in honey in Brazil, so that health risks from the consumption of honey containing these substances are known and minimized or eliminated.

  12. Experimental poisoning by Senecio brasiliensis in calves: quantitative and semi-quantitative study on changes in the hepatic extracellular matrix and sinusoidal cells Intoxicação experimental por Senecio brasiliensis em bovinos: estudo quantitativo e semi-quantitativo da matrix extracelular e de células sinusoidais do fígado

    Directory of Open Access Journals (Sweden)

    Márcia Bersane A.M. Torres

    2008-01-01

    Full Text Available Extracellular matrix plays an important role in chronic hepatic lesions and has been studied in experimental intoxication models. However in cattle, studies on chronic disease have focused on the hepatocellular damage and extracellular matrix (ECM changes are usually overlooked. There are no specific studies on the hepatic ECM in either normal or chronically damaged bovine liver. Thus an experimental model of hepatic toxicity model using Senecio brasiliensis poisoned calves was designed. Senecio brasiliensis contains pyrrolizidine alkaloids which cause either acute or chronic progressive dose dependent liver damage. Five calves were orally fed with 0.38g of dry leaves of S. brasiliensis/kg/day for 24 days. Liver needle biopsy specimens were obtained every 15 days for 60 days. Clinical signs of digestive complications appeared at 3rd week. One calf died on 45th day and four were evaluated up to 60th day. Biopsy samples were processed for routine light microscopy, immuno-histochemistry and transmission electron microscopy. From 30th day on progressive liver damage characterized by hepatocellular ballooning, necrosis, apoptosis and megalocytosis, centrilobular, pericellular and portal fibrosis were seen by light microscopy. Quantitative and semi-quantitative measurements of hepatic ECM components were performed before and after the onset of lesions. Morphometric analysis of total collagen and elastic fiber system was conducted. Total collagen and I and III collagen types progressively increased in throughout the liver of affected calves. Changes in location, amount and disposition of the elastic fiber system were also observed. Then numbers of Kupffer cells were significantly increased at 30th day and total numbers of sinusoidal cells were significantly increased at 45th and 60th days. Liver damage was progressive and irreversible even after the exposure to the plant was discontinued. Severe fibrotic lesions occurred mainly in portal tracts

  13. Aspectos epidemiológicos da seneciose na região sul do Rio Grande do Sul Epidemiological aspects of seneciosis in southern Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Sérgio Castilhos Karam

    2004-12-01

    analyzed for detection of pyrrolizidine alkaloids (PAs by thin layer chromatography. Retrorsine was found in Senecio brasiliensis, S. heterotrichius, S. selloi and S. oxyphyllus. In S. brasiliensis and S. heterotrichius one and two more non-identified PAs were detected, respectively. The total PAs concentration by spectrophotometric method was 0.25% for S. brasiliensis, 0.19% for S. heterotrichius, 0.03% for S. oxyphyllus, and 0.03% for S. selloi. The highest PAs concentration occurred in winter (June/July. No alkaloids were found in samples of S. leptolobus. These results show that S. brasiliensis is the most important cause of seneciosis in southern Rio Grande do Sul. Additional data obtained dealt with 54 outbreaks of PAs poisoning in 1978-1997. During this period, 7 outbreaks (12.96% affected cattle up to 3 years of age, 39 (72.22% cattle over 3 years, and 3 outbreaks (5.55% affected cattle of different ages. In 5 outbreaks (9.25% the age was not informed. Seven outbreaks (12.96% affected males, 39 (72.22% females, 3 (5.55% both sexes, and in 5 outbreaks (9.25% the sex was not informed. Twenty-three outbreaks (42.59% occurred in spring, 9 (16.66% in summer, 9 (16.66% in autumn, and 13 (24.07% in winter. The greater number of outbreaks during 1998-2000 (24 outbreaks in 3 years in regard to 1978-1997 (54 outbreaks in 20 years is probably due to a decrease of more than 50% in the number of sheep in the region.