WorldWideScience

Sample records for retrograde microtubule polymerization

  1. Synchronous Oscillations in Microtubule Polymerization

    Science.gov (United States)

    Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.

    1987-08-01

    Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.

  2. Measurement of in vitro microtubule polymerization by turbidity and fluorescence.

    Science.gov (United States)

    Mirigian, Matthew; Mukherjee, Kamalika; Bane, Susan L; Sackett, Dan L

    2013-01-01

    Tubulin polymerization may be conveniently monitored by the increase in turbidity (optical density, or OD) or by the increase in fluorescence intensity of diamidino-phenylindole. The resulting data can be a quantitative measure of microtubule (MT) assembly, but some care is needed in interpretation, especially of OD data. Buffer formulations used for the assembly reaction significantly influence the polymerization, both by altering the critical concentration for polymerization and by altering the exact polymer produced-for example, by increasing the production of sheet polymers in addition to MT. Both the turbidity and the fluorescence methods are useful for demonstrating the effect of MT-stabilizing or -destabilizing additives. 2013 Published by Elsevier Inc.

  3. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array

    NARCIS (Netherlands)

    Schuster, M.; Kilaru, S.; Fink, G.; Collemare, J.A.R.; Roger, Y.; Steinberg, G.

    2011-01-01

    The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to

  4. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization

    Directory of Open Access Journals (Sweden)

    Jia Shen

    2017-07-01

    Full Text Available Background: The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Methods: Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol’s inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol’s efficacy in vivo. Results: Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. Conclusion: These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment.

  5. Stabilization, not polymerization, of microtubules inhibits the nuclear translocation of STATs in adipocytes

    International Nuclear Information System (INIS)

    Gleason, Evanna L.; Hogan, Jessica C.; Stephens, Jacqueline M.

    2004-01-01

    Signal transducers and activators of transcriptions (STATs) are a family of latent transcription factors which are activated by a variety of growth factors and cytokines in many cell types. However, the mechanism by which these transcription factors translocate to the nucleus is poorly understood. The goal of this study was to determine the requirement of microfilaments and microtubules for cytokine induced STAT activation in cultured adipocytes. We used seven different actin-specific and microtubule-specific agents that are well-established effectors of these cytoskeletal networks. Our results clearly demonstrate that inhibition of microfilaments or the prevention of microtubule polymerization has no effect on the ability of STATs to be tyrosine phosphorylated or to translocate to the nucleus. However, we observed that paclitaxel, a microtubule stabilizer, resulted in a significant decrease in the nuclear translocation of STATs without affecting the cytosolic tyrosine phosphorylation of these transcription factors. In summary, our results demonstrate that the dynamic instability, but not the polymerization, of microtubules contributes to nuclear translocation of STAT proteins in adipocytes

  6. Microtubule nucleation and organization in dendrites

    Science.gov (United States)

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  7. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  8. Effects of inulin with different degree of polymerization on gelatinization and retrogradation of wheat starch.

    Science.gov (United States)

    Luo, Denglin; Li, Yun; Xu, Baocheng; Ren, Guangyue; Li, Peiyan; Li, Xuan; Han, Sihai; Liu, Jianxue

    2017-08-15

    The effects of three types of inulin, including FS (DP≤10), FI (DP of 2-60) and FXL (DP≥23), on the gelatinization and retrogradation characteristics of wheat starch were investigated. As the concentration of inulin added into starch increased, the gelatinization temperature increased whereas the breakdown value decreased, and the value of setback first decreased and then increased slightly. The three types of inulin with lower concentrations (inulin showed a significant suppression of starch retrogradation in the addition range of 5-7.5%. They can all inhibit amylose retrogradation, but accelerate amylopectin retrogradation. Inulin with lower DP has stronger effects on the starch retrogradation. Generally, the three types of inulin can all retard the retrogradation performance of wheat starch to some extent in the long-term storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. C-terminal region of MAP7 domain containing protein 3 (MAP7D3 promotes microtubule polymerization by binding at the C-terminal tail of tubulin.

    Directory of Open Access Journals (Sweden)

    Saroj Yadav

    Full Text Available MAP7 domain containing protein 3 (MAP7D3, a newly identified microtubule associated protein, has been shown to promote microtubule assembly and stability. Its microtubule binding region has been reported to consist of two coiled coil motifs located at the N-terminus. It possesses a MAP7 domain near the C-terminus and belongs to the microtubule associated protein 7 (MAP7 family. The MAP7 domain of MAP7 protein has been shown to bind to kinesin-1; however, the role of MAP7 domain in MAP7D3 remains unknown. Based on the bioinformatics analysis of MAP7D3, we hypothesized that the MAP7 domain of MAP7D3 may have microtubule binding activity. Indeed, we found that MAP7 domain of MAP7D3 bound to microtubules as well as enhanced the assembly of microtubules in vitro. Interestingly, a longer fragment MDCT that contained the MAP7 domain (MD with the C-terminal tail (CT of the protein promoted microtubule polymerization to a greater extent than MD and CT individually. MDCT stabilized microtubules against dilution induced disassembly. MDCT bound to reconstituted microtubules with an apparent dissociation constant of 3.0 ± 0.5 µM. An immunostaining experiment showed that MDCT localized along the length of the preassembled microtubules. Competition experiments with tau indicated that MDCT shares its binding site on microtubules with tau. Further, we present evidence indicating that MDCT binds to the C-terminal tail of tubulin. In addition, MDCT could bind to tubulin in HeLa cell extract. Here, we report a microtubule binding region in the C-terminal region of MAP7D3 that may have a role in regulating microtubule assembly dynamics.

  10. S. pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner

    Science.gov (United States)

    Grallert, Agnes; Beuter, Christoph; Craven, Rachel A.; Bagley, Steve; Wilks, Deepti; Fleig, Ursula; Hagan, Iain M.

    2006-01-01

    The Schizosaccharomyces pombe CLIP170-associated protein (CLASP) Peg1 was identified in a screen for mutants with spindle formation defects and a screen for molecules that antagonized EB1 function. The conditional peg1.1 mutant enabled us to identify key features of Peg1 function. First, Peg1 was required to form a spindle and astral microtubules, yet destabilized interphase microtubules. Second, Peg1 was required to slow the polymerization rate of interphase microtubules that establish end-on contact with the cortex at cell tips. Third, Peg1 antagonized the action of S. pombe CLIP170 (Tip1) and EB1 (Mal3). Fourth, although Peg1 resembled higher eukaryotic CLASPs by physically associating with both Mal3 and Tip1, neither Tip1 nor Mal3 was required for Peg1 to destabilize interphase microtubules or for it to associate with microtubules. Conversely, neither Mal3 nor Tip1 required Peg1 to associate with microtubules or cell tips. Consistently, while mal3.Δ and tip1.Δ disrupted linear growth, corrupting peg1 + did not. Fifth, peg1.1 phenotypes resembled those arising from deletion of the single heavy or both light chains of fission yeast dynein. Furthermore, all interphase phenotypes arising from peg1 + manipulation relied on dynein function. Thus, the impact of S. pombe CLASP on interphase microtubule behavior is more closely aligned to dynein than EB1 or CLIP170. PMID:16951255

  11. Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation

    Directory of Open Access Journals (Sweden)

    Duangmano Suwit

    2012-10-01

    Full Text Available Abstract Background Cucurbitacin B, an oxygenated tetracyclic triterpenoid compound extracted from the Thai medicinal plant Trichosanthes cucumerina L., has been reported to have several biological activities including anti-inflammatory, antimicrobial and anticancer. Cucurbitacin B is great of interest because of its biological activity. This agent inhibits growth of various types of human cancer cells lines. Methods In this study, we explored the novel molecular response of cucurbitacin B in human breast cancer cells, MCF-7 and MDA-MB-231. The growth inhibitory effect of cucurbitacin B on breast cancer cells was assessed by MTT assay. The effects of cucurbitacin B on microtubules morphological structure and tubulin polymerization were analyzed using immunofluorescence technique and tubulin polymerization assay kit, respectively. Proteomic analysis was used to identify the target-specific proteins that involved in cucurbitacin B treatment. Some of the differentially expressed genes and protein products were validated by real-time RT-PCR and western blot analysis. Cell cycle distributions and apoptosis were investigated using flow cytometry. Results Cucurbitacin B exhibited strong antiproliferative effects against breast cancer cells in a dose-dependent manner. We show that cucurbitacin B prominently alters the cytoskeletal network of breast cancer cells, inducing rapid morphologic changes and improper polymerization of the microtubule network. Moreover, the results of 2D-PAGE, real-time RT-PCR, and western blot analysis revealed that the expression of nucleophosmin/B23 and c-Myc decreased markedly after cucurbitacin B treatment. Immunofluorescence microscopy showed that cucurbitacin B induced translocation of nucleophosmin/B23 from the nucleolus to nucleoplasm. Treatment with cucurbitacin B resulted in cell cycle arrest at G2/M phase and the enhancement of apoptosis. Conclusions Our findings suggest that cucurbitacin B may inhibit the

  12. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization.

    Science.gov (United States)

    Tanabe, Kenji

    2016-04-27

    Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570 image features were obtained and subjected to multivariate analysis. Fourteen compounds that affected EGFR or its pathways were classified into four clusters, based on their phenotypic features. Surprisingly, one EGFR inhibitor (CAS 879127-07-8) was classified into the same cluster as nocodazole, a microtubule depolymerizer. In fact, this compound directly depolymerized microtubules. These results indicate that CAS 879127-07-8 could be used as a chemical probe to investigate both the EGFR pathway and microtubule dynamics. The image-based multivariate analysis developed herein has potential as a powerful tool for discovering unexpected drug properties.

  13. Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection.

    Directory of Open Access Journals (Sweden)

    Eva Rothmeier

    2013-09-01

    Full Text Available The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS to form in phagocytes a distinct "Legionella-containing vacuole" (LCV, which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.

  14. Activation of Ran GTPase by a Legionella Effector Promotes Microtubule Polymerization, Pathogen Vacuole Motility and Infection

    Science.gov (United States)

    Rothmeier, Eva; Pfaffinger, Gudrun; Hoffmann, Christine; Harrison, Christopher F.; Grabmayr, Heinrich; Repnik, Urska; Hannemann, Mandy; Wölke, Stefan; Bausch, Andreas; Griffiths, Gareth; Müller-Taubenberger, Annette; Itzen, Aymelt; Hilbi, Hubert

    2013-01-01

    The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila. PMID:24068924

  15. GDP-tubulin incorporation into growing microtubules modulates polymer stability.

    Science.gov (United States)

    Valiron, Odile; Arnal, Isabelle; Caudron, Nicolas; Job, Didier

    2010-06-04

    Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule "structural plasticity."

  16. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  17. Dynein is the motor for retrograde axonal transport of organelles

    International Nuclear Information System (INIS)

    Schnapp, B.J.; Reese, T.S.

    1989-01-01

    Vesicular organelles in axons of nerve cells are transported along microtubules either toward their plus ends (fast anterograde transport) or toward their minus ends (retrograde transport). Two microtubule-based motors were previously identified by examining plastic beads induced to move along microtubules by cytosol fractions from the squid giant axon: (i) an anterograde motor, kinesin, and (ii) a retrograde motor, which is characterized here. The retrograde motor, a cytosolic protein previously termed HMW1, was purified from optic lobes and extruded axoplasm by nucleotide-dependent microtubule affinity and release; microtubule gliding was used as the assay of motor activity. The following properties of the retrograde motor suggest that it is cytoplasmic dynein: (i) sedimentation at 20-22 S with a heavy chain of Mr greater than 200,000 that coelectrophoreses with the alpha and beta subunits of axonemal dynein, (ii) cleavage by UV irradiation in the presence of ATP and vanadate, and (iii) a molecular structure resembling two-headed dynein from axonemes. Furthermore, bead movement toward the minus end of microtubules was blocked when axoplasmic supernatants were treated with UV/vanadate. Treatment of axoplasmic supernatant with UV/vanadate also blocks the retrograde movement of purified organelles in vitro without changing the number of anterograde moving organelles, indicating that dynein interacts specifically with a subgroup of organelles programmed to move toward the cell body. However, purified optic lobe dynein, like purified kinesin, does not by itself promote the movement of purified organelles along microtubules, suggesting that additional axoplasmic factors are necessary for retrograde as well as anterograde transport

  18. Assembly and control of large microtubule complexes

    Science.gov (United States)

    Korolev, Kirill; Ishihara, Keisuke; Mitchison, Timothy

    Motility, division, and other cellular processes require rapid assembly and disassembly of microtubule structures. We report a new mechanism for the formation of asters, radial microtubule complexes found in very large cells. The standard model of aster growth assumes elongation of a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we found evidence for microtubule nucleation away from centrosomes. By combining polymerization dynamics and auto-catalytic nucleation of microtubules, we developed a new biophysical model of aster growth. The model predicts an explosive transition from an aster with a steady-state radius to one that expands as a travelling wave. At the transition, microtubule density increases continuously, but aster growth rate discontinuously jumps to a nonzero value. We tested our model with biochemical perturbations in egg extract and confirmed main theoretical predictions including the jump in the growth rate. Our results show that asters can grow even though individual microtubules are short and unstable. The dynamic balance between microtubule collapse and nucleation could be a general framework for the assembly and control of large microtubule complexes. NIH GM39565; Simons Foundation 409704; Honjo International 486 Scholarship Foundation.

  19. Microtubule catastrophe and rescue.

    Science.gov (United States)

    Gardner, Melissa K; Zanic, Marija; Howard, Jonathon

    2013-02-01

    Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends of individual microtubules. The dynamic behavior at the end of an individual microtubule is termed 'dynamic instability'. This behavior manifests itself by periods of persistent microtubule growth interrupted by occasional switching to rapid shrinkage (called microtubule 'catastrophe'), and then by switching back from shrinkage to growth (called microtubule 'rescue'). In this review, we summarize recent findings which provide new insights into the mechanisms of microtubule catastrophe and rescue, and discuss the impact of these findings in regards to the role of microtubule dynamics inside of cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Mechanics of microtubules: effects of protofilament orientation.

    Science.gov (United States)

    Donhauser, Zachary J; Jobs, William B; Binka, Edem C

    2010-09-08

    Microtubules are hollow cylindrical polymers of the protein tubulin that play a number of important dynamic and structural roles in eukaryotic cells. Both in vivo and in vitro microtubules can exist in several possible configurations, differing in the number of protofilaments, helical rise of tubulin dimers, and protofilament skew angle with respect to the main tube axis. Here, finite element modeling is applied to examine the mechanical response of several known microtubule types when subjected to radial deformation. The data presented here provide an important insight into microtubule stiffness and reveal that protofilament orientation does not affect radial stiffness. Rather, stiffness is primarily dependent on the effective Young's modulus of the polymerized material and the effective radius of the microtubule. These results are also directly correlated to atomic force microscopy nanoindentation measurements to allow a more detailed interpretation of previous experiments. When combined with experimental data that show a significant difference between microtubules stabilized with a slowly hydrolyzable GTP analog and microtubules stabilized with paclitaxel, the finite element data suggest that paclitaxel increases the overall radial flexibility of the microtubule wall. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Microtubule-Organizing Centers.

    Science.gov (United States)

    Wu, Jingchao; Akhmanova, Anna

    2017-10-06

    The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.

  2. Microtubule Catastrophe and Rescue

    OpenAIRE

    Gardner, Melissa K.; Zanic, Marija; Howard, Jonathon

    2012-01-01

    Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends...

  3. Retrograde peri-implantitis

    Directory of Open Access Journals (Sweden)

    Mohamed Jumshad

    2010-01-01

    Full Text Available Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation.

  4. The Kinesin Adaptor Calsyntenin-1 Organizes Microtubule Polarity and Regulates Dynamics during Sensory Axon Arbor Development

    Directory of Open Access Journals (Sweden)

    Mary C. Halloran

    2017-04-01

    Full Text Available Axon growth and branching, and development of neuronal polarity are critically dependent on proper organization and dynamics of the microtubule (MT cytoskeleton. MTs must organize with correct polarity for delivery of diverse cargos to appropriate subcellular locations, yet the molecular mechanisms regulating MT polarity remain poorly understood. Moreover, how an actively branching axon reorganizes MTs to direct their plus ends distally at branch points is unknown. We used high-speed, in vivo imaging of polymerizing MT plus ends to characterize MT dynamics in developing sensory axon arbors in zebrafish embryos. We find that axonal MTs are highly dynamic throughout development, and that the peripheral and central axons of sensory neurons show differences in MT behaviors. Furthermore, we show that Calsyntenin-1 (Clstn-1, a kinesin adaptor required for sensory axon branching, also regulates MT polarity in developing axon arbors. In wild type neurons the vast majority of MTs are directed in the correct plus-end-distal orientation from early stages of development. Loss of Clstn-1 causes an increase in MTs polymerizing in the retrograde direction. These misoriented MTs most often are found near growth cones and branch points, suggesting Clstn-1 is particularly important for organizing MT polarity at these locations. Together, our results suggest that Clstn-1, in addition to regulating kinesin-mediated cargo transport, also organizes the underlying MT highway during axon arbor development.

  5. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    Science.gov (United States)

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.

  6. Optical properties of template synthesized nanowalled ZnS microtubules

    Science.gov (United States)

    Kumar, Rajesh; Chakarvarti, S. K.

    2007-12-01

    Electrodeposition is a versatile technique combining low processing cost with ambient conditions that can be used to prepare metallic, polymeric and semiconducting nano/micro structures. In the present work, track-etch membranes (TEMs) of makrofol (KG) have been used as templates for synthesis of ZnS nanowalled microtubules using electrodeposition technique. The morphology of the microtubules was characterized by scanning electron microscopy. Size effects on the band gap of tubules have also been studied by UV-visible spectrophotometer.

  7. Taxol crystals can masquerade as stabilized microtubules.

    Directory of Open Access Journals (Sweden)

    Margit Foss

    Full Text Available Taxol is a potent anti-mitotic drug used in chemotherapy, angioplastic stents, and cell biology research. By binding and stabilizing microtubules, Taxol inhibits their dynamics, crucial for cell division, motility, and survival. The drug has also been reported to induce formation of asters and bundles composed of stabilized microtubules. Surprisingly, at commonly used concentrations, Taxol forms crystals that rapidly bind fluorescent tubulin subunits, generating structures with an uncanny resemblance to microtubule asters and bundles. Kinetic and topological considerations suggest that tubulin subunits, rather than microtubules, bind the crystals. This sequestration of tubulin from the subunit pool would be expected to shift the equilibrium of free to polymerized tubulin to disfavor assembly. Our results imply that some previously reported Taxol-induced asters or bundles could include or be composed of tubulin-decorated Taxol crystals. Thus, reevaluation of certain morphological, chemical, and physical properties of Taxol-treated microtubules may be necessary. Moreover, our findings suggest a novel mechanism for chemotherapy-induced cytotoxicity in non-dividing cells, with far-reaching medical implications.

  8. Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends.

    Science.gov (United States)

    Baclayon, Marian; Kalisch, Svenja-Marei; Hendel, Ed; Laan, Liedewij; Husson, Julien; Munteanu, E Laura; Dogterom, Marileen

    2017-01-01

    Microtubules are dynamic cytoskeletal polymers that polymerize and depolymerize while interacting with different proteins and structures within the cell. The highly regulated dynamic properties as well as the pushing and pulling forces generated by dynamic microtubule ends play important roles in processes such as in cell division. For instance, microtubule end-binding proteins are known to affect dramatically the dynamic properties of microtubules, and cortical dyneins are known to mediate pulling forces on microtubule ends. We discuss in this chapter our efforts to reconstitute these systems in vitro and mimic their interactions with structures within the cell using micro-fabricated barriers. Using an optical tweezers setup, we investigate the dynamics and forces of microtubules growing against functionalized barriers in the absence and presence of end-binding proteins and barrier-attached motor proteins. This setup allows high-speed as well as nanometer and piconewton resolution measurements on dynamic microtubules.

  9. Retrograde pulmonary arteriography

    International Nuclear Information System (INIS)

    Calcaterra, G.; Lam, J.; Losekoot, T.G.

    1984-01-01

    The authors performed retrograde pulmonary arteriography by means of a pulmonary venous wedge injection in 10 patients with no demonstrable intrapericardial pulmonary arteries by 'conventional' angiographic techniques. In all cases but one, the procedure demonstrated the feasibility of a further operation. No complications were observed. Retrograde pulmonary arteriography is an important additional method for determining the existence of surgically accessible pulmonary arteries when other techniques have failed. (Auth.)

  10. Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space

    NARCIS (Netherlands)

    Sieberer, B.; Kieft, H.; Franssen-Verheijen, M.A.W.; Emons, A.M.C.; Vos, J.W.

    2009-01-01

    The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant’s final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g.

  11. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila

    Science.gov (United States)

    Duncan, Jason E.; Lytle, Nikki K.; Zuniga, Alfredo; Goldstein, Lawrence S. B.

    2013-01-01

    Axonal transport, a form of long-distance, bi-directional intracellular transport that occurs between the cell body and synaptic terminal, is critical in maintaining the function and viability of neurons. We have identified a requirement for the stathmin (stai) gene in the maintenance of axonal microtubules and regulation of axonal transport in Drosophila . The stai gene encodes a cytosolic phosphoprotein that regulates microtubule dynamics by partitioning tubulin dimers between pools of soluble tubulin and polymerized microtubules, and by directly binding to microtubules and promoting depolymerization. Analysis of stai function in Drosophila , which has a single stai gene, circumvents potential complications with studies performed in vertebrate systems in which mutant phenotypes may be compensated by genetic redundancy of other members of the stai gene family. This has allowed us to identify an essential function for stai in the maintenance of the integrity of axonal microtubules. In addition to the severe disruption in the abundance and architecture of microtubules in the axons of stai mutant Drosophila , we also observe additional neurological phenotypes associated with loss of stai function including a posterior paralysis and tail-flip phenotype in third instar larvae, aberrant accumulation of transported membranous organelles in stai deficient axons, a progressive bang-sensitive response to mechanical stimulation reminiscent of the class of Drosophila mutants used to model human epileptic seizures, and a reduced adult lifespan. Reductions in the levels of Kinesin-1, the primary anterograde motor in axonal transport, enhance these phenotypes. Collectively, our results indicate that stai has an important role in neuronal function, likely through the maintenance of microtubule integrity in the axons of nerves of the peripheral nervous system necessary to support and sustain long-distance axonal transport. PMID:23840848

  12. MTB-3, a microtubule plus-end tracking protein (+TIP of Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Rosa R Mouriño-Pérez

    Full Text Available The microtubule (MT "plus end" constitutes the platform for the accumulation of a structurally and functionally diverse group of proteins, collectively called "MT plus-end tracking proteins" (+TIPs. +TIPs control MT dynamics and link MTs to diverse sub-cellular structures. Neurospora crassaMicroTubule Binding protein-3 (MTB-3 is the homolog of yeast EB1, a highly conserved +TIP. To address the function of MTB-3, we examined strains with mtb-3 deletions, and we tagged MTB-3 with GFP to assess its dynamic behavior. MTB-3-GFP was present as comet-like structures distributed more or less homogeneously within the hyphal cytoplasm, and moving mainly towards the apex at speeds up to 4× faster than the normal hyphal elongation rates. MTB-3-GFP comets were present in all developmental stages, but were most abundant in mature hyphae. MTB-3-GFP comets were observed moving in anterograde and retrograde direction along the hypha. Retrograde movement was also observed as originating from the apical dome. The integrity of the microtubular cytoskeleton affects the presence and dynamics of MTB-3-GFP comets, while actin does not seem to play a role. The size of MTB-3-GFP comets is affected by the absence of dynactin and conventional kinesin. We detected no obvious morphological phenotypes in Δmtb-3 mutants but there were fewer MTs in Δmtb-3, MTs were less bundled and less organized. Compared to WT, both MT polymerization and depolymerization rates were significantly decreased in Δmtb-3. In summary, the lack of MTB-3 affects overall growth and morphological phenotypes of N. crassa only slightly, but deletion of mtb-3 has strong effect on MT dynamics.

  13. The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force

    Science.gov (United States)

    Trushko, Anastasiya; Schäffer, Erik; Howard, Jonathon

    2013-01-01

    The generation of pulling and pushing forces is one of the important functions of microtubules, which are dynamic and polarized structures. The ends of dynamic microtubules are able to form relatively stable links to cellular structures, so that when a microtubule grows it can exert a pushing force and when it shrinks it can exert a pulling force. Microtubule growth and shrinkage are tightly regulated by microtubule-associated proteins (MAPs) that bind to microtubule ends. Given their localization, MAPs may be exposed to compressive and tensile forces. The effect of such forces on MAP function, however, is poorly understood. Here we show that beads coated with the microtubule polymerizing protein XMAP215, the Xenopus homolog of Dis1 and chTOG, are able to link stably to the plus ends of microtubules, even when the ends are growing or shrinking; at growing ends, the beads increase the polymerization rate. Using optical tweezers, we found that tensile force further increased the microtubule polymerization rate. These results show that physical forces can regulate the activity of MAPs. Furthermore, our results show that XMAP215 can be used as a handle to sense and mechanically manipulate the dynamics of the microtubule tip. PMID:23964126

  14. NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents

    Science.gov (United States)

    Harkcom, William T.; Ghosh, Ananda K.; Sung, Matthew S.; Matov, Alexandre; Brown, Kevin D.; Giannakakou, Paraskevi; Jaffrey, Samie R.

    2014-01-01

    Nicotinamide adenine dinucleotide (NAD+) is an endogenous enzyme cofactor and cosubstrate that has effects on diverse cellular and physiologic processes, including reactive oxygen species generation, mitochondrial function, apoptosis, and axonal degeneration. A major goal is to identify the NAD+-regulated cellular pathways that may mediate these effects. Here we show that the dynamic assembly and disassembly of microtubules is markedly altered by NAD+. Furthermore, we show that the disassembly of microtubule polymers elicited by microtubule depolymerizing agents is blocked by increasing intracellular NAD+ levels. We find that these effects of NAD+ are mediated by the activation of the mitochondrial sirtuin sirtuin-3 (SIRT3). Overexpression of SIRT3 prevents microtubule disassembly and apoptosis elicited by antimicrotubule agents and knockdown of SIRT3 prevents the protective effects of NAD+ on microtubule polymers. Taken together, these data demonstrate that NAD+ and SIRT3 regulate microtubule polymerization and the efficacy of antimicrotubule agents. PMID:24889606

  15. Electrodynamic effects on microtubules

    Czech Academy of Sciences Publication Activity Database

    Kučera, Ondřej; Havelka, Daniel; Deriu, M.A.; Cifra, Michal

    2015-01-01

    Roč. 44, Jul (2015), s. 169-169 ISSN 0175-7571. [10th European-Biophysical-Societies-Association (EBSA) European Biophysics Congress. 18.07.2015-22.07.2015, Dresden] R&D Projects: GA ČR(CZ) GA15-17102S Institutional support: RVO:67985882 Keywords : Microtubules * Electric al polarity Subject RIV: JA - Electronics ; Optoelectronics, Electric al Engineering

  16. Microtubule's conformational cap

    DEFF Research Database (Denmark)

    Flyvbjerg, H.

    1999-01-01

    The molecular mechanisms that allow elongation of the unstable microtubule lattice remain unclear. It is usually thought that the GDP-liganded tubulin lattice is capped by a small layer of GTP- or GDP-P(i)-liganded molecules, the so called "GTP-cap". Here, we point-out that the elastic properties...

  17. Interaction of microtubules with active principles of Xanthium strumarium.

    Science.gov (United States)

    Menon, G S; Kuchroo, K; Dasgupta, D

    2001-01-01

    Indigenous variety of Xanthium strumarium (X. strumarium) was screened for its antimitotic activity using the microtubule-tubulin system isolated from mammalian tissue. A preliminary phytochemical screening of the whole extracts of the plant was carried out followed by partial purification of the whole extract of X.strumarium. The separated fractions obtained were identified and used for in vitro polymerization studies. The whole as well as partially separated chemical constituents of X. strumarium showed effective inhibition of tubulin polymerization. The results thus suggest that X. strumarium may possess antimitotic components.

  18. Microtubules as mechanical force sensors.

    Science.gov (United States)

    Karafyllidis, Ioannis G; Lagoudas, Dimitris C

    2007-03-01

    Microtubules are polymers of tubulin subunits (dimers) arranged on a hexagonal lattice. Each tubulin dimer comprises two monomers, the alpha-tubulin and beta-tubulin, and can be found in two states. In the first state a mobile negative charge is located into the alpha-tubulin monomer and in the second into the beta-tubulin monomer. Each tubulin dimer is modeled as an electrical dipole coupled to its neighbors by electrostatic forces. The location of the mobile charge in each dimer depends on the location of the charges in the dimer's neighborhood. Mechanical forces that act on the microtubule affect the distances between the dimers and alter the electrostatic potential. Changes in this potential affect the mobile negative charge location in each dimer and the charge distribution in the microtubule. The net effect is that mechanical forces affect the charge distribution in microtubules. We propose to exploit this effect and use microtubules as mechanical force sensors. We model each dimer as a two-state quantum system and, following the quantum computation paradigm, we use discrete quantum random walk on the hexagonal microtubule lattice to determine the charge distribution. Different forces applied on the microtubule are modeled as different coin biases leading to different probability distributions of the quantum walker location, which are directly connected to different charge distributions. Simulation results show that there is a strong indication that microtubules can be used as mechanical force sensors and that they can also detect the force directions and magnitudes.

  19. Endoscopic retrograde cholanglopancreatography

    International Nuclear Information System (INIS)

    Horii, S.C.; Garra, B.S.; Zeman, R.K.; Krasner, B.H.; Lo, S.C.B.; Davros, W.J.; Silverman, P.M.; Cattau, E.L.; Fleischer, D.E.; Benjamin, S.B.S.B.

    1989-01-01

    As part of the clinical evaluation of image management and communications system (IMACS), the authors undertook a prospective study to compare conventional film versus digitized film viewed on a workstation. Twenty-five each of normal and abnormal endoscopic retrograde cholangiopancreatographic (ERCP) studies were digitized with a 1,684 x 2,048-pixel matrix and evaluated in a single-blind fashion on the workstation. The resulting interpretations were then compared with those resulting from interpretation of film (spot film and 100-mm photospot) images. They report that no significant differences were found in ability to see anatomic detail or pathology. A second study involved performing 10 ERCP studies in a lithotripsy suite equipped with biplane digital fluoroscopy. The digital video displays were comparable in quality to that of film. Progress is being made in using the IMACS for archiving and retrieval of all current ERCP images

  20. Dynamic microtubule organization and mitochondrial transport are regulated by distinct Kinesin-1 pathways

    Directory of Open Access Journals (Sweden)

    Anna Melkov

    2015-12-01

    Full Text Available The microtubule (MT plus-end motor kinesin heavy chain (Khc is well known for its role in long distance cargo transport. Recent evidence showed that Khc is also required for the organization of the cellular MT network by mediating MT sliding. We found that mutations in Khc and the gene of its adaptor protein, kinesin light chain (Klc resulted in identical bristle morphology defects, with the upper part of the bristle being thinner and flatter than normal and failing to taper towards the bristle tip. We demonstrate that bristle mitochondria transport requires Khc but not Klc as a competing force to dynein heavy chain (Dhc. Surprisingly, we demonstrate for the first time that Dhc is the primary motor for both anterograde and retrograde fast mitochondria transport. We found that the upper part of Khc and Klc mutant bristles lacked stable MTs. When following dynamic MT polymerization via the use of GFP-tagged end-binding protein 1 (EB1, it was noted that at Khc and Klc mutant bristle tips, dynamic MTs significantly deviated from the bristle parallel growth axis, relative to wild-type bristles. We also observed that GFP-EB1 failed to concentrate as a focus at the tip of Khc and Klc mutant bristles. We propose that the failure of bristle tapering is due to defects in directing dynamic MTs at the growing tip. Thus, we reveal a new function for Khc and Klc in directing dynamic MTs during polarized cell growth. Moreover, we also demonstrate a novel mode of coordination in mitochondrial transport between Khc and Dhc.

  1. Direct evidence for GTP and GDP-Pi intermediates in microtubule assembly

    International Nuclear Information System (INIS)

    Melki, R.; Carlier, M.F.; Pantaloni, D.

    1990-01-01

    Identification of the kinetic intermediates in GTP hydrolysis on microtubules and characterization of their assembly properties is essential in understanding microtubule dynamics. By using an improved glass filter assay that selectively traps microtubules with a dead time of 2 s and monitoring taxol-induced rapid assembly of microtubules from [γ- 32 P, 3 H]GTP-tubulin 1:1 complex, direct evidence has been obtained for GTP- and GDP-P i -microtubule transient states in the early stages of the polymerization process. A simple kinetic analysis of GTP hydrolysis on microtubules within two sequential pseudo-first-order processes led to apparent first-order rate constants of 0.065 s -1 for the cleavage of the γ-phosphate and 0.02 s -1 for the liberation of P i , assuming a simple random model. Apparent rate constants for GTP hydrolysis and P i release were independent of the composition of the buffer used to polymerize tubulin. The significance of these values with respect to those derived from previous studies from this and other laboratories and the possibility of a vectorial model for GTP hydrolysis are discussed

  2. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization

    International Nuclear Information System (INIS)

    Nieznanski, Krzysztof; Podlubnaya, Zoya A.; Nieznanska, Hanna

    2006-01-01

    A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for First time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of ∼50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers

  3. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

    Directory of Open Access Journals (Sweden)

    Carsten Schwan

    2009-10-01

    Full Text Available Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase, which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 microm microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host-pathogen interactions.

  4. Structural differences between yeast and mammalian microtubules revealed by cryo-EM

    Energy Technology Data Exchange (ETDEWEB)

    Howes, Stuart C. [Univ. of California, Berkeley, CA (United States). Biophysics Graduate Group; Geyer, Elisabeth A. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biophysics; Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; LaFrance, Benjamin [Univ. of California, Berkeley, CA (United States). Molecular and Cell Biology Graduate Program; Zhang, Rui [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Kellogg, Elizabeth H. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Westermann, Stefan [Univ. of Duisburg-Essen, Essen (Germany). Dept. of Molecular Genetics, Center for Medical Biotechnology; Rice, Luke M. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biophysics; Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; Nogales, Eva [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Univ. of California, Berkeley, CA (United States). Dept. of Molecular Biology and California Inst. for Quantitative Biosciences; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division

    2017-06-26

    Microtubules are polymers of αβ-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microtubule plus end–tracking protein Bim1 binds yeast microtubules both between αβ-tubulin heterodimers, as seen for other organisms, and within tubulin dimers, but binds mammalian tubulin only at interdimer contacts. At the concentrations used in cryo-electron microscopy, Bim1 causes the compaction of yeast microtubules and induces their rapid disassembly. In conclusion, our studies demonstrate structural differences between yeast and mammalian microtubules that likely underlie their differing polymerization dynamics. These differences may reflect adaptations to the demands of different cell size or range of physiological growth temperatures.

  5. Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth

    NARCIS (Netherlands)

    Sharma, Ashwani; Aher, Amol; Dynes, Nicola J; Frey, Daniel; Katrukha, Eugene A; Jaussi, Rolf; Grigoriev, Ilya; Croisier, Marie; Kammerer, Richard A; Akhmanova, Anna; Gönczy, Pierre; Steinmetz, Michel O

    2016-01-01

    Centrioles are fundamental and evolutionarily conserved microtubule-based organelles whose assembly is characterized by microtubule growth rates that are orders of magnitude slower than those of cytoplasmic microtubules. Several centriolar proteins can interact with tubulin or microtubules, but how

  6. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy.

    Science.gov (United States)

    Flex, Elisabetta; Niceta, Marcello; Cecchetti, Serena; Thiffault, Isabelle; Au, Margaret G; Capuano, Alessandro; Piermarini, Emanuela; Ivanova, Anna A; Francis, Joshua W; Chillemi, Giovanni; Chandramouli, Balasubramanian; Carpentieri, Giovanna; Haaxma, Charlotte A; Ciolfi, Andrea; Pizzi, Simone; Douglas, Ganka V; Levine, Kara; Sferra, Antonella; Dentici, Maria Lisa; Pfundt, Rolph R; Le Pichon, Jean-Baptiste; Farrow, Emily; Baas, Frank; Piemonte, Fiorella; Dallapiccola, Bruno; Graham, John M; Saunders, Carol J; Bertini, Enrico; Kahn, Richard A; Koolen, David A; Tartaglia, Marco

    2016-10-06

    Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause neurodevelopmental and neurodegenerative disorders. Growing evidence suggests that altered microtubule dynamics may also underlie or contribute to neurodevelopmental disorders and neurodegeneration. We report that biallelic mutations in TBCD, encoding one of the five co-chaperones required for assembly and disassembly of the αβ-tubulin heterodimer, the structural unit of microtubules, cause a disease with neurodevelopmental and neurodegenerative features characterized by early-onset cortical atrophy, secondary hypomyelination, microcephaly, thin corpus callosum, developmental delay, intellectual disability, seizures, optic atrophy, and spastic quadriplegia. Molecular dynamics simulations predicted long-range and/or local structural perturbations associated with the disease-causing mutations. Biochemical analyses documented variably reduced levels of TBCD, indicating relative instability of mutant proteins, and defective β-tubulin binding in a subset of the tested mutants. Reduced or defective TBCD function resulted in decreased soluble α/β-tubulin levels and accelerated microtubule polymerization in fibroblasts from affected subjects, demonstrating an overall shift toward a more rapidly growing and stable microtubule population. These cells displayed an aberrant mitotic spindle with disorganized, tangle-shaped microtubules and reduced aster formation, which however did not alter appreciably the rate of cell proliferation. Our findings establish that defective TBCD function underlies a recognizable encephalopathy and drives accelerated microtubule polymerization and enhanced microtubule stability, underscoring an additional cause of altered microtubule dynamics with

  7. Endoscopic retrograde cholangiopancreatography and endoscopic ...

    African Journals Online (AJOL)

    An approach to suspected gallstone pancreatitis'based on endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic sphincterotomy (ES) was adopted in 1976 and was followed in 29 patients. ERCp became the routine method of early biliary tract assessment when gallstone pancreatitis was suspected on ...

  8. Colonic perforation following endoscopic retrograde ...

    African Journals Online (AJOL)

    We highlight a potentially lethal complication of acute severe pancreatitis that may not be suspected in severely ill patients. A 41-year-old woman developed acute severe pancreatitis following endoscopic retrograde cholangiopancreatography (ERCP) for suspected choledocholithiasis. When her condition deteriorated ...

  9. Manipulation and quantification of microtubule lattice integrity

    Directory of Open Access Journals (Sweden)

    Taylor A. Reid

    2017-08-01

    Full Text Available Microtubules are structural polymers that participate in a wide range of cellular functions. The addition and loss of tubulin subunits allows the microtubule to grow and shorten, as well as to develop and repair defects and gaps in its cylindrical lattice. These lattice defects act to modulate the interactions of microtubules with molecular motors and other microtubule-associated proteins. Therefore, tools to control and measure microtubule lattice structure will be invaluable for developing a quantitative understanding of how the structural state of the microtubule lattice may regulate its interactions with other proteins. In this work, we manipulated the lattice integrity of in vitro microtubules to create pools of microtubules with common nucleotide states, but with variations in structural states. We then developed a series of novel semi-automated analysis tools for both fluorescence and electron microscopy experiments to quantify the type and severity of alterations in microtubule lattice integrity. These techniques will enable new investigations that explore the role of microtubule lattice structure in interactions with microtubule-associated proteins.

  10. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy

    Directory of Open Access Journals (Sweden)

    Ahmed Taha Ayoub

    2017-09-01

    Full Text Available Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs—tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole–dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by − 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  11. Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers

    Directory of Open Access Journals (Sweden)

    Hsieh Hsing-Pang

    2009-07-01

    Full Text Available Abstract Background Survivin is a dual function protein. It inhibits the apoptosis of cells by inhibiting caspases, and also promotes cell growth by stabilizing microtubules during mitosis. Over-expression of survivin has been demonstrated to induce drug-resistance to various chemo-therapeutic agents such as cisplatin (DNA damaging agent and paclitaxel (microtubule stabilizer in cancers. However, survivin-induced resistance to microtubule de-stabilizers such as Vinca alkaloids and Combretastatin A-4 (CA-4-related compounds were seldom demonstrated in the past. Furthermore, the question remains as to whether survivin plays a dominant role in processing cytokinesis or inhibiting caspases activity in cells treated with anti-mitotic compounds. The purpose of this study is to evaluate the effect of survivin on the resistance and susceptibility of human cancer cells to microtubule de-stabilizer-induced cell death. Results BPR0L075 is a CA-4 analog that induces microtubule de-polymerization and subsequent caspase-dependent apoptosis. To study the relationship between the expression of survivin and the resistance to microtubule de-stabilizers, a KB-derived BPR0L075-resistant cancer cell line, KB-L30, was generated for this study. Here, we found that survivin was over-expressed in the KB-L30 cells. Down-regulation of survivin by siRNA induced hyper-sensitivity to BPR0L075 in KB cells and partially re-stored sensitivity to BPR0L075 in KB-L30 cells. Western blot analysis revealed that down-regulation of survivin induced microtubule de-stabilization in both KB and KB-L30 cells. However, the same treatment did not enhance the down-stream caspase-3/-7 activities in BPR0L075-treated KB cells. Translocation of a caspase-independent apoptosis-related molecule, apoptosis-inducing factor (AIF, from cytoplasm to the nucleus was observed in survivin-targeted KB cells under BPR0L075 treatment. Conclusion In this study, survivin plays an important role in the

  12. Microtubule heterogeneity of Ornithogalum umbellatum ovary epidermal cells: non-stable cortical microtubules and stable lipotubuloid microtubules.

    Science.gov (United States)

    Kwiatkowska, Maria; Stępiński, Dariusz; Polit, Justyna T; Popłońska, Katarzyna; Wojtczak, Agnieszka

    2011-01-01

    Lipotubuloids, structures containing lipid bodies and microtubules, are described in ovary epidermal cells of Ornithogalum umbellatum. Microtubules of lipotubuloids can be fixed in electron microscope fixative containing only buffered OsO(4) or in glutaraldehyde with OsO(4) post-fixation, or in a mixture of OsO(4) and glutaraldehyde. None of these substances fixes cortical microtubules of ovary epidermis of this plant which is characterized by dynamic longitudinal growth. However, cortical microtubules can be fixed with cold methanol according immunocytological methods with the use of β-tubulin antibodies and fluorescein. The existence of cortical microtubules has also been evidenced by EM observations solely after the use of taxol, microtubule stabilizer, and fixation in a glutaraldehyde/OsO(4) mixture. These microtubules mostly lie transversely, sometimes obliquely, and rarely parallel to the cell axis. Staining, using Ruthenium Red and silver hexamine, has revealed that lipotubuloid microtubules surface is covered with polysaccharides. The presumption has been made that the presence of a polysaccharide layer enhances the stability of lipotubuloid microtubules.

  13. Nanoparticles from a controlled polymerization process

    International Nuclear Information System (INIS)

    Tirumala, V.R.; Caneba, G.T.; Dar, Y.; Wang, H.-H.; Mancini, D.C.

    2003-01-01

    Free-radical retrograde precipitation polymerization process in the past has shown excellent control characteristics over reaction rate, molecular weight, and in the entrapment of live radicals for the generation of block copolymers. The same principle has now been extended to study the reaction confinement to a nanoscale region. Nanosized polymer particles have been reported to form from block copolymers, conventional precipitation polymerization methods, or through emulsion polymerization approaches. In this work, we present a new method of generating nanosized polymer particles by polymerizing the monomer in an environment that precipitates the polymer above the lower critical solution temperature. The nanoparticles have been characterized by both tapping-mode atomic force microscopy observations and in situ synchrotron time-resolved small-angle X-ray scattering analysis. The results from both the techniques showed the formation of nanoparticles in the size range of 15-30 nm, directly from the polymerization process.

  14. Retrograde curves of solidus and solubility

    International Nuclear Information System (INIS)

    Vasil'ev, M.V.

    1979-01-01

    The investigation was concerned with the constitutional diagrams of the eutectic type with ''retrograde solidus'' and ''retrograde solubility curve'' which must be considered as diagrams with degenerate monotectic transformation. The solidus and the solubility curves form a retrograde curve with a common retrograde point representing the solubility maximum. The two branches of the Aetrograde curve can be described with the aid of two similar equations. Presented are corresponding equations for the Cd-Zn system and shown is the possibility of predicting the run of the solubility curve

  15. The first retrograde Trojan asteroid

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2018-04-01

    There are about six thousand asteroids which share Jupiter's orbit around the Sun. Called the 'Trojan asteroids', they co-exist easily with this giant planet because they travel in the same direction as it ('direct' or 'prograde' motion), and remain roughly 60 degrees ahead of or behind it in its orbit. Newly discovered asteroid 2015 BZ509 is on a retrograde orbit, but is nonetheless in a state dynamically analogous to that of the prograde Trojans. The discovery circumstances and the nature of the motion of this curious asteroid -the first of its kind- will be outlined.

  16. Moonlighting microtubule-associated proteins: regulatory functions by day and pathological functions at night.

    Science.gov (United States)

    Oláh, J; Tőkési, N; Lehotzky, A; Orosz, F; Ovádi, J

    2013-11-01

    The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeletal network. Cytoskeleton comprises fibrous protein networks of microtubules, actin, and intermediate filaments. These filamentous polymer structures are highly dynamic and undergo constant and rapid reorganization during cellular processes. The microtubular system plays a crucial role in the brain, as it is involved in an enormous number of cellular events including cell differentiation and pathological inclusion formation. These multifarious functions of microtubules can be achieved by their decoration with proteins/enzymes that exert specific effects on the dynamics and organization of the cytoskeleton and mediate distinct functions due to their moonlighting features. This mini-review focuses on two aspects of the microtubule cytoskeleton. On the one hand, we describe the heteroassociation of tubulin/microtubules with metabolic enzymes, which in addition to their catalytic activities stabilize microtubule structures via their cross-linking functions. On the other hand, we focus on the recently identified moonlighting tubulin polymerization promoting protein, TPPP/p25. TPPP/p25 is a microtubule-associated protein and it displays distinct physiological or pathological (aberrant) functions; thus it is a prototype of Neomorphic Moonlighting Proteins. The expression of TPPP/p25 is finely controlled in the human brain; this protein is indispensable for the development of projections of oligodendrocytes that are responsible for the ensheathment of axons. The nonphysiological, higher or lower TPPP/p25 level leads to distinct CNS diseases. Mechanisms contributing to the control of microtubule stability and dynamics by metabolic enzymes and TPPP/p25 will be discussed. Copyright © 2013 Wiley Periodicals, Inc.

  17. Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance

    KAUST Repository

    Manzoor, Safia

    2018-02-13

    Microtubules are highly dynamic structures that form spindle fibres during mitosis and are one of the most validated cancer targets. The success of drugs targeting microtubules, however, is often limited by the development of multidrug resistance. Here we describe the discovery and characterization of SSE15206, a pyrazolinethioamide derivative [3-phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] that has potent antiproliferative activities in cancer cell lines of different origins and overcomes resistance to microtubule-targeting agents. Treatment of cells with SSE15206 causes aberrant mitosis resulting in G2/M arrest due to incomplete spindle formation, a phenotype often associated with drugs that interfere with microtubule dynamics. SSE15206 inhibits microtubule polymerization both in biochemical and cellular assays by binding to colchicine site in tubulin as shown by docking and competition studies. Prolonged treatment of cells with the compound results in apoptotic cell death [increased Poly (ADP-ribose) polymerase cleavage and Annexin V/PI staining] accompanied by p53 induction. More importantly, we demonstrate that SSE15206 is able to overcome resistance to chemotherapeutic drugs in different cancer cell lines including multidrug-resistant KB-V1 and A2780-Pac-Res cell lines overexpressing MDR-1, making it a promising hit for the lead optimization studies to target multidrug resistance.

  18. Microtubule dynamics of the centrosome-like polar organizers from the basal land plant Marchantia polymorpha.

    Science.gov (United States)

    Buschmann, Henrik; Holtmannspötter, Michael; Borchers, Agnes; O'Donoghue, Martin-Timothy; Zachgo, Sabine

    2016-02-01

    The liverwort Marchantia employs both modern and ancestral devices during cell division: it forms preprophase bands and in addition it shows centrosome-like polar organizers. We investigated whether polar organizers and preprophase bands cooperate to set up the division plane. To this end, two novel green fluorescent protein-based microtubule markers for dividing cells of Marchantia were developed. Cells of the apical notch formed polar organizers first and subsequently assembled preprophase bands. Polar organizers were formed de novo from multiple mobile microtubule foci localizing to the nuclear envelope. The foci then became concentrated by bipolar aggregation. We determined the comet production rate of polar organizers and show that microtubule plus ends of astral microtubules polymerize faster than those found on cortical microtubules. Importantly, it was observed that conditions increasing polar organizer numbers interfere with preprophase band formation. The data show that polar organizers have much in common with centrosomes, but that they also have specialized features. The results suggest that polar organizers contribute to preprophase band formation and in this way are involved in controlling the division plane. Our analyses of the basal land plant Marchantia shed new light on the evolution of plant cell division. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    2010-10-01

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  20. Direct incorporation of guanosine 5'-diphosphate into microtubules without guanosine 5'-triphosphate hydrolysis

    International Nuclear Information System (INIS)

    Hamel, E.; Batra, J.K.; Lin, C.M.

