WorldWideScience

Sample records for retinal neurons respond

  1. Abnormal Glycogen Storage by Retinal Neurons in Diabetes.

    Science.gov (United States)

    Gardiner, Tom A; Canning, Paul; Tipping, Nuala; Archer, Desmond B; Stitt, Alan W

    2015-12-01

    It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats. Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS). Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors. The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.

  2. Endogenous retinal neural stem cell reprogramming for neuronal regeneration

    Directory of Open Access Journals (Sweden)

    Romain Madelaine

    2017-01-01

    Full Text Available In humans, optic nerve injuries and associated neurodegenerative diseases are often followed by permanent vision loss. Consequently, an important challenge is to develop safe and effective methods to replace retinal neurons and thereby restore neuronal functions and vision. Identifying cellular and molecular mechanisms allowing to replace damaged neurons is a major goal for basic and translational research in regenerative medicine. Contrary to mammals, the zebrafish has the capacity to fully regenerate entire parts of the nervous system, including retina. This regenerative process depends on endogenous retinal neural stem cells, the Müller glial cells. Following injury, zebrafish Müller cells go back into cell cycle to proliferate and generate new neurons, while mammalian Müller cells undergo reactive gliosis. Recently, transcription factors and microRNAs have been identified to control the formation of new neurons derived from zebrafish and mammalian Müller cells, indicating that cellular reprogramming can be an efficient strategy to regenerate human retinal neurons. Here we discuss recent insights into the use of endogenous neural stem cell reprogramming for neuronal regeneration, differences between zebrafish and mammalian Müller cells, and the need to pursue the identification and characterization of new molecular factors with an instructive and potent function in order to develop theurapeutic strategies for eye diseases.

  3. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice

    Science.gov (United States)

    Strazzeri, Jennifer M.; Williams, David R.; Merigan, William H.

    2018-01-01

    Here we demonstrate the application of a method that could accelerate the development of novel therapies by allowing direct and repeatable visualization of cellular function in the living eye, to study loss of vision in animal models of retinal disease, as well as evaluate the time course of retinal function following therapeutic intervention. We use high-resolution adaptive optics scanning light ophthalmoscopy to image fluorescence from the calcium sensor GCaMP6s. In mice with photoreceptor degeneration (rd10), we measured restored visual responses in ganglion cell layer neurons expressing the red-shifted channelrhodopsin ChrimsonR over a six-week period following significant loss of visual responses. Combining a fluorescent calcium sensor, a channelrhodopsin, and adaptive optics enables all-optical stimulation and recording of retinal neurons in the living eye. Because the retina is an accessible portal to the central nervous system, our method also provides a novel non-invasive method of dissecting neuronal processing in the brain. PMID:29596518

  4. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia

    DEFF Research Database (Denmark)

    Ryskamp, Daniel A; Jo, Andrew O; Frye, Amber M

    2014-01-01

    that were inhibited by TRPV4 antagonists and absent in TRPV4(-/-) Müller cells. Glial TRPV4 signals were phospholipase A2- and cytochrome P450-dependent, characterized by slow-onset and Ca(2+) waves, and, in excess, were sufficient to induce reactive gliosis. In contrast, neurons responded to TRPV4 agonists...... and swelling with fast, inactivating Ca(2+) signals that were independent of phospholipase A2. Our results support a model whereby swelling and proinflammatory signals associated with arachidonic acid metabolites differentially gate TRPV4 in retinal neurons and glia, with potentially significant consequences...

  5. Macroglia-derived thrombospondin 2 regulates alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure.

    Science.gov (United States)

    Wang, Shuchao; Hu, Tu; Wang, Zhen; Li, Na; Zhou, Lihong; Liao, Lvshuang; Wang, Mi; Liao, Libin; Wang, Hui; Zeng, Leping; Fan, Chunling; Zhou, Hongkang; Xiong, Kun; Huang, Jufang; Chen, Dan

    2017-01-01

    Many studies on retinal injury and repair following elevated intraocular pressure suggest that the survival ratio of retinal neurons has been improved by various measures. However, the visual function recovery is far lower than expected. The homeostasis of retinal synapses in the visual signal pathway is the key structural basis for the delivery of visual signals. Our previous studies found that complicated changes in the synaptic structure between retinal neurons occurred much earlier than obvious degeneration of retinal ganglion cells in rat retinae. The lack of consideration of these earlier retinal synaptic changes in the rescue strategy may be partly responsible for the limited visual function recovery with the types of protective methods for retinal neurons used following elevated intraocular pressure. Thus, research on the modulatory mechanisms of the synaptic changes after elevated intraocular pressure injury may give new light to visual function rescue. In this study, we found that thrombospondin 2, an important regulator of synaptogenesis in central nervous system development, was distributed in retinal macroglia cells, and its receptor α2δ-1 was in retinal neurons. Cell cultures including mixed retinal macroglia cells/neuron cultures and retinal neuron cultures were exposed to elevated hydrostatic pressure for 2 h. The expression levels of glial fibrillary acidic protein (the marker of activated macroglia cells), thrombospondin 2, α2δ-1 and presynaptic proteins were increased following elevated hydrostatic pressure in mixed cultures, but the expression levels of postsynaptic proteins were not changed. SiRNA targeting thrombospondin 2 could decrease the upregulation of presynaptic proteins induced by the elevated hydrostatic pressure. However, in retinal neuron cultures, elevated hydrostatic pressure did not affect the expression of presynaptic or postsynaptic proteins. Rather, the retinal neuron cultures with added recombinant thrombospondin 2

  6. Endogenous α-crystallin inhibits expression of caspase-3 induced by hypoxia in retinal neurons.

    Science.gov (United States)

    Ying, Xi; Peng, Yanli; Zhang, Jiaping; Wang, Xingli; Wu, Nan; Zeng, Yuxiao; Wang, Yi

    2014-08-28

    To investigate the expression of endogenous, hypoxic stress-induced α-crystallin and caspase-3 in rat retinal neurons in vitro. Retinal neurons were cultured from Long-Evans rats. The expression of endogenous α-crystallin was analyzed by immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). Furthermore, hypoxic exposure was performed in cultured cells, and the expression of endogenous α-crystallin and caspase-3 was assayed by Western blotting. Positive α-crystallin staining was observed in cultured retinal neurons, and expression of endogenous α-crystallin mRNA peaked 3-5d after inoculation (Pendogenous, hypoxic stress-induced α-crystallin expression increased gradually, peaking 6h after hypoxia. The expression was more abundant compared to the control (Pendogenous α-crystallin in retinal neurons, especially over-expression induced by hypoxic stress, results in the down regulation of caspase-3. The data suggest that endogenous α-crystallin may act as an endogenous neuroprotective factor in retinal neurons. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Live-cell imaging: new avenues to investigate retinal regeneration

    Directory of Open Access Journals (Sweden)

    Manuela Lahne

    2017-01-01

    Full Text Available Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish (Danio rerio possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.

  8. PERIPHERAL SENSORY NEURONS EXPRESSING MELANOPSIN RESPOND TO LIGHT

    Directory of Open Access Journals (Sweden)

    Anna Matynia

    2016-08-01

    Full Text Available The ability of light to cause pain is paradoxical. The retina detects light but is devoid of nociceptors while the trigeminal sensory ganglia (TG contain nociceptors but not photoreceptors. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs are thought to mediate light-induced pain but recent evidence raises the possibility of an alternative light responsive pathway independent of the retina and optic nerve. Here, we show that melanopsin is expressed in both human and mouse TG neurons. In mice, they represent 3% of small TG neurons that are preferentially localized in the ophthalmic branch of the trigeminal nerve and are likely nociceptive C fibers and high-threshold mechanoreceptor Aδ fibers based on a strong size-function association. These isolated neurons respond to blue light stimuli with a delayed onset and sustained firing, similar to the melanopsin-dependent intrinsic photosensitivity observed in ipRGCs. Mice with severe bilateral optic nerve crush exhibit no light-induced responses including behavioral light aversion until treated with nitroglycerin, an inducer of migraine in people and migraine-like symptoms in mice. With nitroglycerin, these same mice with optic nerve crush exhibit significant light aversion. Furthermore, this retained light aversion remains dependent on melanopsin-expressing neurons. Our results demonstrate a novel light-responsive neural function independent of the optic nerve that may originate in the peripheral nervous system to provide the first direct mechanism for an alternative light detection pathway that influences motivated behavior.

  9. E2f1 mediates high glucose-induced neuronal death in cultured mouse retinal explants.

    Science.gov (United States)

    Wang, Yujiao; Zhou, Yi; Xiao, Lirong; Zheng, Shijie; Yan, Naihong; Chen, Danian

    2017-10-02

    Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1 -/- mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl 2 ) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.

  10. Expression of Sirtuins in the Retinal Neurons of Mice, Rats, and Humans

    Directory of Open Access Journals (Sweden)

    Hongdou Luo

    2017-11-01

    Full Text Available Sirtuins are a class of histone deacetylases (HDACs that have been shown to regulate a range of pathophysiological processes such as cellular aging, inflammation, metabolism, and cell proliferation. There are seven mammalian Sirtuins (SIRT1-7 that play important roles in stress response, aging, and neurodegenerative diseases. However, the location and function of Sirtuins in neurons are not well defined. This study assessed the retinal expression of Sirtuins in mice, rats, and humans and measured the expression of Sirtuins in aged and injured retinas. Expression of all 7 Sirtuins was confirmed by Western blot and Real-Time PCR analysis in all three species. SIRT1 is highly expressed in mouse, rat, and human retinas, whereas SIRT2-7 expression was relatively lower in human retinas. Immunofluorescence was also used to examine the expression and localization of Sirtuins in rat retinal neurons. Importantly, we demonstrate a marked reduction of SIRT1 expression in aged retinal neurons as well as retinas injured by acute ischemia-reperfusion. On the other hand, none of the other Sirtuins exhibit any significant age-related changes in expression except for SIRT5, which was significantly higher in the retinas of adults compared to both young and aged rats. Our work presents the first composite analysis of Sirtuins in the retinal neurons of mice, rats, and humans, and suggests that increasing the expression and activity of SIRT1 may be beneficial for the treatment of glaucoma and other age-related eye dysfunction.

  11. Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Suk-Yee Li

    Full Text Available Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R injuries. Lycium barbarum polysaccharides (LBP, extracts from the wolfberries, are good for "eye health" according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS or LBP (1 mg/kg once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP, aquaporin-4 (AQP4, poly(ADP-ribose (PAR and nitrotyrosine (NT were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL and the inner nuclear layer (INL of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature.

  12. Corneal and Retinal Neuronal Degeneration in Early Stages of Diabetic Retinopathy.

    Science.gov (United States)

    Srinivasan, Sangeetha; Dehghani, Cirous; Pritchard, Nicola; Edwards, Katie; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2017-12-01

    To examine the neuronal structural integrity of cornea and retina as markers for neuronal degeneration in nonproliferative diabetic retinopathy (NPDR). Participants were recruited from the broader Brisbane community, Queensland, Australia. Two hundred forty-one participants (187 with diabetes and 54 nondiabetic controls) were examined. Diabetic retinopathy (DR) was graded according to the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Corneal nerve fiber length (CNFL), corneal nerve branch density (CNBD), corneal nerve fiber tortuosity (CNFT), full retinal thickness, retinal nerve fiber layer (RNFL), ganglion cell complex (GCC), focal (FLV) and global loss volumes (GLV), hemoglobin A1c (HbA1c), nephropathy, neuropathy, and cardiovascular measures were examined. The central zone (P = 0.174), parafoveal thickness (P = 0.090), perifovea (P = 0.592), RNFL (P = 0.866), GCC (P = 0.798), and GCC GLV (P = 0.338) did not differ significantly between the groups. In comparison to the control group, those with very mild NPDR and those with mild NPDR had significantly higher focal loss in GCC volume (P = 0.036). CNFL was significantly lower in those with mild NPDR (P = 0.004) in comparison to the control group and those with no DR. The CNBD (P = 0.094) and CNFT (P = 0.458) did not differ between the groups. Both corneal and retinal neuronal degeneration may occur in early stages of diabetic retinopathy. Further studies are required to examine these potential markers for neuronal degeneration in the absence of clinical signs of DR.

  13. TAURINE REGULATION OF VOLTAGE-GATED CHANNELS IN RETINAL NEURONS

    Science.gov (United States)

    Rowan, Matthew JM; Bulley, Simon; Purpura, Lauren; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine activates not only Cl−-permeable ionotropic receptors, but also receptors that mediate metabotropic responses. The metabotropic property of taurine was revealed in electrophysiological recordings obtained after fully blocking Cl−-permeable receptors with an inhibitory “cocktail” consisting of picrotoxin, SR95531, and strychnine. We found that taurine’s metabotropic effects regulate voltage-gated channels in retinal neurons. After applying the inhibitory cocktail, taurine enhanced delayed outward rectifier K+ channels preferentially in Off-bipolar cells, and the effect was completely blocked by the specific PKC inhibitor, GF109203X. Additionally, taurine also acted through a metabotropic pathway to suppress both L- and N-type Ca2+ channels in retinal neurons, which were insensitive to the potent GABAB receptor inhibitor, CGP55845. This study reinforces our previous finding that taurine in physiological concentrations produces a multiplicity of metabotropic effects that precisely govern the integration of signals being transmitted from the retina to the brain. PMID:23392926

  14. Mechanical Dissociation of Retinal Neurons with Vibration

    Science.gov (United States)

    Motomura, Tamami; Hayashida, Yuki; Murayama, Nobuki

    The neuromorphic device, which implements the functions of biological neural circuits by means of VLSI technology, has been collecting much attention in the engineering fields in the last decade. Concurrently, progress in neuroscience research has revealed the nonlinear computation in single neuron levels, suggesting that individual neurons are not merely the circuit elements but computational units. Thus, elucidating the properties of neuronal signal processing is thought to be an essential step for developing the next generation of neuromorphic devices. In the present study, we developed a method for dissociating single neurons from specific sublayers of mammalian retinas with using no proteolytic enzymes but rather combining tissue incubation in a low-Ca2+ medium and the vibro-dissociation technique developed for the slices of brains and spinal cords previously. Our method took shorter time of the procedure, and required less elaborated skill, than the conventional enzymatic method did; nevertheless it yielded enough number of the cells available for acute electrophysiological experiments. The isolated retinal neurons were useful for measuring the nonlinear membrane conductances as well as the spike firing properties under the perforated-patch whole-cell configuration. These neurons also enabled us to examine the effects of proteolytic enzymes on the membrane excitability in those cells.

  15. Diabetes Accelerates Retinal Neuronal Cell Death In A Mouse Model of Endogenous Hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Preethi S. Ganapathy

    2009-07-01

    Full Text Available Hyperhomocysteinemia has been implicated in visual dysfunction. We reported recently that mice with endogenous hyperhomocysteinemia, due to mutation of the cystathionine-β-synthase (cbs gene, demonstrate loss of neurons in the retinal ganglion cell (RGC layer and other retinal layers as homocysteine levels increase. Some clinical studies implicate hyperhomocysteinemia in the pathogenesis of diabetic retinopathy, which is also characterized by RGC loss. The present study used cbs+/- mice to determine whether modest elevation of plasma homocysteine, in the presence of diabetes, accelerates neuronal cell loss. Diabetes (DB was induced in 3 wk old cbs+/- and wildtype mice using streptozotocin; four groups of mice were studied: DB cbs+/-; non-DB cbs+/-; DB cbs+/+; non-DB cbs+/+. One group of diabetic cbs+/- mice was maintained on a high methionine diet (HMD, 0.5% methionine drinking water to increase plasma homocysteine slightly. Eyes were harvested at 5, 10 and 15 weeks post-onset of diabetes; retinal cryosections were examined by light microscopy and subjected to systematic morphometric analysis. Diabetic cbs+/- had significantly fewer RGCs at 5 weeks compared to age-matched, non-diabetic cbs+/- and wildtype controls (10.0 ± 0.5 versus 14.9 ± 0.5 and 15.8 ± 0.6 cells/100 µm retina length, respectively. Significant differences in retinas of DB/high homocysteine versus controls were obtained 15 wks post-onset of diabetes including fewer RGCS and decreased thickness of inner nuclear and plexiform layers. Moderate increases in plasma homocysteine coupled with diabetes cause a more dramatic alteration of retinal phenotype than elevated homocysteine or diabetes alone and suggest that diabetes accelerates the retinal neuronal death in hyperhomocysteinemic mice.

  16. Diabetes Accelerates Retinal neuronal cell Death in A Mouse Model of endogenous Hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Preethi S. Ganapathy

    2009-01-01

    Full Text Available Hyperhomocysteinemia has been implicated in visual dysfunction. We reported recently that mice with endogenous hyperhomocysteinemia, due to mutation of the cystathionine-β-synthase ( cbs gene, demonstrate loss of neurons in the retinal ganglion cell (RGC layer and other retinal layers as homocysteine levels increase. Some clinical studies implicate hyperhomocysteinemia in the pathogenesis of diabetic retinopathy, which is also characterized by RGC loss. The present study used cbs +/– mice to determine whether modest elevation of plasma homocysteine, in the presence of diabetes, accelerates neuronal cell loss. Diabetes (DB was induced in 3 wk old cbs +/– and wildtype mice using streptozotocin; four groups of mice were studied: DB cbs +/– non-DB cbs +/– DB cbs +/+ ; non-DB cbs +/+ . One group of diabetic cbs +/– mice was maintained on a high methionine diet (HMD, 0.5% methionine drinking water to increase plasma homocysteine slightly. Eyes were harvested at 5, 10 and 15 weeks post-onset of diabetes; retinal cryosections were examined by light microscopy and subjected to systematic morphometric analysis. Diabetic cbs +/– had significantly fewer RGCs at 5 weeks compared to age-matched, non-diabetic cbs +/– and wildtype controls (10.0 ± 0.5 versus 14.9 ± 0.5 and 15.8 ± 0.6 cells/100 μm retina length, respectively. Significant differences in retinas of DB/high homocysteine versus controls were obtained 15 wks post-onset of diabetes including fewer RGCS and decreased thickness of inner nuclear and plexiform layers. Moderate increases in plasma homocysteine coupled with diabetes cause a more dramatic alteration of retinal phenotype than elevated homocysteine or diabetes alone and suggest that diabetes accelerates the retinal neuronal death in hyperhomocysteinemic mice.

  17. Glycogen synthase kinase-3: a key kinase in retinal neuron apoptosis in early diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Li Zhaohui; Ma Ling; Chen Xiaodong; Li Yonghao; Li Shiyi; Zhang Jinglin; Lu Lin

    2014-01-01

    Background Diabetes-related pathogenic factors can cause retinal ganglion cell (RGC) apoptosis,but the specific mechanism is not very clear.The aim of this study is to investigate the correlation between glycogen synthase kinase-3 (GSK-3) activation and retinal neuron apoptosis.Methods In an in vitro experiment,the number of apoptotic RGC-5 cells differentiated by staurosporine was evaluated via flow cytometry and nuclei staining using Hoechst 33258.GSK-3 phosphorylation and caspase-3 activation in RGC-5 cells after serum deprivation were determined using Western blotting.Mitochondrial membrane potential was detected using the dye 5,5',6,6'-tetrachloro-1,1',3,3'-tetrethyl benzimidalyl carbocyanine iodide,and reactive oxygen species (ROS) levels were measured with dihydroethidium.In an in vivo experiment,the number of apoptotic retinal neurons was evaluated via terminal transferase dUTP nick-end labeling (TUNEL),and GSK-3 phosphorylation was determined using Western blotting,in the retinal nerve epithelial tissue of rats in which diabetes was induced by intravenous tail-vein injection of streptozotocin for 4 weeks.Results The levels of phosphorylated Ser21/9 in GSK-3α/β and p-T308/S473-AKT were lower and the cleaved caspase-3 levels were higher in the serum-deprived model (P <0.05).Lithium chloride treatment was associated with a slower rate of apoptosis,increased mitochondrial membrane potential,and decreased ROS levels in differentiated RGC-5 cells (P <0.05).The level of blood glucose and the number of TUNEL-positive cells in the whole-mounted retinas were higher (P <0.01),and the levels of phosphorylated Ser21/9 in GSK-3α/β and body weight were lower (P <0.05).However,the thickness of the retinal nerve epithelial layer was not significantly less in diabetic rats compared with control group.Lithium chloride intravitreal injection increased the levels of phosphorylated Ser21/9 in GSK-3α/β and decreased TUNEL-positive cells in the whole-mounted retinas

  18. Activation of muscarinic receptors protects against retinal neurons damage and optic nerve degeneration in vitro and in vivo models.

    Science.gov (United States)

    Tan, Pan-Pan; Yuan, Hai-Hong; Zhu, Xu; Cui, Yong-Yao; Li, Hui; Feng, Xue-Mei; Qiu, Yu; Chen, Hong-Zhuan; Zhou, Wei

    2014-03-01

    Muscarinic acetylcholine receptor agonist pilocarpine reduces intraocular pressure (IOP) of glaucoma mainly by stimulating ciliary muscle contraction and then increasing aqueous outflow. It is of our great interest to know whether pilocarpine has the additional properties of retinal neuroprotection independent of IOP lowering in vitro and in vivo models. In rat primary retinal cultures, cell viability was measured using an MTT assay and the trypan blue exclusion method, respectively. Retinal ganglion cells (RGCs) were identified by immunofluorescence and quantified by flow cytometry. For the in vivo study, the retinal damage after retinal ischemia/reperfusion injury in rats was evaluated by histopathological study using hematoxylin and eosin staining, transmission electron microscopy, and immunohistochemical study on cleaved caspase-3, caspase-3, and ChAT. Pretreatment of pilocarpine attenuated glutamate-induced neurotoxicity of primary retinal neurons in a dose-dependent manner. Protection of pilocarpine in both retinal neurons and RGCs was largely abolished by the nonselective muscarinic receptor antagonist atropine and the M1-selective muscarinic receptor antagonist pirenzepine. After ischemia/reperfusion injury in retina, the inner retinal degeneration occurred including ganglion cell layer thinning and neuron lost, and the optic nerve underwent vacuolar changes. These degenerative changes were significantly lessened by topical application of 2% pilocarpine. In addition, the protective effect of pilocarpine on the ischemic rat retina was favorably reflected by downregulating the expression of activated apoptosis marker cleaved caspase-3 and caspase-3 and upregulating the expression of cholinergic cell marker ChAT. Taken together, this highlights pilocarpine through the activation of muscarinic receptors appear to afford significant protection against retinal neurons damage and optic nerve degeneration at clinically relevant concentrations. These data also

  19. Differential labelling of retinal neurones by 3H-2-deoxyglucose

    International Nuclear Information System (INIS)

    Basinger, S.F.; Gordon, W.C.; Lam, D.M.K.

    1979-01-01

    The use of tritium-labelled 2-deoxyglucose in combination with plastic embedding is reported to produce stimulus dependent labelling at cellular level in the isolated goldfish retina. The results suggest that the use of tritium in place of the more usual 14 C labelled tracer is advantageous in studying the physiology and functional connections of retinal neurones. (U.K.)

  20. Cut-loading: a useful tool for examining the extent of gap junction tracer coupling between retinal neurons.

    Science.gov (United States)

    Choi, Hee Joo; Ribelayga, Christophe P; Mangel, Stuart C

    2012-01-12

    In addition to chemical synaptic transmission, neurons that are connected by gap junctions can also communicate rapidly via electrical synaptic transmission. Increasing evidence indicates that gap junctions not only permit electrical current flow and synchronous activity between interconnected or coupled cells, but that the strength or effectiveness of electrical communication between coupled cells can be modulated to a great extent(1,2). In addition, the large internal diameter (~1.2 nm) of many gap junction channels permits not only electric current flow, but also the diffusion of intracellular signaling molecules and small metabolites between interconnected cells, so that gap junctions may also mediate metabolic and chemical communication. The strength of gap junctional communication between neurons and its modulation by neurotransmitters and other factors can be studied by simultaneously electrically recording from coupled cells and by determining the extent of diffusion of tracer molecules, which are gap junction permeable, but not membrane permeable, following iontophoretic injection into single cells. However, these procedures can be extremely difficult to perform on neurons with small somata in intact neural tissue. Numerous studies on electrical synapses and the modulation of electrical communication have been conducted in the vertebrate retina, since each of the five retinal neuron types is electrically connected by gap junctions(3,4). Increasing evidence has shown that the circadian (24-hour) clock in the retina and changes in light stimulation regulate gap junction coupling(3-8). For example, recent work has demonstrated that the retinal circadian clock decreases gap junction coupling between rod and cone photoreceptor cells during the day by increasing dopamine D2 receptor activation, and dramatically increases rod-cone coupling at night by reducing D2 receptor activation(7,8). However, not only are these studies extremely difficult to perform on

  1. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  2. Effects of sciatic-conditioned medium on neonatal rat retinal cells in vitro

    Directory of Open Access Journals (Sweden)

    Torres P.M.M.

    1998-01-01

    Full Text Available Schwann cells produce and release trophic factors that induce the regeneration and survival of neurons following lesions in the peripheral nerves. In the present study we examined the in vitro ability of developing rat retinal cells to respond to factors released from fragments of sciatic nerve. Treatment of neonatal rat retinal cells with sciatic-conditioned medium (SCM for 48 h induced an increase of 92.5 ± 8.8% (N = 7 for each group in the amount of total protein. SCM increased cell adhesion, neuronal survival and glial cell proliferation as evaluated by morphological criteria. This effect was completely blocked by 2.5 µM chelerythrine chloride, an inhibitor of protein kinase C (PKC. These data indicate that PKC activation is involved in the effect of SCM on retinal cells and demonstrate that fragments of sciatic nerve release trophic factors having a remarkable effect on neonatal rat retinal cells in culture.

  3. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures.

    Science.gov (United States)

    Davari, Maliheh; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Sanie-Jahromi, Fateme; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Akrami, Hassan; Haghighi, Massoud; Javidi-Azad, Fahimeh

    2013-01-01

    Retinal pigment epithelial (RPE) cells are capable of differentiating into retinal neurons when induced by the appropriate growth factors. Amniotic fluid contains a variety of growth factors that are crucial for the development of a fetus. In this study, the effects of human amniotic fluid (HAF) on primary RPE cell cultures were evaluated. RPE cells were isolated from the globes of postnatal human cadavers. The isolated cells were plated and grown in DMEM/F12 with 10% fetal bovine serum. To confirm the RPE identity of the cultured cells, they were immunocytochemically examined for the presence of the RPE cell-specific marker RPE65. RPE cultures obtained from passages 2-7 were treated with HAF and examined morphologically for 1 month. To determine whether retinal neurons or progenitors developed in the treated cultures, specific markers for bipolar (protein kinase C isomer α, PKCα), amacrine (cellular retinoic acid-binding protein I, CRABPI), and neural progenitor (NESTIN) cells were sought, and the amount of mRNA was quantified using real-time PCR. Treating RPE cells with HAF led to a significant decrease in the number of RPE65-positive cells, while PKCα- and CRABPI-positive cells were detected in the cultures. Compared with the fetal bovine serum-treated cultures, the levels of mRNAs quantitatively increased by 2-, 20- and 22-fold for NESTIN, PKCα, and CRABPI, respectively. The RPE cultures treated with HAF established spheres containing both pigmented and nonpigmented cells, which expressed neural progenitor markers such as NESTIN. This study showed that HAF can induce RPE cells to transdifferentiate into retinal neurons and progenitor cells, and that it provides a potential source for cell-based therapies to treat retinal diseases.

  4. Neuronal injury external to the retina rapidly activates retinal glia, followed by elevation of markers for cell cycle re-entry and death in retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Alba Galan

    Full Text Available Retinal ganglion cells (RGCs are neurons that relay visual signals from the retina to the brain. The RGC cell bodies reside in the retina and their fibers form the optic nerve. Full transection (axotomy of the optic nerve is an extra-retinal injury model of RGC degeneration. Optic nerve transection permits time-kinetic studies of neurodegenerative mechanisms in neurons and resident glia of the retina, the early events of which are reported here. One day after injury, and before atrophy of RGC cell bodies was apparent, glia had increased levels of phospho-Akt, phospho-S6, and phospho-ERK1/2; however, these signals were not detected in injured RGCs. Three days after injury there were increased levels of phospho-Rb and cyclin A proteins detected in RGCs, whereas these signals were not detected in glia. DNA hyperploidy was also detected in RGCs, indicative of cell cycle re-entry by these post-mitotic neurons. These events culminated in RGC death, which is delayed by pharmacological inhibition of the MAPK/ERK pathway. Our data show that a remote injury to RGC axons rapidly conveys a signal that activates retinal glia, followed by RGC cell cycle re-entry, DNA hyperploidy, and neuronal death that is delayed by preventing glial MAPK/ERK activation. These results demonstrate that complex and variable neuro-glia interactions regulate healthy and injured states in the adult mammalian retina.

  5. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    International Nuclear Information System (INIS)

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-01-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[ 3 H]glucose convert this glucose analogue to 2-deoxy[ 3 H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O 2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system

  6. Honeybee Retinal Glial Cells Transform Glucose and Supply the Neurons with Metabolic Substrate

    Science.gov (United States)

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  7. Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus.

    Science.gov (United States)

    Sieger, Tomáš; Serranová, Tereza; Růžička, Filip; Vostatek, Pavel; Wild, Jiří; Štastná, Daniela; Bonnet, Cecilia; Novák, Daniel; Růžička, Evžen; Urgošík, Dušan; Jech, Robert

    2015-03-10

    Both animal studies and studies using deep brain stimulation in humans have demonstrated the involvement of the subthalamic nucleus (STN) in motivational and emotional processes; however, participation of this nucleus in processing human emotion has not been investigated directly at the single-neuron level. We analyzed the relationship between the neuronal firing from intraoperative microrecordings from the STN during affective picture presentation in patients with Parkinson's disease (PD) and the affective ratings of emotional valence and arousal performed subsequently. We observed that 17% of neurons responded to emotional valence and arousal of visual stimuli according to individual ratings. The activity of some neurons was related to emotional valence, whereas different neurons responded to arousal. In addition, 14% of neurons responded to visual stimuli. Our results suggest the existence of neurons involved in processing or transmission of visual and emotional information in the human STN, and provide evidence of separate processing of the affective dimensions of valence and arousal at the level of single neurons as well.

  8. Real-time emulation of neural images in the outer retinal circuit.

    Science.gov (United States)

    Hasegawa, Jun; Yagi, Tetsuya

    2008-12-01

    We describe a novel real-time system that emulates the architecture and functionality of the vertebrate retina. This system reconstructs the neural images formed by the retinal neurons in real time by using a combination of analog and digital systems consisting of a neuromorphic silicon retina chip, a field-programmable gate array, and a digital computer. While the silicon retina carries out the spatial filtering of input images instantaneously, using the embedded resistive networks that emulate the receptive field structure of the outer retinal neurons, the digital computer carries out the temporal filtering of the spatially filtered images to emulate the dynamical properties of the outer retinal circuits. The emulations of the neural image, including 128 x 128 bipolar cells, are carried out at a frame rate of 62.5 Hz. The emulation of the response to the Hermann grid and a spot of light and an annulus of lights has demonstrated that the system responds as expected by previous physiological and psychophysical observations. Furthermore, the emulated dynamics of neural images in response to natural scenes revealed the complex nature of retinal neuron activity. We have concluded that the system reflects the spatiotemporal responses of bipolar cells in the vertebrate retina. The proposed emulation system is expected to aid in understanding the visual computation in the retina and the brain.

  9. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity.

    Science.gov (United States)

    Gallina, Donika; Zelinka, Christopher Paul; Cebulla, Colleen M; Fischer, Andy J

    2015-11-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Retinal Macroglial Responses in Health and Disease

    Directory of Open Access Journals (Sweden)

    Rosa de Hoz

    2016-01-01

    Full Text Available Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes and Müller cells (retinal macroglia provide physical support to neurons and supplement them with several metabolites and growth factors. Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB, play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD, diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases. The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies.

  11. Neuronal Activation After Prolonged Immobilization: Do the Same or Different Neurons Respond to a Novel Stressor?

    Science.gov (United States)

    Marín-Blasco, Ignacio; Muñoz-Abellán, Cristina; Andero, Raül; Nadal, Roser; Armario, Antonio

    2018-04-01

    Despite extensive research on the impact of emotional stressors on brain function using immediate-early genes (e.g., c-fos), there are still important questions that remain unanswered such as the reason for the progressive decline of c-fos expression in response to prolonged stress and the neuronal populations activated by different stressors. This study tackles these 2 questions by evaluating c-fos expression in response to 2 different emotional stressors applied sequentially, and performing a fluorescent double labeling of c-Fos protein and c-fos mRNA on stress-related brain areas. Results were complemented with the assessment of the hypothalamic-pituitary-adrenal axis activation. We showed that the progressive decline of c-fos expression could be related to 2 differing mechanisms involving either transcriptional repression or changes in stimulatory inputs. Moreover, the neuronal populations that respond to the different stressors appear to be predominantly separated in high-level processing areas (e.g., medial prefrontal cortex). However, in low-hierarchy areas (e.g., paraventricular nucleus of the hypothalamus) neuronal populations appear to respond unspecifically. The data suggest that the distinct physiological and behavioral consequences of emotional stressors, and their implication in the development of psychopathologies, are likely to be closely associated with neuronal populations specifically activated by each stressor.

  12. 应当重视糖尿病视网膜神经损伤及保护的研究%Emphasizes the research of diabetic retinal neurons lesions and retinal neuroprotection

    Institute of Scientific and Technical Information of China (English)

    张卯年

    2009-01-01

    Diabetic retinopathy includes retinal microangiopathy and retinal neuronopathy. Most of the clinical research has been primarily focused on the former. The retinal microvascular lesions and its complications has standardized in diagnosis and treatment. However, the emphasis on the latter has not been attached to the importance in clinic, and it has fewer studies on it. In recent years, studies have shown that the functional lesion of the retinal neurons and glial cells often can be detected earlier than microangiopathy in diabetic patients. Therefore, emphasis on the research of the diabetic retinal neurons lesions and retinal neuroprotection is beneficial to understand the essence of diabetic retinopathy rightly, and has great practial significance in preventing and reversing diabetic retinal neuronopathy in the early stage.%糖尿病视网膜病变包括视网膜微血管病变和视网膜神经病变.临床上对前者的研究较多,包括视网膜微血管损伤及其并发症的诊断和治疗;而对后者则重视不够,文献报道也较少.近几年的研究结果显示,糖尿病患者视网膜神经元和胶质细胞的功能损害常较微血管改变更早,加强对糖尿病视网膜神经损伤和视网膜神经保护的研究将有利于正确认识其疾病的本质,对预防和逆转早期糖尿病视网膜神经病变有十分重要的意义.

  13. Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1.

    Science.gov (United States)

    Li, Xiaobing; Chen, Yao; Lashgari, Reza; Bereshpolova, Yulia; Swadlow, Harvey A; Lee, Barry B; Alonso, Jose Manuel

    2015-07-01

    Vision emerges from activation of chromatic and achromatic retinal channels whose interaction in visual cortex is still poorly understood. To investigate this interaction, we recorded neuronal activity from retinal ganglion cells and V1 cortical cells in macaques and measured their visual responses to grating stimuli that had either luminance contrast (luminance grating), chromatic contrast (chromatic grating), or a combination of the two (compound grating). As with parvocellular or koniocellular retinal ganglion cells, some V1 cells responded mostly to the chromatic contrast of the compound grating. As with magnocellular retinal ganglion cells, other V1 cells responded mostly to the luminance contrast and generated a frequency-doubled response to equiluminant chromatic gratings. Unlike magnocellular and parvocellular retinal ganglion cells, V1 cells formed a unimodal distribution for luminance/color preference with a 2- to 4-fold bias toward luminance. V1 cells associated with positive local field potentials in deep layers showed the strongest combined responses to color and luminance and, as a population, V1 cells encoded a diverse combination of luminance/color edges that matched edge distributions of natural scenes. Taken together, these results suggest that the primary visual cortex combines magnocellular and parvocellular retinal inputs to increase cortical receptive field diversity and to optimize visual processing of our natural environment. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Sirtuin1 Over-Expression Does Not Impact Retinal Vascular and Neuronal Degeneration in a Mouse Model of Oxygen-Induced Retinopathy

    Science.gov (United States)

    Michan, Shaday; Juan, Aimee M.; Hurst, Christian G.; Cui, Zhenghao; Evans, Lucy P.; Hatton, Colman J.; Pei, Dorothy T.; Ju, Meihua; Sinclair, David A.; Smith, Lois E. H.; Chen, Jing

    2014-01-01

    Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy. PMID:24416337

  15. Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy.

    Science.gov (United States)

    Michan, Shaday; Juan, Aimee M; Hurst, Christian G; Cui, Zhenghao; Evans, Lucy P; Hatton, Colman J; Pei, Dorothy T; Ju, Meihua; Sinclair, David A; Smith, Lois E H; Chen, Jing

    2014-01-01

    Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy.

  16. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    Science.gov (United States)

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-08-10

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids. 2016 BMJ Publishing Group Ltd.

  17. Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti

    Science.gov (United States)

    Sanford, Jillian L.; Shields, Vonnie D. C.; Dickens, Joseph C.

    2013-03-01

    Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow-fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as N, N-diethyl-3-methylbenzamide and other insect repellents. Two other neurons with differing spikes responded to salt (NaCl) and sucrose. This is the first report of a gustatory receptor neuron specific for insect repellents in mosquitoes and may provide a tool for screening chemicals to discover novel or improved feeding deterrents and repellents for use in the management of arthropod disease vectors.

  18. Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala

    Directory of Open Access Journals (Sweden)

    Machold Robert P

    2010-05-01

    Full Text Available Abstract Background The mammalian amygdala is composed of two primary functional subdivisions, classified according to whether the major output projection of each nucleus is excitatory or inhibitory. The posterior dorsal and ventral subdivisions of the medial amygdala, which primarily contain inhibitory output neurons, modulate specific aspects of innate socio-sexual and aggressive behaviors. However, the development of the neuronal diversity of this complex and important structure remains to be fully elucidated. Results Using a combination of genetic fate-mapping and loss-of-function analyses, we examined the contribution and function of Sonic hedgehog (Shh-expressing and Shh-responsive (Nkx2-1+ and Gli1+ neurons in the medial amygdala. Specifically, we found that Shh- and Nkx2-1-lineage cells contribute differentially to the dorsal and ventral subdivisions of the postnatal medial amygdala. These Shh- and Nkx2-1-lineage neurons express overlapping and non-overlapping inhibitory neuronal markers, such as Calbindin, FoxP2, nNOS and Somatostatin, revealing diverse fate contributions in discrete medial amygdala nuclear subdivisions. Electrophysiological analysis of the Shh-derived neurons additionally reveals an important functional diversity within this lineage in the medial amygdala. Moreover, inducible Gli1CreER(T2 temporal fate mapping shows that early-generated progenitors that respond to Shh signaling also contribute to medial amygdala neuronal diversity. Lastly, analysis of Nkx2-1 mutant mice demonstrates a genetic requirement for Nkx2-1 in inhibitory neuronal specification in the medial amygdala distinct from the requirement for Nkx2-1 in cerebral cortical development. Conclusions Taken together, these data reveal a differential contribution of Shh-expressing and Shh-responding cells to medial amygdala neuronal diversity as well as the function of Nkx2-1 in the development of this important limbic system structure.

  19. Visual Prosthesis: Interfacing Stimulating Electrodes with Retinal Neurons to Restore Vision

    Directory of Open Access Journals (Sweden)

    Alejandro Barriga-Rivera

    2017-11-01

    Full Text Available The bypassing of degenerated photoreceptors using retinal neurostimulators is helping the blind to recover functional vision. Researchers are investigating new ways to improve visual percepts elicited by these means as the vision produced by these early devices remain rudimentary. However, several factors are hampering the progression of bionic technologies: the charge injection limits of metallic electrodes, the mechanical mismatch between excitable tissue and the stimulating elements, neural and electric crosstalk, the physical size of the implanted devices, and the inability to selectively activate different types of retinal neurons. Electrochemical and mechanical limitations are being addressed by the application of electromaterials such as conducting polymers, carbon nanotubes and nanocrystalline diamonds, among other biomaterials, to electrical neuromodulation. In addition, the use of synthetic hydrogels and cell-laden biomaterials is promising better interfaces, as it opens a door to establishing synaptic connections between the electrode material and the excitable cells. Finally, new electrostimulation approaches relying on the use of high-frequency stimulation and field overlapping techniques are being developed to better replicate the neural code of the retina. All these elements combined will bring bionic vision beyond its present state and into the realm of a viable, mainstream therapy for vision loss.

  20. Orientation-Selective Retinal Circuits in Vertebrates.

    Science.gov (United States)

    Antinucci, Paride; Hindges, Robert

    2018-01-01

    Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such 'orientation-selective' neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.

  1. Ghrelin Attenuates Retinal Neuronal Autophagy and Apoptosis in an Experimental Rat Glaucoma Model.

    Science.gov (United States)

    Zhu, Ke; Zhang, Meng-Lu; Liu, Shu-Ting; Li, Xue-Yan; Zhong, Shu-Min; Li, Fang; Xu, Ge-Zhi; Wang, Zhongfeng; Miao, Yanying

    2017-12-01

    Ghrelin, a natural ligand for the growth hormone secretagogue receptor type 1a (GHSR-1a), may protect retinal neurons against glaucomatous injury. We therefore characterized the underlying mechanism of the ghrelin/GHSR-1a-mediated neuroprotection with a rat chronic intraocular hypertension (COH) model. The rat COH model was produced by blocking episcleral veins. A combination of immunohistochemistry, Western blot, TUNEL assay, and retrograde labeling of retinal ganglion cells (RGCs) was used. Elevation of intraocular pressure induced a significant increase in ghrelin and GHSR-1a expression in retinal cells, including RGCs and Müller cells. Western blot confirmed that the protein levels of ghrelin exhibited a transient upregulation at week 2 after surgery (G2w), while the GHSR-1a protein levels were maintained at high levels from G2w to G4w. In COH retinas, the ratio of LC3-II/LC-I and beclin1, two autophagy-related proteins, were increased from G1w to G4w, and the cleavage product of caspase3, an apoptotic executioner, was detected from G2w to G4w. Intraperitoneal injection of ghrelin significantly increased the number of surviving RGCs; inhibited the changes of LC3-II/LC-I, beclin1, and the cleavage products of caspase3; and reduced the number of TUNEL-positive cells in COH retinas. Ghrelin treatment also reversed the decreased levels of p-Akt and p-mTOR, upregulated GHSR-1a protein levels, and attenuated glial fibrillary acidic protein levels in COH retinas. All these results suggest that ghrelin may provide neuroprotective effect in COH retinas through activating ghrelin/GHSR-1a system, which was mediated by inhibiting retinal autophagy, ganglion cell apoptosis, and Müller cell gliosis.

  2. Effect of retinal impulse blockage on cytochrome oxidase-poor interpuffs in the macaque striate cortex: quantitative EM analysis of neurons.

    Science.gov (United States)

    Wong-Riley, M T; Trusk, T C; Kaboord, W; Huang, Z

    1994-09-01

    One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase-rich puffs in its supragranular layers. Neurons in puffs have been classified as type A, B, and C in ascending order of cytochrome oxidase content, with type C cells being the most vulnerable to retinal impulse blockade. The present study aimed at analysing cytochrome oxidase-poor interpuffs with reference to their metabolic cell types and the effect of intraretinal tetrodotoxin treatment. The same three metabolic types were found in interpuffs, except that type B and C neurons were smaller and less cytochrome oxidase-reactive in interpuffs than in puffs. Type A neurons had small perikarya, low levels of cytochrome oxidase, and received exclusively symmetric axosomatic synapses. The largest neurons were pyramidal, type B cells with moderate cytochrome oxidase activity and were also contacted exclusively by symmetric axosomatic synapses. Type C cells medium-sized with a rich supply of large, darkly reactive mitochondria and possessed all the characteristics of GABAergic neurons. They were the only cell type that received both symmetric and asymmetric axosomatic synapses. Two weeks of monocular tetrodotoxin blockade in adult monkeys caused all three major cell types in deprived interpuffs to suffer a significant downward shift in the size and cytochrome oxidase reactivity of their mitochondria, but the effects were more severe in type B and C neurons. In nondeprived interpuffs, all three cell types gained both in size and absolute number of mitochondria, and type A cells also had an elevated level of cytochrome oxidase, indicating that they might be functioning at a competitive advantage over cells in deprived columns. However, type B and C neurons showed a net loss of darkly reactive mitochondria, indicating that these cells became less active. Thus, mature interpuff neurons remained vulnerable to retinal impulse blockade and the metabolic capacity of these cells remains tightly

  3. Hypoxia-ischemia and retinal ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Charanjit Kaur

    2008-08-01

    Full Text Available Charanjit Kaur1, Wallace S Foulds2, Eng-Ang Ling11Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 2Singapore Eye Research Institute, SingaporeAbstract: Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF and nitric oxide synthase (NOS. Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.Keywords: retinal hypoxia, retinal ganglion cells, glutamate receptors, neuronal injury, retina

  4. Retinal Vasculitis

    Science.gov (United States)

    Rosenbaum, James T.; Sibley, Cailin H.; Lin, Phoebe

    2016-01-01

    Purpose of review Ophthalmologists and rheumatologists frequently miscommunicate in consulting on patients with retinal vasculitis. This report seeks to establish a common understanding of the term, retinal vasculitis, and to review recent papers on this diagnosis. Recent findings 1) The genetic basis of some rare forms of retinal vascular disease have recently been described. Identified genes include CAPN5, TREX1, and TNFAIP3; 2) Behçet’s disease is a systemic illness that is very commonly associated with occlusive retinal vasculitis; 3) retinal imaging including fluorescein angiography and other newer imaging modalities has proven crucial to the identification and characterization of retinal vasculitis and its complications; 4) although monoclonal antibodies to IL-17A or IL-1 beta failed in trials for Behçet’s disease, antibodies to TNF alpha, either infliximab or adalimumab, have demonstrated consistent benefit in managing this disease. Interferon treatment and B cell depletion therapy via rituximab may be beneficial in certain types of retinal vasculitis. Summary Retinal vasculitis is an important entity for rheumatologists to understand. Retinal vasculitis associated with Behçet’s disease responds to monoclonal antibodies that neutralize TNF, but the many other forms of non-infectious retinal vasculitis may require alternate therapeutic management. PMID:26945335

  5. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice.

    Science.gov (United States)

    Sapieha, P; Chen, J; Stahl, A; Seaward, M R; Favazza, T L; Juan, A M; Hatton, C J; Joyal, J-S; Krah, N M; Dennison, R J; Tang, J; Kern, T S; Akula, J D; Smith, L E H

    2012-07-23

    Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks-26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM.

  6. Transplantation of rat embryonic stem cell-derived retinal progenitor cells preserves the retinal structure and function in rat retinal degeneration.

    Science.gov (United States)

    Qu, Zepeng; Guan, Yuan; Cui, Lu; Song, Jian; Gu, Junjie; Zhao, Hanzhi; Xu, Lei; Lu, Lixia; Jin, Ying; Xu, Guo-Tong

    2015-11-09

    Degenerative retinal diseases like age-related macular degeneration (AMD) are the leading cause of blindness. Cell transplantation showed promising therapeutic effect for such diseases, and embryonic stem cell (ESC) is one of the sources of such donor cells. Here, we aimed to generate retinal progenitor cells (RPCs) from rat ESCs (rESCs) and to test their therapeutic effects in rat model. The rESCs (DA8-16) were cultured in N2B27 medium with 2i, and differentiated to two types of RPCs following the SFEBq method with modifications. For rESC-RPC1, the cells were switched to adherent culture at D10, while for rESC-RPC2, the suspension culture was maintained to D14. Both RPCs were harvested at D16. Primary RPCs were obtained from P1 SD rats, and some of them were labeled with EGFP by infection with lentivirus. To generate Rax::EGFP knock-in rESC lines, TALENs were engineered to facilitate homologous recombination in rESCs, which were cotransfected with the targeting vector and TALEN vectors. The differentiated cells were analyzed with live image, immunofluorescence staining, flow cytometric analysis, gene expression microarray, etc. RCS rats were used to mimic the degeneration of retina and test the therapeutic effects of subretinally transplanted donor cells. The structure and function of retina were examined. We established two protocols through which two types of rESC-derived RPCs were obtained and both contained committed retina lineage cells and some neural progenitor cells (NPCs). These rESC-derived RPCs survived in the host retinas of RCS rats and protected the retinal structure and function in early stage following the transplantation. However, the glia enriched rESC-RPC1 obtained through early and longer adherent culture only increased the b-wave amplitude at 4 weeks, while the longer suspension culture gave rise to evidently neuronal differentiation in rESC-RPC2 which significantly improved the visual function of RCS rats. We have successfully differentiated

  7. Gustatory receptor neuron responds to DEET and other insect repellents in the yellow fever mosquito, aedes aegypti

    Science.gov (United States)

    Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as DEET and other insect repellents. Two other ...

  8. THE MODULATORY ROLE OF TAURINE IN RETINAL GANGLION CELLS

    Science.gov (United States)

    Jiang, Zheng; Bulley, Simon; Guzzone, Joseph; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine (2-aminoethylsuphonic acid) is present in nearly all animal tissues, and is the most abundant free amino acid in muscle, heart, CNS and retina. Although it is known to be a major cytoprotectant and essential for normal retinal development, its role in retinal neurotransmission and modulation is not well understood. We investigated the response of taurine in retinal ganglion cells, and its effect on synaptic transmission between ganglion cells and their pre-synaptic neurons. We find that taurine-elicited currents in ganglion cells could be fully blocked by both strychnine and SR95531, glycine and GABAA receptor antagonists, respectively. This suggests that taurine-activated receptors might share the antagonists with GABA and glycine receptors. The effect of taurine at micromolar concentrations can effectively suppress spontaneous vesicle release from the pre-synaptic neurons, but had limited effects on light-evoked synaptic signals in ganglion cells. We also describe a metabotropic effect of taurine in the suppression of light-evoked response in ganglion cells. Clearly, taurine acts in multiple ways to modulate synaptic signals in retinal output neurons, ganglion cells. PMID:23392924

  9. Retinal stem cells and potential cell transplantation treatments

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2014-11-01

    Full Text Available The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells. The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  10. Mitochondrial Protection by Exogenous Otx2 in Mouse Retinal Neurons

    Directory of Open Access Journals (Sweden)

    Hyoung-Tai Kim

    2015-11-01

    Full Text Available OTX2 (orthodenticle homeobox 2 haplodeficiency causes diverse defects in mammalian visual systems ranging from retinal dysfunction to anophthalmia. We find that the retinal dystrophy of Otx2+/GFP heterozygous knockin mice is mainly due to the loss of bipolar cells and consequent deficits in retinal activity. Among bipolar cell types, OFF-cone bipolar subsets, which lack autonomous Otx2 gene expression but receive Otx2 proteins from photoreceptors, degenerate most rapidly in Otx2+/GFP mouse retinas, suggesting a neuroprotective effect of the imported Otx2 protein. In support of this hypothesis, retinal dystrophy in Otx2+/GFP mice is prevented by intraocular injection of Otx2 protein, which localizes to the mitochondria of bipolar cells and facilitates ATP synthesis as a part of mitochondrial ATP synthase complex. Taken together, our findings demonstrate a mitochondrial function for Otx2 and suggest a potential therapeutic application of OTX2 protein delivery in human retinal dystrophy.

  11. Changes in Retinal Function and Cellular Remodeling Following Experimental Retinal Detachment in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Tilda Barliya

    2017-01-01

    Full Text Available Purpose. To explore functional electroretinographic (ERG changes and associated cellular remodeling following experimental retinal detachment in a rabbit model. Methods. Retinal detachment was created in ten rabbits by injecting 0.1 ml balanced salt solution under the retina. Fundus imaging was performed 0, 3, 7, 14, and 21 days postoperatively. ERGs were recorded pre- and 7 and 21 days postoperatively. Eyes were harvested on day 21 and evaluated immunohistochemically (IHC for remodeling of second- and third-order neurons. Results. Retinal reattachment occurred within two weeks following surgery. No attenuation was observed in the photopic or scotopic a- and b-waves. A secondary wavefront on the descending slope of the scotopic b-wave was the only ERG result that was attenuated in detached retinas. IHC demonstrated anatomical changes in both ON and OFF bipolar cells. Bassoon staining was observed in the remodeled dendrites. Amacrine and horizontal cells did not alter, but Muller cells were clearly reactive with marked extension. Conclusion. Retinal detachment and reattachment were associated with functional and anatomical changes. Exploring the significance of the secondary scotopic wavefront and its association with the remodeling of 2nd- and 3rd-order neurons will shade more light on functional changes and recovery of the retina.

  12. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    Science.gov (United States)

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  13. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    Science.gov (United States)

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  14. The Protective Effects of Lycium Barbarum Polysaccharides on Transient Retinal Ischemia

    Directory of Open Access Journals (Sweden)

    Di Yang

    2011-05-01

    Full Text Available Retinal ischemia/reperfusion (I/R injury leads to irreversible neuronal death, glial activation, retinal swelling and oxidative stress. It is a common feature in various ocular diseases, such as glaucoma, diabetic retinopathy and amaurosis fugax. In the present study, we aimed to evaluate the effects of Lycium Barbarum Polysaccharides (LBP in a murine retinal I/R model. Mice were orally treated with either vehicle (PBS or LBP (1mg/kg daily for 1 week before induction of retinal ischemia. Retinae were collected after 2 hours ischemia and 22 hours reperfusion. Paraffin-embedded sections were prepared for immunohistochemical analyses. Significantly fewer viable cells were found in vehicle-treated retinae comparing to LBP group. This finding was further confirmed by TUNEL assay where significantly fewer apoptotic cells were identified in LBP-treated retinae. Additionally, retinal swelling induced by retinal I/R injury in the vehicle-treated group was not observed in LBP-treated group. Moreover, intense GFAP immunoreactivity and IgG extravasation were observed in vehicle-treated group but not in LBP treated group. The results showed that pre-treatment with LBP was protective in retinal I/R injury via reducing neuronal death, apoptosis, retinal swelling, GFAP activation and blood vessel leakage. LBP may be used as a preventive agent for retinal ischemia diseases.

  15. The Protective Effects of Lycium Barbarum Polysaccharides on Transient Retinal Ischemia

    Science.gov (United States)

    Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Yu, Wing-Yan; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.

    2011-01-01

    Retinal ischemia/reperfusion (I/R) injury leads to irreversible neuronal death, glial activation, retinal swelling and oxidative stress. It is a common feature in various ocular diseases, such as glaucoma, diabetic retinopathy and amaurosis fugax. In the present study, we aimed to evaluate the effects of Lycium Barbarum Polysaccharides (LBP) in a murine retinal I/R model. Mice were orally treated with either vehicle (PBS) or LBP (1mg/kg) daily for 1 week before induction of retinal ischemia. Retinae were collected after 2 hours ischemia and 22 hours reperfusion. Paraffin-embedded sections were prepared for immunohistochemical analyses. Significantly fewer viable cells were found in vehicle-treated retinae comparing to LBP group. This finding was further confirmed by TUNEL assay where significantly fewer apoptotic cells were identified in LBP-treated retinae. Additionally, retinal swelling induced by retinal I/R injury in the vehicle-treated group was not observed in LBP-treated group. Moreover, intense GFAP immunoreactivity and IgG extravasation were observed in vehicle-treated group but not in LBP treated group. The results showed that pre-treatment with LBP was protective in retinal I/R injury via reducing neuronal death, apoptosis, retinal swelling, GFAP activation and blood vessel leakage. LBP may be used as a preventive agent for retinal ischemia diseases.

  16. Neuroprotective Effects of Citicoline in in Vitro Models of Retinal Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Andrea Matteucci

    2014-04-01

    Full Text Available In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 µM. At the concentration of 100 µM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms.

  17. Suppressed retinal degeneration in aged wild type and APPswe/PS1ΔE9 mice by bone marrow transplantation.

    Directory of Open Access Journals (Sweden)

    Yue Yang

    Full Text Available Alzheimer's disease (AD is an age-related condition characterized by accumulation of neurotoxic amyloid β peptides (Aβ in brain and retina. Because bone marrow transplantation (BMT results in decreased cerebral Aβ in experimental AD, we hypothesized that BMT would mitigate retinal neurotoxicity through decreased retinal Aβ. To test this, we performed BMT in APPswe/PS1ΔE9 double transgenic mice using green fluorescent protein expressing wild type (wt mice as marrow donors. We first examined retinas from control, non-transplanted, aged AD mice and found a two-fold increase in microglia compared with wt mice, prominent inner retinal Aβ and paired helical filament-tau, and decreased retinal ganglion cell layer neurons. BMT resulted in near complete replacement of host retinal microglia with BMT-derived cells and normalized total AD retinal microglia to non-transplanted wt levels. Aβ and paired helical filament-tau were reduced (61.0% and 44.1% respectively in BMT-recipient AD mice, which had 20.8% more retinal ganglion cell layer neurons than non-transplanted AD controls. Interestingly, aged wt BMT recipients also had significantly more neurons (25.4% compared with non-transplanted aged wt controls. Quantitation of retinal ganglion cell layer neurons in young mice confirmed age-related retinal degeneration was mitigated by BMT. We found increased MHC class II expression in BMT-derived microglia and decreased oxidative damage in retinal ganglion cell layer neurons. Thus, BMT is neuroprotective in age-related as well as AD-related retinal degeneration, and may be a result of alterations in innate immune function and oxidative stress in BMT recipient mice.

  18. Human amniotic fluid promotes retinal pigmented epithelial cells' trans-differentiation into rod photoreceptors and retinal ganglion cells.

    Science.gov (United States)

    Ghaderi, Shima; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Davari, Maliheh; Jahromi, Fatemeh Sanie; Samie, Shahram; Rezaie-Kanavi, Mozhgan; Pakravesh, Jalil; Deezagi, Abdolkhalegh

    2011-09-01

    To evaluate the effect of human amniotic fluid (HAF) on retinal pigmented epithelial cells growth and trans-differentiation into retinal neurons, retinal pigmented epithelium (RPE) cells were isolated from neonatal human cadaver eye globes and cultured in Dulbecco's modified Eagle's medium-F12 supplemented with 10% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using FBS-containing or HAF-containing media. Amniotic fluid samples were received from pregnant women in the first trimester of gestation. Cell proliferation and death enzyme-linked immunosorbent assays were performed to assess the effect of HAF on RPE cell growth. Trans-differentiation into rod photoreceptors and retinal ganglion cells was also studied using immunocytochemistry and real-time polymerase chain reaction techniques. Primary cultures of RPE cells were successfully established under FBS-containing or HAF-containing media leading to rapid cell growth and proliferation. When RPE cells were moved to in vitro culture system, they began to lose their differentiation markers such as pigmentation and RPE65 marker and trans-differentiated neural-like cells followed by spheroid colonies pertaining to stem/progenitor cells were morphologically detected. Immunocytochemistry (ICC) analysis of HAF-treated cultures showed a considerable expression of Rhodopsin gene (30% Rhodopsin-positive cells) indicating trans-differentiation of RPE cells to rod photoreceptors. Real-time polymerase chain reaction revealed an HAF-dose-dependant expression of Thy-1 gene (RGC marker) and significant promoting effect of HAF on RGCs generation. The data presented here suggest that HAF possesses invaluable stimulatory effect on RPE cells growth and trans-differentiation into retinal neurons. It can be regarded as a newly introduced enriched supplement in serum-free kinds of media used in neuro-retinal regeneration studies.

  19. Retinal stem cells and regeneration of vision system.

    Science.gov (United States)

    Yip, Henry K

    2014-01-01

    The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina. Copyright © 2013 Wiley Periodicals, Inc.

  20. Repetitive magnetic stimulation improves retinal function in a rat model of retinal dystrophy

    Science.gov (United States)

    Rotenstreich, Ygal; Tzameret, Adi; Levi, Nir; Kalish, Sapir; Sher, Ifat; Zangen, Avraham; Belkin, Michael

    2014-02-01

    Vision incapacitation and blindness associated with retinal dystrophies affect millions of people worldwide. Retinal degeneration is characterized by photoreceptor cell death and concomitant remodeling of remaining retinal cells. Repetitive Magnetic Stimulation (RMS) is a non-invasive technique that creates alternating magnetic fields by brief electric currents transmitted through an insulated coil. These magnetic field generate action potentials in neurons, and modulate the expression of neurotransmitter receptors, growth factors and transcription factors which mediate plasticity. This technology has been proven effective and safe in various psychiatric disorders. Here we determined the effect of RMS on retinal function in Royal College of Surgeons (RCS) rats, a model for retinal dystrophy. Four week-old RCS and control Spargue Dawley (SD) rats received sham or RMS treatment over the right eye (12 sessions on 4 weeks). RMS treatment at intensity of at 40% of the maximal output of a Rapid2 stimulator significantly increased the electroretinogram (ERG) b-wave responses by up to 6- or 10-fold in the left and right eye respectively, 3-5 weeks following end of treatment. RMS treatment at intensity of 25% of the maximal output did not significant effect b-wave responses following end of treatment with no adverse effect on ERG response or retinal structure of SD rats. Our findings suggest that RMS treatment induces delayed improvement of retinal functions and may induce plasticity in the retinal tissue. Furthermore, this non-invasive treatment may possibly be used in the future as a primary or adjuvant treatment for retinal dystrophy.

  1. Retinal input to efferent target amacrine cells in the avian retina

    Science.gov (United States)

    Lindstrom, Sarah H.; Azizi, Nason; Weller, Cynthia; Wilson, Martin

    2012-01-01

    The bird visual system includes a substantial projection, of unknown function, from a midbrain nucleus to the contralateral retina. Every centrifugal, or efferent, neuron originating in the midbrain nucleus makes synaptic contact with the soma of a single, unique amacrine cell, the target cell (TC). By labeling efferent neurons in the midbrain we have been able to identify their terminals in retinal slices and make patch clamp recordings from TCs. TCs generate Na+ based action potentials triggered by spontaneous EPSPs originating from multiple classes of presynaptic neurons. Exogenously applied glutamate elicited inward currents having the mixed pharmacology of NMDA, kainate and inward rectifying AMPA receptors. Exogenously applied GABA elicited currents entirely suppressed by GABAzine, and therefore mediated by GABAA receptors. Immunohistochemistry showed the vesicular glutamate transporter, vGluT2, to be present in the characteristic synaptic boutons of efferent terminals, whereas the GABA synthetic enzyme, GAD, was present in much smaller processes of intrinsic retinal neurons. Extracellular recording showed that exogenously applied GABA was directly excitatory to TCs and, consistent with this, NKCC, the Cl− transporter often associated with excitatory GABAergic synapses, was identified in TCs by antibody staining. The presence of excitatory retinal input to TCs implies that TCs are not merely slaves to their midbrain input; instead, their output reflects local retinal activity and descending input from the midbrain. PMID:20650017

  2. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases.

    Science.gov (United States)

    Madeira, Maria H; Boia, Raquel; Santos, Paulo F; Ambrósio, António F; Santiago, Ana R

    2015-01-01

    Retinal degenerative diseases are major causes of vision loss and blindness worldwide and are characterized by chronic and progressive neuronal loss. One common feature of retinal degenerative diseases and brain neurodegenerative diseases is chronic neuroinflammation. There is growing evidence that retinal microglia, as in the brain, become activated in the course of retinal degenerative diseases, having a pivotal role in the initiation and propagation of the neurodegenerative process. A better understanding of the events elicited and mediated by retinal microglia will contribute to the clarification of disease etiology and might open new avenues for potential therapeutic interventions. This review aims at giving an overview of the roles of microglia-mediated neuroinflammation in major retinal degenerative diseases like glaucoma, age-related macular degeneration, and diabetic retinopathy.

  3. Retinal oscillations carry visual information to cortex

    Directory of Open Access Journals (Sweden)

    Kilian Koepsell

    2009-04-01

    Full Text Available Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs and thalamic outputs (spikes and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz, is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40-80 Hz and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.

  4. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases.

    Science.gov (United States)

    Le, Yun-Zheng

    2017-10-01

    Müller glia (MG) are major retinal supporting cells that participate in retinal metabolism, function, maintenance, and protection. During the pathogenesis of diabetic retinopathy (DR), a neurovascular disease and a leading cause of blindness, MG modulate vascular function and neuronal integrity by regulating the production of angiogenic and trophic factors. In this article, I will (1) briefly summarize our work on delineating the role and mechanism of MG-modulated vascular function through the production of vascular endothelial growth factor (VEGF) and on investigating VEGF signaling-mediated MG viability and neural protection in diabetic animal models, (2) explore the relationship among VEGF and neurotrophins in protecting Müller cells in in vitro models of diabetes and hypoxia and its potential implication to neuroprotection in DR and hypoxic retinal diseases, and (3) discuss the relevance of our work to the effectiveness and safety of long-term anti-VEGF therapies, a widely used strategy to combat DR, diabetic macular edema, neovascular age-related macular degeneration, retinopathy of prematurity, and other hypoxic retinal vascular disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chitosan oligosaccharides attenuates oxidative-stress related retinal degeneration in rats.

    Directory of Open Access Journals (Sweden)

    I-Mo Fang

    Full Text Available This study investigated the therapeutic potential and mechanisms of chitosan oligosaccharides (COS for oxidative stress-induced retinal diseases. Retinal oxidative damage was induced in Sprague-Dawley rats by intravitreal injection of paraquat (PQ. Low-dose (5 mg/kg or high-dose (10 mg/kg COS or PBS was intragastrically given for 14 days after PQ injection. Electroretinograms were performed to determine the functionality of the retinas. The surviving neurons in the retinal ganglion cell layer and retinal apoptosis were determined by counting Neu N-positive cells in whole-mounted retinas and TUNEL staining, respectively. The generation of reactive oxygen species (ROS was determined by lucigenin- and luminol-enhanced chemiluminescence. Retinal oxidative damages were assessed by staining with nitrotyrosine, acrolein, and 8-hydroxy-2'-deoxyguanosine (8-OHdG. Immunohistochemical studies were used to demonstrate the expression of nuclear factor-kappa B (NF-κB p65 in retinas. An in vitro study using RGC-5 cells was performed to verify the results. We demonstrated COS significantly enhanced the recovery of retinal function, preserved inner retinal thickness, and decreased retinal neurons loss in a dose-dependent manner. COS administration demonstrated anti-oxidative effects by reducing luminol- and lucigenin-dependent chemiluminenscense levels and activating superoxide dismutase and catalase, leading to decreased retinal apoptosis. COS markedly reduced retinal NF-κB p65. An in vitro study demonstrated COS increased IκB expression, attenuated the increase of p65 and thus decreased NF-κB/DNA binding activity in PQ-stimulated RGC-5 cells. In conclusion, COS attenuates oxidative stress-induced retinal damages, probably by decreasing free radicals, maintaining the activities of anti-oxidative enzymes, and inhibiting the activation of NF-κB.

  6. The Retinal Readout System: a status report A Status Report

    CERN Document Server

    Litke, A M

    1999-01-01

    The 'Retinal Readout System' is being developed to study the language the eye uses to send information about the visual world to the brain. Its architecture is based on that of silicon microstrip detectors. An array of 512 microscopic electrodes picks up the signals generated by the output neurons of live retinal tissue in response to a dynamic image focused on the input neurons. These signals are amplified, filtered and multiplexed by a set of eight custom-designed VLSI readout chips, and digitized and recorded by a data acquisition system. This report describes the goals, design, and status of the system. (author)

  7. Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch (Taeniopygia guttata.

    Directory of Open Access Journals (Sweden)

    Dennis eEckmeier

    2013-09-01

    Full Text Available The retinal image changes that occur during locomotion, the optic flow, carry information about self-motion and the three-dimensional structure of the environment. Especially fast moving animals with only little binocular vision depend on these depth cues for manoeuvring. They actively control their gaze to facilitate perception of depth based on cues in the optic flow. In the visual system of birds, nucleus rotundus neurons were originally found to respond to object motion but not to background motion. However, when background and object were both moving, responses increase the more the direction and velocity of object and background motion on the retina differed. These properties may play a role in representing depth cues in the optic flow. We therefore investigated how neurons in nucleus rotundus respond to optic flow that contains depth cues. We presented simplified and naturalistic optic flow on a panoramic LED display while recording from single neurons in nucleus rotundus of anaesthetized zebra finches. Unlike most studies on motion vision in birds, our stimuli included depth information.We found extensive responses of motion selective neurons in nucleus rotundus to optic flow stimuli. Simplified stimuli revealed preferences for optic flow reflecting translational or rotational self-motion. Naturalistic optic flow stimuli elicited complex response modulations, but the presence of objects was signalled by only few neurons. The neurons that did respond to objects in the optic flow, however, show interesting properties.

  8. Advanced multiphoton methods for in vitro and in vivo functional imaging of mouse retinal neurons (Conference Presentation)

    Science.gov (United States)

    Cohen, Noam; Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2016-03-01

    Studying the responses of retinal ganglion cell (RGC) populations has major significance in vision research. Multiphoton imaging of optogenetic probes has recently become the leading approach for visualizing neural populations and has specific advantages for imaging retinal activity during visual stimulation, because it leads to reduced direct photoreceptor excitation. However, multiphoton retinal activity imaging is not straightforward: point-by-point scanning leads to repeated neural excitation while optical access through the rodent eye in vivo has proven highly challenging. Here, we present two enabling optical designs for multiphoton imaging of responses to visual stimuli in mouse retinas expressing calcium indicators. First, we present an imaging solution based on Scanning Line Temporal Focusing (SLITE) for rapidly imaging neuronal activity in vitro. In this design, we scan a temporally focused line rather than a point, increasing the scan speed and reducing the impact of repeated excitation, while maintaining high optical sectioning. Second, we present the first in vivo demonstration of two-photon imaging of RGC activity in the mouse retina. To obtain these cellular resolution recordings we integrated an illumination path into a correction-free imaging system designed using an optical model of the mouse eye. This system can image at multiple depths using an electronically tunable lens integrated into its optical path. The new optical designs presented here overcome a number of outstanding obstacles, allowing the study of rapid calcium- and potentially even voltage-indicator signals both in vitro and in vivo, thereby bringing us a step closer toward distributed monitoring of action potentials.

  9. Activation of autophagy in a rat model of retinal ischemia following high intraocular pressure.

    Directory of Open Access Journals (Sweden)

    Antonio Piras

    Full Text Available Acute primary open angle glaucoma is an optic neuropathy characterized by the elevation of intraocular pressure, which causes retinal ischemia and neuronal death. Rat ischemia/reperfusion enhances endocytosis of both horseradish peroxidase (HRP or fluorescent dextran into ganglion cell layer (GCL neurons 24 h after the insult. We investigated the activation of autophagy in GCL-neurons following ischemia/reperfusion, using acid phosphatase (AP histochemistry and immunofluorescence against LC3 and LAMP1. Retinal I/R lead to the appearance of AP-positive granules and LAMP1-positive vesicles 12 and 24 h after the insult, and LC3 labelling at 24 h, and induced a consistent retinal neuron death. At 48 h the retina was negative for autophagic markers. In addition, Western Blot analysis revealed an increase of LC3 levels after damage: the increase in the conjugated, LC3-II isoform is suggestive of autophagic activity. Inhibition of autophagy by 3-methyladenine partially prevented death of neurons and reduces apoptotic markers, 24 h post-lesion. The number of neurons in the GCL decreased significantly following I/R (I/R 12.21±1.13 vs controls 19.23±1.12 cells/500 µm; this decrease was partially prevented by 3-methyladenine (17.08±1.42 cells/500 µm, which potently inhibits maturation of autophagosomes. Treatment also prevented the increase in glial fibrillary acid protein immunoreactivity elicited by I/R. Therefore, targeting autophagy could represent a novel and promising treatment for glaucoma and retinal ischemia.

  10. Müller stem cell dependent retinal regeneration.

    Science.gov (United States)

    Chohan, Annu; Singh, Usha; Kumar, Atul; Kaur, Jasbir

    2017-01-01

    Müller Stem cells to treat ocular diseases has triggered enthusiasm across all medical and scientific communities. Recent development in the field of stem cells has widened the prospects of applying cell based therapies to regenerate ocular tissues that have been irreversibly damaged by disease or injury. Ocular tissues such as the lens and the retina are now known to possess cell having remarkable regenerative abilities. Recent studies have shown that the Müller glia, a cell found in all vertebrate retinas, is the primary source of new neurons, and therefore are considered as the cellular basis for retinal regeneration in mammalian retinas. Here, we review the current status of retinal regeneration of the human eye by Müller stem cells. This review elucidates the current status of retinal regeneration by Müller stem cells, along with major retinal degenerative diseases where these stem cells play regenerative role in retinal repair and replacement. Copyright © 2016. Published by Elsevier B.V.

  11. Eye Morphology and Retinal Topography in Hummingbirds (Trochilidae: Aves).

    Science.gov (United States)

    Lisney, Thomas J; Wylie, Douglas R; Kolominsky, Jeffrey; Iwaniuk, Andrew N

    2015-01-01

    Hummingbirds are a group of small, highly specialized birds that display a range of adaptations to their nectarivorous lifestyle. Vision plays a key role in hummingbird feeding and hovering behaviours, yet very little is known about the visual systems of these birds. In this study, we measured eye morphology in 5 hummingbird species. For 2 of these species, we used stereology and retinal whole mounts to study the topographic distribution of neurons in the ganglion cell layer. Eye morphology (expressed as the ratio of corneal diameter to eye transverse diameter) was similar among all 5 species and was within the range previously documented for diurnal birds. Retinal topography was similar in Amazilia tzacatl and Calypte anna. Both species had 2 specialized retinal regions of high neuron density: a central region located slightly dorso-nasal to the superior pole of the pecten, where densities reached ∼ 45,000 cells · mm(-2), and a temporal area with lower densities (38,000-39,000 cells · mm(-2)). A weak visual streak bridged the two high-density areas. A retina from Phaethornis superciliosus also had a central high-density area with a similar peak neuron density. Estimates of spatial resolving power for all 3 species were similar, at approximately 5-6 cycles · degree(-1). Retinal cross sections confirmed that the central high-density region in C. anna contains a fovea, but not the temporal area. We found no evidence of a second, less well-developed fovea located close to the temporal retina margin. The central and temporal areas of high neuron density allow for increased spatial resolution in the lateral and frontal visual fields, respectively. Increased resolution in the frontal field in particular may be important for mediating feeding behaviors such as aerial docking with flowers and catching small insects. © 2015 S. Karger AG, Basel.

  12. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  13. Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules.

    Science.gov (United States)

    Grison, Alice; Zucchelli, Silvia; Urzì, Alice; Zamparo, Ilaria; Lazarevic, Dejan; Pascarella, Giovanni; Roncaglia, Paola; Giorgetti, Alejandro; Garcia-Esparcia, Paula; Vlachouli, Christina; Simone, Roberto; Persichetti, Francesca; Forrest, Alistair R R; Hayashizaki, Yoshihide; Carloni, Paolo; Ferrer, Isidro; Lodovichi, Claudia; Plessy, Charles; Carninci, Piero; Gustincich, Stefano

    2014-08-27

    The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson's disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown. By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains. Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease.

  14. Temporal dynamics of retinal and extraretinal signals in the FEFsem during smooth pursuit eye movements.

    Science.gov (United States)

    Bakst, Leah; Fleuriet, Jérome; Mustari, Michael J

    2017-05-01

    Neurons in the smooth eye movement subregion of the frontal eye field (FEFsem) are known to play an important role in voluntary smooth pursuit eye movements. Underlying this function are projections to parietal and prefrontal visual association areas and subcortical structures, all known to play vital but differing roles in the execution of smooth pursuit. Additionally, the FEFsem has been shown to carry a diverse array of signals (e.g., eye velocity, acceleration, gain control). We hypothesized that distinct subpopulations of FEFsem neurons subserve these diverse functions and projections, and that the relative weights of retinal and extraretinal signals could form the basis for categorization of units. To investigate this, we used a step-ramp tracking task with a target blink to determine the relative contributions of retinal and extraretinal signals in individual FEFsem neurons throughout pursuit. We found that the contributions of retinal and extraretinal signals to neuronal activity and behavior change throughout the time course of pursuit. A clustering algorithm revealed three distinct neuronal subpopulations: cluster 1 was defined by a higher sensitivity to eye velocity, acceleration, and retinal image motion; cluster 2 had greater activity during blinks; and cluster 3 had significantly greater eye position sensitivity. We also performed a comparison with a sample of medial superior temporal neurons to assess similarities and differences between the two areas. Our results indicate the utility of simple tests such as the target blink for parsing the complex and multifaceted roles of cortical areas in behavior. NEW & NOTEWORTHY The frontal eye field (FEF) is known to play a critical role in volitional smooth pursuit, carrying a variety of signals that are distributed throughout the brain. This study used a novel application of a target blink task during step ramp tracking to determine, in combination with a clustering algorithm, the relative contributions of

  15. Pαx6 expression in postmitotic neurons mediates the growth of axons in response to SFRP1.

    Directory of Open Access Journals (Sweden)

    Alvaro Sebastián-Serrano

    Full Text Available During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs, dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity.

  16. Overexpression of miR-183/-96/-182 triggers neuronal cell fate in Human Retinal Pigment Epithelial (hRPE) cells in culture.

    Science.gov (United States)

    Davari, Maliheh; Soheili, Zahra-Soheila; Samiei, Shahram; Sharifi, Zohreh; Pirmardan, Ehsan Ranaei

    2017-01-29

    miR-183 cluster, composed of miR-183/-96/-182 genes, is highly expressed in the adult retina, particularly in photoreceptors. It involves in development, maturation and normal function of neuroretina. Ectopic overexpression of miR-183/-96/-182 genes was performed to assess reprogramming of hRPE cells. They were amplified from genomic DNA and cloned independently or in tandem configuration into pAAV.MCS vector. hRPE cells were then transfected with the recombinant constructs. Real-Time PCR was performed to measure the expression levels of miR-183/-96/-182 and that of several retina-specific neuronal genes such as OTX2, NRL, PDC and DCT. The transfected cells also were immunocytochemically examined for retina-specific neuronal markers, including Rhodopsin, red opsin, CRX, Thy1, CD73, recoverin and PKCα, to determine the cellular fate of the transfected hRPE cells. Data showed that upon miR-183/-96/-182 overexpression in hRPE cultures, the expression of neuronal genes including OTX2, NRL, PDC and DCT was also upregulated. Moreover, miR-183 cluster-treated hRPE cells were immunoreactive for neuronal markers such as Rhodopsin, red opsin, CRX and Thy1. Both transcriptional and translational upregulation of neuronal genes in miR-183 cluster-treated hRPE cells suggests that in vitro overexpression of miR-183 cluster could trigger reprogramming of hRPE cells to retinal neuron fate. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy.

    Science.gov (United States)

    Sherry, David M; Murray, Anne R; Kanan, Yogita; Arbogast, Kelsey L; Hamilton, Robert A; Fliesler, Steven J; Burns, Marie E; Moore, Kevin L; Al-Ubaidi, Muayyad R

    2010-11-01

    To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Retinal waves are unlikely to instruct the formation of eye-specific retinogeniculate projections

    Directory of Open Access Journals (Sweden)

    Chalupa Leo M

    2009-07-01

    Full Text Available Abstract In all mammalian species the projections of the two eyes to the dorsal lateral geniculate nucleus are initially overlapping before gradually forming the eye-specific domains evident at maturity. It is widely thought that retinal waves of neuronal activity play an instructional role in this developmental process. Here, I discuss the myriad reasons why retinal waves are unlikely to have such a role, and suggest that eye-specific molecular cues in combination with neuronal activity are most probably involved in the formation of eye-specific retinogeniculate projections.

  19. Regulation of Taurine transporter activity in cultured rat retinal ganglion cells and rat retinal Muller Cells

    International Nuclear Information System (INIS)

    Eissa, Laila A.; Smith, Sylvia B.; El-sherbeny, Amira A.

    2006-01-01

    Diabetic retinopathy is one of the most common complications of diabetes. The amino acid taurine is believed to play an antioxidant protective role in diabetic retinopathy through the scavenging of the reactive species. It is not well established whether taurine uptake is altered in retina cells during diabetic conditions. Thus, the present study was designed to investigate the changes in taurine transport in cultures of rat retinal Muller cells and rat retinal ganglion cells under conditions associated with diabetes. Taurine was abundantly taken up by retinal Muller cells and rat retinal ganglion cells under normal glycemic condition. Taurine was actively transported to rat Muller cells and rat retinal ganglion cells in a Na and Cl dependant manner. Taurine uptake further significantly elevated in both type of cells after the incubation with high glucose concentration. This effect could be attributed to the increase in osmolarity. Because Nitric Oxide (NO) is a molecule implicated in the pathogenesis of diabetes, we also determined the activity of taurine transporter in cultured rat retinal Muller cells and rat retinal ganglion cells in the presence of the NO donors, SIN-1 and SNAP. Taurine uptake was elevated above control value after 24-h incubation with low concentration of NO donors. We finally investigated the ability of neurotoxic glutamate to change taurine transporter activity in both types of cells. Uptake of taurine was significantly increased in rat retinal ganglion cells when only incubated with high concentration of glutamate. Our data provide evidence that taurine transporter is present in cultured rat retinal ganglion and Muller cells and is regulated by hyperosmolarity. The data are relevant to disease such as diabetes and neuronal degeneration where retinal cell volume may dramatically change. (author)

  20. Scleral buckling for retinal detachment in patients with retinoblastoma

    International Nuclear Information System (INIS)

    Buzney, S.M.; Pruett, R.C.; Regan, C.D.; Walton, D.S.; Smith, T.R.

    1984-01-01

    Three children (two girls and one boy) with bilateral retinoblastoma each developed a presumed rhegmatogenous retinal detachment in one eye. All three eyes had previously received radiation and cryotherapy. In each case the retinal detachment responded promptly to conventional surgical methods via scleral buckling in the area of treated retinoblastoma and presumed retinal break. All three eyes have retained useful vision for follow-up periods of 3.5 to 12 years

  1. Scleral buckling for retinal detachment in patients with retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Buzney, S.M.; Pruett, R.C.; Regan, C.D.; Walton, D.S.; Smith, T.R.

    1984-10-15

    Three children (two girls and one boy) with bilateral retinoblastoma each developed a presumed rhegmatogenous retinal detachment in one eye. All three eyes had previously received radiation and cryotherapy. In each case the retinal detachment responded promptly to conventional surgical methods via scleral buckling in the area of treated retinoblastoma and presumed retinal break. All three eyes have retained useful vision for follow-up periods of 3.5 to 12 years.

  2. Shift in the intrinsic excitability of medial prefrontal cortex neurons following training in impulse control and cued-responding tasks.

    Directory of Open Access Journals (Sweden)

    Scott J Hayton

    Full Text Available Impulse control is an executive process that allows animals to inhibit their actions until an appropriate time. Previously, we reported that learning a simple response inhibition task increases AMPA currents at excitatory synapses in the prelimbic region of the medial prefrontal cortex (mPFC. Here, we examined whether modifications to intrinsic excitability occurred alongside the synaptic changes. To that end, we trained rats to obtain a food reward in a response inhibition task by withhold responding on a lever until they were signaled to respond. We then measured excitability, using whole-cell patch clamp recordings in brain slices, by quantifying action potentials generated by the injection of depolarizing current steps. Training in this task depressed the excitability of layer V pyramidal neurons of the prelimbic, but not infralimbic, region of the mPFC relative to behavioral controls. This decrease in maximum spiking frequency was significantly correlated with performance on the final session of the task. This change in intrinsic excitability may represent a homeostatic mechanism counterbalancing increased excitatory synaptic inputs onto those neurons in trained rats. Interestingly, subjects trained with a cue that predicted imminent reward availability had increased excitability in infralimbic, but not the prelimbic, pyramidal neurons. This dissociation suggests that both prelimbic and infralimbic neurons are involved in directing action, but specialized for different types of information, inhibitory or anticipatory, respectively.

  3. Cre recombinase expression or topical tamoxifen treatment do not affect retinal structure and function, neuronal vulnerability or glial reactivity in the mouse eye.

    Science.gov (United States)

    Boneva, S K; Groß, T R; Schlecht, A; Schmitt, S I; Sippl, C; Jägle, H; Volz, C; Neueder, A; Tamm, E R; Braunger, B M

    2016-06-14

    Mice with a constitutive or tamoxifen-induced Cre recombinase (Cre) expression are frequently used research tools to allow the conditional deletion of target genes via the Cre-loxP system. Here we analyzed for the first time in a comprehensive and comparative way, whether retinal Cre expression or topical tamoxifen treatment itself would cause structural or functional changes, including changes in the expression profiles of molecular markers, glial reactivity and photoreceptor vulnerability. To this end, we characterized the transgenic α-Cre, Lmop-Cre and the tamoxifen-inducible CAGG-CreER™ mouse lines, all having robust Cre expression in the neuronal retina. In addition, we characterized the effects of topical tamoxifen treatment itself in wildtype mice. We performed morphometric analyses, immunohistochemical staining, in vivo ERG and angiography analyses and realtime RT-PCR analyses. Furthermore, the influence of Cre recombinase or topical tamoxifen exposure on neuronal vulnerability was studied by using light damage as a model for photoreceptor degeneration. Taken together, neither the expression of Cre, nor topical tamoxifen treatment caused detectable changes in retinal structure and function, the expression profiles of investigated molecular markers, glial reactivity and photoreceptor vulnerability. We conclude that the Cre-loxP system and its induction through tamoxifen is a safe and reliable method to delete desired target genes in the neural retina. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. [Neuroprotective effect of erigeron breviscapus (vant) hand-mazz on NMDA-induced retinal neuron injury in the rats].

    Science.gov (United States)

    Shi, Jingming; Jiag, Youqin; Liu, Xuyang

    2004-07-01

    To investigate if Erigeron Breviscapus (vant) Hand-Mazz (EBHM) has a neuroprotective effect against NMDA-induced neuron death in retinal ganglion cell layer (RGCL). Sixty healthy SD rats were randomly divided into four groups. 6 animals were in normal control group (group A). The others were divided as group B (EBHM group), group C (normal saline+NMDA group), group D (EBHM+NMDA group). Each group has 18 rats. 10 nmol NMDA was chosen for intravitreal injection to cause partial damage of the neurons in RGCL in the right eyes of Groups C and D. Same volume PBS was intravitreal injected in the left eyes as self-control. Groups B and D were pre-treated intraperitoneally with 6% EBHM solution at a dose of 15 mg x 100 g(-1) x d(-1) seven days before and after NMDA treatment. Group C were administrated intraperitoneally with 0.9% normal saline at the same time of EBHM injection. Rats were sacrificed in 4, 7, 14 days after NMDA treatment. Flat preparation of whole retinas were stained with 0.5% cresyl violet and neuron counting in RGCL from both eyes. Each subgroup has 6 rats. There was no significant difference between the right eye and the left eye of neuron counting from RGCL in normal control group (group A) (P=0.200). There was no significant difference between normal control group and EBHM group either in the right eyes or in the left eye in 4 days, 7 days and 14 days respectively after intravitreal injection of 10 nmol NMDA in group C and group D. (P=0.636, P=0.193). Neuron counting from RGCL of group C and group D were significant decreased in the NMDA-treated eyes in 4 days, 7 days and 14 days after intravitreal injection (P 0.05). Neuron counting was significantly higher in the EBHM+NMDA group than normal saline+NMDA group at 14 days after intraviteal injection (P=0.044). However,it is obvious that the difference was still significant between normal control group and EBHM+NMDA group (P < 0.05). EBHM has no effect on neuron counting of RGCL when administered alone

  5. A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    Science.gov (United States)

    Wang, Yazhou; Wang, Wei; Li, Zong; Hao, Shilei; Wang, Bochu

    2016-10-01

    A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo conditions are introduced and analyzed. Second, research works in recent decades on the effects of different mechanical forces, especially compression and tension, on various neurons, including dorsal root ganglion neurons, retinal ganglion cells, cerebral cortex neurons, hippocampus neurons, neural stem cells, and other neurons, are summarized. Previous research results demonstrate that mechanical stress can not only injure neurons by damaging their morphology, impacting their electrophysiological characteristics and gene expression, but also promote neuron self-repair. Finally, some future perspectives in neuron research are discussed.

  6. Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases.

    Science.gov (United States)

    Ding, Suet Lee Shirley; Kumar, Suresh; Mok, Pooi Ling

    2017-07-28

    The use of multipotent mesenchymal stem cells (MSCs) has been reported as promising for the treatment of numerous degenerative disorders including the eye. In retinal degenerative diseases, MSCs exhibit the potential to regenerate into retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Delivery of MSCs was found to improve retinal morphology and function and delay retinal degeneration. In this review, we revisit the therapeutic role of MSCs in the diseased eye. Furthermore, we reveal the possible cellular mechanisms and identify the associated signaling pathways of MSCs in reversing the pathological conditions of various ocular disorders such as age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and glaucoma. Current stem cell treatment can be dispensed as an independent cell treatment format or with the combination of other approaches. Hence, the improvement of the treatment strategy is largely subjected by our understanding of MSCs mechanism of action.

  7. Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration

    Science.gov (United States)

    2016-12-01

    Precision Tissue Models”, Distinguished Seminar, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of...in vitro drug screening and potential in vivo retinal neuron repair. The expansion of ganglion cells is tightly related to the spatial arrangement of...AWARD NUMBER: W81XWH-14-1-0522 TITLE: Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration PRINCIPAL INVESTIGATOR

  8. Progress toward the maintenance and repair of degenerating retinal circuitry.

    Science.gov (United States)

    Vugler, Anthony A

    2010-01-01

    Retinal diseases such as age-related macular degeneration and retinitis pigmentosa remain major causes of severe vision loss in humans. Clinical trials for treatment of retinal degenerations are underway and advancements in our understanding of retinal biology in health/disease have implications for novel therapies. A review of retinal biology is used to inform a discussion of current strategies to maintain/repair neural circuitry in age-related macular degeneration, retinitis pigmentosa, and Type 2 Leber congenital amaurosis. In age-related macular degeneration/retinitis pigmentosa, a progressive loss of rods/cones results in corruption of bipolar cell circuitry, although retinal output neurons/photoreceptive melanopsin cells survive. Visual function can be stabilized/enhanced after treatment in age-related macular degeneration, but in advanced degenerations, reorganization of retinal circuitry may preclude attempts to restore cone function. In Type 2 Leber congenital amaurosis, useful vision can be restored by gene therapy where central cones survive. Remarkable progress has been made in restoring vision to rodents using light-responsive ion channels inserted into bipolar cells/retinal ganglion cells. Advances in genetic, cellular, and prosthetic therapies show varying degrees of promise for treating retinal degenerations. While functional benefits can be obtained after early therapeutic interventions, efforts should be made to minimize circuitry changes as soon as possible after rod/cone loss. Advances in retinal anatomy/physiology and genetic technologies should allow refinement of future reparative strategies.

  9. Characteristics of retinal reflectance changes induced by transcorneal electrical stimulation in cat eyes.

    Directory of Open Access Journals (Sweden)

    Takeshi Morimoto

    Full Text Available Transcorneal electrical stimulation (TES activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all. The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.