    1986-01-01

    Using highly purified calf brain tubulin bearing [8- 14 C]guanosine 5'-diphosphate (GDP) in the exchangeable nucleotide site and heat-treated microtubule-associated proteins, the authors have found that a significant proportion of exchangeable-site GDP in microtubules can be incorporated directly during guanosine 5'-triphosphate (GTP) dependent polymerization of tubulin, without an initial exchange of GDP for GTP and subsequent GTP hydrolysis during assembly. The precise amount of GDP incorporated directly into microtubules is highly dependent on specific reaction conditions, being favored by high tubulin concentrations, low GTP and Mg 2+ concentrations, and exogenous GDP in the reaction mixture. Minimum effects were observed with changes in reaction pH or temperature, changes in concentration of microtubule-associated proteins, alteration of the sulfonate buffer, or the presence of a calcium chelator in the reaction mixture. Under conditions most favorable for direct GDP incorporation, about one-third of the GDP in microtubules is incorporated directly (without GTP hydrolysis) and two-thirds is incorporated hydrolytically (as a consequence of GTP hydrolysis). Direct incorporation of GDP occurs in a constant proportion throughout elongation, and the amount of direct incorporation probably reflects the rapid equilibration of GDP and GTP at the exchangeable site that occurs before the onset of assembly

  1. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction.

    Science.gov (United States)

    Liao, Edward H; Gray, Lindsay; Tsurudome, Kazuya; El-Mounzer, Wassim; Elazzouzi, Fatima; Baim, Christopher; Farzin, Sarah; Calderon, Mario R; Kauwe, Grant; Haghighi, A Pejmun

    2018-01-01

    Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons.

  2. Sonourethrography compared to retrograde urethrography

    International Nuclear Information System (INIS)

    Kim, Jong Chul; Chang, Nam Sik; Park, Cheong Hee; Rhee, Byung Chul; Kong, Jae Chul; Park, Jong Yoon

    1989-01-01

    A total of 15 patients with suspected urethral stricture or fistula underwent conventional retrograde urethrography and following sonourethrography with saline infusion or voiding against Eschmann penile clamp, in Gyeongsang and Chungnam National University Hospital from July, 1989 to June, 1989. The sonographic findings were as diagnostic as the roentgen findings in 12 patients. When the length of the strictures assessed by each imaging modality was compared to measurement at open urothroplasty of 2 patients, sonourethrography was consistently more accurate. Urethroscopy was done in all cases. Sonourethrography using distension technique of the urethra enabled classification of the degree of spongiofibrosis, thus provided the guidance of direct vision internal urethrotomy in 9 patients. In 2 patients, the sonourethrogram identified periurethral tumor and urethral polyp which were not definitely analysed on the retrograde urethrogram. In the patient of posttraumatic postoperative urethrorectal fistula, residual fistuous tract was seen on both examinations. In 1 patient of stricture with severe periurethral scar, urethral stricture recurred after graft. No patient reported significant discomfort during the sonourethrogram. The sonourethrogram provided valuable, dynamic. 3 dimensional information about the luminal and extraluminal anatomy and pathology of the anterior urethra. The new method of sonourethrogram allows for the appropriate decision to be made easier for optimal treatment of urethal stricture, etc, and can be used as a follow up study

  3. Stabilization of microtubules by inorganic phosphate and its structural analogues, the fluoride complexes of aluminum and beryllium

    International Nuclear Information System (INIS)

    Carlier, M.F.; Didry, D.; Melki, R.; Chabre, M.; Pantaloni, D.

    1988-01-01

    In order to elucidate how the elementary reactions of GTP cleavage and subsequent inorganic phosphate (P/sub i/) release, which accompany microtubule assembly, regulate microtubule dynamics, the effect of P/sub i/ and of its structural analogues AlF 4 - and BeF 3 - on the stability of GDP-microtubules has been investigated. Inorganic phosphate binds to microtubules with a low affinity (K/sub D/ = 25 mM) and slows down the rate of GDP-subunit dissociation by about 2 orders of magnitude. AlF 4 - and BeF 3 - exhibit phosphate-like effects with 1000-fold higher affinity. Evidence has been obtained for direct binding of BeF 3 - to microtubules with a stoichiometry of 1 mol of BeF 3 - per mole of GDP-subunit and an equilibrium dissociation constant of 12-15 μM. AlF 4 - and P/sub i/ compete for this site. Phosphate analogues abolish oscillatory polymerization kinetics and slow down microtubule turnover at steady state. In view of these results, the authors propose that P/sub i/ and its structural analogues bind to the site of the γ-phosphate of GTP in the E site and reconstitute a GDP-P/sub i/-microtubule, from which tubulin subunits dissociate very slowly. They therefore understand that, following GTP cleavage on microtubules, P/sub i/ release in the medium is accompanied by a structural change resulting in a large destabilization of the polymer. A cap of slowly dissociating GDP-P/sub i/-subunits prevents depolymerization of the microtubule GDP-core at steady state. The similarity with the actin system is studied

  4. Retrograde amnesia in patients with Alzheimer's disease

    NARCIS (Netherlands)

    Meeter, M.; Eijsackers, E; Mulder, J

    2006-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on two retrograde memory tests, one based on public events, and the other querying autobiographical memory. On both tests, patients showed strong decrements as compared to normal controls, pointing to retrograde

  5. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Holy, T.E.; Leibler, S.

    1996-01-01

    An effective theory is formulated for the dynamics of the guanosine triphosphate (GTP) cap believed to stabilize growing microtubules. The theory provides a ''coarse-grained'' description of the cap's dynamics. ''Microscopic'' details, such as the microtubule lattice structure and the fate of its...

  6. Biological Information Processing in Single Microtubules

    Science.gov (United States)

    2014-03-05

    generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis, Yue Zhao and Qimin...of frequency by a single microtubule. Green arrows depict the peaks that appear in absorption and disappear in transmission. Purple arrows show

  7. Advances in endoscopic retrograde cholangiopancreatography

    Directory of Open Access Journals (Sweden)

    WANG Xiangping

    2018-03-01

    Full Text Available Endoscopic retrograde cholangiopancreatography (ERCP is a well-established advanced endoscopic technique for the diagnosis and treatment of pancreatobiliary diseases. New advances have been made in the treatment concept and techniques of ERCP in recent years. This article elaborates on the recent advances in ERCP, including the application of pancreatic duct stent, non-steroidal anti-inflammatory drugs, and aggressive hydration to prevent postoperative pancreatitis, covered metal stent for the treatment of benign bile duct stenosis, intraluminal radiofrequency ablation for malignant bile duct stenosis, extracorporeal shockwave lithotripsy and covered metal stent for the treatment of chronic pancreatitis, peroral choledochoscopy for qualitative diagnosis of bile duct stenosis and huge refractory stones, definition of difficult intubation, timing of pre-cut technique, and ERCP after gastrointestinal reconstruction.

  8. Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls.

    Science.gov (United States)

    Ma, Qianqian; Sun, Jingbo; Mao, Tonglin

    2016-05-15

    The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation. © 2016. Published by The Company of Biologists Ltd.

  9. Near-atomic model of microtubule-tau interactions.

    Science.gov (United States)

    Kellogg, Elizabeth H; Hejab, Nisreen M A; Poepsel, Simon; Downing, Kenneth H; DiMaio, Frank; Nogales, Eva

    2018-06-15

    Tau is a developmentally regulated axonal protein that stabilizes and bundles microtubules (MTs). Its hyperphosphorylation is thought to cause detachment from MTs and subsequent aggregation into fibrils implicated in Alzheimer's disease. It is unclear which tau residues are crucial for tau-MT interactions, where tau binds on MTs, and how it stabilizes them. We used cryo-electron microscopy to visualize different tau constructs on MTs and computational approaches to generate atomic models of tau-tubulin interactions. The conserved tubulin-binding repeats within tau adopt similar extended structures along the crest of the protofilament, stabilizing the interface between tubulin dimers. Our structures explain the effect of phosphorylation on MT affinity and lead to a model of tau repeats binding in tandem along protofilaments, tethering together tubulin dimers and stabilizing polymerization interfaces. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia

    Science.gov (United States)

    Patel-King, Ramila S.; Gilberti, Renée M.; Hom, Erik F. Y.; King, Stephen M.

    2013-01-01

    Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle–like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly. PMID:23864713

  11. Retrograde transurethral balloon dilation of the prostate

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Wasserman, N.F.; Lund, G.; Hulbert, J.; Hunter, D.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1986-01-01

    A series of patients with documented benign prostatic hypertrophy evaluated by urodynamic studies, voiding cystourethrography, retrograde urethrography, and MR imaging underwent dilation performed using a retrograde transurethral approach with 25-mm balloon dilators inflated at a pressure of 3-4 atm for 10 minutes. Immediately after the procedure, retrograde and voiding cystourethrography as well as MR imaging were performed. A Foley catheter was left in place for 24 hours. Complete relief of symptoms has occurred in all of the patients during the follow-up period. No significant complications other than transient hematuria resulted from the procedure. Results of the comparison studies and of MR imaging are discussed

  12. Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells.

    Science.gov (United States)

    De Rossi, María Cecilia; Wetzler, Diana E; Benseñor, Lorena; De Rossi, María Emilia; Sued, Mariela; Rodríguez, Daniela; Gelfand, Vladimir; Bruno, Luciana; Levi, Valeria

    2017-12-01

    Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-β-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A novel mechanism important for the alignment of microtubules.

    Science.gov (United States)

    Wightman, Raymond; Turner, Simon R

    2008-04-01

    Using a live-cell imaging approach to study individual micro-tubules, we have compared microtubule behavior between net-like and aligned cortical arrays. In contrast to previous studies, a steep angled collision between the growing end of a microtubule and a preexisting microtubule was found to favor crossover. Frequencies of microtubule crossovers, bundling and catastrophes are similar regardless of whether the cell exhibited a net-like or aligned microtubule array. In the predominantly aligned array of petiole cells, severing occurs at the sites of microtubule crossovers and serves to remove unaligned microtubules and to increase microtubule density. Severing was observed to be rare in net-like arrays. Microtubule severing is carried out by the katanin enzyme. In this addendum, we present new insights into the possible mechanism of crossing over and preliminary data looking at organization of the array in a katanin mutant.

  14. Nanoimages show disruption of tubulin polymerization by chlorpyrifos oxon: Implications for neurotoxicity

    International Nuclear Information System (INIS)

    Grigoryan, Hasmik; Lockridge, Oksana

    2009-01-01

    Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purified bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNY*R of alpha tubulin, and Tyr 281 in GSQQY*R of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents.

  15. Retrograde prostatic urethroplasty with balloon catheter

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Hulbert, J.; Letourneau, J.G.; Hunter, D.W.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1987-01-01

    The authors performed retrograde prostatic urethroplasty in 18 patients using a 25-mm urethroplasty balloon catheter. The procedure was performed on an outpatient basis under local anesthesia. Voiding cystourethrography, retrograde urethrography, rectal US, and MRE imaging were performed before and immediately after the procedure and at 2 weeks and 3, 6, 12, and 18 months. Long-term results at 18 months and possible clinical implications are discussed

  16. Microtubule array reorientation in response to hormones does not involve changes in microtubule nucleation modes at the periclinal cell surface

    Science.gov (United States)

    Atkinson, Samantha; Kirik, Angela; Kirik, Viktor

    2014-01-01

    Aligned microtubule arrays spatially organize cell division, trafficking, and determine the direction of cell expansion in plant cells. In response to changes in environmental and developmental signals, cells reorganize their microtubule arrays into new configurations. Here, we tested the role of microtubule nucleation during hormone-induced microtubule array reorientation. We have found that in the process of microtubule array reorientation the ratios between branching, parallel, and de-novo nucleations remained constant, suggesting that the microtubule reorientation mechanism does not involve changes in nucleation modes. In the ton2/fass mutant, which has reduced microtubule branching nucleation frequency and decreased nucleation activity of the γ-tubulin complexes, microtubule arrays were able to reorient. Presented data suggest that reorientation of microtubules into transverse arrays in response to hormones does not involve changes in microtubule nucleation at the periclinal cell surface PMID:25135522

  17. Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules

    International Nuclear Information System (INIS)

    Kuwabara, Hiroko; Yoneda, Masahiko; Hayasaki, Hana; Nakamura, Toshiya; Mori, Hiroshi

    2006-01-01

    The receptor for hyaluronan mediated motility (RHAMM), which is a hyaluronan-binding protein, is a centrosomal and microtubal protein. Here, we have identified two RHAMM-binding proteins, glucose regulated protein (GRP) 78 and GRP75, using co-immunoprecipitation analysis. These two proteins directly bound to glutathione-S-transferase-RHAMM fusion proteins. By double immunostaining, GRP78 and GRP75 colocalized with RHAMM in interphase microtubules, but were separated in mitotic spindles. Prevention of microtubule polymerization by TN-16 and vincristine sulfate induced RHAMM overexpression without a significant change in GRP78/75. Taken together, GRP78/75 and RHAMM complexes may stabilize microtubules in the interphase, associated with a downregulation of RHAMM. These results reveal a new biochemical activity of RHAMM

  18. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  19. Microtubules self-repair in response to mechanical stress

    Science.gov (United States)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  20. YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules

    Directory of Open Access Journals (Sweden)

    Baconnais Sonia

    2008-09-01

    Full Text Available Abstract Background YB-1 is a major regulator of gene expression in eukaryotic cells. In addition to its role in transcription, YB-1 plays a key role in translation and stabilization of mRNAs. Results We show here that YB-1 interacts with tubulin and microtubules and stimulates microtubule assembly in vitro. High resolution imaging via electron and atomic force microscopy revealed that microtubules assembled in the presence of YB-1 exhibited a normal single wall ultrastructure and indicated that YB-1 most probably coats the outer microtubule wall. Furthermore, we found that YB-1 also promotes the assembly of MAPs-tubulin and subtilisin-treated tubulin. Finally, we demonstrated that tubulin interferes with RNA:YB-1 complexes. Conclusion These results suggest that YB-1 may regulate microtubule assembly in vivo and that its interaction with tubulin may contribute to the control of mRNA translation.

  1. A retrograde object near Jupiter's orbit

    Science.gov (United States)

    Connors, M.; Wiegert, P.

    2018-02-01

    Asteroid 2007 VW266 is among the rare objects with a heliocentric retrograde orbit, and its semimajor axis is within a Hill sphere radius of that of Jupiter. This raised the interesting possibility that it could be in co-orbital retrograde resonance with Jupiter, a second "counter-orbital" object in addition to recently discovered 2015 BZ509. We find instead that the object is in 13/14 retrograde mean motion resonance (also referred to as 13/-14). The object is shown to have entered its present orbit about 1700 years ago, and it will leave it in about 8000 years, both through close approach to Jupiter. Entry and exit states both avoid 1:1 retrograde resonance, but the retrograde nature is preserved. The temporary stable state is due to an elliptic orbit with high inclination keeping nodal passages far from the associated planet. We discuss the motion of this unusual object based on modeling and theory, and its observational prospects.

  2. Involvement of microtubules in lipoprotein degradation and utilization for steroidogenesis in cultured rat luteal cells

    International Nuclear Information System (INIS)

    Rajan, V.P.; Menon, K.M.

    1985-01-01

    Cells isolated from superovulated rat ovaries metabolize low density lipoprotein (LDL) and high density lipoprotein (HDL) of human or rat origin and use the lipoprotein-derived cholesterol as a precursor for progesterone production. Under in vitro conditions, both lipoproteins are internalized and degraded in the lysosomes, although degradation of HDL is of lower magnitude than that of LDL. In this report we have examined the role of cellular microtubules in the internalization and degradation of human LDL and HDL in cultured rat luteal cells. The microtubule depolymerizing agents colchicine, podophyllotoxin, vinblastine, and nocodazole as well as taxol, deuterium oxide, and dimethyl sulfoxide, which are known to rapidly polymerize cellular tubulin into microtubules, were used to block the function of microtubules. When these antimicrotubule agents were included in the incubations, degradation of the apolipoproteins of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL by the luteal cells was inhibited by 50-85% compared to untreated control values. Maximum inhibitory effects were observed when the cells were preincubated with the inhibitor for at least 4 h at 37 C before treatment with the labeled lipoprotein. Lipoprotein-stimulated progesterone production by luteal cells was also inhibited by 50% or more in the presence of antimicrotubule agents. However, basal and hCG-stimulated progesterone production were unaffected by these inhibitors. The binding of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL to luteal cell plasma membrane receptors was not affected by the microtubule inhibitors. Although binding was unaffected and degradation was impaired in the presence of the inhibitors, there was no detectable accumulation of undegraded lipoprotein within the cells during the 24 h of study

  3. Ferritin associates with marginal band microtubules

    International Nuclear Information System (INIS)

    Infante, Anthony A.; Infante, Dzintra; Chan, M.-C.; How, P.-C.; Kutschera, Waltraud; Linhartova, Irena; Muellner, Ernst W.; Wiche, Gerhard; Propst, Friedrich

    2007-01-01

    We characterized chicken erythrocyte and human platelet ferritin by biochemical studies and immunofluorescence. Erythrocyte ferritin was found to be a homopolymer of H-ferritin subunits, resistant to proteinase K digestion, heat stable, and contained iron. In mature chicken erythrocytes and human platelets, ferritin was localized at the marginal band, a ring-shaped peripheral microtubule bundle, and displayed properties of bona fide microtubule-associated proteins such as tau. Red blood cell ferritin association with the marginal band was confirmed by temperature-induced disassembly-reassembly of microtubules. During erythrocyte differentiation, ferritin co-localized with coalescing microtubules during marginal band formation. In addition, ferritin was found in the nuclei of mature erythrocytes, but was not detectable in those of bone marrow erythrocyte precursors. These results suggest that ferritin has a function in marginal band formation and possibly in protection of the marginal band from damaging effects of reactive oxygen species by sequestering iron in the mature erythrocyte. Moreover, our data suggest that ferritin and syncolin, a previously identified erythrocyte microtubule-associated protein, are identical. Nuclear ferritin might contribute to transcriptional silencing or, alternatively, constitute a ferritin reservoir

  4. Popliteal versus tibial retrograde access for subintimal arterial flossing with antegrade-retrograde intervention (SAFARI) technique.

    Science.gov (United States)

    Hua, W R; Yi, M Q; Min, T L; Feng, S N; Xuan, L Z; Xing, J

    2013-08-01

    This study aimed to ascertain differences in benefit and effectiveness of popliteal versus tibial retrograde access in subintimal arterial flossing with the antegrade-retrograde intervention (SAFARI) technique. This was a retrospective study of SAFARI-assisted stenting for long chronic total occlusion (CTO) of TASC C and D superficial femoral lesions. 38 cases had superficial femoral artery lesions (23 TASC C and 15 TASC D). All 38 cases underwent SAFARI-assisted stenting. The ipsilateral popliteal artery was retrogradely punctured in 17 patients. A distal posterior tibial (PT) or dorsalis pedis (DP) artery was retrogradely punctured in 21 patients, and 16 of them were punctured after open surgical exposure. SAFARI technical success was achieved in all cases. There was no significant difference in 1-year primary patency (75% vs. 78.9%, p = .86), secondary patency (81.2% vs. 84.2%, p = .91) and access complications (p = 1.00) between popliteal and tibial retrograde access. There was statistical difference in operation time between popliteal (140.1 ± 28.4 min) and tibial retrograde access with PT/DP punctures after surgical vessel exposure (120.4 ± 23.0 min, p = .04). The SAFARI technique is a safe and feasible option for patients with infrainguinal CTO (TASC II C and D). The PT or DP as the retrograde access after surgical vessel exposure is a good choice when using the SAFARI technique. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Brown dwarfs in retrogradely precessing cataclysmic variables?

    Directory of Open Access Journals (Sweden)

    Martin E.L.

    2011-07-01

    Full Text Available We compare Smoothed Particle Hydrodynamic simulations of retrogradely precessing accretion disks that have a white dwarf primary and a main sequence secondary with observational data and with theory on retrograde precession via tidal torques like those by the Moon and the Sun on the Earth [1, 2]. Assuming the primary does not accrete much of the mass lost from the secondary, we identify the theoretical low mass star/brown dwarf boundary. We find no observational candidates in our study that could qualify as brown dwarfs.

  6. Microtubules move the nucleus to quiescence.

    Science.gov (United States)

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  7. Retrograde amnesia after electroconvulsive therapy: a temporary effect?

    NARCIS (Netherlands)

    Meeter, M.; Murre, J.M.J.; Janssen, S.M.J.; Birkenhager, T.; van den Broek, W.W.

    2011-01-01

    Objective: Although electroconvulsive therapy (ECT) is generally considered effective against depression, it remains controversial because of its association with retrograde memory loss. Here, we assessed memory after ECT in circumstances most likely to yield strong retrograde amnesia. Method: A

  8. Functional Outcomes of the Knee after Retrograde and Antegrade ...

    African Journals Online (AJOL)

    of femur shaft fractures although retrograde technique is gaining acceptance. Although ... Antegrade group, while the rate of knee stiffness was higher in the retrograde .... reaching direct and indirect social economic effect within the society.

  9. Potential mechanisms of resistance to microtubule inhibitors.

    Science.gov (United States)

    Kavallaris, Maria; Annereau, Jean-Philippe; Barret, Jean-Marc

    2008-06-01

    Antimitotic drugs targeting the microtubules, such as the taxanes and vinca alkaloids, are widely used in the treatment of neoplastic diseases. Development of drug resistance over time, however, limits the efficacy of these agents and poses a clinical challenge to long-term improvement of patient outcomes. Understanding the mechanism(s) of drug resistance becomes paramount to allowing for alternative, if not improved, therapeutic options that might circumvent this challenge. Vinflunine, a novel microtubule inhibitor, has shown superior preclinical antitumor activity, and displays a different pattern of resistance, compared with other agents in the vinca alkaloid class.

  10. Microtubules: A network for solitary waves

    Directory of Open Access Journals (Sweden)

    Zdravković Slobodan

    2017-01-01

    Full Text Available In the present paper we deal with nonlinear dynamics of microtubules. The structure and role of microtubules in cells are explained as well as one of models explaining their dynamics. Solutions of the crucial nonlinear differential equation depend on used mathematical methods. Two commonly used procedures, continuum and semi-discrete approximations, are explained. These solutions are solitary waves usually called as kink solitons, breathers and bell-type solitons. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45010

  11. Mutations in Human Tubulin Proximal to the Kinesin-Binding Site Alter Dynamic Instability at Microtubule Plus- and Minus-Ends

    Energy Technology Data Exchange (ETDEWEB)

    Ti, Shih-Chieh; Pamula, Melissa C.; Howes, Stuart C.; Duellberg, Christian; Cade, Nicholas I.; Kleiner, Ralph E.; Forth, Scott; Surrey, Thomas; Nogales, Eva; Kapoor, Tarun M.

    2016-04-01

    The assembly of microtubule-based cellular structures depends on regulated tubulin polymerization and directional transport. In this research, we have purified and characterized tubulin heterodimers that have human β-tubulin isotype III (TUBB3), as well as heterodimers with one of two β-tubulin mutations (D417H or R262H). Both point mutations are proximal to the kinesin-binding site and have been linked to an ocular motility disorder in humans. Compared to wild-type, microtubules with these mutations have decreased catastrophe frequencies and increased average lifetimes of plus- and minus-end-stabilizing caps. Importantly, the D417H mutation does not alter microtubule lattice structure or Mal3 binding to growing filaments. Instead, this mutation reduces the affinity of tubulin for TOG domains and colchicine, suggesting that the distribution of tubulin heterodimer conformations is changed. Together, our findings reveal how residues on the surface of microtubules, distal from the GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the plus- and minus-ends of microtubules.

  12. Studies of retrograde memory: A long-term view

    OpenAIRE

    Warrington, Elizabeth K.

    1996-01-01

    Studies of retrograde amnesia are reviewed. First, the issues of temporal gradients of retrograde amnesia are discussed. Second, the question of the anatomical substrates of this syndrome are considered. Finally, some evidence for fractionation of different classes of memoranda within the retrograde time period are presented.

  13. Topographic Anterograde and Retrograde Memory for Spatial ...

    African Journals Online (AJOL)

    The present study was on the effects of haloperidol injection on anterograde and retrograde topographic memories for spatial behaviours in Long Evan rats. Twelve Long Evan albino rats weighing 0.5 – 0.8 kg (6 males, 6 females) were used for the study. Complex Maze Box of 14 unit T Alley from the Royal Institute of ...

  14. Liver parenchumography following endoscopic retrograde cholangiopancreatography (ERCP)

    International Nuclear Information System (INIS)

    Revert, A.; Arana, E.; Pertejo, V.; Berenguer, M.; Masip, M.J.

    1998-01-01

    Focal liver opacification during endoscopic retrograde cholangiography (ERCP) is an uncommon complication caused by excessive pressure during contrast injection. In this situation, ERCP must be interrupted and the position of the cannula checked. We recommend that these images be excluded from the diagnosis of tumor or cystic cavities. 4 refs

  15. Kinematics of turnaround and retrograde axonal transport

    International Nuclear Information System (INIS)

    Snyder, R.E.

    1986-01-01

    Rapid axonal transport of a pulse of 35 S-methionine-labelled material was studied in vitro in the sensory neurons of amphibian sciatic nerve using a position-sensitive detector. For 10 nerves studied at 23.0 +/- 0.2 degrees C it was found that a pulse moved in the anterograde direction characterized by front edge, peak, and trailing edge transport rates of (mm/d) 180.8 +/- 2.2 (+/- SEM), 176.6 +/- 2.3, and 153.7 +/- 3.0, respectively. Following its arrival at a distal ligature, a smaller pulse was observed to move in the retrograde direction characterized by front edge and peak transport rates of 158.0 +/- 7.3 and 110.3 +/- 3.5, respectively, indicating that retrograde transport proceeds at a rate of 0.88 +/- 0.04 that of anterograde. The retrograde pulse was observed to disperse at a rate greater than the anterograde. Reversal of radiolabel at the distal ligature began 1.49 +/- 0.15 h following arrival of the first radiolabel. Considerable variation was seen between preparations in the way radiolabel accumulated in the end (ligature) regions of the nerve. Although a retrograde pulse was seen in all preparations, in 7 of 10 preparations there was no evidence of this pulse accumulating within less than 2-3 mm of a proximal ligature; however, accumulation was observed within less than 5 mm in all preparations

  16. Synchronous Retrograde and Micturating Cysto Urethrography A ...

    African Journals Online (AJOL)

    Background: Retrograde Urethrography (RUG) combined with Micturating cystourethrography (MCUG) is imaging method of choice for studying the urethra and its 1-9 abnormalities . Though there are many modern imaging modalities that are also useful but these are not available in most developing countries. Even the ...

  17. Retrograde Renal Cooling to Minimize Ischemia

    Directory of Open Access Journals (Sweden)

    Janet L. Colli

    2013-01-01

    Full Text Available Objective: During partial nephrectomy, renal hypothermia has been shown to decrease ischemia induced renal damage which occurs from renal hilar clamping. In this study we investigate the infusion rate required to safely cool the entire renal unit in a porcine model using retrograde irrigation of iced saline via dual-lumen ureteral catheter. Materials and Methods: Renal cortical, renal medullary, bowel and rectal temperatures during retrograde cooling in a laparoscopic porcine model were monitored in six renal units. Iced normal saline was infused at 300 cc/hour, 600 cc/hour, 1000 cc/hour and gravity (800 cc/hour for 600 seconds with and without hilar clamping. Results: Retrograde cooling with hilar clamping provided rapid medullary renal cooling and significant hypothermia of the medulla and cortex at infusion rates ≥ 600 cc/hour. With hilar clamping, cortical temperatures decreased at -0.9° C/min. reaching a threshold temperature of 26.9° C, and medullary temperatures decreased at -0.90 C/min. reaching a temperature of 26.1° C over 600 seconds on average for combined data at infusion rates ≥ 600 cc/hour. The lowest renal temperatures were achieved with gravity infusion. Without renal hilum clamping, retrograde cooling was minimal at all infusion rates. Conclusions: Significant renal cooling by gravity infusion of iced cold saline via a duel lumen catheter with a clamped renal hilum was achieved in a porcine model. Continuous retrograde irrigation with iced saline via a two way ureteral catheter may be an effective method to induce renal hypothermia in patients undergoing robotic assisted and/or laparoscopic partial nephrectomy.

  18. Direct Cytoplasmic Delivery and Nuclear Targeting Delivery of HPMA-MT Conjugates in a Microtubules Dependent Fashion.

    Science.gov (United States)

    Zhong, Jiaju; Zhu, Xi; Luo, Kui; Li, Lian; Tang, Manlin; Liu, Yanxi; Zhou, Zhou; Huang, Yuan

    2016-09-06

    As the hearts of tumor cells, the nucleus is the ultimate target of many chemotherapeutic agents and genes. However, nuclear drug delivery is always hampered by multiple intracellular obstacles, such as low efficiency of lysosome escape and insufficient nuclear trafficking. Herein, an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-based drug delivery system was designed, which could achieve direct cytoplasmic delivery by a nonendocytic pathway and transport into the nucleus in a microtubules dependent fashion. A special targeting peptide (MT), derived from an endogenic parathyroid hormone-related protein, was conjugated to the polymer backbone, which could accumulate into the nucleus a by microtubule-mediated pathway. The in vitro studies found that low temperature and NaN3 could not influence the cell internalization of the conjugates. Besides, no obvious overlay of the conjugates with lysosome demonstrated that the polymer conjugates could enter the tumor cell cytoplasm by a nonendocytic pathway, thus avoiding the drug degradation in the lysosome. Furthermore, after suppression of the microtubule dynamics with microtubule stabilizing docetaxel (DTX) and destabilizing nocodazole (Noc), the nuclear accumulation of polymeric conjugates was significantly inhibited. Living cells fluorescence recovery after photobleaching study found that the nuclear import rate of conjugates was 2-fold faster compared with the DTX and Noc treated groups. These results demonstrated that the conjugates transported into the nucleus in a microtubules dependent way. Therefore, in addition to direct cytoplasmic delivery, our peptide conjugated polymeric platform could simultaneously mediate nuclear drug accumulation, which may open a new path for further intracellular genes/peptides delivery.

  19. Doppler-guided retrograde catheterization system

    Science.gov (United States)

    Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.

    1991-05-01

    The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the

  20. Microscale force response and morphology of tunable co-polymerized cytoskeleton networks

    Science.gov (United States)

    Ricketts, Shea; Yadav, Vikrant; Ross, Jennifer L.; Robertson-Anderson, Rae M.

    The cytoskeleton is largely comprised of actin and microtubules that entangle and crosslink to form complex networks and structures, giving rise to nonlinear multifunctional mechanics in cells. The relative concentrations of semiflexible actin filaments and rigid microtubules tune cytoskeleton function, allowing cells to move and divide while maintaining rigidity and resilience. To elucidate this complex tunability, we create in vitro composites of co-polymerized actin and microtubules with actin:microtubule molar ratios of 0:1-1:0. We use optical tweezers and confocal microscopy to characterize the nonlinear microscale force response and morphology of the composites. We optically drag a microsphere 30 μm through varying actin-microtubule networks at 10 μm/s and 20 μm/s, and measure the force the networks exerts to resist the strain and the force relaxation following strain. We use dual-color confocal microscopy to image distinctly-labeled filaments in the networks, and characterize the integration of actin and microtubules, network connectivity, and filament rigidity. We find that increasing the fraction of microtubules in networks non-monotonically increases elasticity and stiffness, and hinders force relaxation by suppressing network mobility and fluctuations. NSF CAREER Award (DMR-1255446), Scialog Collaborative Innovation Award funded by Research Corporation for Scientific Advancement (Grant No. 24192).

  1. Vagal withdrawal during endoscopic retrograde cholangiopancreatography

    DEFF Research Database (Denmark)

    Christensen, M; Rasmussen, Verner; Schulze, S

    2000-01-01

    BACKGROUND: Patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) are at risk of developing cardiorespiratory complications, but the mechanism is still unknown. Treatment with metoprolol 2 h before the endoscopy has been shown to decrease the incidence of myocardial ischaemia......: The existence of a defence-like reaction ('vagal withdrawal') during ERCP has been shown. Metoprolol given 2 h before the procedure did not affect the occurrence of this phenomenon. The interaction of other periendoscopic factors is still unclear and should be studied further....

  2. An unusual experience with endoscopic retrograde cholangiopancreatography

    Directory of Open Access Journals (Sweden)

    Mallikarjun Patil

    2013-01-01

    Full Text Available The endoscopic retrograde cholangiopancreatography (ERCP is known for its varied diagnostic and therapeutic utility for a variety of disorders. However it has greater likelihood of procedure related complications among the endoscopic procedures of gastrointestinal tract. The extraluminal hemorrhagic complications following ERCP are potentially life threatening though relatively rare. We present a 50 year patient with choledocholithiasis and cholelithiasis developing rare complication of subcapsular hepatic hematoma, following ERCP due to guide wire injury.

  3. Complications of bladder distension during retrograde urethrography.

    Science.gov (United States)

    Barsanti, J A; Crowell, W; Losonsky, J; Talkington, F D

    1981-05-01

    A severe, ulcerative cystitis that resulted in macroscopic hematuria occurred in 8 of 20 healthy dogs undergoing a series of diagnostic tests. Four of the remaining 12 dogs had mild bladder lesions consisting of submucosal edema and hemorrhage. Nine of the 20 dogs developed urinary tract infection after the procedures. These complications seemed associated with the radiographic technique of retrograde urethrography performed when the urinary bladder was distended. To test this hypothesis, retrograde urethrography was performed on 5 additional dogs. With the bladder undistended, no complications occurred. However, distention of these same dogs' bladders for 1 minute or less with sterile lactated Ringer's solution administered through a Foley catheter in the penile urethra resulted in a macroscopic hematuria in all 5 dogs which persisted for 24 hours. A microscopic hematuria continued for 5 days. One dog developed a bacterial urinary tract infection. A severe fibrinopurulent cystitis was present at necropsy of 2 dogs 2 days after distention. The morphologic changes in the bladder gradually diminished over 7 days, but mild submucosal edema and hemorrhage were still present when 2 dogs were necropsied, 7 days after distention. These studies indicated that retrograde urethrography in dogs may be complicated by hemorrhagic cystitis and urinary tract infection if performed with urinary bladder distention.

  4. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  5. Dinitroaniline herbicide resistance and the microtubule cytoskeleton.

    Science.gov (United States)

    Anthony; Hussey

    1999-03-01

    Dinitroaniline herbicides have been used for pre-emergence weed control for the past 25 years in cotton, soybean, wheat and oilseed crops. Considering their long persistence and extensive use, resistance to dinitroanilines is fairly rare. However, the most widespread dinitroaniline-resistant weeds, the highly resistant (R) and the intermediate (I) biotypes of the invasive goosegrass Eleusine indica, are now infesting more than 1000 cotton fields in the southern states of the USA. The molecular basis of this resistance has been identified, and found to be a point mutation in a major microtubule cytoskeletal protein, alpha-tubulin. These studies have served both to explain the establishment of resistance and to reveal fundamental properties of tubulin gene expression and microtubule structure.

  6. The Role of Molecular Microtubule Motors and the Microtubule Cytoskeleton in Stress Granule Dynamics

    Directory of Open Access Journals (Sweden)

    Kristen M. Bartoli

    2011-01-01

    Full Text Available Stress granules (SGs are cytoplasmic foci that appear in cells exposed to stress-induced translational inhibition. SGs function as a triage center, where mRNAs are sorted for storage, degradation, and translation reinitiation. The underlying mechanisms of SGs dynamics are still being characterized, although many key players have been identified. The main components of SGs are stalled 48S preinitiation complexes. To date, many other proteins have also been found to localize in SGs and are hypothesized to function in SG dynamics. Most recently, the microtubule cytoskeleton and associated motor proteins have been demonstrated to function in SG dynamics. In this paper, we will discuss current literature examining the function of microtubules and the molecular microtubule motors in SG assembly, coalescence, movement, composition, organization, and disassembly.

  7. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  8. Retrograde amnesia for semantic information in Alzheimer's disease

    OpenAIRE

    Meeter, M.; Kollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde amnesia within semantic memory. No evidence for a gradient within this amnesia was found, although one was present on an autobiographic test of retrograde amnesia that had a wider time scale. Several...

  9. Microtubules are organized independently of the centrosome in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Nguyen Michelle M

    2011-12-01

    Full Text Available Abstract Background The best-studied arrangement of microtubules is that organized by the centrosome, a cloud of microtubule nucleating and anchoring proteins is clustered around centrioles. However, noncentrosomal microtubule arrays are common in many differentiated cells, including neurons. Although microtubules are not anchored at neuronal centrosomes, it remains unclear whether the centrosome plays a role in organizing neuronal microtubules. We use Drosophila as a model system to determine whether centrosomal microtubule nucleation is important in mature neurons. Results In developing and mature neurons, centrioles were not surrounded by the core nucleation protein γ-tubulin. This suggests that the centrioles do not organize functional centrosomes in Drosophila neurons in vivo. Consistent with this idea, centriole position was not correlated with a specific region of the cell body in neurons, and growing microtubules did not cluster around the centriole, even after axon severing when the number of growing plus ends is dramatically increased. To determine whether the centrosome was required for microtubule organization in mature neurons, we used two approaches. First, we used DSas-4 centriole duplication mutants. In these mutants, centrioles were present in many larval sensory neurons, but they were not fully functional. Despite reduced centriole function, microtubule orientation was normal in axons and dendrites. Second, we used laser ablation to eliminate the centriole, and again found that microtubule polarity in axons and dendrites was normal, even 3 days after treatment. Conclusion We conclude that the centrosome is not a major site of microtubule nucleation in Drosophila neurons, and is not required for maintenance of neuronal microtubule organization in these cells.

  10. Effect of radiation on microtubule structure in cancer cells

    International Nuclear Information System (INIS)

    Tripath, Shambhoo Sharan; Panda, Dulal; Jayakumar, S.; Maikho, Thoh; Sandur, Santosh Kumar

    2017-01-01

    Microtubules (MT) are dynamic structural cellular components. In proliferating cells, they are essential components in cell division through the formation of the mitotic spindle. Radiotherapy is an integral part of cancer treatment for most of the solid cancers. Scanty data exists in the literature related to how ionizing radiation affects microtubule reorganization in tumor cells. In the present study, breast cancer cell line (MCF-7 cells) was exposed to different doses of radiation (2-10Gy). Cells were cultured for 24 h, fixed and stained with antitubulin antibody and subjected to immunofluorescence microscopy. In another experiment, cells were subjected to cold treatment for 5 min or 30 min for studying the disassembly of microtubules after 24 h of irradiation. Further, these cells were incubated at 37°C for 20 min for studying the reassembly of microtubules. Acetylation of microtubule was also examined after exposure of cells to radiation. Experiments were also performed by combining radiation with low concentration of CXI-Benzo 84 (MT destabilizing agent 1 and 2.5 uM). Exposure of MCF-7 cells to radiation lead to destabilization of microtubules. Interestingly, destabilization of microtubule was faster upon cold treatment in irradiated group as compared to control group. These cells failed to re-stabilize at 37°C. Radiation also reduced the acetylation level of microtubule. Combination treatment of CXI-Benzo 84 with radiation exhibited additive effect in terms of depolymerization of MT. Our results suggest that ionizing radiation indeed modulates microtubule dynamics. (author)

  11. Producing Conditional Mutants for Studying Plant Microtubule Function

    Energy Technology Data Exchange (ETDEWEB)

    Richard Cyr

    2009-09-29

    The cytoskeleton, and in particular its microtubule component, participates in several processes that directly affect growth and development in higher plants. Normal cytoskeletal function requires the precise and orderly arrangement of microtubules into several cell cycle and developmentally specific arrays. One of these, the cortical array, is notable for its role in directing the deposition of cellulose (the most prominent polymer in the biosphere). An understanding of how these arrays form, and the molecular interactions that contribute to their function, is incomplete. To gain a better understanding of how microtubules work, we have been working to characterize mutants in critical cytoskeletal genes. This characterization is being carried out at the subcellular level using vital microtubule gene constructs. In the last year of funding colleagues have discovered that gamma-tubulin complexes form along the lengths of cortical microtubules where they act to spawn new microtubules at a characteristic 40 deg angle. This finding complements nicely the finding from our lab (which was funded by the DOE) showing that microtubule encounters are angle dependent; high angles encounters results in catastrophic collisions while low angle encounters result in favorable zippering. The finding of a 40 deg spawn of new microtubules from extant microtubule, together with aforementioned rules of encounters, insures favorable co-alignment in the array. I was invited to write a New and Views essay on this topic and a PDF is attached (News and Views policy does not permit funding acknowledgments and so I was not allowed to acknowledge support from the DOE).

  12. Anterograde and Retrograde Amnesia following Bitemporal Infarction

    Directory of Open Access Journals (Sweden)

    A. Schnider

    1994-01-01

    Full Text Available A patient suffered very severe anterograde and retrograde amnesia following infarction of both medial temporal lobes (hippocampus and adjacent cortex and the left inferior temporo-occipital area. The temporal stem and the amygdala were intact; these structures do not appear to be critical for new learning in humans. Extension of the left-sided infarct into the inferior temporo-occipital lobe, an area critically involved in visual processing, appears to be responsible for our patient's loss of remote memories.

  13. Shaping the tracks : Regulation of microtubule dynamics by kinesins KIF21A and KIF21B

    NARCIS (Netherlands)

    van Riel, W.E.|info:eu-repo/dai/nl/338772634

    2016-01-01

    Control of microtubule dynamics is important for cell morphogenesis. Kinesins, motor proteins known to function in cargo transport, were recently also implicated in altering the microtubule network. Several kinesins are described to cause microtubule network reorganization or stabilization, either

  14. Epothilones as lead structures for the synthesis-based discovery of new chemotypes for microtubule stabilization.

    Science.gov (United States)

    Feyen, Fabian; Cachoux, Frédéric; Gertsch, Jürg; Wartmann, Markus; Altmann, Karl-Heinz

    2008-01-01

    Epothilones are macrocyclic bacterial natural products with potent microtubule-stabilizing and antiproliferative activity. They have served as successful lead structures for the development of several clinical candidates for anticancer therapy. However, the structural diversity of this group of clinical compounds is rather limited, as their structures show little divergence from the original natural product leads. Our own research has explored the question of whether epothilones can serve as a basis for the development of new structural scaffolds, or chemotypes, for microtubule stabilization that might serve as a basis for the discovery of new generations of anticancer drugs. We have elaborated a series of epothilone-derived macrolactones whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of a conformationally constrained side chain, the removal of the C3-hydroxyl group, and the replacement of C12 with nitrogen. So far, this approach has yielded analogs 30 and 40 that are the most advanced, the most rigorously modified, structures, both of which are potent antiproliferative agents with low nanomolar activity against several human cancer cell lines in vitro. The synthesis was achieved through a macrolactone-based strategy or a high-yielding RCM reaction. The 12-aza-epothilone ("azathilone" 40) may be considered a "non-natural" natural product that still retains most of the overall structural characteristics of a true natural product but is structurally unique, because it lies outside of the general scope of Nature's biosynthetic machinery for polyketide synthesis. Like natural epothilones, both 30 and 40 promote tubulin polymerization in vitro and at the cellular level induce cell cycle arrest in mitosis. These

  15. Optomechanical proposal for monitoring microtubule mechanical vibrations

    Czech Academy of Sciences Publication Activity Database

    Barzanjeh, Sh.; Salari, V.; Tuszynski, J. A.; Cifra, Michal; Simon, C.

    2017-01-01

    Roč. 96, č. 1 (2017), č. článku 012404. ISSN 2470-0045 R&D Projects: GA ČR(CZ) GA15-17102S Grant - others:AV ČR(CZ) SAV-15-22 Program:Bilaterální spolupráce Institutional support: RVO:67985882 Keywords : Vibrational modes * Microtubule * Resonance frequencies Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.366, year: 2016

  16. Emerging microtubule targets in glioma therapy

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Reginato, M.J.; Baas, P.W.; D'Agostino, L.; Legido, A.; Tuszynski, J. A.; Dráberová, Eduarda; Dráber, Pavel

    2015-01-01

    Roč. 22, č. 1 (2015), s. 49-72 ISSN 1071-9091 R&D Projects: GA MŠk LH12050; GA MZd NT14467 Grant - others:GA AV ČR M200521203PIPP; NIH(US) R01 NS028785; Philadelphia Health Education Corporation (PHEC)–St. Christopher’s Hospital for Children Reunified Endowment (C.D.K.)(US) 323256 Institutional support: RVO:68378050 Keywords : glioma tumorigenesis * glioblastoma * tubulin * microtubules Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.303, year: 2015

  17. Retrograde prostatic urethroplasty with a balloon catheter

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Hulbert, J.; Letourneau, J.G.; Hunter, D.W.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1987-01-01

    Twenty-five patients with prostatism and documented BPH who were candidates for transurethral resection of the prostate were dilated for 10 minutes with 25-mm urethroplasty balloons using a retrograde transurethral approach. The procedure was performed under local anesthesia using 2% viscous lidocaine on an outpatient basis. A mild discomfort was experienced by all patients with a moderate urgency sensation. Mild transient hematuria was present in all, which cleared in 4 to 6 hours. Dysuria usually lasted for 72 hours. Significant improvement has been seen in the relief of symptoms in patients without middle-lobe hypertrophy as documented by uroflow studies, voiding cystourethrograms, and retrograde urethrograms. In patients with middle-lobe hypertrophy, moderate improvement in uroflow studies was observed, which correlated well with symptomatic improvement. Rectal US and MR studies have shown no evidence of intraprostatic or periprostatic abnormalities. No complications have been encountered so far. The longest current follow-up is 20 months, with a mean of 10 months

  18. Insights into the internalization and retrograde trafficking of Dengue 2 virus in BHK-21 cells.

    Directory of Open Access Journals (Sweden)

    Nidhi Shrivastava

    Full Text Available BACKGROUND: Dengue virus (DENV enters cells via endocytosis, traffics to perinuclear (PN region, the site of morphogenesis and exits by exocytosis. This study aims to understand the role of dynamin II, endosomes, microtubules (MT and dynein in the early events of DENV replication. FINDINGS: Using double immunoflourescence labelling of DENV-2 infected BHK-21 cells it was observed that the surface envelope (E protein of the virion associated with dynamin II from 0-30 min post infection (p.i.. The sphincter like array of dynamin II supported its pinchase-like activity. The association with endosomes was observed from 0 min at cell periphery to 30 min in the perinuclear (PN region, suggesting that internalization continued for 30 min. Association of E protein with alpha-tubulin was observed from 8 h indicating that it was the newly translated protein that trafficked on the MT. Dynein was found to associate with the E protein from 4 h in the cytoplasm to 48 h in the PN region and dissociate at 72 h. Association of E protein with dynein was confirmed by immunoprecipitation. Overexpression of dynamitin, which disrupts the dynein complex, resulted in loss of trafficking of viral E and core proteins. The findings corroborated with the growth kinetics assessed by quantitation of viral RNA in infected BHK-21 cells. The detection of E protein at 4 h-8 h correlated with detectable increase in viral RNA from 8 h. The detection of high concentrations of E protein in the PN region at 24-48 h coincided with release of virus into the supernatant starting from 36 h p.i. The dissociation of dynein from E protein by 72 h was coincident with maximum release of virus, hinting at a possible negative feedback for viral protein translation. CONCLUSION: The study shows for the first time the association of dynamin II with DENV-2 during entry and dynein dependent retrograde trafficking of DENV proteins on microtubules.

  19. A Healthy Live Birth Following ICSI with Retrograde Ejaculated Sperm

    African Journals Online (AJOL)

    AJRH Managing Editor

    Retrograde ejaculation, sometimes called dry orgasm, refers to the medical condition when semen enters the urinary bladder. (retrograde) instead of emerging through the penis after orgasm (antegrade). In some instances, a very minute quantity of antegrade semen appears in the ejaculate and may or may not be devoid of ...

  20. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    Science.gov (United States)

    Richards, Ted

    2012-01-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that…

  1. Retrograde amnesia for semantic information in Alzheimer's disease

    NARCIS (Netherlands)

    Meeter, M.; Kollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde

  2. Retrograde amnesia for semantic information in Alzheimer’s disease

    NARCIS (Netherlands)

    Meeter, M.; Knollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde

  3. Disrupting circadian rhythms in rats induces retrograde amnesia

    NARCIS (Netherlands)

    Fekete, Mátyás; Ree, J.M. van; Niesink, Raymond J.M.; Wied, D. de

    1985-01-01

    Disrupting circadian organization in rats by phase-shifting the illumination cycle or by exposure to a reversed day/night cycle or to continuous light, resulted in retrograde amnesia for passive avoidance behavior. This retrograde amnesia induced by phase-shifting lasted at least 2 days, and

  4. Modeling electric bicycle's lane-changing and retrograde behaviors

    Science.gov (United States)

    Tang, Tie-Qiao; Luo, Xiao-Feng; Zhang, Jian; Chen, Liang

    2018-01-01

    Recently, electric bicycle (EB) has been one important traffic tool due to its own merits. However, EB's motion behaviors (especially at a signalized/non-signalized intersection) are more complex than those of vehicle since it always has lane-changing and retrograde behaviors. In this paper, we propose a model to explore EB's lane-changing and retrograde behaviors on a road with a signalized intersection. The numerical results indicate that the proposed model can qualitatively describe each EB's lane-changing and retrograde behaviors near a signalized intersection, and that lane-changing and retrograde behaviors have prominent impacts on the signalized intersection (i.e., prominent jams and congestions occur). The above results show that EB should be controlled as a vehicle, i.e., lane-changing and retrograde behaviors at a signalized intersection should strictly be prohibited to improve the operational efficiency and traffic safety at the signalized intersection.

  5. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance.

    Science.gov (United States)

    Turney, Stephen G; Ahmed, Mostafa; Chandrasekar, Indra; Wysolmerski, Robert B; Goeckeler, Zoe M; Rioux, Robert M; Whitesides, George M; Bridgman, Paul C

    2016-02-01

    Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion-cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation. © 2016 Turney et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Microtubule Binding and Disruption and Induction of Premature Senescence by Disorazole C1S⃞

    Science.gov (United States)

    Tierno, Marni Brisson; Kitchens, Carolyn A.; Petrik, Bethany; Graham, Thomas H.; Wipf, Peter; Xu, Fengfeng L.; Saunders, William S.; Raccor, Brianne S.; Balachandran, Raghavan; Day, Billy W.; Stout, Jane R.; Walczak, Claire E.; Ducruet, Alexander P.; Reese, Celeste E.; Lazo, John S.

    2009-01-01

    Disorazoles comprise a family of 29 macrocyclic polyketides isolated from the fermentation broth of the myxobacterium Sorangium cellulosum. The major fermentation product, disorazole A1, was found previously to irreversibly bind to tubulin and to have potent cytotoxic activity against tumor cells, possibly because of its highly electrophilic epoxide moiety. To test this hypothesis, we synthesized the epoxide-free disorazole C1 and found it retained potent antiproliferative activity against tumor cells, causing prominent G2/M phase arrest and inhibition of in vitro tubulin polymerization. Furthermore, disorazole C1 produced disorganized microtubules at interphase, misaligned chromosomes during mitosis, apoptosis, and premature senescence in the surviving cell populations. Using a tubulin polymerization assay, we found disorazole C1 inhibited purified bovine tubulin polymerization, with an IC50 of 11.8 ± 0.4 μM, and inhibited [3H]vinblastine binding noncompetitively, with a Ki of 4.5 ± 0.6 μM. We also found noncompetitive inhibition of [3H]dolastatin 10 binding by disorazole C1, with a Ki of 10.6 ± 1.5 μM, indicating that disorazole C1 bound tubulin uniquely among known antimitotic agents. Disorazole C1 could be a valuable chemical probe for studying the process of mitotic spindle disruption and its relationship to premature senescence. PMID:19066338

  7. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2

    Science.gov (United States)

    Petry, Sabine; Groen, Aaron C.; Ishihara, Keisuke; Mitchison, Timothy J.; Vale, Ronald D.

    2013-01-01

    Summary The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence also has suggested that microtubules might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires gamma-tubulin and augmin and is stimulated by GTP-bound Ran and its effector TPX2, factors previously implicated in chromatin-stimulated nucleation. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance. PMID:23415226

  8. In vivo control mechanisms of motor-cargo movement on microtubules

    Science.gov (United States)

    Gunawardena, Shermali

    2014-03-01

    Within axons, molecular motors transport essential components required for neuronal growth and viability. Although many levels of regulation must exist for proper anterograde and retrograde transport of vital proteins, little is known about these mechanisms. Previous work suggested that the amyloid precursor protein (APP) functions as a kinesin-1 receptor during transport. However, how APP vesicle motility is regulated is unclear. Using genetics and in vivo imaging in Drosophila we showed that reduction of presenilin (PS) substantially increased anterograde and retrograde APP vesicle velocities. Strikingly, PS deficiency had no effect on an unrelated cargo vesicle containing synaptotagmin, which is powered by a different kinesin motor. Increased PS-mediated velocities required functional kinesin-1 and dynein motors. We also found that these PS-mediated effects on motor protein function were mediated via a pathway that involves glycogen synthase kinase-3 β (GSK-3 β) . PS genetically interacted with GSK-3 β in an activity dependent manner. Excess of active GSK-3 β perturbed transport by causing axonal blockages, which were enhanced by reduction of kinesin-1 or dynein, while excess of non-functional GSK-3 β had no effect. Strikingly, GSK-3 β-activity dependent transport defects were enhanced by reduction of PS. Collectively, our findings suggest that PS and GSK-3 β are required for normal motor protein function, and we propose a model in which PS likely regulates GSK-3 β activity during transport. These findings have important implications for our understanding of the complex regulatory machinery that must exist in vivo and how this system is coordinated during vesicle motility on microtubules.

  9. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    DEFF Research Database (Denmark)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been...

  10. Diagnosis and treatment with endoscopic retrograde cholangiopancreatography

    International Nuclear Information System (INIS)

    Soendenaa, K.; Horn, A.; Viste, A.

    1994-01-01

    Endoscopic retrograde cholangiopancreatography (ERCP) was carried out for the first time in 1968. Five years later endoscopic sphincterotomy was performed. Since then both modalities have become established as necessary adjuncts in the diagnosis and treatment of patients with pathology in the bile duct or pancreas. The main indication is common bile duct stone, and as a consequence of this treatment fewer patients are now treated surgically. Patients with malignant bile duct obstruction can be given reasonable palliation of both jaundice and pruritus and therefore improved quality of life. Some reports indicate that endoscopic drainage may be useful for pancreatic stenosis. Complications are few, but vigilance and prompt treatment is necessary to keep morbidity at a minimum. Follow-up after several years shows that sphincterotomy is successful also in the long term. The authors discuss the present diagnostic and therapeutic situation. 31 refs., 2 tabs

  11. Microtubule plus end-tracking proteins play critical roles in directional growth of hyphae by regulating the dynamics of cytoplasmic microtubules in Aspergillus nidulans.

    Science.gov (United States)

    Zeng, Cui J Tracy; Kim, Hye-Ryun; Vargas Arispuro, Irasema; Kim, Jung-Mi; Huang, An-Chi; Liu, Bo

    2014-11-01

    Cytoplasmic microtubules (MTs) serve as a rate-limiting factor for hyphal tip growth in the filamentous fungus Aspergillus nidulans. We hypothesized that this function depended on the MT plus end-tracking proteins (+TIPs) including the EB1 family protein EBA that decorated the MT plus ends undergoing polymerization. The ebAΔ mutation reduced colony growth and the mutant hyphae appeared in an undulating pattern instead of exhibiting unidirectional growth in the control. These phenotypes were enhanced by a mutation in another +TIP gene clipA. EBA was required for plus end-tracking of CLIPA, the Kinesin-7 motor KipA, and the XMAP215 homologue AlpA. In addition, cytoplasmic dynein also depended on EBA to track on most polymerizing MT plus ends, but not for its conspicuous appearance at the MT ends near the hyphal apex. The loss of EBA reduced the number of cytoplasmic MTs and prolonged dwelling times for MTs after reaching the hyphal apex. Finally, we found that colonies were formed in the absence of EBA, CLIPA, and NUDA together, suggesting that they were dispensable for fundamental functions of MTs. This study provided a comprehensive delineation of the relationship among different +TIPs and their contributions to MT dynamics and unidirectional hyphal expansion in filamentous fungi. © 2014 John Wiley & Sons Ltd.

  12. Our experiences on retrograde intrarenal surgery

    Directory of Open Access Journals (Sweden)

    Namık Kemal Hatipoğlu

    2014-03-01

    Full Text Available Objective: To evaluate outcomes of the cases who had undergone retrograde intrarenal surgery (RIRS in our clinics. Methods: Outcomes of 100 cases who had undergone RIRS because of renal stones between February 2012, and May 2013 were retrospectively evaluated. Results: Study population consisted of 35 female and 65 male patients with a mean age of 36.81(1-76 years. RIRS was performed with the indication of rest double J (D-J stent (n=1, and renal stone (n=99. Mean stone size was 15.26 (5-27 mm. Preoperatively, 61 cases (61% had preexisting D-J stents, while 39 (39% cases were stentless. Access sheaths were used in 86 (86% cases, while in 14 (14% cases the procedure was applied without using an access sheath. Mean operative, and fluoroscopy times were 52.72 (10-120 minus, and 57.32 (10-180 seconds, respectively. Postoperatively D-J stents were implanted in 88 (88% cases, and 12 (12% cases were stent-free. Mean hospital time was 1.3 (1-7 days. After one month postoperatively, stone-free rate was achieved in 87 (87% patients. Clinically insignificant residual stone fragments (CIRF 6 (6%, and residual stones 7 (7% were also detected. The latter group consisted of cases with horseshoe kidney (n=1, pelvic kidney (n=1, and kyphoscoliosis (n=1. Also in two case procedure was terminated prematurely, because of blurring of the vision secondary to bleeding. Apart from these patients, any preoperative complication did not develop. During follow-up period, urinary tract infection developed in 3 patients with resultant renal parenchymal damage in one patient. In one patient, D-J stent migrated into ureter. Conclusion: Retrograde intrarenal surgery is an effective and safe technique in the management of renal stones.

  13. PRODUCTION OF NEAR-EARTH ASTEROIDS ON RETROGRADE ORBITS

    International Nuclear Information System (INIS)

    Greenstreet, S.; Gladman, B.; Ngo, H.; Granvik, M.; Larson, S.

    2012-01-01

    While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that ∼0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for ∼0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that a few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.

  14. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  15. Nonlinear dynamics of C-terminal tails in cellular microtubules

    Science.gov (United States)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  16. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  17. Dynamics of the retrograde 1/1 mean motion resonance

    Science.gov (United States)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-04-01

    Mean motion resonances are very common in the solar system. Asteroids in mean motion resonances with giant planets have been studied for centuries. But it was not until recently that asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. The newly discovered asteroid, 2015 BZ509 is confirmed to be the first asteroid in retrograde 1:1 mean motion resonance (or retrograde co-orbital resonance) with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this study, we thoroughly investigate the phase-space structure of the retrograde 1:1 resonance within the framework of the circular restricted three-body problem. We begin by constructing a simple integrable approximation for the planar retrograde resonance with the Hamiltonian approach and show that the variables definition of the retrograde resonance is very different to the prograde one. When it comes to the disturbing function, we abandon the classical series expansion approach, whereas numerically carry out the averaging process on the disturbing function in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We find that the topological structure of phase space for the retrograde 1:1 resonance is very different to other resonances, due to the consistent existence of the collision separatrix. And the surprising bifurcation of equilibrium point around 180° (i.e., the apocentric libration center) has never been found in any other mean motion resonances before. We thoroughly analyze the novel apocentric librations and find that close encounter with the planet does not always lead to the disruption of a stable apocentric libration. Afterwards, we examine the Kozai dynamics inside the mean motion resonance with the similar Hamiltonian approach and explain why the exact resonant point does not exist in the 3D retrograde 1:1 resonance model.

  18. The free energy profile of tubulin straight-bent conformational changes, with implications for microtubule assembly and drug discovery.

    Directory of Open Access Journals (Sweden)

    Lili X Peng

    2014-02-01

    Full Text Available αβ-tubulin dimers need to convert between a 'bent' conformation observed for free dimers in solution and a 'straight' conformation required for incorporation into the microtubule lattice. Here, we investigate the free energy landscape of αβ-tubulin using molecular dynamics simulations, emphasizing implications for models of assembly, and modulation of the conformational landscape by colchicine, a tubulin-binding drug that inhibits microtubule polymerization. Specifically, we performed molecular dynamics, potential-of-mean force simulations to obtain the free energy profile for unpolymerized GDP-bound tubulin as a function of the ∼12° intradimer rotation differentiating the straight and bent conformers. Our results predict that the unassembled GDP-tubulin heterodimer exists in a continuum of conformations ranging between straight and bent, but, in agreement with existing structural data, suggests that an intermediate bent state has a lower free energy (by ∼1 kcal/mol and thus dominates in solution. In agreement with predictions of the lattice model of microtubule assembly, lateral binding of two αβ-tubulins strongly shifts the conformational equilibrium towards the straight state, which is then ∼1 kcal/mol lower in free energy than the bent state. Finally, calculations of colchicine binding to a single αβ-tubulin dimer strongly shifts the equilibrium toward the bent states, and disfavors the straight state to the extent that it is no longer thermodynamically populated.

  19. Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning.

    Science.gov (United States)

    Howard, Jonathon; Garzon-Coral, Carlos

    2017-11-01

    Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells. © 2017 The Authors. BioEssays published by Wiley Periodicals, Inc.

  20. Structural insights into microtubule doublet interactions inaxonemes

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Kenneth H.; Sui, Haixin

    2007-06-06

    Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of the axoneme. Recent structural studies of the axoneme have used cryo-electron tomography to reveal new details of the interactions among some of the multitude of proteins that form the axoneme and regulate its movement. Connections among the several sets of dyneins, in particular, suggest ways in which their actions may be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding the doublet's mechanical properties that are related to the bending of the axoneme, and has also offered insight into its potential role in the mechanism of dynein activity regulation.

  1. Centrosome and microtubule instability in aging Drosophila cells

    Science.gov (United States)

    Schatten, H.; Chakrabarti, A.; Hedrick, J.

    1999-01-01

    Several cytoskeletal changes are associated with aging which includes alterations in muscle structure leading to muscular atrophy, and weakening of the microtubule network which affects cellular secretion and maintenance of cell shape. Weakening of the microtubule network during meiosis in aging oocytes can result in aneuploidy or trisomic zygotes with increasing maternal age. Imbalances of cytoskeletal organization can lead to disease such as Alzheimer's, muscular disorders, and cancer. Because many cytoskeletal diseases are related to age we investigated the effects of aging on microtubule organization in cell cultures of the Drosophila cell model system (Schneider S-1 and Kc23 cell lines). This cell model is increasingly being used as an alternative system to mammalian cell cultures. Drosophila cells are amenable to genetic manipulations and can be used to identify and manipulate genes which are involved in the aging processes. Immunofluorescence, scanning, and transmission electron microscopy were employed for the analysis of microtubule organizing centers (centrosomes) and microtubules at various times after subculturing cells in fresh medium. Our results reveal that centrosomes and the microtubule network becomes significantly affected in aging cells after 5 days of subculture. At 5-14 days of subculture, 1% abnormal out of 3% mitoses were noted which were clearly distinguishable from freshly subcultured control cells in which 3% of cells undergo normal mitosis with bipolar configurations. Microtubules are also affected in the midbody during cell division. The midbody in aging cells becomes up to 10 times longer when compared with midbodies in freshly subcultured cells. During interphase, microtubules are often disrupted and disorganized, which may indicate improper function related to transport of cell organelles along microtubules. These results are likely to help explain some cytoskeletal disorders and diseases related to aging.

  2. Birefringence of single and bundled microtubules.

    Science.gov (United States)

    Oldenbourg, R; Salmon, E D; Tran, P T

    1998-01-01

    We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses.

  3. The formation of retrograde planetary orbits by close stellar encounters

    Directory of Open Access Journals (Sweden)

    Ford E. B.

    2011-02-01

    Full Text Available We consider the growing number of observations of the RossiterMcLaughlin effect in transiting planets, which seem to suggest that ~30% of transiting planets are in highly inclined or retrograde orbits. We consider the dense cluster environment in which stars are born and investigate whether perturbations from passing stars can drive planetary systems into retrograde configurations. We find that fly-bys can result in significantly more inclination excitation than might naively be expected from impulse approximations, leading to several percent of stellar systems possessing planets in retrograde orbits.

  4. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    Science.gov (United States)

    Richards, Ted

    2012-06-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that students who participated in these activities performed better on examination questions pertaining to retrograde motion than students who did not. Potential explanations for this result, including the breaking of classroom routine, the effect of body movement on conceptual memory, and egocentric spatial proprioception, are considered.

  5. "Click" i polymerer 2

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  6. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  7. Effects of the KIF2C neck peptide on microtubules: lateral disintegration of microtubules and β-structure formation.

    Science.gov (United States)

    Shimizu, Youské; Shimizu, Takashi; Nara, Masayuki; Kikumoto, Mahito; Kojima, Hiroaki; Morii, Hisayuki

    2013-04-01

    Members of the kinesin-13 sub-family, including KIF2C, depolymerize microtubules. The positive charge-rich 'neck' region extending from the N-terminus of the catalytic head is considered to be important in the depolymerization activity. Chemically synthesized peptides, covering the basic region (A182-E200), induced a sigmoidal increase in the turbidity of a microtubule suspension. The increase was suppressed by salt addition or by reduction of basicity by amino acid substitutions. Electron microscopic observations revealed ring structures surrounding the microtubules at high peptide concentrations. Using the peptide A182-D218, we also detected free thin straight filaments, probably protofilaments disintegrated from microtubules. Therefore, the neck region, even without the catalytic head domain, may induce lateral disintegration of microtubules. With microtubules lacking anion-rich C-termini as a result of subtilisin treatment, addition of the peptide induced only a moderate increase in turbidity, and rings and protofilaments were rarely detected, while aggregations, also thought to be caused by lateral disintegration, were often observed in electron micrographs. Thus, the C-termini are not crucial for the action of the peptides in lateral disintegration but contribute to structural stabilization of the protofilaments. Previous structural studies indicated that the neck region of KIF2C is flexible, but our IR analysis suggests that the cation-rich region (K190-A204) forms β-structure in the presence of microtubules, which may be of significance with regard to the action of the neck region. Therefore, the neck region of KIF2C is sufficient to cause disintegration of microtubules into protofilaments, and this may contribute to the ability of KIF2C to cause depolymerization of microtubules. © 2013 The Authors Journal compilation © 2013 FEBS.

  8. Lysosomes are associated with microtubules and not with intermediate filaments in cultured fibroblasts.

    OpenAIRE

    Collot, M; Louvard, D; Singer, S J

    1984-01-01

    Double immunofluorescent labeling experiments for lysosomes and either microtubules or vimentin intermediate filaments in cultured well-spread fibroblasts show a remarkable degree of superposition of the lysosomes and the microtubules. Under two different sets of conditions where the microtubules and intermediate filaments are well segregated from one another, the lysosomes remain codistributed with the microtubules. It is suggested that this specific association of lysosomes with microtubule...

  9. Antegrade or Retrograde Accessory Pathway Conduction: Who Dies First?

    Directory of Open Access Journals (Sweden)

    Claudio Hadid, MD

    2012-05-01

    Full Text Available A 36 year-old man with Wolff Parkinson White syndrome due to a left-sided accessory pathway (AP was referred for catheter ablation. Whether abolition of antegrade and retrograde AP conduction during ablation therapy occurs simultaneously, is unclear. At the ablation procedure, radiofrequency delivery resulted in loss of preexcitation followed by a short run of orthodromic tachycardia with eccentric atrial activation, demonstrating persistence of retrograde conduction over the AP after abolition of its antegrade conduction. During continued radiofrequency delivery at the same position, the fifth non-preexcitated beat failed to conduct retrogradely and the tachycardia ended. In this case, antegrade AP conduction was abolished earlier than retrograde conduction.

  10. Prostatic urethra malformation associated with retrograde ejaculation: a case report.

    Science.gov (United States)

    Zhao, Kai; Zhang, Jianzhong; Xu, Aiming; Zhang, Cheng; Wang, Zengjun

    2016-12-21

    Retrograde ejaculation can have anatomical, neurogenic, or pharmacological causes. Among these factors, malformation of the prostatic urethra is an uncommon cause. We describe a 29-year-old Han Chinese man with absence of his verumontanum combined with ejaculatory duct cysts, and no other cause for ejaculatory dysfunction. His verumontanum was replaced by a deep groove adjacent to his bladder neck, which could significantly influence bladder neck contraction. In addition, the large cysts in the ejaculatory duct could obstruct the anterior outlet of his prostatic urethra and prevent seminal fluid flow in an anterograde direction. There are few reports of retrograde ejaculation associated with congenital malformations of the posterior urethra. Malformations associated with bladder neck laxity and increased tone of the prostatic urethral outlet can contribute to retrograde ejaculation. Malformation of the prostatic urethra is an uncommon cause of retrograde ejaculation, and can be difficult to treat.

  11. Huge biloma after endoscopic retrograde cholangiopancreatography and endoscopic biliary sphincterotomy

    Directory of Open Access Journals (Sweden)

    Harith M. Alkhateeb

    2015-01-01

    Conclusions: (1 Following endoscopic retrograde cholangiopancreatography, a patient’s complaints should not be ignored. (2 A massive biloma can occur due to such procedures. (3 Conservative treatment with minimal invasive technique can prove to be effective.

  12. Cellular effects of the microtubule-targeting agent peloruside A in hypoxia-conditioned colorectal carcinoma cells.

    Science.gov (United States)

    Řehulka, Jiří; Annadurai, Narendran; Frydrych, Ivo; Znojek, Pawel; Džubák, Petr; Northcote, Peter; Miller, John H; Hajdúch, Marián; Das, Viswanath

    2017-07-01

    Hypoxia is a prominent feature of solid tumors, dramatically remodeling microtubule structures and cellular pathways and contributing to paclitaxel resistance. Peloruside A (PLA), a microtubule-targeting agent, has shown promising anti-tumor effects in preclinical studies. Although it has a similar mode of action to paclitaxel, it binds to a distinct site on β-tubulin that differs from the classical taxane site. In this study, we examined the unexplored effects of PLA in hypoxia-conditioned colorectal HCT116 cancer cells. Cytotoxicity of PLA was determined by cell proliferation assay. The effects of a pre-exposure to hypoxia on PLA-induced cell cycle alterations and apoptosis were examined by flow cytometry, time-lapse imaging, and western blot analysis of selected markers. The hypoxia effect on stabilization of microtubules by PLA was monitored by an intracellular tubulin polymerization assay. Our findings show that the cytotoxicity of PLA is not altered in hypoxia-conditioned cells compared to paclitaxel and vincristine. Furthermore, hypoxia does not alter PLA-induced microtubule stabilization nor the multinucleation of cells. PLA causes cyclin B1 and G2/M accumulation followed by apoptosis. The cellular and molecular effects of PLA have been determined in normoxic conditions, but there are no reports of PLA effects in hypoxic cells. Our findings reveal that hypoxia preconditioning does not alter the sensitivity of HCT116 to PLA. These data report on the cellular and molecular effects of PLA in hypoxia-conditioned cells for the first time, and will encourage further exploration of PLA as a promising anti-tumor agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. and its allicin on microtubule and cancer cell lines

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... microtubule protein polymer that treated by A. hirtifolium. (A), and allicin (B) in .... with a chromogenic thiol: reaction of 4-mercaptopyridine with ... transformed tumor growth in vivo by diallyl disulfide is associated with inhibition ...

  14. Retrograde Melting and Internal Liquid Gettering in Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  15. Retrograde vs. Antegrade Puncture for Infra-Inguinal Angioplasty

    International Nuclear Information System (INIS)

    Nice, C.; Timmons, G.; Bartholemew, P.; Uberoi, R.

    2003-01-01

    This study was done to compare antegrade punctures with a retrograde puncture technique for infrainguinal angioplasty. A group of 100 consecutive patients (71 men, 29 women) were randomized for antegrade puncture or retrograde puncture of the common femoral artery. Following retrograde puncture the guidewire was 'turned' and placed into the superficial femoral artery. The time for gaining access, screening time, radiation dose, patient height, weight and complications were recorded. All patients were reviewed the day after the procedure and within 3 months. Data from 46 patients (34 males and 12 females) in the retrograde group and 44 (28 males and 16 females) in the antegrade group were available for analysis. Mean procedure time,screening time, radiation dose, height and weight were 8.3 minutes(range 3-22), 2.1 minutes (0.3-6.5), 7950 mGy cm -2 (820-71250), 169 cm (149-204) and 79 kg (32-108) for retrograde puncture and 8 min (2-60), 0.7 min (0.0-3.2), 1069 mGycm -2 (0-15400), 169 cm (152-186) and 75 kg (39-125) for antegrade punctures, respectively. An average of 1.2 (1-2) punctures was required for retrograde and 1.75 (1-8) for antegrade. Seven small hematomas occurred with antegrade and three for retrograde puncture.Retrograde puncture is technically easier with a tendency to fewer complications but results in a higher radiation dose. This technique should be used in difficult patients at high risk of haematoma formation

  16. Mismatch analysis of humeral nailing. Antegrade versus retrograde insertion

    International Nuclear Information System (INIS)

    Mahaisavariya, B.; Jiamwatthanachai, P.; Aroonjarattham, P.; Aroonjarattham, K.; Wongcumchang, M.; Sitthiseripratip, K.

    2011-01-01

    Closed humeral nailing is now considered an alternative treatment for humeral-shaft fracture. The nail can be inserted with either the antegrade or retrograde method. We investigated and compared the problem of geometric mismatch of the humeral nail to the humerus between the two methods of insertion. The study was performed using virtual simulation based on computed tomography (CT) data of 76 Thai cadaveric humeri and the commonly used Russell-Taylor humeral nail 8 mm in diameter and 220 mm long. Mismatch of the nail to the intact humerus was analyzed and compared between the antegrade and retrograde nailing approaches. The results showed: the diameter of the medullary canal averaged 7.9-13.8 mm; the minimal reaming diameter to accommodate virtual nail insertion averaged 8.8-14.8 mm for the antegrade and 8.8-29.3 mm for the retrograde approach; the minimal reaming thickness of the inner cortex averaged 0.1-1.5 mm for the antegrade and 0.1-9.9 mm for the retrograde approach; the percentages of cortical bone removed prior to nail insertion were 3.8-107.1% and 3.8-1,287.6% for the antegrade and retrograde approaches, respectively; the eccentricity of the nail-medullary canal center were 0.4-3.4 and 0.4-10.6 mm for the antegrade and retrograde approaches, respectively. Less mismatching occurred with antegrade nailing than with the retrograde approach. Retrograde nailing requires excessive reaming at the distal part of the humerus to accommodate nail insertion. This may create bone weakness and the risk of supracondylar fracture. (author)

  17. Distant retrograde orbits and the asteroid hazard

    Science.gov (United States)

    Perozzi, Ettore; Ceccaroni, Marta; Valsecchi, Giovanni B.; Rossi, Alessandro

    2017-08-01

    Distant Retrograde Orbits (DROs) gained a novel wave of fame in space mission design because of their numerous advantages within the framework of the US plans for bringing a large asteroid sample in the vicinity of the Earth as the next target for human exploration. DROs are stable solutions of the three-body problem that can be used whenever an object, whether of natural or artificial nature, is required to remain in the neighborhood of a celestial body without being gravitationally captured by it. As such, they represent an alternative option to Halo orbits around the collinear Lagrangian points L1 and L2. Also known under other names ( e.g., quasi-satellite orbits, cis-lunar orbits, family- f orbits) these orbital configurations found interesting applications in several mission profiles, like that of a spacecraft orbiting around the small irregularly shaped satellite of Mars Phobos or the large Jovian moon Europa. In this paper a basic explanation of the DRO dynamics is presented in order to clarify some geometrical properties that characterize them. Their accessibility is then discussed from the point of view of mission analysis under different assumptions. Finally, their relevance within the framework of the present asteroid hazard protection programs is shown, stressing the significant increase in warning time they would provide in the prediction of impactors coming from the direction of the Sun.

  18. EML proteins in microtubule regulation and human disease.

    Science.gov (United States)

    Fry, Andrew M; O'Regan, Laura; Montgomery, Jessica; Adib, Rozita; Bayliss, Richard

    2016-10-15

    The EMLs are a conserved family of microtubule-associated proteins (MAPs). The founding member was discovered in sea urchins as a 77-kDa polypeptide that co-purified with microtubules. This protein, termed EMAP for echinoderm MAP, was the major non-tubulin component present in purified microtubule preparations made from unfertilized sea urchin eggs [J. Cell Sci. (1993) 104: , 445-450; J. Cell Sci. (1987) 87: (Pt 1), 71-84]. Orthologues of EMAP were subsequently identified in other echinoderms, such as starfish and sand dollar, and then in more distant eukaryotes, including flies, worms and vertebrates, where the name of ELP or EML (both for EMAP-like protein) has been adopted [BMC Dev. Biol. (2008) 8: , 110; Dev. Genes Evol. (2000) 210: , 2-10]. The common property of these proteins is their ability to decorate microtubules. However, whether they are associated with particular microtubule populations or exercise specific functions in different microtubule-dependent processes remains unknown. Furthermore, although there is limited evidence that they regulate microtubule dynamics, the biochemical mechanisms of their molecular activity have yet to be explored. Nevertheless, interest in these proteins has grown substantially because of the identification of EML mutations in neuronal disorders and oncogenic fusions in human cancers. Here, we summarize our current knowledge of the expression, localization and structure of what is proving to be an interesting and important class of MAPs. We also speculate about their function in microtubule regulation and highlight how the studies of EMLs in human diseases may open up novel avenues for patient therapy. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  19. Increased sinusoidal volume and solute extraction during retrograde liver perfusion

    International Nuclear Information System (INIS)

    Bass, N.M.; Manning, J.A.; Weisiger, R.A.

    1989-01-01

    Retrograde isolated liver perfusion has been used to probe acinar functional heterogeneity, but the hemodynamic effects of backward flow have not been characterized. In this study, extraction of a long-chain fatty acid derivative, 12-N-methyl-7-nitrobenzo-2-oxa-1,3-diazol-amino stearate (12-NBDS), was greater during retrograde than during anterograde perfusion of isolated rat liver. To determine whether hemodynamic differences between anterograde and retrograde perfused livers could account for this finding, the hepatic extracellular space was measured for both directions of flow by means of [ 14 C]sucrose washout during perfusion as well as by direct measurement of [ 14 C]sucrose entrapped during perfusion. A three- to fourfold enlargement of the total hepatic extracellular space was found during retrograde perfusion by both approaches. Examination of perfusion-fixed livers by light microscopy and morphometry revealed that marked distension of the sinusoids occurred during retrograde perfusion and that this accounts for the observed increase in the [ 14 C]sucrose space. These findings support the hypothesis that maximum resistance to perfusate flow in the isolated perfused rat liver is located at the presinusoidal level. In addition, increased transit time of perfusate through the liver and greater sinusoidal surface area resulting from sinusoidal distension may account for the higher extraction of 12-NBDS and possibly other compounds by retrograde perfused liver

  20. The inherent catastrophic traps in retrograde CTO PCI.

    Science.gov (United States)

    Wu, Eugene B; Tsuchikane, Etsuo

    2018-05-01

    When we learn to drive, our driving instructor tells us how to check the side mirror and turn your head to check the blind spot before changing lanes. He tells us how to stop at stop signs, how to drive in slippery conditions, the safe stopping distances, and these all make our driving safe. Similarly, when we learn PCI, our mentors teach us to seat the guiding catheter co-axially, to wire the vessel safely, to deliver balloon and stents over the wire, to watch the pressure of the guiding, in order that we perform PCI safely and evade complications. In retrograde CTO PCI, there is no such published teaching. Also many individual mentors have not had the wide experience to see all the possible complications of retrograde CTO PCI and, therefore, may not be able to warn their apprentice. As the number of retrograde procedures increase worldwide, there is a corresponding increase in catastrophic complications, many of which, we as experts, can see are easily avoidable. To breach this gap in knowledge, this article describes 12 commonly met inherent traps in retrograde CTO PCI. They are inherent because by arranging our equipment in the manner to perform retrograde CTO PCI, these complications are either induced directly or happen easily. We hope this work will enhance safety of retrograde CTO PCI and avoid many catastrophic complications for our readers and operators. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Nonlinear dynamics of C–terminal tails in cellular microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Sekulic, Dalibor L., E-mail: dalsek@uns.ac.rs; Sataric, Bogdan M.; Sataric, Miljko V. [University of Novi Sad, Faculty of Technical Sciences, Novi Sad (Serbia); Zdravkovic, Slobodan [University of Belgrade, Institute of Nuclear Sciences Vinca, Belgrade (Serbia); Bugay, Aleksandr N. [Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-07-15

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  2. Nonlinear dynamics of C–terminal tails in cellular microtubules

    International Nuclear Information System (INIS)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Sataric, Miljko V.; Zdravkovic, Slobodan; Bugay, Aleksandr N.

    2016-01-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  3. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    Science.gov (United States)

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. Copyright © 2016 the American Physiological Society.

  4. Microtubules become more dynamic but not shorter during preprophase band formation: A possible "search-and-capture" mechanism for microtubule translocation

    NARCIS (Netherlands)

    Vos, J.W.; Dogterom, M.; Emons, A.M.C.

    2004-01-01

    The dynamic behavior of the microtubule cytoskeleton plays a crucial role in cellular organization, but the physical mechanisms underlying microtubule (re)organization in plant cells are poorly understood. We investigated microtubule dynamics in tobacco BY-2 suspension cells during interphase and

  5. Association of TCTP with Centrosome and Microtubules

    Directory of Open Access Journals (Sweden)

    Mariusz K. Jaglarz

    2012-01-01

    Full Text Available Translationally Controlled Tumour Protein (TCTP associates with microtubules (MT, however, the details of this association are unknown. Here we analyze the relationship of TCTP with MTs and centrosomes in Xenopus laevis and mammalian cells using immunofluorescence, tagged TCTP expression and immunoelectron microscopy. We show that TCTP associates both with MTs and centrosomes at spindle poles when detected by species-specific antibodies and by Myc-XlTCTP expression in Xenopus and mammalian cells. However, when the antibodies against XlTCTP were used in mammalian cells, TCTP was detected exclusively in the centrosomes. These results suggest that a distinct pool of TCTP may be specific for, and associate with, the centrosomes. Double labelling for TCTP and γ-tubulin with immuno-gold electron microscopy in Xenopus laevis oogonia shows localization of TCTP at the periphery of the γ-tubulin-containing pericentriolar material (PCM enveloping the centriole. TCTP localizes in the close vicinity of, but not directly on the MTs in Xenopus ovary suggesting that this association requires unidentified linker proteins. Thus, we show for the first time: (1 the association of TCTP with centrosomes, (2 peripheral localization of TCTP in relation to the centriole and the γ-tubulin-containing PCM within the centrosome, and (3 the indirect association of TCTP with MTs.

  6. Microtubules as a Critical Target for Arsenic Toxicity in Lung Cells in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Yinzhi Zhao

    2012-02-01

    Full Text Available To understand mechanisms for arsenic toxicity in the lung, we examined effects of sodium m-arsenite (As3+ on microtubule (MT assembly in vitro (0–40 µM, in cultured rat lung fibroblasts (RFL6, 0–20 µM for 24 h and in the rat animal model (intratracheal instillation of 2.02 mg As/kg body weight, once a week for 5 weeks. As3+ induced a dose-dependent disassembly of cellular MTs and enhancement of the free tubulin pool, initiating an autoregulation of tubulin synthesis manifest as inhibition of steady-state mRNA levels of βI-tubulin in dosed lung cells and tissues. Spindle MT injuries by As3+ were concomitant with chromosomal disorientations. As3+ reduced the binding to tubulin of [3H]N-ethylmaleimide (NEM, an -SH group reagent, resulting in inhibition of MT polymerization in vitro with bovine brain tubulins which was abolished by addition of dithiothreitol (DTT suggesting As3+ action upon tubulin through -SH groups. In response to As3+, cells elevated cellular thiols such as metallothionein. Taxol, a tubulin polymerization agent, antagonized both As3+ and NEM induced MT depolymerization. MT–associated proteins (MAPs essential for the MT stability were markedly suppressed in As3+-treated cells. Thus, tubulin sulfhydryls and MAPs are major molecular targets for As3+ damage to the lung triggering MT disassembly cascades.

  7. Tracking of plus-ends reveals microtubule functional diversity in different cell types

    Science.gov (United States)

    Shaebani, M. Reza; Pasula, Aravind; Ott, Albrecht; Santen, Ludger

    2016-07-01

    Many cellular processes are tightly connected to the dynamics of microtubules (MTs). While in neuronal axons MTs mainly regulate intracellular trafficking, they participate in cytoskeleton reorganization in many other eukaryotic cells, enabling the cell to efficiently adapt to changes in the environment. We show that the functional differences of MTs in different cell types and regions is reflected in the dynamic properties of MT tips. Using plus-end tracking proteins EB1 to monitor growing MT plus-ends, we show that MT dynamics and life cycle in axons of human neurons significantly differ from that of fibroblast cells. The density of plus-ends, as well as the rescue and catastrophe frequencies increase while the growth rate decreases toward the fibroblast cell margin. This results in a rather stable filamentous network structure and maintains the connection between nucleus and membrane. In contrast, plus-ends are uniformly distributed along the axons and exhibit diverse polymerization run times and spatially homogeneous rescue and catastrophe frequencies, leading to MT segments of various lengths. The probability distributions of the excursion length of polymerization and the MT length both follow nearly exponential tails, in agreement with the analytical predictions of a two-state model of MT dynamics.

  8. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    Science.gov (United States)

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity. Copyright © 2014 Wiley Periodicals, Inc.

  9. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization

    OpenAIRE

    Tanabe, Kenji

    2016-01-01

    Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570...

  10. Criteria for retrograde rotation of accreting black holes

    Science.gov (United States)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  11. Mercury Retrograde Effect in Capital Markets: Truth or Illusion?

    Directory of Open Access Journals (Sweden)

    Murgea Aurora

    2016-06-01

    Full Text Available From the most ancient times, the astrological beliefs have played an important role in human history, thinking, world-views, language and other elements of social culture. The practice of relating the movement of celestial bodies to events in financial markets is relatively newer but despite the inconsistency between financial astrology and standard economic or financial theory, it seems to be largely spread among capital market traders. This paper evaluates one of the astrological effects on the capital market, more precisely the Mercury retrograde effect on US capital market. Despite the fact that it is just an optical illusion the astrological tradition says that Mercury retrograde periods are characterized by confusion and miscommunications. The trades could be less effective, the individuals more prone to make mistakes so there is a long-held belief that it is better to avoid set plans during Mercury retrograde, signing contracts, starting new ventures or open new stock market positions. The main findings of this study are lower return’s volatilities in the Mercury retrograde periods, inconsistent with the astrologic theories assumptions but consistent with the idea that trader’s beliefs in Mercury retrograde effect could change the market volatility exactly in the opposite sense than the predicted one.

  12. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  13. Melanophores for microtubule dynamics and motility assays.

    Science.gov (United States)

    Ikeda, Kazuho; Semenova, Irina; Zhapparova, Olga; Rodionov, Vladimir

    2010-01-01

    Microtubules (MTs) are cytoskeletal structures essential for cell division, locomotion, intracellular transport, and spatial organization of the cytoplasm. In most interphase cells, MTs are organized into a polarized radial array with minus-ends clustered at the centrosome and plus-ends extended to the cell periphery. This array directs transport of organelles driven by MT-based motor proteins that specifically move either to plus- or to minus-ends. Along with using MTs as tracks for cargo, motor proteins can organize MTs into a radial array in the absence of the centrosome. Transport of organelles and motor-dependent radial organization of MTs require MT dynamics, continuous addition and loss of tubulin subunits at minus- and plus-ends. A unique experimental system for studying the role of MT dynamics in these processes is the melanophore, which provides a useful tool for imaging of both dynamic MTs and moving membrane organelles. Melanophores are filled with pigment granules that are synchronously transported by motor proteins in response to hormonal stimuli. The flat shape of the cell and the radial organization of MTs facilitate imaging of dynamic MT plus-ends and monitoring of their interaction with membrane organelles. Microsurgically produced cytoplasmic fragments of melanophores are used to study the centrosome-independent rearrangement of MTs into a radial array. Here we describe the experimental approaches to study the role of MT dynamics in intracellular transport and centrosome-independent MT organization in melanophores. We focus on the preparation of cell cultures, microsurgery and microinjection, fluorescence labeling, and live imaging of MTs. 2010 Elsevier Inc. All rights reserved.

  14. Quantitative Analysis of Tau-Microtubule Interaction Using FRET

    Directory of Open Access Journals (Sweden)

    Isabelle L. Di Maïo

    2014-08-01

    Full Text Available The interaction between the microtubule associated protein, tau and the microtubules is investigated. A fluorescence resonance energy transfer (FRET assay was used to determine the distance separating tau to the microtubule wall, as well as the binding parameters of the interaction. By using microtubules stabilized with Flutax-2 as donor and tau labeled with rhodamine as acceptor, a donor-to-acceptor distance of 54 ± 1 Å was found. A molecular model is proposed in which Flutax-2 is directly accessible to tau-rhodamine molecules for energy transfer. By titration, we calculated the stoichiometric dissociation constant to be equal to 1.0 ± 0.5 µM. The influence of the C-terminal tails of αβ-tubulin on the tau-microtubule interaction is presented once a procedure to form homogeneous solution of cleaved tubulin has been determined. The results indicate that the C-terminal tails of α- and β-tubulin by electrostatic effects and of recruitment seem to be involved in the binding mechanism of tau.

  15. Kinesin expands and stabilizes the GDP-microtubule lattice

    Science.gov (United States)

    Peet, Daniel R.; Burroughs, Nigel J.; Cross, Robert A.

    2018-05-01

    Kinesin-1 is a nanoscale molecular motor that walks towards the fast-growing (plus) ends of microtubules, hauling molecular cargo to specific reaction sites in cells. Kinesin-driven transport is central to the self-organization of eukaryotic cells and shows great promise as a tool for nano-engineering1. Recent work hints that kinesin may also play a role in modulating the stability of its microtubule track, both in vitro2,3 and in vivo4, but the results are conflicting5-7 and the mechanisms are unclear. Here, we report a new dimension to the kinesin-microtubule interaction, whereby strong-binding state (adenosine triphosphate (ATP)-bound and apo) kinesin-1 motor domains inhibit the shrinkage of guanosine diphosphate (GDP) microtubules by up to two orders of magnitude and expand their lattice spacing by 1.6%. Our data reveal an unexpected mechanism by which the mechanochemical cycles of kinesin and tubulin interlock, and so allow motile kinesins to influence the structure, stability and mechanics of their microtubule track.

  16. Microtubule–microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes

    Science.gov (United States)

    Lu, Wen; Winding, Michael; Lakonishok, Margot; Wildonger, Jill

    2016-01-01

    Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants. PMID:27512034

  17. Vitamin K3 disrupts the microtubule networks by binding to tubulin: a novel mechanism of its antiproliferative activity.

    Science.gov (United States)

    Acharya, Bipul R; Choudhury, Diptiman; Das, Amlan; Chakrabarti, Gopal

    2009-07-28

    Vitamin K3 (2-methyl-1,4-naphthoquinone), also known as menadione, is the synthetic precursor of all the naturally occurring vitamin K in the body. Vitamin K is necessary for the production of prothrombin and five other blood-clotting factors in humans. We have examined the effects of menadione on cellular microtubules ex vivo as well as its binding with purified tubulin and microtubules in vitro. Cell viability experiments using human cervical epithelial cancer cells (HeLa) and human oral epithelial cancer cells (KB) indicated that the IC(50) values for menadione are 25.6 +/- 0.6 and 64.3 +/- 0.36 microM, respectively, in those cells. Mendione arrests HeLa cells in mitosis. Immunofluorescence studies using an anti-alpha-tubulin antibody showed a significant irreversible depolymeriztion of the interphase microtubule network and spindle microtubule in a dose-dependent manner. In vitro polymerization of purified tubulin into microtubules is inhibited by menadione with an IC(50) value of 47 +/- 0.65 microM. The binding of menadione with tubulin was studied using menadione fluorescence and intrinsic tryptophan fluorescence of tubulin. Binding of menadione to tubulin is slow, taking 35 min for equilibration at 25 degrees C. The association reaction kinetics is biphasic in nature, and the association rate constants for fast and slow phases are 189.12 +/- 17 and 32.44 +/- 21 M(-1) s(-1) at 25 degrees C, respectively. The stoichiometry of menadione binding to tubulin is 1:1 (molar ratio) with a dissociation constant from 2.44 +/- 0.34 to 3.65 +/- 0.25 microM at 25 degrees C. Menadione competes for the colchicine binding site with a K(i) of 2.5 muM as determined from a modified Dixon plot. The obtained data suggested that menadione binds at the colchicine binding site to tubulin. Thus, we can conclude one novel mechanism of inhibition of cancer cell proliferation by menadione is through tubulin binding.

  18. Fluoroscopically guided pyeloureteral interventions using a retrograde perurethral approach

    International Nuclear Information System (INIS)

    Amendola, M.A.; Banner, M.P.; Pollack, H.M.; Gordon, R.L.; Van Arsdalen, K.N.

    1987-01-01

    Employing standard interventional equipment, fluoroscopy, and partially or completely inserted ureteral catheters for access, the authors performed 168 perurethral interventional procedures since 1985. Procedures have included insertion of double (n = 42) or single pigtail stents (n = 47), advancement of retrograde ureteral catheters with or without displacement of a ureteral stone to the renal pelvis (n = 42), urothelial biopsy (n = 30), balloon dilation of ureteral structures (n = 3), ureteral stone extraction (n = 1), and conversion of retrograde to antegrade catheters for balloon dilation of ureteropelvic junction strictures (n = 3). This retrograde approach often obviates the need for antegrade interventional procedures (including percutaneous nephrostomy and ureteral stenting), ureteroscopy, or surgery. Indications, techniques, pitfalls, and complications are illustrated

  19. Recovery of microtubules on the blepharoplast of Ceratopteris spermatogenous cells after oryzalin treatment.

    Science.gov (United States)

    Vaughn, Kevin C; Bowling, Andrew J

    2008-11-01

    Most land plants have ill-defined microtubule-organizing centers (MTOCs), consisting of sites on the nuclear envelope or even along microtubules (MTs). In contrast, the spermatogenous cells of the pteridophyte Ceratopteris richardii have a well-defined MTOC, the blepharoplast, which organizes MTs through the last two division cycles. This allows a rare opportunity to study the organization and workings of a structurally well-defined plant MTOC. In this study, antheridial plants were treated with levels of oryzalin that cause complete MT loss from the cells containing blepharoplasts. The oryzalin was then washed out and plants were allowed to recover for varying amounts of time. If the spermatogenous cells were fixed prior to washing out, the blepharoplasts had an unusual appearance. In the matrix (pericentriolar) material where MT ends are normally found, clear areas of about the diameter of MTs were seen embedded in a much deeper matrix, made more obvious in stereo pairs. Occasionally, the matrix material was highly distended, although the basal body template cylinder morphology appeared to be unaltered. The blepharoplasts often occurred as clusters of 2 or 4, indicating that blepharoplast reproduction is not affected by the lack of MTs, but that their movement to the poles is. Gamma (gamma) tubulin antibodies labeled the edge of the blepharoplast in areas where the pits are located, indicating that these might be sites for MT nucleation. After wash out, the new MTs always re-appeared on the blepharoplast and the recovery occurred within an hour of washout. MT lengths increased with increasing washout time and were indistinguishable from untreated blepharoplasts after 24 h of recovery. After washout, arrays formed in new sperm cells such as the spline and basal bodies were often malformed or present in multiple copies, as were the blepharoplasts in these cells prior to wash out. These data indicate that the blepharoplast serves as the site of MT nucleation and

  20. CENTROSOMES AND MICROTUBULES DURING MEIOSIS IN THE MUSHROOM BOLETUS RUBINELLUS

    Science.gov (United States)

    McLaughlin, David J.

    1971-01-01

    The double centrosome in the basidium of Boletus rubinellus has been observed in three planes with the electron microscope at interphase preceding nuclear fusion, at prophase I, and at interphase I. It is composed of two components connected by a band-shaped middle part. At anaphase I a single, enlarged centrosome is found at the spindle pole, which is attached to the cell membrane. Microtubules mainly oriented parallel to the longitudinal axis of the basidium are present at prefusion, prophase I and interphase I. Cytoplasmic microtubules are absent when the spindle is present. The relationship of the centrosome in B. rubinellus to that in other organisms and the role of the cytoplasmic microtubules are discussed. PMID:4329156

  1. A new retrograde transillumination technique for videolaryngoscopic tracheal intubation

    DEFF Research Database (Denmark)

    Biro, P; Fried, E; Schlaepfer, M

    2018-01-01

    This single-centre, prospective trial was designed to assess the efficacy of a new retrograde transillumination device called the 'Infrared Red Intubation System' (IRRIS) to aid videolaryngoscopic tracheal intubation. We included 40 adult patients, who were undergoing elective urological surgery......-10])), credibility (10 (8-10 [5-10])) and ease of use (10 (9-10 [8-10])). Tracheal intubation with the system lasted 26 (16-32 [6-89]) s. No alternative technique of securing the airway was necessary. The lowest SpO2 during intubation was 98 (97-99 [91-100])%. We conclude that this method of retrograde...

  2. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles.

    Science.gov (United States)

    Decker, Franziska; Oriola, David; Dalton, Benjamin; Brugués, Jan

    2018-01-11

    Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. © 2018, Decker et al.