  10. Therapeutic avenues for hereditary forms of retinal blindness.

    Science.gov (United States)

    Kannabiran, Chitra; Mariappan, Indumathi

    2018-03-01

    Hereditary retinal diseases, known as retinal degenerations or dystrophies, are a large group of inherited eye disorders resulting in irreversible visual loss and blindness. They develop due to mutations in one or more genes that lead to the death of the retinal photoreceptor cells. Till date, mutations in over 200 genes are known to be associated with all different forms of retinal disorders. The enormous genetic heterogeneity of this group of diseases has posedmany challenges in understanding the mechanisms of disease and in developing suitable therapies. Therapeutic avenues that are being investigated for these disorders include gene therapy to replace the defective gene, treatment with neurotrophic factors to stimulate the growth of photoreceptors, cell replacement therapy, and prosthetic devices that can capture light and transmit electrical signals through retinal neurons to the brain. Several of these are in process of human trials in patients, and have shown safety and efficacy of the treatment. A combination of approaches that involve both gene replacement and cell replacement may be required for optimum benefit.

  11. Retinal Detachment

    Directory of Open Access Journals (Sweden)

    Adnan Riaz, MD

    2018-04-01

    Full Text Available History of present illness: A 58-year-old female presented to the emergency department reporting six days of progressive, atraumatic left eye vision loss. Her symptoms started with the appearance of dark spots and “spider webs,” and then progressed to darkening of vision in her left eye. She reports mild pain since yesterday. Her review of symptoms was otherwise negative. Ocular physical examination revealed normal external appearance, intact extraocular movements, and visual acuities of 20/25 OD and light/dark sensitivity OS. Fluorescein uptake was negative and slit lamp exam was unremarkable. Significant findings: Bedside ocular ultrasound revealed a serpentine, hyperechoic membrane that appeared tethered to the optic disc posteriorly with hyperechoic material underneath. These findings are consistent with retinal detachment (RD and associated retinal hemorrhage. Discussion: The retina is a layer of organized neurons that line the posterior portion of the posterior chamber of the eye. RD occurs when this layer separates from the underlying epithelium, resulting in ischemia and progressive photoreceptor degeneration, with potentially rapid and permanent vision loss if left untreated.1 Risk factors include advanced age, male sex (60%, race (Asians and Jews, and myopia and lattice degeneration.2 Bedside ultrasound (US performed by emergency physicians provides a valuable tool that has been used by ophthalmologists for decades to evaluate intraocular disease.1,3 Findings on bedside ultrasound consistent with RD include a hyperechoic membrane floating in the posterior chamber. RD usuallyremain tethered to the optic disc posteriorly and do not cross midline, a feature distinguishing them from posterior vitreous detachments. Associated retinal hemorrhage, seen as hyperechoic material under the retinal flap, can often be seen.1,2 US can also distinguish between “mac-on” and “mac-off” detachments. If the retina is still attached to the

  12. The Contribution of L-Type Cav1.3 Channels to Retinal Light Responses

    Directory of Open Access Journals (Sweden)

    Liheng Shi

    2017-12-01

    Full Text Available L-type voltage-gated calcium channels (LTCCs regulate tonic neurotransmitter release from sensory neurons including retinal photoreceptors. There are three types of LTCCs (Cav1.2, Cav1.3, and Cav1.4 expressed in the retina. While Cav1.2 is expressed in all retinal cells including the Müller glia and neurons, Cav1.3 and Cav1.4 are expressed in the retinal neurons with Cav1.4 exclusively expressed in the photoreceptor synaptic terminals. Mutations in the gene encoding Cav1.4 cause incomplete X-linked congenital stationary night blindness in humans. Even though Cav1.3 is present in the photoreceptor inner segments and the synaptic terminals in various vertebrate species, its role in vision is unclear, since genetic alterations in Cav1.3 are not associated with severe vision impairment in humans or in Cav1.3-null (Cav1.3−/− mice. However, a failure to regulate Cav1.3 was found in a mouse model of Usher syndrome, the most common cause of combined deafness and blindness in humans, indicating that Cav1.3 may contribute to retinal function. In this report, we combined physiological and morphological data to demonstrate the role of Cav1.3 in retinal physiology and function that has been undervalued thus far. Through ex vivo and in vivo electroretinogram (ERG recordings and immunohistochemical staining, we found that Cav1.3 plays a role in retinal light responses and synaptic plasticity. Pharmacological inhibition of Cav1.3 decreased ex vivo ERG a- and b-wave amplitudes. In Cav1.3−/− mice, their dark-adapted ERG a-, b-wave, and oscillatory potential amplitudes were significantly dampened, and implicit times were delayed compared to the wild type (WT. Furthermore, the density of ribbon synapses was reduced in the outer plexiform layer of Cav1.3−/− mice retinas. Hence, Cav1.3 plays a more prominent role in retinal physiology and function than previously reported.

  13. The Contribution of L-Type Cav1.3 Channels to Retinal Light Responses.

    Science.gov (United States)

    Shi, Liheng; Chang, Janet Ya-An; Yu, Fei; Ko, Michael L; Ko, Gladys Y-P

    2017-01-01

    L-type voltage-gated calcium channels (LTCCs) regulate tonic neurotransmitter release from sensory neurons including retinal photoreceptors. There are three types of LTCCs (Ca v 1.2, Ca v 1.3, and Ca v 1.4) expressed in the retina. While Ca v 1.2 is expressed in all retinal cells including the Müller glia and neurons, Ca v 1.3 and Ca v 1.4 are expressed in the retinal neurons with Ca v 1.4 exclusively expressed in the photoreceptor synaptic terminals. Mutations in the gene encoding Ca v 1.4 cause incomplete X-linked congenital stationary night blindness in humans. Even though Ca v 1.3 is present in the photoreceptor inner segments and the synaptic terminals in various vertebrate species, its role in vision is unclear, since genetic alterations in Ca v 1.3 are not associated with severe vision impairment in humans or in Ca v 1.3-null (Ca v 1.3 -/- ) mice. However, a failure to regulate Ca v 1.3 was found in a mouse model of Usher syndrome, the most common cause of combined deafness and blindness in humans, indicating that Ca v 1.3 may contribute to retinal function. In this report, we combined physiological and morphological data to demonstrate the role of Ca v 1.3 in retinal physiology and function that has been undervalued thus far. Through ex vivo and in vivo electroretinogram (ERG) recordings and immunohistochemical staining, we found that Ca v 1.3 plays a role in retinal light responses and synaptic plasticity. Pharmacological inhibition of Ca v 1.3 decreased ex vivo ERG a- and b-wave amplitudes. In Ca v 1.3 -/- mice, their dark-adapted ERG a-, b-wave, and oscillatory potential amplitudes were significantly dampened, and implicit times were delayed compared to the wild type (WT). Furthermore, the density of ribbon synapses was reduced in the outer plexiform layer of Ca v 1.3 -/- mice retinas. Hence, Ca v 1.3 plays a more prominent role in retinal physiology and function than previously reported.

  14. Progressive retinal degeneration and glial activation in the CLN6 (nclf mouse model of neuronal ceroid lipofuscinosis: a beneficial effect of DHA and curcumin supplementation.

    Directory of Open Access Journals (Sweden)

    Myriam Mirza

    Full Text Available Neuronal ceroid lipofuscinosis (NCL is a group of neurodegenerative lysosomal storage disorders characterized by vision loss, mental and motor deficits, and spontaneous seizures. Neuropathological analyses of autopsy material from NCL patients and animal models revealed brain atrophy closely associated with glial activity. Earlier reports also noticed loss of retinal cells and reactive gliosis in some forms of NCL. To study this phenomenon in detail, we analyzed the ocular phenotype of CLN6 (nclf mice, an established mouse model for variant-late infantile NCL. Retinal morphometry, immunohistochemistry, optokinetic tracking, electroretinography, and mRNA expression were used to characterize retinal morphology and function as well as the responses of Müller cells and microglia. Our histological data showed a severe and progressive degeneration in the CLN6 (nclf retina co-inciding with reactive Müller glia. Furthermore, a prominent phenotypic transformation of ramified microglia to phagocytic, bloated, and mislocalized microglial cells was identified in CLN6 (nclf retinas. These events overlapped with a rapid loss of visual perception and retinal function. Based on the strong microglia reactivity we hypothesized that dietary supplementation with immuno-regulatory compounds, curcumin and docosahexaenoic acid (DHA, could ameliorate microgliosis and reduce retinal degeneration. Our analyses showed that treatment of three-week-old CLN6 (nclf mice with either 5% DHA or 0.6% curcumin for 30 weeks resulted in a reduced number of amoeboid reactive microglia and partially improved retinal function. DHA-treatment also improved the morphology of CLN6 (nclf retinas with a preserved thickness of the photoreceptor layer in most regions of the retina. Our results suggest that microglial reactivity closely accompanies disease progression in the CLN6 (nclf retina and both processes can be attenuated with dietary supplemented immuno-modulating compounds.

  15. Rickettsial retinitis: Direct bacterial infection or an immune-mediated response?

    Directory of Open Access Journals (Sweden)

    Rohan Chawla

    2017-01-01

    Full Text Available Infectious retinitis postfebrile illness is known to be caused by chikungunya, dengue, West Nile virus, Bartonella, Lyme's disease, Rift Valley fever, rickettsia, Herpes viruses etc. Rickettsia is Gram-negative bacteria transmitted by arthropods vectors. Ocular involvement is common including conjunctivitis, keratitis, anterior uveitis, panuveitis, retinitis, retinal vascular changes, and optic nerve involvement. Retinitis lesions in rickettsia can occur because of an immunological response to the bacteria or because of direct invasion and proliferation of bacteria in the inner retina. We report such a case of bilateral rickettsial retinitis proven by serology which worsened on systemic steroids and responded dramatically to therapy with oral doxycycline and steroid taper. We thus believe that direct bacterial invasion plays a major role in the pathogenesis of rickettsial retinitis.

  16. Visual Neurons in the Superior Colliculus Innervated by Islet2+ or Islet2− Retinal Ganglion Cells Display Distinct Tuning Properties

    Directory of Open Access Journals (Sweden)

    Rachel B. Kay

    2017-10-01

    Full Text Available Throughout the visual system, different subtypes of neurons are tuned to distinct aspects of the visual scene, establishing parallel circuits. Defining the mechanisms by which such tuning arises has been a long-standing challenge for neuroscience. To investigate this, we have focused on the retina’s projection to the superior colliculus (SC, where multiple visual neuron subtypes have been described. The SC receives inputs from a variety of retinal ganglion cell (RGC subtypes; however, which RGCs drive the tuning of different SC neurons remains unclear. Here, we pursued a genetic approach that allowed us to determine the tuning properties of neurons innervated by molecularly defined subpopulations of RGCs. In homozygous Islet2-EphA3 knock-in (Isl2EA3/EA3 mice, Isl2+ and Isl2− RGCs project to non-overlapping sub-regions of the SC. Based on molecular and anatomic data, we show that significantly more Isl2− RGCs are direction-selective (DS in comparison with Isl2+ RGCs. Targeted recordings of visual responses from each SC sub-region in Isl2EA3/EA3 mice revealed that Isl2− RGC-innervated neurons were significantly more DS than those innervated by Isl2+ RGCs. Axis-selective (AS neurons were found in both sub-regions, though AS neurons innervated by Isl2+ RGCs were more tightly tuned. Despite this segregation, DS and AS neurons innervated by Isl2+ or Isl2− RGCs did not differ in their spatial summation or spatial frequency (SF tuning. Further, we did not observe alterations in receptive field (RF size or structure of SC neurons innervated by Isl2+ or Isl2− RGCs. Together, these data show that innervation by Isl2+ and Isl2− RGCs results in distinct tuning in the SC and set the stage for future studies investigating the mechanisms by which these circuits are built.

  17. Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice

    OpenAIRE

    Heuss, Neal D; Pierson, Mark J; Montaniel, Kim Ramil C; McPherson, Scott W; Lehmann, Ute; Hussong, Stacy A; Ferrington, Deborah A; Low, Walter C; Gregerson, Dale S

    2014-01-01

    Background Immune system cells are known to affect loss of neurons due to injury or disease. Recruitment of immune cells following retinal/CNS injury has been shown to affect the health and survival of neurons in several models. We detected close, physical contact between dendritic cells and retinal ganglion cells following an optic nerve crush, and sought to understand the underlying mechanisms. Methods CD11c-DTR/GFP mice producing a chimeric protein of diphtheria toxin receptor (DTR) and GF...

  18. Self-organising aggregates of zebrafish retinal cells for investigating mechanisms of neural lamination.

    Science.gov (United States)

    Eldred, Megan K; Charlton-Perkins, Mark; Muresan, Leila; Harris, William A

    2017-03-15

    To investigate the cell-cell interactions necessary for the formation of retinal layers, we cultured dissociated zebrafish retinal progenitors in agarose microwells. Within these wells, the cells re-aggregated within hours, forming tight retinal organoids. Using a Spectrum of Fates zebrafish line, in which all different types of retinal neurons show distinct fluorescent spectra, we found that by 48 h in culture, the retinal organoids acquire a distinct spatial organisation, i.e. they became coarsely but clearly laminated. Retinal pigment epithelium cells were in the centre, photoreceptors and bipolar cells were next most central and amacrine cells and retinal ganglion cells were on the outside. Image analysis allowed us to derive quantitative measures of lamination, which we then used to find that Müller glia, but not RPE cells, are essential for this process. © 2017. Published by The Company of Biologists Ltd.

  19. Decreased Retinal Thickness in Type 1 Diabetic Children with Signs of Nonproliferative Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    P. Ruiz-Ocaña

    2018-01-01

    Full Text Available The retina functions as a neurovascular unit. How early vascular alterations affect neuronal layers remains controversial; early vascular failure could lead to edema increasing retinal thicknesses, but alternatively neuronal loss could lead to reduced retinal thickness. Objective. To evaluate retinal thickness in a cohort of pediatric patients with type 1 diabetes mellitus (PwT1DM and to analyze differences according to the presence or absence of nonproliferative diabetic retinopathy (NPDR, poor metabolic control, and diabetes duration. Patients and Methods. We performed retinographies and optical coherence tomography (OCT (TOPCON 3D1000® to PwT1DM followed at our center and healthy controls. Measurements of the control group served to calculate reference values. Results. 59 PwT1DM (age 12.51 ± 2.59 and 22 healthy controls (age 10.66 ± 2.51 volunteered. Only two PwT1DM, both adolescents with poor metabolic control, presented NPRD. Both showed decreased thicknesses and retinal volumes. The odds ratio of having decreased retinal thickness when signs of NPDR were present was 11.72 (95% IC 1.16–118.28; p=0.036. Conclusions. PwT1DM with NPDR have increased odds of decreased retinal thicknesses and volumes. Whether these changes are reversible by improving metabolic control or not remains to be elucidated.

  20. Rapid glutamate receptor 2 trafficking during retinal degeneration

    Directory of Open Access Journals (Sweden)

    Lin Yanhua

    2012-02-01

    Full Text Available Abstract Background Retinal degenerations, such as age-related macular degeneration (AMD and retinitis pigmentosa (RP, are characterized by photoreceptor loss and anomalous remodeling of the surviving retina that corrupts visual processing and poses a barrier to late-stage therapeutic interventions in particular. However, the molecular events associated with retinal remodeling remain largely unknown. Given our prior evidence of ionotropic glutamate receptor (iGluR reprogramming in retinal degenerations, we hypothesized that the edited glutamate receptor 2 (GluR2 subunit and its trafficking may be modulated in retinal degenerations. Results Adult albino Balb/C mice were exposed to intense light for 24 h to induce light-induced retinal degeneration (LIRD. We found that prior to the onset of photoreceptor loss, protein levels of GluR2 and related trafficking proteins, including glutamate receptor-interacting protein 1 (GRIP1 and postsynaptic density protein 95 (PSD-95, were rapidly increased. LIRD triggered neuritogenesis in photoreceptor survival regions, where GluR2 and its trafficking proteins were expressed in the anomalous dendrites. Immunoprecipitation analysis showed interaction between KIF3A and GRIP1 as well as PSD-95, suggesting that KIF3A may mediate transport of GluR2 and its trafficking proteins to the novel dendrites. However, in areas of photoreceptor loss, GluR2 along with its trafficking proteins nearly vanished in retracted retinal neurites. Conclusions All together, LIRD rapidly triggers GluR2 plasticity, which is a potential mechanism behind functionally phenotypic revisions of retinal neurons and neuritogenesis during retinal degenerations.

  1. Choice of Cell Source in Cell-Based Therapies for Retinal Damage due to Age-Related Macular Degeneration: A Review

    Directory of Open Access Journals (Sweden)

    Sudhakar John

    2013-01-01

    Full Text Available Background. Age-related macular degeneration (AMD is a complex disorder that affects primarily the macula involving the retinal pigment epithelium (RPE but also to a certain extent the photoreceptor layer and the retinal neurons. Cell transplantation is a promising option for AMD and clinical trials are underway using different cell types. Methods. We hypothesize that instead of focusing on a particular cell source for concurrent regeneration of all the retinal layers and also to prevent exhaustive research on an array of cell sources for regeneration of each layer, the choice should depend on, precisely, which layer is damaged. Results. Thus, for a damage limited to the retinal pigment epithelial (RPE layer, the choice we suggest would be RPE cells. When the damage extends to rods and cones, the choice would be bone marrow stem cells and when retinal neurons are involved, relatively immature stem cell populations with an inherent capacity to yield neuronal lineage such as hematopoietic stem cells, embryonic stem cells, or induced pluripotent stem cells can be tried. Conclusion. This short review will prove to be a valuable guideline for those working on cell therapy for AMD to plan their future directions of research and therapy for this condition.

  2. Potentiating action of propofol at GABAA receptors of retinal bipolar cells

    DEFF Research Database (Denmark)

    Yue, Lan; Xie, An; Bruzik, Karol S

    2011-01-01

    Purpose. Propofol (2,6-diisopropyl phenol), a widely used systemic anesthetic, is known to potentiate GABA(A) receptor activity in a number of CNS neurons and to produce changes in electroretinographically recorded responses of the retina. However, little is known about propofol's effects...... on specific retinal neurons. The authors investigated the action of propofol on GABA-elicited membrane current responses of retinal bipolar cells, which have both GABA(A) and GABA(C) receptors. Methods. Single, enzymatically dissociated bipolar cells obtained from rat retina were treated with propofol...... + propofol) led to a progressive increase in peak response amplitude and, at higher propofol concentrations, additional changes that included a prolonged time course of response recovery. Pre-exposure of the cell to perfusing propofol typically enhanced the rate of development of potentiation produced...

  3. Endogenous and Synthetic Cannabinoids as Therapeutics in Retinal Disease

    Directory of Open Access Journals (Sweden)

    Despina Kokona

    2016-01-01

    Full Text Available The functional significance of cannabinoids in ocular physiology and disease has been reported some decades ago. In the early 1970s, subjects who smoked Cannabis sativa developed lower intraocular pressure (IOP. This led to the isolation of phytocannabinoids from this plant and the study of their therapeutic effects in glaucoma. The main treatment of this disease to date involves the administration of drugs mediating either the decrease of aqueous humour synthesis or the increase of its outflow and thus reduces IOP. However, the reduction of IOP is not sufficient to prevent visual field loss. Retinal diseases, such as glaucoma and diabetic retinopathy, have been defined as neurodegenerative diseases and characterized by ischemia-induced excitotoxicity and loss of retinal neurons. Therefore, new therapeutic strategies must be applied in order to target retinal cell death, reduction of visual acuity, and blindness. The aim of the present review is to address the neuroprotective and therapeutic potential of cannabinoids in retinal disease.

  4. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  5. Astrocytes and Müller cells changes during retinal degeneration in a transgenic rat model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Laura eFernández-Sánchez

    2015-12-01

    Full Text Available Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer of P23H versus SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  6. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    Science.gov (United States)

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  7. A comparison of spatial analysis methods for the construction of topographic maps of retinal cell density.

    Directory of Open Access Journals (Sweden)

    Eduardo Garza-Gisholt

    Full Text Available Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed 'by eye'. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation 'respects' the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the 'noise' caused by artefacts and permits a clearer representation of the dominant, 'real' distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect

  8. A comparison of spatial analysis methods for the construction of topographic maps of retinal cell density.

    Science.gov (United States)

    Garza-Gisholt, Eduardo; Hemmi, Jan M; Hart, Nathan S; Collin, Shaun P

    2014-01-01

    Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed 'by eye'. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation 'respects' the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the 'noise' caused by artefacts and permits a clearer representation of the dominant, 'real' distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome.

  9. Novel Retinal Lesion in Ebola Survivors, Sierra Leone, 2016.

    Science.gov (United States)

    Steptoe, Paul J; Scott, Janet T; Baxter, Julia M; Parkes, Craig K; Dwivedi, Rahul; Czanner, Gabriela; Vandy, Matthew J; Momorie, Fayiah; Fornah, Alimamy D; Komba, Patrick; Richards, Jade; Sahr, Foday; Beare, Nicholas A V; Semple, Malcolm G

    2017-07-01

    We conducted a case-control study in Freetown, Sierra Leone, to investigate ocular signs in Ebola virus disease (EVD) survivors. A total of 82 EVD survivors with ocular symptoms and 105 controls from asymptomatic civilian and military personnel and symptomatic eye clinic attendees underwent ophthalmic examination, including widefield retinal imaging. Snellen visual acuity was Ebola virus, permitting cataract surgery. A novel retinal lesion following the anatomic distribution of the optic nerve axons occurred in 14.6% (97.5% CI 7.1%-25.6%) of EVD survivors and no controls, suggesting neuronal transmission as a route of ocular entry.

  10. Macular Pigment and Lutein Supplementation in ABCA4-associated Retinal Degenerations

    Science.gov (United States)

    Aleman, Tomas S.; Cideciyan, Artur V.; Windsor, Elizabeth A. M.; Schwartz, Sharon B.; Swider, Malgorzata; Chico, John D.; Sumaroka, Alexander; Pantelyat, Alexander Y.; Duncan, Keith G.; Gardner, Leigh M.; Emmons, Jessica M.; Steinberg, Janet D.; Stone, Edwin M.; Jacobson, Samuel G.

    2008-01-01

    PURPOSE To determine macular pigment (MP) optical density (OD) in patients with ABCA4-associated retinal degenerations (ABCA4-RD) and the response of MP and vision to supplementation with lutein. METHODS Stargardt disease or cone-rod dystrophy patients with foveal fixation and with known or suspected disease-causing mutations in the ABCA4 gene were included. MPOD profiles were measured with heterochromatic flicker photometry. Serum carotenoids, visual acuity, foveal sensitivity and retinal thickness were quantified. Changes in MPOD and central vision were determined in a subset of patients receiving oral supplementation with lutein for 6 months. RESULTS MPOD in patients ranged from normal to markedly abnormal. As a group, ABCA4-RD patients had reduced foveal MPOD and there was strong correlation with retinal thickness. Average foveal tissue concentration of MP, estimated by dividing MPOD by retinal thickness, was normal in patients whereas serum concentration of lutein and zeaxanthin was significantly lower than normal. After oral lutein supplementation for 6 months, 91% of the patients showed significant increases in serum lutein and 63% of the patient eyes showed a significant augmentation in MPOD. The retinal responders tended to be female, and have lower serum lutein and zeaxanthin, lower MPOD and greater retinal thickness at baseline. Responding eyes had significantly lower baseline MP concentration compared to non-responding eyes. Central vision was unchanged after the period of supplementation. CONCLUSIONS MP is strongly affected by the stage of ABCA4 disease leading to abnormal foveal architecture. MP could be augmented by supplemental lutein in some patients. There was no change in central vision after 6 months of lutein supplementation. Long-term influences on the natural history of this supplement on macular degenerations require further study. PMID:17325179

  11. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity

    International Nuclear Information System (INIS)

    Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk; Kim, Kyu-Won; Kim, Myung Hun

    2009-01-01

    The retina maintains homeostasis through the blood-retinal barrier (BRB). Although it is ideal to deliver the drug to the retina via systemic administration, it is still challenging due to the BRB strictly regulating permeation from blood to the retina. Herein, we demonstrated that intravenously administered gold nanoparticles could pass through the BRB and are distributed in all retinal layers without cytotoxicity. After intravenous injection of gold nanoparticles into C57BL/6 mice, 100 nm nanoparticles were not detected in the retina whereas 20 nm nanoparticles passed through the BRB and were distributed in all retinal layers. 20 nm nanoparticles in the retina were observed in neurons (75 ± 5%), endothelial cells (17 ± 6%) and peri-endothelial glial cells (8 ± 3%), where nanoparticles were bound on the membrane. In the retina, cells containing nanoparticles did not show any structural abnormality and increase of cell death compared to cells without nanoparticles. Gold nanoparticles never affected the viability of retinal endothelial cells, astrocytes and retinoblastoma cells. Furthermore, gold nanoparticles never led to any change in expression of representative biological molecules including zonula occludens-1 and glut-1 in retinal endothelial cells, neurofilaments in differentiated retinoblastoma cells and glial fibrillary acidic protein in astrocytes. Therefore, our data suggests that small gold nanoparticles (20 nm) could be an alternative for drug delivery across the BRB, which could be safely applied in vivo.

  12. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk [Department of Ophthalmology, Seoul National University College of Medicine and Seoul Artificial Eye Center, Clinical Research Institute, Seoul National University Hospital, Seoul 151744 (Korea, Republic of); Kim, Kyu-Won [NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151742 (Korea, Republic of); Kim, Myung Hun, E-mail: hunin315@paran.com, E-mail: ysyu@snu.ac.kr [Department of Chemistry, Yonsei University, 134 Shinchon-dong, Seodaemun-ku, Seoul 120749 (Korea, Republic of)

    2009-12-16

    The retina maintains homeostasis through the blood-retinal barrier (BRB). Although it is ideal to deliver the drug to the retina via systemic administration, it is still challenging due to the BRB strictly regulating permeation from blood to the retina. Herein, we demonstrated that intravenously administered gold nanoparticles could pass through the BRB and are distributed in all retinal layers without cytotoxicity. After intravenous injection of gold nanoparticles into C57BL/6 mice, 100 nm nanoparticles were not detected in the retina whereas 20 nm nanoparticles passed through the BRB and were distributed in all retinal layers. 20 nm nanoparticles in the retina were observed in neurons (75 {+-} 5%), endothelial cells (17 {+-} 6%) and peri-endothelial glial cells (8 {+-} 3%), where nanoparticles were bound on the membrane. In the retina, cells containing nanoparticles did not show any structural abnormality and increase of cell death compared to cells without nanoparticles. Gold nanoparticles never affected the viability of retinal endothelial cells, astrocytes and retinoblastoma cells. Furthermore, gold nanoparticles never led to any change in expression of representative biological molecules including zonula occludens-1 and glut-1 in retinal endothelial cells, neurofilaments in differentiated retinoblastoma cells and glial fibrillary acidic protein in astrocytes. Therefore, our data suggests that small gold nanoparticles (20 nm) could be an alternative for drug delivery across the BRB, which could be safely applied in vivo.

  13. The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration.

    Science.gov (United States)

    Arnold, Edith; Thebault, Stéphanie; Baeza-Cruz, German; Arredondo Zamarripa, David; Adán, Norma; Quintanar-Stéphano, Andrés; Condés-Lara, Miguel; Rojas-Piloni, Gerardo; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-01-29

    Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision. We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it preserved the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated. Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with decreased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate glial-neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration.

  14. Retinal detachment and retinal holes in retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Csaky, K; Olk, R J; Mahl, C F; Bloom, S M

    1991-01-01

    Retinal detachment and retinal holes in two family members with retinitis pigmentosa sine pigmento are reported. We believe these are the first such cases reported in the literature. We describe the presenting symptoms and management, including cryotherapy, scleral buckling procedure, and sulfur hexafluoride injection (SF6), resulting in stable visual acuity in one case and retinal reattachment and improved visual acuity in the other case.

  15. Crocin prevents retinal ischaemia/reperfusion injury-induced apoptosis in retinal ganglion cells through the PI3K/AKT signalling pathway.

    Science.gov (United States)

    Qi, Yun; Chen, Li; Zhang, Lei; Liu, Wen-Bo; Chen, Xiao-Yan; Yang, Xin-Guang

    2013-02-01

    Crocin is a pharmacologically active component of Crocus sativus L. (saffron) and has been reported to be useful in the treatment of neuronal damage. In the present study, we investigated the neuroprotective effect of crocin on retinal ganglion cells (RGCs) after retinal ischaemia/reperfusion (IR) injury, and our results show that crocin acts through the PI3K/AKT signalling pathway. Retinal IR injury was induced by raising the intraocular pressure of Sprague-Dawley rats to 110 mmHg for 60 min. The neuroprotective effect of crocin was determined by quantifying the surviving RGCs and apoptotic RGCs following IR injury by means of retrograde labelling and TUNEL staining, respectively. The phosphorylated AKT protein level was determined by western blot and immunohistochemical analysis. To determine the extent to which the PI3K/AKT pathway contributes to the neuroprotective effect of crocin, experiments were also performed using the PI3K inhibitor LY294002. Compared with the IR + vehicle group, crocin (50 mg/kg) treatment enhanced RGC survival by approximately 36% and decreased RGC apoptosis by 44% after retinal IR injury. Western blot and immunohistochemical analysis demonstrated that the PI3K/AKT pathway was activated by crocin in the ganglion cell layer after retinal IR injury. Intravitreal injection of LY294002 blocked the neuroprotective effect of crocin on IR-induced RGC death. In conclusion, crocin prevents retinal IR-induced apoptosis of RGCs by activating the PI3K/AKT signalling pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections.

    Science.gov (United States)

    Stafford, Ben K; Sher, Alexander; Litke, Alan M; Feldheim, David A

    2009-10-29

    During development, retinal axons project coarsely within their visual targets before refining to form organized synaptic connections. Spontaneous retinal activity, in the form of acetylcholine-driven retinal waves, is proposed to be necessary for establishing these projection patterns. In particular, both axonal terminations of retinal ganglion cells (RGCs) and the size of receptive fields of target neurons are larger in mice that lack the beta2 subunit of the nicotinic acetylcholine receptor (beta2KO). Here, using a large-scale, high-density multielectrode array to record activity from hundreds of RGCs simultaneously, we present analysis of early postnatal retinal activity from both wild-type (WT) and beta2KO retinas. We find that beta2KO retinas have correlated patterns of activity, but many aspects of these patterns differ from those of WT retina. Quantitative analysis suggests that wave directionality, coupled with short-range correlated bursting patterns of RGCs, work together to refine retinofugal projections.

  17. Retinal oximetry in patients with ischaemic retinal diseases

    DEFF Research Database (Denmark)

    Rilvén, Sandra; Torp, Thomas Lee; Grauslund, Jakob

    2017-01-01

    The retinal oximeter is a new tool for non-invasive measurement of retinal oxygen saturation in humans. Several studies have investigated the associations between retinal oxygen saturation and retinal diseases. In the present systematic review, we examine whether there are associations between...... retinal oxygen saturation and retinal ischaemic diseases. We used PubMed and Embase to search for retinal oxygen saturation and retinal ischaemic diseases. Three separate searches identified a total of 79 publications. After two levels of manual screening, 10 studies were included: six about diabetic...... retinopathy (DR) and four about retinal vein occlusion. No studies about retinal artery occlusion were included. In diabetes, all studies found that increases in retinal venous oxygen saturation (rvSatO2 ) were associated with present as well as increasing levels of DR. Four of six studies also found...

  18. Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice.

    Science.gov (United States)

    Heuss, Neal D; Pierson, Mark J; Montaniel, Kim Ramil C; McPherson, Scott W; Lehmann, Ute; Hussong, Stacy A; Ferrington, Deborah A; Low, Walter C; Gregerson, Dale S

    2014-08-13

    Immune system cells are known to affect loss of neurons due to injury or disease. Recruitment of immune cells following retinal/CNS injury has been shown to affect the health and survival of neurons in several models. We detected close, physical contact between dendritic cells and retinal ganglion cells following an optic nerve crush, and sought to understand the underlying mechanisms. CD11c-DTR/GFP mice producing a chimeric protein of diphtheria toxin receptor (DTR) and GFP from a transgenic CD11c promoter were used in conjunction with mice deficient in MyD88 and/or TRIF. Retinal ganglion cell injury was induced by an optic nerve crush, and the resulting interactions of the GFPhi cells and retinal ganglion cells were examined. Recruitment of GFPhi dendritic cells to the retina was significantly compromised in MyD88 and TRIF knockout mice. GFPhi dendritic cells played a significant role in clearing fluorescent-labeled retinal ganglion cells post-injury in the CD11c-DTR/GFP mice. In the TRIF and MyD88 deficient mice, the resting level of GFPhi dendritic cells was lower, and their influx was reduced following the optic nerve crush injury. The reduction in GFPhi dendritic cell numbers led to their replacement in the uptake of fluorescent-labeled debris by GFPlo microglia/macrophages. Depletion of GFPhi dendritic cells by treatment with diphtheria toxin also led to their displacement by GFPlo microglia/macrophages, which then assumed close contact with the injured neurons. The contribution of recruited cells to the injury response was substantial, and regulated by MyD88 and TRIF. However, the presence of these adaptor proteins was not required for interaction with neurons, or the phagocytosis of debris. The data suggested a two-niche model in which resident microglia were maintained at a constant level post-optic nerve crush, while the injury-stimulated recruitment of dendritic cells and macrophages led to their transient appearance in numbers equivalent to or greater

  19. Towards a Completely Implantable, Light-Sensitive Intraocular Retinal Prosthesis

    National Research Council Canada - National Science Library

    Humayun, M

    2001-01-01

    .... Previous studies have established the feasibility of the retinal prosthesis. Short-term tests in blind humans have shown that degenerated retina will respond to light in a way that is consistent with form vision...

  20. Missed retinal breaks in rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Brijesh Takkar

    2016-12-01

    Full Text Available AIM: To evaluate the causes and associations of missed retinal breaks (MRBs and posterior vitreous detachment (PVD in patients with rhegmatogenous retinal detachment (RRD. METHODS: Case sheets of patients undergoing vitreo retinal surgery for RRD at a tertiary eye care centre were evaluated retrospectively. Out of the 378 records screened, 253 were included for analysis of MRBs and 191 patients were included for analysis of PVD, depending on the inclusion criteria. Features of RRD and retinal breaks noted on examination were compared to the status of MRBs and PVD detected during surgery for possible associations. RESULTS: Overall, 27% patients had MRBs. Retinal holes were commonly missed in patients with lattice degeneration while missed retinal tears were associated with presence of complete PVD. Patients operated for cataract surgery were significantly associated with MRBs (P=0.033 with the odds of missing a retinal break being 1.91 as compared to patients with natural lens. Advanced proliferative vitreo retinopathy (PVR and retinal bullae were the most common reasons for missing a retinal break during examination. PVD was present in 52% of the cases and was wrongly assessed in 16%. Retinal bullae, pseudophakia/aphakia, myopia, and horse shoe retinal tears were strongly associated with presence of PVD. Traumatic RRDs were rarely associated with PVD. CONCLUSION: Pseudophakic patients, and patients with retinal bullae or advanced PVR should be carefully screened for MRBs. Though Weiss ring is a good indicator of PVD, it may still be over diagnosed in some cases. PVD is associated with retinal bullae and pseudophakia, and inversely with traumatic RRD.

  1. Protection of neurons in the retinal ganglion cell layer against excitotoxicity by the N-acylethanolamine, N-linoleoylethanolamine

    Directory of Open Access Journals (Sweden)

    Duncan RS

    2011-04-01

    Full Text Available R. Scott Duncan1,*, Hua Xin1,*, Daryl L Goad1, Kent D Chapman2,3, Peter Koulen1,31Vision Research Center and Departments of Ophthalmology and Basic Medical Science, School of Medicine, University of Missouri, Kansas City, MO, USA; 2Department of Biological Sciences, University of North Texas, Denton, TX, USA; 3Center for Plant Lipid Research, University of North Texas, Denton, TX, USA *Authors contributed equallyAbstract: Retinal ganglion cell (RGC death is a hallmark of neurodegenerative diseases and disease processes of the eye, including glaucoma. The protection of RGCs has been an important strategy for combating glaucoma, but little clinical success has been reported to date. One pathophysiological consequence of glaucoma is excessive extracellular glutamate subsequently leading to excitotoxicity in the retina. Endocannabinoids, such as the N-acylethanolamine (NAE, arachidonylethanolamine (NAE 20:4, exhibit neuroprotective properties in some models of neurodegenerative disease. The majority of NAEs, however, are not cannabinoids, and their physiological function is not clear. Here, we determined whether the noncannabinoid NAE, linoleoylethanolamine (NAE18:2, protects neurons in the RGC layer against glutamate excitotoxicity in ex-vivo retina cultures. Using a terminal deoxynucleotidyl transferase-mediated dUTP (2´-deoxyuridine 5´-triphosphate nick-end labeling (TUNEL assay, we determined that NAE18:2 reduces the number of apoptotic RGC layer neurons in response to glutamate and conclude that NAE18:2 is a neuroprotective compound with potential for treating glaucomatous retinopathy.Keywords: neuroprotection, glutamate, calcium signaling, immunocytochemistry, eye, vision, glaucoma.

  2. Single cell transcriptome profiling of developing chick retinal cells.

    Science.gov (United States)

    Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M

    2017-08-15

    The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.

  3. Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1.

    Science.gov (United States)

    Light, Alan R; Hughen, Ronald W; Zhang, Jie; Rainier, Jon; Liu, Zhuqing; Lee, Jeewoo

    2008-09-01

    The adequate stimuli and molecular receptors for muscle metaboreceptors and nociceptors are still under investigation. We used calcium imaging of cultured primary sensory dorsal root ganglion (DRG) neurons from C57Bl/6 mice to determine candidates for metabolites that could be the adequate stimuli and receptors that could detect these stimuli. Retrograde DiI labeling determined that some of these neurons innervated skeletal muscle. We found that combinations of protons, ATP, and lactate were much more effective than individually applied compounds for activating rapid calcium increases in muscle-innervating dorsal root ganglion neurons. Antagonists for P2X, ASIC, and TRPV1 receptors suggested that these three receptors act together to detect protons, ATP, and lactate when presented together in physiologically relevant concentrations. Two populations of muscle-innervating DRG neurons were found. One responded to low metabolite levels (likely nonnoxious) and used ASIC3, P2X5, and TRPV1 as molecular receptors to detect these metabolites. The other responded to high levels of metabolites (likely noxious) and used ASIC3, P2X4, and TRPV1 as their molecular receptors. We conclude that a combination of ASIC, P2X5 and/or P2X4, and TRPV1 are the molecular receptors used to detect metabolites by muscle-innervating sensory neurons. We further conclude that the adequate stimuli for muscle metaboreceptors and nociceptors are combinations of protons, ATP, and lactate.

  4. Single-neuron correlates of subjective vision in the human medial temporal lobe

    OpenAIRE

    Kreiman, Gabriel; Fried, Itzhak; Koch, Christof

    2002-01-01

    Visual information from the environment is transformed into perceptual sensations through several stages of neuronal processing. Flash suppression constitutes a striking example in which the same retinal input can give rise to two different conscious visual percepts. We directly recorded the responses of individual neurons during flash suppression in the human amygdala, entorhinal cortex, hippocampus, and parahippocampal gyrus, allowing us to explore the neuronal responses in untrained subjec...

  5. In vivo patch-clamp analysis of response properties of rat primary somatosensory cortical neurons responding to noxious stimulation of the facial skin

    Directory of Open Access Journals (Sweden)

    Nasu Masanori

    2010-05-01

    Full Text Available Abstract Background Although it has been widely accepted that the primary somatosensory (SI cortex plays an important role in pain perception, it still remains unclear how the nociceptive mechanisms of synaptic transmission occur at the single neuron level. The aim of the present study was to examine whether noxious stimulation applied to the orofacial area evokes the synaptic response of SI neurons in urethane-anesthetized rats using an in vivo patch-clamp technique. Results In vivo whole-cell current-clamp recordings were performed in rat SI neurons (layers III-IV. Twenty-seven out of 63 neurons were identified in the mechanical receptive field of the orofacial area (36 neurons showed no receptive field and they were classified as non-nociceptive (low-threshold mechanoreceptive; 6/27, 22% and nociceptive neurons. Nociceptive neurons were further divided into wide-dynamic range neurons (3/27, 11% and nociceptive-specific neurons (18/27, 67%. In the majority of these neurons, a proportion of the excitatory postsynaptic potentials (EPSPs reached the threshold, and then generated random discharges of action potentials. Noxious mechanical stimuli applied to the receptive field elicited a discharge of action potentials on the barrage of EPSPs. In the case of noxious chemical stimulation applied as mustard oil to the orofacial area, the membrane potential shifted depolarization and the rate of spontaneous discharges gradually increased as did the noxious pinch-evoked discharge rates, which were usually associated with potentiated EPSP amplitudes. Conclusions The present study provides evidence that SI neurons in deep layers III-V respond to the temporal summation of EPSPs due to noxious mechanical and chemical stimulation applied to the orofacial area and that these neurons may contribute to the processing of nociceptive information, including hyperalgesia.

  6. Cell-type specific roles for PTEN in establishing a functional retinal architecture.

    Directory of Open Access Journals (Sweden)

    Robert Cantrup

    Full Text Available The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture.In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam.We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and

  7. Novel Strategies for the Improvement of Stem Cells' Transplantation in Degenerative Retinal Diseases

    Science.gov (United States)

    Nicoară, Simona Delia; Șușman, Sergiu; Tudoran, Oana; Bărbos, Otilia; Cherecheș, Gabriela; Aștilean, Simion; Potara, Monica; Sorițău, Olga

    2016-01-01

    Currently, there is no cure for the permanent vision loss caused by degenerative retinal diseases. One of the novel therapeutic strategies aims at the development of stem cells (SCs) based neuroprotective and regenerative medicine. The main sources of SCs for the treatment of retinal diseases are the embryo, the bone marrow, the region of neuronal genesis, and the eye. The success of transplantation depends on the origin of cells, the route of administration, the local microenvironment, and the proper combinative formula of growth factors. The feasibility of SCs based therapies for degenerative retinal diseases was proved in the preclinical setting. However, their translation into the clinical realm is limited by various factors: the immunogenicity of the cells, the stability of the cell phenotype, the predilection of SCs to form tumors in situ, the abnormality of the microenvironment, and the association of a synaptic rewiring. To improve SCs based therapies, nanotechnology offers a smart delivery system for biomolecules, such as growth factors for SCs implantation and differentiation into retinal progenitors. This review explores the main advances in the field of retinal transplantology and applications of nanotechnology in the treatment of retinal diseases, discusses the challenges, and suggests new therapeutic approaches in retinal transplantation. PMID:27293444

  8. Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma

    Science.gov (United States)

    Kumar, Sandeep; Ramakrishnan, Hariharasubramanian; Roy, Kaushambi; Viswanathan, Suresh; Bloomfield, Stewart A.

    2017-01-01

    The progressive death of retinal ganglion cells and resulting visual deficits are hallmarks of glaucoma, but the underlying mechanisms remain unclear. In many neurodegenerative diseases, cell death induced by primary insult is followed by a wave of secondary loss. Gap junctions (GJs), intercellular channels composed of subunit connexins, can play a major role in secondary cell death by forming conduits through which toxic molecules from dying cells pass to and injure coupled neighbors. Here we have shown that pharmacological blockade of GJs or genetic ablation of connexin 36 (Cx36) subunits, which are highly expressed by retinal neurons, markedly reduced loss of neurons and optic nerve axons in a mouse model of glaucoma. Further, functional parameters that are negatively affected in glaucoma, including the electroretinogram, visual evoked potential, visual spatial acuity, and contrast sensitivity, were maintained at control levels when Cx36 was ablated. Neuronal GJs may thus represent potential therapeutic targets to prevent the progressive neurodegeneration and visual impairment associated with glaucoma. PMID:28604388

  9. Elucidating the role of AII amacrine cells in glutamatergic retinal waves.

    Science.gov (United States)

    Firl, Alana; Ke, Jiang-Bin; Zhang, Lei; Fuerst, Peter G; Singer, Joshua H; Feller, Marla B

    2015-01-28

    Spontaneous retinal activity mediated by glutamatergic neurotransmission-so-called "Stage 3" retinal waves-drives anti-correlated spiking in ON and OFF RGCs during the second week of postnatal development of the mouse. In the mature retina, the activity of a retinal interneuron called the AII amacrine cell is responsible for anti-correlated spiking in ON and OFF α-RGCs. In mature AIIs, membrane hyperpolarization elicits bursting behavior. Here, we postulated that bursting in AIIs underlies the initiation of glutamatergic retinal waves. We tested this hypothesis by using two-photon calcium imaging of spontaneous activity in populations of retinal neurons and by making whole-cell recordings from individual AIIs and α-RGCs in in vitro preparations of mouse retina. We found that AIIs participated in retinal waves, and that their activity was correlated with that of ON α-RGCs and anti-correlated with that of OFF α-RGCs. Though immature AIIs lacked the complement of membrane conductances necessary to generate bursting, pharmacological activation of the M-current, a conductance that modulates bursting in mature AIIs, blocked retinal wave generation. Interestingly, blockade of the pacemaker conductance Ih, a conductance absent in AIIs but present in both ON and OFF cone bipolar cells, caused a dramatic loss of spatial coherence of spontaneous activity. We conclude that during glutamatergic waves, AIIs act to coordinate and propagate activity generated by BCs rather than to initiate spontaneous activity. Copyright © 2015 the authors 0270-6474/15/351675-12$15.00/0.

  10. Role of endoplasmic reticulum stress in the loss of retinal ganglion cells in diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Liping Yang; Lemeng Wu; Dongmei Wang; Ying Li; Hongliang Dou; Mark OMTso; Zhizhong Ma

    2013-01-01

    Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in-creased, which was associated with retinal ganglion celldeath in diabetic retinas. The C/ERB ho-mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in-dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu-ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy.

  11. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  12. Progress in artificial vision through suprachoroidal retinal implants

    Science.gov (United States)

    Bareket, Lilach; Barriga-Rivera, Alejandro; Zapf, Marc Patrick; Lovell, Nigel H.; Suaning, Gregg J.

    2017-08-01

    Retinal implants have proven their ability to restore visual sensation to people with degenerative retinopathy, characterized by photoreceptor cell death and the retina’s inability to sense light. Retinal bionics operate by electrically stimulating the surviving neurons in the retina, thus triggering the transfer of visual sensory information to the brain. Suprachoroidal implants were first investigated in Australia in the 1950s. In this approach, the neuromodulation hardware is positioned between the sclera and the choroid, thus providing significant surgical and safety benefits for patients, with the potential to maintain residual vision combined with the artificial input from the device. Here we review the latest advances and state of the art devices for suprachoroidal prostheses, highlight future technologies and discuss challenges and perspectives towards improved rehabilitation of vision.

  13. A quest for the best retinal pigment epithelium (stem) cell replacement therapy

    NARCIS (Netherlands)

    Bennis, A.

    2017-01-01

    In this thesis the focus of study lies on the retinal pigment epithelium (RPE), a monolayer of pigmented cells that lie underneath the photoreceptors (PR). The PR are specialized type of neurons that are capable of converting the incoming light into electric and neurochemical signals to the brain.

  14. Veratridine increases the survival of retinal ganglion cells in vitro

    Directory of Open Access Journals (Sweden)

    S.P.F. Pereira

    1997-12-01

    Full Text Available Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 µM on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 µM, a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 µM tetrodotoxin (a classical voltage-dependent Na+ channel blocker and 30.0 µM flunarizine (a Na+ and Ca2+ channel blocker. These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro

  15. A cascade model of information processing and encoding for retinal prosthesis.

    Science.gov (United States)

    Pei, Zhi-Jun; Gao, Guan-Xin; Hao, Bo; Qiao, Qing-Li; Ai, Hui-Jian

    2016-04-01

    Retinal prosthesis offers a potential treatment for individuals suffering from photoreceptor degeneration diseases. Establishing biological retinal models and simulating how the biological retina convert incoming light signal into spike trains that can be properly decoded by the brain is a key issue. Some retinal models have been presented, ranking from structural models inspired by the layered architecture to functional models originated from a set of specific physiological phenomena. However, Most of these focus on stimulus image compression, edge detection and reconstruction, but do not generate spike trains corresponding to visual image. In this study, based on state-of-the-art retinal physiological mechanism, including effective visual information extraction, static nonlinear rectification of biological systems and neurons Poisson coding, a cascade model of the retina including the out plexiform layer for information processing and the inner plexiform layer for information encoding was brought forward, which integrates both anatomic connections and functional computations of retina. Using MATLAB software, spike trains corresponding to stimulus image were numerically computed by four steps: linear spatiotemporal filtering, static nonlinear rectification, radial sampling and then Poisson spike generation. The simulated results suggested that such a cascade model could recreate visual information processing and encoding functionalities of the retina, which is helpful in developing artificial retina for the retinally blind.

  16. The visual development of hand-centered receptive fields in a neural network model of the primate visual system trained with experimentally recorded human gaze changes.

    Science.gov (United States)

    Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M

    2016-01-01

    Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.

  17. Retinitis pigmentosa sine pigmenti. Debut with macular oedema.

    Science.gov (United States)

    de la Mata Pérez, G; Ruiz-Moreno, O; Fernández-Pérez, S; Torrón Fernández-Blanco, C; Pablo-Júlvez, L

    2014-09-01

    A 25-year-old woman, with metamorphopsia in her left eye of one year onset. The examination revealed a bilateral cystoid macular oedema (CME) and vascular attenuation. We describe the diagnostic tests, as well as differential diagnosis and treatment response with carbonic anhydrase inhibitors. The retinitis pigmentosa sine pigment is a subtype of atypical retinitis pigmentosa characterised by the absence of pigment deposits. The night blindness is milder, and perimetric and electroretinographic impairment is lower. CME is an important cause of central vision loss, and responds to anhydrase carbonic inhibitors. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  18. A simple white noise analysis of neuronal light responses.

    Science.gov (United States)

    Chichilnisky, E J

    2001-05-01

    A white noise technique is presented for estimating the response properties of spiking visual system neurons. The technique is simple, robust, efficient and well suited to simultaneous recordings from multiple neurons. It provides a complete and easily interpretable model of light responses even for neurons that display a common form of response nonlinearity that precludes classical linear systems analysis. A theoretical justification of the technique is presented that relies only on elementary linear algebra and statistics. Implementation is described with examples. The technique and the underlying model of neural responses are validated using recordings from retinal ganglion cells, and in principle are applicable to other neurons. Advantages and disadvantages of the technique relative to classical approaches are discussed.

  19. Hippocampal neurons respond uniquely to topographies of various sizes and shapes

    International Nuclear Information System (INIS)

    Fozdar, David Y; Chen Shaochen; Lee, Jae Young; Schmidt, Christine E

    2010-01-01

    A number of studies have investigated the behavior of neurons on microfabricated topography for the purpose of developing interfaces for use in neural engineering applications. However, there have been few studies simultaneously exploring the effects of topographies having various feature sizes and shapes on axon growth and polarization in the first 24 h. Accordingly, here we investigated the effects of arrays of lines (ridge grooves) and holes of microscale (∼2 μm) and nanoscale (∼300 nm) dimensions, patterned in quartz (SiO 2 ), on the (1) adhesion, (2) axon establishment (polarization), (3) axon length, (4) axon alignment and (5) cell morphology of rat embryonic hippocampal neurons, to study the response of the neurons to feature dimension and geometry. Neurons were analyzed using optical and scanning electron microscopy. The topographies were found to have a negligible effect on cell attachment but to cause a marked increase in axon polarization, occurring more frequently on sub-microscale features than on microscale features. Neurons were observed to form longer axons on lines than on holes and smooth surfaces; axons were either aligned parallel or perpendicular to the line features. An analysis of cell morphology indicated that the surface features impacted the morphologies of the soma, axon and growth cone. The results suggest that incorporating microscale and sub-microscale topographies on biomaterial surfaces may enhance the biomaterials' ability to modulate nerve development and regeneration.

  20. Retinal adaptation to dim light vision in spectacled caimans (Caiman crocodilus fuscus): Analysis of retinal ultrastructure.

    Science.gov (United States)

    Karl, Anett; Agte, Silke; Zayas-Santiago, Astrid; Makarov, Felix N; Rivera, Yomarie; Benedikt, Jan; Francke, Mike; Reichenbach, Andreas; Skatchkov, Serguei N; Bringmann, Andreas

    2018-05-19

    oblique arrangement of many Müller cell trunks/processes in the inner plexiform layer and the large Müller cell somata in the inner nuclear layer may suggest that light guidance through Müller cells increases the visual sensitivity. Furthermore, an adaptation of the caiman retina to low light levels is strongly supported by detailed ultrastructural data of other retinal parts, e.g. by (i) the presence of a guanine-based retinal tapetum, (ii) the rod dominance of the retina, (iii) the presence of photoreceptor cell nuclei, which penetrate the outer limiting membrane, (iv) the relatively low densities of photoreceptor and neuronal cells which is compensated by (v) the presence of rods with long and thick outer segments, that may increase the probability of photon absorption. According to a cell number analysis, the central and temporal areas of the dorsal tapetal retina, which supports downward prey detection in darker water, are the sites of the highest diurnal contrast/color vision, i.e. cone vision and of the highest retinal light sensitivity, i.e. rod vision. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Most superficial sublamina of rat superior colliculus: neuronal response properties and correlates with perceptual figure-ground segregation.

    Science.gov (United States)

    Girman, S V; Lund, R D

    2007-07-01

    The uppermost layer (stratum griseum superficiale, SGS) of the superior colliculus (SC) provides an important gateway from the retina to the visual extrastriate and visuomotor systems. The majority of attention has been given to the role of this "visual" SC in saccade generation and target selection and it is generally considered to be less important in visual perception. We have found, however, that in the rat SGS1, the most superficial division of the SGS, the neurons perform very sophisticated analysis of visual information. First, in studying their responses with a variety of flashing stimuli we found that the neurons respond not to brightness changes per se, but to the appearance and/or disappearance of visual shapes in their receptive fields (RFs). Contrary to conventional RFs of neurons at the early stages of visual processing, the RFs in SGS1 cannot be described in terms of fixed spatial distribution of excitatory and inhibitory inputs. Second, SGS1 neurons showed robust orientation tuning to drifting gratings and orientation-specific modulation of the center response from surround. These are features previously seen only in visual cortical neurons and are considered to be involved in "contour" perception and figure-ground segregation. Third, responses of SGS1 neurons showed complex dynamics; typically the response tuning became progressively sharpened with repetitive grating periods. We conclude that SGS1 neurons are involved in considerably more complex analysis of retinal input than was previously thought. SGS1 may participate in early stages of figure-ground segregation and have a role in low-resolution nonconscious vision as encountered after visual decortication.

  2. S1P transporter SPNS2 regulates proper postnatal retinal morphogenesis.

    Science.gov (United States)

    Fang, Chao; Bian, Ganlan; Ren, Pan; Xiang, Jie; Song, Jun; Yu, Caiyong; Zhang, Qian; Liu, Ling; Chen, Kun; Liu, Fangfang; Zhang, Kun; Wu, Chunfeng; Sun, Ruixia; Hu, Dan; Ju, Gong; Wang, Jian

    2018-02-08

    Spinster homolog 2 (SPNS2) is the membrane transporter of sphingosine-1-phosphate (S1P), and it participates in several physiologic processes by activating different S1P receptors (S1PRs). However, its functions in the nervous system remain largely unclear. We explored the important role of SPNS2 in the process of retinal morphogenesis using a spns2-deficient rat model. In the absence of the functional SPNS2 transporter, we observed progressively aggravating laminar disorganization of the epithelium at the postnatal stage of retinal development. Disrupted cell polarity, delayed cell-cycle exit of retinal progenitor cells, and insufficient migration of newborn neurons were proposed in this study as potential mechanisms accounting for this structural disorder. In addition, we analyzed the expression profiles of spns2 and s1prs, and proposed that SPNS2 regulated retinal morphogenesis by establishing the S1P level in the eye and activating S1PR3 signaling. These data indicate that SPNS2 is indispensable for normal retinal morphogenesis and provide new insights on the role of S1P in the developing retina using an established in vivo model.-Fang, C., Bian, G., Ren, P., Xiang, J., Song, J., Yu, C., Zhang, Q., Liu, L., Chen, K., Liu, F., Zhang, K., Wu, C., Sun, R., Hu, D., Ju, G., Wang, J. S1P transporter SPNS2 regulates proper postnatal retinal morphogenesis.

  3. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    Science.gov (United States)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  4. Co-expression of two subtypes of melatonin receptor on rat M1-type intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Wen-Long Sheng

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGCs are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions.

  5. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.

    Science.gov (United States)

    Chader, Gerald J; Weiland, James; Humayun, Mark S

    2009-01-01

    Hundreds of thousands around the world have poor vision or no vision at all due to inherited retinal degenerations (RDs) like retinitis pigmentosa (RP). Similarly, millions suffer from vision loss due to age-related macular degeneration (AMD). In both of these allied diseases, the primary target for pathology is the retinal photoreceptor cells that dysfunction and die. Secondary neurons though are relatively spared. To replace photoreceptor cell function, an electronic prosthetic device can be used such that retinal secondary neurons receive a signal that simulates an external visual image. The composite device has a miniature video camera mounted on the patient's eyeglasses, which captures images and passes them to a microprocessor that converts the data to an electronic signal. This signal, in turn, is transmitted to an array of electrodes placed on the retinal surface, which transmits the patterned signal to the remaining viable secondary neurons. These neurons (ganglion, bipolar cells, etc.) begin processing the signal and pass it down the optic nerve to the brain for final integration into a visual image. Many groups in different countries have different versions of the device, including brain implants and retinal implants, the latter having epiretinal or subretinal placement. The device furthest along in development is an epiretinal implant sponsored by Second Sight Medical Products (SSMP). Their first-generation device had 16 electrodes with human testing in a Phase 1 clinical trial beginning in 2002. The second-generation device has 60+ electrodes and is currently in Phase 2/3 clinical trial. Increased numbers of electrodes are planned for future versions of the device. Testing of the device's efficacy is a challenge since patients admitted into the trial have little or no vision. Thus, methods must be developed that accurately and reproducibly record small improvements in visual function after implantation. Standard tests such as visual acuity, visual

  6. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants.

    Directory of Open Access Journals (Sweden)

    Lorena Olivares-González

    Full Text Available Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2 for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.

  7. FEFsem neuronal response during combined volitional and reflexive pursuit.

    Science.gov (United States)

    Bakst, Leah; Fleuriet, Jérome; Mustari, Michael J

    2017-05-01

    Although much is known about volitional and reflexive smooth eye movements individually, much less is known about how they are coordinated. It is hypothesized that separate cortico-ponto-cerebellar loops subserve these different types of smooth eye movements. Specifically, the MT-MST-DLPN pathway is thought to be critical for ocular following eye movements, whereas the FEF-NRTP pathway is understood to be vital for volitional smooth pursuit. However, the role that these loops play in combined volitional and reflexive behavior is unknown. We used a large, textured background moving in conjunction with a small target spot to investigate the eye movements evoked by a combined volitional and reflexive pursuit task. We also assessed the activity of neurons in the smooth eye movement subregion of the frontal eye field (FEFsem). We hypothesized that the pursuit system would show less contribution from the volitional pathway in this task, owing to the increased involvement of the reflexive pathway. In accordance with this hypothesis, a majority of FEFsem neurons (63%) were less active during pursuit maintenance in a combined volitional and reflexive pursuit task than during purely volitional pursuit. Interestingly and surprisingly, the neuronal response to the addition of the large-field motion was highly correlated with the neuronal response to a target blink. This suggests that FEFsem neuronal responses to these different perturbations-whether the addition or subtraction of retinal input-may be related. We conjecture that these findings are due to changing weights of both the volitional and reflexive pathways, as well as retinal and extraretinal signals.

  8. Focal retinal phlebitis.

    Science.gov (United States)

    Hoang, Quan V; Freund, K Bailey; Klancnik, James M; Sorenson, John A; Cunningham, Emmett T; Yannuzzi, Lawrence A

    2012-01-01

    To report three cases of solitary, focal retinal phlebitis. An observational case series. Three eyes in three patients were noted to have unilateral decreased vision, macular edema, and a focal retinal phlebitis, which was not at an arteriovenous crossing. All three patients developed a branch retinal vein occlusion at the site of inflammation. These patients had no other evidence of intraocular inflammation, including vitritis, retinitis, retinal vasculitis, or choroiditis, nor was there any systemic disorder associated with inflammation, infection, or coagulation identified. Focal retinal phlebitis appears to be an uncommon and unique entity that produces macular edema and ultimately branch retinal vein occlusion. In our patients, the focal phlebitis and venous occlusion did not occur at an arteriovenous crossing, which is the typical site for branch retinal venous occlusive disease. This suggests that our cases represent a distinct clinical entity, which starts with a focal abnormality in the wall of a retinal venule, resulting in surrounding exudation and, ultimately, ends with branch retinal vein occlusion.

  9. Large-scale imaging of retinal output activity

    CERN Document Server

    Litke, A M; Dabrowski, W; Grillo, A A; Grybos, P; Kachiguine, S; Rahman, M; Taylor, G

    2003-01-01

    A system is being developed to study how the retina processes, encodes and communicates information about the visual world to the brain. It will image the activity of retinal output neurons over a region of live retina approaching that used for significant neural computation in the visual cortex. A prototype system consisting of 61 microelectrodes, covering an area of 0.17 mm**2, is described, including some first results with monkey retina. The plans and status for a system with 512 microelectrodes, covering an area of 1.7 mm**2, are also given.

  10. Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis.

    Directory of Open Access Journals (Sweden)

    E Castaldi

    2016-10-01

    Full Text Available Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI. After surgery, six out of seven retinitis pigmentosa (RP blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD activity in V1 and the lateral geniculate nucleus (LGN was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation.

  11. Reciprocal actions of microRNA-9 and TLX in the proliferation and differentiation of retinal progenitor cells.

    Science.gov (United States)

    Hu, Yamin; Luo, Min; Ni, Ni; Den, Yuan; Xia, Jing; Chen, Junzhao; Ji, Jing; Zhou, Xiaojian; Fan, Xianqun; Gu, Ping

    2014-11-15

    Recent research has demonstrated critical roles of a number of microRNAs (miRNAs) in stem cell proliferation and differentiation. miRNA-9 (miR-9) is a brain-enriched miRNA. Whether miR-9 has a role in retinal progenitor cell (RPC) proliferation and differentiation remains unknown. In this study, we show that miR-9 plays an important role in RPC fate determination. The expression of miR-9 was inversely correlated with that of the nuclear receptor TLX, which is an essential regulator of neural stem cell self-renewal. Overexpression of miR-9 downregulated the TLX levels in RPCs, leading to reduced RPC proliferation and increased neuronal and glial differentiation, and the effect of miR-9 overexpression on RPC proliferation and differentiation was inhibited by the TLX overexpression; knockdown of miR-9 resulted in increased TLX expression as well as enhanced proliferation of RPCs. Furthermore, inhibition of endogenous TLX by small interfering RNA suppressed RPC proliferation and promoted RPCs to differentiate into retinal neuronal and glial cells. These results suggest that miR-9 and TLX form a feedback regulatory loop to coordinate the proliferation and differentiation of retinal progenitors.

  12. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.

  13. The ciliary margin zone of the mammalian retina generates retinal ganglion cells

    Science.gov (United States)

    Marcucci, Florencia; Murcia-Belmonte, Veronica; Coca, Yaiza; Ferreiro-Galve, Susana; Wang, Qing; Kuwajima, Takaaki; Khalid, Sania; Ross, M. Elizabeth; Herrera, Eloisa; Mason, Carol

    2016-01-01

    Summary The retina of lower vertebrates grows continuously by integrating new neurons generated from progenitors in the ciliary margin zone (CMZ). Whether the mammalian CMZ provides the neural retina with retinal cells is controversial. Live-imaging of embryonic retina expressing eGFP in the CMZ shows that cells migrate laterally from the CMZ to the neural retina where differentiated retinal ganglion cells (RGCs) reside. As Cyclin D2, a cell-cycle regulator, is enriched in ventral CMZ, we analyzed Cyclin D2−/− mice to test whether the CMZ is a source of retinal cells. Neurogenesis is diminished in Cyclin D2 mutants, leading to a reduction of RGCs in the ventral retina. In line with these findings, in the albino retina, the decreased production of ipsilateral RGCs is correlated with fewer Cyclin D2+ cells. Together, these results implicate the mammalian CMZ as a neurogenic site that produces RGCs and whose proper generation depends on Cyclin D2 activity. PMID:28009286

  14. Coding properties of three intrinsically distinct retinal ganglion cells under periodic stimuli: a computational study

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2016-09-01

    Full Text Available As the sole output neurons in the retina, ganglion cells play significant roles in transforming visual information into spike trains, and then transmitting them to the higher visual centers. However, coding strategies that retinal ganglion cells (RGCs adopt to accomplish these processes are not completely clear yet. To clarify these issues, we investigate the coding properties of three types of RGCs (repetitive spiking, tonic firing, and phasic firing by two different measures (spike-rate and spike-latency. Model results show that for periodic stimuli, repetitive spiking RGC and tonic RGC exhibit similar spike-rate patterns. Their spike-rates decrease gradually with increased stimulus frequency, moreover, variation of stimulus amplitude would change the two RGCs’ spike-rate patterns. For phasic RGC, it activates strongly at medium levels of frequency when the stimulus amplitude is low. While if high stimulus amplitude is applied, phasic RGC switches to respond strongly at low frequencies. These results suggest that stimulus amplitude is a prominent factor in regulating RGCs in encoding periodic signals. Similar conclusions can be drawn when analyzes spike-latency patterns of the three RGCs. More importantly, the above phenomena can be accurately reproduced by Hodgkin’s three classes of neurons, indicating that RGCs can perform the typical three classes of firing dynamics, depending on the distinctions of ion channel densities. Consequently, model results from the three RGCs may be not specific, but can also applicable to neurons in other brain regions which exhibit part(s or all of the Hodgkin’s three excitabilities.

  15. Responses of prefrontal multisensory neurons to mismatching faces and vocalizations.

    Science.gov (United States)

    Diehl, Maria M; Romanski, Lizabeth M

    2014-08-20

    Social communication relies on the integration of auditory and visual information, which are present in faces and vocalizations. Evidence suggests that the integration of information from multiple sources enhances perception compared with the processing of a unimodal stimulus. Our previous studies demonstrated that single neurons in the ventrolateral prefrontal cortex (VLPFC) of the rhesus monkey (Macaca mulatta) respond to and integrate conspecific vocalizations and their accompanying facial gestures. We were therefore interested in how VLPFC neurons respond differentially to matching (congruent) and mismatching (incongruent) faces and vocalizations. We recorded VLPFC neurons during the presentation of movies with congruent or incongruent species-specific facial gestures and vocalizations as well as their unimodal components. Recordings showed that while many VLPFC units are multisensory and respond to faces, vocalizations, or their combination, a subset of neurons showed a significant change in neuronal activity in response to incongruent versus congruent vocalization movies. Among these neurons, we typically observed incongruent suppression during the early stimulus period and incongruent enhancement during the late stimulus period. Incongruent-responsive VLPFC neurons were both bimodal and nonlinear multisensory, fostering their ability to respond to changes in either modality of a face-vocalization stimulus. These results demonstrate that ventral prefrontal neurons respond to changes in either modality of an audiovisual stimulus, which is important in identity processing and for the integration of multisensory communication information. Copyright © 2014 the authors 0270-6474/14/3411233-11$15.00/0.

  16. Prefrontal Neurons Represent Motion Signals from Across the Visual Field But for Memory-Guided Comparisons Depend on Neurons Providing These Signals.

    Science.gov (United States)

    Wimmer, Klaus; Spinelli, Philip; Pasternak, Tatiana

    2016-09-07

    Visual decisions often involve comparisons of sequential stimuli that can appear at any location in the visual field. The lateral prefrontal cortex (LPFC) in nonhuman primates, shown to play an important role in such comparisons, receives information about contralateral stimuli directly from sensory neurons in the same hemisphere, and about ipsilateral stimuli indirectly from neurons in the opposite hemisphere. This asymmetry of sensory inputs into the LPFC poses the question of whether and how its neurons incorporate sensory information arriving from the two hemispheres during memory-guided comparisons of visual motion. We found that, although responses of individual LPFC neurons to contralateral stimuli were stronger and emerged 40 ms earlier, they carried remarkably similar signals about motion direction in the two hemifields, with comparable direction selectivity and similar direction preferences. This similarity was also apparent around the time of the comparison between the current and remembered stimulus because both ipsilateral and contralateral responses showed similar signals reflecting the remembered direction. However, despite availability in the LPFC of motion information from across the visual field, these "comparison effects" required for the comparison stimuli to appear at the same retinal location. This strict dependence on spatial overlap of the comparison stimuli suggests participation of neurons with localized receptive fields in the comparison process. These results suggest that while LPFC incorporates many key aspects of the information arriving from sensory neurons residing in opposite hemispheres, it continues relying on the interactions with these neurons at the time of generating signals leading to successful perceptual decisions. Visual decisions often involve comparisons of sequential visual motion that can appear at any location in the visual field. We show that during such comparisons, the lateral prefrontal cortex (LPFC) contains

  17. Dorzolamide increases retinal oxygen tension after branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Noergaard, Michael Hove; Bach-Holm, Daniella; Scherfig, Erik

    2008-01-01

    To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs.......To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs....

  18. Blood pressure modifies retinal susceptibility to intraocular pressure elevation.

    Directory of Open Access Journals (Sweden)

    Zheng He

    Full Text Available Primary open angle glaucoma affects more than 67 million people. Elevated intraocular pressure (IOP is a risk factor for glaucoma and may reduce nutrient availability by decreasing ocular perfusion pressure (OPP. An interaction between arterial blood pressure and IOP determines OPP; but the exact contribution that these factors have for retinal function is not fully understood. Here we sought to determine how acute modifications of arterial pressure will affect the susceptibility of neuronal function and blood flow to IOP challenge. Anaesthetized (ketamine:xylazine Long-Evan rats with low (∼60 mmHg, sodium nitroprusside infusion, moderate (∼100 mmHg, saline, or high levels (∼160 mmHg, angiotensin II of mean arterial pressure (MAP, n = 5-10 per group were subjected to IOP challenge (10-120 mmHg, 5 mmHg steps every 3 minutes. Electroretinograms were measured at each IOP step to assess bipolar cell (b-wave and inner retinal function (scotopic threshold response or STR. Ocular blood flow was measured using laser-Doppler flowmetry in groups with similar MAP level and the same IOP challenge protocol. Both b-wave and STR amplitudes decreased with IOP elevation. Retinal function was less susceptible to IOP challenge when MAP was high, whereas the converse was true for low MAP. Consistent with the effects on retinal function, higher IOP was needed to attenuated ocular blood flow in animals with higher MAP. The susceptibility of retinal function to IOP challenge can be ameliorated by acute high BP, and exacerbated by low BP. This is partially mediated by modifications in ocular blood flow.

  19. Peripheral retinal degenerations and the risk of retinal detachment.

    Science.gov (United States)

    Lewis, Hilel

    2003-07-01

    To review the degenerative diseases of the peripheral retina in relationship with the risk to develop a rhegmatogenous retinal detachment and to present recommendations for use in eyes at increased risk of developing a retinal detachment. Focused literature review and author's clinical experience. Retinal degenerations are common lesions involving the peripheral retina, and most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and, rarely, zonular traction tufts, can result in a rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic therapy; however, adequate studies have not been performed to date. Well-designed, prospective, randomized clinical studies are necessary to determine the benefit-risk ratio of prophylactic treatment. In the meantime, the evidence available suggests that most of the peripheral retinal degenerations should not be treated except in rare, high-risk situations.

  20. Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors

    Directory of Open Access Journals (Sweden)

    Tyler DiStefano

    2018-01-01

    Full Text Available Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25 reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo. Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies.

  1. PAR-Complex and Crumbs Function During Photoreceptor Morphogenesis and Retinal Degeneration.

    Science.gov (United States)

    Pichaud, Franck

    2018-01-01

    The fly photoreceptor has long been used as a model to study sensory neuron morphogenesis and retinal degeneration. In particular, elucidating how these cells are built continues to help further our understanding of the mechanisms of polarized cell morphogenesis, intracellular trafficking and the causes of human retinal pathologies. The conserved PAR complex, which in flies consists of Cdc42-PAR6-aPKC-Bazooka, and the transmembrane protein Crumbs (Crb) are key players during photoreceptor morphogenesis. While the PAR complex regulates polarity in many cell types, Crb function in polarity is relatively specific to epithelial cells. Together Cdc42-PAR6-aPKC-Bazooka and Crb orchestrate the differentiation of the photoreceptor apical membrane (AM) and zonula adherens (ZA) , thus allowing these cells to assemble into a neuro-epithelial lattice. In addition to its function in epithelial polarity, Crb has also been shown to protect fly photoreceptors from light-induced degeneration, a process linked to Rhodopsin expression and trafficking. Remarkably, mutations in the human Crumbs1 (CRB1) gene lead to retinal degeneration, making the fly photoreceptor a powerful disease model system.

  2. Retinal vascular oximetry during ranibizumab treatment of central retinal vein occlusion

    DEFF Research Database (Denmark)

    Traustason, Sindri; la Cour, Morten; Larsen, Michael

    2014-01-01

    PURPOSE: To investigate the effect of intravitreal injections of the vascular endothelial growth factor inhibitor ranibizumab on retinal oxygenation in patients with central retinal vein occlusion (CRVO). METHODS: Retinal oxygen saturation in patients with CRVO was analysed using the Oxymap Retin...

  3. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Tebar, A.; Barde, Y.A.

    1988-09-01

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations.

  4. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    International Nuclear Information System (INIS)

    Rodriguez-Tebar, A.; Barde, Y.A.

    1988-01-01

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations

  5. Functional differentiation of macaque visual temporal cortical neurons using a parametric action space.

    Science.gov (United States)

    Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin

    2009-03-01

    Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.

  6. Medial Orbitofrontal Cortex Mediates Effort-related Responding in Rats.

    Science.gov (United States)

    Münster, Alexandra; Hauber, Wolfgang

    2017-11-17

    The medial orbitofrontal cortex (mOFC) is known to support flexible control of goal-directed behavior. However, limited evidence suggests that the mOFC also mediates the ability of organisms to work with vigor towards a selected goal, a hypothesis that received little consideration to date. Here we show that excitotoxic mOFC lesion increased responding under a progressive ratio (PR) schedule of reinforcement, that is, the highest ratio achieved, and increased the preference for the high effort-high reward option in an effort-related decision-making task, but left intact outcome-selective Pavlovian-instrumental transfer and outcome-specific devaluation. Moreover, pharmacological inhibition of the mOFC increased, while pharmacological stimulation reduced PR responding. In addition, pharmacological mOFC stimulation attenuated methylphenidate-induced increase of PR responding. Intact rats tested for PR responding displayed higher numbers of c-Fos positive mOFC neurons than appropriate controls; however, mOFC neurons projecting to the nucleus accumbens did not show a selective increase in neuronal activation implying that they may not play a major role in regulating PR responding. Collectively, these results suggest that the mOFC plays a major role in mediating effort-related motivational functions. Moreover, our data demonstrate for the first time that the mOFC modulates effort-related effects of psychostimulant drugs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons.

    Science.gov (United States)

    Xu, Bo; Zheng, Hong; Liu, Xuefei; Patel, Kaushik P

    2015-05-01

    Renal denervation for the treatment of hypertension has proven to be successful; however, the underlying mechanism/s are not entirely clear. To determine if preautonomic neurons in the paraventricular nucleus (PVN) respond to afferent renal nerve (ARN) stimulation, extracellular single-unit recording was used to investigate the contribution of the rostral ventrolateral medulla (RVLM)-projecting PVN (PVN-RVLM) neurons to the response elicited during stimulation of ARN. In 109 spontaneously active neurons recorded in the PVN of anesthetized rats, 25 units were antidromically activated from the RVLM. Among these PVN-RVLM neurons, 84% (21/25) were activated by ARN stimulation. The baseline discharge rate was significantly higher in these neurons than those PVN-RVLM neurons not activated by ARN stimulation (16%, 4/25). The responsiveness of these neurons to baroreflex activation induced by phenylephrine and activation of cardiac sympathetic afferent reflex (CSAR) was also examined. Almost all of the PVN neurons that responded to ARN stimulation were sensitive to baroreflex (95%) and CSAR (100%). The discharge characteristics for nonevoked neurons (not activated by RVLM antidromic stimulation) showed that 23% of these PVN neurons responded to ARN stimulation. All the PVN neurons that responded to ARN stimulation were activated by N-methyl-D-aspartate, and these responses were attenuated by the glutamate receptor blocker AP5. These experiments demonstrated that sensory information originating in the kidney is integrated at the level of preautonomic neurons within the PVN, providing a novel mechanistic insight for use of renal denervation in the modulation of sympathetic outflow in disease states such as hypertension and heart failure. Copyright © 2015 the American Physiological Society.

  8. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.

    Directory of Open Access Journals (Sweden)

    Cheryl A Arcinue

    Full Text Available To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula compared with age-matched HIV-negative controls.Cohort of patients with known HIV under CART (combination Antiretroviral Therapy treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT to assess retinal layers and retinal thickness.Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior, the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2. A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea. We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer was also significantly thickened in all the different locations scanned compared with HIV-negative controls.Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.

  9. Macular pigment and lutein supplementation in retinitis pigmentosa and Usher syndrome.

    Science.gov (United States)

    Aleman, T S; Duncan, J L; Bieber, M L; de Castro, E; Marks, D A; Gardner, L M; Steinberg, J D; Cideciyan, A V; Maguire, M G; Jacobson, S G

    2001-07-01

    To determine macular pigment (MP) in patients with inherited retinal degeneration and the response of MP and vision to supplementation of lutein. Patients with retinitis pigmentosa (RP) or Usher syndrome and normal subjects had MP optical density profiles measured with heterochromatic flicker photometry. Serum carotenoids, visual acuity, foveal sensitivity, and retinal thickness (by optical coherence tomography [OCT]) were quantified. The effects on MP and central vision of 6 months of lutein supplementation at 20 mg/d were determined. MP density in the patients as a group did not differ from normal. Among patients with lower MP, there was a higher percentage of females, smokers, and light-colored irides. Disease expression tended to be more severe in patients with lower MP. Inner retinal thickness by OCT correlated positively with MP density in the patients. After supplementation, all participants showed an increase in serum lutein. Only approximately half the patients showed a statistically significant increase in MP. Retinal nonresponders had slightly greater disease severity but were otherwise not distinguishable from responders. Central vision was unchanged after supplementation. Factors previously associated with lower or higher MP density in normal subjects showed similar associations in RP and Usher syndrome. In addition, MP in patients may be affected by stage of retinal disease, especially that leading to abnormal foveal architecture. MP could be augmented by supplemental lutein in many but not all patients. There was no change in central vision after 6 months of lutein supplementation, but long-term influences on the natural history of these retinal degenerations require further study.

  10. The rat with oxygen-induced retinopathy is myopic with low retinal dopamine.

    Science.gov (United States)

    Zhang, Nan; Favazza, Tara L; Baglieri, Anna Maria; Benador, Ilan Y; Noonan, Emily R; Fulton, Anne B; Hansen, Ronald M; Iuvone, P Michael; Akula, James D

    2013-12-19

    Dopamine (DA) is a neurotransmitter implicated both in modulating neural retinal signals and in eye growth. Therefore, it may participate in the pathogenesis of the most common clinical sequelae of retinopathy of prematurity (ROP), visual dysfunction and myopia. Paradoxically, in ROP myopia the eye is usually small. The eye of the rat with oxygen-induced retinopathy (OIR) is characterized by retinal dysfunction and short axial length. There have been several investigations of the early maturation of DA in rat retina, but little at older ages, and not in the OIR rat. Therefore, DA, retinal function, and refractive state were investigated in the OIR rat. In one set of rats, the development of dopaminergic (DAergic) networks was evaluated in retinal cross-sections from rats aged 14 to 120 days using antibodies against tyrosine hydroxylase (TH, the rate-limiting enzyme in the biosynthesis of DA). In another set of rats, retinoscopy was used to evaluate spherical equivalent (SE), electoretinography (ERG) was used to evaluate retinal function, and high-pressure liquid chromatography (HPLC) was used to evaluate retinal contents of DA, its precursor levodopamine (DOPA), and its primary metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). The normally rapid postnatal ramification of DAergic neurons was disrupted in OIR rats. Retinoscopy revealed that OIR rats were relatively myopic. In the same eyes, ERG confirmed retinal dysfunction in OIR. HPLC of those eyes' retinae confirmed low DA. Regression analysis indicated that DA metabolism (evaluated by the ratio of DOPAC to DA) was an important additional predictor of myopia beyond OIR. The OIR rat is the first known animal model of myopia in which the eye is smaller than normal. Dopamine may modulate, or fail to modulate, neural activity in the OIR eye, and thus contribute to this peculiar myopia.

  11. The role of Toll-like receptors in retinal ischemic diseases

    Institute of Scientific and Technical Information of China (English)

    Wen-Qin Xu; Yu-Sheng Wang

    2016-01-01

    Toll-like receptors(TLRs) are commonly referred to a series of evolutionary conserved receptors which recognize and respond to various microbes and endogenous ligands.Growing evidence has demonstrated that the expression of TLRs in the retina is regulated during retinal ischemic diseases,including ischemia-reperfusion injury,glaucoma,diabetic retinopathy(DR) and retinopathy of prematurity(ROP).TLRs can be expressed in multiple cells in the retina,such as glial cells,retinal pigment epithelium(RPE),as well as photoreceptor cells and endothelium cells.Activation of TLRs in retina could initiate a complex signal transduction cascade,induce the production of inflammatory cytokines and regulate the level of costimulatory molecules,which play prominent roles in the pathogenesis of retinal ischemic diseases.In this review,we summarized current studies about the relationship between TLRs and ischemic retinopathy.A greater understanding of the effect of TLRs on ischemic injuries may contribute to the development of specific TLR targeted therapeutic strategies in these conditions.

  12. PERSPECTIVE: Electrical activity enhances neuronal survival and regeneration

    Science.gov (United States)

    Corredor, Raul G.; Goldberg, Jeffrey L.

    2009-10-01

    The failure of regeneration in the central nervous system (CNS) remains an enormous scientific and clinical challenge. After injury or in degenerative diseases, neurons in the adult mammalian CNS fail to regrow their axons and reconnect with their normal targets, and furthermore the neurons frequently die and are not normally replaced. While significant progress has been made in understanding the molecular basis for this lack of regenerative ability, a second approach has gained momentum: replacing lost neurons or lost connections with artificial electrical circuits that interface with the nervous system. In the visual system, gene therapy-based 'optogenetics' prostheses represent a competing technology. Now, the two approaches are converging, as recent data suggest that electrical activity itself, via the molecular signaling pathways such activity stimulates, is sufficient to induce neuronal survival and regeneration, particularly in retinal ganglion cells. Here, we review these data, discuss the effects of electrical activity on neurons' molecular signaling pathways and propose specific mechanisms by which exogenous electrical activity may be acting to enhance survival and regeneration.

  13. Platelet-derived growth factor (PDGF)-C inhibits neuroretinal apoptosis in a murine model of focal retinal degeneration.

    Science.gov (United States)

    Wang, Yujuan; Abu-Asab, Mones S; Yu, Cheng-Rong; Tang, Zhongshu; Shen, Defen; Tuo, Jingsheng; Li, Xuri; Chan, Chi-Chao

    2014-06-01

    Platelet-derived growth factor (PDGF)-C is a member of the PDGF family and is critical for neuronal survival in the central nervous system. We studied the possible survival and antiapoptotic effects of PDGF-C on focal retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)] (DKO rd8) background mice, a model for progressive and focal retinal degeneration. We found no difference in transcript and protein expression of PDGF-C in the retina between DKO rd8 mice and wild type (WT, C57BL/6N). Recombinant PDGF-CC protein (500 ng/eye) was injected intravitreally into the right eye of DKO rd8 mice with phosphate-buffered saline as controls into the left eye. The retinal effects of PDGF-C were assessed by fundoscopy, ocular histopathology, A2E levels, apoptotic molecule analysis, and direct flat mount retinal vascular labeling. We found that the PDGF-CC-treated eyes showed slower progression or attenuation of the focal retinal lesions, lesser photoreceptor and retinal pigment epithelial degeneration resulting in better-preserved photoreceptor structure. Lower expression of apoptotic molecules was detected in the PDGF-CC-treated eyes than in controls. In addition, no retinal neovascularization was observed after PDGF-CC treatment. Our results demonstrate that PDGF-C potently ameliorates photoreceptor degeneration via the suppression of apoptotic pathways without inducing retinal angiogenesis. The protective effects of PDGF-C suggest a novel alternative approach for potential age-related retinal degeneration treatment.

  14. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury

    Directory of Open Access Journals (Sweden)

    Kosuke Fujita

    2017-06-01

    Full Text Available Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.

  15. Iron Overload Accelerates the Progression of Diabetic Retinopathy in Association with Increased Retinal Renin Expression.

    Science.gov (United States)

    Chaudhary, Kapil; Promsote, Wanwisa; Ananth, Sudha; Veeranan-Karmegam, Rajalakshmi; Tawfik, Amany; Arjunan, Pachiappan; Martin, Pamela; Smith, Sylvia B; Thangaraju, Muthusamy; Kisselev, Oleg; Ganapathy, Vadivel; Gnana-Prakasam, Jaya P

    2018-02-14

    Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Increased iron accumulation is associated with several degenerative diseases. However, there are no reports on the status of retinal iron or its implications in the pathogenesis of DR. In the present study, we found that retinas of type-1 and type-2 mouse models of diabetes have increased iron accumulation compared to non-diabetic retinas. We found similar iron accumulation in postmortem retinal samples from human diabetic patients. Further, we induced diabetes in HFE knockout (KO) mice model of genetic iron overload to understand the role of iron in the pathogenesis of DR. We found increased neuronal cell death, vascular alterations and loss of retinal barrier integrity in diabetic HFE KO mice compared to diabetic wildtype mice. Diabetic HFE KO mouse retinas also exhibited increased expression of inflammation and oxidative stress markers. Severity in the pathogenesis of DR in HFE KO mice was accompanied by increase in retinal renin expression mediated by G-protein-coupled succinate receptor GPR91. In light of previous reports implicating retinal renin-angiotensin system in DR pathogenesis, our results reveal a novel relationship between diabetes, iron and renin-angiotensin system, thereby unraveling new therapeutic targets for the treatment of DR.

  16. Retinal and post-retinal contributions to the Quantum efficiency of the human eye revealed by electrical neuroimaging

    Directory of Open Access Journals (Sweden)

    Gibran eManasseh

    2013-11-01

    Full Text Available The retina is one of the best known quantum detectors with rods able to reliably respond to single photons. However, estimates on the number of photons eliciting conscious perception, based on signal detection theory, are systematically above these values after discounting by retinal losses. One possibility is that there is a trade-off between the limited motor resources available to living systems and the excellent reliability of the visual photoreceptors. On this view, the limits to sensory thresholds are not set by the individual reliability of the receptors within each sensory modality (as often assumed but rather by the limited central processing and motor resources available to process the constant inflow of sensory information. To investigate this issue, we reproduced the classical experiment from Hetch aimed to determine the sensory threshold in human vision. We combined a careful physical control of the stimulus parameters with high temporal/spatial resolution recordings of EEG signals and behavioral variables over a relatively large sample of subjects (12. Contrarily to the idea that the limits to visual sensitivity are fully set by the statistical fluctuations in photon absorption on retinal photoreceptors we observed that the state of ongoing neural oscillations before any photon impinges the retina helps to determine if the responses of photoreceptors have access to central conscious processing. Our results suggest that motivational and attentional off-retinal mechanisms play a major role in reducing the QE efficiency of the human visual system when compared to the efficiency of isolated retinal photoreceptors. Yet, this mechanism might subserve adaptive behavior by enhancing the overall multisensory efficiency of the whole system composed by diverse reliable sensory modalities.

  17. Retinal vasculitis.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Herbort, Carl P; Tabbara, Khalid F

    2005-12-01

    Retinal vasculitis is a sight-threatening intraocular inflammation affecting the retinal vessels. It may occur as an isolated ocular condition, as a manifestation of infectious or neoplastic disorders, or in association with a systemic inflammatory disease. The search for an underlying etiology should be approached in a multidisciplinary fashion based on a thorough history, review of systems, physical examination, and laboratory evaluation. Discrimination between infectious and noninfectious etiologies of retinal vasculitis is important because their treatment is different. This review is based on recently published articles on retinal vasculitis and deals with its clinical diagnosis, its link with systemic diseases, and its laboratory investigation.

  18. Interventions for asymptomatic retinal breaks and lattice degeneration for preventing retinal detachment.

    Science.gov (United States)

    Wilkinson, Charles P

    2014-09-05

    Asymptomatic retinal breaks and lattice degeneration are visible lesions that are risk factors for later retinal detachment. Retinal detachments occur when fluid in the vitreous cavity passes through tears or holes in the retina and separates the retina from the underlying retinal pigment epithelium. Creation of an adhesion surrounding retinal breaks and lattice degeneration, with laser photocoagulation or cryotherapy, has been recommended as an effective means of preventing retinal detachment. This therapy is of value in the management of retinal tears associated with the symptoms of flashes and floaters and persistent vitreous traction upon the retina in the region of the retinal break, because such symptomatic retinal tears are associated with a high rate of progression to retinal detachment. Retinal tears and holes unassociated with acute symptoms and lattice degeneration are significantly less likely to be the sites of retinal breaks that are responsible for later retinal detachment. Nevertheless, treatment of these lesions frequently is recommended, in spite of the fact that the effectiveness of this therapy is unproven. The objective of this review was to assess the effectiveness and safety of techniques used to treat asymptomatic retinal breaks and lattice degeneration for the prevention of retinal detachment. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 2), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to February 2014), EMBASE (January 1980 to February 2014), PubMed (January 1948 to February 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials

  19. Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration

    Science.gov (United States)

    Lorach, Henri; Goetz, Georges; Mandel, Yossi; Lei, Xin; Kamins, Theodore I.; Mathieson, Keith; Huie, Philip; Dalal, Roopa; Harris, James S.; Palanker, Daniel

    2014-01-01

    Summary Loss of photoreceptors during retinal degeneration leads to blindness, but information can be reintroduced into the visual system using electrical stimulation of the remaining retinal neurons. Subretinal photovoltaic arrays convert pulsed illumination into pulsed electric current to stimulate the inner retinal neurons. Since required irradiance exceeds the natural luminance levels, an invisible near-infrared (915nm) light is used to avoid photophobic effects. We characterized the thresholds and dynamic range of cortical responses to prosthetic stimulation with arrays of various pixel sizes and with different number of photodiodes. Stimulation thresholds for devices with 140µm pixels were approximately half those of 70µm pixels, and with both pixel sizes, thresholds were lower with 2 diodes than with 3 diodes per pixel. In all cases these thresholds were more than two orders of magnitude below the ocular safety limit. At high stimulation frequencies (>20Hz), the cortical response exhibited flicker fusion. Over one order of magnitude of dynamic range could be achieved by varying either pulse duration or irradiance. However, contrast sensitivity was very limited. Cortical responses could be detected even with only a few illuminated pixels. Finally, we demonstrate that recording of the corneal electric potential in response to patterned illumination of the subretinal arrays allows monitoring the current produced by each pixel, and thereby assessing the changes in the implant performance over time. PMID:25255990

  20. Treatment of Retinal Separation in HIV-infected Patients with Cytomegalovirus Retinitis

    Directory of Open Access Journals (Sweden)

    A. L. Onischenko

    2017-01-01

    Full Text Available HIV infection — is a socially significant problem for many countries, as the infected die in an average of 10-11 years due to the immunodeficiency virus. Up to 20% of patients with AIDS lose their sight because of cytomegalovirus retinitis (CMV retinitis, which occurs in 70% of HIV-infected people. In some patients with HIV infection blindness occurs because of acute retinal necrosis of CMV etiology. The algorithm of CMV retinitis treatment in HIV-infected patients is described in modern manuals (ganciclovir, valganciclovir, foscarnet and others on the background of antiretroviral therapy, but the tactics of treatment of retinal separation in these patients is not clearly defined. It may be “wait and see”, providing conservative treatment with antiviral drugs, and the active tactics — vitreoretinal surgery. In this article the authors present their personal clinical observations of three HIV-infected patients with CMV retinitis at the age of 8 to 36 years with a detailed analysis of the clinical data and the results of the laboratory tests. In particular, the authors give their own results of intravitreal introduction of ganciclovir in patients with CMV retinitis. Given the poor prognosis for the life of these patients, the authors put a deontological question of justification of active treatment of retinal separation in AIDS patients with CMV retinitis.