  3. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  4. The engine of microtubule dynamics comes into focus.

    Science.gov (United States)

    Mitchison, T J

    2014-05-22

    In this issue, Alushin et al. report high-resolution structures of three states of the microtubule lattice: GTP-bound, which is stable to depolymerization; unstable GDP-bound; and stable Taxol and GDP-bound. By comparing these structures at near-atomic resolution, they are able to propose a detailed model for how GTP hydrolysis destabilizes the microtubule and thus powers dynamic instability and chromosome movement. Destabilization of cytoskeleton filaments by nucleotide hydrolysis is an important general principle in cell dynamics, and this work represents a major step forward on a problem with a long history. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Regulation of microtubule nucleation mediated by gamma-tubulin complexes

    Czech Academy of Sciences Publication Activity Database

    Sulimenko, Vadym; Hájková, Zuzana; Klebanovych, Anastasiya; Dráber, Pavel

    2017-01-01

    Roč. 254, č. 3 (2017), s. 1187-1199 ISSN 0033-183X R&D Projects: GA MŠk(CZ) LD13015 Institutional support: RVO:68378050 Keywords : mitotic spindle formation * ring complex * fission yeast * organizing centers * protein complex * golgi-complex * cell-cycle * pole body * augmin * centrosome * Centrosomes * Microtubule nucleation * Microtubule-organizing centers * Non-centrosomal nucleation sites * Spindle pole bodies * gamma-Tubulin complexes Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.870, year: 2016

  6. Transneuronal retrograde dual viral labelling of central autonomic circuitry : possibilities and pitfalls

    NARCIS (Netherlands)

    Ter Horst, GJ

    2000-01-01

    Viral retrograde transneuronal labelling has become an important neuroanatomical tract-tracing tool for characterization of Limbic neuronal networks. Recently, dual viral retrograde transneuronal labelling has been introduced; a method employing differential transgene expression of two genetically

  7. S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules.

    Directory of Open Access Journals (Sweden)

    Muriel Erent

    Full Text Available The kinesins-8 were originally thought to be microtubule depolymerases, but are now emerging as more versatile catalysts of microtubule dynamics. We show here that S. pombe Klp5-436 and Klp6-440 are non-processive plus-end-directed motors whose in vitro velocities on S. pombe microtubules at 7 and 23 nm s(-1 are too slow to keep pace with the growing tips of dynamic interphase microtubules in living S. pombe. In vitro, Klp5 and 6 dimers exhibit a hitherto-undescribed combination of strong enhancement of microtubule nucleation with no effect on growth rate or catastrophe frequency. By contrast in vivo, both Klp5 and Klp6 promote microtubule catastrophe at cell ends whilst Klp6 also increases the number of interphase microtubule arrays (IMAs. Our data support a model in which Klp5/6 bind tightly to free tubulin heterodimers, strongly promoting the nucleation of new microtubules, and then continue to land as a tubulin-motor complex on the tips of growing microtubules, with the motors then dissociating after a few seconds residence on the lattice. In vivo, we predict that only at cell ends, when growing microtubule tips become lodged and their growth slows down, will Klp5/6 motor activity succeed in tracking growing microtubule tips. This mechanism would allow Klp5/6 to detect the arrival of microtubule tips at cells ends and to amplify the intrinsic tendency for microtubules to catastrophise in compression at cell ends. Our evidence identifies Klp5 and 6 as spatial regulators of microtubule dynamics that enhance both microtubule nucleation at the cell centre and microtubule catastrophe at the cell ends.

  8. The loss of episodic memories in retrograde amnesia: single-case and group studies.

    OpenAIRE

    Kopelman, M D; Kapur, N

    2001-01-01

    Retrograde amnesia in neurological disorders is a perplexing and fascinating research topic. The severity of retrograde amnesia is not well correlated with that of anterograde amnesia, and there can be disproportionate impairments of either. Within retrograde amnesia, there are various dissociations which have been claimed-for example, between the more autobiographical (episodic) and more semantic components of memory. However, the associations of different types of retrograde amnesia are als...

  9. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles.

    Science.gov (United States)

    Prezel, Elea; Elie, Auréliane; Delaroche, Julie; Stoppin-Mellet, Virginie; Bosc, Christophe; Serre, Laurence; Fourest-Lieuvin, Anne; Andrieux, Annie; Vantard, Marylin; Arnal, Isabelle

    2018-01-15

    In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain and is modulated by its projection domain. Site-specific pseudophosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles, or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phosphodependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations that may have a deleterious impact during neurodegeneration. © 2018 Prezel, Elie, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells

    OpenAIRE

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Sechi, Mario; Mukhtar, Hasan

    2015-01-01

    Microtubule targeting based therapies have revolutionized cancer treatment; however, resistance and side effects remain a major limitation. Therefore, novel strategies that can overcome these limitations are urgently needed. We made a novel discovery that fisetin, a hydroxyflavone, is a microtubule stabilizing agent. Fisetin binds to tubulin and stabilizes microtubules with binding characteristics far superior than paclitaxel. Surface plasmon resonance and computational docking studies sugges...

  11. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Scaife, R.M. (Fred Hutchinson Cancer Research Center, Seattle, WA (United States)); Wilson, L. (Univ. of California, Santa Barbara (United States)); Purich, D.L. (Univ. of Florida, Gainesville (United States))

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.

  12. Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends

    NARCIS (Netherlands)

    Kumar, Anil; Manatschal, Cristina; Rai, Ankit; Grigoriev, Ilya; Degen, Miriam Steiner; Jaussi, Rolf; Kretzschmar, Ines; Prota, Andrea E; Volkmer, Rudolf; Kammerer, Richard A.; Akhmanova, Anna; Steinmetz, Michel O.

    2017-01-01

    Microtubule plus-end tracking proteins (+TIPs) are involved in virtually all microtubule-based processes. End-binding (EB) proteins are considered master regulators of +TIP interaction networks, since they autonomously track growing microtubule ends and recruit a plethora of proteins to this

  13. Potent antiproliferative cembrenoids accumulate in tobacco upon infection with Rhodococcus fascians and trigger unusual microtubule dynamics in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Aminata P Nacoulma

    Full Text Available AIMS: Though plant metabolic changes are known to occur during interactions with bacteria, these were rarely challenged for pharmacologically active compounds suitable for further drug development. Here, the occurrence of specific chemicals with antiproliferative activity against human cancer cell lines was evidenced in hyperplasia (leafy galls induced when plants interact with particular phytopathogens, such as the Actinomycete Rhodococcus fascians. METHODS: We examined leafy galls fraction F3.1.1 on cell proliferation, cell division and cytoskeletal disorganization of human cancer cell lines using time-lapse videomicroscopy imaging, combined with flow cytometry and immunofluorescence analysis. We determined the F3.1.1-fraction composition by gas chromatography coupled to mass spectrometry. RESULTS: The leafy galls induced on tobacco by R. fascians yielded fraction F3.1.1 which inhibited proliferation of glioblastoma U373 cells with an IC50 of 4.5 µg/mL, F.3.1.1 was shown to increase cell division duration, cause nuclear morphological deformations and cell enlargement, and, at higher concentrations, karyokinesis defects leading to polyploidization and apoptosis. F3.1.1 consisted of a mixture of isomers belonging to the cembrenoids. The cellular defects induced by F3.1.1 were caused by a peculiar cytoskeletal disorganization, with the occurrence of fragmented tubulin and strongly organized microtubule aggregates within the same cell. Colchicine, paclitaxel, and cembrene also affected U373 cell proliferation and karyokinesis, but the induced microtubule rearrangement was very different from that provoked by F3.1.1. Altogether our data indicate that the cembrenoid isomers in F3.1.1 have a unique mode of action and are able to simultaneously modulate microtubule polymerization and stability.

  14. Retrograde pylorogastric intussusception – Case report and review

    Directory of Open Access Journals (Sweden)

    Efrat Avinadav

    2016-07-01

    Full Text Available A case of gastric outlet obstruction in an infant due to retrograde intussusception of the pylorus into the stomach is presented. This anomaly is extremely rare, with almost no reports in the literature. The patient underwent formal Heineke-Mikulicz pyloroplasty with an uneventful recovery and resumed full enteral feeding.

  15. Retrograde ejaculation and sexual dysfunction in men with diabetes mellitus

    DEFF Research Database (Denmark)

    Fedder, J; Kaspersen, Maja Døvling; Brandslund, I

    2013-01-01

    Retrograde ejaculation (RE) and erectile dysfunction may be caused by diabetes mellitus (DM), but the prevalence of RE among DM patients is unknown. A prospective, blinded case-control study comparing men with DM with matched controls according to RE and erectile dysfunction was performed. Twenty...

  16. Case Report: A Healthy Live Birth Following ICSI with Retrograde ...

    African Journals Online (AJOL)

    Intracytoplasmic sperm injection (ICSI) has been employed to achieve fertilization in some cases of male subfertility e.g. severe oligoasthenoteratozoospermia. Assisted reproductive techniques to aid conception in cases of retrograde ejaculation have been described extensively elsewhere but there is paucity of knowledge ...

  17. Retrograde amnesia after electroconvulsive therapy: a temporary effect?

    Science.gov (United States)

    Meeter, Martijn; Murre, Jaap M J; Janssen, Steve M J; Birkenhager, Tom; van den Broek, W W

    2011-07-01

    Although electroconvulsive therapy (ECT) is generally considered effective against depression, it remains controversial because of its association with retrograde memory loss. Here, we assessed memory after ECT in circumstances most likely to yield strong retrograde amnesia. A cohort of patients undergoing ECT for major depression was tested before and after ECT, and again at 3-months follow-up. Included were 21 patients scheduled to undergo bilateral ECT for severe major depression and 135 controls matched for gender, age, education, and media consumption. Two memory tests were used: a verbal learning test to assess anterograde memory function, and a remote memory test that assessed memory for news during the course of one year. Before ECT the patients' scores were lower than those of controls. They were lower again after treatment, suggesting retrograde amnesia. At follow-up, however, memory for events before treatment had returned to the pre-ECT level. Memory for events in the months after treatment was as good as that of controls. The sample size in this study was not large. Moreover, memory impairment did not correlate with level of depression, which may be due to restriction of range. Our results are consistent with the possibility that ECT as currently practiced does not cause significant lasting retrograde amnesia, but that amnesia is mostly temporary and related to the period of impairment immediately following ECT. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Retrograde jejunal intussusception after total gastrectomy: A case ...

    African Journals Online (AJOL)

    Retrograde jejunal intussusception is a rare disease. A 60‑year‑old female patient was hospitalized due to vomiting for 2 days, with a history of radical gastrectomy plus esophagus jejunum Rouxs‑en‑Y. On examination, there was a palpable wax‑like mass on the left‑hand side underneath the umbilicus. Computerized ...

  19. Retrograde jejunal intussusception after total gastrectomy: A case ...

    African Journals Online (AJOL)

    2015-11-02

    Nov 2, 2015 ... Retrograde jejunal intussusception is a rare disease. A 60-year-old female patient was hospitalized due to vomiting for 2 days, with a history of radical gastrectomy plus esophagus jejunum Rouxs-en-Y. On examination, there was a palpable wax-like mass on the left-hand side underneath the umbilicus.

  20. Rutinemaessig endoskopisk retrograd kolangiopankreatikografi kan ikke anbefales ved galdestenspankreatitis

    DEFF Research Database (Denmark)

    Ainsworth, Alan Patrick; Svendsen, Lars Bo

    2009-01-01

    Danish guidelines recommend that patients with presumed severe gallstone-induced acute pancreatitis (GAP) should receive endoscopic retrograde cholangiopancreatography (ERCP) within 72 hours. The results of a newly performed meta-analysis show that acute ERCP in patients with GAP does not reduce...

  1. Retrograde transport of protein toxins through the Golgi apparatus

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Skotland, Tore; van Deurs, Bo

    2013-01-01

    at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER...

  2. TRANSIT TIMING VARIATIONS FOR INCLINED AND RETROGRADE EXOPLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Ford, Eric B.; Veras, Dimitri

    2010-01-01

    We perform numerical calculations of the expected transit timing variations (TTVs) induced on a hot-Jupiter by an Earth-mass perturber. Motivated by the recent discoveries of retrograde transiting planets, we concentrate on an investigation of the effect of varying relative planetary inclinations, up to and including completely retrograde systems. We find that planets in low-order (e.g., 2:1) mean-motion resonances (MMRs) retain approximately constant TTV amplitudes for 0 deg. 170 deg. Systems in higher order MMRs (e.g., 5:1) increase in TTV amplitude as inclinations increase toward 45 deg., becoming approximately constant for 45 deg. 135 deg. Planets away from resonance slowly decrease in TTV amplitude as inclinations increase from 0 deg. to 180 deg., whereas planets adjacent to resonances can exhibit a huge range of variability in TTV amplitude as a function of both eccentricity and inclination. For highly retrograde systems (135 deg. < i ≤ 180 deg.), TTV signals will be undetectable across almost the entirety of parameter space, with the exceptions occurring when the perturber has high eccentricity or is very close to an MMR. This high inclination decrease in TTV amplitude (on and away from resonance) is important for the analysis of the known retrograde and multi-planet transiting systems, as inclination effects need to be considered if TTVs are to be used to exclude the presence of any putative planetary companions: absence of evidence is not evidence of absence.

  3. Endoskopisk ultralydvejledt rendezvouskolangiografi ved mislykket endoskopisk retrograd kolangiopankreatikografi

    DEFF Research Database (Denmark)

    Boman, Pia Snedker; Perdawid, Sharafaden Karim; Lykkegaard, John

    2012-01-01

    In this case report we describe an alternative method of cholangiography. Endoscopic retrograde cholangiopancreatography (ERCP) was not successful in a patient with choledocolithiasis. A combined endoscopic ultrasound (EUS) and ERCP procedure was performed and a stent was inserted in the common...

  4. Endoscopic retrograde cholangiopancreatography causes reduced myocardial blood flow

    DEFF Research Database (Denmark)

    Christensen, M; Hendel, H W; Rasmussen, V

    2002-01-01

    BACKGROUND AND STUDY AIMS: Previous studies have shown that up to 50% of healthy patients may develop ST-segment changes during upper gastrointestinal endoscopy. The aim of the study was to evaluate myocardial blood flow in patients during endoscopic retrograde cholangiopancreatography (ERCP...

  5. A study of retrograde degeneration of median nerve forearm ...

    African Journals Online (AJOL)

    Introduction: Carpal tunnel syndrome (CTS) is a disorder of the hand which results from compression of the median nerve within its fibro-osseous tunnel at the wrist. The slowing in the forearm motor conduction velocity suggests the presence of retrograde degeneration. Existing studies conflict regarding a correlation ...

  6. A rare cause of coffee-ground vomiting: Retrograde jejunogastric ...

    African Journals Online (AJOL)

    Retrograde jejunogastric intussusception is a well-recognised, rare, but potentially fatal long-term complication of gastrojejunostomy or Billroth II reconstruction. Only about 200 cases have been reported in the literature to date. Diagnosis of this condition is difficult in most cases. To avoid mortality, earlydiagnosis and prompt ...

  7. Developing a Repeatable Methodology to Calculate Retrograde Planning Factors

    Science.gov (United States)

    2015-01-01

    supply chain inefficiencies, changes in demand xiv rates, operational tempo, task force organization, drawdown, and redeployment, for which the...and its causes, most notably the effect of supply chain inefficiencies on serviceable retrograde. It should be noted that, because of data limitations... supplies and equipment, and housekeeping supplies and equipment Class IIIP Packaged petroleum products; includes fuel in collapsible containers less

  8. Treatment of lower extremity arterial occlusive through retrograde access

    International Nuclear Information System (INIS)

    Liu Xueqiang; Guo Pingfan; Zhang Jinchi; Cai Fanggang

    2012-01-01

    Objective: To explore the clinical significance of retrograde access for the interventional treatment of lower extremity arterial occlusive diseases when the occluded segment of lower extremity artery could not be reached through antegrade access. Methods: Twenty-seven cases (male 17, female 10; age range 32-89 years) were retrospectively investigated, including 18 with lower limb arteriosclerosis obliterans, 7 with diabetic foot and 2 with thromboangiitis obliterans. According to the Fontaine staging, 6 cases were classified as Fontaine Ⅱ, 11 were classified as Fontaine Ⅲ and 10 were classified as Fontaine Ⅳ. All cases underwent endovascular operation through antegrade access first with an attempt to cross the occlusive segment, but in vain. So retrograde access was tried via puncture of pedis dorsalis or posterior tibial artery or exposure of lateral branches of posterior tibial artery, peroneal artery or dorsal artery by open surgery,which followed by Percutaneous transluminal angiography and (or) stenting. Results: The operation through retrograde access was successful in all cases with obvious improvement of ischemic symptoms. Hematoma at the puncture site occurred in 3 patients, and paresthesia of toes occurred in 1 after dorsalis pedis arteriotomy. No severe perioperative complication occurred. The average ankle brachial index increased from 0.37 ± 0.11 preoperatively to 0.85 ± 0.12 postoperatively. Conclusions: Retrograde access could be used as an alternative strategy in lower extremity arterial occlusive diseases when the occluded segment could not reach through antegrade access. (authors)

  9. How biological microtubules may avoid decoherence

    International Nuclear Information System (INIS)

    Hameroff, S.

    2005-01-01

    Full text: Entangled superpositions persisting for hundreds of milliseconds in protein assemblies such as microtubules (MTs) are proposed in biological functions, e.g. quantum computation relevant to consciousness in the Penrose-Hameroff 'Orch OR' model. Cylindrical polymers of the protein tubulin, MTs organize cell activities. The obvious question is how biological quantum states could avoid decoherence, e.g. in the brain at 37.6 degrees centigrade. Screening/sheelding: tubulin protein states/functions are governed by van der Waals London forces, quantum interactions among clouds of delocalizable electrons in nonpolar 'hydrophobic' intra-protein pockets screened from external van der Waals thermal interactions. Such pockets include amino acid resonance structures benzene and indole rings. (Anesthetic gases erase consciousness solely by interfering with London forces in hydrophobic pockets in various brain proteins). Hence tubulin states may act as superpositioned qubits also shielded at the MT level by counter-ion Debye plasma layers (due to charged C-termini tails on tubulin) and by water-ordering actin gels which embed MTs in a quasi-solid. Biological systems may also exploit thermodynamic gradients to give extremely low effective temperatures. Decoherence free subspaces: paradoxically, a system coupled strongly to its environment through certain degrees of freedom can effectively 'freeze' other degrees of freedom (quantum Zeno effect), enabling coherent superpositions and entanglement to persist. Metabolic energy supplied to MT collective dynamics (e.g. Froehlich coherence) can cause Bose-Einstein condenzation and counter decoherence as lasers avoid decoherence at room temperature. Topological quantum error correction: MT lattice structure reveals various helical winding paths through adjacent tubulins which follow the Fibonacci series. Propagation/interactions of quasi-particles along these paths may process information. As proposed by Kitaev (1997), various

  10. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.

    Science.gov (United States)

    Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming

    2016-08-17

    EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.

  11. Neuronal microtubule organization: from minus end to plus end

    NARCIS (Netherlands)

    Yau, K.W.

    2016-01-01

    Neurons are highly polarized cells consisting of a dendritic part and axonal part. Dendrites receive signals from other cells while axons transmit signals to other cells. In this thesis, mostly hippocampal neurons from rat embryos are used to study fundamental aspects of the microtubule organization

  12. Microtubules in cell migration, morphogenesis and metabolism: Making the connections

    NARCIS (Netherlands)

    Noordstra, I.

    2017-01-01

    Cell polarity refers to a fundamental property of eukaryotic cells, in which cellular components and structures are organized in an asymmetric fashion. In order to control their polarity, cells make use of microtubules, hollow polymers that extend throughout the cytoplasm. Due to the asymmetry of

  13. Transcriptional Response of Human Neurospheres to Helper-Dependent CAV-2 Vectors Involves the Modulation of DNA Damage Response, Microtubule and Centromere Gene Groups.

    Directory of Open Access Journals (Sweden)

    Stefania Piersanti

    Full Text Available Brain gene transfer using viral vectors will likely become a therapeutic option for several disorders. Helper-dependent (HD canine adenovirus type 2 vectors (CAV-2 are well suited for this goal. These vectors are poorly immunogenic, efficiently transduce neurons, are retrogradely transported to afferent structures in the brain and lead to long-term transgene expression. CAV-2 vectors are being exploited to unravel behavior, cognition, neural networks, axonal transport and therapy for orphan diseases. With the goal of better understanding and characterizing HD-CAV-2 for brain therapy, we analyzed the transcriptomic modulation induced by HD-CAV-2 in human differentiated neurospheres derived from midbrain progenitors. This 3D model system mimics several aspects of the dynamic nature of human brain. We found that differentiated neurospheres are readily transduced by HD-CAV-2 and that transduction generates two main transcriptional responses: a DNA damage response and alteration of centromeric and microtubule probes. Future investigations on the biochemistry of processes highlighted by probe modulations will help defining the implication of HD-CAV-2 and CAR receptor binding in enchaining these functional pathways. We suggest here that the modulation of DNA damage genes is related to viral DNA, while the alteration of centromeric and microtubule probes is possibly enchained by the interaction of the HD-CAV-2 fibre with CAR.

  14. Capture of microtubule plus-ends at the actin cortex promotes axophilic neuronal migration by enhancing microtubule tension in the leading process.

    Science.gov (United States)

    Hutchins, B Ian; Wray, Susan

    2014-01-01

    Microtubules are a critical part of neuronal polarity and leading process extension, thus microtubule movement plays an important role in neuronal migration. However, the dynamics of microtubules during the forward movement of the nucleus into the leading process (nucleokinesis) is unclear and may be dependent on the cell type and mode of migration used. In particular, little is known about cytoskeletal changes during axophilic migration, commonly used in anteroposterior neuronal migration. We recently showed that leading process actin flow in migrating GnRH neurons is controlled by a signaling cascade involving IP3 receptors, CaMKK, AMPK, and RhoA. In the present study, microtubule dynamics were examined in GnRH neurons. Failure of the migration of these cells leads to the neuroendocrine disorder Kallmann Syndrome. Microtubules translocated forward along the leading process shaft during migration, but reversed direction and moved toward the nucleus when migration stalled. Blocking calcium release through IP3 receptors halted migration and induced the same reversal of microtubule translocation, while blocking cortical actin flow prevented microtubules from translocating toward the distal leading process. Super-resolution imaging revealed that microtubule plus-end tips are captured at the actin cortex through calcium-dependent mechanisms. This work shows that cortical actin flow draws the microtubule network forward through calcium-dependent capture in order to promote nucleokinesis, revealing a novel mechanism engaged by migrating neurons to facilitate movement.

  15. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers. Alt...

  16. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng; Hadjichristidis, Nikolaos; Schlaad, Helmut

    2015-01-01

    . In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges

  17. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  18. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  19. Interplay between I308 and Y310 residues in the third repeat of microtubule-binding domain is essential for tau filament formation.

    Science.gov (United States)

    Naruto, Keiko; Minoura, Katsuhiko; Okuda, Ryouhei; Taniguchi, Taizo; In, Yasuko; Ishida, Toshimasa; Tomoo, Koji

    2010-10-08

    Investigation of the mechanism of tau polymerization is indispensable for finding inhibitory conditions or identifying compounds preventing the formation of paired helical filament or oligomers. Tau contains a microtubule-binding domain consisting of three or four repeats in its C-terminal half. It has been considered that the key event in tau polymerization is the formation of a β-sheet structure arising from a short hexapeptide (306)VQIVYK(311) in the third repeat of tau. In this paper, we report for the first time that the C-H⋯π interaction between Ile308 and Tyr310 is the elemental structural scaffold essential for forming a dry "steric zipper" structure in tau amyloid fibrils. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. The XMAP215 Ortholog Alp14 Promotes Microtubule Nucleation in Fission Yeast.

    Science.gov (United States)

    Flor-Parra, Ignacio; Iglesias-Romero, Ana Belén; Chang, Fred

    2018-06-04

    The organization and number of microtubules (MTs) in a cell depend on the proper regulation of MT nucleation. Currently, the mechanism of nucleation is the most poorly understood aspect of MT dynamics. XMAP215/chTOG/Alp14/Stu2 proteins are MT polymerases that stimulate MT polymerization at MT plus ends by binding and releasing tubulin dimers. Although these proteins also localize to MT organizing centers and have nucleating activity in vitro, it is not yet clear whether these proteins participate in MT nucleation in vivo. Here, we demonstrate that in the fission yeast Schizosaccharomyces pombe, the XMAP215 ortholog Alp14 is critical for efficient MT nucleation in vivo. In multiple assays, loss of Alp14 function led to reduced nucleation rate and numbers of interphase MT bundles. Conversely, activation of Alp14 led to increased nucleation frequency. Alp14 associated with Mto1 and γ-tubulin complex components, and artificially targeting Alp14 to the γ-tubulin ring complexes (γ-TuRCs) stimulated nucleation. In imaging individual nucleation events, we found that Alp14 transiently associated with a γ-tubulin particle shortly before the appearance of a new MT. The transforming acidic coiled-coil (TACC) ortholog Alp7 mediated the localization of Alp14 at nucleation sites but not plus ends, and was required for efficient nucleation but not for MT polymerization. Our findings provide the strongest evidence to date that Alp14 serves as a critical MT nucleation factor in vivo. We suggest a model in which Alp14 associates with the γ-tubulin complex in an Alp7-dependent manner to facilitate the assembly or stabilization of the nascent MT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The nucleation of microtubules in Aspergillus nidulans germlings

    Directory of Open Access Journals (Sweden)

    Cristina de Andrade-Monteiro

    1999-09-01

    Full Text Available Microtubules are filaments composed of dimers of alpha- and beta-tubulins, which have a variety of functions in living cells. In fungi, the spindle pole bodies usually have been considered to be microtubule-organizing centers. We used the antimicrotubule drug Benomyl in block/release experiments to depolymerize and repolymerize microtubules in Aspergillus nidulans germlings to learn more about the microtubule nucleation process in this filamentous fungus. Twenty seconds after release from Benomyl short microtubules were formed from several bright (immunofluorescent dots distributed along the germlings, suggesting that microtubule nucleation is randomly distributed in A. nidulans germlings. Since nuclear movement is dependent on microtubules in A. nidulans we analyzed whether mutants defective in nuclear distribution along the growing hyphae (nud mutants have some obvious microtubule defect. Cytoplasmic, astral and spindle microtubules were present and appeared to be normal in all nud mutants. However, significant changes in the percentage of short versus long mitotic spindles were observed in nud mutants. This suggests that some of the nuclei of nud mutants do not reach the late stage of cell division at normal temperatures.Microtúbulos são filamentos compostos por dímeros das tubulinas a e b e têm uma variedade de funções nas células vivas. Em fungos, os corpúsculos polares dos fusos são geralmente considerados os centros organizadores dos microtúbulos. Com o objetivo de contribuir para uma melhor compreensão dos processos de nucleação dos microtúbulos no fungo filamentoso A. nidulans, nós utilizamos a droga antimicrotúbulo Benomil em experimentos de bloqueio e liberação para depolimerizar e repolimerizar os microtúbulos. Após 20 segundos de reincubação em meio sem Benomil, pequenos microtúbulos foram formados a partir de pontos distribuídos pela célula, sugerindo que os pontos de nucleação de microtúbulos s

  2. Ileal Varices Treated with Balloon-Occluded Retrograde Transvenous Obliteration.

    Science.gov (United States)

    Sato, Takahiro; Yamazaki, Katsu; Toyota, Jouji; Karino, Yoshiyasu; Ohmura, Takumi; Akaike, Jun

    2009-04-01

    A 55-year-old man with hepatitis B virus antigen-positive liver cirrhosis was admitted to our hospital with anal bleeding. Colonoscopy revealed blood retention in the entire colon, but no bleeding lesion was found. Computed tomography images showed that vessels in the ileum were connected to the right testicular vein, and we suspected ileal varices to be the most probable cause of bleeding. We immediately performed double balloon enteroscopy, but failed to find any site of bleeding owing to the difficulty of fiberscope insertion with sever adhesion. Using a balloon catheter during retrograde transvenous venography, we found ileal varices communicating with the right testicular vein (efferent vein) with the superior mesenteric vein branch as the afferent vein of these varices. We performed balloon occluded retrograde transvenous obliteration by way of the efferent vein of the varices and have detected no further bleeding in this patient one year after treatment.

  3. Retrograde Jejuno-Jejunal Intussusception after Total Gastrectomy

    Directory of Open Access Journals (Sweden)

    Akira Yoneda

    2008-08-01

    Full Text Available An eighty-year-old female was transferred to the hospital after experiencing abdominal pain and nausea. She had had a history of total gastrectomy for gastric cancer 14 years previously. Abdominal X-ray revealed a localized expansion of the small bowel. Computed tomography revealed a mass with a lamellar structure in a concentric circle. With a tentative diagnosis of small bowel obstruction due to intussusception, she underwent emergency operation. Laparotomy revealed a retrograde jejuno-jejunal intussusception. Bowel resection was performed due to the severe ischemic damage. All reported intussusception cases after total gastrectomy displayed retrograde characteristics and could occur both during the early and late period after surgery. It is important to consider the possibility of intussusception for patients presenting with acute abdomen who have previously undergone gastric resection.

  4. Biomechanical Strength of Retrograde Fixation in Proximal Third Scaphoid Fractures.

    Science.gov (United States)

    Daly, Charles A; Boden, Allison L; Hutton, William C; Gottschalk, Michael B

    2018-04-01

    Current techniques for fixation of proximal pole scaphoid fractures utilize antegrade fixation via a dorsal approach endangering the delicate vascular supply of the dorsal scaphoid. Volar and dorsal approaches demonstrate equivalent clinical outcomes in scaphoid wrist fractures, but no study has evaluated the biomechanical strength for fractures of the proximal pole. This study compares biomechanical strength of antegrade and retrograde fixation for fractures of the proximal pole of the scaphoid. A simulated proximal pole scaphoid fracture was produced in 22 matched cadaveric scaphoids, which were then assigned randomly to either antegrade or retrograde fixation with a cannulated headless compression screw. Cyclic loading and load to failure testing were performed and screw length, number of cycles, and maximum load sustained were recorded. There were no significant differences in average screw length (25.5 mm vs 25.6 mm, P = .934), average number of cyclic loading cycles (3738 vs 3847, P = .552), average load to failure (348 N vs 371 N, P = .357), and number of catastrophic failures observed between the antegrade and retrograde fixation groups (3 in each). Practical equivalence between the 2 groups was calculated and the 2 groups were demonstrated to be practically equivalent (upper threshold P = .010). For this model of proximal pole scaphoid wrist fractures, antegrade and retrograde screw configuration have been proven to be equivalent in terms of biomechanical strength. With further clinical study, we hope surgeons will be able to make their decision for fixation technique based on approaches to bone grafting, concern for tenuous blood supply, and surgeon preference without fear of poor biomechanical properties.

  5. A cadaveric study of surgical landmarks for retrograde parotidectomy

    Directory of Open Access Journals (Sweden)

    Wenjie Zhong

    2016-08-01

    Conclusion: The findings indicate that all three landmarks are useful for surgeons to locate the facial nerve branches during retrograde parotidectomy. Since all three landmarks were consistent indicators for the corresponding facial nerve branches, the surgeon has more than one option should one landmark be obscured by tumors. The optimal landmark is the distance from A to MM because it is shortest and most reliable, followed by RMV to MM, and Z to B.

  6. Rutinemaessig endoskopisk retrograd kolangiopankreatikografi kan ikke anbefales ved galdestenspankreatitis

    DEFF Research Database (Denmark)

    Ainsworth, Alan Patrick; Svendsen, Lars Bo

    2009-01-01

    Danish guidelines recommend that patients with presumed severe gallstone-induced acute pancreatitis (GAP) should receive endoscopic retrograde cholangiopancreatography (ERCP) within 72 hours. The results of a newly performed meta-analysis show that acute ERCP in patients with GAP does not reduce...... the risk of complications, and ERCP is therefore not to be used routinely in GAP patients. The possible benefits of replacing ERCP with either endoscopic ultrasonography or magnetic resonance cholangiopancreatograhy have yet to be demonstrated. Udgivelsesdato: 2009-Aug-31...

  7. Radiation induced emulsion polymerization

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1990-01-01

    High energy radiation is particularly favored for the initiation of emulsion polymerization. The yield of free radicals, for example, from the radiolysis of the aqueous phase, is high; G(radical) values of 5-7. In addition, the rather special kinetics associated with emulsion polymerization lead, in general, to very large kinetic chain lengths, even with 'non-ideal' monomers such as vinyl acetate. Together, high polymerization rates at low doses become possible. There are some important advantages of radiation polymerization compared with chemical initiators, such as potassium persulfate. Perhaps the most important among them is the temperature independence of the initiation step. This makes low temperature polymerization very accessible. With monomers such as vinyl acetate, where chain termination to monomer is predominant, low temperatures lead to often highly desirable higher molecular weights. With styrene, the classical ideally behaved monomer, there are the advantages such as, for example, the feasibility of using cationic monomers. These and some attendant disadvantages are discussed in detail, including pilot plant studies

  8. TgICMAP1 is a novel microtubule binding protein in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Aoife T Heaslip

    Full Text Available The microtubule cytoskeleton provides essential structural support for all eukaryotic cells and can be assembled into various higher order structures that perform drastically different functions. Understanding how microtubule-containing assemblies are built in a spatially and temporally controlled manner is therefore fundamental to understanding cell physiology. Toxoplasma gondii, a protozoan parasite, contains at least five distinct tubulin-containing structures, the spindle pole, centrioles, cortical microtubules, the conoid, and the intra-conoid microtubules. How these five structurally and functionally distinct sets of tubulin containing structures are constructed and maintained in the same cell is an intriguing problem. Previously, we performed a proteomic analysis of the T. gondii apical complex, a cytoskeletal complex located at the apical end of the parasite that is composed of the conoid, three ring-like structures, and the two short intra-conoid microtubules. Here we report the characterization of one of the proteins identified in that analysis, TgICMAP1. We show that TgICMAP1 is a novel microtubule binding protein that can directly bind to microtubules in vitro and stabilizes microtubules when ectopically expressed in mammalian cells. Interestingly, in T. gondii, TgICMAP1 preferentially binds to the intra-conoid microtubules, providing us the first molecular tool to investigate the intra-conoid microtubule assembly process during daughter construction.

  9. Stabilizing versus Destabilizing the Microtubules: A Double-Edge Sword for an Effective Cancer Treatment Option?

    Directory of Open Access Journals (Sweden)

    Daniele Fanale

    2015-01-01

    Full Text Available Microtubules are dynamic and structural cellular components involved in several cell functions, including cell shape, motility, and intracellular trafficking. In proliferating cells, they are essential components in the division process through the formation of the mitotic spindle. As a result of these functions, tubulin and microtubules are targets for anticancer agents. Microtubule-targeting agents can be divided into two groups: microtubule-stabilizing, and microtubule-destabilizing agents. The former bind to the tubulin polymer and stabilize microtubules, while the latter bind to the tubulin dimers and destabilize microtubules. Alteration of tubulin-microtubule equilibrium determines the disruption of the mitotic spindle, halting the cell cycle at the metaphase-anaphase transition and, eventually, resulting in cell death. Clinical application of earlier microtubule inhibitors, however, unfortunately showed several limits, such as neurological and bone marrow toxicity and the emergence of drug-resistant tumor cells. Here we review several natural and synthetic microtubule-targeting agents, which showed antitumor activity and increased efficacy in comparison to traditional drugs in various preclinical and clinical studies. Cryptophycins, combretastatins, ombrabulin, soblidotin, D-24851, epothilones and discodermolide were used in clinical trials. Some of them showed antiangiogenic and antivascular activity and others showed the ability to overcome multidrug resistance, supporting their possible use in chemotherapy.

  10. Neurovascular Structures at Risk With Curved Retrograde TTC Fusion Nails.

    Science.gov (United States)

    de Cesar Netto, Cesar; Johannesmeyer, David; Cone, Brent; Araoye, Ibukunoluwa; Hudson, Parke William; Sahranavard, Bahman; Johnson, Michael; Shah, Ashish

    2017-10-01

    The purpose of this study was to assess the risk of iatrogenic injury to plantar neurovascular structures of the foot during insertion of a curved retrograde tibiotalocalcaneal (TTC) fusion nail. Ten below-knee thawed fresh-frozen cadaveric specimens underwent curved retrograde nailing of the ankle. The shortest distance between the nail and the main plantar neurovascular branches and injured structures were recorded during dissection. We also evaluated the relative position of these structures along 2 lines (AB, connecting the calcaneus to the first metatarsal, and BC, connecting the first and fifth metatarsal). The lateral plantar artery was found to be in direct contact with the nail 70% of the time, with a macroscopic laceration 30% of the time. The Baxter nerve was injured 20% of the time, as was the lateral plantar nerve. The medial plantar artery and nerve were never injured. The most proximal structure to cross line AB was the Baxter nerve followed by the lateral plantar artery, the nail, the lateral plantar nerve, and the medial plantar nerve. Our cadaveric anatomic study found that the most common structures at risk for iatrogenic injury by lateral curved retrograde TTC fusion nails were the lateral plantar artery and nerve, and the Baxter nerve. Determination of a true neurovascular safe zone is challenging and therefore warrants careful operative dissection to minimize neurovascular injuries.

  11. A retrograde co-orbital asteroid of Jupiter.

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2017-03-29

    Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ 509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ 509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ 509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

  12. The Retrograde and Retroperitoneal Totally Laparoscopic Hysterectomy for Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Eugenio Volpi

    2012-01-01

    Full Text Available Introduction. We retrospectively report our experience with the utilization of an original procedure for total laparoscopic hysterectomy based on completely retrograde and retroperitoneal technique for surgical staging and treatment of the endometrial cancer. The surgical, financial, and oncological advantages are here discussed. Methods. The technique used here has been based on a combination of a retroperitoneal approach with a retrograde and lateral dissection of the bladder and retrograde culdotomy with variable resection of parametrium. No disposable instruments and no uterine manipulator were utilized. Results. Intraoperative and postoperative complications were observed in 10% of the cases overall. Operative time length and mean haemoglobin drop value results were 129 min and 125 mL, respectively. Most patients were dismissed on days 3–5 from the hospital. Seventy-eight percent of the patients were alive with no evidence of disease at mean followup of 49 months. Conclusions. Our original laparoscopic technique is based on a retroperitoneal approach in order to rapidly control main uterine vessels coagulation, constantly check the ureter, and eventually decide type and site of lymph nodes removal. This procedure has important cost saving implications and the avoidance of uterine manipulator is of matter in case such as these of uterine malignancy.

  13. Novel Class of Potential Therapeutics that Target Ricin Retrograde Translocation

    Directory of Open Access Journals (Sweden)

    Veronika Redmann

    2013-12-01

    Full Text Available Ricin toxin, an A-B toxin from Ricinus communis, induces cell death through the inhibition of protein synthesis. The toxin binds to the cell surface via its B chain (RTB followed by its retrograde trafficking through intracellular compartments to the ER where the A chain (RTA is transported across the membrane and into the cytosol. Ricin A chain is transported across the ER membrane utilizing cellular proteins involved in the disposal of aberrant ER proteins by a process referred to as retrograde translocation. Given the current lack of therapeutics against ricin intoxication, we developed a high-content screen using an enzymatically attenuated RTA chimera engineered with a carboxy-terminal enhanced green fluorescent protein (RTAE177Qegfp to identify compounds that target RTA retrograde translocation. Stabilizing RTAE177Qegfp through the inclusion of proteasome inhibitor produced fluorescent peri-nuclear granules. Quantitative analysis of the fluorescent granules provided the basis to discover compounds from a small chemical library (2080 compounds with known bioactive properties. Strikingly, the screen found compounds that stabilized RTA molecules within the cell and several compounds limited the ability of wild type RTA to suppress protein synthesis. Collectively, a robust high-content screen was developed to discover novel compounds that stabilize intracellular ricin and limit ricin intoxication.

  14. Microtubule dynamics. II. Kinetics of self-assembly

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Jobs, E.

    1997-01-01

    Inverse scattering theory describes the conditions necessary and sufficient to determine an unknown potential from known scattering data. No similar theory exists for when and how one may deduce the kinetics of an unknown chemical reaction from quantitative information about its final state and i...... to analyze the self-assembly of microtubules from tubulin are general, and many other reactions and processes may be studied as inverse problems with these methods when enough experimental data are available....

  15. Vibrations of microtubules: Physics that has not met biology yet

    Czech Academy of Sciences Publication Activity Database

    Kučera, Ondřej; Havelka, Daniel; Cifra, Michal

    2017-01-01

    Roč. 72, 1 July (2017), s. 13-22 ISSN 0165-2125 R&D Projects: GA ČR(CZ) GA15-17102S Grant - others:AV ČR(CZ) SAV-15-22 Program:Bilaterální spolupráce Institutional support: RVO:67985882 Keywords : Models * Vibrations * Microtubules Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 1.575, year: 2016

  16. Dictyoceratidan poisons: Defined mark on microtubule-tubulin dynamics.

    Science.gov (United States)

    Gnanambal K, Mary Elizabeth; Lakshmipathy, Shailaja Vommi

    2016-03-01

    Tubulin/microtubule assembly and disassembly is characterized as one of the chief processes during cell growth and division. Hence drugs those perturb these process are considered to be effective in killing fast multiplying cancer cells. There is a collection of natural compounds which disturb microtubule/tubulin dis/assemblage and there have been a lot of efforts concerted in the marine realm too, to surveying such killer molecules. Close to half the natural compounds shooting out from marine invertebrates are generally with no traceable definite mechanisms of action though may be tough anti-cancerous hits at nanogram levels, hence fatefully those discoveries conclude therein without a capacity of translation from laboratory to pharmacy. Astoundingly at least 50% of natural compounds which have definite mechanisms of action causing disorders in tubulin/microtubule kinetics have an isolation history from sponges belonging to the Phylum: Porifera. Poriferans have always been a wonder worker to treat cancers with a choice of, yet precise targets on cancerous tissues. There is a specific order: Dictyoceratida within this Phylum which has contributed to yielding at least 50% of effective compounds possessing this unique mechanism of action mentioned above. However, not much notice is driven to Dictyoceratidans alongside the order: Demospongiae thus dictating the need to know its select microtubule/tubulin irritants since the unearthing of avarol in the year 1974 till date. Hence this review selectively pinpoints all the compounds, noteworthy derivatives and analogs stemming from order: Dictyoceratida focusing on the past, present and future. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    , external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  18. GIT1 enhances neurite outgrowth by stimulating microtubule assembly

    Directory of Open Access Journals (Sweden)

    Yi-sheng Li

    2016-01-01

    Full Text Available GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neurobiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a significant reduction in total neurite length per neuron, as well as in the average length of axon-like structures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufficient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assembly in vitro. Collectively, our findings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.

  19. Psychogenic amnesia: syndromes, outcome, and patterns of retrograde amnesia.

    Science.gov (United States)

    Harrison, Neil A; Johnston, Kate; Corno, Federica; Casey, Sarah J; Friedner, Kimberley; Humphreys, Kate; Jaldow, Eli J; Pitkanen, Mervi; Kopelman, Michael D

    2017-09-01

    There are very few case series of patients with acute psychogenic memory loss (also known as dissociative/functional amnesia), and still fewer studies of outcome, or comparisons with neurological memory-disordered patients. Consequently, the literature on psychogenic amnesia is somewhat fragmented and offers little prognostic value for individual patients. In the present study, we reviewed the case records and neuropsychological findings in 53 psychogenic amnesia cases (ratio of 3:1, males:females), in comparison with 21 consecutively recruited neurological memory-disordered patients and 14 healthy control subjects. In particular, we examined the pattern of retrograde amnesia on an assessment of autobiographical memory (the Autobiographical Memory Interview). We found that our patients with psychogenic memory loss fell into four distinct groups, which we categorized as: (i) fugue state; (ii) fugue-to-focal retrograde amnesia; (iii) psychogenic focal retrograde amnesia following a minor neurological episode; and (iv) patients with gaps in their memories. While neurological cases were characterized by relevant neurological symptoms, a history of a past head injury was actually more common in our psychogenic cases (P = 0.012), perhaps reflecting a 'learning episode' predisposing to later psychological amnesia. As anticipated, loss of the sense of personal identity was confined to the psychogenic group. However, clinical depression, family/relationship problems, financial/employment problems, and failure to recognize the family were also statistically more common in that group. The pattern of autobiographical memory loss differed between the psychogenic groups: fugue cases showed a severe and uniform loss of memories for both facts and events across all time periods, whereas the two focal retrograde amnesia groups showed a 'reversed' temporal gradient with relative sparing of recent memories. After 3-6 months, the fugue patients had improved to normal scores for facts

  20. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  1. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  2. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  3. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  4. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Qun Zhang

    2015-12-01

    Full Text Available ABSTRACT Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.

  5. Simultaneous 3D tracking of passive tracers and microtubule bundles in an active gel

    Science.gov (United States)

    Fan, Yi; Breuer, Kenneth S.; Fluids Team

    Kinesin-driven microtubule bundles generate a spontaneous flow in unconfined geometries. They exhibit properties of active matter, including the emergence of collective motion, reduction of apparent viscosity and consumption of local energy. Here we present results from 3D tracking of passive tracers (using Airy rings and 3D scanning) synchronized with 3D measurement of the microtubule bundles motion. This technique is applied to measure viscosity variation and collective flow in a confined geometry with particular attention paid to the self-pumping system recently reported by Wu et al. (2016). Results show that the viscosity in an equilibrium microtubule network is around half that of the isotropic unbundled microtubule solution. Cross-correlations of the active microtubule network and passive tracers define a neighborhood around microtubule bundles in which passive tracers are effectively transported. MRSEC NSF.

  6. Linking cortical microtubule attachment and exocytosis [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ivar Noordstra

    2017-04-01

    Full Text Available Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.

  7. The dynamic interplay of plasma membrane domains and cortical microtubules in secondary cell wall patterning

    Directory of Open Access Journals (Sweden)

    Yoshihisa eOda

    2013-12-01

    Full Text Available Patterning of the cellulosic cell wall underlies the shape and function of plant cells. The cortical microtubule array plays a central role in the regulation of cell wall patterns. However, the regulatory mechanisms by which secondary cell wall patterns are established through cortical microtubules remain to be fully determined. Our recent study in xylem vessel cells revealed that a mutual inhibitory interaction between cortical microtubules and distinct plasma membrane domains leads to distinctive patterning in secondary cell walls. Our research revealed that the recycling of active and inactive ROP proteins by a specific GAP and GEF pair establishes distinct de novo plasma membrane domains. Active ROP recruits a plant-specific microtubule-associated protein, MIDD1, which mediates the mutual interaction between cortical microtubules and plasma membrane domains. In this mini review, we summarize recent research regarding secondary wall patterning, with a focus on the emerging interplay between plasma membrane domains and cortical microtubules through MIDD1 and ROP.

  8. Measuring and modeling polymer concentration profiles near spindle boundaries argues that spindle microtubules regulate their own nucleation

    Science.gov (United States)

    Kaye, Bryan; Stiehl, Olivia; Foster, Peter J.; Shelley, Michael J.; Needleman, Daniel J.; Fürthauer, Sebastian

    2018-05-01

    Spindles are self-organized microtubule-based structures that segregate chromosomes during cell division. The mass of the spindle is controlled by the balance between microtubule turnover and nucleation. The mechanisms that control the spatial regulation of microtubule nucleation remain poorly understood. While previous work found that microtubule nucleators bind to pre-existing microtubules in the spindle, it is still unclear whether this binding regulates the activity of those nucleators. Here we use a combination of experiments and mathematical modeling to investigate this issue. We measured the concentration of microtubules and soluble tubulin in and around the spindle. We found a very sharp decay in the concentration of microtubules at the spindle interface. This is inconsistent with a model in which the activity of nucleators is independent of their association with microtubules but consistent with a model in which microtubule nucleators are only active when bound to pre-existing microtubules. This argues that the activity of microtubule nucleators is greatly enhanced when bound to pre-existing microtubules. Thus, microtubule nucleators are both localized and activated by the microtubules they generate.

  9. Ase1p Organizes Antiparallel Microtubule Arrays during Interphase and Mitosis in Fission YeastV⃞

    OpenAIRE

    Loïodice, Isabelle; Staub, Jayme; Setty, Thanuja Gangi; Nguyen, Nam-Phuong T.; Paoletti, Anne; Tran, P. T.

    2005-01-01

    Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions in organizing the spindle midzone during mitosis. Using fluorescence live cell imaging, we show that ...

  10. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    International Nuclear Information System (INIS)

    Iimori, Makoto; Ozaki, Kanako; Chikashige, Yuji; Habu, Toshiyuki; Hiraoka, Yasushi; Maki, Takahisa; Hayashi, Ikuko; Obuse, Chikashi; Matsumoto, Tomohiro

    2012-01-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: ► We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. ► The mutation enhances the activity to assemble microtubules. ► Mal3 is phosphorylated in a microtubule-dependent manner. ► The phosphorylation negatively regulates the Mal3 activity.

  11. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Iimori, Makoto; Ozaki, Kanako [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Chikashige, Yuji [Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492 (Japan); Habu, Toshiyuki [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, 606-8501 (Japan); Hiraoka, Yasushi [Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492 (Japan); Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871 (Japan); Maki, Takahisa; Hayashi, Ikuko [Graduate School of Nanobioscience, Yokohama City University, Tsurumi, Yokohama, 230-0045 (Japan); Obuse, Chikashi [Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Matsumoto, Tomohiro, E-mail: tmatsumo@house.rbc.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, 606-8501 (Japan)

    2012-02-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.

  12. Polymerized and functionalized triglycerides

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  13. Polymerization by radiation. Application

    International Nuclear Information System (INIS)

    Romero, M.; Fernandez Miranda, J.

    1997-01-01

    Achieved results of the research work done in the field of radiation polymerization are summarized. Developing new chromatographic matrices, the radiation grafting of Glycidyl methacrylate on the surface of Low Density Polyethylene beads was studied. The dependence of both, the grafted degree and width of the grafted layer, with the radiation dose applied, is presented

  14. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  15. Combing and self-assembly phenomena in dry films of Taxol-stabilized microtubules

    Directory of Open Access Journals (Sweden)

    Rose Franck

    2007-01-01

    Full Text Available AbstractMicrotubules are filamentous proteins that act as a substrate for the translocation of motor proteins. As such, they may be envisioned as a scaffold for the self-assembly of functional materials and devices. Physisorption, self-assembly and combing are here investigated as a potential prelude to microtubule-templated self-assembly. Dense films of self-assembled microtubules were successfully produced, as well as patterns of both dendritic and non-dendritic bundles of microtubules. They are presented in the present paper and the mechanism of their formation is discussed.

  16. Polyamine sharing between tubulin dimers favours microtubule nucleation and elongation via facilitated diffusion.

    Directory of Open Access Journals (Sweden)

    Alain Mechulam

    2009-01-01

    Full Text Available We suggest for the first time that the action of multivalent cations on microtubule dynamics can result from facilitated diffusion of GTP-tubulin to the microtubule ends. Facilitated diffusion can promote microtubule assembly, because, upon encountering a growing nucleus or the microtubule wall, random GTP-tubulin sliding on their surfaces will increase the probability of association to the target sites (nucleation sites or MT ends. This is an original explanation for understanding the apparent discrepancy between the high rate of microtubule elongation and the low rate of tubulin association at the microtubule ends in the viscous cytoplasm. The mechanism of facilitated diffusion requires an attraction force between two tubulins, which can result from the sharing of multivalent counterions. Natural polyamines (putrescine, spermidine, and spermine are present in all living cells and are potent agents to trigger tubulin self-attraction. By using an analytical model, we analyze the implication of facilitated diffusion mediated by polyamines on nucleation and elongation of microtubules. In vitro experiments using pure tubulin indicate that the promotion of microtubule assembly by polyamines is typical of facilitated diffusion. The results presented here show that polyamines can be of particular importance for the regulation of the microtubule network in vivo and provide the basis for further investigations into the effects of facilitated diffusion on cytoskeleton dynamics.

  17. Msd1/SSX2IP-dependent microtubule anchorage ensures spindle orientation and primary cilia formation

    OpenAIRE

    Hori, Akiko; Ikebe, Chiho; Tada, Masazumi; Toda, Takashi

    2014-01-01

    Anchoring microtubules to the centrosome is critical for cell geometry and polarity, yet the molecular mechanism remains unknown. Here we show that the conserved human Msd1/SSX2IP is required for microtubule anchoring. hMsd1/SSX2IP is delivered to the centrosome in a centriolar satellite-dependent manner and binds the microtubule-nucleator ?-tubulin complex. hMsd1/SSX2IP depletion leads to disorganised interphase microtubules and misoriented mitotic spindles with reduced length and intensity....

  18. Retrograde contrast radiography of the distal portions of the intestinal tract in foals

    International Nuclear Information System (INIS)

    Fischer, A.T.; Yarbrough, T.Y.

    1995-01-01

    A technique for retrograde contrast radiography of the distal portions of the intestinal tract of foals was developed and then performed in 25 foals (1 to 30 days old) with colic. Retrograde contrast radiography was shown to be sensitive (100%) and specific (100%) for evaluating obstruction of the small colon or transverse colon. It was slightly less sensitive (86%) and specific (83%) for evaluation of the entire large colon, particularly in older foals. Retrograde contrast radiography provided increased diagnostic capability, compared with that for noncontrast radiography. Retrograde contrast radiography can provide valuable information when evaluating foals with colic and should be part of the diagnostic evaluation

  19. Cep169, a Novel Microtubule Plus-End-Tracking Centrosomal Protein, Binds to CDK5RAP2 and Regulates Microtubule Stability.

    Directory of Open Access Journals (Sweden)

    Yusuke Mori

    Full Text Available The centrosomal protein, CDK5RAP2, is a microcephaly protein that regulates centrosomal maturation by recruitment of a γ-tubulin ring complex (γ-TuRC onto centrosomes. In this report, we identified a novel human centrosomal protein, Cep169, as a binding partner of CDK5RAP2, a member of microtubule plus-end-tracking proteins (+TIPs. Cep169 interacts directly with CDK5RAP2 through CM1, an evolutionarily conserved domain, and colocalizes at the pericentriolar matrix (PCM around centrioles with CDK5RAP2. In addition, Cep169 interacts with EB1 through SxIP-motif responsible for EB1 binding, and colocalizes with CDK5RAP2 at the microtubule plus-end. EB1-binding-deficient Cep169 abolishes EB1 interaction and microtubule plus-end attachment, indicating Cep169 as a novel member of +TIPs. We further show that ectopic expression of either Cep169 or CDK5RAP2 induces microtubule bundling and acetylation in U2OS cells, and depletion of Cep169 induces microtubule depolymerization in HeLa cells, although Cep169 is not required for assembly of γ-tubulin onto centrosome by CDK5RAP2. These results show that Cep169 targets microtubule tips and regulates stability of microtubules with CDK5RAP2.

  20. Fluoroscopic guidance of retrograde exchange of ureteral stents in women.

    Science.gov (United States)

    Chang, Ruey-Sheng; Liang, Huei-Lung; Huang, Jer-Shyung; Wang, Po-Chin; Chen, Matt Chiung-Yu; Lai, Ping-Hong; Pan, Huay-Ben

    2008-06-01

    The purpose of this study was to review our experience with fluoroscopically guided retrograde exchange of ureteral stents in women. During a 48-month period, 28 women (age range, 38-76 years) were referred to our department for retrograde exchange of a ureteral stent. The causes of urinary obstruction were tumor compression in 26 patients and benign fibrotic stricture in two patients. A large-diameter snare catheter (25-mm single loop or 18- to 35-mm triple loop) or a foreign body retrieval forceps (opening width, 11.3 mm) was used to grasp the bladder end of the stent under fluoroscopic guidance. The technique entailed replacement of a patent or occluded ureteral stent with a 0.035- or 0.018-inch guidewire with or without the aid of advancement of an angiographic sheath. A total of 54 ureteral stents were exchanged with a snare catheter in 42 cases or a forceps in 12 cases. One stent misplaced too far up the ureter was replaced successfully through antegrade percutaneous nephrostomy. Ten occluded stents, including one single-J stent, were managed with a 0.018-inch guidewire in three cases, advancement of an angiographic sheath over the occluded stent into the ureter in five cases, and recannulation of the ureteral orifice with a guidewire in two cases. No complications of massive hemorrhage, ureter perforation, or infection were encountered. With proper selection of a snare or forceps catheter, retrograde exchange of ureteral stents in women can be easily performed under fluoroscopic guidance with high technical success and a low complication rate.

  1. A novel dual inhibitor of microtubule and Bruton's tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis.

    Science.gov (United States)

    Pandey, Manoj K; Gowda, Krishne; Sung, Shen-Shu; Abraham, Thomas; Budak-Alpdogan, Tulin; Talamo, Giampolo; Dovat, Sinisa; Amin, Shantu

    2017-09-01

    Bruton's tyrosine kinase (BTK) regulates many vital signaling pathways and plays a critical role in cell proliferation, survival, migration, and resistance. Previously, we reported that a small molecule, KS99, is an inhibitor of tubulin polymerization. In the present study, we explored whether KS99 is a dual inhibitor of BTK and tubulin polymerization. Although it is known that BTK is required for clonogenic growth and resistance, and microtubules are essential for cancer cell growth, dual targeting of these two components has not been explored previously. Through docking studies, we predicted that KS99 interacts directly with the catalytic domain of BTK and inhibits phosphorylation at the Y223 residue and kinase activities. Treatment of KS99 reduces the cell viability of multiple myeloma (MM) and CD138 + cells, with an IC 50 of between 0.5 and 1.0 μmol/L. We found that KS99 is able to induce apoptosis in MM cells in a caspase-dependent manner. KS99 suppressed the receptor activator of NF-κB ligand (RANKL)-induced differentiation of macrophages to osteoclasts in a dose-dependent manner and, importantly, inhibited the expression of cytokines associated with bone loss. Finally, we found that KS99 inhibits the in vivo tumor growth of MM cells through the inhibition of BTK and tubulin. Overall, our results show that dual inhibition of BTK and tubulin polymerization by KS99 is a viable option in MM treatment, particularly in the inhibition of refraction and relapse. Copyright © 2017 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  2. Pancreas imaging by computed tomography after endoscopic retrograde pancreatography

    International Nuclear Information System (INIS)

    Frick, M.P.; O'Leary, J.F.; Salomonowitz, E.; Stoltenberg, E.; Hutton, S.; Gedgaudas, E.

    1984-01-01

    A method using CT after endoscopic retrograde pancreatography (CT-ERP) is described for pancreatic imaging. When using an ERP technique in the canine model comparable to that used in humans, small amounts of contrast material in peripheral pancreatic radicles resulted in enhancement of the pancreas on CT scans. Nine patients were also studied by CT-ERP images. The main pancreatic duct was seen on delayed images. In cases of chronic pancreatitis (n = 2), pancreatic opacification was patchy and heterogeneous. There was no contrast-material enhancement in areas of pancreatic carcimomas (n = 2). CT-ERP showed the true extent of carcinoma better than ERP alone

  3. Modified Technique of Retrograde Intubation in TMJ Ankylosis

    Directory of Open Access Journals (Sweden)

    Shaila Kamat

    2008-01-01

    Full Text Available We are presenting a case report on the anaesthetic management of a case of ankylosis of temporomandibular joint for corrective surgery in a 7 year old child. Anticipated difficult airway in paediatric population has always been a perplexing problem, awake fibreoptic intubation almost impossible due to obvious difficulties with co-operation. Here we are describing a new approach to this problem, in which the patients were kept under GA with spontaneous ventilation while retrograde intubation was done quite comfortably by the conventional method.

  4. Combined antegrade and retrograde ureteral stenting: the rendezvous technique

    International Nuclear Information System (INIS)

    Macri, A.; Magno, C.; Certo, A.; Basile, A.; Scuderi, G.; Crescenti, F.; Famulari, C.

    2005-01-01

    Ureteral stenting is a routine procedure in endourology. To increase the success rate in difficult cases, it may be helpful to use the rendezvous technique, a combined antegrade and retrograde approach. We performed 16 urological rendezvous in 11 patients with ureteral strictures or urologic lesions. The combined approach was successful in all patients, without morbidity or mortality. In our experience the rendezvous technique increased the success rate of antegrade ureteral stenting from 78.6 to 88.09% (p>0.05). This procedure is a valid option in case of failure of conventional ureteral stenting

  5. Diagnostic and Prevention Approach in Post Endoscopic Retrograde Cholangiopancreatography Pancreatitis

    Directory of Open Access Journals (Sweden)

    Stella Ilone

    2016-12-01

    Full Text Available Obstructive jaundice (icterus was an emergency situation in gastroenterology. Endoscopic retrograde cholangiopancreatography (ERCP was a nonsurgical approach to release obstruction, mostly in common bile duct. Nowadays, this procedure was become frequently used in daily practice, but several complications also emerging. One of the severe complication was Post-ERCP Pancreatitis (PEP. Since it has a high mortality and morbidity, and also reduce patient quality of life, several approaches have been developed to reduce its incidence. In general, approaches consist of patient identification, efficient procedure, until pharmacological agent prevention. Although there were still contradiction among these, careful approach should be considered for each patients for a better outcomes.

  6. On the nature and shape of tubulin trails: implications on microtubule self-organization.

    Science.gov (United States)

    Glade, Nicolas

    2012-06-01

    Microtubules, major elements of the cell skeleton are, most of the time, well organized in vivo, but they can also show self-organizing behaviors in time and/or space in purified solutions in vitro. Theoretical studies and models based on the concepts of collective dynamics in complex systems, reaction-diffusion processes and emergent phenomena were proposed to explain some of these behaviors. In the particular case of microtubule spatial self-organization, it has been advanced that microtubules could behave like ants, self-organizing by 'talking to each other' by way of hypothetic (because never observed) concentrated chemical trails of tubulin that are expected to be released by their disassembling ends. Deterministic models based on this idea yielded indeed like-looking spatio-temporal self-organizing behaviors. Nevertheless the question remains of whether microscopic tubulin trails produced by individual or bundles of several microtubules are intense enough to allow microtubule self-organization at a macroscopic level. In the present work, by simulating the diffusion of tubulin in microtubule solutions at the microscopic scale, we measure the shape and intensity of tubulin trails and discuss about the assumption of microtubule self-organization due to the production of chemical trails by disassembling microtubules. We show that the tubulin trails produced by individual microtubules or small microtubule arrays are very weak and not elongated even at very high reactive rates. Although the variations of concentration due to such trails are not significant compared to natural fluctuations of the concentration of tubuline in the chemical environment, the study shows that heterogeneities of biochemical composition can form due to microtubule disassembly. They could become significant when produced by numerous microtubule ends located in the same place. Their possible formation could play a role in certain conditions of reaction. In particular, it gives a mesoscopic

  7. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.

    Science.gov (United States)

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2016-06-01

    Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Katanin localization requires triplet microtubules in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Jessica M Esparza

    Full Text Available Centrioles and basal bodies are essential for a variety of cellular processes that include the recruitment of proteins to these structures for both centrosomal and ciliary function. This recruitment is compromised when centriole/basal body assembly is defective. Mutations that cause basal body assembly defects confer supersensitivity to Taxol. These include bld2, bld10, bld12, uni3, vfl1, vfl2, and vfl3. Flagellar motility mutants do not confer sensitivity with the exception of mutations in the p60 (pf19 and p80 (pf15 subunits of the microtubule severing protein katanin. We have identified additional pf15 and bld2 (ε-tubulin alleles in screens for Taxol sensitivity. Null pf15 and bld2 alleles are viable and are not essential genes in Chlamydomonas. Analysis of double mutant strains with the pf15-3 and bld2-6 null alleles suggests that basal bodies in Chlamydomonas may recruit additional proteins beyond katanin that affect spindle microtubule stability. The bld2-5 allele is a hypomorphic allele and its phenotype is modulated by nutritional cues. Basal bodies in bld2-5 cells are missing proximal ends. The basal body mutants show aberrant localization of an epitope-tagged p80 subunit of katanin. Unlike IFT proteins, katanin p80 does not localize to the transition fibers of the basal bodies based on an analysis of the uni1 mutant as well as the lack of colocalization of katanin p80 with IFT74. We suggest that the triplet microtubules are likely to play a key role in katanin p80 recruitment to the basal body of Chlamydomonas rather than the transition fibers that are needed for IFT localization.

  9. Genetic analysis of a Drosophila microtubule-associated protein

    OpenAIRE

    1992-01-01

    The 205-kD microtubule-associated protein (205K MAP) is one of the principal MAPs in Drosophila. 205K MAP is similar to the HeLa 210K/MAP4 family of MAPs since it shares the following biochemical properties: it is present in several isoforms, has a molecular mass of approximately 200 kD, and is thermostable. Furthermore, immuno-crossreactivity has been observed between mouse MAP4, HeLa 210K, and Drosophila 205K MAP. Currently, there is little information concerning the biological function of ...

  10. Radiation polymerization of tetrafluoroethylene

    International Nuclear Information System (INIS)

    Kadoi, H.; Lugao, A.B.; Oikawa, H.

    1984-01-01

    Tetrafluoroethylene (TFE) monomer was obtained by means of the pyrolysis of chlorodifluoromethane (R-22). The experiments were carried out in quartz tube with temperature between 700 0 and 800 0 C. The principal reaction of the pyrolysis is considered to be: 2CHClF2 ----> C 2 F 4 +2HCl. However, by-products such as HF, C 3 F 6 , C 2 HClF 4 , C 4 F 8 etc are also produced in the pyrolysis process. The conversions of R-22 varied from 30 to 50%, depending upon the temperature, pressure and flow rate of R-22 in the furnace. Finally the TFE monomer of purity higher than 99.98% was obtained by fractional distillation in low temperatures ranging from -10 0 to -30 0 C. The bulk polymerization of this monomer induced by γ-rays from 3000Ci cobalt-60 source was studied at various temperatures (room temperature, 0 0 , -23 0 and -78 0 C). The monomers were introduced into stainless steel vessels of 15 and 60 ml volume under vacuum. The control of polymerization reaction was rather hard at temperatures higher than -23 0 C due to the difficulty of removing the heat of reaction. However, the polymerization at -78 0 C was very easy to control. The white polymer particles were obtained in agglomerated state. The IR spectra of the polymers were consistent with those of commercial products. The melting points of samples were between 326 0 and 331 0 C. (Author) [pt

  11. Discovery of New Retrograde Substructures: The Shards of ω Centauri?

    Science.gov (United States)

    Myeong, G. C.; Evans, N. W.; Belokurov, V.; Sanders, J. L.; Koposov, S. E.

    2018-06-01

    We use the SDSS-Gaia catalogue to search for substructure in the stellar halo. The sample comprises 62 133 halo stars with full phase space coordinates and extends out to heliocentric distances of ˜10 kpc. As actions are conserved under slow changes of the potential, they permit identification of groups of stars with a common accretion history. We devise a method to identify halo substructures based on their clustering in action space, using metallicity as a secondary check. This is validated against smooth models and numerical constructed stellar halos from the Aquarius simulations. We identify 21 substructures in the SDSS-Gaia catalogue, including 7 high significance, high energy and retrograde ones. We investigate whether the retrograde substructures may be material stripped off the atypical globular cluster ω Centauri. Using a simple model of the accretion of the progenitor of the ω Centauri, we tentatively argue for the possible association of up to 5 of our new substructures (labelled Rg1, Rg3, Rg4, Rg6 and Rg7) with this event. This sets a minimum mass of 5× 108M⊙ for the progenitor, so as to bring ω Centauri to its current location in action - energy space. Our proposal can be tested by high resolution spectroscopy of the candidates to look for the unusual abundance patterns possessed by ω Centauri stars.

  12. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy

    NARCIS (Netherlands)

    Flex, Elisabetta; Niceta, Marcello; Cecchetti, Serena; Thiffault, Isabelle; Au, Margaret G.; Capuano, Alessandro; Piermarini, Emanuela; Ivanova, Anna A.; Francis, Joshua W.; Chillemi, Giovanni; Chandramouli, Balasubramanian; Carpentieri, Giovanna; Haaxma, Charlotte A.; Ciolfi, Andrea; Pizzi, Simone; Douglas, Ganka V.; Levine, Kara; Sferra, Antonella; Dentici, Maria Lisa; Pfundt, Rolph R.; Le Pichon, Jean-Baptiste; Farrow, Emily; Baas, Frank; Piemonte, Fiorella; Dallapiccola, Bruno; Graham, John M.; Saunders, Carol J.; Bertini, Enrico; Kahn, Richard A.; Koolen, David A.; Tartaglia, Marco

    2016-01-01

    Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause

  13. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  14. A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis.

    Science.gov (United States)

    Li, Changjiang; Lu, Hanmei; Li, Wei; Yuan, Ming; Fu, Ying

    2017-07-01

    The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho-related GTPase from plants (ROPs) and a known microtubule-associated protein. In this study, we demonstrated that RIC1 expression decreased with long-term NaCl treatment, and ric1-1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively active ROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2-1 ric1-1 double mutant rescued the salt-sensitive phenotype of rop2-1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2-RIC1 pathway that fine-tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance. © 2017 John Wiley & Sons Ltd.

  15. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation

    Science.gov (United States)

    Foe, Victoria E.; von Dassow, George

    2008-01-01

    The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before cytokinesis, then elevated only at the equator. We implicated cell cycle biochemistry (not microtubules) in pRLC depression, and differential microtubule stability in localizing the subsequent myosin activation. With no microtubules, pRLC accumulation occurred globally instead of equatorially, and loss of just dynamic microtubules increased equatorial pRLC recruitment. Nocodazole treatment revealed a population of stable astral microtubules that formed during anaphase; among these, those aimed toward the equator grew longer, and their tips coincided with cortical pRLC accumulation. Shrinking the mitotic apparatus with colchicine revealed pRLC suppression near dynamic microtubule arrays. We conclude that opposite effects of stable versus dynamic microtubules focuses myosin activation to the cell equator during cytokinesis. PMID:18955555

  16. Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2000-01-01

    Microtubule organization plays an important role in plant morphogenesis; however, little is known about how microtubule arrays transit from one organized state to another. The use of a genetically incorporated fluorescent marker would allow long-term observation of microtubule behavior in living cells. Here, we have characterized a Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell line that had been stably transformed with a gfp-mbd construct previously demonstrated to label microtubules (J. Marc et al., 1998, Plant Cell 10: 1927-1939). Fluorescence levels were low, but interphase and mitotic microtubule arrays, as well as the transitions between these arrays, could be observed in individual gfp-mbd-transformed cells. By comparing several attributes of transformed and untransformed cells it was concluded that the transgenic cells are not adversely affected by low-level expression of the transgene and that these cells will serve as a useful and accurate model system for observing microtubule reorganization in vivo. Indeed, some initial observations were made that are consistent with the involvement of motor proteins in the transition between the spindle and phragmoplast arrays. Our observations also support the role of the perinuclear region in nucleating microtubules at the end of cell division with a progressive shift of these microtubules and/or nucleating activity to the cortex to form the interphase cortical array.

  17. Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability.

    Science.gov (United States)

    Deng, Xian; Fink, Gero; Bharat, Tanmay A M; He, Shaoda; Kureisaite-Ciziene, Danguole; Löwe, Jan

    2017-07-18

    Microtubules, the dynamic, yet stiff hollow tubes built from αβ-tubulin protein heterodimers, are thought to be present only in eukaryotic cells. Here, we report a 3.6-Å helical reconstruction electron cryomicroscopy structure of four-stranded mini microtubules formed by bacterial tubulin-like Prosthecobacter dejongeii BtubAB proteins. Despite their much smaller diameter, mini microtubules share many key structural features with eukaryotic microtubules, such as an M-loop, alternating subunits, and a seam that breaks overall helical symmetry. Using in vitro total internal reflection fluorescence microscopy, we show that bacterial mini microtubules treadmill and display dynamic instability, another hallmark of eukaryotic microtubules. The third protein in the btub gene cluster, BtubC, previously known as "bacterial kinesin light chain," binds along protofilaments every 8 nm, inhibits BtubAB mini microtubule catastrophe, and increases rescue. Our work reveals that some bacteria contain regulated and dynamic cytomotive microtubule systems that were once thought to be only useful in much larger and sophisticated eukaryotic cells.

  18. Synthesis and biological evaluation of structurally simplified noscapine analogues as microtubule binding agents

    Czech Academy of Sciences Publication Activity Database

    Ghaly, P.E.; Churchill, C.D.M.; Abou El-Magd, R.M.; Hájková, Zuzana; Dráber, Pavel; West, F.G.; Tuszyński, J.A.

    2017-01-01

    Roč. 95, č. 6 (2017), s. 649-655 ISSN 0008-4042 R&D Projects: GA ČR GA15-22194S Institutional support: RVO:68378050 Keywords : noscapine * microtubule * tubulin * cytotoxicity * microtubule dynamics * docking Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 1.080, year: 2016

  19. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells.

    Science.gov (United States)

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Sechi, Mario; Mukhtar, Hasan

    2015-10-28

    Microtubule targeting based therapies have revolutionized cancer treatment; however, resistance and side effects remain a major limitation. Therefore, novel strategies that can overcome these limitations are urgently needed. We made a novel discovery that fisetin, a hydroxyflavone, is a microtubule stabilizing agent. Fisetin binds to tubulin and stabilizes microtubules with binding characteristics far superior than paclitaxel. Surface plasmon resonance and computational docking studies suggested that fisetin binds to β-tubulin with superior affinity compared to paclitaxel. Fisetin treatment of human prostate cancer cells resulted in robust up-regulation of microtubule associated proteins (MAP)-2 and -4. In addition, fisetin treated cells were enriched in α-tubulin acetylation, an indication of stabilization of microtubules. Fisetin significantly inhibited PCa cell proliferation, migration, and invasion. Nudc, a protein associated with microtubule motor dynein/dynactin complex that regulates microtubule dynamics, was inhibited with fisetin treatment. Further, fisetin treatment of a P-glycoprotein overexpressing multidrug-resistant cancer cell line NCI/ADR-RES inhibited the viability and colony formation. Our results offer in vitro proof-of-concept for fisetin as a microtubule targeting agent. We suggest that fisetin could be developed as an adjuvant for treatment of prostate and other cancer types. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Feeding cells induced by phytoparasitic nematodes require γ-tubulin ring complex for microtubule reorganization.

    Directory of Open Access Journals (Sweden)

    Mohamed Youssef Banora

    2011-12-01

    Full Text Available Reorganization of the microtubule network is important for the fast isodiametric expansion of giant-feeding cells induced by root-knot nematodes. The efficiency of microtubule reorganization depends on the nucleation of new microtubules, their elongation rate and activity of microtubule severing factors. New microtubules in plants are nucleated by cytoplasmic or microtubule-bound γ-tubulin ring complexes. Here we investigate the requirement of γ-tubulin complexes for giant feeding cells development using the interaction between Arabidopsis and Meloidogyne spp. as a model system. Immunocytochemical analyses demonstrate that γ-tubulin localizes to both cortical cytoplasm and mitotic microtubule arrays of the giant cells where it can associate with microtubules. The transcripts of two Arabidopsis γ-tubulin (TUBG1 and TUBG2 and two γ-tubulin complex proteins genes (GCP3 and GCP4 are upregulated in galls. Electron microscopy demonstrates association of GCP3 and γ-tubulin as part of a complex in the cytoplasm of giant cells. Knockout of either or both γ-tubulin genes results in the gene dose-dependent alteration of the morphology of feeding site and failure of nematode life cycle completion. We conclude that the γ-tubulin complex is essential for the control of microtubular network remodelling in the course of initiation and development of giant-feeding cells, and for the successful reproduction of nematodes in their plant hosts.

  1. A structural model for microtubule minus-end recognition and protection by CAMSAP proteins

    NARCIS (Netherlands)

    Atherton, Joseph; Jiang, Kai; Stangier, Marcel M.; Luo, Yanzhang; Hua, Shasha; Houben, Klaartje; Van Hooff, Jolien J.E.; Joseph, Agnel Praveen; Scarabelli, Guido; Grant, Barry J.; Roberts, Anthony J.; Topf, Maya; Steinmetz, Michel O.; Baldus, Marc; Moores, Carolyn A.; Akhmanova, Anna

    2017-01-01

    CAMSAP and Patronin family members regulate microtubule minus-end stability and localization and thus organize noncentrosomal microtubule networks, which are essential for cell division, polarization and differentiation. Here, we found that the CAMSAP C-terminal CKK domain is widely present among

  2. An indigenous economic technique of positive pressure retrograde urethrography in female patients

    Directory of Open Access Journals (Sweden)

    H Singh

    2001-01-01

    Full Text Available Usually double balloon catheter is required forpositive pressure retrograde urethrography in females. We describe a technique of positive pressure retrograde urethrography using Foley catheter and rubber stopper, inexpensive and could be adopted in any hospital or radiological suite.

  3. Deterioration of cholestasis after endoscopic retrograde cholangiography in advanced primary sclerosing cholangitis

    NARCIS (Netherlands)

    Beuers, U.; Spengler, U.; Sackmann, M.; Paumgartner, G.; Sauerbruch, T.

    1992-01-01

    Complications of endoscopic retrograde cholangiography specific to patients with primary sclerosing cholangitis have not yet been reported. We observed transient rises of serum bilirubin after diagnostic endoscopic retrograde cholangiography in five of 15 patients and persistent rises in three of 15

  4. Expansion and Polarity Sorting in Microtubule-Dynein Bundles(WHAT IS LIFE? THE NEXT 100 YEARS OF YUKAWA'S DREAM)

    OpenAIRE

    Assaf, ZEMEL; Alex, MOGILNER; Department of Neurobiology, Physiology and Behavior, University of California; Department of Neurobiology, Physiology and Behavior, University of California

    2008-01-01

    Interactions of multiple molecular motors with dynamic polymers, such as actin and microtubules, form the basis for many processes in the cell cytoskeleton. One example is the active 'sorting' of microtubule bundles by dynein molecular motors into aster-like arrays of microtubules; in these bundles dynein motors cross-link and slide neighboring microtubules apart. A number of models have been suggested to quantify the active dynamics of cross-linked bundles of polar filaments. In the case of ...

  5. Kindlin1 regulates microtubule function to ensure normal mitosis.

    Science.gov (United States)

    Patel, Hitesh; Stavrou, Ifigeneia; Shrestha, Roshan L; Draviam, Viji; Frame, Margaret C; Brunton, Valerie G

    2016-08-01

    Loss of Kindlin 1 (Kin1) results in the skin blistering disorder Kindler Syndrome (KS), whose symptoms also include skin atrophy and reduced keratinocyte proliferation. Kin1 binds to integrins to modulate their activation and more recently it has been shown to regulate mitotic spindles and cell survival in a Plk1-dependent manner. Here we report that short-term Kin1 deletion in mouse skin results in impaired mitosis, which is associated with reduced acetylated tubulin (ac-tub) levels and cell proliferation. In cells, impaired mitosis and reduced ac-tub levels are also accompanied by reduced microtubule stability, all of which are rescued by HDAC6 inhibition. The ability of Kin1 to regulate HDAC6-dependent cellular ac-tub levels is dependent on its phosphorylation by Plk1. Taken together, these data define a novel role for Kin1 in microtubule acetylation and stability and offer a mechanistic insight into how certain KS phenotypes, such as skin atrophy and reduced cell proliferation, arise. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  6. Hepatocyte cotransport of taurocholate and bilirubin glucuronides: Role of microtubules

    International Nuclear Information System (INIS)

    Crawford, J.M.; Gollan, J.L.

    1988-01-01

    Modulation of bile pigment excretion by bile salts has been attributed to modification of canalicular membrane transport or a physical interaction in bile. Based on the observation that a microtubule-dependent pathway is involved in the hepatocellular transport of bile salts, the authors investigated the possibility that bilirubin glucuronides are associated with bile salts during intracellular transport. Experiments were conducted in intact rats (basal) or after overnight biliary diversion and intravenous reinfusion of taurocholate (depleted/reinfused). All rats were pretreated with intravenous low-dose colchicine or its inactive isomer lumicolchicine. Biliary excretion of radiolabeled bilirubin glucuronides derived from tracer [ 14 C]bilirubin-[ 3 H]bilirubin monoglucuronide (coinjected iv) was unchanged in basal rats but was consistently delayed in depleted/reinfused rats. This was accompanied by a significant shift toward bilirubin diglucuronide formation from both substrates. In basal Gunn rats, with deficient bilirubin glucuronidation, biliary excretion of intravenous [ 14 C]bilirubin monoglucuronide-[ 3 H]bilirubin diglucuronide was unaffected by colchicine but was retarded in depleted/reinfused Gunn rats. Colchicine had no effect on the rate of bilirubin glucuronidation in vitro in rat liver microsomes. They conclude that a portion of the bilirubin glucuronides generated endogenously in hepatocytes or taken up directly from plasma may be cotransported with bile salts to the bile canalicular membrane via a microtubule-dependent mechanism

  7. Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming.

    Science.gov (United States)

    Kimura, Kenji; Mamane, Alexandre; Sasaki, Tohru; Sato, Kohta; Takagi, Jun; Niwayama, Ritsuya; Hufnagel, Lars; Shimamoto, Yuta; Joanny, Jean-François; Uchida, Seiichi; Kimura, Akatsuki

    2017-04-01

    Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types. The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.

  8. Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization

    Science.gov (United States)

    Okada, Naoyuki; Sato, Masamitsu

    2015-01-01

    Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells. PMID:26308057

  9. Microtubules Nonlinear Models Dynamics Investigations through the exp(−Φ(ξ-Expansion Method Implementation

    Directory of Open Access Journals (Sweden)

    Nur Alam

    2016-02-01

    Full Text Available In this research article, we present exact solutions with parameters for two nonlinear model partial differential equations(PDEs describing microtubules, by implementing the exp(−Φ(ξ-Expansion Method. The considered models, describing highly nonlinear dynamics of microtubules, can be reduced to nonlinear ordinary differential equations. While the first PDE describes the longitudinal model of nonlinear dynamics of microtubules, the second one describes the nonlinear model of dynamics of radial dislocations in microtubules. The acquired solutions are then graphically presented, and their distinct properties are enumerated in respect to the corresponding dynamic behavior of the microtubules they model. Various patterns, including but not limited to regular, singular kink-like, as well as periodicity exhibiting ones, are detected. Being the method of choice herein, the exp(−Φ(ξ-Expansion Method not disappointing in the least, is found and declared highly efficient.

  10. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells

    Science.gov (United States)

    Wang, Jennifer T; Kong, Dong; Hoerner, Christian R; Loncarek, Jadranka

    2017-01-01

    Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next. PMID:28906251

  11. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells.

    Science.gov (United States)

    Wang, Jennifer T; Kong, Dong; Hoerner, Christian R; Loncarek, Jadranka; Stearns, Tim

    2017-09-14

    Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next.

  12. TONNEAU2/FASS Regulates the Geometry of Microtubule Nucleation and Cortical Array Organization in Interphase Arabidopsis Cells[C][W

    Science.gov (United States)

    Kirik, Angela; Ehrhardt, David W.; Kirik, Viktor

    2012-01-01

    Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B′′ subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation. PMID:22395485

  13. Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein.

    Science.gov (United States)

    Oda, Yoshihisa; Iida, Yuki; Kondo, Yuki; Fukuda, Hiroo

    2010-07-13

    Plant cells have evolved cortical microtubules, in a two-dimensional space beneath the plasma membrane, that regulate patterning of cellulose deposition. Although recent studies have revealed that several microtubule-associated proteins facilitate self-organization of transverse cortical microtubules, it is still unknown how diverse patterns of cortical microtubules are organized in different xylem cells, which are the major components of wood. Using our newly established in vitro xylem cell differentiation system, we found that a novel microtubule end-tracking protein, microtubule depletion domain 1 (MIDD1), was anchored to distinct plasma membrane domains and promoted local microtubule disassembly, resulting in pits on xylem cell walls. The introduction of RNA interference for MIDD1 resulted in the failure of local microtubule depletion and the formation of secondary walls without pits. Conversely, the overexpression of MIDD1 reduced microtubule density. MIDD1 has two coiled-coil domains for the binding to microtubules and for the anchorage to plasma membrane domains, respectively. Combination of the two coils caused end tracking of microtubules during shrinkage and suppressed their rescue events. Our results indicate that MIDD1 integrates spatial information in the plasma membrane with cortical microtubule dynamics for determining xylem cell wall pattern. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    2007-06-01

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  15. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  16. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  17. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  18. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  19. Endoscopic retrograde cholangiopancreatographic evaluation of patients with obstructive jaundice

    International Nuclear Information System (INIS)

    Khurram, M.; Durrani, A.A.; Butt, A.A.; Ashfaq, S.

    2003-01-01

    Objective: To evaluate the role of endoscopic retrograde cholangiopancreatography (ERCP) in patients with obstructive jaundice. Results: Of the 226 patients, 117 (51.8%) were males, and 109 (48.2%) females, their mean age being 51.8 plus minus 16.6 years. Common bile and pancreatic ducts were visualized in 81.8% and 68.1% patients respectively. Growth/masses and stones were commonest causes of obstructive jaundice. Choledocholithias was common in males, while biliary channel related growth/masses were common in females (p-value = 0.03). Common bile duct stone clearance rate was 88%, stenting was highly successful in patients with growth and strictures. ERCP related complications were noted in 11 (4.8%) patients. Conclusion: ERCP is an important diagnostic and therapeutic modality for evaluation of patients with obstructive jaundice. Growth/masses and stones are common causes of obstructive jaundice, which can be diagnosed and treated with ERCP. (author)

  20. Mitochondrial morphology transitions and functions: implications for retrograde signaling?

    Science.gov (United States)

    Picard, Martin; Shirihai, Orian S.; Gentil, Benoit J.

    2013-01-01

    In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment. PMID:23364527

  1. An interstellar origin for Jupiter's retrograde co-orbital asteroid

    Science.gov (United States)

    Namouni, F.; Morais, M. H. M.

    2018-06-01

    Asteroid (514107) 2015 BZ509 was discovered recently in Jupiter's co-orbital region with a retrograde motion around the Sun. The known chaotic dynamics of the outer Solar system have so far precluded the identification of its origin. Here, we perform a high-resolution statistical search for stable orbits and show that asteroid (514107) 2015 BZ509 has been in its current orbital state since the formation of the Solar system. This result indicates that (514107) 2015 BZ509 was captured from the interstellar medium 4.5 billion years in the past as planet formation models cannot produce such a primordial large-inclination orbit with the planets on nearly coplanar orbits interacting with a coplanar debris disc that must produce the low-inclination small-body reservoirs of the Solar system such as the asteroid and Kuiper belts. This result also implies that more extrasolar asteroids are currently present in the Solar system on nearly polar orbits.

  2. Diagnosis of choledocholithiasis and therapeutic results with endoscopic retrograde cholangiopancreatography

    International Nuclear Information System (INIS)

    Ramos Pachon, Carlos; Gonzalez Cansino, Juan; Fernandez Maderos, Irma

    2009-01-01

    A descriptive, prospective study was carried out on 451 patients that were attended for endoscopic retrograde cholangiopancreatography at CIMEQ's Hospital from January 2004-March 2006. The sample was constituted by 353 patients with choledocholithiasis suspicion. The information was search in the reports of ERCP and the variables were analyzed with the objective of evaluating the diagnostic possibilities and the therapy for choledocholithiasis by ERCP. Choledocholithiasis was detected in 1/4 of the patients with indication of ERCP, and was more frequent in patients of the female sex and in patients older than 40 years. The jaundice was the main clinical condition that motivated the ERCP in the patients with choledocholithiasis. The diagnostic effectiveness of the alkaline phosphatase and the ultrasound was not high. The treatment of the choledocholithiasis by means of ERCP showed good results and low morbidity

  3. Duodenal perforation: after endoscopic retrograde cholangiopancreatography: when to operate?

    International Nuclear Information System (INIS)

    Garcia Navarrete, Aldhem Francisco

    2014-01-01

    The mainly surgical management of duodenal perforation as the iatrogenicity of endoscopic retrograde cholangiopancreatography (ERCP) is defined and protocolized through the exhaustive review of the most conclusive literature available on the subject. Bibliography on the management of post-ERCP duodenal perforation is reviewed in scientific databases, textbooks, publications of medical journals, MD Consult and Medline. A total of 60 bibliographical citations were reviewed; succeeding in defining the protocol on the management of this type of complications, thanks to the appropriate selection of the most conclusive citations and the greatest consensus on the subject. A total of 60 bibliographical citations were reviewed; succeeding in defining the protocol on the management of this type of complications, based on the appropriate selection of the most conclusive citations and the greatest consensus on the subject [es

  4. Retrograde versus Prograde Models of Accreting Black Holes

    Directory of Open Access Journals (Sweden)

    David Garofalo

    2013-01-01

    Full Text Available There is a general consensus that magnetic fields, accretion disks, and rotating black holes are instrumental in the generation of the most powerful sources of energy in the known universe. Nonetheless, because magnetized accretion onto rotating black holes involves both the complications of nonlinear magnetohydrodynamics that currently cannot fully be treated numerically, and uncertainties about the origin of magnetic fields that at present are part of the input, the space of possible solutions remains less constrained. Consequently, the literature still bears witness to the proliferation of rather different black hole engine models. But the accumulated wealth of observational data is now sufficient to meaningfully distinguish between them. It is in this light that this critical paper compares the recent retrograde framework with standard “spin paradigm” prograde models.

  5. Retrograde nailing for distal femur fractures in the elderly

    Directory of Open Access Journals (Sweden)

    Giddie Jasdeep

    2015-01-01

    Full Text Available Introduction: We report the results of treating a series of 56 fractures in 54 elderly patients with a distal femur fracture with a retrograde femoral nail. Methods: Fifty-four of the nails were inserted percutaneously with a closed reduction. After surgery all patients were allowed to weight bear as tolerated. Four fractures were supported in a temporary external splint. Results: The mean age of patients was 80.6 years (range 51–103 years, 52/54 (96% were females. There were no cases of nail related complications and no re-operations were required. One patient was lost to follow up. The 30-day mortality was 5/54 (9.3% and the one year mortality was 17/54 (31.5%. Conclusions: Distal femoral nail fixation provides a good method of fixation allowing immediate mobilisation for this group of patients.

  6. Retrograde Neuroanatomical Tracing of Phrenic Motor Neurons in Mice.

    Science.gov (United States)

    Vandeweerd, Jean-Michel; Hontoir, Fanny; De Knoop, Alexis; De Swert, Kathleen; Nicaise, Charles

    2018-02-22

    Phrenic motor neurons are cervical motor neurons originating from C3 to C6 levels in most mammalian species. Axonal projections converge into phrenic nerves innervating the respiratory diaphragm. In spinal cord slices, phrenic motor neurons cannot be identified from other motor neurons on morphological or biochemical criteria. We provide the description of procedures for visualizing phrenic motor neuron cell bodies in mice, following intrapleural injections of cholera toxin subunit beta (CTB) conjugated to a fluorophore. This fluorescent neuroanatomical tracer has the ability to be caught up at the diaphragm neuromuscular junction, be carried retrogradely along the phrenic axons and reach the phrenic cell bodies. Two methodological approaches of intrapleural CTB delivery are compared: transdiaphragmatic versus transthoracic injections. Both approaches are successful and result in similar number of CTB-labeled phrenic motor neurons. In conclusion, these techniques can be applied to visualize or quantify the phrenic motor neurons in various experimental studies such as those focused on the diaphragm-phrenic circuitry.

  7. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  8. Drosophila homologue of Diaphanous 1 (DIAPH1) controls the metastatic potential of colon cancer cells by regulating microtubule-dependent adhesion.

    Science.gov (United States)

    Lin, Yuan-Na; Bhuwania, Ridhirama; Gromova, Kira; Failla, Antonio Virgilio; Lange, Tobias; Riecken, Kristoffer; Linder, Stefan; Kneussel, Matthias; Izbicki, Jakob R; Windhorst, Sabine

    2015-07-30

    Drosophila homologue of Diaphanous 1 (DIAPH1) regulates actin polymerization and microtubule (MT) stabilization upon stimulation with lysophosphatidic acid (LPA). Recently, we showed strongly reduced lung metastasis of DIAPH1-depleted colon cancer cells but we found accumulations of DIAPH1-depleted cells in bone marrow. Here, we analyzed possible organ- or tissue-specific metastasis of DIAPH1-depleted HCT-116 cells. Our data confirmed that depletion of DIAPH1 strongly inhibited lung metastasis and revealed that, in contrast to control cells, DIAPH1-depleted cells did not form metastases in further organs. Detailed mechanistic analysis on cells that were not stimulated with LPA to activate the cytoskeleton-modulating activity of DIAPH1, revealed that even under basal conditions DIAPH1 was essential for cellular adhesion to collagen. In non-stimulated cells DIAPH1 did not control actin dynamics but, interestingly, was essential for stabilization of microtubules (MTs). Additionally, DIAPH1 controlled directed vesicle trafficking and with this, local clustering of the adhesion protein integrin-β1 at the plasma membrane. Therefore, we conclude that under non-stimulating conditions DIAPH1 controls cellular adhesion by stabilizing MTs required for local clustering of integrin-β1 at the plasma membrane. Thus, blockade of DIAPH1-tubulin interaction may be a promising approach to inhibit one of the earliest steps in the metastatic cascade of colon cancer.

  9. Primary Retrograde Tibiotalocalcaneal Nailing For Fragility Ankle Fractures.

    Science.gov (United States)

    Taylor, Benjamin C; Hansen, Dane C; Harrison, Ryan; Lucas, Douglas E; Degenova, Daniel

    2016-01-01

    Ankle fragility fractures are difficult to treat due to poor bone quality and soft tissues as well as the near ubiquitous presence of comorbidities including diabetes mellitus and peripheral neuropathy. Conventional open reduction and internal fixation in this population has been shown to lead to a significant rate of complications. Given the high rate of complications with contemporary fixation methods, the present study aims to critically evaluate the use of acute hindfoot nailing as a percutaneous fixation technique for high-risk ankle fragility fractures. In this study, we retrospectively evaluated 31 patients treated with primary retrograde tibiotalocalcaneal nail without joint preparation for a mean of 13.6 months postoperatively from an urban Level I trauma center during the years 2006-2012. Overall, there were two superficial infections (6.5%) and three deep infections (9.7%) in the series. There were 28 (90.3%) patients that went on to radiographic union at a mean of 22.2 weeks with maintenance of foot and ankle alignment. There were three cases of asymptomatic screw breakage observed at a mean of 18.3 months postoperatively, which were all treated conservatively.. This study shows that retrograde hindfoot nailing is an acceptable treatment option for treatment of ankle fragility fractures. Hindfoot nailing allows early weightbearing, limited soft tissue injury, and a relatively low rate of complications, all of which are advantages to conventional open reduction internal fixation techniques. Given these findings, larger prospective randomized trials comparing this treatment with conventional open reduction internal fixation techniques are warranted.

  10. Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration.

    Science.gov (United States)

    Schofield, Alice V; Steel, Rohan; Bernard, Ora

    2012-12-21

    The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.

  11. Brassinosteroids regulate pavement cell growth by mediating BIN2-induced microtubule stabilization.

    Science.gov (United States)

    Liu, Xiaolei; Yang, Qin; Wang, Yuan; Wang, Linhai; Fu, Ying; Wang, Xuelu

    2018-02-23

    Brassinosteroids (BRs), a group of plant steroid hormones, play important roles in regulating plant development. The cytoskeleton also affects key developmental processes and a deficiency in BR biosynthesis or signaling leads to abnormal phenotypes similar to those of microtubule-defective mutants. However, how BRs regulate microtubule and cell morphology remains unknown. Here, using liquid chromatography-tandem mass spectrometry, we identified tubulin proteins that interact with Arabidopsis BRASSINOSTEROID INSENSITIVE2 (BIN2), a negative regulator of BR responses in plants. In vitro and in vivo pull-down assays confirmed that BIN2 interacts with tubulin proteins. High-speed co-sedimentation assays demonstrated that BIN2 also binds microtubules. The Arabidopsis genome also encodes two BIN2 homologs, BIN2-LIKE 1 (BIL1) and BIL2, which function redundantly with BIN2. In the bin2-3 bil1 bil2 triple mutant, cortical microtubules were more sensitive to treatment with the microtubule-disrupting drug oryzalin than in wild-type, whereas in the BIN2 gain-of-function mutant bin2-1, cortical microtubules were insensitive to oryzalin treatment. These results provide important insight into how BR regulates plant pavement cell and leaf growth by mediating the stabilization of microtubules by BIN2.

  12. Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory.

    Science.gov (United States)

    Beni, Yaghoub Tadi; Zeverdejani, M Karimi; Mehralian, Fahimeh

    2017-10-01

    Protein microtubules (MTs) are one of the important intercellular components and have a vital role in the stability and strength of the cells. Due to applied external loads, protein microtubules may be involved buckling phenomenon. Due to impact of protein microtubules in cell reactions, it is important to determine their critical buckling load. Considering nature of protein microtubules, various parameters are effective on microtubules buckling. The small size of microtubules and also lack of uniformity of MTs properties in different directions caused the necessity of accuracy in the analysis of these bio-structure. In fact, microtubules must be considered as a size dependent cylinder, which behave as an orthotropic material. Hence, in the present work using first-order shear deformation model (FSDT), the buckling equations of anisotropic MTs are derived based on new modified couple stress theory (NMCST). After solving the stability equations, the influences of various parameters are measured on the MTs critical buckling load. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Model for the orientational ordering of the plant microtubule cortical array

    Science.gov (United States)

    Hawkins, Rhoda J.; Tindemans, Simon H.; Mulder, Bela M.