  1. Proliferative reactive gliosis is compatible with glial metabolic support and neuronal function

    Directory of Open Access Journals (Sweden)

    Fero Matthew

    2011-10-01

    Full Text Available Abstract Background The response of mammalian glial cells to chronic degeneration and trauma is hypothesized to be incompatible with support of neuronal function in the central nervous system (CNS and retina. To test this hypothesis, we developed an inducible model of proliferative reactive gliosis in the absence of degenerative stimuli by genetically inactivating the cyclin-dependent kinase inhibitor p27Kip1 (p27 or Cdkn1b in the adult mouse and determined the outcome on retinal structure and function. Results p27-deficient Müller glia reentered the cell cycle, underwent aberrant migration, and enhanced their expression of intermediate filament proteins, all of which are characteristics of Müller glia in a reactive state. Surprisingly, neuroglial interactions, retinal electrophysiology, and visual acuity were normal. Conclusion The benign outcome of proliferative reactive Müller gliosis suggests that reactive glia display context-dependent, graded and dynamic phenotypes and that reactivity in itself is not necessarily detrimental to neuronal function.

  2. PAR-Complex and Crumbs Function During Photoreceptor Morphogenesis and Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Franck Pichaud

    2018-03-01

    Full Text Available The fly photoreceptor has long been used as a model to study sensory neuron morphogenesis and retinal degeneration. In particular, elucidating how these cells are built continues to help further our understanding of the mechanisms of polarized cell morphogenesis, intracellular trafficking and the causes of human retinal pathologies. The conserved PAR complex, which in flies consists of Cdc42-PAR6-aPKC-Bazooka, and the transmembrane protein Crumbs (Crb are key players during photoreceptor morphogenesis. While the PAR complex regulates polarity in many cell types, Crb function in polarity is relatively specific to epithelial cells. Together Cdc42-PAR6-aPKC-Bazooka and Crb orchestrate the differentiation of the photoreceptor apical membrane (AM and zonula adherens (ZA, thus allowing these cells to assemble into a neuro-epithelial lattice. In addition to its function in epithelial polarity, Crb has also been shown to protect fly photoreceptors from light-induced degeneration, a process linked to Rhodopsin expression and trafficking. Remarkably, mutations in the human Crumbs1 (CRB1 gene lead to retinal degeneration, making the fly photoreceptor a powerful disease model system.

  3. The implication of omega-3 polyunsaturated fatty acids in retinal physiology

    Directory of Open Access Journals (Sweden)

    Acar Niyazi

    2007-05-01

    Full Text Available Neuronal tissues such as the retina and the brain are characterized by their high content in phospholipids. In the retina, phospholipids can account for until 80% of total lipids and are mainly composed by species belonging to phosphatidyl-choline and phosphatidyl-ethanolamine sub-classes. Within fatty acids esterified on retinal phospholipids, omega-3 PUFAs are major components since docosahexaenoic acid (DHA can represent until 50% of total fatty acids in the photoreceptor outer segments. For long time, DHA is known to play a major role in membrane function and subsequently in visual processes by affecting permeability, fluidity, thickness and the activation of membrane-bound proteins. Today, more and more studies show that PUFAs from the omega-3 series may also operate as protective factors in retinal vascular and immuno-regulatory processes, in maintaining the physiologic redox balance and in cell survival. They may operate within complex systems involving eicosanoids, angiogenic factors, inflammatory factors and matrix metalloproteinases. This new and emerging concept based on the interrelationship of omega-3 PUFAs with neural and vascular structure and function appears to be essential when considering retinal diseases of public health significance such as age-related macular degeneration.

  4. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    Science.gov (United States)

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  5. Retinal amino acid neurochemistry of the southern hemisphere lamprey, Geotria australis.

    Directory of Open Access Journals (Sweden)

    Lisa Nivison-Smith

    Full Text Available Lampreys are one of the two surviving groups of the agnathan (jawless stages in vertebrate evolution and are thus ideal candidates for elucidating the evolution of visual systems. This study investigated the retinal amino acid neurochemistry of the southern hemisphere lamprey Geotria australis during the downstream migration of the young, recently-metamorphosed juveniles to the sea and during the upstream migration of the fully-grown and sexually-maturing adults to their spawning areas. Glutamate and taurine were distributed throughout the retina, whilst GABA and glycine were confined to neurons of the inner retina matching patterns seen in most other vertebrates. Glutamine and aspartate immunoreactivity was closely matched to Müller cell morphology. Between the migratory phases, few differences were observed in the distribution of major neurotransmitters i.e. glutamate, GABA and glycine, but changes in amino acids associated with retinal metabolism i.e. glutamine and aspartate, were evident. Taurine immunoreactivity was mostly conserved between migrant stages, consistent with its role in primary cell functions such as osmoregulation. Further investigation of glutamate signalling using the probe agmatine (AGB to map cation channel permeability revealed entry of AGB into photoreceptors and horizontal cells followed by accumulation in inner retinal neurons. Similarities in AGB profiles between upstream and downstream migrant of G. australis confirmed the conservation of glutamate neurotransmission. Finally, calcium binding proteins, calbindin and calretinin were localized to the inner retina whilst recoverin was localized to photoreceptors. Overall, conservation of major amino acid neurotransmitters and calcium-associated proteins in the lamprey retina confirms these elements as essential features of the vertebrate visual system. On the other hand, metabolic elements of the retina such as neurotransmitter precursor amino acids and Müller cells

  6. Function of a fly motion-sensitive neuron matches eye movements during free flight.

    Directory of Open Access Journals (Sweden)

    Roland Kern

    2005-06-01

    Full Text Available Sensing is often implicitly assumed to be the passive acquisition of information. However, part of the sensory information is generated actively when animals move. For instance, humans shift their gaze actively in a sequence of saccades towards interesting locations in a scene. Likewise, many insects shift their gaze by saccadic turns of body and head, keeping their gaze fixed between saccades. Here we employ a novel panoramic virtual reality stimulator and show that motion computation in a blowfly visual interneuron is tuned to make efficient use of the characteristic dynamics of retinal image flow. The neuron is able to extract information about the spatial layout of the environment by utilizing intervals of stable vision resulting from the saccadic viewing strategy. The extraction is possible because the retinal image flow evoked by translation, containing information about object distances, is confined to low frequencies. This flow component can be derived from the total optic flow between saccades because the residual intersaccadic head rotations are small and encoded at higher frequencies. Information about the spatial layout of the environment can thus be extracted by the neuron in a computationally parsimonious way. These results on neuronal function based on naturalistic, behaviourally generated optic flow are in stark contrast to conclusions based on conventional visual stimuli that the neuron primarily represents a detector for yaw rotations of the animal.

  7. Xenopus laevis Retinal Ganglion Cell Dendritic Arbors Develop Independently of Visual Stimulation

    Directory of Open Access Journals (Sweden)

    Barbara Lom

    2004-01-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  8. Decreased Expression of DREAM Promotes the Degeneration of Retinal Neurons

    Science.gov (United States)

    Chintala, Shravan; Cheng, Mei; Zhang, Xiao

    2015-01-01

    The intrinsic mechanisms that promote the degeneration of retinal ganglion cells (RGCs) following the activation of N-Methyl-D-aspartic acid-type glutamate receptors (NMDARs) are unclear. In this study, we have investigated the role of downstream regulatory element antagonist modulator (DREAM) in NMDA-mediated degeneration of the retina. NMDA, phosphate-buffered saline (PBS), and MK801 were injected into the vitreous humor of C57BL/6 mice. At 12, 24, and 48 hours after injection, expression of DREAM in the retina was determined by immunohistochemistry, western blot analysis, and electrophoretic mobility-shift assay (EMSA). Apoptotic death of cells in the retina was determined by terminal deoxynucleotidyl transferace dUTP nick end labeling (TUNEL) assays. Degeneration of RGCs in cross sections and in whole mount retinas was determined by using antibodies against Tuj1 and Brn3a respectively. Degeneration of amacrine cells and bipolar cells was determined by using antibodies against calretinin and protein kinase C (PKC)-alpha respectively. DREAM was expressed constitutively in RGCs, amacrine cells, bipolar cells, as well as in the inner plexiform layer (IPL). NMDA promoted a progressive decrease in DREAM levels in all three cell types over time, and at 48 h after NMDA-treatment very low DREAM levels were evident in the IPL only. DREAM expression in retinal nuclear proteins was decreased progressively after NMDA-treatment, and correlated with its decreased binding to the c-fos-DRE oligonucleotides. A decrease in DREAM expression correlated significantly with apoptotic death of RGCs, amacrine cells and bipolar cells. Treatment of eyes with NMDA antagonist MK801, restored DREAM expression to almost normal levels in the retina, and significantly decreased NMDA-mediated apoptotic death of RGCs, amacrine cells, and bipolar cells. Results presented in this study show for the first time that down-regulation of DREAM promotes the degeneration of RGCs, amacrine cells, and

  9. Chaetomium retinitis.

    Science.gov (United States)

    Tabbara, Khalid F; Wedin, Keith; Al Haddab, Saad

    2010-01-01

    To report a case of Chaetomium atrobrunneum retinitis in a patient with Hodgkin lymphoma. We studied the ocular manifestations of an 11-year-old boy with retinitis. Biomicroscopy, ophthalmoscopy, and fundus photography were done. Magnetic resonance imaging of the brain was performed. A vitreous biopsy was subjected to viral, bacterial, and fungal cultures. Vitreous culture grew C. atrobrunneum. Magnetic resonance imaging showed multiple cerebral lesions consistent with an infectious process. The patient was given intravenous voriconazole and showed improvement of the ocular and central nervous system lesions. We report a case of central nervous system and ocular lesions by C. atrobrunneum. The retinitis was initially misdiagnosed as cytomegaloviral retinitis. Vitreous biopsy helped in the early diagnosis and prompt treatment of a life- and vision-threatening infection.

  10. Novel VCP modulators mitigate major pathologies of rd10, a mouse model of retinitis pigmentosa

    Science.gov (United States)

    Ikeda, Hanako Ohashi; Sasaoka, Norio; Koike, Masaaki; Nakano, Noriko; Muraoka, Yuki; Toda, Yoshinobu; Fuchigami, Tomohiro; Shudo, Toshiyuki; Iwata, Ayana; Hori, Seiji; Yoshimura, Nagahisa; Kakizuka, Akira

    2014-01-01

    Neuroprotection may prevent or forestall the progression of incurable eye diseases, such as retinitis pigmentosa, one of the major causes of adult blindness. Decreased cellular ATP levels may contribute to the pathology of this eye disease and other neurodegenerative diseases. Here we describe small compounds (Kyoto University Substances, KUSs) that were developed to inhibit the ATPase activity of VCP (valosin-containing protein), the most abundant soluble ATPase in the cell. Surprisingly, KUSs did not significantly impair reported cellular functions of VCP but nonetheless suppressed the VCP-dependent decrease of cellular ATP levels. Moreover, KUSs, as well as exogenous ATP or ATP-producing compounds, e.g. methylpyruvate, suppressed endoplasmic reticulum stress, and demonstrably protected various types of cultured cells from death, including several types of retinal neuronal cells. We then examined their in vivo efficacies in rd10, a mouse model of retinitis pigmentosa. KUSs prevented photoreceptor cell death and preserved visual function. These results reveal an unexpected, crucial role of ATP consumption by VCP in determining cell fate in this pathological context, and point to a promising new neuroprotective strategy for currently incurable retinitis pigmentosa. PMID:25096051

  11. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice.

    Directory of Open Access Journals (Sweden)

    Budd A Tucker

    2011-04-01

    Full Text Available This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs, could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease.

  12. Retinitis Pigmentosa.

    Science.gov (United States)

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  13. The Retinome – Defining a reference transcriptome of the adult mammalian retina/retinal pigment epithelium

    Directory of Open Access Journals (Sweden)

    Goetz Thomas

    2004-07-01

    Full Text Available Abstract Background The mammalian retina is a valuable model system to study neuronal biology in health and disease. To obtain insight into intrinsic processes of the retina, great efforts are directed towards the identification and characterization of transcripts with functional relevance to this tissue. Results With the goal to assemble a first genome-wide reference transcriptome of the adult mammalian retina, referred to as the retinome, we have extracted 13,037 non-redundant annotated genes from nearly 500,000 published datasets on redundant retina/retinal pigment epithelium (RPE transcripts. The data were generated from 27 independent studies employing a wide range of molecular and biocomputational approaches. Comparison to known retina-/RPE-specific pathways and established retinal gene networks suggest that the reference retinome may represent up to 90% of the retinal transcripts. We show that the distribution of retinal genes along the chromosomes is not random but exhibits a higher order organization closely following the previously observed clustering of genes with increased expression. Conclusion The genome wide retinome map offers a rational basis for selecting suggestive candidate genes for hereditary as well as complex retinal diseases facilitating elaborate studies into normal and pathological pathways. To make this unique resource freely available we have built a database providing a query interface to the reference retinome 1.

  14. In vivo neuronal synthesis and axonal transport of Kunitz protease inhibitor (KPI)-containing forms of the amyloid precursor protein.

    Science.gov (United States)

    Moya, K L; Confaloni, A M; Allinquant, B

    1994-11-01

    We have shown previously that the amyloid precursor protein (APP) is synthesized in retinal ganglion cells and is rapidly transported down the axons, and that different molecular weight forms of the precursor have different developmental time courses. Some APP isoforms contain a Kunitz protease inhibitor (KPI) domain, and APP that lacks the KPI domain is considered the predominant isoform in neurons. We now show that, among the various rapidly transported APPs, a 140-kDa isoform contains the KPI domain. This APP isoform is highly expressed in rapidly growing retinal axons, and it is also prominent in adult axon endings. This 140-kDa KPI-containing APP is highly sulfated compared with other axonally transported isoforms. These results show that APP with the KPI domain is a prominent isoform synthesized in neurons in vivo, and they suggest that the regulation of protease activity may be an important factor during the establishment of neuronal connections.

  15. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina

    Directory of Open Access Journals (Sweden)

    Sandra M. Cardona

    2015-10-01

    Full Text Available Fractalkine (CX3CL1 or FKN is a membrane-bound chemokine expressed on neuronal membranes and is proteolytically cleaved to shed a soluble chemoattractant domain. FKN signals via its unique receptor CX3CR1 expressed on microglia and other peripheral leukocytes. The aim of this study is to determine the role of CX3CR1 in inflammatory-mediated damage to retinal neurons using a model of diabetic retinopathy. For this, we compared neuronal, microglial, and astroglial densities and inflammatory response in nondiabetic and diabetic (Ins2Akita CX3CR1-wild-type and CX3CR1-deficient mice at 10 and 20 weeks of age. Our results show that Ins2Akita CX3CR1-knockout mice exhibited (a decreased neuronal cell counts in the retinal ganglion cell layer, (b increased microglial cell numbers, and (c decreased astrocyte responses comparable with Ins2Akita CX3CR1-Wild-type mice at 20 weeks of age. Analyses of the inflammatory response using PCR arrays showed several inflammatory genes differentially regulated in diabetic tissues. From those, the response in Ins2Akita CX3CR1-deficient mice at 10 weeks of age revealed a significant upregulation of IL-1β at the transcript level that was confirmed by enzyme-linked immunosorbent assay in soluble retinal extracts. Overall, IL-1β, VEGF, and nitrite levels as a read out of nitric oxide production were abundant in Ins2Akita CX3CR1-deficient retina. Notably, double immunofluorescence staining shows that astrocytes act as a source of IL-1β in the Ins2Akita retina, and CX3CR1-deficient microglia potentiate the inflammatory response via IL-1β release. Collectively, these data demonstrate that dysregulated microglial responses in absence of CX3CR1 contribute to inflammatory-mediated damage of neurons in the diabetic retina.

  16. Conditional Müllercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model.

    Science.gov (United States)

    Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H; Barnett, Nigel L; Kirk, Joshua K; Lee, SoRa; Coorey, Nathan J; Killingsworth, Murray; Sherman, Larry S; Gillies, Mark C

    2012-11-07

    Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor. Intravitreal injection of ciliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the CNS associated with glial dysfunction.

  17. Retinal protective effects of topically administered agmatine on ischemic ocular injury caused by transient occlusion of the ophthalmic artery

    Science.gov (United States)

    Hong, S.; Hara, H.; Shimazawa, M.; Hyakkoku, K.; Kim, C.Y.; Seong, G.J.

    2012-01-01

    Agmatine, an endogenous polyamine and putative neuromodulator, is known to have neuroprotective effects on various neurons in the central nervous system. We determined whether or not topically administered agmatine could reduce ischemic retinal injury. Transient ocular ischemia was achieved by intraluminal occlusion of the middle cerebral artery of ddY mice (30-35 g) for 2 h, which is known to also induce occlusion of the ophthalmic artery. In the agmatine group (N = 6), a 1.0 mM agmatine-containing ophthalmic solution was administered four times daily for 2 weeks before occlusion. In the control group (N = 6), a 0.1% hyaluronic acid ophthalmic solution was instilled at the same times. At 22 h after reperfusion, the eyeballs were enucleated and the retinal sections were stained by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Transient ocular ischemia induced apoptosis of retinal cells in the entire retinal layer, and topically administered agmatine can significantly reduce this ischemic retinal injury. The proportion of apoptotic cells was definitely decreased (P agmatine application effectively decreases retinal damage in an in vivo ocular ischemic injury model. This implies that agmatine is a good candidate as a direct neuroprotective agent for eyes with ocular ischemic diseases. PMID:22331138

  18. Retinitis Pigmentosa

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... degenerate. Forms of RP and related diseases include Usher syndrome, Leber congenital amaurosis, and Bardet-Biedl syndrome, among ...

  19. Retinal Diseases

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... central portion of the retina called the macula. Usher Syndrome Usher syndrome is an inherited condition characterized by ...

  20. Quantitative and qualitative morphology of rabbit retinal glia. A light microscopical study on cells both in situ and isolated by papaine.

    Science.gov (United States)

    Reichenbach, A

    1987-01-01

    Rabbit retinal glia was studied by light microscopy of both stained sections of frozen retinae and enzymatically isolated cells. In the vast majority of this tissue, except for a small region around the optic nerve head, the glia consists solely of radial glia, i.e. Müller cells whose morphology was found to depend markedly on their topographic localization within the retina. Müller cells in the periphery are short and have thick vitreal processes bearing a single large endfoot. Central Müller cells are long and slender; through the thickening nerve fibre layer they send vitreal processes which are subdivided into several fine branches ending with multiple small endfeet. Müller cells in the retinal centre are far more closely packed than those in the periphery; everywhere, however, a constant ratio of Müller cells: neurons of about 1:15 was found, except for the juxta-optic nerve head region where this ratio is slightly reduced. Where the central retina reaches a thickness requiring Müller cell lengths of more than 130 micron, additional non-radial glial cells occur within the nerve fibre layer. The majority of these cells seem to be astrocytes. Their number per retinal area increases with the thickening of both the whole retina and the nerve fibre layer. The occurrence of these non-radial glial cells leads to an enhancement of the glia:neuron index in the retinal centre. Possible mechanisms of physiological control of gliogenesis are discussed.

  1. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    Energy Technology Data Exchange (ETDEWEB)

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert [Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne (Germany); Volz, Cornelia; Jägle, Herbert [Department of Ophthalmology, University Hospital Regensburg, Regensburg (Germany); Liebisch, Gerhard [Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg (Germany); Utermöhlen, Olaf [Institute for Medical Microbiology, Immunology and Hygiene and Center for Molecular Medicine Cologne, University of Cologne, Cologne (Germany); Langmann, Thomas, E-mail: thomas.langmann@uk-koeln.de [Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne (Germany)

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.

  2. Non-classical nuclear localization signal peptides for high efficiency lipofection of primary neurons and neuronal cell lines.

    Science.gov (United States)

    Ma, H; Zhu, J; Maronski, M; Kotzbauer, P T; Lee, V M-Y; Dichter, M A; Diamond, S L

    2002-01-01

    Gene transfer into CNS is critical for potential therapeutic applications as well as for the study of the genetic basis of neural development and nerve function. Unfortunately, lipid-based gene transfer to CNS cells is extremely inefficient since the nucleus of these post-mitotic cells presents a significant barrier to transfection. We report the development of a simple and highly efficient lipofection method for primary embryonic rat hippocampal neurons (up to 25% transfection) that exploits the M9 sequence of the non-classical nuclear localization signal of heterogeneous nuclear ribonucleoprotein A1 for targeting beta(2)-karyopherin (transportin-1). M9-assistant lipofection resulted in 20-100-fold enhancement of transfection over lipofection alone for embryonic-derived retinal ganglion cells, rat pheochromocytoma (PC12) cells, embryonic rat ventral mesencephalon neurons, as well as the clinically relevant human NT2 cells or retinoic acid-differentiated NT2 neurons. This technique can facilitate the implementation of promoter construct experiments in post-mitotic cells, stable transformant generation, and dominant-negative mutant expression techniques in CNS cells.

  3. Preprotachykinin A is expressed by a distinct population of excitatory neurons in the mouse superficial spinal dorsal horn including cells that respond to noxious and pruritic stimuli.

    Science.gov (United States)

    Gutierrez-Mecinas, Maria; Bell, Andrew M; Marin, Alina; Taylor, Rebecca; Boyle, Kieran A; Furuta, Takahiro; Watanabe, Masahiko; Polgár, Erika; Todd, Andrew J

    2017-03-01

    The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined 3 nonoverlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B, and gastrin-releasing peptide. Here we identify and characterise another population: neurons that express the tachykinin peptide substance P. We show with immunocytochemistry that its precursor protein (preprotachykinin A, PPTA) can be detected in ∼14% of lamina I-II neurons, and these are concentrated in the outer part of lamina II. Over 80% of the PPTA-positive cells lack the transcription factor Pax2 (which determines an inhibitory phenotype), and these account for ∼15% of the excitatory neurons in this region. They are different from the neurotensin, neurokinin B, or gastrin-releasing peptide neurons, although many of them contain somatostatin, which is widely expressed among superficial dorsal horn excitatory interneurons. We show that many of these cells respond to noxious thermal and mechanical stimuli and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P-expressing excitatory neurons is likely to play an important role in the transmission of signals that are perceived as pain and itch.

  4. Natural Compounds from Saffron and Bear Bile Prevent Vision Loss and Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Laura Fernández-Sánchez

    2015-07-01

    Full Text Available All retinal disorders, regardless of their aetiology, involve the activation of oxidative stress and apoptosis pathways. The administration of neuroprotective factors is crucial in all phases of the pathology, even when vision has been completely lost. The retina is one of the most susceptible tissues to reactive oxygen species damage. On the other hand, proper development and functioning of the retina requires a precise balance between the processes of proliferation, differentiation and programmed cell death. The life-or-death decision seems to be the result of a complex balance between pro- and anti-apoptotic signals. It has been recently shown the efficacy of natural products to slow retinal degenerative process through different pathways. In this review, we assess the neuroprotective effect of two compounds used in the ancient pharmacopoeia. On one hand, it has been demonstrated that administration of the saffron constituent safranal to P23H rats, an animal model of retinitis pigmentosa, preserves photoreceptor morphology and number, the capillary network and the visual response. On the other hand, it has been shown that systemic administration of tauroursodeoxycholic acid (TUDCA, the major component of bear bile, to P23H rats preserves cone and rod structure and function, together with their contact with postsynaptic neurons. The neuroprotective effects of safranal and TUDCA make these compounds potentially useful for therapeutic applications in retinal degenerative diseases.

  5. Natural Compounds from Saffron and Bear Bile Prevent Vision Loss and Retinal Degeneration.

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Noailles, Agustina; Angulo, Antonia; Maneu, Victoria; Cuenca, Nicolás

    2015-07-31

    All retinal disorders, regardless of their aetiology, involve the activation of oxidative stress and apoptosis pathways. The administration of neuroprotective factors is crucial in all phases of the pathology, even when vision has been completely lost. The retina is one of the most susceptible tissues to reactive oxygen species damage. On the other hand, proper development and functioning of the retina requires a precise balance between the processes of proliferation, differentiation and programmed cell death. The life-or-death decision seems to be the result of a complex balance between pro- and anti-apoptotic signals. It has been recently shown the efficacy of natural products to slow retinal degenerative process through different pathways. In this review, we assess the neuroprotective effect of two compounds used in the ancient pharmacopoeia. On one hand, it has been demonstrated that administration of the saffron constituent safranal to P23H rats, an animal model of retinitis pigmentosa, preserves photoreceptor morphology and number, the capillary network and the visual response. On the other hand, it has been shown that systemic administration of tauroursodeoxycholic acid (TUDCA), the major component of bear bile, to P23H rats preserves cone and rod structure and function, together with their contact with postsynaptic neurons. The neuroprotective effects of safranal and TUDCA make these compounds potentially useful for therapeutic applications in retinal degenerative diseases.

  6. Retinal Endovascular Surgery with Tissue Plasminogen Activator Injection for Central Retinal Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Yuta Takata

    2018-06-01

    Full Text Available Purpose: To report 2 cases of central retinal artery occlusion (CRAO who underwent retinal endovascular surgery with injection of tissue plasminogen activator (tPA into the retinal artery and showed a remarkable improvement in visual acuity and retinal circulation. Methods: Standard 25-G vitrectomy was performed under local anesthesia. Simultaneously, tPA (80,000 units/mL solution was injected into the retinal artery of the optic disc for 2–3 min using a microneedle. Changes in visual acuity, fundus photography, optical coherence tomography (OCT, fluorescein angiography, and laser speckle flowgraphy (LSFG results were examined. Results: Both cases could be treated within 12 h after the onset of CRAO. Case 1 was a 47-year-old woman. Her visual acuity improved from counting fingers before operation to 0.08 logMAR 1 month after the surgery. However, thinning of the retina at the macula was observed by OCT. Case 2 was a 70-year-old man. His visual acuity improved from counting fingers to 0.1 logMAR 2 months after the surgery. Both fluorescein angiography and LSFG showed improvement in retinal circulation after the surgery in case 2. Conclusions: Retinal endovascular surgery with injection of tPA into the retinal artery was feasible and may be a way to improve visual acuity and retinal circulation when performed in the acute phase of CRAO.

  7. Taurine Biosynthesis by Neurons and Astrocytes*

    Science.gov (United States)

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [35S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [35S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons. PMID:21778230

  8. Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate

    Directory of Open Access Journals (Sweden)

    Suk Won Jung

    2016-12-01

    Full Text Available This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110 × 110 μ m and a resolution of 32 × 32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 (rd1 mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity.

  9. Mirror neurons: Enigma of the metaphysical modular brain

    OpenAIRE

    Acharya, Sourya; Shukla, Samarth

    2012-01-01

    Mirror neurons are one of the most important discoveries in the last decade of neuroscience. These are a variety of visuospatial neurons which indicate fundamentally about human social interaction. Essentially, mirror neurons respond to actions that we observe in others. The interesting part is that mirror neurons fire in the same way when we actually recreate that action ourselves. Apart from imitation, they are responsible for myriad of other sophisticated human behavior and thought process...

  10. Amygdalar auditory neurons contribute to self-other distinction during ultrasonic social vocalization in rats

    Directory of Open Access Journals (Sweden)

    Jumpei Matsumoto

    2016-09-01

    Full Text Available Although clinical studies reported hyperactivation of the auditory system and amygdala in patients with auditory hallucinations (hearing others’ but not one’s own voice, independent of any external stimulus, neural mechanisms of self/other attribution is not well understood. We recorded neuronal responses in the dorsal amygdala including the lateral amygdaloid nucleus to ultrasonic vocalization (USVs emitted by subjects and conspecifics during free social interaction in 16 adult male rats. The animals emitting the USVs were identified by EMG recordings. One-quarter of the amygdalar neurons (15/60 responded to 50 kHz calls by the subject and/or conspecifics. Among the responsive neurons, most neurons (Type-Other neurons (73%, 11/15 responded only to calls by conspecifics but not subjects. Two Type-Self neurons (13%, 2/15 responded to calls by the subject but not those by conspecifics, although their response selectivity to subjects vs. conspecifics was lower than that of Type-Other neurons. The remaining two neurons (13% responded to calls by both the subject and conspecifics. Furthermore, population coding of the amygdalar neurons represented distinction of subject vs. conspecific calls. The present results provide the first neurophysiological evidence that the amygdala discriminately represents affective social calls by subject and conspecifics. These findings suggest that the amygdala is an important brain region for self/other attribution. Furthermore, pathological activation of the amygdala, where Type-Other neurons predominate, could induce external misattribution of percepts of vocalization.

  11. Stages of neuronal network formation

    International Nuclear Information System (INIS)

    Woiterski, Lydia; Käs, Josef A; Claudepierre, Thomas; Luxenhofer, Robert; Jordan, Rainer

    2013-01-01

    Graph theoretical approaches have become a powerful tool for investigating the architecture and dynamics of complex networks. The topology of network graphs revealed small-world properties for very different real systems among these neuronal networks. In this study, we observed the early development of mouse retinal ganglion cell (RGC) networks in vitro using time-lapse video microscopy. By means of a time-resolved graph theoretical analysis of the connectivity, shortest path length and the edge length, we were able to discover the different stages during the network formation. Starting from single cells, at the first stage neurons connected to each other ending up in a network with maximum complexity. In the further course, we observed a simplification of the network which manifested in a change of relevant network parameters such as the minimization of the path length. Moreover, we found that RGC networks self-organized as small-world networks at both stages; however, the optimization occurred only in the second stage. (paper)

  12. Guidance of retinal axons in mammals.

    Science.gov (United States)

    Herrera, Eloísa; Erskine, Lynda; Morenilla-Palao, Cruz

    2017-11-26

    In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synchronized Firings in Retinal Ganglion Cells in Response to Natural Stimulation

    International Nuclear Information System (INIS)

    Zhang Ying-Ying; Xiao Lei; Liu Wen-Zhong; Gong Hai-Qing; Liang Pei-Ji

    2011-01-01

    The response of synchronously firing groups of population retinal ganglion cells (RGCs) to natural movies (NMs) and pseudo-random white-noise checker-board flickering (CB, as control) are investigated using an information-theoretic algorithm. The main results are: (1) the population RGCs tend to fire in synchrony far more frequently than expected by chance during both NM and CB stimulation; (2) more synchronous groups could be formed and each group contains more neurons under NM than CB stimulation; (3) the individual neurons also participate in more groups and have more distinct partners in NM than CB stimulation. All these results suggest that the synchronized firings in RGCs are more extensive and diverse, which may account for more effective information processing in representing the natural visual environment. (cross-disciplinary physics and related areas of science and technology)

  14. How microelectrode array-based chick forebrain neuron biosensors respond to glutamate NMDA receptor antagonist AP5 and GABAA receptor antagonist musimol

    Directory of Open Access Journals (Sweden)

    Serena Y. Kuang

    2016-09-01

    Full Text Available We have established a long-term, stable primary chick forebrain neuron (FBN culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS. The chick FBN biosensor (C-FBN-biosensor responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor is suggested. Keywords: Biosensor, Microelectrode array, Neurotoxicity, Chick forebrain neuron, AP5, Musimol

  15. Differential diagnosis of retinal vasculitis.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Herbort, Carl P; Tabbara, Khalid F

    2009-10-01

    Retinal vaculitis is a sight-threatening inflammatory eye condition that involves the retinal vessels. Detection of retinal vasculitis is made clinically, and confirmed with the help of fundus fluorescein angiography. Active vascular disease is characterized by exudates around retinal vessels resulting in white sheathing or cuffing of the affected vessels. In this review, a practical approach to the diagnosis of retinal vasculitis is discussed based on ophthalmoscopic and fundus fluorescein angiographic findings.

  16. Retinal pigmentary changes in chronic uveitis mimicking retinitis pigmentosa.

    Science.gov (United States)

    Sevgi, D Damla; Davoudi, Samaneh; Comander, Jason; Sobrin, Lucia

    2017-09-01

    To present retinal pigmentary changes mimicking retinitis pigmentosa (RP) as a finding of advanced uveitis. We retrospectively reviewed charts of patients without a family history of inherited retinal degenerations who presented with retinal pigment changes and signs of past or present intraocular inflammation. Comprehensive eye examination including best-corrected visual acuity, slit-lamp examination and dilated fundus examination was performed on all patients in addition to color fundus photography, optical coherence tomography, fluorescein angiography (FA), and full-field electroretinogram testing. We identified five patients with ages ranging from 33 to 66 years, who presented with RP-like retinal pigmentary changes which were eventually attributed to longstanding uveitis. The changes were bilateral in three cases and unilateral in two cases. Four of five cases presented with active inflammation, and the remaining case showed evidence of active intraocular inflammation during follow-up. This study highlights the overlapping features of advanced uveitis and RP including the extensive pigmentary changes. Careful review of possible past uveitis history, detailed examination of signs of past or present inflammation and ancillary testing, with FA often being most helpful, are required for the correct diagnosis. This is important, because intervention can prevent further damage if the cause of the pigmentary changes is destructive inflammation.

  17. Mirror neurons: Enigma of the metaphysical modular brain.

    Science.gov (United States)

    Acharya, Sourya; Shukla, Samarth

    2012-07-01

    Mirror neurons are one of the most important discoveries in the last decade of neuroscience. These are a variety of visuospatial neurons which indicate fundamentally about human social interaction. Essentially, mirror neurons respond to actions that we observe in others. The interesting part is that mirror neurons fire in the same way when we actually recreate that action ourselves. Apart from imitation, they are responsible for myriad of other sophisticated human behavior and thought processes. Defects in the mirror neuron system are being linked to disorders like autism. This review is a brief introduction to the neurons that shaped our civilization.

  18. Retinal protective effects of topically administered agmatine on ischemic ocular injury caused by transient occlusion of the ophthalmic artery

    Directory of Open Access Journals (Sweden)

    S. Hong

    2012-03-01

    Full Text Available Agmatine, an endogenous polyamine and putative neuromodulator, is known to have neuroprotective effects on various neurons in the central nervous system. We determined whether or not topically administered agmatine could reduce ischemic retinal injury. Transient ocular ischemia was achieved by intraluminal occlusion of the middle cerebral artery of ddY mice (30-35 g for 2 h, which is known to also induce occlusion of the ophthalmic artery. In the agmatine group (N = 6, a 1.0 mM agmatine-containing ophthalmic solution was administered four times daily for 2 weeks before occlusion. In the control group (N = 6, a 0.1% hyaluronic acid ophthalmic solution was instilled at the same times. At 22 h after reperfusion, the eyeballs were enucleated and the retinal sections were stained by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL. Transient ocular ischemia induced apoptosis of retinal cells in the entire retinal layer, and topically administered agmatine can significantly reduce this ischemic retinal injury. The proportion of apoptotic cells was definitely decreased (P < 0.001; Kruskal-Wallis test. Overall, we determined that topical agmatine application effectively decreases retinal damage in an in vivo ocular ischemic injury model. This implies that agmatine is a good candidate as a direct neuroprotective agent for eyes with ocular ischemic diseases.

  19. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration.

    Science.gov (United States)

    Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin

    2013-11-01

    All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.

  20. Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation.

    Science.gov (United States)

    Ho, Elton; Smith, Richard; Goetz, Georges; Lei, Xin; Galambos, Ludwig; Kamins, Theodore I; Harris, James; Mathieson, Keith; Palanker, Daniel; Sher, Alexander

    2018-02-01

    Subretinal prostheses aim at restoring sight to patients blinded by photoreceptor degeneration using electrical activation of the surviving inner retinal neurons. Today, such implants deliver visual information with low-frequency stimulation, resulting in discontinuous visual percepts. We measured retinal responses to complex visual stimuli delivered at video rate via a photovoltaic subretinal implant and by visible light. Using a multielectrode array to record from retinal ganglion cells (RGCs) in the healthy and degenerated rat retina ex vivo, we estimated their spatiotemporal properties from the spike-triggered average responses to photovoltaic binary white noise stimulus with 70-μm pixel size at 20-Hz frame rate. The average photovoltaic receptive field size was 194 ± 3 μm (mean ± SE), similar to that of visual responses (221 ± 4 μm), but response latency was significantly shorter with photovoltaic stimulation. Both visual and photovoltaic receptive fields had an opposing center-surround structure. In the healthy retina, ON RGCs had photovoltaic OFF responses, and vice versa. This reversal is consistent with depolarization of photoreceptors by electrical pulses, as opposed to their hyperpolarization under increasing light, although alternative mechanisms cannot be excluded. In degenerate retina, both ON and OFF photovoltaic responses were observed, but in the absence of visual responses, it is not clear what functional RGC types they correspond to. Degenerate retina maintained the antagonistic center-surround organization of receptive fields. These fast and spatially localized network-mediated ON and OFF responses to subretinal stimulation via photovoltaic pixels with local return electrodes raise confidence in the possibility of providing more functional prosthetic vision. NEW & NOTEWORTHY Retinal prostheses currently in clinical use have struggled to deliver visual information at naturalistic frequencies, resulting in discontinuous percepts. We

  1. Thioredoxin plays a key role in retinal neuropathy prior to endothelial damage in diabetic mice

    OpenAIRE

    Ren, Xiang; Li, Chen; Liu, Junli; Zhang, Chenghong; Fu, Yuzhen; Wang, Nina; Ma, Haiying; Lu, Heyuan; Kong, Hui; Kong, Li

    2017-01-01

    Diabetes is a chronic metabolic syndrome that results in changes in carbohydrate, lipid and protein metabolism. With diabetes for a long time, it increases the risk of diabetic retinopathy (DR) and long-term morbidity and mortality. Moreover, emerging evidence suggests that neuron damage occurs earlier than microvascular complications in DR patients, but the underlying mechanism is unclear. We investigated diabetes-induced retinal neuropathy and elucidated key molecular events to identify new...

  2. Progranulin deficiency causes the retinal ganglion cell loss during development.

    Science.gov (United States)

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  3. Population coding in sparsely connected networks of noisy neurons

    OpenAIRE

    Tripp, Bryan P.; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and be...

  4. Bilateral patching in retinal detachment: fluid mechanics and retinal "settling".

    Science.gov (United States)

    Foster, William J

    2011-07-20

    When a patient suffers a retinal detachment and surgery is delayed, it is known clinically that bilaterally patching the patient may allow the retina to partially reattach or "settle." Although this procedure has been performed since the 1860s, there is still debate as to how such a maneuver facilitates the reattachment of the retina. Finite element calculations using commercially available analysis software are used to elucidate the influence of reduction in eye movement caused by bilateral patching on the flow of subretinal fluid in a physical model of retinal detachment. It was found that by coupling fluid mechanics with structural mechanics, a physically consistent explanation of increased retinal detachment with eye movements can be found in the case of traction on the retinal hole. Large eye movements increase vitreous traction and detachment forces on the edge of the retinal hole, creating a subretinal vacuum and facilitating increased subretinal fluid. Alternative models, in which intraocular fluid flow is redirected into the subretinal space, are not consistent with these simulations. The results of these simulations explain the physical principles behind bilateral patching and provide insight that can be used clinically. In particular, as is known clinically, bilateral patching may facilitate a decrease in the height of a retinal detachment. The results described here provide a description of a physical mechanism underlying this technique. The findings of this study may aid in deciding whether to bilaterally patch patients and in counseling patients on pre- and postoperative care.

  5. Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells.

    Science.gov (United States)

    Ströh, Sebastian; Puller, Christian; Swirski, Sebastian; Hölzel, Maj-Britt; van der Linde, Lea I S; Segelken, Jasmin; Schultz, Konrad; Block, Christoph; Monyer, Hannah; Willecke, Klaus; Weiler, Reto; Greschner, Martin; Janssen-Bienhold, Ulrike; Dedek, Karin

    2018-02-21

    In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse. SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light

  6. Serum TRPM1 autoantibodies from melanoma associated retinopathy patients enter retinal on-bipolar cells and attenuate the electroretinogram in mice.

    Directory of Open Access Journals (Sweden)

    Wei-Hong Xiong

    Full Text Available Melanoma-associated retinopathy (MAR is a paraneoplastic syndrome associated with cutaneous malignant melanoma and the presence of autoantibodies that label neurons in the inner retina. The visual symptoms and electroretinogram (ERG phenotype characteristic of MAR resemble the congenital visual disease caused by mutations in TRPM1, a cation channel expressed by both melanocytes and retinal bipolar cells. Four serum samples from MAR patients were identified as TRPM1 immunoreactive by 1. Labeling of ON-bipolar cells in TRPM1+/+ but not TRPM1-/- mouse retina, 2. Labeling of TRPM1-transfected CHO cells; and 3. Attenuation of the ERG b-wave following intravitreal injection of TRPM1-positive MAR IgG into wild-type mouse eyes, and the appearance of the IgG in the retinal bipolar cells at the conclusion of the experiment. Furthermore, the epitope targeted by the MAR autoantibodies was localized within the amino-terminal cytoplasmic domain of TRPM1. Incubation of live retinal neurons with TRPM1-positive MAR serum resulted in the selective accumulation of IgG in ON-bipolar cells from TRPM1+/+ mice, but not TRPM1-/- mice, suggesting that the visual deficits in MAR are caused by the uptake of TRPM1 autoantibodies into ON-bipolar cells, where they bind to an intracellular epitope of the channel and reduce the ON-bipolar cell response to light.

  7. Using Patient-Specific Induced Pluripotent Stem Cells and Wild-Type Mice to Develop a Gene Augmentation-Based Strategy to Treat CLN3-Associated Retinal Degeneration.

    Science.gov (United States)

    Wiley, Luke A; Burnight, Erin R; Drack, Arlene V; Banach, Bailey B; Ochoa, Dalyz; Cranston, Cathryn M; Madumba, Robert A; East, Jade S; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-10-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL) is a childhood neurodegenerative disease with early-onset, severe central vision loss. Affected children develop seizures and CNS degeneration accompanied by severe motor and cognitive deficits. There is no cure for JNCL, and patients usually die during the second or third decade of life. In this study, independent lines of induced pluripotent stem cells (iPSCs) were generated from two patients with molecularly confirmed mutations in CLN3, the gene mutated in JNCL. Clinical-grade adeno-associated adenovirus serotype 2 (AAV2) carrying the full-length coding sequence of human CLN3 was generated in a U.S. Food and Drug Administration-registered cGMP facility. AAV2-CLN3 was efficacious in restoring full-length CLN3 transcript and protein in patient-specific fibroblasts and iPSC-derived retinal neurons. When injected into the subretinal space of wild-type mice, purified AAV2-CLN3 did not show any evidence of retinal toxicity. This study provides proof-of-principle for initiation of a clinical trial using AAV-mediated gene augmentation for the treatment of children with CLN3-associated retinal degeneration.

  8. Retinal oxygen saturation in relation to retinal thickness in diabetic macular edema

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Peto, Tunde; Grauslund, Jakob

    to retinal thickness in patients with diabetic macular edema (DME). Methods: We included 18 patients with DME that all had central retinal thickness (CRT) >300 µm and were free of active proliferative diabetic retinopathy. Optical coherence tomography (Topcon 3D OCT-2000 spectral domain OCT) was used...... for paracentral edema, the oxygen saturation in the upper and lower temporal arcade branches were compared to the corresponding upper and lower subfield thickness. Spearman’s rank was used to calculate correlation coefficients between CRT and retinal oximetry. Results: Median age and duration of diabetes was 59....... 92.3%, p=0.52). We found no correlation between CRT and retinal oxygen saturation, even when accounting for paracentral edema (p>0.05). Furthermore, there was no difference in retinal oxygen saturation between the macular hemisphere that was more or less affected by DME (p>0.05). Conclusion: Patients...

  9. Investigation of PACAP Fragments and Related Peptides in Chronic Retinal Hypoperfusion.

    Science.gov (United States)

    Werling, Dora; Reglodi, Dora; Kiss, Peter; Toth, Gabor; Szabadfi, Krisztina; Tamas, Andrea; Biro, Zsolt; Atlasz, Tamas

    2014-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has neuroprotective effects in different neuronal and retinal injuries. Retinal ischemia can be effectively modelled by permanent bilateral common carotid artery occlusion (BCCAO), which causes chronic hypoperfusion-induced degeneration in the entire rat retina. The retinoprotective effect of PACAP 1-38 and VIP is well-established in ischemic retinopathy. However, little is known about the effects of related peptides and PACAP fragments in ischemic retinopathy. The aim of the present study was to investigate the potential retinoprotective effects of different PACAP fragments (PACAP 4-13, 4-22, 6-10, 6-15, 11-15, and 20-31) and related peptides (secretin, glucagon) in BCCAO-induced ischemic retinopathy. Wistar rats (3-4 months old) were used in the experiment. After performing BCCAO, the right eyes of the animals were treated with PACAP fragments or related peptides intravitreal (100 pM), while the left eyes were injected with saline serving as control eyes. Sham-operated (without BCCAO) rats received the same treatment. Routine histology was performed 2 weeks after the surgery; cells were counted and the thickness of retinal layers was compared. Our results revealed significant neuroprotection by PACAP 1-38 but did not reveal retinoprotective effect of the PACAP fragments or related peptides. These results suggest that PACAP 1-38 has the greatest efficacy in ischemic retinopathy.

  10. Investigation of PACAP Fragments and Related Peptides in Chronic Retinal Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Dora Werling

    2014-01-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP has neuroprotective effects in different neuronal and retinal injuries. Retinal ischemia can be effectively modelled by permanent bilateral common carotid artery occlusion (BCCAO, which causes chronic hypoperfusion-induced degeneration in the entire rat retina. The retinoprotective effect of PACAP 1-38 and VIP is well-established in ischemic retinopathy. However, little is known about the effects of related peptides and PACAP fragments in ischemic retinopathy. The aim of the present study was to investigate the potential retinoprotective effects of different PACAP fragments (PACAP 4-13, 4-22, 6-10, 6-15, 11-15, and 20-31 and related peptides (secretin, glucagon in BCCAO-induced ischemic retinopathy. Wistar rats (3-4 months old were used in the experiment. After performing BCCAO, the right eyes of the animals were treated with PACAP fragments or related peptides intravitreal (100 pM, while the left eyes were injected with saline serving as control eyes. Sham-operated (without BCCAO rats received the same treatment. Routine histology was performed 2 weeks after the surgery; cells were counted and the thickness of retinal layers was compared. Our results revealed significant neuroprotection by PACAP 1-38 but did not reveal retinoprotective effect of the PACAP fragments or related peptides. These results suggest that PACAP 1-38 has the greatest efficacy in ischemic retinopathy.

  11. Changes in retinal structure and function of Alzheimer's patients

    Directory of Open Access Journals (Sweden)

    Xi Qin

    2017-10-01

    Full Text Available Alzheimer's disease(AD, a neurodegenerative disease, can result in memory loss,cognitive and behavioral deficits. The pathological hallmarkes are β amyloid plaques and neurofibrillary tangles which lead loss of neurons in brain. As the extension of the central nervous system, retina has a similar tissue anatomy with central nervous system. The β amyloid plaques have also been detected in retina of AD. Furthermore, according to eye examinations of AD patients, we have found the loss of retinal ganglion cells, the attenuation of retinal nerve fiber layer thickness, the smaller changes of macula lutea, the decline of vascular density and so on. And then, there occurs the visual field loss and the decline of contrast sensitivity and so on in AD patients. Thus, the retina has occurred nerve degenerative changes in AD. Meanwhile, there has been proved that the retina nerve degeneration is even earlier than senile plaques formation in brain. In addition,curcumin, a natural and safe fluorescent dye, can be used to label β amyloid plaques in retina. The above suggests that retina can be a window for the early diagnosis of AD.

  12. Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Leilei Wang

    Full Text Available Neuron loss, glial activation and vascular degeneration are common sequelae of ischemia-reperfusion (I/R injury in ocular diseases. The present study was conducted to explore the ability of curcumin to inhibit retinal I/R injury, and to investigate underlying mechanisms of the drug effects.Different dosages of curcumin were administered. I/R injury was induced by elevating the intraocular pressure for 60 min followed by reperfusion. Cell bodies, brn3a stained cells and TUNEL positive apoptotic cells in the ganglion cell layer (GCL were quantitated, and the number of degenerate capillaries was assessed. The activation of glial cells was measured by the expression level of GFAP. Signaling pathways including IKK-IκBα, JAK-STAT1/3, ERK/MAPK and the expression levels of β-tubulin III and MCP-1 were measured by western blot analysis. Pre-treatment using 0.01%-0.25% curcumin in diets significantly inhibited I/R-induced cell loss in GCL. 0.05% curcumin pre-treatment inhibited I/R-induced degeneration of retinal capillaries, TUNEL-positive apoptotic cell death in the GCL, brn3a stained cell loss, the I/R-induced up-regulation of MCP-1, IKKα, p-IκBα and p-STAT3 (Tyr, and down-regulation of β-tubulin III. This dose showed no effect on injury-induced GFAP overexpression. Moreover, 0.05% curcumin administered 2 days after the injury also showed a vaso-protective effect.Curcumin protects retinal neurons and microvessels against I/R injury. The beneficial effects of curcumin on neurovascular degeneration may occur through its inhibitory effects on injury-induced activation of NF-κB and STAT3, and on over-expression of MCP-1. Curcumin may therefore serve as a promising candidate for retinal ischemic diseases.

  13. Noninvasive Retinal Markers in Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Torp, Thomas Lee; Lundberg, Kristian

    2017-01-01

    The retinal vascular system is the only part of the human body available for direct, in vivo inspection. Noninvasive retinal markers are important to identity patients in risk of sight-threatening diabetic retinopathy. Studies have correlated structural features like retinal vascular caliber...... and fractals with micro- and macrovascular dysfunction in diabetes. Likewise, the retinal metabolism can be evaluated by retinal oximetry, and higher retinal venular oxygen saturation has been demonstrated in patients with diabetic retinopathy. So far, most studies have been cross-sectional, but these can only...... retinopathy and diabetic macular edema. The Department of Ophthalmology at Odense University Hospital, Denmark, has a strong tradition of studying the retinal microvasculature in diabetic retinopathy. In the present paper, we demonstrate the importance of the retinal vasculature not only as predictors of long...

  14. Frequency of lattice degeneration and retinal breaks in the fellow eye in retinal detachment.

    Science.gov (United States)

    Lorentzen, S E

    1988-04-01

    The fellow eye of 100 consecutively admitted cases of retinal detachment was studied with three-mirror examination for the presence of lattice degeneration and retinal breaks. Lattice degeneration was found in 18% and retinal breaks in 20% of fellow eyes.

  15. Ex vivo electroporation of retinal cells: a novel, high efficiency method for functional studies in primary retinal cultures.

    Science.gov (United States)

    Vergara, M Natalia; Gutierrez, Christian; O'Brien, David R; Canto-Soler, M Valeria

    2013-04-01

    Primary retinal cultures constitute valuable tools not only for basic research on retinal cell development and physiology, but also for the identification of factors or drugs that promote cell survival and differentiation. In order to take full advantage of the benefits of this system it is imperative to develop efficient and reliable techniques for the manipulation of gene expression. However, achieving appropriate transfection efficiencies in these cultures has remained challenging. The purpose of this work was to develop and optimize a technique that would allow the transfection of chick retinal cells with high efficiency and reproducibility for multiple applications. We developed an ex vivo electroporation method applied to dissociated retinal cell cultures that offers a significant improvement over other currently available transfection techniques, increasing efficiency by five-fold. In this method, eyes were enucleated, devoid of RPE, and electroporated with GFP-encoding plasmids using custom-made electrodes. Electroporated retinas were then dissociated into single cells and plated in low density conditions, to be analyzed after 4 days of incubation. Parameters such as voltage and number of electric pulses, as well as plasmid concentration and developmental stage of the animal were optimized for efficiency. The characteristics of the cultures were assessed by morphology and immunocytochemistry, and cell viability was determined by ethidium homodimer staining. Cell imaging and counting was performed using an automated high-throughput system. This procedure resulted in transfection efficiencies in the order of 22-25% of cultured cells, encompassing both photoreceptors and non-photoreceptor neurons, and without affecting normal cell survival and differentiation. Finally, the feasibility of the technique for cell-autonomous studies of gene function in a biologically relevant context was tested by carrying out gain and loss-of-function experiments for the

  16. Retinal Prosthesis System for Advanced Retinitis Pigmentosa: A Health Technology Assessment

    Science.gov (United States)

    Lee, Christine; Tu, Hong Anh; Weir, Mark; Holubowich, Corinne

    2016-01-01

    Background Retinitis pigmentosa is a group of genetic disorders that involves the breakdown and loss of photoreceptors in the retina, resulting in progressive retinal degeneration and eventual blindness. The Argus II Retinal Prosthesis System is the only currently available surgical implantable device approved by Health Canada. It has been shown to improve visual function in patients with severe visual loss from advanced retinitis pigmentosa. The objective of this analysis was to examine the clinical effectiveness, cost-effectiveness, budget impact, and safety of the Argus II system in improving visual function, as well as exploring patient experiences with the system. Methods We performed a systematic search of the literature for studies examining the effects of the Argus II retinal prosthesis system in patients with advanced retinitis pigmentosa, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on visual function, functional outcomes, quality of life, and adverse events. We developed a Markov decision-analytic model to assess the cost-effectiveness of the Argus II system compared with standard care over a 10-year time horizon. We also conducted a 5-year budget impact analysis. We used a qualitative design and an interview methodology to examine patients’ lived experience, and we used a modified grounded theory methodology to analyze information from interviews. Transcripts were coded, and themes were compared against one another. Results One multicentre international study and one single-centre study were included in the clinical review. In both studies, patients showed improved visual function with the Argus II system. However, the sight-threatening surgical complication rate was substantial. In the base-case analysis, the Argus II system was cost-effective compared with standard care only if willingness-to-pay was more than $207,616 per quality-adjusted life

  17. Raised intraocular pressure and recurrence of retinal detachment as complications of external retinal detachment surgery

    International Nuclear Information System (INIS)

    Jawwad, M.; Khan, B.; Shah, M.A.; Qayyum, I.; Aftab, M.; Qayyum, I.

    2015-01-01

    Patients with Rhegmatogenous retinal detachment may develop raised intraocular pressure and recurrence of retinal detachment when they undergo external retinal detachment surgery. The present study was conducted to determine the postoperative rise in intraocular pressure (IOP) and recurrence of retinal detachment. Methods: The present descriptive study was conducted at Eye department of Lady Reading Hospital, Peshawar on 25 patients of both genders from August 2012 to July 2014. Results: Of the 25 patients, 18 (72%) developed raised IOP in the immediate postoperative period; this figure decreased to 12 (48%) at one week. Following medical or surgical intervention in these 12 cases, there was only 1 (4%) case with mildly raised IOP at two weeks postoperative. Five (20%) cases developed recurrent retinal detachment which later resolved with treatment. There were no significant differences by age or gender. Conclusion: External Retinal Detachment Surgery raised intraocular pressure postoperatively and caused recurrence of retinal detachment. These complications were treated medically and surgically with resolution within two weeks. (author)

  18. Müller Glia, Vision-Guided Ocular Growth, Retinal Stem Cells, and a Little Serendipity

    Science.gov (United States)

    2011-01-01

    Hypothesis-driven science is expected to result in a continuum of studies and findings along a discrete path. By comparison, serendipity can lead to new directions that branch into different paths. Herein, I describe a diverse series of findings that were motivated by hypotheses, but driven by serendipity. I summarize how investigations into vision-guided ocular growth in the chick eye led to the identification of glucagonergic amacrine cells as key regulators of ocular elongation. Studies designed to assess the impact of the ablation of different types of neurons on vision-guided ocular growth led to the finding of numerous proliferating cells within damaged retinas. These proliferating cells were Müller glia–derived retinal progenitors with a capacity to produce new neurons. Studies designed to investigate Müller glia–derived progenitors led to the identification of a domain of neural stem cells that form a circumferential marginal zone (CMZ) that lines the periphery of the retina. Accelerated ocular growth, caused by visual deprivation, stimulated the proliferation of CMZ progenitors. We formulated a hypothesis that growth-regulating glucagonergic cells may regulate both overall eye size (scleral growth) and the growth of the retina (proliferation of CMZ cells). Subsequent studies identified unusual types of glucagonergic neurons with terminals that ramify within the CMZ; these cells use visual cues to control equatorial ocular growth and the proliferation of CMZ cells. Finally, while studying the signaling pathways that stimulate CMZ and Müller glia–derived progenitors, serendipity led to the discovery of a novel type of glial cell that is scattered across the inner retinal layers. PMID:21960640

  19. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan

    Science.gov (United States)

    Chen, San-Ni; Hwang, Jiunn-Feng; Wu, Wen-Chuan

    2016-01-01

    This is an observational study of fluorescein angiography (FA) in consecutive patients with rhegmatogenous retinal detachment (RRD) in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL), and refraction status (RF) recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8%) in group 1, 3 eyes (4.1%) in group 2, 40 eyes (54.8%) in group 3 and 17 eyes (23.3%) in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion. PMID:26909812

  20. Evidence for an enduring ischaemic penumbra following central retinal artery occlusion, with implications for fibrinolytic therapy.

    Science.gov (United States)

    McLeod, David; Beatty, Stephen

    2015-11-01

    The rationale behind hyperacute fibrinolytic therapy for cerebral and retinal arterial occlusion is to rescue ischaemic cells from irreversible damage through timely restitution of tissue perfusion. In cerebral stroke, an anoxic tissue compartment (the "infarct core") is surrounded by a hypoxic compartment (the "ischaemic penumbra"). The latter comprises electrically-silent neurons that undergo delayed apoptotic cell death within 1-6 h unless salvaged by arterial recanalisation. Establishment of an equivalent hypoxic compartment within the inner retina following central retinal artery occlusion (CRAO) isn't widely acknowledged. During experimental CRAO, electroretinography reveals 3 oxygenation-based tissue compartments (anoxic, hypoxic and normoxic) that contribute 32%, 27% and 41% respectively to the pre-occlusion b-wave amplitude. Thus, once the anoxia survival time (≈2 h) expires, the contribution from the infarcted posterior retina is irreversibly extinguished, but electrical activity continues in the normoxic periphery. Inbetween these compartments, an annular hypoxic zone (the "penumbra obscura") endures in a structurally-intact but functionally-impaired state until retinal reperfusion allows rapid recovery from electrical silence. Clinically, residual circulation of sufficient volume flow rate generates the heterogeneous fundus picture of "partial" CRAO. Persistent retinal venous hypoxaemia signifies maximal extraction of oxygen by an enduring "polar penumbra" that permeates or largely replaces the infarct core. On retinal reperfusion some days later, the retinal venous oxygen saturation reverts to normal and vision improves. Thus, penumbral inner retina, marginally oxygenated by the choroid or by residual circulation, isn't at risk of delayed apoptotic infarction (unlike hypoxic cerebral cortex). Emergency fibrinolytic intervention is inappropriate, therefore, once the duration of CRAO exceeds 2 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The Mirror Neuron System and Action Recognition

    Science.gov (United States)

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  2. A high dietary intake of sodium glutamate as flavoring (ajinomoto) causes gross changes in retinal morphology and function.

    Science.gov (United States)

    Ohguro, Hiroshi; Katsushima, Harumi; Maruyama, Ikuyo; Maeda, Tadao; Yanagihashi, Satsuki; Metoki, Tomomi; Nakazawa, Mitsuru

    2002-09-01

    The purpose of this study was to investigate the effects of glutamate accumulation in vitreous on retinal structure and function, due to a diet high in sodium glutamate. Three different diet groups were created, consisting of rats fed on a regular diet (diet A), a moderate excess of sodium glutamate diet (diet B) and a large excess of sodium glutamate diet (diet C). After 1, 3 and 6 months of the administration of these diets, amino acids concentrations in vitreous were analyzed. In addition, retinal morphology and function by electroretinogram (ERG) of three different diet groups were studied. Significant accumulation of glutamate in vitreous was observed in rats following addition of sodium glutamate to the diet as compared to levels with a regular diet. In the retinal morphology, thickness of retinal neuronal layers was remarkably thinner in rats fed on sodium glutamate diets than in those on a regular diet. TdT-dUTP terminal nick-end labelling (TUNEL) staining revealed significant accumulation of the positive staining cells within the retinal ganglion cell layers in retinas from diets B and C as compared with that from diet A. Similar to this, immunohistochemistry demonstrated increased expression of glial fibrillary acidic protein (GFAP) within the retinal inner layers from diets B and C as compared with diet A. Functionally, ERG responses were reduced in rats fed on a sodium glutamate diets as compared with those on a regular diet. The present study suggests that a diet with excess sodium glutamate over a period of several years may increase glutamate concentrations in vitreous and may cause retinal cell destruction.

  3. Cue-dependent memory-based smooth-pursuit in normal human subjects: importance of extra-retinal mechanisms for initial pursuit.

    Science.gov (United States)

    Ito, Norie; Barnes, Graham R; Fukushima, Junko; Fukushima, Kikuro; Warabi, Tateo

    2013-08-01

    Using a cue-dependent memory-based smooth-pursuit task previously applied to monkeys, we examined the effects of visual motion-memory on smooth-pursuit eye movements in normal human subjects and compared the results with those of the trained monkeys. These results were also compared with those during simple ramp-pursuit that did not require visual motion-memory. During memory-based pursuit, all subjects exhibited virtually no errors in either pursuit-direction or go/no-go selection. Tracking eye movements of humans and monkeys were similar in the two tasks, but tracking eye movements were different between the two tasks; latencies of the pursuit and corrective saccades were prolonged, initial pursuit eye velocity and acceleration were lower, peak velocities were lower, and time to reach peak velocities lengthened during memory-based pursuit. These characteristics were similar to anticipatory pursuit initiated by extra-retinal components during the initial extinction task of Barnes and Collins (J Neurophysiol 100:1135-1146, 2008b). We suggest that the differences between the two tasks reflect differences between the contribution of extra-retinal and retinal components. This interpretation is supported by two further studies: (1) during popping out of the correct spot to enhance retinal image-motion inputs during memory-based pursuit, pursuit eye velocities approached those during simple ramp-pursuit, and (2) during initial blanking of spot motion during memory-based pursuit, pursuit components appeared in the correct direction. Our results showed the importance of extra-retinal mechanisms for initial pursuit during memory-based pursuit, which include priming effects and extra-retinal drive components. Comparison with monkey studies on neuronal responses and model analysis suggested possible pathways for the extra-retinal mechanisms.

  4. Mediodorsal Thalamic Neurons Mirror the Activity of Medial Prefrontal Neurons Responding to Movement and Reinforcement during a Dynamic DNMTP Task.

    Science.gov (United States)

    Miller, Rikki L A; Francoeur, Miranda J; Gibson, Brett M; Mair, Robert G

    2017-01-01

    The mediodorsal nucleus (MD) interacts with medial prefrontal cortex (mPFC) to support learning and adaptive decision-making. MD receives driver (layer 5) and modulatory (layer 6) projections from PFC and is the main source of driver thalamic projections to middle cortical layers of PFC. Little is known about the activity of MD neurons and their influence on PFC during decision-making. We recorded MD neurons in rats performing a dynamic delayed nonmatching to position (dDNMTP) task and compared results to a previous study of mPFC with the same task (Onos et al., 2016). Criterion event-related responses were observed for 22% (254/1179) of neurons recorded in MD, 237 (93%) of which exhibited activity consistent with mPFC response types. More MD than mPFC neurons exhibited responses related to movement (45% vs. 29%) and reinforcement (51% vs. 27%). MD had few responses related to lever presses, and none related to preparation or memory delay, which constituted 43% of event-related activity in mPFC. Comparison of averaged normalized population activity and population response times confirmed the broad similarity of common response types in MD and mPFC and revealed differences in the onset and offset of some response types. Our results show that MD represents information about actions and outcomes essential for decision-making during dDNMTP, consistent with evidence from lesion studies that MD supports reward-based learning and action-selection. These findings support the hypothesis that MD reinforces task-relevant neural activity in PFC that gives rise to adaptive behavior.

  5. Auditory stimuli elicit hippocampal neuronal responses during sleep

    Directory of Open Access Journals (Sweden)

    Ekaterina eVinnik

    2012-06-01

    Full Text Available To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50 percent of the trials, sound stimuli were presented followed by water reward after a 3-second delay. Sound at the water port predicted subsequent reward delivery in 100 percent of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the 2 reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19% and reward delivery (24%. When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. Based on the current findings and the results of previous experiments we propose the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task. During sleep the short-latency responses in hippocampus are intermingled with sustained activity which in the current experiment was detected for 1-2 seconds.

  6. Molecular events associated with increased regenerative capacity of the goldfish retinal ganglion cells following X-irradiation: decreased level of axonal growth inhibitors

    International Nuclear Information System (INIS)

    Rachailovich, I.; Schwartz, M.

    1984-01-01

    In our previous work we established conditions to study the contribution of non-neuronal cells to the process of goldfish optic nerve regeneration. This issue has been studied successfully by adapting the use of X-irradiation to manipulate division of non-neuronal cells associated with the injured nerve. The regenerative capacity of the goldfish retinal ganglion cells was determined subsequent to the X-ray treatment. The authors present an analysis of the molecular events associated with regeneration and enhanced regenerative capacity which follows X-irradiation. (Auth.)

  7. Molecular events associated with increased regenerative capacity of the goldfish retinal ganglion cells following X-irradiation: decreased level of axonal growth inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Rachailovich, I.; Schwartz, M. (Weizmann Inst. of Science, Rehovot (Israel). Dept. of Neurobiology)

    1984-07-23

    In our previous work we established conditions to study the contribution of non-neuronal cells to the process of goldfish optic nerve regeneration. This issue has been studied successfully by adapting the use of X-irradiation to manipulate division of non-neuronal cells associated with the injured nerve. The regenerative capacity of the goldfish retinal ganglion cells was determined subsequent to the X-ray treatment. The authors present an analysis of the molecular events associated with regeneration and enhanced regenerative capacity which follows X-irradiation.

  8. Reflections on mirror neurons and speech perception

    Science.gov (United States)

    Lotto, Andrew J.; Hickok, Gregory S.; Holt, Lori L.

    2010-01-01

    The discovery of mirror neurons, a class of neurons that respond when a monkey performs an action and also when the monkey observes others producing the same action, has promoted a renaissance for the Motor Theory (MT) of speech perception. This is because mirror neurons seem to accomplish the same kind of one to one mapping between perception and action that MT theorizes to be the basis of human speech communication. However, this seeming correspondence is superficial, and there are theoretical and empirical reasons to temper enthusiasm about the explanatory role mirror neurons might have for speech perception. In fact, rather than providing support for MT, mirror neurons are actually inconsistent with the central tenets of MT. PMID:19223222

  9. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion.

    Directory of Open Access Journals (Sweden)

    Andreas Ebneter

    Full Text Available Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001 compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001. Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

  10. Retinal Imaging and Image Analysis

    Science.gov (United States)

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:22275207

  11. HIF-1alpha and HIF-2alpha are differentially activated in distinct cell populations in retinal ischaemia.

    Directory of Open Access Journals (Sweden)

    Freya M Mowat

    2010-06-01

    Full Text Available Hypoxia plays a key role in ischaemic and neovascular disorders of the retina. Cellular responses to oxygen are mediated by hypoxia-inducible transcription factors (HIFs that are stabilised in hypoxia and induce the expression of a diverse range of genes. The purpose of this study was to define the cellular specificities of HIF-1alpha and HIF-2alpha in retinal ischaemia, and to determine their correlation with the pattern of retinal hypoxia and the expression profiles of induced molecular mediators.We investigated the tissue distribution of retinal hypoxia during oxygen-induced retinopathy (OIR in mice using the bio-reductive drug pimonidazole. We measured the levels of HIF-1alpha and HIF-2alpha proteins by Western blotting and determined their cellular distribution by immunohistochemistry during the development of OIR. We measured the temporal expression profiles of two downstream mediators, vascular endothelial growth factor (VEGF and erythropoietin (Epo by ELISA. Pimonidazole labelling was evident specifically in the inner retina. Labelling peaked at 2 hours after the onset of hypoxia and gradually declined thereafter. Marked binding to Müller glia was evident during the early hypoxic stages of OIR. Both HIF-1alpha and HIF-2alpha protein levels were significantly increased during retinal hypoxia but were evident in distinct cellular distributions; HIF-1alpha stabilisation was evident in neuronal cells throughout the inner retinal layers whereas HIF-2alpha was restricted to Müller glia and astrocytes. Hypoxia and HIF-alpha stabilisation in the retina were closely followed by upregulated expression of the downstream mediators VEGF and EPO.Both HIF-1alpha and HIF-2alpha are activated in close correlation with retinal hypoxia but have contrasting cell specificities, consistent with differential roles in retinal ischaemia. Our findings suggest that HIF-2alpha activation plays a key role in regulating the response of Müller glia to hypoxia.

  12. [Peripheral retinal degenerations--treatment recommendations].

    Science.gov (United States)

    Joussen, A M; Kirchhof, B

    2004-10-01

    This report reviews the clinical appearance of degenerative diseases of the peripheral retina in relationship to the risk of developing a rhegmatogenous retinal detachment. We present recommendations for preventive treatment in eyes at increased risk of developing retinal detachment. Retinal degenerations are common lesions involving the peripheral retina but most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and very rarely zonular traction tufts can result in rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic treatment; however, adequate studies have not been performed to date. Most of the peripheral retinal degenerations may not require treatment except in rare, high-risk situations. According to current knowledge there is no higher incidence of secondary pucker or other side effects after laser coagulation. Therefore, generous laser indication is recommended if risk factors apply.

  13. Muller glia, vision-guided ocular growth, retinal stem cells, and a little serendipity: the Cogan lecture.

    Science.gov (United States)

    Fischer, Andy J

    2011-09-29

    Hypothesis-driven science is expected to result in a continuum of studies and findings along a discrete path. By comparison, serendipity can lead to new directions that branch into different paths. Herein, I describe a diverse series of findings that were motivated by hypotheses, but driven by serendipity. I summarize how investigations into vision-guided ocular growth in the chick eye led to the identification of glucagonergic amacrine cells as key regulators of ocular elongation. Studies designed to assess the impact of the ablation of different types of neurons on vision-guided ocular growth led to the finding of numerous proliferating cells within damaged retinas. These proliferating cells were Müller glia-derived retinal progenitors with a capacity to produce new neurons. Studies designed to investigate Müller glia-derived progenitors led to the identification of a domain of neural stem cells that form a circumferential marginal zone (CMZ) that lines the periphery of the retina. Accelerated ocular growth, caused by visual deprivation, stimulated the proliferation of CMZ progenitors. We formulated a hypothesis that growth-regulating glucagonergic cells may regulate both overall eye size (scleral growth) and the growth of the retina (proliferation of CMZ cells). Subsequent studies identified unusual types of glucagonergic neurons with terminals that ramify within the CMZ; these cells use visual cues to control equatorial ocular growth and the proliferation of CMZ cells. Finally, while studying the signaling pathways that stimulate CMZ and Müller glia-derived progenitors, serendipity led to the discovery of a novel type of glial cell that is scattered across the inner retinal layers.

  14. Channeling Vision: CaV1.4—A Critical Link in Retinal Signal Transmission

    Directory of Open Access Journals (Sweden)

    D. M. Waldner

    2018-01-01

    Full Text Available Voltage-gated calcium channels (VGCC are key to many biological functions. Entry of Ca2+ into cells is essential for initiating or modulating important processes such as secretion, cell motility, and gene transcription. In the retina and other neural tissues, one of the major roles of Ca2+-entry is to stimulate or regulate exocytosis of synaptic vesicles, without which synaptic transmission is impaired. This review will address the special properties of one L-type VGCC, CaV1.4, with particular emphasis on its role in transmission of visual signals from rod and cone photoreceptors (hereafter called “photoreceptors,” to the exclusion of intrinsically photoreceptive retinal ganglion cells to the second-order retinal neurons, and the pathological effects of mutations in the CACNA1F gene which codes for the pore-forming α1F subunit of CaV1.4.

  15. Risk factor profile in retinal detachment

    Directory of Open Access Journals (Sweden)

    Azad Raj

    1988-01-01

    Full Text Available 150 cases of retinal detachment comprising 50 patients each of bilateral retinal detachment, unilateral retinal detachment without any retinal lesions in the fellow eve and unilateral retinal detachment with retinal lesions in the fellow eye were studied and the various associated risk factors were statistically analysed. The findings are discussed in relation to their aetiological and prognostic significance in the different types of retinal detachment. Based on these observations certain guidelines are offered which may be of value in decision making, in prophylactic detachment surgery. Tractional breaks in the superior temporal quadrant especially when symptomatic. mandate prophylactic treatment. Urgency is enhanced it′ the patient is aphakic. Associated myopia adds to the urgency. The higher incidence of initial right e′ e involvement in all groups suggests a vascular original possibly ischaemic.

  16. Cytomegalovirus retinitis after central retinal vein occlusion in a patient on systemic immunosuppression: does venooclusive disease predispose to cytomegalovirus retinitis in patients already at risk?

    Directory of Open Access Journals (Sweden)

    Welling JD

    2012-04-01

    Full Text Available John D Welling, Ahmad B Tarabishy, John ChristoforidisDepartment of Ophthalmology, Havener Eye Institute, Ohio State University, Columbus, OH, USAAbstract: Cytomegalovirus (CMV retinitis remains the most common opportunistic ocular infection in immunocompromised patients. Patients with immunocompromising diseases, such as acquired immunodeficiency syndrome, inherited immunodeficiency states, malignancies, and those on systemic immunosuppressive therapy, are known to be at risk. Recently, it has been suggested that patients undergoing intravitreal injection of immunosuppressive agents may also be predisposed. One previous case report speculated that there may be an additional risk for CMV retinitis in acquired immunodeficiency syndrome patients with venoocclusive disease. This case study presents a case of CMV retinitis following central retinal vein occlusion in a patient on systemic immunosuppressants.Keywords: cytomegalovirus retinitis, central retinal vein occlusion, immunosuppression, solid organ transplant, venous stasis, risk factor

  17. WIDEFIELD SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGING OF PERIPHERAL ROUND RETINAL HOLES WITH OR WITHOUT RETINAL DETACHMENT.

    Science.gov (United States)

    Casswell, Edward J; Abou Ltaif, Sleiman; Carr, Thomas; Keane, Pearse A; Charteris, David G; Wickham, Louisa

    2018-03-02

    To describe the widefield spectral-domain optical coherence tomography features of peripheral round retinal holes, with or without associated retinal detachment (RD). Retrospective, observational study of 28 eyes with peripheral round retinal holes, with and without RD. Patients underwent imaging with a widefield 50-degree spectral-domain optical coherence tomography (Heidelberg Engineering, Germany) and Optos ultra-widefield imaging systems (Optos, United Kingdom). Vitreous attachment at the site of the retinal hole was detected in 27/28 (96.4%) cases. Cases were split into three groups: RHs with RD (n = 12); RHs with subretinal fluid (n = 5), and flat RHs (n = 11), with minimal or no subretinal fluid. 91.6% retinal holes associated with subretinal fluid or RD had vitreous attachment at the site of the hole. Eighty percent had vitreous attachment at both edges of the retinal hole, in a U-shape configuration, which appeared to exert traction. By contrast, flat retinal holes had visible vitreous attachment only at one edge of the retinal hole in 45.4%. Vitreous attachment was commonly seen at the site of round retinal holes. Vitreous attachment at both edges of the retinal hole in a U-shape configuration was more commonly seen at holes associated with subretinal fluid or RD.

  18. Responses of mirror neurons in area F5 to hand and tool grasping observation

    Science.gov (United States)

    Rochat, Magali J.; Caruana, Fausto; Jezzini, Ahmad; Escola, Ludovic; Intskirveli, Irakli; Grammont, Franck; Gallese, Vittorio; Rizzolatti, Giacomo

    2010-01-01

    Mirror neurons are a distinct class of neurons that discharge both during the execution of a motor act and during observation of the same or similar motor act performed by another individual. However, the extent to which mirror neurons coding a motor act with a specific goal (e.g., grasping) might also respond to the observation of a motor act having the same goal, but achieved with artificial effectors, is not yet established. In the present study, we addressed this issue by recording mirror neurons from the ventral premotor cortex (area F5) of two monkeys trained to grasp objects with pliers. Neuron activity was recorded during the observation and execution of grasping performed with the hand, with pliers and during observation of an experimenter spearing food with a stick. The results showed that virtually all neurons responding to the observation of hand grasping also responded to the observation of grasping with pliers and, many of them to the observation of spearing with a stick. However, the intensity and pattern of the response differed among conditions. Hand grasping observation determined the earliest and the strongest discharge, while pliers grasping and spearing observation triggered weaker responses at longer latencies. We conclude that F5 grasping mirror neurons respond to the observation of a family of stimuli leading to the same goal. However, the response pattern depends upon the similarity between the observed motor act and the one executed by the hand, the natural motor template. PMID:20577726

  19. Retinal detachment following endophthalmitis.

    Science.gov (United States)

    Nelsen, P T; Marcus, D A; Bovino, J A

    1985-08-01

    Fifty-five consecutive patients with a clinical diagnosis of bacterial endophthalmitis were reviewed. All patients were treated with systemic, periocular, topical, and intravitreal antibiotics. In addition, 33 of the patients underwent a pars plana vitrectomy. Nine retinal detachments occurred within six months of initial diagnosis. The higher frequency of retinal detachment in the vitrectomy group (21%) as compared to those patients managed without vitrectomy (9%) may be explained by a combination of surgical complications and the increased severity of endophthalmitis in the vitrectomy group. The two patients who developed retinal detachment during vitrectomy surgery rapidly progressed to no light perception. Conversely, the repair of retinal detachments diagnosed postoperatively had a good prognosis.

  20. Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice.

    Science.gov (United States)

    Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker

    2016-12-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate

  1. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan.

    Directory of Open Access Journals (Sweden)

    San-Ni Chen

    Full Text Available This is an observational study of fluorescein angiography (FA in consecutive patients with rhegmatogenous retinal detachment (RRD in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL, and refraction status (RF recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8% in group 1, 3 eyes (4.1% in group 2, 40 eyes (54.8% in group 3 and 17 eyes (23.3% in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion.

  2. Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses.

    Science.gov (United States)

    Lu, Siyuan; Madhukar, Anupam

    2013-02-01

    Recently we reported an analysis that examined the potential of synthesized photovoltaic functional abiotic nanosystems (PVFANs) to modulate membrane potential and activate action potential firing in neurons. Here we extend the analysis to delineate the requirements on the electronic energy levels and the attendant photophysical properties of the PVFANs to induce repetitive action potential under continuous light, a capability essential for the proposed potential application of PVFANs as retinal cellular prostheses to compensate for loss of photoreceptors. We find that repetitive action potential firing demands two basic characteristics in the electronic response of the PVFANs: an exponential dependence of the PVFAN excited state decay rate on the membrane potential and a three-state system such that, following photon absorption, the electron decay from the excited state to the ground state is via intermediate state(s) whose lifetime is comparable to the refractory time following an action potential. In this study, the potential of synthetic photovoltaic functional abiotic nanosystems (PVFANs) is examined under continuous light to modulate membrane potential and activate action potential firing in neurons with the proposed potential application of PVFANs as retinal cellular prostheses. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The human mirror neuron system and embodied representations.

    Science.gov (United States)

    Aziz-Zadeh, Lisa; Ivry, Richard B

    2009-01-01

    Mirror neurons are defined as neurons in the monkey cortex which respond to goal oriented actions, whether the behavior is self-generated or produced by another. Here we briefly review this literature and consider evidence from behavioral, neuropsychological, and brain imaging studies for a similar mirror neuron system in humans. Furthermore, we review functions of this system related to action comprehension and motor imagery, as well as evidence for speculations on the system's ties with conceptual knowledge and language.

  4. Early Retinal Defects in Fmr1-/y Mice: Toward a Critical Role of Visual Dys-Sensitivity in the Fragile X Syndrome Phenotype?

    Science.gov (United States)

    Perche, Olivier; Felgerolle, Chloé; Ardourel, Maryvonne; Bazinet, Audrey; Pâris, Arnaud; Rossignol, Rafaëlle; Meyer-Dilhet, Géraldine; Mausset-Bonnefont, Anne-Laure; Hébert, Betty; Laurenceau, David; Montécot-Dubourg, Céline; Menuet, Arnaud; Bizot, Jean-Charles; Pichon, Jacques; Ranchon-Cole, Isabelle; Briault, Sylvain

    2018-01-01

    Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1 -/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO) is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1 -/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1 -/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions.

  5. Advances in Retinal Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Andrea S Viczian

    2013-01-01

    Full Text Available Tremendous progress has been made in recent years to generate retinal cells from pluripotent cell sources. These advances provide hope for those suffering from blindness due to lost retinal cells. Understanding the intrinsic genetic network in model organisms, like fly and frog, has led to a better understanding of the extrinsic signaling pathways necessary for retinal progenitor cell formation in mouse and human cell cultures. This review focuses on the culture methods used by different groups, which has culminated in the generation of laminated retinal tissue from both embryonic and induced pluripotent cells. The review also briefly describes advances made in transplantation studies using donor retinal progenitor and cultured retinal cells.

  6. Sector retinitis pigmentosa.

    Science.gov (United States)

    Van Woerkom, Craig; Ferrucci, Steven

    2005-05-01

    Retinitis pigmentosa (RP) is one of the most common hereditary retinal dystrophies and causes of visual impairment affecting all age groups. The reported incidence varies, but is considered to be between 1 in 3,000 to 1 in 7,000. Sector retinitis pigmentosa is an atypical form of RP that is characterized by regionalized areas of bone spicule pigmentation, usually in the inferior quadrants of the retina. A 57-year-old Hispanic man with a history of previously diagnosed retinitis pigmentosa came to the clinic with a longstanding symptom of decreased vision at night. Bone spicule pigmentation was found in the nasal and inferior quadrants in each eye. He demonstrated superior and temporal visual-field loss corresponding to the areas of the affected retina. Clinical measurements of visual-field loss, best-corrected visual acuity, and ophthalmoscopic appearance have remained stable during the five years the patient has been followed. Sector retinitis pigmentosa is an atypical form of RP that is characterized by bilateral pigmentary retinopathy, usually isolated to the inferior quadrants. The remainder of the retina appears clinically normal, although studies have found functional abnormalities in these areas as well. Sector RP is generally considered a stationary to slowly progressive disease, with subnormal electro-retinogram findings and visual-field defects corresponding to the involved retinal sectors. Management of RP is very difficult because there are no proven methods of treatment. Studies have shown 15,000 IU of vitamin A palmitate per day may slow the progression, though this result is controversial. Low vision rehabilitation, long wavelength pass filters, and pedigree counseling remain the mainstay of management.

  7. Cone dysfunctions in retinitis pigmentosa with retinal nerve fiber layer thickening.

    Science.gov (United States)

    Sobacı, Güngör; Ozge, Gökhan; Gündoğan, Fatih Ç

    2012-01-01

    To investigate whether or not thicker retinal nerve fiber layer (RNFL) in retinitis pigmentosa (RP) patients relates to functional abnormalities of the photoreceptors. Optical coherence tomography-based RNFL thickness was measured by Stratus-3™ (Zeiss, Basel, Switzerland) optical coherence tomography and electroretinogram (ERG) recordings made using the RETI-port(®) system (Roland, Wiesbaden, Germany) in 27 patients with retinitis pigmentosa and in 30 healthy subjects. Photopic ERG b-wave amplitude, cone ERG b-wave latency, 30 Hz flicker amplitude, and 30 Hz flicker latency had significant correlations to the RNFL-temporal (r = -0.55, P = 0.004, r = 0.68, P = 0.001, r = -0.65, P = 0.001, and r = -0.52, P = 0.007, respectively). Eyes with thicker RNFL (ten eyes) differed significantly from those with thinner RNFL (eight eyes) regarding cone ERG b-wave latency values only (P = 0.001). Thicker RNFL in patients with retinitis pigmentosa may be associated with functional abnormality of the cone system.

  8. Progressive outer retinal necrosis (PORN) in AIDS patients: a different appearance of varicella-zoster retinitis.

    Science.gov (United States)

    Pavesio, C E; Mitchell, S M; Barton, K; Schwartz, S D; Towler, H M; Lightman, S

    1995-01-01

    Retinal infections caused by the varicella-zoster virus (VZV) have been reported in immunocompetent and immunocompromised individuals. Two cases of a VZV-related retinitis are described with the characteristic features of the recently described progressive outer retinal necrosis (PORN) syndrome. Both patients suffered from the acquired immunodeficiency syndrome (AIDS) with greatly reduced peripheral blood CD4+ T lymphocyte counts, and presented with macular retinitis without vitritis. The disease was bilateral in one case and unilateral in the other. The clinical course was rapidly progressive with widespread retinal involvement and the development of rhegmatogenous retinal detachment with complete loss of vision in the affected eyes despite intensive intravenous antiviral therapy. VZV DNA was identified in vitreous biopsies, by molecular techniques based on the polymerase chain reaction (PCR), in both patients. At present, the use of very high-dose intravenous acyclovir may be the best therapeutic option in these patients for whom the visual prognosis is poor. Intravitreal antiviral drugs could also contribute to the management of these cases.

  9. Association of the AMPA receptor-related postsynaptic density proteins GRIP and ABP with subsets of glutamate-sensitive neurons in the rat retina.

    Science.gov (United States)

    Gábriel, Robert; de Souza, Sunita; Ziff, Edward B; Witkovsky, Paul

    2002-07-22

    We used specific antibodies against two postsynaptic density proteins, GRIP (glutamate receptor interacting protein) and ABP (AMPA receptor-binding protein), to study their distribution in the rat retina. In the central nervous system, it has been shown that both proteins bind strongly to the AMPA glutamate receptor (GluR) 2/3 subunits, but not other GluRs, through a set of three PDZ domains. Western blots detected a single GRIP protein that was virtually identical in retina and brain, whereas retinal ABP corresponded to only one of three ABP peptides found in brain. The retinal distributions of GluR2/3, GRIP, and ABP immunoreactivity (IR) were similar but not identical. GluR2/3 immunoreactivity (IR) was abundant in both plexiform layers and in large perikarya. ABP IR was concentrated in large perikarya but was sparse in the plexiform layers, whereas GRIP IR was relatively more abundant in the plexiform layers than in perikarya. Immunolabel for these three antibodies consisted of puncta ABP IR was examined by double labeling subclasses of retinal neuron with characteristic marker proteins, e.g., calbindin. GRIP, ABP, and GluR2/3 IR were detected in horizontal cells, dopaminergic and glycinergic AII amacrine cells and large ganglion cells. Immunolabel was absent in rod bipolar and weak or absent in cholinergic amacrine cells. By using the tyramide method of signal amplification, a colocalization of GluR2/3 was found with either GRIP or ABP in horizontal cell terminals, and perikarya of amacrine and ganglion cells. Our results show that ABP and GRIP colocalize with GluR2/3 in particular subsets of retinal neuron, as was previously established for certain neurons in the brain. Copyright 2002 Wiley-Liss, Inc.

  10. Nitric oxide-dependent pigment migration induced by ultraviolet radiation in retinal pigment cells of the crab Neohelice granulata.

    Science.gov (United States)

    Filgueira, Daza de Moraes Vaz Batista; Guterres, Laís Pereira; Votto, Ana Paula de Souza; Vargas, Marcelo Alves; Boyle, Robert Tew; Trindade, Gilma Santos; Nery, Luiz Eduardo Maia

    2010-01-01

    The purpose of this study was to verify the occurrence of pigment dispersion in retinal pigment cells exposed to UVA and UVB radiation, and to investigate the possible participation of a nitric oxide (NO) pathway. Retinal pigment cells from Neohelice granulata were obtained by cellular dissociation. Cells were analyzed for 30 min in the dark (control) and then exposed to 1.1 and 3.3 J cm(-2) UVA, 0.07 and 0.9 J cm(-2) UVB, 20 nmβ-PDH (pigment dispersing hormone) or 10 μm SIN-1 (NO donor). Histological analyses were performed to verify the UV effect in vivo. Cultured cells were exposed to 250 μm L-NAME (NO synthase blocker) and afterwards were treated with UVA, UVB or β-PDH. The retinal cells in culture displayed significant pigment dispersion in response to UVA, UVB and β-PDH. The same responses to UVA and UVB were observed in vivo. SIN-1 did not induce pigment dispersion in the cell cultures. L-NAME significantly decreased the pigment dispersion induced by UVA and UVB but not by β-PDH. All retinal cells showed an immunopositive reaction against neuronal nitric oxide synthases. Therefore, UVA and UVB radiation are capable of inducing pigment dispersion in retinal pigment cells of Neohelice granulata and this dispersion may be nitric oxide synthase dependent. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  11. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter.