    2010-07-01

    The plant microtubule cortical array is a striking feature of all growing plant cells. It consists of a more or less homogeneously distributed array of highly aligned microtubules connected to the inner side of the plasma membrane and oriented transversely to the cell growth axis. Here, we formulate a continuum model to describe the origin of orientational order in such confined arrays of dynamical microtubules. The model is based on recent experimental observations that show that a growing cortical microtubule can interact through angle dependent collisions with pre-existing microtubules that can lead either to co-alignment of the growth, retraction through catastrophe induction or crossing over the encountered microtubule. We identify a single control parameter, which is fully determined by the nucleation rate and intrinsic dynamics of individual microtubules. We solve the model analytically in the stationary isotropic phase, discuss the limits of stability of this isotropic phase, and explicitly solve for the ordered stationary states in a simplified version of the model.

  14. The Yeast Retrograde Response as a Model of Intracellular Signaling of Mitochondrial Dysfunction

    Directory of Open Access Journals (Sweden)

    S. Michal eJazwinski

    2012-05-01

    Full Text Available Mitochondrial dysfunction activates intracellular signaling pathways that impact yeast longevity, and the best known of these pathways is the retrograde response. More recently, similar responses have been discerned in other systems, from invertebrates to human cells. However, the identity of the signal transducers is either unknown or apparently diverse, contrasting with the well-established signaling module of the yeast retrograde response. On the other hand, it has become equally clear that several other pathways and processes interact with the retrograde response, embedding it in a network responsive to a variety of cellular states. An examination of this network supports the notion that the master regulator NFkB aggregated a variety of mitochondria-related cellular responses at some point in evolution and has become the retrograde transcription factor. This has significant consequences for how we view some of the deficits associated with aging, such as inflammation. The support for NFkB as the retrograde response transcription factor is not only based on functional analyses. It is bolstered by the fact that NFkB can regulate Myc-Max, which is activated in human cells with dysfunctional mitochondria and impacts cellular metabolism. Myc-Max is homologous to the yeast retrograde response transcription factor Rtg1-Rtg3. Further research will be needed to disentangle the pro-aging from the anti-aging effects of NFkB. Interestingly, this is also a challenge for the complete understanding of the yeast retrograde response.

  15. Investigation of the Usability of Retrograded Flour in Meatball Production as A Structure Enhancer.

    Science.gov (United States)

    Dinçer, Elif Aykin; Büyükkurt, Özlem Kiliç; Candal, Cihadiye; Bilgiç, Büşra Fatma; Erbaş, Mustafa

    2018-02-01

    This study aimed to research the possibilities of using retrograded flour produced in the laboratory environment in meatballs and the characteristics of these meatballs. In the use of retrograded flour to produce meatballs, it was ensured that the meatball properties, with respect to chemical, physical and sensorial aspects, were comparable to those of meatballs produced with bread (traditional) and rusk flour (commercial). The cooking loss of meatballs produced with using retrograded flour was similar to that of commercial meatballs. Doses of retrograded flour from 5% to 20% led to a significant decrease in cooking loss, from 21.95% to 6.19%, and in the diameter of meatballs, from 18.60% to 12.74%, but to an increase in the thickness of meatballs, from 28.82% to 41.39% compared to the control. The increase of a * and b * values was shown in that the meatballs were browned on cooking with increasing retrograded flour doses because of non-enzymatic reactions. The springiness of the traditional meatballs was significantly higher than that of the other meatballs. This might have been due to the bread crumbs having a naturally springy structure. Moreover, the addition of retrograded flour in the meatballs significantly ( p meatballs with respect to textural properties. Accordingly, it is considered that the use of 10% retrograded flour is ideal to improve the sensorial values of meatballs and the properties of their structure.

  16. Dynamic Portrait of the Retrograde 1:1 Mean Motion Resonance

    Science.gov (United States)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-06-01

    Asteroids in mean motion resonances with giant planets are common in the solar system, but it was not until recently that several asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. A retrograde co-orbital asteroid of Jupiter, 2015 BZ509 is confirmed to be in a long-term stable retrograde 1:1 mean motion resonance with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this paper, we investigate the phase-space structure of the retrograde 1:1 resonance in detail within the framework of the circular restricted three-body problem. We construct a simple integrable approximation for the planar retrograde resonance using canonical contact transformation and numerically employ the averaging procedure in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We thoroughly analyze all possible librations in the co-orbital region and uncover a new apocentric libration for the retrograde 1:1 resonance inside the planet’s orbit. We also observe the significant jumps in orbital elements for outer and inner apocentric librations, which are caused by close encounters with the perturber.

  17. Importance of variants in cerebrovascular anatomy for potential retrograde embolization in cryptogenic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States); Semaan, Edouard; Carr, James; Collins, Jeremy [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Stromberg, LeRoy [Northwestern University, Department of Neurology, Feinberg School of Medicine, Chicago, IL (United States); Edward Hospital, Department of Radiology, Naperville, IL (United States); Prabhakaran, Shyam [Northwestern University, Department of Neurology, Feinberg School of Medicine, Chicago, IL (United States)

    2017-10-15

    To test the hypothesis that variants in cerebrovascular anatomy will affect the number of patients demonstrating a plausible retrograde embolization mechanism from plaques in the descending aorta (DAo). Thirty-five patients (aged 63 ± 17 years) with cryptogenic stroke underwent 4D flow MRI for the assessment of aortic 3D blood flow and MR angiography for the evaluation of circle of Willis, posterior circulation, and aortic arch architecture. In patients with proven DAo plaque, retrograde embolization was considered a potential mechanism if retrograde flow extended from the DAo to a supra-aortic vessel supplying the cerebral infarct territory. Retrograde embolization with matching cerebral infarct territory was detected in six (17%) patients. Circle of Willis and aortic arch variant anatomy was found in 60% of patients, leading to reclassification of retrograde embolization risk as present in three (9%) additional patients, for a total 26% of cryptogenic stroke patients. 4D flow MRI demonstrated 26% concordance with infarct location on imaging with retrograde diastolic flow into the feeding vessels of the affected cerebral area, identifying a potential etiology for cryptogenic stroke. Our findings further demonstrate the importance of cerebrovascular anatomy when determining concordance of retrograde flow pathways with vascular stroke territory from DAo plaques. (orig.)

  18. Importance of variants in cerebrovascular anatomy for potential retrograde embolization in cryptogenic stroke

    International Nuclear Information System (INIS)

    Markl, Michael; Semaan, Edouard; Carr, James; Collins, Jeremy; Stromberg, LeRoy; Prabhakaran, Shyam

    2017-01-01

    To test the hypothesis that variants in cerebrovascular anatomy will affect the number of patients demonstrating a plausible retrograde embolization mechanism from plaques in the descending aorta (DAo). Thirty-five patients (aged 63 ± 17 years) with cryptogenic stroke underwent 4D flow MRI for the assessment of aortic 3D blood flow and MR angiography for the evaluation of circle of Willis, posterior circulation, and aortic arch architecture. In patients with proven DAo plaque, retrograde embolization was considered a potential mechanism if retrograde flow extended from the DAo to a supra-aortic vessel supplying the cerebral infarct territory. Retrograde embolization with matching cerebral infarct territory was detected in six (17%) patients. Circle of Willis and aortic arch variant anatomy was found in 60% of patients, leading to reclassification of retrograde embolization risk as present in three (9%) additional patients, for a total 26% of cryptogenic stroke patients. 4D flow MRI demonstrated 26% concordance with infarct location on imaging with retrograde diastolic flow into the feeding vessels of the affected cerebral area, identifying a potential etiology for cryptogenic stroke. Our findings further demonstrate the importance of cerebrovascular anatomy when determining concordance of retrograde flow pathways with vascular stroke territory from DAo plaques. (orig.)

  19. HSPB1 facilitates the formation of non-centrosomal microtubules.

    Directory of Open Access Journals (Sweden)

    Leonardo Almeida-Souza

    Full Text Available The remodeling capacity of microtubules (MT is essential for their proper function. In mammals, MTs are predominantly formed at the centrosome, but can also originate from non-centrosomal sites, a process that is still poorly understood. We here show that the small heat shock protein HSPB1 plays a role in the control of non-centrosomal MT formation. The HSPB1 expression level regulates the balance between centrosomal and non-centrosomal MTs. The HSPB1 protein can be detected specifically at sites of de novo forming non-centrosomal MTs, while it is absent from the centrosomes. In addition, we show that HSPB1 binds preferentially to the lattice of newly formed MTs in vitro, suggesting that its function occurs by stabilizing MT seeds. Our findings open new avenues for the understanding of the role of HSPB1 in the development, maintenance and protection of cells with specialized non-centrosomal MT arrays.

  20. STIM1-Directed Reorganization of Microtubules in Activated Mast Cells

    Czech Academy of Sciences Publication Activity Database

    Hájková, Zuzana; Bugajev, Viktor; Dráberová, Eduarda; Vinopal, Stanislav; Dráberová, Lubica; Janáček, Jiří; Dráber, Petr; Dráber, Pavel

    2011-01-01

    Roč. 186, č. 2 (2011), s. 913-923 ISSN 0022-1767 R&D Projects: GA ČR(CZ) GD204/09/H084; GA ČR GA204/09/1777; GA ČR GA301/09/1826; GA ČR GAP302/10/1759; GA MŠk LC545; GA MŠk(CZ) LC06063; GA AV ČR KAN200520701 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50110509 Keywords : STIM1 * bone marrow-derived mast cells * microtubules Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.788, year: 2011

  1. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module.

    Science.gov (United States)

    Roostalu, Johanna; Cade, Nicholas I; Surrey, Thomas

    2015-11-01

    Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilizes growing microtubule ends and stimulates microtubule nucleation by stabilizing early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homologue) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking the interaction of TPX2 with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells.

  2. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows.

    Science.gov (United States)

    Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M

    2016-05-10

    The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions

  3. An ELMO2-RhoG-ILK network modulates microtubule dynamics.

    Science.gov (United States)

    Jackson, Bradley C; Ivanova, Iordanka A; Dagnino, Lina

    2015-07-15

    ELMO2 belongs to a family of scaffold proteins involved in phagocytosis and cell motility. ELMO2 can simultaneously bind integrin-linked kinase (ILK) and RhoG, forming tripartite ERI complexes. These complexes are involved in promoting β1 integrin-dependent directional migration in undifferentiated epidermal keratinocytes. ELMO2 and ILK have also separately been implicated in microtubule regulation at integrin-containing focal adhesions. During differentiation, epidermal keratinocytes cease to express integrins, but ERI complexes persist. Here we show an integrin-independent role of ERI complexes in modulation of microtubule dynamics in differentiated keratinocytes. Depletion of ERI complexes by inactivating the Ilk gene in these cells reduces microtubule growth and increases the frequency of catastrophe. Reciprocally, exogenous expression of ELMO2 or RhoG stabilizes microtubules, but only if ILK is also present. Mechanistically, activation of Rac1 downstream from ERI complexes mediates their effects on microtubule stability. In this pathway, Rac1 serves as a hub to modulate microtubule dynamics through two different routes: 1) phosphorylation and inactivation of the microtubule-destabilizing protein stathmin and 2) phosphorylation and inactivation of GSK-3β, which leads to the activation of CRMP2, promoting microtubule growth. At the cellular level, the absence of ERI species impairs Ca(2+)-mediated formation of adherens junctions, critical to maintaining mechanical integrity in the epidermis. Our findings support a key role for ERI species in integrin-independent stabilization of the microtubule network in differentiated keratinocytes. © 2015 Jackson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Diagnosis of Acute Appendicitis by Endoscopic Retrograde Appendicitis Therapy (ERAT): Combination of Colonoscopy and Endoscopic Retrograde Appendicography.

    Science.gov (United States)

    Li, Yingchao; Mi, Chen; Li, Weizhi; She, Junjun

    2016-11-01

    Acute appendicitis is the most common abdominal emergency, but the diagnosis of appendicitis remains a challenge. Endoscopic retrograde appendicitis therapy (ERAT) is a new and minimally invasive procedure for the diagnosis and treatment of acute appendicitis. To investigate the diagnostic value of ERAT for acute appendicitis by the combination of colonoscopy and endoscopic retrograde appendicography (ERA). Twenty-one patients with the diagnosis of suspected uncomplicated acute appendicitis who underwent ERAT between November 2014 and January 2015 were included in this study. The main outcomes, imaging findings of acute appendicitis including colonoscopic direct-vision imaging and fluoroscopic ERA imaging, were retrospectively reviewed. Secondary outcomes included mean operative time, mean hospital stay, rate of complication, rate of appendectomy during follow-up period, and other clinical data. The diagnosis of acute appendicitis was established in 20 patients by positive ERA (5 patients) or colonoscopy (1 patient) alone or both (14 patients). The main colonoscopic imaging findings included mucosal inflammation (15/20, 75 %), appendicoliths (14/20, 70 %), and maturation (5/20, 25 %). The key points of ERA for diagnosing acute appendicitis included radiographic changes of appendix (17/20, 85 %), intraluminal appendicoliths (14/20, 70 %), and perforation (1/20, 5 %). Mean operative time of ERAT was 49.7 min, and mean hospital stay was 3.3 days. No patient converted to emergency appendectomy. Perforation occurred in one patient after appendicoliths removal was not severe and did not require invasive procedures. During at least 1-year follow-up period, only one patient underwent laparoscopic appendectomy. ERAT is a valuable procedure of choice providing a precise yield of diagnostic information for patients with suspected acute appendicitis by combination of colonoscopy and ERA.

  5. Right retrograde brachial cerebral angiography with simultaneous compression of the left carotid artery

    International Nuclear Information System (INIS)

    Ericson, K.; Mosskin, M.

    1981-01-01

    Right retrograde brachial angiography with simultaneous compression of the left common carotid artery was performed in 12 patients, invariably resulting in filling of the right vertebral and the basilar artery. In all but one patient, the right carotid artery and its branches were also filled. Retrograde filling of the left internal carotid artery occurred in 8 patients. Furthermore, retrograde filling of the intracranial part of the left vertebral artery was obtained in 5 of 12 patients. A complete four-vessel cranial angiography was thus obtained in one third of the patients. The method may be considered as a safe and valuable adjunct to other angiographic techniques. (Auth.)

  6. Independent predictors of retrograde failure in CTO-PCI after successful collateral channel crossing.

    Science.gov (United States)

    Suzuki, Yoriyasu; Muto, Makoto; Yamane, Masahisa; Muramatsu, Toshiya; Okamura, Atsunori; Igarashi, Yasumi; Fujita, Tsutomu; Nakamura, Shigeru; Oida, Akitsugu; Tsuchikane, Etsuo

    2017-07-01

    To evaluate factors for predicting retrograde CTO-PCI failure after successful collateral channel crossing. Successful guidewire/catheter collateral channel crossing is important for the retrograde approach in percutaneous coronary intervention (PCI) for chronic total occlusion (CTO). A total of 5984 CTO-PCI procedures performed in 45 centers in Japan from 2009 to 2012 were studied. The retrograde approach was used in 1656 CTO-PCIs (27.7%). We investigated these retrograde procedures to evaluate factors for predicting retrograde CTO-PCI failure even after successful collateral channel crossing. Successful guidewire/catheter collateral crossing was achieved in 77.1% (n = 1,276) of 1656 retrograde CTO-PCI procedures. Retrograde procedural success after successful collateral crossing was achieved in 89.4% (n = 1,141). Univariate analysis showed that the predictors for retrograde CTO-PCI failure were in-stent occlusion (OR = 1.9829, 95%CI = 1.1783 - 3.3370 P = 0.0088), calcified lesions (OR = 1.9233, 95%CI = 1.2463 - 2.9679, P = 0.0027), and lesion tortuosity (OR = 1.5244, 95%CI = 1.0618 - 2.1883, P = 0.0216). On multivariate analysis, lesion calcification was an independent predictor of retrograde CTO-PCI failure after successful collateral channel crossing (OR = 1.3472, 95%CI = 1.0614 - 1.7169, P = 0.0141). The success rate of retrograde CTO-PCI following successful guidewire/catheter collateral channel crossing was high in this registry. Lesion calcification was an independent predictor of retrograde CTO-PCI failure after successful collateral channel crossing. Devices and techniques to overcome complex CTO lesion morphology, such as lesion calcification, are required to further improve the retrograde CTO-PCI success rate. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Collaborative Research: Polymeric Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Temple Univ., Philadelphia, PA (United States). College of Engineering

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamental understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.

  8. Polymerization with freezing

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    Irreversible aggregation processes involving reactive and frozen clusters are investigated using the rate equation approach. In aggregation events, two clusters join irreversibly to form a larger cluster; additionally, reactive clusters may spontaneously freeze. Frozen clusters do not participate in merger events. Generally, freezing controls the nature of the aggregation process, as demonstrated by the final distribution of frozen clusters. The cluster mass distribution has a power-law tail, F k ∼k -γ , when the freezing process is sufficiently slow. Different exponents, γ = 1 and 3, are found for the constant and the product aggregation rates, respectively. For the latter case, the standard polymerization model, either no gels, or a single gel, or even multiple gels, may be produced

  9. XMAP215 is a microtubule nucleation factor that functions synergistically with the γ-tubulin ring complex.

    Science.gov (United States)

    Thawani, Akanksha; Kadzik, Rachel S; Petry, Sabine

    2018-05-01

    How microtubules (MTs) are generated in the cell is a major question in understanding how the cytoskeleton is assembled. For several decades, γ-tubulin has been accepted as the universal MT nucleator of the cell. Although there is evidence that γ-tubulin complexes are not the sole MT nucleators, identification of other nucleation factors has proven difficult. Here, we report that the well-characterized MT polymerase XMAP215 (chTOG/Msps/Stu2p/Alp14/Dis1 homologue) is essential for MT nucleation in Xenopus egg extracts. The concentration of XMAP215 determines the extent of MT nucleation. Even though XMAP215 and the γ-tubulin ring complex (γ-TuRC) possess minimal nucleation activity individually, together, these factors synergistically stimulate MT nucleation in vitro. The amino-terminal TOG domains 1-5 of XMAP215 bind to αβ-tubulin and promote MT polymerization, whereas the conserved carboxy terminus is required for efficient MT nucleation and directly binds to γ-tubulin. In summary, XMAP215 and γ-TuRC together function as the principal nucleation module that generates MTs in cells.

  10. The clinical and radiological observation of endoscopic retrograde cholangiopancreatography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choong Shik; Park, Byoung Lan; Chun, Hyun Woo; Kim, Byung Geun; Park, Hong Bae [Kwangju Christian Hospital, Kwangju (Korea, Republic of)

    1981-12-15

    Endoscopic retrograde cholangiopancreatography (ERCP) is a new diagnostic method for pancreatic and biliary disease which has been made possible by the development of fiberoptic duodenoscopy. It has been thought that ERCP will serve an important role in the early detection of pancreatic cancer, but in order to detect minor lesions of the pancreas and improve the diagnostic accuracy of resectable pancreatic cancer, Endoscopic Retrograde Parenchymography of the pancreas (ERPP) was developed recently. The authors analyzed 117 cases of ERCP performed at the Kwangju Christian Hospital between January and December 1980, and compared them with the final diagnosis. The results were as follows: 1. One of 117 cases, successful visualization of the duct of concern was achieved in 105 cases. Of these, 25 cases were ERPP. 2. The ratio of males to females was 1.44 : 1. Most patients were in the 4th to 6th decade. 3. The commonest clinical manifestations were upper abdominal pain (77 cases), jaundice (23 cases), indigestion, vomiting and abdominal mass, in order of frequency. 4. Out of 46 cases of suspected pancreatic diseases, the pancreatic duct was visualized in 36 cases, and 24 cases revealed pathognomonic findings. These were diagnosed as 16 cases of pancreatic cancer, 4 cases of chronic pancreatitis, 2 cases of pancreatic pseudocyst and 2 cases of periampullary cancer with pancreas invasion. In pancreatic cancer findings were; encasement, local dilatation, delayed excretion, poor filling, obstruction of pancreatic duct, accompanying C.B.D. obstruction or stenosis and so called double duct sign. The chronic pancreatitis findings included; ductal dilatation (with or without) obstruction, tortuosity with dilated saccular lateral branching, stone formation and the parenchymal filling defect. 5. Out of 71 cases of suspected biliary tract disease, the biliary tract was visualized in 57 cases, and in 31 cases abnormalities were suggested; such as 20 cases of biliary stone, 1 case

  11. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  12. The “SAFARI” Technique Using Retrograde Access Via Peroneal Artery Access

    International Nuclear Information System (INIS)

    Zhuang, Kun Da; Tan, Seck Guan; Tay, Kiang Hiong

    2012-01-01

    The “SAFARI” technique or subintimal arterial flossing with antegrade–retrograde intervention is a method for recanalisation of chronic total occlusions (CTOs) when subintimal angioplasty fails. Retrograde access is usually obtained via the popliteal, distal anterior tibial artery (ATA)/dorsalis pedis (DP), or distal posterior tibial artery (PTA). Distal access via the peroneal artery has not been described and has a risk of continued bleeding, leading to compartment syndrome due to its deep location. We describe our experience in two patients with retrograde access via the peroneal artery and the use of balloon-assisted hemostasis for these retrograde punctures. This approach may potentially give more options for endovascular interventions in lower limb CTOs.

  13. The 'SAFARI' Technique Using Retrograde Access Via Peroneal Artery Access

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Kun Da, E-mail: zkunda@gmail.com [Singapore General Hospital, Interventional Radiology Centre (Singapore); Tan, Seck Guan [Singapore General Hospital, Department of General Surgery (Singapore); Tay, Kiang Hiong [Singapore General Hospital, Interventional Radiology Centre (Singapore)

    2012-08-15

    The 'SAFARI' technique or subintimal arterial flossing with antegrade-retrograde intervention is a method for recanalisation of chronic total occlusions (CTOs) when subintimal angioplasty fails. Retrograde access is usually obtained via the popliteal, distal anterior tibial artery (ATA)/dorsalis pedis (DP), or distal posterior tibial artery (PTA). Distal access via the peroneal artery has not been described and has a risk of continued bleeding, leading to compartment syndrome due to its deep location. We describe our experience in two patients with retrograde access via the peroneal artery and the use of balloon-assisted hemostasis for these retrograde punctures. This approach may potentially give more options for endovascular interventions in lower limb CTOs.

  14. Vesicourethral fistula after retrograde primary endoscopic realignment in posterior urethral injury.

    Science.gov (United States)

    Arora, Rajat; John, Nirmal Thampi; Kumar, Santosh

    2015-01-01

    A 22-year-old male patient presented with iatrogenic vesicourethral fistula after immediate retrograde endoscopic realignment of urethra after a posterior urethral injury associated with pelvic fracture. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Reconsidering the nature and mode of action of metabolite retrograde signals from the chloroplast

    Directory of Open Access Journals (Sweden)

    Gonzalo Martín Estavillo

    2013-01-01

    Full Text Available Plant organelles produce retrograde signals to alter nuclear gene expression in order to coordinate their biogenesis, maintain homeostasis or optimize their performance under adverse conditions. Many signals of different chemical nature have been described in the past decades, including chlorophyll intermediates, reactive oxygen species and adenosine derivatives. While the effects of retrograde signalling on gene expression are well understood, the initiation and transport of the signals and their mode of action have either not been resolved, or are a matter of speculation. Moreover, retrograde signalling should be consider as part of a broader cellular network, instead of as separate pathways, required to adjust to changing physiologically relevant conditions. Here we summarize current plastid retrograde signalling models in plants, with a focus on new signalling pathways, SAL1-PAP, MEcPP and β- cyclocitral, and outline missing links or future areas of research that we believe need to be addressed to have a better understanding of plant intracellular signalling networks.

  16. Retrograde Tibiopedal Access as a Bail-Out Procedure for Endovascular Intervention Complications

    Directory of Open Access Journals (Sweden)

    Ahmed Amro

    2016-01-01

    Full Text Available Introduction. Retrograde pedal access has been well described in the literature as a secondary approach for limb salvage in critical limb ischemia (CLI patients. In this manuscript we are presenting a case where retrograde tibiopedal access has been used as a bail-out procedure for the management of superficial femoral artery (SFA intervention complications. Procedure/Technique. After development of a perforation while trying to cross the totally occluded mid SFA using the conventional CFA access, we were able to cross the mid SFA lesion after accessing the posterior tibial artery in a retrograde fashion and delivered a self-expanding stent which created a flap that sealed the perforation without the need for covered stent. Conclusion. Retrograde tibiopedal access is a safe and effective approach for delivery of stents from the distal approach and so can be used as a bail-out technique for SFA perforation.

  17. Retrograde Transvenous Ethanol Embolization of High-flow Peripheral Arteriovenous Malformations

    International Nuclear Information System (INIS)

    Linden, Edwin van der; Baalen, Jary M. van; Pattynama, Peter M. T.

    2012-01-01

    Purpose: To report the clinical efficiency and complications in patients treated with retrograde transvenous ethanol embolization of high-flow peripheral arteriovenous malformations (AVMs). Retrograde transvenous ethanol embolization of high-flow AVMs is a technique that can be used to treat AVMs with a dominant outflow vein whenever conventional interventional procedures have proved insufficient. Methods: This is a retrospective study of the clinical effectiveness and complications of retrograde embolization in five patients who had previously undergone multiple arterial embolization procedures without clinical success. Results: Clinical outcomes were good in all patients but were achieved at the cost of serious, although transient, complications in three patients. Conclusion: Retrograde transvenous ethanol embolization is a highly effective therapy for high-flow AVMs. However, because of the high complication rate, it should be reserved as a last resort, to be used after conventional treatment options have failed.

  18. Retrograde cystogram for precise localization and irradiation of the urinary bladder of mice

    International Nuclear Information System (INIS)

    Meier, D.

    1988-01-01

    Using a Bangerter cannula contrast medium (Telebrix 30 Meglumine) was instilled for retrograde urography in adult, female mice. Afterwards localization, size and shape of the urinary bladder were examined by computer tomography. (author)

  19. Retrograde cystography US. A new ultrasound technique for the diagnosis and staging of vesicoureteral reflux

    International Nuclear Information System (INIS)

    Farina, R.; Arena, C.; Pennisi, F.; Di Benedetto, V.; Politi, G.; Di Benedetto, A.

    1999-01-01

    The authors investigated the accuracy of a new US (ultrasound) investigation technique, called retrograde cystography US, in the early diagnosis and staging of vesicoureteral reflux. 5 patients, aged 3 months to 10 years, suffering from hydronephrosis and/or pyelonephritis, were examined using retrograde cystography US followed by conventional retrograde cystography. Retrograde cystography US consists in the transcatheter introduction of a contrast agent into the bladder and a subsequent color Doppler examination to show or exclude the presence of reflux. Superpubic scanning of bladder, ureters and pyelocaliceal cavity was performed after echo contrast agent introduction to assess the reflux grade. US was performed with an Esaote AU 590 asynchronous scanner with a 3.5 MHz convex probe. The total agreement of conventional and US findings seems to confirm the importance of the US method for the diagnosis and staging of vesicoureteral reflux [it

  20. Factors that affect the variability in heart rate during endoscopic retrograde cholangiopancreatography

    DEFF Research Database (Denmark)

    Christensen, Merete; Reinert, Rebekka; Rasmussen, Verner

    2002-01-01

    OBJECTIVE: To find out if drugs, position, and endoscopic manipulation during endoscopic retrograde cholangiopancreatography (ERCP) influence the changes in the variability of heart rate. DESIGN: Single-blind randomised trial. SUBJECTS: 10 volunteers given butyscopolamine, glucagon, or saline...

  1. Retrograd intrarenal stenkirurgi--en minimalinvasiv metode til behandling af nyresten

    DEFF Research Database (Denmark)

    Jung, Helene U; Osther, Palle J S

    2009-01-01

    Retrograde intrarenal stone surgery (RIRS) is a safe and effective minimally invasive method for the treatment of minor (ESWL-resistant kidney stones where resistance is due e.g. to anatomical abnormalities or stones...

  2. Reducing retrogradation and lipid oxidation of normal and glutinous rice flours by adding mango peel powder.

    Science.gov (United States)

    Siriamornpun, Sirithon; Tangkhawanit, Ekkarat; Kaewseejan, Niwat

    2016-06-15

    Green and ripe mango peel powders (MPP) were added to normal rice flour (NRF) and glutinous rice flour (GRF) at three levels (400, 800 and 1200 ppm) and their effects on physicochemical properties and lipid oxidation inhibition were investigated. Overall, MPP increased the breakdown viscosity and reduced the final viscosity in rice flours when compared to the control. Decreasing in retrogradation was observed in both NRF and GRF with MPP added of all levels. MPP addition also significantly inhibited the lipid oxidation of all flours during storage (30 days). Retrogradation values were strongly negatively correlated with total phenolic and flavonoid contents, but not with fiber content. The hydrogen bonds and hydrophilic interactions between phenolic compounds with amylopectin molecule may be involved the decrease of starch retrogradation, especially GRF. We suggest that the addition of MPP not only reduced the retrogradation but also inhibited the lipid oxidation of rice flour. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Protein friction limits diffusive and directed movements of kinesin motors on microtubules.

    Science.gov (United States)

    Bormuth, Volker; Varga, Vladimir; Howard, Jonathon; Schäffer, Erik

    2009-08-14

    Friction limits the operation of macroscopic engines and is critical to the performance of micromechanical devices. We report measurements of friction in a biological nanomachine. Using optical tweezers, we characterized the frictional drag force of individual kinesin-8 motor proteins interacting with their microtubule tracks. At low speeds and with no energy source, the frictional drag was related to the diffusion coefficient by the Einstein relation. At higher speeds, the frictional drag force increased nonlinearly, consistent with the motor jumping 8 nanometers between adjacent tubulin dimers along the microtubule, and was asymmetric, reflecting the structural polarity of the microtubule. We argue that these frictional forces arise from breaking bonds between the motor domains and the microtubule, and they limit the speed and efficiency of kinesin.

  4. Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines.

    Science.gov (United States)

    Friel, Claire T; Howard, Jonathon

    2012-12-01

    The cycle of ATP turnover is integral to the action of motor proteins. Here we discuss how variation in this cycle leads to variation of function observed amongst members of the kinesin superfamily of microtubule associated motor proteins. Variation in the ATP turnover cycle among superfamily members can tune the characteristic kinesin motor to one of the range of microtubule-based functions performed by kinesins. The speed at which ATP is hydrolysed affects the speed of translocation. The ratio of rate constants of ATP turnover in relation to association and dissociation from the microtubule influence the processivity of translocation. Variation in the rate-limiting step of the cycle can reverse the way in which the motor domain interacts with the microtubule producing non-motile kinesins. Because the ATP turnover cycle is not fully understood for the majority of kinesins, much work remains to show how the kinesin engine functions in such a wide variety of molecular machines.

  5. Katanin: A Sword Cutting Microtubules for Cellular, Developmental, and Physiological Purposes

    Directory of Open Access Journals (Sweden)

    Ivan Luptovčiak

    2017-11-01

    Full Text Available KATANIN is a well-studied microtubule severing protein affecting microtubule organization and dynamic properties in higher plants. By regulating mitotic and cytokinetic and cortical microtubule arrays it is involved in the progression of cell division and cell division plane orientation. KATANIN is also involved in cell elongation and morphogenesis during plant growth. In this way KATANIN plays critical roles in diverse plant developmental processes including the development of pollen, embryo, seed, meristem, root, hypocotyl, cotyledon, leaf, shoot, and silique. KATANIN-dependent microtubule regulation seems to be under the control of plant hormones. This minireview provides an overview on available KATANIN mutants and discusses advances in our understanding of KATANIN biological roles in plants.

  6. A tripartite mode of action approach for investigating the impact of aneugens on tubulin polymerization.

    Science.gov (United States)

    Stock, Valerie; Sutter, Andreas; Raschke, Marian; Queisser, Nina

    2018-04-01

    Chemical-induced disruption of the cellular microtubule network is one key mechanism of aneugenicity. Since recent data indicate that genotoxic effects of aneugens show nonlinear dose-response relationships, margins of safety can be derived with the ultimate goal to perform a risk assessment for the support of drug development. Furthermore, microtubule-interacting compounds are widely used for cancer treatment. While there is a need to support the risk assessment of tubulin-interacting chemicals using reliable mechanistic assays, no standard assays exist to date in regulatory genotoxicity testing for the distinction of aneugenic mechanisms. Recently reported methods exclusively rely on either biochemical, morphological, or cytometric endpoints. Since data requirements for the diverse fields of application of those assays differ strongly, the use of multiple assays for a correct classification of aneugens is ideal. We here report a tripartite mode of action approach comprising a cell-free biochemical polymerization assay and the cell-based methods cellular imaging and flow cytometry. The biochemical assay measures tubulin polymerization over time whereas the two cell-based assays quantify tubulin polymer mass. We herein show that the flow cytometric method yielded IC 50 values for tubulin destabilizers and EC 50 values for tubulin stabilizers as well as cell cycle information. In contrast, cellular imaging complemented these findings with characteristic morphological patterns. Biochemical analysis yielded kinetic information on tubulin polymerization. This multiplex approach is able to create holistic effect profiles which can be individually customized to the research question with regard to quality, quantity, usability, and economy. Environ. Mol. Mutagen. 59:188-201, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Interventricular Septal Hematoma and Coronary-Ventricular Fistula: A Complication of Retrograde Chronic Total Occlusion Intervention

    OpenAIRE

    Abdul-rahman R. Abdel-karim; Minh Vo; Michael L. Main; J. Aaron Grantham

    2016-01-01

    Interventricular septal hematoma is a rare complication of retrograde chronic total occlusion (CTO) percutaneous coronary interventions (PCI) with a typically benign course. Here we report two cases of interventricular septal hematoma and coronary-cameral fistula development after right coronary artery (RCA) CTO-PCI using a retrograde approach. Both were complicated by development of ST-segment elevation and chest pain. One case was managed actively and the other conservatively, both with a f...

  8. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-10-20

    Here we show the retrograde solubility of various hybrid perovskites through the correct choice of solvent(s) and report their solubility curves. Retrograde solubility enables to develop inverse temperature crystallization of FAPbX3 (FA = HC(NH2)2+, X = Br−/I−). FAPbI3 crystals exhibit a 1.4 eV bandgap – considerably narrower than their polycrystalline counterparts.

  9. Brachial Artery Flow-mediated Dilation Following Exercise with Augmented Oscillatory and Retrograde Shear Rate

    Directory of Open Access Journals (Sweden)

    Johnson Blair D

    2012-08-01

    Full Text Available Abstract Background Acute doses of elevated retrograde shear rate (SR appear to be detrimental to endothelial function in resting humans. However, retrograde shear increases during moderate intensity exercise which also enhances post-exercise endothelial function. Since SR patterns differ with the modality of exercise, it is important to determine if augmented retrograde SR during exercise influences post-exercise endothelial function. This study tested the hypothesis that (1 increased doses of retrograde SR in the brachial artery during lower body supine cycle ergometer exercise would attenuate post-exercise flow-mediated dilation (FMD in a dose-dependent manner, and (2 antioxidant vitamin C supplementation would prevent the attenuated post-exercise FMD response. Methods Twelve men participated in four randomized exercise sessions (90 W for 20 minutes on separate days. During three of the sessions, one arm was subjected to increased oscillatory and retrograde SR using three different forearm cuff pressures (20, 40, 60 mmHg (contralateral arm served as the control and subjects ingested placebo capsules prior to exercise. A fourth session with 60 mmHg cuff pressure was performed with 1 g of vitamin C ingested prior to the session. Results Post-exercise FMD following the placebo conditions were lower in the cuffed arm versus the control arm (arm main effect: P P > 0.05. Following vitamin C treatment, post-exercise FMD in the cuffed and control arm increased from baseline (P P > 0.05. Conclusions These results indicate that augmented oscillatory and retrograde SR in non-working limbs during lower body exercise attenuates post-exercise FMD without an evident dose–response in the range of cuff pressures evaluated. Vitamin C supplementation prevented the attenuation of FMD following exercise with augmented oscillatory and retrograde SR suggesting that oxidative stress contributes to the adverse effects of oscillatory and

  10. Dating of retrograde metamorphism in Western Carpathians by K-Ar analysis of muscovites

    International Nuclear Information System (INIS)

    Cambel, B.; Korikovskij, S.P.; Krasivskaya, I.S.; Arakelyants, M.M.

    1986-01-01

    Using the K-Ar isotope dating method of muscovites it was found that many retrogradely metamorphosed rocks are the results of Variscan retrograde metamorphism and are not pre-Cambrian or Alpine metamorphites (diaphthorites). Samples for dating were taken from the Western Carpathian crystalline formation. The content of radiogenic argon was determined by mass spectrometry using the method of isotope dilution. (M.D.)

  11. Successful Balloon-Occluded Retrograde Transvenous Obliteration for Gastric Varix Mainly Draining into the Pericardiophrenic Vein

    International Nuclear Information System (INIS)

    Kageyama, Ken; Nishida, N.; Matsui, H.; Yamamoto, A.; Nakamura, K.; Miki, Y.

    2012-01-01

    Two cases of gastric varices were treated by balloon-occluded retrograde transvenous obliteration via the pericardiophrenic vein at our hospital, and both were successful. One case developed left hydrothorax. Gastric varices did not bled and esophageal varices were not aggravated in both cases for 24–30 months thereafter. These outcomes indicate the feasibility of balloon-occluded retrograde transvenous obliteration via the pericardiophrenic vein.

  12. Comparison of regional pancreatic tissue fluid pressure and endoscopic retrograde pancreatographic morphology in chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation. The predrain......The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation...

  13. Transient global amnesia and functional retrograde amnesia: contrasting examples of episodic memory loss.

    OpenAIRE

    Kritchevsky, M; Zouzounis, J; Squire, L R

    1997-01-01

    We studied 11 patients with transient global amnesia (TGA) and ten patients with functional retrograde amnesia (FRA). Patients with TGA had a uniform clinical picture: a severe, relatively isolated amnesic syndrome that started suddenly, persisted for 4-12 h, and then gradually improved to essentially normal over the next 12-24 h. During the episode, the patients had severe anterograde amnesia for verbal and non-verbal material and retrograde amnesia that typically covered at least two decade...

  14. Profound loss of general knowledge in retrograde amnesia: evidence from an amnesic artist

    OpenAIRE

    Gregory, Emma; McCloskey, Michael; Landau, Barbara

    2014-01-01

    Studies of retrograde amnesia have focused on autobiographical memory, with fewer studies examining how non-autobiographical memory is affected. Those that have done so have focused primarily on memory for famous people and public events—relatively limited aspects of memory that are tied to learning during specific times of life and do not deeply tap into the rich and extensive knowledge structures that are developed over a lifetime. To assess whether retrograde amnesia can also cause impai...

  15. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth

    KAUST Repository

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Maculan, Giacomo; Bakr, Osman

    2015-01-01

    Here we show the retrograde solubility of various hybrid perovskites through the correct choice of solvent(s) and report their solubility curves. Retrograde solubility enables to develop inverse temperature crystallization of FAPbX3 (FA = HC(NH2)2+, X = Br−/I−). FAPbI3 crystals exhibit a 1.4 eV bandgap – considerably narrower than their polycrystalline counterparts.

  16. Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules.

    Directory of Open Access Journals (Sweden)

    Rimi Chakrabarti

    Full Text Available Curcumin has been widely investigated for its myriad cellular effects resulting in reduced proliferation of various eukaryotic cells including cancer cells and the human malaria parasite Plasmodium falciparum. Studies with human cancer cell lines HT-29, Caco-2, and MCF-7 suggest that curcumin can bind to tubulin and induce alterations in microtubule structure. Based on this finding, we investigated whether curcumin has any effect on P. falciparum microtubules, considering that mammalian and parasite tubulin are 83% identical. IC50 of curcumin was found to be 5 µM as compared to 20 µM reported before. Immunofluorescence images of parasites treated with 5 or 20 µM curcumin showed a concentration-dependent effect on parasite microtubules resulting in diffuse staining contrasting with the discrete hemispindles and subpellicular microtubules observed in untreated parasites. The effect on P. falciparum microtubules was evident only in the second cycle for both concentrations tested. This diffuse pattern of tubulin fluorescence in curcumin treated parasites was similar to the effect of a microtubule destabilizing drug vinblastine on P. falciparum. Molecular docking predicted the binding site of curcumin at the interface of alpha and beta tubulin, similar to another destabilizing drug colchicine. Data from predicted drug binding is supported by results from drug combination assays showing antagonistic interactions between curcumin and colchicine, sharing a similar binding site, and additive/synergistic interactions of curcumin with paclitaxel and vinblastine, having different binding sites. This evidence suggests that cellular effects of curcumin are at least, in part, due to its perturbing effect on P. falciparum microtubules. The action of curcumin, both direct and indirect, on P. falciparum microtubules is discussed.

  17. GDP-to-GTP exchange on the microtubule end can contribute to the frequency of catastrophe.

    Science.gov (United States)

    Piedra, Felipe-Andrés; Kim, Tae; Garza, Emily S; Geyer, Elisabeth A; Burns, Alexander; Ye, Xuecheng; Rice, Luke M

    2016-11-07

    Microtubules are dynamic polymers of αβ-tubulin that have essential roles in chromosome segregation and organization of the cytoplasm. Catastrophe-the switch from growing to shrinking-occurs when a microtubule loses its stabilizing GTP cap. Recent evidence indicates that the nucleotide on the microtubule end controls how tightly an incoming subunit will be bound (trans-acting GTP), but most current models do not incorporate this information. We implemented trans-acting GTP into a computational model for microtubule dynamics. In simulations, growing microtubules often exposed terminal GDP-bound subunits without undergoing catastrophe. Transient GDP exposure on the growing plus end slowed elongation by reducing the number of favorable binding sites on the microtubule end. Slower elongation led to erosion of the GTP cap and an increase in the frequency of catastrophe. Allowing GDP-to-GTP exchange on terminal subunits in simulations mitigated these effects. Using mutant αβ-tubulin or modified GTP, we showed experimentally that a more readily exchangeable nucleotide led to less frequent catastrophe. Current models for microtubule dynamics do not account for GDP-to-GTP exchange on the growing microtubule end, so our findings provide a new way of thinking about the molecular events that initiate catastrophe. © 2016 Piedra et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase.

    Science.gov (United States)

    Moss, David K; Wilde, Andrew; Lane, Jon D

    2009-03-01

    During apoptosis, the interphase microtubule network is dismantled then later replaced by a novel, non-centrosomal microtubule array. These microtubules assist in the peripheral redistribution of nuclear fragments in the apoptotic cell; however, the regulation of apoptotic microtubule assembly is not understood. Here, we demonstrate that microtubule assembly depends upon the release of nuclear RanGTP into the apoptotic cytoplasm because this process is blocked in apoptotic cells overexpressing dominant-negative GDP-locked Ran (T24N). Actin-myosin-II contractility provides the impetus for Ran release and, consequently, microtubule assembly is blocked in blebbistatin- and Y27632-treated apoptotic cells. Importantly, the spindle-assembly factor TPX2 (targeting protein for Xklp2), colocalises with apoptotic microtubules, and siRNA silencing of TPX2, but not of the microtubule motors Mklp1 and Kid, abrogates apoptotic microtubule assembly. These data provide a molecular explanation for the assembly of the apoptotic microtubule network, and suggest important similarities with the process of RanGTP- and TPX2-mediated mitotic spindle formation.

  19. Failed Ventriculoperitoneal Shunt: Is Retrograde Ventriculosinus Shunt a Reliable Option?

    Science.gov (United States)

    Oliveira, Matheus Fernandes de; Teixeira, Manoel Jacobsen; Reis, Rodolfo Casimiro; Petitto, Carlo Emanuel; Gomes Pinto, Fernando Campos

    2016-08-01

    Currently, the treatment of hydrocephalus is mainly carried out through a ventriculoperitoneal shunt (VPS) insertion. However, in some cases, there may be surgical revisions and requirement of an alternative distal site for shunting. There are several described distal sites, and secondary options after VPS include ventriculopleural and ventriculoatrial shunt, which have technical difficulties and harmful complications. In this preliminary report we describe our initial experience with retrograde ventriculosinus shunt (RVSS) after failed VPS. In 3 consecutive cases we applied RVSS to treat hydrocephalus in shunt-dependent patients who had previously undergone VPS revision and in which peritoneal space was full of adhesions and fibrosis. RVSS was performed as described by Shafei et al., with some modifications to each case. All 3 patients kept the same clinical profile after RVSS, with no perioperative or postoperative complications. However, revision surgery was performed in the first operative day in 1 out of 3 patients, in which the catheter was not positioned in the superior sagittal sinus. We propose that in cases where VPS is not feasible, RVSS may be a safe and applicable second option. Nevertheless, the long-term follow-up of patients and further learning curve must bring stronger evidence. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Characterization of the human GARP (Golgi associated retrograde protein) complex

    International Nuclear Information System (INIS)

    Liewen, Heike; Meinhold-Heerlein, Ivo; Oliveira, Vasco; Schwarzenbacher, Robert; Luo Guorong; Wadle, Andreas; Jung, Martin; Pfreundschuh, Michael; Stenner-Liewen, Frank

    2005-01-01

    The Golgi associated retrograde protein complex (GARP) or Vps fifty-three (VFT) complex is part of cellular inter-compartmental transport systems. Here we report the identification of the VFT tethering factor complex and its interactions in mammalian cells. Subcellular fractionation shows that human Vps proteins are found in the smooth membrane/Golgi fraction but not in the cytosol. Immunostaining of human Vps proteins displays a vesicular distribution most concentrated at the perinuclear envelope. Co-staining experiments with endosomal markers imply an endosomal origin of these vesicles. Significant accumulation of VFT complex positive endosomes is found in the vicinity of the Trans Golgi Network area. This is in accordance with a putative role in Golgi associated transport processes. In Saccharomyces cerevisiae, GARP is the main effector of the small GTPase Ypt6p and interacts with the SNARE Tlg1p to facilitate membrane fusion. Accordingly, the human homologue of Ypt6p, Rab6, specifically binds hVps52. In human cells, the 'orphan' SNARE Syntaxin 10 is the genuine binding partner of GARP mediated by hVps52. This reveals a previously unknown function of human Syntaxin 10 in membrane docking and fusion events at the Golgi. Taken together, GARP shows significant conservation between various species but diversification and specialization result in important differences in human cells

  1. Advances in endoscopic retrograde cholangiopancreatography for the treatment of cholangiocarcinoma.

    Science.gov (United States)

    Uppal, Dushant S; Wang, Andrew Y

    2015-06-25

    Cholangiocarcinoma (CCA) is a malignancy of the bile ducts that carries high morbidity and mortality. Patients with CCA typically present with obstructive jaundice, and associated complications of CCA include cholangitis and biliary sepsis. Endoscopic retrograde cholangiopancreatography (ERCP) is a valuable treatment modality for patients with CCA, as it enables internal drainage of blocked bile ducts and hepatic segments by using plastic or metal stents. While there remains debate as to if bilateral (or multi-segmental) hepatic drainage is required and/or superior to unilateral drainage, the underlying tenant of draining any persistently opacified bile ducts is paramount to good ERCP practice and good clinical outcomes. Endoscopic therapy for malignant biliary strictures from CCA has advanced to include ablative therapies via ERCP-directed photodynamic therapy (PDT) or radiofrequency ablation (RFA). While ERCP techniques cannot cure CCA, advancements in the field of ERCP have enabled us to improve upon the quality of life of patients with inoperable and incurable disease. ERCP-directed PDT has been used in lieu of brachytherapy to provide neoadjuvant local tumor control in patients with CCA who are awaiting liver transplantation. Lastly, mounting evidence suggests that palliative ERCP-directed PDT, and probably ERCP-directed RFA as well, offer a survival advantage to patients with this difficult-to-treat malignancy.

  2. Occupational exposure to staff during endoscopic retrograde cholangiopancreatography in Sudan

    International Nuclear Information System (INIS)

    Sulieman, A.; Elzaki, M.; Khalil, M.

    2011-01-01

    Endoscopic retrograde cholangiopancreatography (ERCP) procedure is an invasive technique that requires fluoroscopic and radiographic exposure. The purpose of this study was to determine the occupational dose of ionising radiation at three gastroenterology departments (Fedial, Soba and Ibn seena hospitals) in Khartoum (Sudan). The radiation dose was measured during 55 therapeutic ERCP procedures. Thermoluminescence dosemeters were used. The mean radiation dose for the first operator was 0.27 mGy for the eye lens, 0.21 for the thyroid, 0.32 for the chest, 0.17 for the hand and 0.22 for the leg. The mean radiation dose for the second operator was 0.21 mGy for the hand and 0.20 mGy for the chest, while the mean radiation dose for the nurse was 0.44 mGy for the hand and 0.19 for the chest. The radiation dose received by the staff in these hospitals was found to be higher than most of the values in the literature. The radiation absorbed dose received by the different organs is relatively low. Additional studies need to be conducted for radiation dose optimisation. (authors)

  3. Scaling proprioceptor gene transcription by retrograde NT3 signaling.

    Directory of Open Access Journals (Sweden)

    Jun Lee

    Full Text Available Cell-type specific intrinsic programs instruct neuronal subpopulations before target-derived factors influence later neuronal maturation. Retrograde neurotrophin signaling controls neuronal survival and maturation of dorsal root ganglion (DRG sensory neurons, but how these potent signaling pathways intersect with transcriptional programs established at earlier developmental stages remains poorly understood. Here we determine the consequences of genetic alternation of NT3 signaling on genome-wide transcription programs in proprioceptors, an important sensory neuron subpopulation involved in motor reflex behavior. We find that the expression of many proprioceptor-enriched genes is dramatically altered by genetic NT3 elimination, independent of survival-related activities. Combinatorial analysis of gene expression profiles with proprioceptors isolated from mice expressing surplus muscular NT3 identifies an anticorrelated gene set with transcriptional levels scaled in opposite directions. Voluntary running experiments in adult mice further demonstrate the maintenance of transcriptional adjustability of genes expressed by DRG neurons, pointing to life-long gene expression plasticity in sensory neurons.

  4. Fluorescence Imaging of Fast Retrograde Axonal Transport in Living Animals

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    2009-11-01

    Full Text Available Our purpose was to enable an in vivo imaging technology that can assess the anatomy and function of peripheral nerve tissue (neurography. To do this, we designed and tested a fluorescently labeled molecular probe based on the nontoxic C fragment of tetanus toxin (TTc. TTc was purified, labeled, and subjected to immunoassays and cell uptake assays. The compound was then injected into C57BL/6 mice (N = 60 for in vivo imaging and histologic studies. Image analysis and immunohistochemistry were performed. We found that TTc could be labeled with fluorescent moieties without loss of immunoreactivity or biologic potency in cell uptake assays. In vivo fluorescent imaging experiments demonstrated uptake and retrograde transport of the compound along the course of the sciatic nerve and in the spinal cord. Ex vivo imaging and immunohistochemical studies confirmed the presence of TTc in the sciatic nerve and spinal cord, whereas control animals injected with human serum albumin did not exhibit these features. We have demonstrated neurography with a fluorescently labeled molecular imaging contrast agent based on the TTc.

  5. Early Results of Retrograde Transpopliteal Angioplasty of Iliofemoral Lesions

    International Nuclear Information System (INIS)

    Saha, Saumitra; Gibson, Matthew; Magee, Timothy R.; Galland, Robert B.; Torrie, E. Peter H.

    2001-01-01

    Purpose: To assess whether the retrograde transpopliteal approach is a safe, practical and effective alternative to femoral puncture for percutaneous transluminal angioplasty (PTA).Methods: Forty PTAs in 38 patients were evaluated. Intentional subintimal recanalization was performed in 13 limbs. Ultrasound evaluation of the popliteal fossa was carried out 30 min and 24 hr post procedurally in the first 10 patients to exclude local complications. All patients had a follow-up of at least 6 weeks.Results: The indication for PTA was critical ischemia in seven limbs and disabling claudication in the remainder.Stenoses (single or multiple) were present in 24 and occlusion in 15.The superficial femoral artery (SFA) was the commonest segment affected(36) followed by common femoral artery (CFA) in four and iliac artery in four. Technical success was achieved in 38 of 39 limbs where angioplasty was carried out. In one limb no lesion was found.Immediate complications were distal embolization in two and thrombosis in one. None of these required immediate surgery. There were no puncture site hematomas or popliteal arteriovenous fistulae.Symptomatic patency at 6 weeks was 85%. Further reconstructive surgery was required in three limbs and amputation in two.Conclusion: The transpopliteal approach has a high technical success rate and a low complication rate with a potential to develop into an outpatient procedure. It should be considered for flush SFA occulsions or iliac disease with tandem CFA/SFA disease where the contralateral femoral approach is often technically difficult

  6. Organometallic Polymeric Conductors

    Science.gov (United States)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  7. Effects of low molecular sugars on the retrogradation of tapioca starch gels during storage.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhang

    Full Text Available The effects of low molecular sugars (sucrose, glucose and trehalose on the retrogradation of tapioca starch (TS gels stored at 4°C for different periods were examined with different methods. Decrease in melting enthalpy (ΔHmelt were obtained through differential scanning calorimetry analysis. Analysis of decrease in crystallization rate constant (k and increase in semi-crystallization time (τ1/2 results obtained from retrogradation kinetics indicated that low molecular sugars could retard the retrogradation of TS gels and further revealed trehalose as the best inhibitor among the sugars used in this study. Fourier transform infrared (FTIR analysis indicated that the intensity ratio of 1047 to 1022 cm-1 was increased with the addition of sugars in the order of trehalose > sucrose > glucose. Decrease in hardness parameters and increase in springiness parameters obtained from texture profile analysis (TPA analysis also indicated that low molecular sugars could retard the retrogradation of TS gels. The results of FTIR and TPA showed a consistent sugar effect on starch retrogradation with those of DSC and retrogradation kinetics analysis.

  8. Optimal Timing for Laparoscopic Cholecystectomy After Endoscopic Retrograde Cholangiopancreatography: A Systematic Review.

    Science.gov (United States)

    Friis, C; Rothman, J P; Burcharth, J; Rosenberg, J

    2018-06-01

    Endoscopic retrograde cholangiopancreatography followed by laparoscopic cholecystectomy is often used as definitive treatment for common bile duct stones. The aim of this study was to investigate the optimal time interval between endoscopic retrograde cholangiopancreatography and laparoscopic cholecystectomy. PubMed and Embase were searched for studies comparing different time delays between endoscopic retrograde cholangiopancreatography and laparoscopic cholecystectomy. Observational studies and randomized controlled trials were included. Primary outcome was conversion rate from laparoscopic to open cholecystectomy and secondary outcomes were complications, mortality, operating time, and length of stay. A total of 14 studies with a total of 1930 patients were included. The pooled estimate revealed an increase from a 4.2% conversion rate when laparoscopic cholecystectomy was performed within 24 h of endoscopic retrograde cholangiopancreatography to 7.6% for 24-72 h delay to 12.3% when performed within 2 weeks, to 12.3% for 2-6 weeks, and to a 14% conversion rate when operation was delayed more than 6 weeks. According to this systematic review, it is preferable to perform cholecystectomy within 24 h of endoscopic retrograde cholangiopancreatography to reduce conversion rate. Early laparoscopic cholecystectomy does not increase mortality, perioperative complications, or length of stay and on the contrary it reduces the risk of reoccurrence and progression of disease in the delay between endoscopic retrograde cholangiopancreatography and laparoscopic cholecystectomy.

  9. Real-time visualization and quantification of retrograde cardioplegia delivery using near infrared fluorescent imaging.

    Science.gov (United States)

    Rangaraj, Aravind T; Ghanta, Ravi K; Umakanthan, Ramanan; Soltesz, Edward G; Laurence, Rita G; Fox, John; Cohn, Lawrence H; Bolman, R M; Frangioni, John V; Chen, Frederick Y

    2008-01-01

    Homogeneous delivery of cardioplegia is essential for myocardial protection during cardiac surgery. Presently, there exist no established methods to quantitatively assess cardioplegia distribution intraoperatively and determine when retrograde cardioplegia is required. In this study, we evaluate the feasibility of near infrared (NIR) imaging for real-time visualization of cardioplegia distribution in a porcine model. A portable, intraoperative, real-time NIR imaging system was utilized. NIR fluorescent cardioplegia solution was developed by incorporating indocyanine green (ICG) into crystalloid cardioplegia solution. Real-time NIR imaging was performed while the fluorescent cardioplegia solution was infused via the retrograde route in five ex vivo normal porcine hearts and in five ex vivo porcine hearts status post left anterior descending (LAD) coronary artery ligation. Horizontal cross-sections of the hearts were obtained at proximal, middle, and distal LAD levels. Videodensitometry was performed to quantify distribution of fluorophore content. The progressive distribution of cardioplegia was clearly visualized with NIR imaging. Complete visualization of retrograde distribution occurred within 4 minutes of infusion. Videodensitometry revealed retrograde cardioplegia, primarily distributed to the left ventricle (LV) and anterior septum. In hearts with LAD ligation, antegrade cardioplegia did not distribute to the anterior LV. This deficiency was compensated for with retrograde cardioplegia supplementation. Incorporation of ICG into cardioplegia allows real-time visualization of cardioplegia delivery via NIR imaging. This technology may prove useful in guiding intraoperative decisions pertaining to when retrograde cardioplegia is mandated.

  10. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport

    Science.gov (United States)

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-01-01

    The importance of endosome-to–trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. PMID:26157166

  11. Focal retrograde amnesia: voxel-based morphometry findings in a case without MRI lesions.

    Directory of Open Access Journals (Sweden)

    Bernhard Sehm

    Full Text Available Focal retrograde amnesia (FRA is a rare neurocognitive disorder presenting with an isolated loss of retrograde memory. In the absence of detectable brain lesions, a differentiation of FRA from psychogenic causes is difficult. Here we report a case study of persisting FRA after an epileptic seizure. A thorough neuropsychological assessment confirmed severe retrograde memory deficits while anterograde memory abilities were completely normal. Neurological and psychiatric examination were unremarkable and high-resolution MRI showed no neuroradiologically apparent lesion. However, voxel-based morphometry (VBM-comparing the MRI to an education-, age-and sex-matched control group (n = 20 disclosed distinct gray matter decreases in left temporopolar cortex and a region between right posterior parahippocampal and lingual cortex. Although the results of VBM-based comparisons between a single case and a healthy control group are generally susceptible to differences unrelated to the specific symptoms of the case, we believe that our data suggest a causal role of the cortical areas detected since the retrograde memory deficit is the preeminent neuropsychological difference between patient and controls. This was paralleled by grey matter differences in central nodes of the retrograde memory network. We therefore suggest that these subtle alterations represent structural correlates of the focal retrograde amnesia in our patient. Beyond the implications for the diagnosis and etiology of FRA, our results advocate the use of VBM in conditions that do not show abnormalities in clinical radiological assessment, but show distinct neuropsychological deficits.

  12. Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis.

    Directory of Open Access Journals (Sweden)

    Timothy J Mullen

    2017-09-01

    Full Text Available In many species, oocyte meiosis is carried out in the absence of centrioles. As a result, microtubule organization, spindle assembly, and chromosome segregation proceed by unique mechanisms. Here, we report insights into the principles underlying this specialized form of cell division, through studies of C. elegans KLP-15 and KLP-16, two highly homologous members of the kinesin-14 family of minus-end-directed kinesins. These proteins localize to the acentriolar oocyte spindle and promote microtubule bundling during spindle assembly; following KLP-15/16 depletion, microtubule bundles form but then collapse into a disorganized array. Surprisingly, despite this defect we found that during anaphase, microtubules are able to reorganize into a bundled array that facilitates chromosome segregation. This phenotype therefore enabled us to identify factors promoting microtubule organization during anaphase, whose contributions are normally undetectable in wild-type worms; we found that SPD-1 (PRC1 bundles microtubules and KLP-18 (kinesin-12 likely sorts those bundles into a functional orientation capable of mediating chromosome segregation. Therefore, our studies have revealed an interplay between distinct mechanisms that together promote spindle formation and chromosome segregation in the absence of structural cues such as centrioles.

  13. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization.

    Science.gov (United States)

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants.

  14. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues

    Directory of Open Access Journals (Sweden)

    Alessandra eMoscatelli

    2015-02-01

    Full Text Available In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, microtubules also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, microtubules influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites.In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of microtubules in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of microtubules in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of microtubules in polarized growth.

  15. ATPase Cycle of the Nonmotile Kinesin NOD Allows Microtubule End Tracking and Drives Chromosome Movement

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Sindelar, C; Mulko, N; Collins, K; Kong, S; Hawley, R; Kull, F

    2009-01-01

    Segregation of nonexchange chromosomes during Drosophila melanogaster meiosis requires the proper function of NOD, a nonmotile kinesin-10. We have determined the X-ray crystal structure of the NOD catalytic domain in the ADP- and AMPPNP-bound states. These structures reveal an alternate conformation of the microtubule binding region as well as a nucleotide-sensitive relay of hydrogen bonds at the active site. Additionally, a cryo-electron microscopy reconstruction of the nucleotide-free microtubule-NOD complex shows an atypical binding orientation. Thermodynamic studies show that NOD binds tightly to microtubules in the nucleotide-free state, yet other nucleotide states, including AMPPNP, are weakened. Our pre-steady-state kinetic analysis demonstrates that NOD interaction with microtubules occurs slowly with weak activation of ADP product release. Upon rapid substrate binding, NOD detaches from the microtubule prior to the rate-limiting step of ATP hydrolysis, which is also atypical for a kinesin. We propose a model for NOD's microtubule plus-end tracking that drives chromosome movement.

  16. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice

    Directory of Open Access Journals (Sweden)

    Coralie Fassier

    2013-01-01

    Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP, a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration characterized by focal axonal swellings associated with impaired axonal transport. To further characterize the molecular and cellular mechanisms underlying this mutant phenotype, we have assessed microtubule dynamics and axonal transport in primary cultures of cortical neurons from spastin-mutant mice. We show an early and marked impairment of microtubule dynamics all along the axons of spastin-deficient cortical neurons, which is likely to be responsible for the occurrence of axonal swellings and cargo stalling. Our analysis also reveals that a modulation of microtubule dynamics by microtubule-targeting drugs rescues the mutant phenotype of cortical neurons. Together, these results contribute to a better understanding of the pathogenesis of SPG4-linked HSP and ascertain the influence of microtubule-targeted drugs on the early axonal phenotype in a mouse model of the disease.

  17. Tubulin cofactor B regulates microtubule densities during microglia transition to the reactive states

    International Nuclear Information System (INIS)

    Fanarraga, M.L.; Villegas, J.C.; Carranza, G.; Castano, R.; Zabala, J.C.

    2009-01-01

    Microglia are highly dynamic cells of the CNS that continuously survey the welfare of the neural parenchyma and play key roles modulating neurogenesis and neuronal cell death. In response to injury or pathogen invasion parenchymal microglia transforms into a more active cell that proliferates, migrates and behaves as a macrophage. The acquisition of these extra skills implicates enormous modifications of the microtubule and actin cytoskeletons. Here we show that tubulin cofactor B (TBCB), which has been found to contribute to various aspects of microtubule dynamics in vivo, is also implicated in microglial cytoskeletal changes. We find that TBCB is upregulated in post-lesion reactive parenchymal microglia/macrophages, in interferon treated BV-2 microglial cells, and in neonate amoeboid microglia where the microtubule densities are remarkably low. Our data demonstrate that upon TBCB downregulation both, after microglia differentiation to the ramified phenotype in vivo and in vitro, or after TBCB gene silencing, microtubule densities are restored in these cells. Taken together these observations support the view that TBCB functions as a microtubule density regulator in microglia during activation, and provide an insight into the understanding of the complex mechanisms controlling microtubule reorganization during microglial transition between the amoeboid, ramified, and reactive phenotypes

  18. Actin and microtubule networks contribute differently to cell response for small and large strains

    Science.gov (United States)

    Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.

    2017-09-01

    Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.

  19. De fysica van polymere materialen

    NARCIS (Netherlands)

    Struik, L.C.E.

    1987-01-01

    Rede, uitgesproken ter gelegenheid van de aanvaarding van het ambt van buitengewoon hoogleraar in de fysica van polymere materialen aan de Universitelt Twente op donderdag 22 januarì 1987 door Dr.lr. L.C.E. Struik.

  20. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng; Hadjichristidis, Nikolaos; Gnanou, Yves

    2014-01-01

    .e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  1. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Zhao, Junpeng; Zhang, Hefeng; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands

  2. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  3. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  4. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  5. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  6. Effects of microtubule mechanics on hydrolysis and catastrophes

    International Nuclear Information System (INIS)

    Müller, N; Kierfeld, J

    2014-01-01

    We introduce a model for microtubule (MT) mechanics containing lateral bonds between dimers in neighboring protofilaments, bending rigidity of dimers, and repulsive interactions between protofilaments modeling steric constraints to investigate the influence of mechanical forces on hydrolysis and catastrophes. We use the allosteric dimer model, where tubulin dimers are characterized by an equilibrium bending angle, which changes from 0 ∘ to 22 ∘ by hydrolysis of a dimer. This also affects the lateral interaction and bending energies and, thus, the mechanical equilibrium state of the MT. As hydrolysis gives rise to conformational changes in dimers, mechanical forces also influence the hydrolysis rates by mechanical energy changes modulating the hydrolysis rate. The interaction via the MT mechanics then gives rise to correlation effects in the hydrolysis dynamics, which have not been taken into account before. Assuming a dominant influence of mechanical energies on hydrolysis rates, we investigate the most probable hydrolysis pathways both for vectorial and random hydrolysis. Investigating the stability with respect to lateral bond rupture, we identify initiation configurations for catastrophes along the hydrolysis pathways and values for a lateral bond rupture force. If we allow for rupturing of lateral bonds between dimers in neighboring protofilaments above this threshold force, our model exhibits avalanche-like catastrophe events. (papers)

  7. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-12-31

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 {mu}M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 {mu}M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  8. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-01-01

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 [mu]M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 [mu]M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  9. Characterization of gold nanoparticle binding to microtubule filaments

    International Nuclear Information System (INIS)

    Zhou, Jing C.; Wang Xianghuai; Xue Mei; Xu Zheng; Hamasaki, Toshikazu; Yang, Yang; Wang Kang; Dunn, Bruce

    2010-01-01

    Microtubule (MT) protein filaments were used as templates for fabricating Au nanowires as a bottom-up approach for fabricating building blocks for future integrated circuits. Photochemical reduction methods were employed to form Au nanoparticles which bind and uniformly cover the MT filaments. Synthesis of the MT-templated Au nanowires was characterized using UV/vis spectroscopy and transmission electron microscopy (TEM). In addition, binding between the MT filaments and Au nanoparticles was investigated using surface enhanced Raman spectroscopy (SERS) and X-ray photoelectron spectroscopy (XPS) to establish the nature of the binding sites. A variety of functional groups were identified by SERS to interact with the Au including imidazole, sulfur, aromatic rings, amine, and carboxylate. The imidazole ring in the histidine is the most prominent functional group for Au binding. The results from these studies provide better understanding of the binding between Au and the biotemplate and give insight concerning methods to improve Au coverage for MT-templated Au nanowires.

  10. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  11. Regulation of microtubule-based transport by MAP4

    Science.gov (United States)

    Semenova, Irina; Ikeda, Kazuho; Resaul, Karim; Kraikivski, Pavel; Aguiar, Mike; Gygi, Steven; Zaliapin, Ilya; Cowan, Ann; Rodionov, Vladimir

    2014-01-01

    Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2–dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2–based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2–dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect. PMID:25143402

  12. APC functions at the centrosome to stimulate microtubule growth.

    Science.gov (United States)

    Lui, Christina; Ashton, Cahora; Sharma, Manisha; Brocardo, Mariana G; Henderson, Beric R

    2016-01-01

    The adenomatous polyposis coli (APC) tumor suppressor is multi-functional. APC is known to localize at the centrosome, and in mitotic cells contributes to formation of the mitotic spindle. To test whether APC contributes to nascent microtubule (MT) growth at interphase centrosomes, we employed MT regrowth assays in U2OS cells to measure MT assembly before and after nocodazole treatment and release. We showed that siRNA knockdown of full-length APC delayed both initial MT aster formation and MT elongation/regrowth. In contrast, APC-mutant SW480 cancer cells displayed a defect in MT regrowth that was unaffected by APC knockdown, but which was rescued by reconstitution of full-length APC. Our findings identify APC as a positive regulator of centrosome MT initial assembly and suggest that this process is disrupted by cancer mutations. We confirmed that full-length APC associates with the MT-nucleation factor γ-tubulin, and found that the APC cancer-truncated form (1-1309) also bound to γ-tubulin through APC amino acids 1-453. While binding to γ-tubulin may help target APC to the site of MT nucleation complexes, additional C-terminal sequences of APC are required to stimulate and stabilize MT growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Microtubules Enable the Planar Cell Polarity of Airway Cilia

    Science.gov (United States)

    Vladar, Eszter K.; Bayly, Roy D.; Sangoram, Ashvin; Scott, Matthew P.; Axelrod, Jeffrey D.

    2012-01-01

    Summary Background Airway cilia must be physically oriented along the longitudinal tissue axis for concerted, directional motility that is essential for proper mucociliary clearance. Results We show that Planar Cell Polarity (PCP) signaling specifies directionality and orients respiratory cilia. Within all airway epithelial cells a conserved set of PCP proteins shows interdependent, asymmetric junctional localization; non-autonomous signaling coordinates polarization between cells; and a polarized microtubule (MT) network is likely required for asymmetric PCP protein localization. We find that basal bodies dock after polarity of PCP proteins is established, are polarized nearly simultaneously, and refinement of basal body/cilium orientation continues during airway epithelial development. Unique to mature multiciliated cells, we identify PCP-regulated, planar polarized MTs that originate from basal bodies and interact, via their plus ends, with membrane domains associated with the PCP proteins Frizzled and Dishevelled. Disruption of MTs leads to misoriented cilia. Conclusions A conserved PCP pathway orients airway cilia by communicating polarity information from asymmetric membrane domains at the apical junctions, through MTs, to orient the MT and actin based network of ciliary basal bodies below the apical surface. PMID:23122850

  14. The effects of 60Co γ-ray irradiation on cytoplasmic microtubules of mouse macrophages and lymphocytes

    International Nuclear Information System (INIS)

    Li Qianqian; Mao Zijun; Yin Zhiwei; Hu Yumin

    1989-05-01

    The effects of 60 Co γ-ray irradiation on cytoplasmic microtubules of mouse macrophages and lymphocytes were investigated by immunofluorescence microscopy and scanning electron microscope. The results indicated. (1) microtubule organization of the irradiated cells remarkably differed from that of the control since the doses over 4 Gy; (2) 144 hours after irradiation the alterations of microtubules have been shown to be basically r epaired ; (3) the cytoplasmic microtubules and centrioles disappeared under transmission electron microscope, the membranes irradiated and microvilli showed changes under scanning electron microscope too. From these observations and those of other workers who studied the radiation effect on extracted microtubule proteins in vitro, the authors support that 60 Co γ-ray irradiation can inhabits cytoplasmic microtubule assembling

  15. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    Science.gov (United States)

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  16. Microtubule-Targeting Agents Enter the Central Nervous System (CNS: Double-edged Swords for Treating CNS Injury and Disease

    Directory of Open Access Journals (Sweden)

    Eun-Mi Hur

    2014-12-01

    Full Text Available Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  17. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain

    Czech Academy of Sciences Publication Activity Database

    Deeks, M.J.; Fendrych, Matyáš; Smertenko, A.; Bell, K.S.; Oparka, K.; Cvrčková, F.; Žárský, Viktor; Hussey, P.J.

    2010-01-01

    Roč. 123, č. 8 (2010), s. 1209-1215 ISSN 0021-9533 R&D Projects: GA MŠk(CZ) LC06004; GA ČR GAP305/10/0433 Institutional research plan: CEZ:AV0Z50380511 Keywords : Actin regulating proteins * Membrane * Microtubule Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.290, year: 2010

  18. Endoscopic retrograde cholangiopancreatography with rendezvous cannulation reduces pancreatic injury.

    Science.gov (United States)

    Swahn, Fredrik; Regnér, Sara; Enochsson, Lars; Lundell, Lars; Permert, Johan; Nilsson, Magnus; Thorlacius, Henrik; Arnelo, Urban

    2013-09-28

    To examine whether rendezvous endoscopic retrograde cholangiopancreatography (ERCP) is associated with less pancreatic damage, measured as leakage of proenzymes, than conventional ERCP. Patients (n = 122) with symptomatic gallstone disease, intact papilla and no ongoing inflammation, were prospectively enrolled in this case-control designed study. Eighty-one patients were subjected to laparoscopic cholecystectomy and if intraoperative cholangiography suggested common bile duct stones (CBDS), rendezvous ERCP was performed intraoperatively (n = 40). Patients with a negative cholangiogram constituted the control group (n = 41). Another 41 patients with CBDS, not subjected to surgery, underwent conventional ERCP. Pancreatic proenzymes, procarboxypeptidase B and trypsinogen-2 levels in plasma, were analysed at 0, 4, 8 and 24 h. The proenzymes were determined in-house with a double-antibody enzyme linked immunosorbent assay. Pancreatic amylase was measured by an enzymatic colourimetric modular analyser with the manufacturer's reagents. All samples were blinded at analysis. Post ERCP pancreatitis (PEP) occurred in 3/41 (7%) of the patients cannulated with conventional ERCP and none in the rendezvous group. Increased serum levels indicating pancreatic leakage were significantly higher in the conventional ERCP group compared with the rendezvous ERCP group regarding pancreatic amylase levels in the 4- and 8-h samples (P = 0.0015; P = 0.03), procarboxypeptidase B in the 4- and 8-h samples (P rendezvous cannulation technique compared with patients that underwent cholecystectomy alone (control group). Post procedural concentrations of pancreatic amylase and procarboxypeptidase B were significantly correlated with pancreatic duct cannulation and opacification. Rendezvous ERCP reduces pancreatic enzyme leakage compared with conventional ERCP cannulation technique. Thus, laparo-endoscopic technique can be recommended with the ambition to minimise the risk for post ERCP

  19. Chlorpyrifos, chlorpyrifos-oxon, and diisopropylfluorophosphate inhibit kinesin-dependent microtubule motility

    International Nuclear Information System (INIS)

    Gearhart, Debra A.; Sickles, Dale W.; Buccafusco, Jerry J.; Prendergast, Mark A.; Terry, Alvin V.

    2007-01-01

    Diisopropylfluorophosphate, originally developed as a chemical warfare agent, is structurally similar to nerve agents, and chlorpyrifos has extensive worldwide use as an agricultural pesticide. While inhibition of cholinesterases underlies the acute toxicity of these organophosphates, we previously reported impaired axonal transport in the sciatic nerves from rats treated chronically with subthreshold doses of chlorpyrifos. Those data indicate that chlorpyrifos (and/or its active metabolite, chlorpyrifos-oxon) might directly affect the function of kinesin and/or microtubules-the principal proteins that mediate anterograde axonal transport. The current report describes in vitro assays to assess the concentration-dependent effects of chlorpyrifos (0-10 μM), chlorpyrifos-oxon (0-10 μM), and diisopropylfluorophosphate (0-0.59 nM) on kinesin-dependent microtubule motility. Preincubating bovine brain microtubules with the organophosphates did not alter kinesin-mediated microtubule motility. In contrast, preincubation of bovine brain kinesin with diisopropylfluorophosphate, chlorpyrifos, or chlorpyrifos-oxon produced a concentration-dependent increase in the number of locomoting microtubules that detached from the kinesin-coated glass cover slip. Our data suggest that the organophosphates-chlorpyrifos-oxon, chlorpyrifos, and diisopropylfluorophosphate-directly affect kinesin, thereby disrupting kinesin-dependent transport on microtubules. Kinesin-dependent movement of vesicles, organelles, and other cellular components along microtubules is fundamental to the organization of all eukaryotic cells, especially in neurons where organelles and proteins synthesized in the cell body must move down long axons to pre-synaptic sites in nerve terminals. We postulate that disruption of kinesin-dependent intracellular transport could account for some of the long-term effects of organophosphates on the peripheral and central nervous system

  20. Cep192 controls the balance of centrosome and non-centrosomal microtubules during interphase.

    Directory of Open Access Journals (Sweden)

    Brian P O'Rourke

    Full Text Available Cep192 is a centrosomal protein that contributes to the formation and function of the mitotic spindle in mammalian cells. Cep192's mitotic activities stem largely from its role in the recruitment to the centrosome of numerous additional proteins such as gamma-tubulin and Pericentrin. Here, we examine Cep192's function in interphase cells. Our data indicate that, as in mitosis, Cep192 stimulates the nucleation of centrosomal microtubules thereby regulating the morphology of interphase microtubule arrays. Interestingly, however, cells lacking Cep192 remain capable of generating normal levels of MTs as the loss of centrosomal microtubules is augmented by MT nucleation from other sites, most notably the Golgi apparatus. The depletion of Cep192 results in a significant decrease in the level of centrosome-associated gamma-tubulin, likely explaining its impact on centrosome microtubule nucleation. However, in stark contrast to mitosis, Cep192 appears to maintain an antagonistic relationship with Pericentrin at interphase centrosomes. Interphase cells depleted of Cep192 display significantly higher levels of centrosome-associated Pericentrin while overexpression of Cep192 reduces the levels of centrosomal Pericentrin. Conversely, depletion of Pericentrin results in elevated levels of centrosomal Cep192 and enhances microtubule nucleation at centrosomes, at least during interphase. Finally, we show that depletion of Cep192 negatively impacts cell motility and alters normal cell polarization. Our current working hypothesis is that the microtubule nucleating capacity of the interphase centrosome is determined by an antagonistic balance of Cep192, which promotes nucleation, and Pericentrin, which inhibits nucleation. This in turn determines the relative abundance of centrosomal and non-centrosomal microtubules that tune cell movement and shape.

  1. Taking directions: the role of microtubule-bound nucleation in the self-organization of the plant cortical array

    International Nuclear Information System (INIS)

    Deinum, Eva E; Tindemans, Simon H; Mulder, Bela M

    2011-01-01

    The highly aligned cortical microtubule array of interphase plant cells is a key regulator of anisotropic cell expansion. Recent computational and analytical work has shown that the non-equilibrium self-organization of this structure can be understood on the basis of experimentally observed collisional interactions between dynamic microtubules attached to the plasma membrane. Most of these approaches assumed that new microtubules are homogeneously and isotropically nucleated on the cortical surface. Experimental evidence, however, shows that nucleation mostly occurs from other microtubules and under specific relative angles. Here, we investigate the impact of directed microtubule-bound nucleations on the alignment process using computer simulations. The results show that microtubule-bound nucleations can increase the degree of alignment achieved, decrease the timescale of the ordering process and widen the regime of dynamic parameters for which the system can self-organize. We establish that the major determinant of this effect is the degree of co-alignment of the nucleations with the parent microtubule. The specific role of sideways branching nucleations appears to allow stronger alignment while maintaining a measure of overall spatial homogeneity. Finally, we investigate the suggestion that observed persistent rotation of microtubule domains can be explained through a handedness bias in microtubule-bound nucleations, showing that this is possible only for an extreme bias and over a limited range of parameters

  2. Taking directions: the role of microtubule-bound nucleation in the self-organization of the plant cortical array

    Science.gov (United States)

    Deinum, Eva E.; Tindemans, Simon H.; Mulder, Bela M.

    2011-10-01

    The highly aligned cortical microtubule array of interphase plant cells is a key regulator of anisotropic cell expansion. Recent computational and analytical work has shown that the non-equilibrium self-organization of this structure can be understood on the basis of experimentally observed collisional interactions between dynamic microtubules attached to the plasma membrane. Most of these approaches assumed that new microtubules are homogeneously and isotropically nucleated on the cortical surface. Experimental evidence, however, shows that nucleation mostly occurs from other microtubules and under specific relative angles. Here, we investigate the impact of directed microtubule-bound nucleations on the alignment process using computer simulations. The results show that microtubule-bound nucleations can increase the degree of alignment achieved, decrease the timescale of the ordering process and widen the regime of dynamic parameters for which the system can self-organize. We establish that the major determinant of this effect is the degree of co-alignment of the nucleations with the parent microtubule. The specific role of sideways branching nucleations appears to allow stronger alignment while maintaining a measure of overall spatial homogeneity. Finally, we investigate the suggestion that observed persistent rotation of microtubule domains can be explained through a handedness bias in microtubule-bound nucleations, showing that this is possible only for an extreme bias and over a limited range of parameters.

  3. Impact of Emulsifiers Addition on the Retrogradation of Rice Gels during Low-Temperature Storage

    Directory of Open Access Journals (Sweden)

    Zhe Yang

    2017-01-01

    Full Text Available Rice and its products are widely consumed in Asian countries; however, starch retrogradation decreases the quality and shortens the shelf-life of rice foods particularly at low temperature. In this study sucrose ester (SE, glycerol monostearate (GMS, and sodium stearoyl lactylate (SSL were added to rice flour and corresponding rice gels. Then, gelatinization properties, retrogradation characteristics, texture, and water content of these rice gels were investigated at 4°C and −20°C storage, respectively. The results demonstrated that the rice gels with 0.2% GMS had the lowest retrogradation index (ΔHr/ΔHg (11.84% and hardness (1359 g at 4°C for a 10 d period, which was significantly lower in comparison to control and the other two emulsifiers (P<0.05. Adhesiveness and water content were increased compared to the other samples. Furthermore, the retrogradation of rice gels stored at 4°C was comparatively rapid compared to gels stored at −20°C. Gel samples stored at −20°C were still acceptable for more than 15 days. Thus it was revealed that GMS has the potential to retard starch retrogradation and produce high-quality rice products in preservation.

  4. Loss of Huntingtin stimulates capture of retrograde dense-core vesicles to increase synaptic neuropeptide stores.

    Science.gov (United States)

    Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S

    2017-08-01

    The Huntington's disease protein Huntingtin (Htt) regulates axonal transport of dense-core vesicles (DCVs) containing neurotrophins and neuropeptides. DCVs travel down axons to reach nerve terminals where they are either captured in synaptic boutons to support later release or reverse direction to reenter the axon as part of vesicle circulation. Currently, the impact of Htt on DCV dynamics in the terminal is unknown. Here we report that knockout of Drosophila Htt selectively reduces retrograde DCV flux at proximal boutons of motoneuron terminals. However, initiation of retrograde transport at the most distal bouton and transport velocity are unaffected suggesting that synaptic capture rate of these retrograde DCVs could be altered. In fact, tracking DCVs shows that retrograde synaptic capture efficiency is significantly elevated by Htt knockout or knockdown. Furthermore, synaptic boutons contain more neuropeptide in Htt knockout larvae even though bouton size, single DCV fluorescence intensity, neuropeptide release in response to electrical stimulation and subsequent activity-dependent capture are unaffected. Thus, loss of Htt increases synaptic capture as DCVs travel by retrograde transport through boutons resulting in reduced transport toward the axon and increased neuropeptide in the terminal. These results therefore identify native Htt as a regulator of synaptic capture and neuropeptide storage. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. On the electrodynamic explanation of the retrograde motion of the electric arc

    International Nuclear Information System (INIS)

    Hong, J.S.; Allen, J.E.

    1992-01-01

    The retrograde motion of the cathode spot in a transverse magnetic field is one of the more intriguing phenomena of the electric arc. Although the phenomenon has been known for nearly ninety years since its discovery by Stark and has stimulated numerous investigations which result in many models giving explanation from different points of view, there is still no theory that can account both qualitatively and quantitatively for all the observations. Most of the explanations of the retrograde motion involve the study of cathode processes to give the preferential formation of new cathode spots along the retrograde direction. One line of explanation, which is rather different from the others, is based on electrodynamics. In this approach the retrograde motion is treated as an electrodynamic event. The present paper develops the theory suggested by Robson and von Engel. A more complete model is proposed and studied in detail by means of electromagnetic field theory. The results obtained not only show that the retrograde motion can be explained by the electrodynamics, but also confirm that the average current density on the cathode spot must be around the order of 10 12 A/m 2 . Recent studies of spot current density have shown values of this order. (author) 22 refs., 4 figs., 1 tab

  6. Profound loss of general knowledge in retrograde amnesia: Evidence from an amnesic artist

    Directory of Open Access Journals (Sweden)

    Emma eGregory

    2014-05-01

    Full Text Available Studies of retrograde amnesia have focused on autobiographical memory, with fewer studies examining how non-autobiographical memory is affected. Those that have done so have focused primarily on memory for famous people and public events—relatively limited aspects of memory that are tied to learning during specific times of life and do not deeply tap into the rich and extensive knowledge structures that are developed over a lifetime. To assess whether retrograde amnesia can also cause impairments to other forms of general world knowledge, we explored losses across a broad range of knowledge domains in a newly-identified amnesic. LSJ is a professional artist, amateur musician and history buff with extensive bilateral medial temporal and left anterior temporal damage. We examined LSJ's knowledge across a range of everyday domains (e.g., sports and domains for which she had premorbid expertise (e.g., famous paintings. Across all domains tested, LSJ showed losses of knowledge at a level of breadth and depth never before documented in retrograde amnesia. These results show that retrograde amnesia can involve broad and deep deficits across a range of general world knowledge domains. Thus, losses that have already been well-documented (famous people and public events may severely underestimate the nature of human knowledge impairment that can occur in retrograde amnesia.

  7. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi

    2016-05-24

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.

  8. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    Science.gov (United States)

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed. PMID:27219066

  9. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    Full Text Available High hydrostatic pressure (HHP has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*. The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution measured by FTIR and G* is proposed.

  10. TBCD links centriologenesis, spindle microtubule dynamics, and midbody abscission in human cells.

    Directory of Open Access Journals (Sweden)

    Mónica López Fanarraga

    2010-01-01

    Full Text Available Microtubule-organizing centers recruit alpha- and beta-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs A-E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into "centriolar rosettes". These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.

  11. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    Science.gov (United States)

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  12. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation.

    Directory of Open Access Journals (Sweden)

    Sumio Ishijima

    Full Text Available It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements.

  13. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  14. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  15. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J.; Anderson, Charles T.

    2015-11-02

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.

  16. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    Science.gov (United States)

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  17. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Katherine A. Sharp

    2016-03-01

    Full Text Available Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing and the posterior abdomen (P-abd. We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  18. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules.

    Science.gov (United States)

    Lysko, Daniel E; Putt, Mary; Golden, Jeffrey A

    2014-04-02

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.

  19. TIPsy tour guides: How microtubule plus-end tracking proteins (+TIPs facilitate axon guidance

    Directory of Open Access Journals (Sweden)

    Elizabeth A Bearce

    2015-06-01

    Full Text Available The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules in growth cone navigation. Here, we focus on the role of singular pioneer microtubules, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs. These +TIPs accumulate at the dynamic ends of microtubules, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events.

  20. Polymeric media for tritium fixation

    International Nuclear Information System (INIS)

    Franz, J.A.; Burger, L.L.

    1975-01-01

    The synthesis and leach testing of several polymeric media for tritium fixation are presented. Tritiated bakelite, poly(acrylonitrile) and polystyrene successfully fixed tritium. Tritium leach rates at the tracer level appear to be negligible. Advantages and disadvantages of the processes are discussed, and further bench-scale investigations underway are reported. Rough cost estimates are presented for the different media and are compared with alternate approaches such as deep-well injection and long-term tank storage. Polymeric media costs are high compared to deep-well storage and are of the same order of magnitude per liter of water as for isotopic enrichment. With this limitation, polymeric media can be economically feasible only for highly concentrated tritiated wastes. It is recommended that the bakelite and polystyrene processes be examined on a larger scale to permit more accurate cost analysis and process design. (auth)

  1. Olefin metathesis and metathesis polymerization

    CERN Document Server

    Ivin, K J

    1997-01-01

    This book is a follow-up to Ivins Olefin Metathesis, (Academic Press, 1983). Bringing the standard text in the field up to date, this Second Edition is a result of rapid growth in the field, sparked by the discovery of numerous well-defined metal carbene complexes that can act as very efficient initiators of all types of olefin metathesis reaction, including ring-closing metathesis of acyclic dienes, enynes, and dienynes; ring-opening metathesis polymerizationof cycloalkenes, acyclic diene metathesis polymerization; and polymerization of alkynes, as well as simple olefin metathesis. Olefin Metathesis and Metathesis Polymerization provides a broad, up-to-date account of the subject from its beginnings in 1957 to the latest applications in organic synthesis. The book follows the same format as the original, making it useful toteachers and to researchers, and will be of particular interest to those working in the fields of organic chemistry, polymer chemistry, organometallic chemistry, catalysis, materials scien...

  2. On-demand photoinitiated polymerization

    Science.gov (United States)

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  3. Pentafluorosulfanyl Substituents in Polymerization Catalysis.

    Science.gov (United States)

    Kenyon, Philip; Mecking, Stefan

    2017-10-04

    Highly electron-withdrawing pentafluorosulfanyl groups were probed as substituents in an organometallic catalyst. In Ni(II) salicylaldiminato complexes as an example case, these highly electron-withdrawing substituents allow for polymerization of ethylene to higher molecular weights with reduced branching due to significant reductions in β-hydrogen elimination. Combined with the excellent functional group tolerance of neutral Ni(II) complexes, this suppression of β-hydrogen elimination allows for the direct polymerization of ethylene in water to nanocrystal dispersions of disentangled, ultrahigh-molecular-weight linear polyethylene.

  4. Radiation Induced Polymerization of Pyrrole

    International Nuclear Information System (INIS)

    Sarada Idris; Ratnam, C.T.; Ahmad Ashrif Abu Bakar

    2016-01-01

    We demonstrate the polymerization of pyrrole by gamma irradiation. The pyrrole films were exposed to gamma ray from cobalt 60 source at doses ranging from 0 to 150 kGy. The films were subjected to structural and morphological analyses by using FTIR, SEM and AFM techniques. Similar studies were also made on pristine pyrrole film which serve as control. Results revealed that pyrrole has been successfully polymerized through irradiation induced reactions. The SEM images depicted the formation of cauliflower shape upon gamma irradiation. The structural changes of pyrrole also evidenced by FTIR spectra. Surface topography and roughness of pyrrole before and after gamma irradiation found to show significant differences. (author)

  5. Endoscopic retrograde JJ-stenting of the ureter without fluoroscopy guidance--an appraisal of outcome.

    Science.gov (United States)

    Shuaibu, S I; Gidado, S; Oseni-Momodu, E

    2013-01-01

    JJ- ureteral stenting is a means of relieving ureteric obstruction. It is done as a retrograde or antegrade procedure, usually under fluoroscopy guidance. We reviewed our results in 2 independent tertiary health centers in Nigeria which lack fluoroscopy units. A 2 year retrospective review of data of patients who had retrograde JJ- ureteric stenting was done. Data relating to age, indication and outcome of procedure were retrieved and analysed. 22 (71%) patients had successful retrograde JJ- ureteric stenting out of 31 patients who were taken for the procedure. These 22 patients had stenting of 27 ureteric units. Mean age was 48.5 years. Commonest indication was carcinoma of the cervix (31.8%). Commonest complication was irritative lower urinary tract symptoms (43.5%). In spite of inherent complications, JJ-stenting is a simple and safe technique. Therefore, the decision to attempt JJ -stenting in carefully selected patients in the absence of fluoroscopy is acceptable.

  6. Transport According to GARP: Receiving Retrograde Cargo at the Trans-Golgi Network

    Science.gov (United States)

    Bonifacino, Juan S.; Hierro, Aitor

    2010-01-01

    Tethering factors are large protein complexes that capture transport vesicles and enable their fusion with acceptor organelles at different stages of the endomembrane system. Recent studies have shed new light on the structure and function of a heterotetrameric tethering factor named Golgi-associated retrograde protein (GARP), which promotes fusion of endosome-derived, retrograde transport carriers to the trans-Golgi network (TGN). X-ray crystallography of the Vps53 and Vps54 subunits of GARP has revealed that this complex is structurally related to other tethering factors such as the exocyst, COG and Dsl1, indicating that they all might work by a similar mechanism. Loss of GARP function compromises the growth, fertility and/or viability of the defective organisms, underscoring the essential nature of GARP-mediated retrograde transport. PMID:21183348

  7. Pasting, rheological, and retrogradation properties of low-amylose rice starch with date syrup.

    Science.gov (United States)

    Mohamed, Ibrahim O; Babucurr, Jobe

    2017-09-01

    Effects of date syrup on pasting, rheological, and retrogradation properties of low-amylose rice starch were investigated using three levels of date syrup (starch:syrup 1:1, 1:2, or 1:3). Measurements were carried out using HR-2 Discovery Rheometer equipped with a pasting cell and parallel plate geometry. The pasting measurements showed that the peak viscosity of the control is significantly higher than the samples with date syrup (p date syrup levels. Addition of date syrup increases the solid-like behavior of the gel in reverse order with increased date syrup levels. Low-amylose starch gel used in this study showed minor changes in elastic modulus (G') during one week cold storage indicting that low-amylose rice starch is resistant to retrogradation. Addition of date syrup slightly resulted in increased retrogradation compared to the control.

  8. Retrograde cholangiopancreatography in the diagnosis of biliary and pancreatic duct diseases

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.D.; Sedletskaya, T.N.

    1980-01-01

    Results of retrograde cannulation with the aid of flexible fibroduodenoscopes with subsequent introduction of a contrast substance into biliary and pancreatic ducts are presented. The investigation is carried out on 120 patients with different diseases of hepatopancreatoduodenal zone. The standard technique of X-ray examination has been applied permitting to obtain the most exhaustive information. Using retrograde cholangiopancreatography revealed have been choledocholithiasis, deformation of biliary ducts after surgical intervention, pancreatic cyst, tumor of the main pancreatic duct etc. Results of investigation of biliary and pancreatic ducts using retrograde cannulation are reaffirmed with the data of operations on biliary tract in 72 patients. Intraoperational cholangiography has been carried out on 36 of them during operation. An attempt to cannulate big duodenal papilla in 12 patients proved to be ineffective. No complications have been observed during examination

  9. Charge collection control using retrograde well tested by proton microprobe irradiation

    International Nuclear Information System (INIS)

    Sayama, Hirokazu; Takai, Mikio; Kimura, Hiroshi; Ohno, Yoshikazu; Satoh, Shinichi; Sonoda, Kenichirou; Katani, Norihiko.

    1993-01-01

    Soft error reduction by high-energy ion-implanted layers has been investigated by novel evaluation techniques using high-energy proton microprobes. A retrograde well formed by 160 and 700 keV boron ion implantation could completely suppress soft errors induced by the proton microprobes at 400 keV. The proton-induced current revealed the charge collection efficiency for the retrograde well structure. The collected charge for the retrograde well in the soft-error mapping was proved to be lower than the critical charge of the measured DRAMs(dynamic random-access memories). Complementary use of soft-error mapping and ion-induced-current measurement could clarify well structures immune against soft errors. (author)

  10. On the observed excess of retrograde orbits among long-period comets

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1981-01-01

    The distribution of orbital inclinations of the observed long-period comets is analysed. An excess of retrograde orbits is found which increases with the perihelion distance, except for the range 1.1 10 3 A U) has the same behaviour as the total sample. It is thus suggested that the excess of retrograde orbits among long-period comets is related to an already existent excess among the incoming new comets (i.e. comets driven into the planetary region by stellar perturbations). Using theoretical considerations and a numerical model it is proposed that an important fraction of the so-called new comets are actually repeating passages through the planetary region. Nearly a half of the new comets with q > 2 A U may be repeating passages. An important consequence of the presence of comets repeating passages among the new ones is the production of an excess of retrograde orbits in the whole sample. (author)

  11. Combined use of intraarterial digital subtraction angiography with conventional retrograde brachial vertebral angiography

    International Nuclear Information System (INIS)

    Yamaguchi, Tatsuo; Ogawa, Toshihide; Inugami, Atsushi; Kawata, Yasushi; Shishido, Fumio; Uemura, Kazuo

    1985-01-01

    For 102 patients who had the examination of conventional bilaterally retrograde brachial vertebral angiography (retrograde VAG), intraarterial digital subtraction angiography (DSA) was successively performed to investigate steno-occlusive lesions of proximal vertebral and subclavian arteries. All the patients had no complication due to the DSA procedure. In 50% of 72 ischemic stroke cases, positive findings were found either in the origin of the vertebral artery or in the subclavian artery. Stenosis of more than 50% of the lumen of the vertebral artery were found in 14% of the cases at the origin of the right one and also in 14% in the left one. Occlusion of the vertebral artery was found in 4% in the left side only. In 30 cases with non-ischemic brain diseases, positive findings were noted in 10%. Intraarterial DSA combined with retrograde VAG was thought to be useful, especially in the examination for ischemic stroke. (author)

  12. Selective retrograde labeling of cholinergic neurons with [3H]choline

    International Nuclear Information System (INIS)

    Bagnoli, P.; Beaudet, A.; Stella, M.; Cuenod, M.

    1981-01-01

    Evidence is presented which is consistent with a specific retrograde labeling of cholinergic neurons following [ 3 H]choline application in their zone of termination. [ 3 H]Choline injection in the rat hippocampus leads to perikaryal retrograde labeling in the ipsilateral medial septal nuclease and nucleus of the diagonal band, thus delineating an established cholinergic pathway, while only diffuse presumably anterograde labeling was observed in the lateral septum, the entorhinal cortex, and the opposite hippocampus. After [ 3 H]choline injection in the pigeon visual Wulst, only the ipsilateral thalamic relay, of all inputs, showed similar perikaryal retrograde labeling, an observation supporting the suggestion that at least some thalamo-Wulst neurons are cholinergic

  13. Retrograde Signals: Integrators of Interorganellar Communication and Orchestrators of Plant Development.

    Science.gov (United States)

    de Souza, Amancio; Wang, Jin-Zheng; Dehesh, Katayoon

    2017-04-28

    Interorganellar cooperation maintained via exquisitely controlled retrograde-signaling pathways is an evolutionary necessity for maintenance of cellular homeostasis. This signaling feature has therefore attracted much research attention aimed at improving understanding of the nature of these communication signals, how the signals are sensed, and ultimately the mechanism by which they integrate targeted processes that collectively culminate in organellar cooperativity. The answers to these questions will provide insight into how retrograde-signal-mediated regulatory mechanisms are recruited and which biological processes are targeted, and will advance our understanding of how organisms balance metabolic investments in growth against adaptation to environmental stress. This review summarizes the present understanding of the nature and the functional complexity of retrograde signals as integrators of interorganellar communication and orchestrators of plant development, and offers a perspective on the future of this critical and dynamic area of research.