    Directory of Open Access Journals (Sweden)

    Bin-Bin Xie

    Full Text Available The neural retina is a critical component of the visual system, which provides the majority of sensory input in humans. Various retinal degenerative diseases can result in the permanent loss of retinal neurons, especially the light-sensing photoreceptors and the centrally projecting retinal ganglion cells (RGCs. The replenishment of lost RGCs and the repair of optic nerve damage are particularly challenging, as both RGC specification and their subsequent axonal growth and projection involve complex and precise regulation. To explore the developmental potential of pluripotent stem cell-derived neural progenitors, we have established mouse iPS cells that allow cell lineage tracing of progenitors that have expressed Atoh7/Math5, a bHLH transcription factor required for RGC production. These Atoh7 lineage reporter iPS cells encode Cre to replace one copy of the endogenous Atoh7 gene and a Cre-dependent YFP reporter in the ROSA locus. In addition, they express pluripotent markers and are capable of generating teratomas in vivo. Under anterior neural induction and neurogenic conditions in vitro, the Atoh7-Cre/ROSA-YFP iPS cells differentiate into neurons that co-express various RGC markers and YFP, indicating that these neurons are derived from Atoh7-expressing progenitors. Consistent with previous in vivo cell lineage studies, the Atoh7-Cre/ROSA-YFP iPS cells also give rise to a subset of Crx-positive photoreceptor precursors. Furthermore, inhibition of Notch signaling in the iPSC cultures results in a significant increase of YFP-positive RGCs and photoreceptor precursors. Together, these results show that Atoh7-Cre/ROSA-YFP iPS cells can be used to monitor the development and survival of RGCs and photoreceptors from pluripotent stem cells.

  12. Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila.

    Science.gov (United States)

    Tomchik, Seth M

    2013-01-30

    Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.

  13. Peripapillary retinal thermal coagulation following electrical injury

    Directory of Open Access Journals (Sweden)

    Manjari Tandon

    2013-01-01

    Full Text Available In this study, we have presented the case report of a 20 year old boy who suffered an electric injury shock, following which he showed peripapillary retinal opacification and increased retinal thickening that subsequently progressed to retinal atrophy. The fluorescein angiogram revealed normal retinal circulation, thus indicating thermal damage to retina without any compromise to retinal circulation.

  14. Dependence of diameters and oxygen saturation of retinal vessels on visual field damage and age in primary open-angle glaucoma.

    Science.gov (United States)

    Ramm, Lisa; Jentsch, Susanne; Peters, Sven; Sauer, Lydia; Augsten, Regine; Hammer, Martin

    2016-05-01

    To investigate the interrelationship between the oxygen supply of the retina and its regulation with the severity of primary open-angle glaucoma (POAG). Central retinal artery (CRAE) and vein (CRVE) diameters and oxygen saturation of peripapillary retinal vessels in 41 patients suffering from POAG (64.1 ± 12.9 years) and 40 healthy volunteers (63.6 ± 14.1 years) were measured using the retinal vessel analyzer. All measures were taken before and during flicker light stimulation. The mean retinal nerve fiber layer thickness (RNFLT) was determined by OCT and the visual field mean defect (MD) was identified using perimetry. In glaucoma patients, CRAE (r = -0.48 p = 0.002) and CRVE (r = -0.394 p = 0.014) at baseline were inversely related to MD, while arterial and venous oxygen saturation showed no significant dependence on the severity of the damage. However, the flicker light-induced change in arterio-venous difference in oxygen saturation was correlated with the MD (r = 0.358 p = 0.027). The diameters of arteries and veins at baseline decreased with reduction of the mean RNFLT (arteries: r = 0.718 p field loss, may be explained by a reduction of the retinal metabolic demand with progressive loss of neuronal tissue in glaucoma. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Automatic detection and classification of malarial retinopathy- associated retinal whitening in digital retinal images

    International Nuclear Information System (INIS)

    Akram, M.U.; Alvi, A.B.N.; Khan, S.A.

    2017-01-01

    Malarial retinopathy addresses diseases that are characterized by abnormalities in retinal fundus imaging. Macular whitening is one of the distinct signs of cerebral malaria but has hardly been explored as a critical bio-marker. The paper proposes a computerized detection and classification method for malarial retinopathy using retinal whitening as a bio-marker. The paper combines various statistical and color based features to form a sound feature set for accurate detection of retinal whitening. All features are extracted at image level and feature selection is performed to detect most discriminate features. A new method for macula location is also presented. The detected macula location is further used for grading of whitening as macular or peripheral whitening. Support vector machine along with radial basis function is used for classification of normal and malarial retinopathy patients. The evaluation is performed using a locally gathered dataset from malarial patients and it achieves an accuracy of 95% for detection of retinal whitening and 100% accuracy for grading of retinal whitening as macular or non-macular. One of the major contributions of proposed method is grading of retinal whitening into macular or peripheral whitening. (author)

  16. Evolution of Outer Retinal Folds Occurring after Vitrectomy for Retinal Detachment Repair

    NARCIS (Netherlands)

    Dell'Omo, Roberto; Tan, H. Stevie; Schlingemann, Reinier O.; Bijl, Heico M.; Lesnik Oberstein, Sarit Y.; Barca, Francesco; Mura, Marco

    2012-01-01

    PURPOSE. To assess the evolution of outer retinal folds (ORFs) occurring after repair of rhegmatogenous retinal detachment (RRD) using spectral domain-optical coherence tomography (sd-OCT) and fundus autofluorescence (FAF), and to discuss their pathogenesis. METHODS. Twenty patients were operated on

  17. Retinitis pigmentosa, Coats disease and uveitis.

    Science.gov (United States)

    Solomon, A; Banin, E; Anteby, I; Benezra, D

    1999-01-01

    To study the anamnestic immune response to retinal specific antigens of two patients suffering from a rare triad of retinitis pigmentosa, Coats disease and uveitis. 17-year-old girl presented with an acute episode of panuveitis, and her 19-year-old brother suffered from chronic uveitis. On examination, both patients showed retinal vascular changes and subretinal exudations typical of Coats disease, with bone-spicule pigmentary changes as observed in retinitis pigmentosa. All routine examinations were unrevealing. However, the peripheral lymphocytes from these two siblings gave a specific anamnestic response to retinal antigens in vitro. A stimulation index of 4.6 was obtained when the sister's lymphocytes were stimulated with interphotoreceptor binding protein, IRBP--during the acute stage of the uveitis. The brother's lymphocytes showed a stimulation index of 2.7 towards S-Ag during the chronic phase of his uveitic condition. These results indicate that autoimmunity towards retinal antigens may play some role in specific types of retinitis pigmentosa. Whether these autoimmune reactions are a primary pathological mechanism or are secondary to the extensive destruction of the photoreceptor layer resulting from the retinitis pigmentosa remains debatable.

  18. Early Retinal Defects in Fmr1−/y Mice: Toward a Critical Role of Visual Dys-Sensitivity in the Fragile X Syndrome Phenotype?

    Science.gov (United States)

    Perche, Olivier; Felgerolle, Chloé; Ardourel, Maryvonne; Bazinet, Audrey; Pâris, Arnaud; Rossignol, Rafaëlle; Meyer-Dilhet, Géraldine; Mausset-Bonnefont, Anne-Laure; Hébert, Betty; Laurenceau, David; Montécot-Dubourg, Céline; Menuet, Arnaud; Bizot, Jean-Charles; Pichon, Jacques; Ranchon-Cole, Isabelle; Briault, Sylvain

    2018-01-01

    Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1−/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO) is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1−/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1−/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions. PMID:29681800

  19. Early Retinal Defects in Fmr1−/y Mice: Toward a Critical Role of Visual Dys-Sensitivity in the Fragile X Syndrome Phenotype?

    Directory of Open Access Journals (Sweden)

    Olivier Perche

    2018-04-01

    Full Text Available Fragile X Syndrome (FXS is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1−/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1−/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1−/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions.

  20. A Neuronal Network Model for Pitch Selectivity and Representation

    OpenAIRE

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among c...

  1. Evolving trends in primary retinal detachment repair: microincisional vitrectomy and the role of OCT.

    Science.gov (United States)

    Williams, Patrick D; Hariprasad, Seenu M

    2014-01-01

    Retinal detachment repair continues to evolve toward less invasive techniques that can safely, efficiently, and consistently provide optimal outcomes. In fact, 53% of U.S. respondents to the American Society of Retinal Specialists 2013 Preferences and Trends Survey said they would perform a vitrectomy without scleral buckle to treat a retinal detachment with a superior tear, while 25% would perform pneumatic retinopexy, and 21% would use a scleral buckle with or without vitrectomy.11 Compared to in 2005, many more surgeons prefer vitrectomy-only repair, whereas fewer prefer scleral buckle. Interestingly, preferences toward pneumatic retinopexy have slightly declined, which may reflect increased confidence in vitrectomy surgery to repair a detached retina safely and efficiently as an alternative. Even complex detachments can be treated in a minimally invasive fashion with the improvements in instrumentation, trocars, and oil infusion. While trends will likely continue toward minimal invasiveness, some form of scleral buckle, vitrectomy, and pneumatic retinopexy will all persist as treatment options. OCT advancements may allow for individualized discussions of visual prognosis and surgical decision making without the need for any invasive testing.

  2. Chromatin Regulation of Neuronal Maturation and Plasticity.

    Science.gov (United States)

    Gallegos, David A; Chan, Urann; Chen, Liang-Fu; West, Anne E

    2018-05-01

    Neurons are dynamic cells that respond and adapt to stimuli throughout their long postmitotic lives. The structural and functional plasticity of neurons requires the regulated transcription of new gene products, and dysregulation of transcription in either the developing or adult brain impairs cognition. We discuss how mechanisms of chromatin regulation help to orchestrate the transcriptional programs that underlie the maturation of developing neurons and the plasticity of adult neurons. We review how chromatin regulation acts locally to modulate the expression of specific genes and more broadly to coordinate gene expression programs during transitions between cellular states. These data highlight the importance of epigenetic transcriptional mechanisms in postmitotic neurons. We suggest areas where emerging methods may advance understanding in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A route for direct retinal input to the preoptic hypothalamus: dendritic projections into the optic chiasm.

    Science.gov (United States)

    Silver, J; Brand, S

    1979-07-01

    With the use of Golgi, horseradish peroxidase, and electron microscopic techniques, neurons within a broad region of the preoptic hypothalamus of the mouse were shown to have dendrites that projected well into the depths of the optic chiasm. Further experimental and ultrastructural investigation demonstrated synapses between these dendrites and retinal axonal boutons within the chiasm. All synapses located in the chiasm were classified as Gray's type I. The possible function of these dendritic projections is discussed.

  4. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice.

    Science.gov (United States)

    Ohlmann, Andreas; Scholz, Michael; Goldwich, Andreas; Chauhan, Bharesh K; Hudl, Kristiane; Ohlmann, Anne V; Zrenner, Eberhart; Berger, Wolfgang; Cvekl, Ales; Seeliger, Mathias W; Tamm, Ernst R

    2005-02-16

    Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.

  5. Outcomes in bullous retinal detachment

    Directory of Open Access Journals (Sweden)

    Sarah P. Read

    2017-06-01

    Conclusions and importance: GRTs are an uncommon cause of retinal detachment. While pars plana vitrectomy with tamponade is standard in GRT management, there is variability in the use of scleral buckling and PFO in these cases. This is in contrast to retinal dialysis where scleral buckle alone can yield favorable results. Though a baseball ocular trauma is common, retinal involvement is rare compared to other sports injuries such as those occurring with tennis, soccer and golf. Sports trauma remains an important cause of retinal injury and patients should be counseled on the need for eye protection.

  6. Influence of transverse mode on retinal spot size and retinal injury effect: A theoretical analysis on 532-nm laser

    Directory of Open Access Journals (Sweden)

    Jia-Rui Wang

    2014-05-01

    Full Text Available The fundamental transverse mode (TEM00 is preferable for experimental and theoretical study on the laser-induced retinal injury effect, for it can produce the minimal retinal image and establish the most strict laser safety standards. But actually lasers with higher order mode were frequently used in both earlier and recent studies. Generally higher order mode leads to larger retinal spot size and so higher damage threshold, but there are few quantitative analyses on this problem. In this paper, a four-surface schematic eye model is established for human and macaque. The propagation of 532-nm laser in schematic eye is analyzed by the ABCD law of Gaussian optics. It is shown that retinal spot size increases with laser transverse mode order. For relative lower mode order, the retinal spot diameter will not exceed the minimum laser-induced retinal lesion (25 ~ 30 μm in diameter, and so has little effect on retinal damage threshold. While for higher order mode, the larger retinal spot requires more energy to induce injury and so the damage threshold increases. When beam divergence is lowered, the retinal spot size decreases correspondingly, so the effect of mode order can be compensated. The retinal spot size of macaque is slightly smaller than that of human and the ratio between them is independent of mode order. We conclude that the laser mode order has significant influence on retinal spot size but limited influence on the retinal injury effect.

  7. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid.

    Science.gov (United States)

    Sanie-Jahromi, Fatemeh; Ahmadieh, Hamid; Soheili, Zahra-Soheila; Davari, Maliheh; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Deezagi, Abdolkhalegh; Pakravesh, Jalil; Bagheri, Abouzar

    2012-04-10

    Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers) during treatment of human retinal pigment epithelium (RPE) cells with amniotic fluid (AF), RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1) confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  8. The Loss of Vacuolar Protein Sorting 11 (vps11) Causes Retinal Pathogenesis in a Vertebrate Model of Syndromic Albinism

    Science.gov (United States)

    Thomas, Jennifer L.; Vihtelic, Thomas S.; denDekker, Aaron D.; Willer, Gregory; Luo, Xixia; Murphy, Taylor R.; Gregg, Ronald G.; Hyde, David R.

    2011-01-01

    Purpose. To establish the zebrafish platinum mutant as a model for studying vision defects caused by syndromic albinism diseases such as Chediak-Higashi syndrome, Griscelli syndrome, and Hermansky-Pudlak syndrome (HPS). Methods. Bulked segregant analysis and candidate gene sequencing revealed that the zebrafish platinum mutation is a single-nucleotide insertion in the vps11 (vacuolar protein sorting 11) gene. Expression of vps11 was determined by RT-PCR and in situ hybridization. Mutants were analyzed for pigmentation defects and retinal disease by histology, immunohistochemistry, and transmission electron microscopy. Results. Phenocopy and rescue experiments determined that a loss of Vps11 results in the platinum phenotype. Expression of vps11 appeared ubiquitous during zebrafish development, with stronger expression in the developing retina and retinal pigmented epithelium (RPE). Zebrafish platinum mutants exhibited reduced pigmentation in the body and RPE; however, melanophore development, migration, and dispersion occurred normally. RPE, photoreceptors, and inner retinal neurons formed normally in zebrafish platinum mutants. However, a gradual loss of RPE, an absence of mature melanosomes, and the subsequent degradation of RPE/photoreceptor interdigitation was observed. Conclusions. These data show that Vps11 is not necessary for normal retinal development or initiation of melanin biosynthesis, but is essential for melanosome maturation and healthy maintenance of the RPE and photoreceptors. PMID:21330665

  9. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  10. Caspases in retinal ganglion cell death and axon regeneration

    Science.gov (United States)

    Thomas, Chloe N; Berry, Martin; Logan, Ann; Blanch, Richard J; Ahmed, Zubair

    2017-01-01

    Retinal ganglion cells (RGC) are terminally differentiated CNS neurons that possess limited endogenous regenerative capacity after injury and thus RGC death causes permanent visual loss. RGC die by caspase-dependent mechanisms, including apoptosis, during development, after ocular injury and in progressive degenerative diseases of the eye and optic nerve, such as glaucoma, anterior ischemic optic neuropathy, diabetic retinopathy and multiple sclerosis. Inhibition of caspases through genetic or pharmacological approaches can arrest the apoptotic cascade and protect a proportion of RGC. Novel findings have also highlighted a pyroptotic role of inflammatory caspases in RGC death. In this review, we discuss the molecular signalling mechanisms of apoptotic and inflammatory caspase responses in RGC specifically, their involvement in RGC degeneration and explore their potential as therapeutic targets. PMID:29675270

  11. Rapid sensing of l-leucine by human and murine hypothalamic neurons: Neurochemical and mechanistic insights.

    Science.gov (United States)

    Heeley, Nicholas; Kirwan, Peter; Darwish, Tamana; Arnaud, Marion; Evans, Mark L; Merkle, Florian T; Reimann, Frank; Gribble, Fiona M; Blouet, Clemence

    2018-04-01

    Dietary proteins are sensed by hypothalamic neurons and strongly influence multiple aspects of metabolic health, including appetite, weight gain, and adiposity. However, little is known about the mechanisms by which hypothalamic neural circuits controlling behavior and metabolism sense protein availability. The aim of this study is to characterize how neurons from the mediobasal hypothalamus respond to a signal of protein availability: the amino acid l-leucine. We used primary cultures of post-weaning murine mediobasal hypothalamic neurons, hypothalamic neurons derived from human induced pluripotent stem cells, and calcium imaging to characterize rapid neuronal responses to physiological changes in extracellular l-Leucine concentration. A neurochemically diverse subset of both mouse and human hypothalamic neurons responded rapidly to l-leucine. Consistent with l-leucine's anorexigenic role, we found that 25% of mouse MBH POMC neurons were activated by l-leucine. 10% of MBH NPY neurons were inhibited by l-leucine, and leucine rapidly reduced AGRP secretion, providing a mechanism for the rapid leucine-induced inhibition of foraging behavior in rodents. Surprisingly, none of the candidate mechanisms previously implicated in hypothalamic leucine sensing (K ATP channels, mTORC1 signaling, amino-acid decarboxylation) were involved in the acute activity changes produced by l-leucine. Instead, our data indicate that leucine-induced neuronal activation involves a plasma membrane Ca 2+ channel, whereas leucine-induced neuronal inhibition is mediated by inhibition of a store-operated Ca 2+ current. A subset of neurons in the mediobasal hypothalamus rapidly respond to physiological changes in extracellular leucine concentration. Leucine can produce both increases and decreases in neuronal Ca 2+ concentrations in a neurochemically-diverse group of neurons, including some POMC and NPY/AGRP neurons. Our data reveal that leucine can signal through novel mechanisms to rapidly

  12. TRPA1 is functionally expressed primarily by IB4-binding, non-peptidergic mouse and rat sensory neurons.

    Directory of Open Access Journals (Sweden)

    Marie E Barabas

    Full Text Available Subpopulations of somatosensory neurons are characterized by functional properties and expression of receptor proteins and surface markers. CGRP expression and IB4-binding are commonly used to define peptidergic and non-peptidergic subpopulations. TRPA1 is a polymodal, plasma membrane ion channel that contributes to mechanical and cold hypersensitivity during tissue injury, making it a key target for pain therapeutics. Some studies have shown that TRPA1 is predominantly expressed by peptidergic sensory neurons, but others indicate that TRPA1 is expressed extensively within non-peptidergic, IB4-binding neurons. We used FURA-2 calcium imaging to define the functional distribution of TRPA1 among peptidergic and non-peptidergic adult mouse (C57BL/6J DRG neurons. Approximately 80% of all small-diameter (<27 µm neurons from lumbar 1-6 DRGs that responded to TRPA1 agonists allyl isothiocyanate (AITC; 79% or cinnamaldehyde (84% were IB4-positive. Retrograde labeling via plantar hind paw injection of WGA-Alexafluor594 showed similarly that most (81% cutaneous neurons responding to TRPA1 agonists were IB4-positive. Additionally, we cultured DRG neurons from a novel CGRP-GFP mouse where GFP expression is driven by the CGRPα promoter, enabling identification of CGRP-expressing live neurons. Interestingly, 78% of TRPA1-responsive neurons were CGRP-negative. Co-labeling with IB4 revealed that the majority (66% of TRPA1 agonist responders were IB4-positive but CGRP-negative. Among TRPA1-null DRGs, few small neurons (2-4% responded to either TRPA1 agonist, indicating that both cinnamaldehyde and AITC specifically target TRPA1. Additionally, few large neurons (≥27 µm diameter responded to AITC (6% or cinnamaldehyde (4%, confirming that most large-diameter somata lack functional TRPA1. Comparison of mouse and rat DRGs showed that the majority of TRPA1-responsive neurons in both species were IB4-positive. Together, these data demonstrate that TRPA1 is

  13. TRPA1 Is Functionally Expressed Primarily by IB4-Binding, Non-Peptidergic Mouse and Rat Sensory Neurons

    Science.gov (United States)

    Stucky, Cheryl L.

    2012-01-01

    Subpopulations of somatosensory neurons are characterized by functional properties and expression of receptor proteins and surface markers. CGRP expression and IB4-binding are commonly used to define peptidergic and non-peptidergic subpopulations. TRPA1 is a polymodal, plasma membrane ion channel that contributes to mechanical and cold hypersensitivity during tissue injury, making it a key target for pain therapeutics. Some studies have shown that TRPA1 is predominantly expressed by peptidergic sensory neurons, but others indicate that TRPA1 is expressed extensively within non-peptidergic, IB4-binding neurons. We used FURA-2 calcium imaging to define the functional distribution of TRPA1 among peptidergic and non-peptidergic adult mouse (C57BL/6J) DRG neurons. Approximately 80% of all small-diameter (neurons from lumbar 1–6 DRGs that responded to TRPA1 agonists allyl isothiocyanate (AITC; 79%) or cinnamaldehyde (84%) were IB4-positive. Retrograde labeling via plantar hind paw injection of WGA-Alexafluor594 showed similarly that most (81%) cutaneous neurons responding to TRPA1 agonists were IB4-positive. Additionally, we cultured DRG neurons from a novel CGRP-GFP mouse where GFP expression is driven by the CGRPα promoter, enabling identification of CGRP-expressing live neurons. Interestingly, 78% of TRPA1-responsive neurons were CGRP-negative. Co-labeling with IB4 revealed that the majority (66%) of TRPA1 agonist responders were IB4-positive but CGRP-negative. Among TRPA1-null DRGs, few small neurons (2–4%) responded to either TRPA1 agonist, indicating that both cinnamaldehyde and AITC specifically target TRPA1. Additionally, few large neurons (≥27 µm diameter) responded to AITC (6%) or cinnamaldehyde (4%), confirming that most large-diameter somata lack functional TRPA1. Comparison of mouse and rat DRGs showed that the majority of TRPA1-responsive neurons in both species were IB4-positive. Together, these data demonstrate that TRPA1 is functionally expressed

  14. Determination of retinal surface area.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Thai, Ngoc Jade; Logan, Nicola S

    2017-09-01

    Previous attempts at determining retinal surface area and surface area of the whole eye have been based upon mathematical calculations derived from retinal photographs, schematic eyes and retinal biopsies of donor eyes. 3-dimensional (3-D) ocular magnetic resonance imaging (MRI) allows a more direct measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage. The primary purpose of this study is to compare, using T2-weighted 3D MRI, retinal surface areas for superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. An ancillary aim is to examine whether inter-quadrant variations in area are concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior vitreous detachment (PVD). Seventy-three adult participants presenting without retinal pathology (mean age 26.25 ± 6.06 years) were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area (TSA). The second nodal point was used to demarcate the origin of the peripheral retina in order to calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, and IN quadrants. Mean spherical error (MSE) was -2.50 ± 4.03D and mean axial length (AL) 24.51 ± 1.57 mm. Mean TSA and RSA for the RE were 2058 ± 189 and 1363 ± 160 mm 2 , respectively. Repeated measures anova for QRSA data indicated a significant difference within-quadrants (P area/mm increase in AL. Although the differences between QRSAs are relatively small, there was evidence of concordance with reported inter-quadrant patterns of susceptibility to retinal breaks associated with PVD. The data allow AL to be converted to QRSAs, which will assist further

  15. Spectrophotometric retinal oximetry in pigs

    DEFF Research Database (Denmark)

    Traustason, Sindri; Kiilgaard, Jens Folke; Karlsson, Robert

    2013-01-01

    PURPOSE: To assess the validity of spectrophotometric retinal oximetry, by comparison to blood gas analysis and intra-vitreal measurements of partial pressure of oxygen (pO2). METHODS: Female domestic pigs were used for all experiments (n=8). Oxygen fraction in inspired air was changed using...... a mixture of room air, pure oxygen and pure nitrogen, ranging from 5% to 100% oxygen. Femoral arterial blood gas analysis and retinal oximetry was performed at each level of inspiratory oxygen fraction. Retinal oximetry was performed using a commercial instrument, the Oxymap Retinal Oximeter T1 (Oxymap ehf...... arterial oxygen saturation and the optical density ratio over retinal arteries revealed an approximately linear relationship (R(2) = 0.74, p = 3.4 x 10(-9)). In order to test the validity of applying the arterial calibration to veins, we compared non-invasive oximetry measurements to invasive pO2...

  16. Giant Retinal Tear With Retinal Detachment in Regressed Aggressive Posterior Retinopathy of Prematurity Treated by Laser.

    Science.gov (United States)

    Chandra, Parijat; Tewari, Ruchir; Salunkhe, Nitesh; Kumawat, Devesh; Kumar, Vinod

    2017-06-29

    Rhegmatogenous retinal detachment after successfully regressed retinopathy of prematurity is a rare occurrence. Late onset rhegmatogenous retinal detachment has been reported infrequently. The authors report a case of aggressive posterior retinopathy of prematurity that underwent uneventful regression after laser photocoagulation and later developed an inoperable closed funnel retinal detachment due to a giant retinal tear. This case represents the earliest development of such complications in regressed aggressive posterior retinopathy of prematurity treated by laser. Development of a giant retinal tear has also not been previously reported after laser treatment. This case highlights that successful regression of severe retinopathy of prematurity does not safeguard against future complications and requires frequent long-term follow-up. [J Pediatr Ophthalmol Strabismus. 2017;54:e34-e36.]. Copyright 2017, SLACK Incorporated.

  17. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid

    Directory of Open Access Journals (Sweden)

    Sanie-Jahromi Fatemeh

    2012-04-01

    Full Text Available Abstract Background Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers during treatment of human retinal pigment epithelium (RPE cells with amniotic fluid (AF, RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Results Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1 confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Conclusion Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  18. Behavioral sensitivity of temporally modulated striatal neurons

    Directory of Open Access Journals (Sweden)

    George ePortugal

    2011-07-01

    Full Text Available Recent investigations into the neural mechanisms that underlie temporal perception have revealed that the striatum is an important contributor to interval timing processes, and electrophysiological recording studies have shown that the firing rates of striatal neurons are modulated by the time in a trial at which an operant response is made. However, it remains unclear whether striatal firing rate modulations are related to the passage of time alone (i.e., whether temporal information is represented in an abstract manner independent of other attributes of biological importance, or whether this temporal information is embedded within striatal activity related to co-occurring contextual information, such as motor behaviors. This study evaluated these two hypotheses by recording from striatal neurons while rats performed a temporal production task. Rats were trained to respond at different nosepoke apertures for food reward under two simultaneously active reinforcement schedules: a variable-interval (VI-15 sec schedule and a fixed-interval (FI-15 sec schedule of reinforcement. Responding during a trial occurred in a sequential manner composing 3 phases; VI responding, FI responding, VI responding. The vast majority of task-sensitive striatal neurons (95% varied their firing rates associated with equivalent behaviors (e.g., periods in which their snout was held within the nosepoke across these behavioral phases, and 96% of cells varied their firing rates for the same behavior within a phase, thereby demonstrating their sensitivity to time. However, in a direct test of the abstract timing hypothesis, 91% of temporally modulated hold cells were further modulated by the overt motor behaviors associated with transitioning between nosepokes. As such, these data are inconsistent with the striatum representing time in an abstract’ manner, but support the hypothesis that temporal information is embedded within contextual and motor functions of the

  19. Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway.

    Directory of Open Access Journals (Sweden)

    Mohammed M H Al-Gayyar

    Full Text Available Our previous studies showed positive correlation between accumulation of proNGF, activation of RhoA and neuronal death in diabetic models. Here, we examined the neuroprotective effects of selective inhibition of RhoA kinase in the diabetic rat retina and in a model that stably overexpressed the cleavage-resistance proNGF plasmid in the retina. Male Sprague-Dawley rats were rendered diabetic using streptozotocin or stably express cleavage-resistant proNGF plasmid. The neuroprotective effects of the intravitreal injection of RhoA kinase inhibitor Y27632 were examined in vivo. Effects of proNGF were examined in freshly isolated primary retinal ganglion cell (RGC cultures and RGC-5 cell line. Retinal neurodegeneration was assessed by counting TUNEL-positive and Brn-3a positive retinal ganglion cells. Expression of proNGF, p75(NTR, cleaved-PARP, caspase-3 and p38MAPK/JNK were examined by Western-blot. Activation of RhoA was assessed by pull-down assay and G-LISA. Diabetes and overexpression of proNGF resulted in retinal neurodegeneration as indicated by 9- and 6-fold increase in TUNEL-positive cells, respectively. In vitro, proNGF induced 5-fold cell death in RGC-5 cell line, and it induced >10-fold cell death in primary RGC cultures. These effects were associated with significant upregulation of p75(NTR and activation of RhoA. While proNGF induced TNF-α expression in vivo, it selectively activated RhoA in primary RGC cultures and RGC-5 cell line. Inhibiting RhoA kinase with Y27632 significantly reduced diabetes- and proNGF-induced activation of proapoptotic p38MAPK/JNK, expression of cleaved-PARP and caspase-3 and prevented retinal neurodegeneration in vivo and in vitro. Taken together, these results provide compelling evidence for a causal role of proNGF in diabetes-induced retinal neurodegeneration through enhancing p75(NTR expression and direct activation of RhoA and p38MAPK/JNK apoptotic pathways.

  20. Screening for retinitis in children with probable systemic ...

    African Journals Online (AJOL)

    CMV retinitis may be prevented by timely diagnosis and treatment. This study aimed to .... retinitis are: 'a fulminant picture of retinal vasculitis and vascular sheathing with areas of yellow-white, full thickness, retinal necrosis producing retinal oedema associated ... and intravenous foscarnet as alternatives.[4] Although CMV- ...

  1. Bioelectronic retinal prosthesis

    Science.gov (United States)

    Weiland, James D.

    2016-05-01

    Retinal prosthesis have been translated to clinical use over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa and one device is in clinical trials for treatment of age-related macular degeneration. These devices provide partial sight restoration and patients use this improved vision in their everyday lives to navigate and to detect large objects. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. In particular, current retinal prostheses do not provide peripheral visions due to technical and surgical limitations, thus limiting the effectiveness of the treatment. This paper reviews recent results from human implant patients and presents technical approaches for peripheral vision.

  2. Tractional retinal detachment in Usher syndrome type II.

    Science.gov (United States)

    Rani, Alka; Pal, Nikhil; Azad, Raj Vardhan; Sharma, Yog Raj; Chandra, Parijat; Vikram Singh, Deependra

    2005-08-01

    Retinal detachment is a rare complication in patients with retinitis pigmentosa. A case is reported of tractional retinal detachment in a patient with retinitis pigmentosa and sensorineural hearing loss, which was diagnosed as Usher syndrome type II. Because of the poor visual prognosis, the patient refused surgery in that eye. Tractional retinal detachment should be added to the differential diagnoses of visual loss in patients with retinitis pigmentosa.

  3. Inherited Retinal Degenerative Disease Registry

    Science.gov (United States)

    2017-09-13

    Eye Diseases Hereditary; Retinal Disease; Achromatopsia; Bardet-Biedl Syndrome; Bassen-Kornzweig Syndrome; Batten Disease; Best Disease; Choroidal Dystrophy; Choroideremia; Cone Dystrophy; Cone-Rod Dystrophy; Congenital Stationary Night Blindness; Enhanced S-Cone Syndrome; Fundus Albipunctatus; Goldmann-Favre Syndrome; Gyrate Atrophy; Juvenile Macular Degeneration; Kearns-Sayre Syndrome; Leber Congenital Amaurosis; Refsum Syndrome; Retinitis Pigmentosa; Retinitis Punctata Albescens; Retinoschisis; Rod-Cone Dystrophy; Rod Dystrophy; Rod Monochromacy; Stargardt Disease; Usher Syndrome

  4. Metabolic sensing neurons and the control of energy homeostasis.

    Science.gov (United States)

    Levin, Barry E

    2006-11-30

    The brain and periphery carry on a constant conversation; the periphery informs the brain about its metabolic needs and the brain provides for these needs through its control of somatomotor, autonomic and neurohumoral pathways involved in energy intake, expenditure and storage. Metabolic sensing neurons are the integrators of a variety of metabolic, humoral and neural inputs from the periphery. Such neurons, originally called "glucosensing", also respond to fatty acids, hormones and metabolites from the periphery. They are integrated within neural pathways involved in the regulation of energy homeostasis. Unlike most neurons, they utilize glucose and other metabolites as signaling molecules to regulate their membrane potential and firing rate. For glucosensing neurons, glucokinase acts as the rate-limiting step in glucosensing while the pathways that mediate responses to metabolites like lactate, ketone bodies and fatty acids are less well characterized. Many metabolic sensing neurons also respond to insulin and leptin and other peripheral hormones and receive neural inputs from peripheral organs. Each set of afferent signals arrives with different temporal profiles and by different routes and these inputs are summated at the level of the membrane potential to produce a given neural firing pattern. In some obese individuals, the relative sensitivity of metabolic sensing neurons to various peripheral inputs is genetically reduced. This may provide one mechanism underlying their propensity to become obese when exposed to diets high in fat and caloric density. Thus, metabolic sensing neurons may provide a potential therapeutic target for the treatment of obesity.

  5. Neurons in the human amygdala selective for perceived emotion

    Science.gov (United States)

    Wang, Shuo; Tudusciuc, Oana; Mamelak, Adam N.; Ross, Ian B.; Adolphs, Ralph; Rutishauser, Ueli

    2014-01-01

    The human amygdala plays a key role in recognizing facial emotions and neurons in the monkey and human amygdala respond to the emotional expression of faces. However, it remains unknown whether these responses are driven primarily by properties of the stimulus or by the perceptual judgments of the perceiver. We investigated these questions by recording from over 200 single neurons in the amygdalae of 7 neurosurgical patients with implanted depth electrodes. We presented degraded fear and happy faces and asked subjects to discriminate their emotion by button press. During trials where subjects responded correctly, we found neurons that distinguished fear vs. happy emotions as expressed by the displayed faces. During incorrect trials, these neurons indicated the patients’ subjective judgment. Additional analysis revealed that, on average, all neuronal responses were modulated most by increases or decreases in response to happy faces, and driven predominantly by judgments about the eye region of the face stimuli. Following the same analyses, we showed that hippocampal neurons, unlike amygdala neurons, only encoded emotions but not subjective judgment. Our results suggest that the amygdala specifically encodes the subjective judgment of emotional faces, but that it plays less of a role in simply encoding aspects of the image array. The conscious percept of the emotion shown in a face may thus arise from interactions between the amygdala and its connections within a distributed cortical network, a scheme also consistent with the long response latencies observed in human amygdala recordings. PMID:24982200

  6. Protection of visual functions by human neural progenitors in a rat model of retinal disease.

    Directory of Open Access Journals (Sweden)

    David M Gamm

    2007-03-01

    Full Text Available A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat.Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90-100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed.Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in

  7. Neurons in primary motor cortex engaged during action observation.

    Science.gov (United States)

    Dushanova, Juliana; Donoghue, John

    2010-01-01

    Neurons in higher cortical areas appear to become active during action observation, either by mirroring observed actions (termed mirror neurons) or by eliciting mental rehearsal of observed motor acts. We report the existence of neurons in the primary motor cortex (M1), an area that is generally considered to initiate and guide movement performance, responding to viewed actions. Multielectrode recordings in monkeys performing or observing a well-learned step-tracking task showed that approximately half of the M1 neurons that were active when monkeys performed the task were also active when they observed the action being performed by a human. These 'view' neurons were spatially intermingled with 'do' neurons, which are active only during movement performance. Simultaneously recorded 'view' neurons comprised two groups: approximately 38% retained the same preferred direction (PD) and timing during performance and viewing, and the remainder (62%) changed their PDs and time lag during viewing as compared with performance. Nevertheless, population activity during viewing was sufficient to predict the direction and trajectory of viewed movements as action unfolded, although less accurately than during performance. 'View' neurons became less active and contained poorer representations of action when only subcomponents of the task were being viewed. M1 'view' neurons thus appear to reflect aspects of a learned movement when observed in others, and form part of a broadly engaged set of cortical areas routinely responding to learned behaviors. These findings suggest that viewing a learned action elicits replay of aspects of M1 activity needed to perform the observed action, and could additionally reflect processing related to understanding, learning or mentally rehearsing action.

  8. Retinal Vessels Segmentation Techniques and Algorithms: A Survey

    Directory of Open Access Journals (Sweden)

    Jasem Almotiri

    2018-01-01

    Full Text Available Retinal vessels identification and localization aim to separate the different retinal vasculature structure tissues, either wide or narrow ones, from the fundus image background and other retinal anatomical structures such as optic disc, macula, and abnormal lesions. Retinal vessels identification studies are attracting more and more attention in recent years due to non-invasive fundus imaging and the crucial information contained in vasculature structure which is helpful for the detection and diagnosis of a variety of retinal pathologies included but not limited to: Diabetic Retinopathy (DR, glaucoma, hypertension, and Age-related Macular Degeneration (AMD. With the development of almost two decades, the innovative approaches applying computer-aided techniques for segmenting retinal vessels are becoming more and more crucial and coming closer to routine clinical applications. The purpose of this paper is to provide a comprehensive overview for retinal vessels segmentation techniques. Firstly, a brief introduction to retinal fundus photography and imaging modalities of retinal images is given. Then, the preprocessing operations and the state of the art methods of retinal vessels identification are introduced. Moreover, the evaluation and validation of the results of retinal vessels segmentation are discussed. Finally, an objective assessment is presented and future developments and trends are addressed for retinal vessels identification techniques.

  9. Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Rodger

    Full Text Available Recombinant adeno-associated viral (rAAV vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs after long-term transduction with rAAV2 encoding: (i green fluorescent protein (GFP, or (ii bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF, brain-derived neurotrophic factor (BDNF or growth-associated protein-43 (GAP43. To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5-8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG. Live retinal wholemounts were prepared and GFP positive (transduced or GFP negative (non-transduced RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured

  10. Neuronal representations of stimulus associations develop in the temporal lobe during learning

    OpenAIRE

    Messinger, Adam; Squire, Larry R.; Zola, Stuart M.; Albright, Thomas D.

    2001-01-01

    Visual stimuli that are frequently seen together become associated in long-term memory, such that the sight of one stimulus readily brings to mind the thought or image of the other. It has been hypothesized that acquisition of such long-term associative memories proceeds via the strengthening of connections between neurons representing the associated stimuli, such that a neuron initially responding only to one stimulus of an associated pair eventually comes to respond to both. Consistent with...

  11. Protein kinase C in porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    DEFF Research Database (Denmark)

    Gesslein, Bodil; Gustafsson, Lotta; Wackenfors, Angelica

    2009-01-01

    Identification of the intracellular signal-transduction pathways activated in retinal ischemia may be important in revealing novel pharmacological targets. To date, most studies have focused on identifying neuroprotective agents. The retinal blood vessels are key organs in circulatory failure, an...

  12. Concentric retinitis pigmentosa: clinicopathologic correlations.

    Science.gov (United States)

    Milam, A H; De Castro, E B; Smith, J E; Tang, W X; John, S K; Gorin, M B; Stone, E M; Aguirre, G D; Jacobson, S G

    2001-10-01

    Progressive concentric (centripetal) loss of vision is one pattern of visual field loss in retinitis pigmentosa. This study provides the first clinicopathologic correlations for this form of retinitis pigmentosa. A family with autosomal dominant concentric retinitis pigmentosa was examined clinically and with visual function tests. A post-mortem eye of an affected 94 year old family member was processed for histopathology and immunocytochemistry with retinal cell specific antibodies. Unrelated simplex/multiplex patients with concentric retinitis pigmentosa were also examined. Affected family members of the eye donor and patients from the other families had prominent peripheral pigmentary retinopathy with more normal appearing central retina, good visual acuity, concentric field loss, normal or near normal rod and cone sensitivity within the preserved visual field, and reduced rod and cone electroretinograms. The eye donor, at age 90, had good acuity and function in a central island. Grossly, the central region of the donor retina appeared thinned but otherwise normal, while the far periphery contained heavy bone spicule pigment. Microscopically the central retina showed photoreceptor outer segment shortening and some photoreceptor cell loss. The mid periphery had a sharp line of demarcation where more central photoreceptors were near normal except for very short outer segments and peripheral photoreceptors were absent. Rods and cones showed abrupt loss of outer segments and cell death at this interface. It is concluded that concentric retinitis pigmentosa is a rare but recognizable phenotype with slowly progressive photoreceptor death from the far periphery toward the central retina. The disease is retina-wide but shows regional variation in severity of degeneration; photoreceptor death is severe in the peripheral retina with an abrupt edge between viable and degenerate photoreceptors. Peripheral to central gradients of unknown retinal molecule(s) may be defective

  13. Lattice degeneration of the retina and retinal detachment.

    Science.gov (United States)

    Semes, L P

    1992-01-01

    Lattice retinal degeneration is considered the most significant peripheral retinal disorder potentially predisposing to retinal breaks and retinal detachment. Lattice degeneration affects the vitreous and inner retinal layers with secondary changes as deep as the retinal pigment epithelium and perhaps the choriocapillaris. Variations in clinical appearance are the rule; geographically, lattice lesions favor the vertical meridians between the equator and the ora serrata. Lattice degeneration begins early in life and has been reported in sequential generations of the same family. Along with its customary bilateral occurrence, lattice shares other characteristics of a dystrophy. The association between the vitreous and retina in lattice lesions may be responsible for the majority of lattice-induced retinal detachments. The tumultuous event of posterior vitreous separation in the presence of abnormally strong vitreoretinal adherence is the trigger for a retinal tear that, in turn, may lead to retinal detachment. Although retinal holes in young patients with lattice degeneration may play a role in the evolution of retinal detachment, the clinical course of lattice degeneration seems to be one of dormancy rather than of progressive change. This discussion outlines the pathophysiology of lattice retinal degeneration and the relationship of pathophysiology to clinical presentation. The epidemiology of lattice degeneration is summarized, as are the possible precursors to retinal detachment. A clinical characterization of the natural history of lattice degeneration is offered, and interventions for complications are described. To conclude, management strategies from a primary-care standpoint are reviewed.

  14. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats.

    Science.gov (United States)

    Park, Kevin K; Luo, Xueting; Mooney, Skyler J; Yungher, Benjamin J; Belin, Stephane; Wang, Chen; Holmes, Melissa M; He, Zhigang

    2017-02-01

    In the adult mammalian central nervous system (CNS), axonal damage often triggers neuronal cell death and glial activation, with very limited spontaneous axon regeneration. In this study, we performed optic nerve injury in adult naked mole-rats, the longest living rodent, with a maximum life span exceeding 30 years, and found that injury responses in this species are quite distinct from those in other mammalian species. In contrast to what is seen in other mammals, the majority of injured retinal ganglion cells (RGCs) survive with relatively high spontaneous axon regeneration. Furthermore, injured RGCs display activated signal transducer and activator of transcription-3 (STAT3), whereas astrocytes in the optic nerve robustly occupy and fill the lesion area days after injury. These neuron-intrinsic and -extrinsic injury responses are reminiscent of those in "cold-blooded" animals, such as fish and amphibians, suggesting that the naked mole-rat is a powerful model for exploring the mechanisms of neuronal injury responses and axon regeneration in mammals. J. Comp. Neurol. 525:380-388, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Bilateral acute retinal necrosis-A case report

    Directory of Open Access Journals (Sweden)

    Prasad Palimar

    1992-01-01

    Full Text Available A 42 year old man presented with acute bilateral uveitis and necrotizing retinitis. Systemic investigations including test for AIDS and CMV retinitis were negative. Despite oral Acyclovir, both eyes progressed rapidly to retinal detachment with loss of vision. Early recognition is necessary to diagnose the bilateral acute retinal necrosis syndrome and initiate treatment. Bilateral acute retinal necrosis (BARN is a term first coined by Young and Bird in 1978 although the syndrome had been originally described by Urayama et al as an unilateral condition. This syndrome is characterized by the triad of acute confluent peripheral necrotizing retinitis, moderate to severe vasculitis and vitritis in an otherwise healthy individual. Rhegmatogenous retinal detachment occurs within two to three months of the onset of the disease and the second eye is involved in 36% of patients, usually within 6 weeks. We herein report a patient who presented with simultaneous BARN leading to retinal detachment in a matter of days. Also, to our knowledge this is the first report of this condition in India.

  16. INTERNAL LIMITING MEMBRANE PEELING-DEPENDENT RETINAL STRUCTURAL CHANGES AFTER VITRECTOMY IN RHEGMATOGENOUS RETINAL DETACHMENT.

    Science.gov (United States)

    Hisatomi, Toshio; Tachibana, Takashi; Notomi, Shoji; Koyanagi, Yoshito; Murakami, Yusuke; Takeda, Atsunobu; Ikeda, Yasuhiro; Yoshida, Shigeo; Enaida, Hiroshi; Murata, Toshinori; Sakamoto, Taiji; Sonoda, Koh-Hei; Ishibashi, Tatsuro

    2018-03-01

    To examine retinal changes after vitrectomy with internal limiting membrane (ILM) peeling, we used 3-dimensional optical coherence tomography (3D-OCT) in rhegmatogenous retinal detachment cases. The 68 eyes from 67 patients with rhegmatogenous retinal detachment were studied, including 35 detached macula cases (51%) and 33 attached macula cases. Internal limiting membrane peeling was performed with fine forceps after brilliant blue G staining. The 3D-OCT images were obtained with volume-rendering technologies from cross-sectional OCT images. The 3D-OCT detected 45 eyes (66%) with ILM peeling-dependent retinal changes, including dissociated optic nerve fiber layer appearance, dimple sign, temporal macular thinning, ILM peeling area thinning, or forceps-related retinal thinning. The ILM peeled area was detectable in only 9 eyes with 3D-OCT, whereas it was undetectable in other 59 eyes. The dissociated optic nerve fiber layer appearance was detected in 8 of the total cases (12%), and dimple signs were observed in 14 cases (21%). Forceps-related thinning was also noted in eight cases (24%) of attached macula cases and in four cases (11%) of detached macula cases. No postoperative macular pucker was noted in the observational period. The 3D-OCT clearly revealed spatial and time-dependent retinal changes after ILM peeling. The changes occurred in 2 months and remained thereafter.