  14. Katanin spiral and ring structures shed light on power stroke for microtubule severing

    Energy Technology Data Exchange (ETDEWEB)

    Zehr, Elena; Szyk, Agnieszka; Piszczek, Grzegorz; Szczesna, Ewa; Zuo, Xiaobing; Roll-Mecak, Antonina

    2017-08-07

    Microtubule-severing enzymes katanin, spastin and fidgetin are AAA ATPases critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. Because of a lack of 3D structures, their mechanism has remained poorly understood. We report the first X-ray structure of the monomeric AAA katanin module and cryo-EM reconstructions of the hexamer in two conformations. These reveal an unexpected asymmetric arrangement of the AAA domains mediated by structural elements unique to severing enzymes and critical for their function. Our reconstructions show that katanin cycles between open spiral and closed ring conformations, depending on the ATP occupancy of a gating protomer that tenses or relaxes inter-protomer interfaces. Cycling of the hexamer between these conformations would provide the power stroke for microtubule severing.

  15. Template-free electrosynthesis of aligned poly(p-phenylene) microtubules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Poly(p-phenylene) (PPP) microtubules with diameters of 0.2-0.8μm and lengths of~10 (m have been synthesized by direct oxidation of benzene in the mixed electrolyte of boron trifluoride diethyl etherate (BFEE) and trifluoroacetic acid (TFA) (BFEE:TFA= 2:1, by volume), containing a certain amount of sodium dodecylbenzene- sulfonate (SDBS) as surfactant. The microtubules were grown vertically on the working electrode surface. The tubular morphology has been confirmed by scanning and transmission electron microscopies and the chain structure of the skin of the tubules has been characterized by Raman spectroscopy. The electrode property, monomer/surfactant molar ratio and the value of applied potential have strong effects on the morphology of the microtubules.

  16. A dissociation between anterograde and retrograde amnesia after treatment with electroconvulsive therapy: a naturalistic investigation.

    Science.gov (United States)

    O'Connor, Margaret; Lebowitz, Brian K; Ly, Jenny; Panizzon, Matthew S; Elkin-Frankston, Seth; Dey, Sangeeta; Bloomingdale, Kerry; Thall, Mark; Pearlman, Chester

    2008-06-01

    The aim of the present study is to investigate the cumulative effects of a clinically determined course of electroconvulsive therapy (ECT) on anterograde and retrograde amnesia. In this study, mood and memory were examined in the context of a protocol driven by therapeutic response, rather than by preordained research criteria. Twenty-two patients with major depressive disorder and 18 nondepressed controls were taught a series of faces and names before the initiation of ECT, and their retention of this information was examined after the end of treatment. Anterograde (ie, new learning) and retrograde memory (ie, recall of information learned before ECT) were assessed. Eleven ECT patients underwent unilateral (UL) stimulation, and 11 had a combination of UL and bilateral stimulation. Major depressive disorder patients and nondepressed controls participants were matched according to baseline memory abilities. Unilateral and unilateral/bilateral (UB) ECT patients were matched according to baseline depression and memory abilities. Treatment with ECT resulted in a dissociation between anterograde and retrograde memory; after treatment, major depressive disorder patients demonstrated significant retrograde amnesia, whereas there was no change in their anterograde memory. Unilateral and UB ECT patients performed equally well on tasks of anterograde memory. Contrary to our expectation, UB ECT was not associated with greater retrograde memory loss than was UL ECT treatment. However, a trend toward a group difference was present on 1 memory measure. Results of the study suggest that a clinical course of ECT is associated with isolated impairment for information learned before treatment (ie, retrograde memory), whereas there was no effect of ECT on posttreatment learning abilities (ie, anterograde memory).

  17. Retrograde or antegrade double-pigtail stent placement for malignant ureteric obstruction?

    International Nuclear Information System (INIS)

    Uthappa, M.C.; Cowan, N.C.

    2005-01-01

    AIM: To determine the optimum approach for double-pigtail stent placement in malignant ureteric obstruction. PATIENTS AND METHODS: Retrograde stent placement was attempted in a consecutive series of patients presenting with malignant ureteric obstruction. If retrograde stent placement was unsuccessful, percutaneous nephrostomy was performed immediately followed by elective antegrade stent placement. Identical digital C-arm fluoroscopy for image-guidance and conditions for anaesthesia and analgesia were employed for both retrograde and antegrade procedures. Identical 8 Fr (20-26 cm) double-pigtail hydrophilic coated stents were used for each approach. RESULTS: Retrograde placement was attempted in 50 ureters in 30 patients {19 male, 11 female, average age 61.4 yr (range 29-90 yr)} over a 24-month period. The success rate for retrograde ureteric stent placement was 50% (n=25/50). Technical failures were due to failure to identify the ureteric orifice (n=22), failure to cross the stricture (n=1), failure to pass the stent (n=1) and failure to pass a 4 Fr catheter (n=1). Antegrade placement was attempted in 25 ureters with a success rate of 96% (n=24/25). Failure in the one case was due to inability to cross an upper third stricture secondary to pyeloureteritis cystica. CONCLUSION: It is suggested that retrograde route should be the initial approach if imaging shows no involvement of ureteric orifice (UO), when nephrostomy is technically very difficult or in cases of solitary kidney. The antegrade route is preferred if imaging shows tumour occlusion of the UO or if there is a tight stricture very close to the uretero-vesical junction (UVJ) making purchase within the ureter difficult for crossing the stricture

  18. Twelve months follow-up after retrograde recanalization of superficial femoral artery chronic total occlusion

    Directory of Open Access Journals (Sweden)

    Joanna Wojtasik-Bakalarz

    2017-03-01

    Full Text Available Introduction : Fifty percent of cases of peripheral artery disease are caused by chronic total occlusion (CTO of the superficial femoral artery (SFA. Ten–fifteen percent of percutaneous SFA recanalization procedures are unsuccessful. In those cases the retrograde technique can increase the success rate of the procedure, but the long-term follow-up of such procedures is still unknown. Aim : To assess the efficacy and clinical outcomes during long-term follow-up after retrograde recanalization of the SFA. Material and methods: We included patients after at least one unsuccessful percutaneous antegrade recanalization of the SFA. Patients were evaluated for the procedural and clinical follow-up of mean time 13.9 months. Results: The study included 17 patients (7 females, 10 males who underwent percutaneous retrograde recanalization of the SFA from June 2011 to June 2015. The mean age of patients was 63 ±7 years. Retrograde puncture of the distal SFA was successful in all cases. A retrograde procedure was performed immediately after antegrade failure in 4 (23.5% patients and after a previously failed attempt in 13 (76.5% patients. The procedure was successful in 15 (88.2% patients, and unsuccessful in 2 (11.8% patients. Periprocedural complications included 1 peripheral distal embolization (successfully treated with aspiration thrombectomy, 1 bleeding event from the puncture site and 7 puncture site hematomas. During follow-up the all-cause mortality rate was 5.8% (1 patient, non-cardiac death. The primary patency rate at 12 months was 88.2% and secondary patency 100%. Conclusions : The retrograde SFA puncture seems to be a safe and successful technique for CTO recanalization and is associated with a low rate of perioperative and long-term follow-up complications.

  19. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  20. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization

  1. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis1[OPEN

    Science.gov (United States)

    Sawchuk, Megan G.; Scarpella, Enrico

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis (Arabidopsis thaliana) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. PMID:29192026

  2. A computational framework for cortical microtubule dynamics in realistically shaped plant cells.

    Directory of Open Access Journals (Sweden)

    Bandan Chakrabortty

    2018-02-01

    Full Text Available Plant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to two dimensional planes or geometrically simple surfaces in three dimensions, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, cell-edge induced catastrophes and cell-face induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Arabidopsis thaliana, Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the microtubule array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.

  3. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis.

    Science.gov (United States)

    Belteton, Samuel A; Sawchuk, Megan G; Donohoe, Bryon S; Scarpella, Enrico; Szymanski, Daniel B

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis ( Arabidopsis thaliana ) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. © 2018 American Society of Plant Biologists. All Rights Reserved.

  4. A computational framework for cortical microtubule dynamics in realistically shaped plant cells

    KAUST Repository

    Chakrabortty, Bandan; Blilou, Ikram; Scheres, Ben; Mulder, Bela M.

    2018-01-01

    Plant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to two dimensional planes or geometrically simple surfaces in three dimensions, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, cell-edge induced catastrophes and cell-face induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Arabidopsis thaliana, Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the microtubule array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.

  5. KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility.

    Directory of Open Access Journals (Sweden)

    Lee B Smith

    Full Text Available Spermatogenesis is a complex process reliant upon interactions between germ cells (GC and supporting somatic cells. Testicular Sertoli cells (SC support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1. We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC from 15.5 days post-coitum (dpc and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.

  6. Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Belteton, Samuel; Sawchuk, Megan G.; Donohoe, Bryon S.; Scarpella, Enrico; Szymanski, Daniel B.

    2017-11-30

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here we used Arabidopsis reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells, and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls.

  7. A computational framework for cortical microtubule dynamics in realistically shaped plant cells

    KAUST Repository

    Chakrabortty, Bandan

    2018-02-02

    Plant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to two dimensional planes or geometrically simple surfaces in three dimensions, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, cell-edge induced catastrophes and cell-face induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Arabidopsis thaliana, Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the microtubule array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.

  8. Calcium regulates ATP-sensitive microtubule binding by Chlamydomonas outer arm dynein.

    Science.gov (United States)

    Sakato, Miho; King, Stephen M

    2003-10-31

    The Chlamydomonas outer dynein arm contains three distinct heavy chains (alpha, beta, and gamma) that exhibit different motor properties. The LC4 protein, which binds 1-2 Ca2+ with KCa = 3 x 10-5 m, is associated with the gamma heavy chain and has been proposed to act as a sensor to regulate dynein motor function in response to alterations in intraflagellar Ca2+ levels. Here we genetically dissect the outer arm to yield subparticles containing different motor unit combinations and assess the microtubule-binding properties of these complexes both prior to and following preincubation with tubulin and ATP, which was used to inhibit ATP-insensitive (structural) microtubule binding. We observed that the alpha heavy chain exhibits a dominant Ca2+-independent ATP-sensitive MT binding activity in vitro that is inhibited by attachment of tubulin to the structural microtubule-binding domain. Furthermore, we show that ATP-sensitive microtubule binding by a dynein subparticle containing only the beta and gamma heavy chains does not occur at Ca2+ concentrations below pCa 6 but is maximally activated above pCa 5. This activity was not observed in mutant dyneins containing small deletions in the microtubule-binding region of the beta heavy chain or in dyneins that lack both the alpha heavy chain and the motor domain of the beta heavy chain. These findings strongly suggest that Ca2+ binding directly to a component of the dynein complex regulates ATP-sensitive interactions between the beta heavy chain and microtubules and lead to a model for how individual motor units are controlled within the outer dynein arm.

  9. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments.

    NARCIS (Netherlands)

    Gutierrez, R.; Lindeboom, J.J.; Paredez, A.R.; Emons, A.M.C.; Ehrhardt, D.W.

    2009-01-01

    Plant cell morphogenesis relies on the organization and function of two polymer arrays separated by the plasma membrane: the cortical microtubule cytoskeleton and cellulose microfibrils in the cell wall. Studies using in vivo markers confirmed that one function of the cortical microtubule array is

  10. Capu and Spire Assemble a Cytoplasmic Actin~Mesh that Maintains Microtubule Organization in the Drosophila Oocyte

    DEFF Research Database (Denmark)

    Dahlgaard, K.; Raposo, A.A.S.F.; Niccoli, T.

    2007-01-01

    Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin...

  11. Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing

    Science.gov (United States)

    Uchida, Shusaku; Martel, Guillaume; Pavlowsky, Alice; Takizawa, Shuichi; Hevi, Charles; Watanabe, Yoshifumi; Kandel, Eric R.; Alarcon, Juan Marcos; Shumyatsky, Gleb P.

    2014-01-01

    Changes in the stability of microtubules regulate many biological processes, but their role in memory remains unclear. Here we show that learning causes biphasic changes in the microtubule-associated network in the hippocampus. In the early phase, stathmin is dephosphorylated, enhancing its microtubule-destabilizing activity by promoting stathmin-tubulin binding, whereas in the late phase these processes are reversed leading to an increase in microtubule/KIF5-mediated localization of the GluA2 subunit of AMPA receptors at synaptic sites. A microtubule stabilizer paclitaxel decreases or increases memory when applied at the early or late phases, respectively. Stathmin mutations disrupt changes in microtubule stability, GluA2 localization, synaptic plasticity and memory. Aged wild-type mice show impairments in stathmin levels, changes in microtubule stability, and GluA2 localization. Blocking GluA2 endocytosis rescues memory deficits in stathmin mutant and aged wild-type mice. These findings demonstrate a role for microtubules in memory in young adult and aged individuals. PMID:25007915

  12. Investigation of retinal ganglion cells and axons of normal rats using fluorogold retrograde labeling

    International Nuclear Information System (INIS)

    Yin Xiaolei; Ye Jian; Chen Chunlin

    2006-01-01

    To investigate the retinal ganglion cells (RGCs) by means of fluorogold retrograde labeling, RGCs were labeled by injecting the fluorogold bilaterally into the superficial superior colliculus and lateral genicutate nucleus in six adult SD rats. One and two weeks (3 rats in each group) after injecting the fluorogold, RGCs FG-labeled were observed and the number of them were counted. The results showed that after a week mean density of fluorogold-labeled RGCs was 2210 ± 128/mm 2 , and it was 2164 ± 117/mm 2 after two weeks. Our conclusion is fluorogold retrograde labeling could be very useful in the research of RGCs. (authors)

  13. A novel fluorescent retrograde neural tracer: cholera toxin B conjugated carbon dots

    Science.gov (United States)

    Zhou, Nan; Hao, Zeyu; Zhao, Xiaohuan; Maharjan, Suraj; Zhu, Shoujun; Song, Yubin; Yang, Bai; Lu, Laijin

    2015-09-01

    The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde tracers.The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde

  14. Dimensions of the prostatic and membranous urethra in normal male dogs during maximum distension retrograde urethrocystography

    International Nuclear Information System (INIS)

    Feeney, D.A.; Johnston, G.R.; Osborne, C.A.; Tomlinson, M.J.

    1984-01-01

    Prostatic and membranous urethral diameter was measured in 24 normal mature male Beagle dogs during maximum distension retrograde urethrocystography. This technique involved retrograde urethral distension by infusion with contrast medium until the urinary bladder was distended and the vesicourethral junction remained opened as observed by fluoroscopy. Lateral and ventro-dorsal radiographs were made during subsequent injections of 5–10 ml of contrast medium. The prostatic urethra was consistently greater in diameter than the membranous urethra. However, the numerical ratio between the prostatic urethral diameter and the membranous urethral diameter varied among these dogs by a factor of 2 at the numerical extremes

  15. Hypotonic duodenography and endoscopic retrograde pancreatography in the diagnosis of pancreatic disease

    International Nuclear Information System (INIS)

    Lukes, P.J.; Rolny, P.; Nilson, A.E.; Gamklou, R.

    1981-01-01

    Hypotonic duodenography and endoscopic retrograde pancreatography were performed in 45 non-icteric patients with suggested pancreatic disease or long-standing upper gastrointestinal symptoms. The accuracy of each method in the diagnosis of pancreatic disease was compared. Hypotonic duodenography revealed pancreatitis in 48 per cent and ERP in 83 per cent of the cases. All 6 pancreatic tumours were detected at ERP and 3 at duodenography. The role of hypotonic duodenography and endoscopic retrograde pancreatography in the diagnosis of pancreatic disease is discussed. (Auth.)

  16. MR imaging of the entry, the abdominal communicating orifice, and the retrograde dissection in aortic dissections

    International Nuclear Information System (INIS)

    Yoshida, Y.; Mukohara, N.; Nakamura, K.; Sugimura, K.; Kono, M.

    1986-01-01

    MR imaging (1.5 T) was performed on 41 patients with aortic dissection. Entries were clearly visualized on the MR images as partial defects of the intimal flap in 18 of 21 patients (85.7%). In eight of ten patients, the locations of abdominal communicating orifices corresponded to the lowest signal intensities of the false lumina. Retrograde disections were diagnosed in all six patients from gradual increases in signal intensities of the false lumina toward the heart. MR imaging was very useful in diagnosing entries of the thoracic aorta, abdominal communicating orifices between true and false lumina, and retrograde dissections

  17. Radiation-related retrograde hydrogen isotope and K-Ar exchange in clay minerals

    International Nuclear Information System (INIS)

    Halter, C.; Pagel, M.; Sheppard, S.M.F.; Weber, F.; Clauer, N.

    1987-01-01

    Hydrogen and oxygen isotope studies have been widely applied to characterize the origin of fluids during ore-foaming processes. The primary isotope record, however, may be disturbed by retrograde exchange reactions, thus complicating the interpretation of the data. The susceptibility of minerals to retrograde isotope and chemical exchange is variable, reflecting differences in the mechanism and rate of isotope exchange. Results are presented on deuterium depletion, K/Ar ages and H 2 O + content of illites associated with uranium mineralization from the Athabasca basin (Canada). (author)

  18. Outcomes of infrageniculate retrograde versus transfemoral access for endovascular intervention for chronic lower extremity ischemia.

    Science.gov (United States)

    Taha, Ashraf G; Abou Ali, Adham N; Al-Khoury, George; Singh, Michael J; Makaroun, Michel S; Avgerinos, Efthymios D; Chaer, Rabih A

    2018-03-31

    Retrograde infrageniculate access is an alternative treatment strategy for patients who have failed to respond to antegrade endovascular intervention. This study compares the outcomes of infrageniculate retrograde arterial access with the conventional transfemoral access for the endovascular management of chronic lower extremity ischemia. This was a retrospective single-center review of retrograde endovascular intervention (REI) from 2012 to 2016. Indications for intervention, comorbidities, complications, procedural success, limb outcomes, and mortality were analyzed. Technical failure was defined as the inability to complete the procedure because of failed access or unsuccessful recanalization. Infrageniculate access and transfemoral access were obtained with ultrasound or angiographic roadmap guidance. Patency rates were calculated for technically successful interventions. There were 47 patients (85% presenting with critical limb ischemia) who underwent sheathless REI after failed antegrade recanalization of TransAtlantic Inter-Society Consensus class D infrainguinal lesions, whereas 93 patients (83% with critical limb ischemia) underwent standard transfemoral access. There were 16 (34%) femoropopliteal, 14 (30%) tibial, and 17 (36%) multilevel interventions in the retrograde group compared with 41 (41%) femoropopliteal, 20 (20%) tibial, and 39 (39%) multilevel interventions in the transfemoral group. Access sites for the retrograde group included the dorsalis pedis (26%), midcalf peroneal (24%), anterior tibial (22%), posterior tibial (26%), and popliteal (2%) arteries. Overall technical success was achieved in 57% of the retrograde group compared with 78% of the transfemoral group. Mean follow-up was 20 months (range, 1-45 months). There were no significant differences in the primary patency rates between the two groups at 1 year and 2 years. The primary assisted patency rates were significantly better in the transfemoral group at 1 year (66% vs 46%; P

  19. Radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy for gingival carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Y.; Hata, M.; Koike, I.; Inoue, T. [Yokohama City University Graduate School of Medicine, Department of Radiology, Kanazawa-ku, Yokohama, Kanagawa (Japan); Mitsudo, K.; Koizumi, T.; Oguri, S.; Kioi, M.; Tohnai, I. [Yokohama City University Graduate School of Medicine, Department of Oral and Maxillofacial Surgery, Yokohama, Kanagawa (Japan); Omura, M. [Shonankamakura General Hospital, Department of Radiation Oncology, Kamakura, Kanagawa (Japan)

    2014-02-15

    The aim of this study was to review the efficacy and toxicity of radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy in the treatment of gingival carcinoma. In all, 34 patients (21 men and 13 women) with squamous cell carcinoma of the gingiva underwent radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy. Treatment consisted of daily external irradiation and concurrent retrograde superselective intra-arterial infusion with cisplatin and docetaxel. A median total dose of 60 Gy in 30 fractions was delivered to tumors. Of the 34 patients, 29 (85 %) achieved a complete response (CR) and 5 had residual tumors. Of the 29 patients with a CR, 2 had local recurrences and 1 had distant metastasis 1-15 months after treatment. Twenty-six of the 36 patients had survived at a median follow-up time of 36 months (range 12-79 months); 4 died of cancer and 4 died of non-cancer-related causes. At both 3 and 5 years after treatment, the overall survival rates were 79 % and the cause-specific survival rates were 85 %. Osteoradionecrosis of the mandibular bone only developed in 1 patient after treatment. Radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy was effective and safe in the treatment of gingival carcinoma. This treatment may be a promising curative and organ-preserving treatment option for gingival carcinoma. (orig.) [German] Das Ziel dieser Studie war die Ueberpruefung der Effizienz und Toxizitaet einer Strahlenbehandlung des Gingivakarzinoms mit gleichzeitiger retrograder, superselektiver intraarterieller Chemotherapie. Insgesamt 34 Patienten (21 Maenner und 13 Frauen) mit Zahnfleischplattenzellkarzinom erhielten eine Strahlenbehandlung mit gleichzeitiger retrograder, superselektiver intraarterieller Chemotherapie. Die Behandlung umfasste eine taegliche externe Bestrahlung mit gleichzeitiger retrograder, superselektiver intraarterieller Infusion von Cisplatin und

  20. Heuristic consequences of a load of oxygen in microtubules.

    Science.gov (United States)

    Denis, Pierre A

    2014-04-01

    The current cell oxygen paradigm shows some major gaps that have not yet been resolved. Something seems to be lacking for the comprehensive statement of the oxygen distribution in the cell, especially the low cytoplasmic oxygen level. The entrapment of oxygen in microtubules (MTs) resolves the latter observation, as well as the occurrence of an extensive cytoplasmic foam formation. It leads to a novel oxygen paradigm for cells. During the steady-state treadmilling, the mobile cavity would absorb oxygenated cytoplasm forward, entrap gas nuclei and concentrate them. A fluorescence method is described to confirm the in vitro load of oxygen in MTs during their periodic growths and shrinkages. The latter operating mechanism is called the gas dynamic instability (GDI) of MTs. Several known biosystems could rest on the GDI. (1) The GTP-cap is linked with the gas meniscus encountered in a tube filled with gas. The GTP hydrolysis is linked to the conformational change of the GTPase domain according to the bubble pressure, and to the shaking of protofilaments with gas particles (soliton-like waves). (2) The GDI provides a free energy water pump because water molecules have to escape from MT pores when foam concentrates within the MT. Beside ATP hydrolysis in motor proteins, the GDI provides an additional driving force in intracellular transport of cargo. The water streams flowing from the MT through slits organize themselves as water layers between the cargo and the MT surface, and break ionic bridges. It makes the cargo glide over a water rail. (3) The GDI provides a universal motor for chromosome segregation because the depolymerization of kinetochorial MTs is expected to generate a strong cytoplasmic foam. Chromosomes are sucked up according to the pressure difference (or density difference) applied to opposite sides of the kinetochore, which is in agreement with Archimedes' principle of buoyancy. Non-kinetochorial MTs reabsorb foam during GDI. Last, the mitotic spindle

  1. Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Vukašinović, Nemanja; Oda, Y.; Pejchar, Přemysl; Synek, Lukáš; Pečenková, Tamara; Rawat, Anamika; Sekereš, Juraj; Potocký, Martin; Žárský, Viktor

    2017-01-01

    Roč. 213, č. 3 (2017), s. 1052-1067 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA15-14886S Grant - others:GA MŠk(CZ) LO1417 Institutional support: RVO:61389030 Keywords : secondary cell-wall * tracheary element differentiation * cortical microtubules * plasma-membrane * vesicle trafficking * secretory pathways * auxin transport * exocytosis * deposition * thaliana * conserved oligomeric Golgi (COG) complex * exocyst * microtubules * secondary cell wall * tracheary elements * xylem Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 7.330, year: 2016

  2. Retrograde shear rate in formerly preeclamptic and healthy women before and after exercise training: relationship with endothelial function.

    NARCIS (Netherlands)

    Scholten, R.R.; Spaanderman, M.E.A.; Green, D.J.; Hopman, M.T.E.; Thijssen, D.H.J.

    2014-01-01

    Blood flow patterns in conduit arteries characterized by high levels of retrograde shear stress can be detrimental for vascular health. In this study we examined whether retrograde shear rate and endothelial function are related in healthy and formerly preeclamptic (PE) women and whether this

  3. Novel polymeric materials from triglycerides

    Science.gov (United States)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  4. Novel solid state polymeric batteries

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, A.; Glasse, M.; Latham, R.; Linford, R.

    1986-01-01

    AC conductivity measurements have been performed on a number of polymeric electrolytes containing Mg, Ca, Sr and Zn perchlorates and Mg and Ca thiocyanates. The electrolytes were characterized using DSC. Results are reported of preliminary tests of cells incorporating anodes of the above metals. 11 refs.

  5. Reactive surfactants in heterophase polymerization

    NARCIS (Netherlands)

    Guyot, A.; Tauer, K.; Asua, J.M.; Es, van J.J.G.S.; Gauthier, C.; Hellgren, A.C.; Sherrington, D.C.; Montoya-Goni, A.; Sjöberg, M.; Sindt, O.; Vidal, F.F.M.; Unzue, M.; Schoonbrood, H.A.S.; Schipper, E.T.W.M.; Lacroix-Desmazes, P.

    1999-01-01

    This paper summarizes the work carried out during 3 years in a Network of the program "Human Capital and Mobility" of the European Union CHRX 93-0159 entitled "Reactive surfactants in heterophase polymerization for high performance polymers". A series of about 25 original papers will be published in

  6. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Hoes, C.J.T.; Feijen, Jan

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  7. Preparations of spherical polymeric particles from Tanzanian ...

    African Journals Online (AJOL)

    Spherical Polymeric Particles (SPP) have been prepared from Tanzanian Cashew Nut Shell Liquid (CNSL) by suspension polymerization technique involving either step-growth or chain- growth polymerization mechanisms. The sizes of the SPP, which ranged from 0.1 to 2.0 mm were strongly influenced by the amounts of ...

  8. Challenges and opportunities in the high-resolution cryo-EM visualization of microtubules and their binding partners.

    Science.gov (United States)

    Nogales, Eva; Kellogg, Elizabeth H

    2017-10-01

    As non-crystallizable polymers, microtubules have been the target of cryo-electron microscopy (cryo-EM) studies since the technique was first established. Over the years, image processing strategies have been developed that take care of the unique, pseudo-helical symmetry of the microtubule. With recent progress in data quality and data processing, cryo-EM reconstructions are now reaching resolutions that allow the generation of atomic models of microtubules and the factors that bind them. These include cellular partners that contribute to microtubule cellular functions, or small ligands that interfere with those functions in the treatment of cancer. The stage is set to generate a family portrait for all identified microtubule interacting proteins and to use cryo-EM as a drug development tool in the targeting of tubulin. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  10. Glycine Polymerization on Oxide Minerals.

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  11. Microtubule organization in three-dimensional confined geometries: Evaluating the role of elasticity through a combined in vitro and modeling approach

    NARCIS (Netherlands)

    Cosentino Lagomarsino, M.; Tanase, C.; Vos, J.W.; Emons, A.M.C.; Mulder, B.; Dogterom, M.

    2007-01-01

    Microtubules or microtubule bundles in cells often grow longer than the size of the cell, which causes their shape and organization to adapt to constraints imposed by the cell geometry. We test the reciprocal role of elasticity and confinement in the organization of growing microtubules in a

  12. Retrograde tracing of zinc-enriched (ZEN) neuronal somata in rat spinal cord

    DEFF Research Database (Denmark)

    Wang, Z.; Danscher, G.; Jo, S.M.

    2001-01-01

    neurons have relatively short axons or boutons en passage close to the neuronal origin. Ultrastructurally, the retrogradely transported zinc selenide clusters were found in the lysosomes of ZEN somata and proximal dendrites. Electron microscopic studies also revealed two different kinds of ZEN terminals...

  13. Antegrade Ureteral Stenting is a Good Alternative for the Retrograde Approach.

    Science.gov (United States)

    van der Meer, Rutger W; Weltings, Saskia; van Erkel, Arian R; Roshani, Hossain; Elzevier, Henk W; van Dijk, Lukas C; van Overhagen, Hans

    2017-07-01

    Double J (JJ) stents for treating obstructive ureteral pathology are generally inserted through a retrograde route with cystoscopic guidance. Antegrade percutaneous insertion using fluoroscopy can be performed alternatively but is less known. Indications, success rate and complications of antegrade ureteral stenting were evaluated. Data of consecutive patients in which antegrade ureteral stenting was performed were retrospectively analysed using the radiology information system and patient records. Patient characteristics, details of the antegrade JJ stent insertion procedure and registered complications were collected. Furthermore, it was investigated if prior to the antegrade procedure a retrograde attempt for JJ stent insertion was performed. Total 130 attempts for antegrade JJ stent insertion were performed in 100 patients. A percutaneous nephrostomy catheter had already been placed in the majority of kidneys (n = 109) for initial treatment of hydronephrosis. Most prevelant indication for a JJ stent was obstructive ureteral pathology due to malignancy (n = 63). A JJ stent was successfully inserted in 125 of 130 procedures. In 21 cases, previous retrograde ureteral stenting had failed but, subsequent antegrade ureteral stenting was successful. There were 8 procedure related complications; 6 infections, 1 false tract and 1 malposition. Antegrade percutaneous insertion of a JJ stent is a good alternative for retrograde insertion.

  14. Excimer laser coronary atherectomy in septal collaterals during retrograde recanalization of a chronic total occlusion

    Directory of Open Access Journals (Sweden)

    Bernward Lauer

    2011-09-01

    Full Text Available Management of chronic total occlusions has been refined through the development of a retrograde approach via collateral pathways. We describe the use of Excimer Laser Coronary Atherectomy in the septal collaterals. This appraoch was not yet described in the literature.

  15. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons.

    Science.gov (United States)

    Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam

    2018-06-06

    Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Cervical Retrograde Spinal Cord Stimulation Lead Placement to Treat Failed Back Surgery Syndrome: A Case Report

    NARCIS (Netherlands)

    Helmond, N. van; Kardaszewski, C.N.; Chapman, K.B.

    2017-01-01

    Spinal cord stimulation is an effective treatment modality for refractory neuropathic pain conditions, but the placement of leads can be challenging due to unforeseen anatomical variations. We used a retrograde C7-T1 approach to place a lead at the bottom of T8 in a patient suffering from failed

  17. Atrial activation during atrioventricular nodal reentrant tachycardia: studies on retrograde fast pathway conduction

    NARCIS (Netherlands)

    Katritsis, Demosthenes G.; Ellenbogen, Kenneth A.; Becker, Anton E.

    2006-01-01

    Detailed right and left septal mapping of retrograde atrial activation during typical atrioventricular nodal reentrant tachycardia (AVNRT) has not been undertaken and may provide insight into the complex physiology of AVNRT, especially the anatomic localization of the fast and slow pathways. The

  18. Changing strategies of the retrograde approach for chronic total occlusion during the past 7 years

    NARCIS (Netherlands)

    Muramatsu, Toshiya; Tsukahara, Reiko; Ito, Yoshiaki; Ishimori, Hiroshi; Park, Seung-Jung; de Winter, Robert; Shokry, Khaled; Wang, Lefeng; Chen, Jiyan; Wang, Haichang

    2013-01-01

    We reviewed the technical changes and results achieved with the retrograde approach since we introduced it 7 years ago. The subjects were 1,268 patients who were treated for CTO between January 2004 and December 2010. They were investigated with respect to the success rate, the frequency of

  19. Radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy for gingival carcinoma

    International Nuclear Information System (INIS)

    Mukai, Y.; Hata, M.; Koike, I.; Inoue, T.; Mitsudo, K.; Koizumi, T.; Oguri, S.; Kioi, M.; Tohnai, I.; Omura, M.

    2014-01-01

    The aim of this study was to review the efficacy and toxicity of radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy in the treatment of gingival carcinoma. In all, 34 patients (21 men and 13 women) with squamous cell carcinoma of the gingiva underwent radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy. Treatment consisted of daily external irradiation and concurrent retrograde superselective intra-arterial infusion with cisplatin and docetaxel. A median total dose of 60 Gy in 30 fractions was delivered to tumors. Of the 34 patients, 29 (85 %) achieved a complete response (CR) and 5 had residual tumors. Of the 29 patients with a CR, 2 had local recurrences and 1 had distant metastasis 1-15 months after treatment. Twenty-six of the 36 patients had survived at a median follow-up time of 36 months (range 12-79 months); 4 died of cancer and 4 died of non-cancer-related causes. At both 3 and 5 years after treatment, the overall survival rates were 79 % and the cause-specific survival rates were 85 %. Osteoradionecrosis of the mandibular bone only developed in 1 patient after treatment. Radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy was effective and safe in the treatment of gingival carcinoma. This treatment may be a promising curative and organ-preserving treatment option for gingival carcinoma. (orig.) [de

  20. Closing the medullary canal after retrograde nail removal using a bioabsorbable bone plug: technical tip

    NARCIS (Netherlands)

    Schepers, T.; Vogels, L. M. M.

    2012-01-01

    We describe a simple technique for closure of the intra-articular opening after the removal of a retrograde femur nail. With the use of a gelatine bioabsorbable bone plug the medullary canal is closed, reducing leakage of blood and cancellous bone particles from the bone into the knee joint

  1. Retrograde axoplasmic flow of serotonin in central mono-aminergic neurons

    International Nuclear Information System (INIS)

    Leger, Lucienne; Pujol, J.-F.; Bobillier, Pierre; Jouvet, Michel

    1977-01-01

    Following an injection of 3 H-5 HT in the neostriatum of the Rat, the tracer is transported by axoplasmic retrograde flow to the cell groups containing mono-aminergic neurons which are known or thought to have afferences to this structure: substantia nigra, dopaminergic group A8 and n. raphe dorsalis [fr

  2. Is the 'Trondsen Discriminant Function' useful in patients referred for endoscopic retrograde cholangiopancreatography?

    DEFF Research Database (Denmark)

    Ainsworth, A P; Pless, T; Mortensen, M B

    2003-01-01

    BACKGROUND: Ideally, patients should only be referred to endoscopic retrograde cholangiopancreatography (ERCP) if therapy is indicated. The aim of this study was to evaluate whether or not the 'Trondsen Discriminant Function' (DF) could be used for selecting patients directly for ERCP. METHODS...

  3. The therapeutic effect of crocin on ketamine-induced retrograde amnesia in rats

    Directory of Open Access Journals (Sweden)

    Namdar Yousefvand

    2016-09-01

    Full Text Available Introduction: The glutamatergic system plays an important role in learning and memory. Administration of crocus sativus (Saffron or its constituent, crocin, facilitates the formation of memory. This research investigated the effect of crocin on antagonizing retrograde amnesia induced by ketamine, a glutamatergic receptor antagonist, in rats by shuttle box. Methods: Male Wistar rats were tested to measure their learning behavior in the passive avoidance task. All animals were trained by a 1 mA shock. The drugs were injected immediately after the training was successfully performed. The animals were tested 24h after training to measure Step Through Latency (STL. Results: On the test day, administration of ketamine (12 mg/kg, ip impaired the memory after training. Different doses of crocin (2, 5 or 10 mg/kg, ip were injected 30 min after ketamine, but only 2 mg/kg crocin could improve retrograde amnesia and 5 and 10 mg/kg doses did not have any significant effect on retrograde amnesia. Moreover, administration of crocin (2, 5 or 10 mg/kg, ip after training had no significant impact on passive avoidance memory by itself. Conclusion: Considering the therapeutic effect of post-training administration of crocin on ketamine-induced retrograde amnesia, it can be argued that crocin has an interaction with glutamatergic system in formation of passive avoidance memory in rats.

  4. Is the 'Trondsen Discriminant Function' useful in patients referred for endoscopic retrograde cholangiopancreatography?

    DEFF Research Database (Denmark)

    Ainsworth, A P; Pless, T; Mortensen, M B

    2003-01-01

    BACKGROUND: Ideally, patients should only be referred to endoscopic retrograde cholangiopancreatography (ERCP) if therapy is indicated. The aim of this study was to evaluate whether or not the 'Trondsen Discriminant Function' (DF) could be used for selecting patients directly for ERCP. METHODS: T...

  5. Reexposure to the Amnestic Agent Alleviates Cycloheximide-Induced Retrograde Amnesia for Reactivated and Extinction Memories

    Science.gov (United States)

    Briggs, James F.; Olson, Brian P.

    2013-01-01

    We investigated whether reexposure to an amnestic agent would reverse amnesia for extinction of learned fear similar to that of a reactivated memory. When cycloheximide (CHX) was administered immediately after a brief cue-induced memory reactivation (15 sec) and an extended extinction session (12 min) rats showed retrograde amnesia for both…

  6. Retrograde mineral and fluid evolution in high-pressure metapelites (Schistes Lustres unit, Western Alps).

    NARCIS (Netherlands)

    Agard, Ph.; Goffe, B.; Touret, J.L.R.; Vidal, O.

    2000-01-01

    Fluid inclusions have been analysed in successive generations of syn-metamorphic segregations within low-grade, high-pressure, low-temperature (HP-LT) metapelites from the Western Alps. Fluid composition was then compared to mass transfer deduced from outcrop-scale retrograde mineral reactions. Two

  7. A Hands-on Exploration of the Retrograde Motion of Mars as Seen from the Earth

    Science.gov (United States)

    Pincelli, M. M.; Otranto, S.

    2013-01-01

    In this paper, we propose a set of activities based on the use of a celestial simulator to gain insights into the retrograde motion of Mars as seen from the Earth. These activities provide a useful link between the heliocentric concepts taught in schools and those tackled in typical introductory physics courses based on classical mechanics for…

  8. Behavioral and Functional Neuroanatomical Correlates of Anterograde Autobiographical Memory in Isolated Retrograde Amnesic Patient M. L.

    Science.gov (United States)

    Levine, Brian; Svoboda, Eva; Turner, Gary R.; Mandic, Marina; Mackey, Allison

    2009-01-01

    Patient M. L. [Levine, B., Black, S. E., Cabeza, R., Sinden, M., Mcintosh, A. R., Toth, J. P., et al. (1998). "Episodic memory and the self in a case of isolated retrograde amnesia." "Brain", "121", 1951-1973], lost memory for events occurring before his severe traumatic brain injury, yet his anterograde (post-injury) learning and memory appeared…

  9. The immune impact of mimic endoscopic retrograde appendicitis therapy and appendectomy on rabbits of acute appendicitis.

    Science.gov (United States)

    Liu, Suqin; Pei, Fenghua; Wang, Xinhong; Li, Deliang; Zhao, Lixia; Song, Yanyan; Chen, Zhendong; Liu, Bingrong

    2017-09-12

    This study was conducted to evaluate the immune impact of mimic endoscopic retrograde appendicitis therapy and appendectomy on rabbits of acute suppurative appendicitis and to determine whether TLR4/MYD88/NF-κB signaling pathway was activated in this process. 48 rabbits were assigned into 4 groups: group I, the mimic endoscopic retrograde appendicitis therapy group; group II, the appendectomy group; group III, the model group; and group IV, the blank group. White blood cells decreased, while levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, interleukin-4, and interleukin-10 increased on the 2 nd day in group I and II. IgA in feces decreased at 2 weeks, while fecal microbiota changed at 2 and 4 weeks after appendectomy. CD8 + cells in appendix of group I increased within 8 weeks. Upregulated expression of TLR4, MYD88, and nuclear NF-κB were detected on the 2 nd day in group I and II. Mimic endoscopic retrograde appendicitis therapy and appendectomy are effective ways for acute suppurative appendicitis. Mimic endoscopic retrograde appendicitis therapy was more preferable due to its advantage in maintaining intestinal immune function. TLR4/MYD88/NF-κB signaling pathway was activated in acute phase of appendicitis.

  10. Self-repair in a Bidirectionally Coupled Astrocyte-Neuron (AN System based on Retrograde Signaling

    Directory of Open Access Journals (Sweden)

    John eWade

    2012-09-01

    Full Text Available In this paper we demonstrate that retrograde signaling via astrocytes may underpin self-repair in the brain. Faults manifest themselves in silent or near silent neurons caused by low transmission probability synapses; the enhancement of the transmission probability of a healthy neighbouring synapse by retrograde signaling can enhance the transmission probability of the faulty synapse (repair. Our model of self-repair is based on recent research showing that retrograde signaling via astrocytes can increase the probability of neurotransmitter release at damaged or low transmission probability synapses. The model demonstrates that astrocytes are capable of bidirectional communication with neurons which leads to modulation of synaptic activity, and that indirect signaling through retrograde messengers such as endocannabinoids leads to modulation of synaptic transmission probability. Although our model operates at the level of cells, it provides a new research direction on brain-like self-repair which can be extended to networks of astrocytes and neurons. It also provides a biologically inspired basis for developing highly adaptive, distributed computing systems that can, at fine levels of granularity, fault detect, diagnose and self-repair autonomously, without the traditional constraint of a central fault detect/repair unit.

  11. Retrograde approach for the recanalization of coronary chronic total occlusion: collateral selection and collateral related complication.

    Science.gov (United States)

    Ma, Jian-Ying; Qian, Ju-Ying; Ge, Lei; Fan, Bing; Wang, Qi-Bing; Yan, Yan; Zhang, Feng; Yao, Kang; Huang, Dong; Ge, Jun-Bo

    2013-03-01

    The retrograde approach through collaterals has been applied in the treatment of chronic total occlusion (CTO) lesions during percutaneous recanalization of coronary arteries. This study was to investigate the success rate of recanalization and collateral related complications in patients when using the retrograde approach. Eighty-four cases subjected to retrograde approach identified from July 2005 to July 2012 were included in this study. Patient characteristics, procedural outcomes and in-hospital clinical events were evaluated. Mean age of the patient was (59.6 ± 11.2) years old and 91.7% were men. The target CTO lesions were distributed among the left anterior descending artery in 45 cases (53.5%), left circumflex artery in one case (1.2%), right coronary artery in 34 cases (40.5%), and left main in four cases (4.8%). The overall success rate of recanalization was 79.8%. The septal collateral was three times more frequently used for retrograde access than the epicardial collateral, 68/84 (81%) vs. 16/84 (19%). Successful wire passage through the collateral channel was achieved in 58 (72.6%) patients. The success rate of recanalization was 93.1% (54/58) in patients with and 50% (13/26) in patients without successful retrograde wire passage of the collateral channel (P collaterals was achieved in 49 of 68 septal collaterals (72.1%) and in 9 of 16 epicardial collaterals (56.3%) (P = NS). There was no significant difference between the septal collateral group and the epicardial group in the success rate of recanalization after retrograde wire crossing the collaterals (91.8% vs. 100%, P > 0.05). CART or reverse CART technique was used in 15 patients, and 14 patients (93.3%) were recanalized successfully. Collateral related perforation occurred in three (18.8%) cases with the epicardial collateral as the first choice (compared with the septal collateral group (0), P collaterals. The retrograde approach is an effective technique to recanalize CTO lesions, the septal

  12. CEP295 interacts with microtubules and is required for centriole elongation.

    Science.gov (United States)

    Chang, Ching-Wen; Hsu, Wen-Bin; Tsai, Jhih-Jie; Tang, Chieh-Ju C; Tang, Tang K

    2016-07-01

    Centriole duplication is a tightly ordered process during which procentrioles are assembled in G1-S and elongate during S and G2. Here, we show that human CEP295 (Drosophila Ana1) is not essential for initial cartwheel assembly, but is required to build distal half centrioles during S and G2. Using super-resolution and immunogold electron microscopy, we demonstrate that CEP295 is recruited to the proximal end of procentrioles in early S phase, when it is also localized at the centriolar microtubule wall that surrounds the human SAS6 cartwheel hub. Interestingly, depletion of CEP295 not only inhibits the recruitments of POC5 and POC1B to the distal half centrioles in G2, resulting in shorter centrioles, it also blocks the post-translational modification of centriolar microtubules (e.g. acetylation and glutamylation). Importantly, our results indicate that CEP295 directly interacts with microtubules, and that excess CEP295 could induce the assembly of overly long centrioles. Furthermore, exogenous expression of the N-terminal domain of CEP295 exerts a dominant-negative effect on centriole elongation. Collectively, these findings suggest that CEP295 is essential for building the distal half centrioles and for post-translational modification of centriolar microtubules. © 2016. Published by The Company of Biologists Ltd.

  13. Dissecting the function and assembly of acentriolar microtubule organizing centers in Drosophila cells in vivo.

    Directory of Open Access Journals (Sweden)

    Janina Baumbach

    2015-05-01

    Full Text Available Acentriolar microtubule organizing centers (aMTOCs are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2--the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems. We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs.

  14. The current of a particle along a microtubule in microscopic plasma

    International Nuclear Information System (INIS)

    Li Wei; Chen Junfang; Wang Teng; Lai Xiuqiong

    2008-01-01

    Transport of a particle along the axis of a microtubule in a plasma-enhanced chemical vapor deposition (PECVD) system is investigated. The current, respectively, as a function of the temperature, the magnetic field and the external force is obtained. The value and direction of the current may be controlled by changing the above parameters

  15. Phospholipase D family interactions with the cytoskeleton: isoform delta promotes plasma membrane anchoring of cortical microtubules

    Czech Academy of Sciences Publication Activity Database

    Andreeva, Z.; Ho, A. Y. Y.; Barthet, M. M.; Potocký, Martin; Bezvoda, R.; Žárský, Viktor; Marc, J.

    2009-01-01

    Roč. 36, č. 7 (2009), s. 600-612 ISSN 1445-4408 R&D Projects: GA AV ČR IAA601110916 Institutional research plan: CEZ:AV0Z50380511 Keywords : Allium * Arabidopsis * F-actin-microtubule interactions Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.678, year: 2009

  16. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human-Induced Pluripotent Cells

    Science.gov (United States)

    2016-09-01

    cells derived from human induced pluripotent stem cells (hiPSCs), originating from GW...AWARD NUMBER: W81XWH-15-1-0433 TITLE: Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human- Induced Pluripotent Cells ...A simple blood sample is taken from the soldier, and then transduced, using reliable established methods , to make the cells pluripotent .

  17. Wolbachia utilizes host microtubules and Dynein for anterior localization in the Drosophila oocyte.

    Directory of Open Access Journals (Sweden)

    Patrick M Ferree

    2005-10-01

    Full Text Available To investigate the role of the host cytoskeleton in the maternal transmission of the endoparasitic bacteria Wolbachia, we have characterized their distribution in the female germ line of Drosophila melanogaster. In the germarium, Wolbachia are distributed to all germ cells of the cyst, establishing an early infection in the cell destined to become the oocyte. During mid-oogenesis, Wolbachia exhibit a distinct concentration between the anterior cortex and the nucleus in the oocyte, where many bacteria appear to contact the nuclear envelope. Following programmed rearrangement of the microtubule network, Wolbachia dissociate from this anterior position and become dispersed throughout the oocyte. This localization pattern is distinct from mitochondria and all known axis determinants. Manipulation of microtubules and cytoplasmic Dynein and Dynactin, but not Kinesin-1, disrupts anterior bacterial localization in the oocyte. In live egg chambers, Wolbachia exhibit movement in nurse cells but not in the oocyte, suggesting that the bacteria are anchored by host factors. In addition, we identify mid-oogenesis as a period in the life cycle of Wolbachia in which bacterial replication occurs. Total bacterial counts show that Wolbachia increase at a significantly higher rate in the oocyte than in the average nurse cell, and that normal Wolbachia levels in the oocyte depend on microtubules. These findings demonstrate that Wolbachia utilize the host microtubule network and associated proteins for their subcellular localization in the Drosophila oocyte. These interactions may also play a role in bacterial motility and replication, ultimately leading to the bacteria's efficient maternal transmission.

  18. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission

    International Nuclear Information System (INIS)

    Bowes, Timothy; Gupta, Radhey S.

    2008-01-01

    Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as 'mitochondrial extensions'. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission

  19. The imidazopyridine derivative JK184 reveals dual roles for microtubules in Hedgehog signaling.

    Science.gov (United States)

    Cupido, Tommaso; Rack, Paul G; Firestone, Ari J; Hyman, Joel M; Han, Kyuho; Sinha, Surajit; Ocasio, Cory A; Chen, James K

    2009-01-01

    Eradicating hedgehogs: The title molecule has been previously identified as a potent inhibitor of the Hedgehog signaling pathway, which gives embryonic cells information needed to develop properly. This molecule is shown to modulate Hedgehog target gene expression by depolymerizing microtubules, thus revealing dual roles of the cytoskeleton in pathway regulation (see figure).

  20. Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach

    Czech Academy of Sciences Publication Activity Database

    Havelka, Daniel; Deriu, M.A.; Cifra, Michal; Kučera, Ondřej

    2017-01-01

    Roč. 7, č. 1 (2017), č. článku 4227. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA15-17102S Institutional support: RVO:67985882 Keywords : Continuum model * Protein microtubules * Molecular-dymamics Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.259, year: 2016