  17. Mechanosensitive enteric neurons in the guinea pig gastric corpus

    Directory of Open Access Journals (Sweden)

    Gemma eMazzuoli-Weber

    2015-11-01

    Full Text Available For long it was believed that a particular population of enteric neurons, referred to as intrinsic primary afferent neuron (IPANs, encodes mechanical stimulation. We recently proposed a new concept suggesting that there are in addition mechanosensitive enteric neurons (MEN that are multifunctional. Based on firing pattern MEN behaved as rapidly, slowly or ultra-slowly adapting RAMEN, SAMEN or USAMEN, respectively. We aimed to validate this concept in the myenteric plexus of the gastric corpus, a region where IPANs were not identified and existence of enteric sensory neurons was even questioned. The gastric corpus is characterized by a particularly dense extrinsic sensory innervation. Neuronal activity was recorded with voltage sensitive dye imaging after deformation of ganglia by compression (intraganglionic volume injection or von Fry hair or tension (ganglionic stretch. We demonstrated that 27% of the gastric neurons were MEN and responded to intraganglionic volume injection. Of these 73% were RAMEN, 25% SAMEN and 2% USAMEN with a firing frequency of 1.7 (1.1/ 2.2 Hz, 5.1 (2.2/7.7 Hz and of 5.4 (5.0/15.5 Hz, respectively. The responses were reproducible and stronger with increased stimulus strength. Even after adaptation another deformation evoked spike discharge again suggesting a resetting mode of the mechanoreceptors. All MEN received fast synaptic input. 55% of all MEN were cholinergic and 45% nitrergic. Responses in some MEN significantly decreased after perfusion of TTX, low Ca++/high Mg++ Krebs solution, capsaicin induced nerve defunctionalization and capsazepine indicating the involvement of TRPV1 expressing extrinsic mechanosensitive nerves. Half of gastric MEN responded to intraganglionic volume injection as well as to ganglionic stretch and 23% responded to stretch only. Tension-sensitive MEN were to a large proportion USAMEN (44%. In summary, we demonstrated for the first time compression and tension-sensitive MEN in the stomach

  18. Non-syndromic retinitis pigmentosa

    NARCIS (Netherlands)

    Verbakel, S.K. (Sanne K.); R.A.C. van Huet (Ramon A. C.); C.J.F. Boon (Camiel); A.I. Hollander (Anneke); R.W.J. Collin (Rob); C.C.W. Klaver (Caroline); C. Hoyng (Carel); R. Roepman (Ronald); B.J. Klevering (Jeroen)

    2018-01-01

    textabstractRetinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic,

  19. Retinal Image Preprocessing: Background and Noise Segmentation

    Directory of Open Access Journals (Sweden)

    Usman Akram

    2012-09-01

    Full Text Available Retinal images are used for the automated screening and diagnosis of diabetic retinopathy. The retinal image quality must be improved for the detection of features and abnormalities and for this purpose preprocessing of retinal images is vital. In this paper, we present a novel automated approach for preprocessing of colored retinal images. The proposed technique improves the quality of input retinal image by separating the background and noisy area from the overall image. It contains coarse segmentation and fine segmentation. Standard retinal images databases Diaretdb0, Diaretdb1, DRIVE and STARE are used to test the validation of our preprocessing technique. The experimental results show the validity of proposed preprocessing technique.

  20. Automatic Vessel Segmentation on Retinal Images

    Institute of Scientific and Technical Information of China (English)

    Chun-Yuan Yu; Chia-Jen Chang; Yen-Ju Yao; Shyr-Shen Yu

    2014-01-01

    Several features of retinal vessels can be used to monitor the progression of diseases. Changes in vascular structures, for example, vessel caliber, branching angle, and tortuosity, are portents of many diseases such as diabetic retinopathy and arterial hyper-tension. This paper proposes an automatic retinal vessel segmentation method based on morphological closing and multi-scale line detection. First, an illumination correction is performed on the green band retinal image. Next, the morphological closing and subtraction processing are applied to obtain the crude retinal vessel image. Then, the multi-scale line detection is used to fine the vessel image. Finally, the binary vasculature is extracted by the Otsu algorithm. In this paper, for improving the drawbacks of multi-scale line detection, only the line detectors at 4 scales are used. The experimental results show that the accuracy is 0.939 for DRIVE (digital retinal images for vessel extraction) retinal database, which is much better than other methods.

  1. [Preventive treatment of retinal detachment in aphakic eyes].

    Science.gov (United States)

    Regnault, F; Bregeat, P

    1977-01-01

    We have examined 243 cases with retinal detachment occurring within 6 months following cataract surgery. In 92 of them retinal tear was due to lattice degeneration, in 66 to snail track degeneration and in 17 to equatorial degeneration. 290 other patients had preventive treatments. In this group, there were only 10 cases of retinal detachment. 9 out of 22 patients who had no preventive treatment suffered retinal detachments. There are two reasons for the occurrence of this retinal detachment in the 6 months following cataract surgery in eyes where retinal degenerations are found: (1) surgical trauma even with cryoextraction is responsible for traction of the vitreous base, (2) rapid disappearance of the hyaluronic acid in the aphakic vitreous is responsible for the degradation of the vitreous with formation of large zones of liquid vitreous. When adhesion between the vitreous and the retinal degeneration area remains, the traction is responsible for retinal tear or retinal detachment. The importance of the preventive treatment of retinal lesions prior to cataract surgery should be stressed.

  2. Sensorimotor learning and the ontogeny of the mirror neuron system

    OpenAIRE

    Catmur, C

    2013-01-01

    Mirror neurons, which have now been found in the human and songbird as well as the macaque, respond to both the observation and the performance of the same action. It has been suggested that their matching response properties have evolved as an adaptation for action understanding; alternatively, these properties may arise through sensorimotor experience. Here I review mirror neuron response characteristics from the perspective of ontogeny; I discuss the limited evidence for mirror neurons in ...

  3. Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness.

    Directory of Open Access Journals (Sweden)

    Daisuke Kohno

    2016-11-01

    Full Text Available The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC: glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanism underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2 and taste type 1 receptor 3 (T1R3 and senses sweet tastes. T1R2 and T1R3 receptors are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10-5 M-10-2 M dose dependently increased [Ca2+]i in 12-16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentage of proopiomelanocortin (POMC neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular

  4. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness.

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca 2+ concentration ([Ca 2+ ] i ) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10 -5 -10 -2 M dose dependently increased [Ca 2+ ] i in 12-16% of ARC neurons. The sucralose-induced [Ca 2+ ] i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca 2+ ] i increase was inhibited under an extracellular Ca 2+ -free condition and in the presence of an L-type Ca 2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation

  5. Analysis of retinal function using chromatic pupillography in retinitis pigmentosa and the relationship to electrically evoked phosphene thresholds.

    Science.gov (United States)

    Kelbsch, Carina; Maeda, Fumiatsu; Lisowska, Jolanta; Lisowski, Lukasz; Strasser, Torsten; Stingl, Krunoslav; Wilhelm, Barbara; Wilhelm, Helmut; Peters, Tobias

    2017-06-01

    To analyse pupil responses to specific chromatic stimuli in patients with advanced retinitis pigmentosa (RP) to ascertain whether chromatic pupillography can be used as an objective marker for residual retinal function. To examine correlations between parameters of the pupil response and the perception threshold of electrically evoked phosphenes. Chromatic pupillography was performed in 40 patients with advanced RP (visual acuity Chromatic pupillography demonstrated a significant decrease in outer retinal photoreceptor responses but a persisting and disinhibited intrinsic photosensitive retinal ganglion cell function in advanced RP. These phenomena may be useful as an objective marker for the efficacy of any interventional treatment for hereditary retinal diseases as well as for the selection of suitable patients for an electronic retinal implant. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. Retinal detachment in black South Africans

    African Journals Online (AJOL)

    low incidence of retinal detachment in black patients is not known. ... a retinal break. Predisposing factors include peripheral retinal degenerations, myopia, aphakia and trauma. Delay in presentation increases the difficulty in achieving adequate surgical ... On examination, note was taken of the visual acuity in both eyes, the ...

  7. Monkey pulvinar neurons fire differentially to snake postures.

    Science.gov (United States)

    Le, Quan Van; Isbell, Lynne A; Matsumoto, Jumpei; Le, Van Quang; Hori, Etsuro; Tran, Anh Hai; Maior, Rafael S; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2014-01-01

    There is growing evidence from both behavioral and neurophysiological approaches that primates are able to rapidly discriminate visually between snakes and innocuous stimuli. Recent behavioral evidence suggests that primates are also able to discriminate the level of threat posed by snakes, by responding more intensely to a snake model poised to strike than to snake models in coiled or sinusoidal postures (Etting and Isbell 2014). In the present study, we examine the potential for an underlying neurological basis for this ability. Previous research indicated that the pulvinar is highly sensitive to snake images. We thus recorded pulvinar neurons in Japanese macaques (Macaca fuscata) while they viewed photos of snakes in striking and non-striking postures in a delayed non-matching to sample (DNMS) task. Of 821 neurons recorded, 78 visually responsive neurons were tested with the all snake images. We found that pulvinar neurons in the medial and dorsolateral pulvinar responded more strongly to snakes in threat displays poised to strike than snakes in non-threat-displaying postures with no significant difference in response latencies. A multidimensional scaling analysis of the 78 visually responsive neurons indicated that threat-displaying and non-threat-displaying snakes were separated into two different clusters in the first epoch of 50 ms after stimulus onset, suggesting bottom-up visual information processing. These results indicate that pulvinar neurons in primates discriminate between poised to strike from those in non-threat-displaying postures. This neuronal ability likely facilitates behavioral discrimination and has clear adaptive value. Our results are thus consistent with the Snake Detection Theory, which posits that snakes were instrumental in the evolution of primate visual systems.

  8. Prevalence of generalized retinal dystrophy in Denmark

    DEFF Research Database (Denmark)

    Bertelsen, Mette; Jensen, Hanne; Bregnhøj, Jesper F

    2014-01-01

    of this study was to examine the prevalence and diagnostic spectrum of generalized retinal dystrophy in the Danish population. METHODS: A population-based cross-sectional study with data from the Danish Retinitis Pigmentosa Registry that comprises all patients in Denmark with generalized retinal......PURPOSE: Generalized retinal dystrophy is a frequent cause of visual impairment and blindness in younger individuals and a subject of new clinical intervention trials. Nonetheless, there are few nation-wide population-based epidemiological data of generalized retinal dystrophy. The purpose...... and chorioretinal dystrophies from the 19th century to the present. Among 3076 registered cases, the primary diagnosis of generalized retinal dystrophy was assessed by chart review, including fundus photographs and electroretinograms. Demographic data on the Danish population were retrieved from Statistics Denmark...

  9. Facial injections of pruritogens and algogens excite partly overlapping populations of primary and second-order trigeminal neurons in mice.

    Science.gov (United States)

    Akiyama, T; Carstens, M Iodi; Carstens, E

    2010-11-01

    Intradermal cheek injection of pruitogens or algogens differentially elicits hindlimb scratching or forelimb wiping, suggesting that these behaviors distinguish between itch and pain. We studied whether pruritogens and algogens excite separate or overlapping populations of primary afferent and second-order trigeminal neurons in mice. Calcium imaging of primary sensory trigeminal ganglion (TG) cells showed that 15.4% responded to histamine, 5.8% to the protease-activated receptor (PAR)-2 agonist, 13.4% to allyl isothiocyanate (AITC), and 36.7% to capsaicin. AITC and/or capsaicin activated the vast majority of histamine- and PAR-2 agonist-sensitive TG cells. A chemical search strategy identified second-order neurons in trigeminal subnucleus caudalis (Vc) responsive to histamine, the PAR-2 agonist, or AITC. A minority of histamine or PAR-2 agonist-responsive Vc neurons responded to the other pruritogen, whereas a large majority of puritogen-responsive Vc neurons responded to capsaicin and/or AITC. A minority of AITC-responsive Vc neurons responded to pruritogens, whereas most responded to capsaicin. These data indicate that most primary and higher-order trigeminal sensory neurons are activated by both pruritic and algesic stimuli, although a minority exhibit selectivity. The results are discussed in terms of population codes for itch and pain that result in distinct behavioral responses of hindlimb scratching and forelimb wiping that are mediated at lumbar and cervical segmental levels, respectively.

  10. Ghrelin is involved in the paracrine communication between neurons and glial cells.

    Science.gov (United States)

    Avau, B; De Smet, B; Thijs, T; Geuzens, A; Tack, J; Vanden Berghe, P; Depoortere, I

    2013-09-01

    Ghrelin is the only known peripherally active orexigenic hormone produced by the stomach that activates vagal afferents to stimulate food intake and to accelerate gastric emptying. Vagal sensory neurons within the nodose ganglia are surrounded by glial cells, which are able to receive and transmit chemical signals. We aimed to investigate whether ghrelin activates or influences the interaction between both types of cells. The effect of ghrelin was compared with that of leptin and cholecystokinin (CCK). Cultures of rat nodose ganglia were characterized by immunohistochemistry and the functional effects of peptides, neurotransmitters, and pharmacological blockers were measured by Ca(2+) imaging using Fluo-4-AM as an indicator. Neurons responded to KCl and were immunoreactive for PGP-9.5 whereas glial cells responded to lysophosphatidic acid and had the typical SOX-10-positive nuclear staining. Neurons were only responsive to CCK (31 ± 5%) whereas glial cells responded equally to the applied stimuli: ghrelin (27 ± 2%), leptin (21 ± 2%), and CCK (30 ± 2%). In contrast, neurons stained more intensively for the ghrelin receptor than glial cells. ATP induced [Ca(2+) ]i rises in 90% of the neurons whereas ACh and the NO donor, SIN-1, mainly induced [Ca(2+) ]i changes in glial cells (41 and 51%, respectively). The percentage of ghrelin-responsive glial cells was not affected by pretreatment with suramin, atropine, hexamethonium or 1400 W, but was reduced by l-NAME and by tetrodotoxin. Neurons were shown to be immunoreactive for neuronal NO-synthase (nNOS). Our data show that ghrelin induces Ca(2+) signaling in glial cells of the nodose ganglion via the release of NO originating from the neurons. © 2013 John Wiley & Sons Ltd.

  11. Novel method for edge detection of retinal vessels based on the model of the retinal vascular network and mathematical morphology

    Science.gov (United States)

    Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun

    1998-09-01

    Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.

  12. Neuronal Adaptive Mechanisms Underlying Intelligent Information Processing

    Science.gov (United States)

    1981-05-01

    event in contrast with PSP or spike production, per se, resulting from natural auditory stimuli which serve as CS’s in Pavlovian blink conditioning...types of neurons responding to ACh or cGHP were conducted using aceclidine, a chol incmimetic drug . Similar effects on membrane resistance were...obtained with this drug , and the effects could be blocked by atropine (a muscarinic receptor blocker), A cell responding to aceclidine with an

  13. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation.

    Science.gov (United States)

    Vugler, Anthony; Carr, Amanda-Jayne; Lawrence, Jean; Chen, Li Li; Burrell, Kelly; Wright, Andrew; Lundh, Peter; Semo, Ma'ayan; Ahmado, Ahmad; Gias, Carlos; da Cruz, Lyndon; Moore, Harry; Andrews, Peter; Walsh, James; Coffey, Peter

    2008-12-01

    Healthy Retinal Pigment Epithelium (RPE) cells are required for proper visual function and the phenomenon of RPE derivation from Human Embryonic Stem Cells (HESC) holds great potential for the treatment of retinal diseases. However, little is known about formation, expansion and expression profile of RPE-like cells derived from HESC (HESC-RPE). By studying the genesis of pigmented foci we identified OTX1/2-positive cell types as potential HESC-RPE precursors. When pigmented foci were excised from culture, HESC-RPE expanded to form extensive monolayers, with pigmented cells at the leading edge assuming a precursor role: de-pigmenting, proliferating, expressing keratin 8 and subsequently re-differentiating. As they expanded and differentiated in vitro, HESC-RPE expressed markers of both developing and mature RPE cells which included OTX1/2, Pax6, PMEL17 and at low levels, RPE65. In vitro, without signals from a developing retinal environment, HESC-RPE could produce regular, polarised monolayers with developmentally important apical and basal features. Following transplantation of HESC-RPE into the degenerating retinal environment of Royal College of Surgeons (RCS) dystrophic rats, the cells survived in the subretinal space, where they maintained low levels of RPE65 expression and remained out of the cell cycle. The HESC-RPE cells responded to the in vivo environment by downregulating Pax6, while maintaining expression of other markers. The presence of rhodopsin-positive material within grafted HESC-RPE indicates that in the future, homogenous transplants of this cell type may be capable of supporting visual function following retinal dystrophy.

  14. A minimal model for a slow pacemaking neuron

    International Nuclear Information System (INIS)

    Zakharov, D.G.; Kuznetsov, A.

    2012-01-01

    Highlights: ► We have constructed a phenomenological model for slow pacemaking neurons. ► The model implements a nonlinearity introduced by an ion-dependent current. ► The new nonlinear dependence allows for differentiating responses to various stimuli. ► We discuss implications of our results for a broad class of neurons. - Abstract: We have constructed a phenomenological model for slow pacemaking neurons. These are neurons that generate very regular periodic oscillations of the membrane potential. Many of these neurons also differentially respond to various types of stimulation. The model is based on FitzHugh–Nagumo (FHN) oscillator and implements a nonlinearity introduced by a current that depends on an ion concentration. The comparison with the original FHN oscillator has shown that the new nonlinear dependence allows for differentiating responses to various stimuli. We discuss implications of our results for a broad class of neurons.

  15. The Itch-Producing Agents Histamine and Cowhage Activate Separate Populations of Primate Spinothalamic Tract Neurons

    Science.gov (United States)

    Davidson, Steve; Zhang, Xijing; Yoon, Chul H.; Khasabov, Sergey G.; Simone, Donald A.; Giesler, Glenn J.

    2010-01-01

    Itch is an everyday sensation, but when associated with disease or infection it can be chronic and debilitating. Several forms of itch can be blocked using antihistamines, but others cannot and these constitute an important clinical problem. Little information is available on the mechanisms underlying itch that is produced by nonhistaminergic mechanisms. We examined the responses of spinothalamic tract neurons to histaminergic and, for the first time, nonhistaminergic forms of itch stimuli. Fifty-seven primate spinothalamic tract (STT) neurons were identified using antidromic activation techniques and examined for their responses to histamine and cowhage, the nonhistaminergic itch-producing spicules covering the pod of the legume Mucuna pruriens. Each examined neuron had a receptive field on the hairy skin of the hindlimb and responded to noxious mechanical stimulation. STT neurons were tested with both pruritogens applied in a random order and we found 12 that responded to histamine and seven to cowhage. Each pruritogen-responsive STT neuron was activated by the chemical algogen capsaicin and two-thirds responded to noxious heat stimuli, demonstrating that these neurons convey chemical, thermal, and mechanical nociceptive information as well. Histamine or cowhage responsive STT neurons were found in both the marginal zone and the deep dorsal horn and were classified as high threshold and wide dynamic range. Unexpectedly, histamine and cowhage never activated the same cell. Our results demonstrate that the spinothalamic tract contains mutually exclusive populations of neurons responsive to histamine or the nonhistaminergic itch-producing agent cowhage. PMID:17855615

  16. Clinically undetected retinal breaks causing retinal detachment: A review of options for management.

    Science.gov (United States)

    Gupta, Deepak; Ching, Jared; Tornambe, Paul E

    2017-08-12

    The successful detection of retinal breaks is a critical step in rhegmatogenous retinal detachment surgery in order to prevent persistent/recurrent retinal detachments. Not all retinal breaks causing retinal detachments are obvious. Retinal breaks may be obscured by opacities that are either anterior segment related, lens related, or posterior segment related. Rules to identify breaks based on subretinal fluid configuration are more difficult to apply in pseudophakic, aphakic, and scleral buckle encircled eyes-and in eyes with repeat detachments and those with proliferative vitreoretinopathy. Exudative detachments exhibit characteristic features and must be ruled out. A thorough clinical examination preoperatively is important even if a vitrectomy is planned. We review the incidence and causes of undetected breaks, along with preoperative/clinical issues that may hinder break detection. We review the literature with respect to investigative approaches and techniques that are available to the vitreoretinal surgeon when primary breaks remain clinically undetected during the preoperative examination. We broadly divide the surgical approaches into ones where the surgeon utilizes techniques to pursue actively a search for breaks versus adopting a purely speculative approach. Advantages and disadvantages of various techniques are appraised. Intuitively one might argue that an encircling scleral buckle combined with vitrectomy would give higher single operation success than pars plana vitrectomy alone because "undetected" retinal breaks would be addressed by a 360° plombage. We could not confirm this concept. Newer techniques, such as pars plana vitrectomy augmented with dye extrusion or endoscopic-assisted pars plana vitrectomy, show encouraging results. Technological advances such as intraoperative optical coherence tomography will also help to broaden the vitreoretinal surgeon's armamentarium. At this time, there is no gold standard in terms of the recommended

  17. Automated computation of arbor densities: a step toward identifying neuronal cell types

    Directory of Open Access Journals (Sweden)

    Uygar eSümbül

    2014-11-01

    Full Text Available The shape and position of a neuron convey information regarding its molecular and functional identity. The identification of cell types from structure, a classic method, relies on the time-consuming step of arbor tracing. However, as genetic tools and imaging methods make data-driven approaches to neuronal circuit analysis feasible, the need for automated processing increases. Here, we first establish that mouse retinal ganglion cell types can be as precise about distributing their arbor volumes across the inner plexiform layer as they are about distributing the skeletons of the arbors. Then, we describe an automated approach to computing the spatial distribution of the dendritic arbors, or arbor density, with respect to a global depth coordinate based on this observation. Our method involves three-dimensional reconstruction of neuronal arbors by a supervised machine learning algorithm, post-processing of the enhanced stacks to remove somata and isolate the neuron of interest, and registration of neurons to each other using automatically detected arbors of the starburst amacrine interneurons as fiducial markers. In principle, this method could be generalizable to other structures of the CNS, provided that they allow sparse labeling of the cells and contain a reliable axis of spatial reference.

  18. Characterization of upper thoracic spinal neurons responding to esophageal distension in diabetic rats

    DEFF Research Database (Denmark)

    Qin, Chao; Ghorbani, Marie L M; Wu, Mingyuan

    2008-01-01

    The aim of this study was to examine spinal neuronal processing of innocuous and noxious mechanical inputs from the esophagus in diabetic rats. Streptozotocin (50 mg/kg, ip) was used to induce diabetes in 15 male Sprague-Dawley rats, and vehicle (10 mM citrate buffer) was injected into 15 rats...

  19. Retinal findings in membranoproliferative glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Ahmad M. Mansour

    2017-09-01

    Conclusions and importance: Drusen remain the ocular stigmata for MPGN occuring at an early age. The retinal disease is progressive with gradual thickening of Bruch's membrane and occurrence of retinal pigment epithelium detachment.

  20. Retinal detachment in paediatric patients

    International Nuclear Information System (INIS)

    Zafar, S. N.; Qureshi, N.; Azad, N.; Khan, A.

    2013-01-01

    Objective: To assess the causes of retinal detachment in children and the various operative procedures requiring vitreoretinal surgical intervention for the same. Study Design: Case series. Place and Duration of Study: Department of Ophthalmology, Al-Shifa Trust Eye Hospital, Rawalpindi, from January 2006 to May 2009. Methodology: A total of 281 eyes of 258 patients, (aged 0 - 18 years) who underwent vitreo-retinal surgical intervention for retinal detachment were included. Surgical log was searched for the type of retinal detachment and its causes. Frequencies of various interventions done in these patients viz. vitrectomy, scleral buckle, use of tamponading agents, laser photocoagulation and cryotherapy were noted. Results were described as descriptive statistics. Results: Myopia was the cause in 62 (22.1%) and trauma in 51 (18.1%) of the eyes. Total retinal detachment (RD) was treated in 94 (33.5%) eyes, sub total RD in 36 (12.8%), recurrent RD in 32 (11.4%), giant retinal tear in 28 (10%), tractional RD in 15 (5.3%) and exudative RD in 2 (0.7%). Prophylactic laser or cryotherapy was applied in 74 (26.3%) of the eyes. Pars plana vitrectomy (PPV) was carried out in 159 (56.6%) eyes while scleral buckle procedure was done in 129 (45.9%) eyes. Silicon oil was used in 149 (53%), perfluorocarbon liquid in 32 (11.4%) and gas tamponade in 20 (7.1%) eyes. Conclusion: The most common cause of retinal detachment in paediatric patients was myopia, followed by trauma. Total RD was more common as compared to the other types. The most common procedure adopted was pars plana vitrectomy followed by scleral buckle procedure. (author)

  1. Retinal Prosthesis System for Advanced Retinitis Pigmentosa: A Health Technology Assessment Update

    Science.gov (United States)

    Lee, Christine; Tu, Hong Anh; Wells, David; Holubowich, Corinne

    2017-01-01

    Background Retinitis pigmentosa is a group of inherited disorders characterized by the degeneration of the photoreceptors in the retina, resulting in progressive vision loss. The Argus II system is designed to restore partial functional vision in patients with profound vision loss from advanced retinitis pigmentosa. At present, it is the only treatment option approved by Health Canada for this patient population. In June 2016, Health Quality Ontario published a health technology assessment of the Argus II retinal prosthesis system for patients with advanced retinitis pigmentosa. Based on that assessment, the Ontario Health Technology Advisory Committee recommended against publicly funding the Argus II system for this population. It also recommended that Health Quality Ontario re-evaluate the evidence in 1 year. The objective of this report was to examine new evidence published since the 2016 health technology assessment. Methods We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences related to the Argus II system. We performed a systematic literature search for studies published since the 2016 Argus II health technology assessment. We developed a Markov decision-analytic model to assess the cost-effectiveness of the Argus II system compared with standard care, and we calculated incremental cost-effectiveness ratios over a 20-year time horizon. We also conducted a five-year budget impact analysis. Finally, we interviewed people with retinitis pigmentosa about their lived experience with vision loss, and with the Argus II system. Results Four publications from one multicentre international study were included in the clinical review. Patients showed significant improvements in visual function and functional outcomes with the Argus II system, and these outcomes were sustained up to a 5-year follow-up (moderate quality of evidence). The safety profile was generally acceptable. In

  2. Existence of multiple receptors in single neurons: responses of single bullfrog olfactory neurons to many cAMP-dependent and independent odorants.

    Science.gov (United States)

    Kashiwayanagi, M; Shimano, K; Kurihara, K

    1996-11-04

    The responses of single bullfrog olfactory neurons to various odorants were measured with the whole-cell patch clamp which offers direct information on cellular events and with the ciliary recording technique to obtain stable quantitative data from many neurons. A large portion of single olfactory neurons (about 64% and 79% in the whole-cell recording and in the ciliary recording, respectively) responded to many odorants with quite diverse molecular structures, including both odorants previously indicated to be cAMP-dependent (increasing) and independent odorants. One odorant elicited a response in many cells; e.g. hedione and citralva elicited the response in 100% and 92% of total neurons examined with the ciliary recording technique. To confirm that a single neuron carries different receptors or transduction pathways, the cross-adaptation technique was applied to single neurons. Application of hedione to a single neuron after desensitization of the current in response to lyral or citralva induced an inward current with a similar magnitude to that applied alone. It was suggested that most single olfactory neurons carry multiple receptors and at least dual transduction pathways.

  3. Neuronal representations of stimulus associations develop in the temporal lobe during learning.

    Science.gov (United States)

    Messinger, A; Squire, L R; Zola, S M; Albright, T D

    2001-10-09

    Visual stimuli that are frequently seen together become associated in long-term memory, such that the sight of one stimulus readily brings to mind the thought or image of the other. It has been hypothesized that acquisition of such long-term associative memories proceeds via the strengthening of connections between neurons representing the associated stimuli, such that a neuron initially responding only to one stimulus of an associated pair eventually comes to respond to both. Consistent with this hypothesis, studies have demonstrated that individual neurons in the primate inferior temporal cortex tend to exhibit similar responses to pairs of visual stimuli that have become behaviorally associated. In the present study, we investigated the role of these areas in the formation of conditional visual associations by monitoring the responses of individual neurons during the learning of new stimulus pairs. We found that many neurons in both area TE and perirhinal cortex came to elicit more similar neuronal responses to paired stimuli as learning proceeded. Moreover, these neuronal response changes were learning-dependent and proceeded with an average time course that paralleled learning. This experience-dependent plasticity of sensory representations in the cerebral cortex may underlie the learning of associations between objects.

  4. Stem Cell-Based Therapeutic Applications in Retinal Degenerative Diseases.

    OpenAIRE

    Huang Yiming; Enzmann Volker; Ildstad Suzanne T

    2011-01-01

    Retinal degenerative diseases that target photoreceptors or the adjacent retinal pigment epithelium (RPE) affect millions of people worldwide. Retinal degeneration (RD) is found in many different forms of retinal diseases including retinitis pigmentosa (RP), age-related macular degeneration (AMD), diabetic retinopathy, cataracts, and glaucoma. Effective treatment for retinal degeneration has been widely investigated. Gene-replacement therapy has been shown to improve visual function in inheri...

  5. Retinal Cell Degeneration in Animal Models

    Directory of Open Access Journals (Sweden)

    Masayuki Niwa

    2016-01-01

    Full Text Available The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced, autoimmune (experimental autoimmune encephalomyelitis, mechanical stress (optic nerve crush-induced, light-induced and ischemia (transient retinal ischemia-induced. The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.

  6. Prophylactic treatment of retinal breaks

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Grauslund, Jakob

    2015-01-01

    Prophylactic treatment of retinal breaks has been examined in several studies and reviews, but so far, no studies have successfully applied a systematic approach. In the present systematic review, we examined the need of follow-up after posterior vitreous detachment (PVD) - diagnosed by slit...... published before 2012. Four levels of screening identified 13 studies suitable for inclusion in this systematic review. No meta-analysis was conducted as no data suitable for statistical analysis were identified. In total, the initial examination after symptomatic PVD identified 85-95% of subsequent retinal......-47% of cases, respectively. The cumulated incidence of RRD despite prophylactic treatment was 2.1-8.8%. The findings in this review suggest that follow-up after symptomatic PVD is only necessary in cases of incomplete retinal examination at presentation. Prophylactic treatment of symptomatic retinal breaks...

  7. Regarding optical coherence tomography grading of ischemia in central retinal venous occlusion

    Directory of Open Access Journals (Sweden)

    Tripathy K

    2017-02-01

    Full Text Available Koushik TripathyDepartment of Vitreoretina and Uvea, ICARE Eye Hospital & Postgraduate Institute, Noida, Uttar Pradesh, IndiaThe author read with interest the article by Browning et al.1 The author humbly wants to discuss a few facts.1. The article1 discusses grading of retinal ischemia based on optical coherence tomography features in central retinal venous occlusion. As coexisting central retinal arterial occlusion or cilioretinal arterial occlusion may also cause inner retinal hyper-reflectivity, exclusion of such cases is an important consideration before implicating central retinal venous occlusion for the ischemia. Extensive intraretinal hemorrhages are other important hindrances to the evaluation of the perfusion status of the retina using both fluorescein angiogram and optical coherence tomography.2. It would be interesting to know the gonioscopic findings, especially neovascularization of the anterior chamber angle if it was performed at presentation and during the follow-ups.3. The manuscript documented that the incidence of anterior segment neovascularization at 1 year was 8.9% in severe ischemia group.1 The incidence of anterior segment neovascularization in perfused groups was higher (15.4% and 17.6% for mild and moderate ischemia, respectively. Although the sample size was low, such findings are contrary to the literature2 and require further discussion. Authors' replyDavid J Browning, Omar S Punjabi, Chong LeeDepartment of Ophthalmology, Charlotte Eye, Ear, Nose and Throat Associates, P.A., Charlotte, NC, USA We thank Dr Tripathy for his interest in our article and would respond to his above-mentioned points.1. We agree that excluding eyes with cilioretinal artery and central retinal artery occlusions is necessary to be able to attribute inner retinal reflectivity changes to central retinal vein occlusion. Cilioretinal artery occlusion is associated with a band of ischemic retinal whitening and central retinal artery occlusion

  8. Phase II enzyme induction by a carotenoid, lutein, in a PC12D neuronal cell line

    International Nuclear Information System (INIS)

    Miyake, Seiji; Kobayashi, Saori; Tsubota, Kazuo; Ozawa, Yoko

    2014-01-01

    Highlights: • Lutein reduced ROS levels in a PC12D neuronal cell line. • Lutein induced mRNAs of phase II antioxidative enzymes in PC12D neuronal cells. • Lutein increased protein levels of HO-1, SOD2, and NQO-1 in PC12D neuronal cells. • Lutein had no effect on intranuclear Nrf2 levels in PC12D neuronal cells. • Lutein did not activate potential upstream Nrf2 nuclear translocation pathways. - Abstract: The mechanism by which lutein, a carotenoid, acts as an antioxidant in retinal cells is still not fully understood. Here, lutein treatment of a neuronal cell line (PC12D) immediately resulted in reduced intracellular ROS levels, implying that it has a direct role in ROS scavenging. Significantly, lutein treatment also induced phase II antioxidative enzyme expression, probably via a nuclear factor-like 2 (Nrf2) independent pathway. This latter mechanism could explain why lutein acts diversely to protect against oxidative/cytotoxic stress, and why it is physiologically involved in the human neural tissue, such as the retina

  9. Phase II enzyme induction by a carotenoid, lutein, in a PC12D neuronal cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Seiji [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Wakasa Seikatsu Co., Ltd., 134 Chudoujiminami-cho, Shimogyo-ku, Kyoto 600-8813 (Japan); Kobayashi, Saori [Wakasa Seikatsu Co., Ltd., 134 Chudoujiminami-cho, Shimogyo-ku, Kyoto 600-8813 (Japan); Tsubota, Kazuo [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Ozawa, Yoko, E-mail: ozawa@a5.keio.jp [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2014-04-04

    Highlights: • Lutein reduced ROS levels in a PC12D neuronal cell line. • Lutein induced mRNAs of phase II antioxidative enzymes in PC12D neuronal cells. • Lutein increased protein levels of HO-1, SOD2, and NQO-1 in PC12D neuronal cells. • Lutein had no effect on intranuclear Nrf2 levels in PC12D neuronal cells. • Lutein did not activate potential upstream Nrf2 nuclear translocation pathways. - Abstract: The mechanism by which lutein, a carotenoid, acts as an antioxidant in retinal cells is still not fully understood. Here, lutein treatment of a neuronal cell line (PC12D) immediately resulted in reduced intracellular ROS levels, implying that it has a direct role in ROS scavenging. Significantly, lutein treatment also induced phase II antioxidative enzyme expression, probably via a nuclear factor-like 2 (Nrf2) independent pathway. This latter mechanism could explain why lutein acts diversely to protect against oxidative/cytotoxic stress, and why it is physiologically involved in the human neural tissue, such as the retina.

  10. Neurons responsive to face-view in the primate ventrolateral prefrontal cortex.

    Science.gov (United States)

    Romanski, L M; Diehl, M M

    2011-08-25

    Studies have indicated that temporal and prefrontal brain regions process face and vocal information. Face-selective and vocalization-responsive neurons have been demonstrated in the ventrolateral prefrontal cortex (VLPFC) and some prefrontal cells preferentially respond to combinations of face and corresponding vocalizations. These studies suggest VLPFC in nonhuman primates may play a role in communication that is similar to the role of inferior frontal regions in human language processing. If VLPFC is involved in communication, information about a speaker's face including identity, face-view, gaze, and emotional expression might be encoded by prefrontal neurons. In the following study, we examined the effect of face-view in ventrolateral prefrontal neurons by testing cells with auditory, visual, and a set of human and monkey faces rotated through 0°, 30°, 60°, 90°, and -30°. Prefrontal neurons responded selectively to either the identity of the face presented (human or monkey) or to the specific view of the face/head, or to both identity and face-view. Neurons which were affected by the identity of the face most often showed an increase in firing in the second part of the stimulus period. Neurons that were selective for face-view typically preferred forward face-view stimuli (0° and 30° rotation). The neurons which were selective for forward face-view were also auditory responsive compared to other neurons which responded to other views or were unselective which were not auditory responsive. Our analysis showed that the human forward face (0°) was decoded better and also contained the most information relative to other face-views. Our findings confirm a role for VLPFC in the processing and integration of face and vocalization information and add to the growing body of evidence that the primate ventrolateral prefrontal cortex plays a prominent role in social communication and is an important model in understanding the cellular mechanisms of communication

  11. A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping.

    Science.gov (United States)

    Takikawa, Yoriko; Kawagoe, Reiko; Hikosaka, Okihide

    2004-10-01

    Dopamine (DA) neurons respond to sensory stimuli that predict reward. To understand how DA neurons acquire such ability, we trained monkeys on a one-direction-rewarded version of memory-guided saccade task (1DR) only when we recorded from single DA neurons. In 1DR, position-reward mapping was changed across blocks of trials. In the early stage of training of 1DR, DA neurons responded to reward delivery; in the later stages, they responded predominantly to the visual cue that predicted reward or no reward (reward predictor) differentially. We found that such a shift of activity from reward to reward predictor also occurred within a block of trials after position-reward mapping was altered. A main effect of long-term training was to accelerate the within-block reward-to-predictor shift of DA neuronal responses. The within-block shift appeared first in the intermediate stage, but was slow, and DA neurons often responded to the cue that indicated reward in the preceding block. In the advanced stage, the reward-to-predictor shift occurred quickly such that the DA neurons' responses to visual cues faithfully matched the current position-reward mapping. Changes in the DA neuronal responses co-varied with the reward-predictive differentiation of saccade latency both in short-term (within-block) and long-term adaptation. DA neurons' response to the fixation point also underwent long-term changes until it occurred predominantly in the first trial within a block. This might trigger a switch between the learned sets. These results suggest that midbrain DA neurons play an essential role in adapting oculomotor behavior to frequent switches in position-reward mapping.

  12. Transcorneal Electrical Stimulation Therapy for Retinal Disease

    Science.gov (United States)

    2012-05-03

    Retinitis Pigmentosa; Macula Off; Primary Open Angle Glaucoma; Hereditary Macular Degeneration; Treated Retina Detachment; Retinal Artery Occlusion; Retinal Vein Occlusion; Non-Arthritic-Anterior-Ischemic Optic-Neuropathy; Hereditary Autosomal Dominant Optic Atrophy; Dry Age Related Macular Degeneration; Ischemic Macula Edema

  13. Sensorimotor learning and the ontogeny of the mirror neuron system.

    Science.gov (United States)

    Catmur, Caroline

    2013-04-12

    Mirror neurons, which have now been found in the human and songbird as well as the macaque, respond to both the observation and the performance of the same action. It has been suggested that their matching response properties have evolved as an adaptation for action understanding; alternatively, these properties may arise through sensorimotor experience. Here I review mirror neuron response characteristics from the perspective of ontogeny; I discuss the limited evidence for mirror neurons in early development; and I describe the growing body of evidence suggesting that mirror neuron responses can be modified through experience, and that sensorimotor experience is the critical type of experience for producing mirror neuron responses. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Retinal Structure Measurements as Inclusion Criteria for Stem Cell-Based Therapies of Retinal Degenerations.

    Science.gov (United States)

    Jacobson, Samuel G; Matsui, Rodrigo; Sumaroka, Alexander; Cideciyan, Artur V

    2016-04-01

    We reviewed and illustrated the most optimal retinal structural measurements to make in stem cell clinical trials. Optical coherence tomography (OCT) and autofluorescence (AF) imaging were used to evaluate patients with severe visual loss from nonsyndromic and syndromic retinitis pigmentosa (RP), ABCA4-Stargardt disease, and nonneovascular age-related macular degeneration (AMD). Outer nuclear layer (ONL), rod outer segment (ROS) layer, inner retina, ganglion cell layer (GCL), and nerve fiber layer (NFL) thicknesses were quantified. All patients had severely reduced visual acuities. Retinitis pigmentosa patients had limited visual fields; maculopathy patients had central scotomas with retained peripheral function. For the forms of RP illustrated, there was detectable albeit severely reduced ONL across the scanned retina, and normal or hyperthick GCL and NFL. Maculopathy patients had no measurable ONL centrally; it became detectable with eccentricity. Some maculopathy patients showed unexpected GCL losses. Autofluorescence imaging illustrated central losses of RPE integrity. A hypothetical scheme to relate patient data with different phases of retinal remodeling in animal models of retinal degeneration was presented. Stem cell science is advancing, but it is not too early to open the discussion of criteria for patient selection and monitoring. Available clinical tools, such as OCT and AF imaging, can provide inclusion/exclusion criteria and robust objective outcomes. Accepting that early trials may not lead to miraculous cures, we should be prepared to know why-scientifically and clinically-so we can improve subsequent trials. We also must determine if retinal remodeling is an impediment to efficacy.

  15. Effects of let-7b and TLX on the proliferation and differentiation of retinal progenitor cells in vitro.

    Science.gov (United States)

    Ni, Ni; Zhang, Dandan; Xie, Qing; Chen, Junzhao; Wang, Zi; Deng, Yuan; Wen, Xuyang; Zhu, Mengyu; Ji, Jing; Fan, Xianqun; Luo, Min; Gu, Ping

    2014-10-20

    MicroRNAs manifest significant functions in brain neural stem cell (NSC) self-renewal and differentiation through the post-transcriptional regulation of neurogenesis genes. Let-7b is expressed in the mammalian brain and regulates NSC proliferation and differentiation by targeting the nuclear receptor TLX, which is an essential regulator of NSC self-renewal. Whether let-7b and TLX act as important regulators in retinal progenitor cell (RPC) proliferation and differentiation remains unknown. Here, our data show that let-7b and TLX play important roles in controlling RPC fate determination in vitro. Let-7b suppresses TLX expression to negatively regulate RPC proliferation and accelerate the neuronal and glial differentiation of RPCs. The overexpression of let-7b downregulates TLX levels in RPCs, leading to reduced RPC proliferation and increased neuronal and glial differentiation, whereas antisense knockdown of let-7b produces robust TLX expression,enhanced RPC proliferation and decreased differentiation. Moreover, the inhibition of endogenous TLX by small interfering RNA suppresses RPC proliferation and promotes RPC differentiation. Furthermore, overexpression of TLX rescues let-7b-induced proliferation deficiency and weakens the RPC differentiation enhancement caused by let-7b alone. These results suggest that let-7b, by forming a negative feedback loop with TLX, provides a novel model to regulate the proliferation and differentiation of retinal progenitors in vitro.

  16. Safety of iPhone retinal photography.

    Science.gov (United States)

    Hong, Sheng Chiong; Wynn-Williams, Giles; Wilson, Graham

    2017-04-01

    With the advancement in mobile technology, smartphone retinal photography is becoming a popular practice. However, there is limited information about the safety of the latest smartphones used for retinal photography. This study aims to determine the photobiological risk of iPhone 6 and iPhone 6 plus when used in conjunction with a 20Diopter condensing lens for retinal photography. iPhone 6 and iPhone 6 plus (Apple, Cupertino, CA) were used in this study. The geometrical setup of the study was similar to the indirect ophthalmoscopy technique. The phone was set up at one end of the bench with its flash turned on at maximal brightness; a 20 Dioptre lens was placed 15 cm away from the phone. The light that passes through the lens was measured with a spectroradiometer and an illuminance probe at the other end to determine the spectral profile, spatial irradiance, radiant power emitted by the phone's flash. Trigonometric and lens formula were applied to determine the field of view and retinal surface in order to determine the weighted retinal irradiance and weighted retinal radiant exposure. Taking ocular transmission and the distribution of the beam's spatial irradiance into account, the weighted retinal irradiance is 1.40 mW/cm 2 and the weighted retinal radiant exposure is 56.25 mJ/cm 2 . The peak weighted foveal irradiance is 1.61 mW/cm 2 . Our study concluded that the photobiological risk posed by iPhone 6 indirect ophthalmoscopy was at least 1 order of magnitude below the safety limits set by the ISO15004-2.2.

  17. Automated detection of retinal disease.

    Science.gov (United States)

    Helmchen, Lorens A; Lehmann, Harold P; Abràmoff, Michael D

    2014-11-01

    Nearly 4 in 10 Americans with diabetes currently fail to undergo recommended annual retinal exams, resulting in tens of thousands of cases of blindness that could have been prevented. Advances in automated retinal disease detection could greatly reduce the burden of labor-intensive dilated retinal examinations by ophthalmologists and optometrists and deliver diagnostic services at lower cost. As the current availability of ophthalmologists and optometrists is inadequate to screen all patients at risk every year, automated screening systems deployed in primary care settings and even in patients' homes could fill the current gap in supply. Expanding screens to all patients at risk by switching to automated detection systems would in turn yield significantly higher rates of detecting and treating diabetic retinopathy per dilated retinal examination. Fewer diabetic patients would develop complications such as blindness, while ophthalmologists could focus on more complex cases.

  18. Advances in Retinal Optical Imaging

    Directory of Open Access Journals (Sweden)

    Yanxiu Li

    2018-04-01

    Full Text Available Retinal imaging has undergone a revolution in the past 50 years to allow for better understanding of the eye in health and disease. Significant improvements have occurred both in hardware such as lasers and optics in addition to software image analysis. Optical imaging modalities include optical coherence tomography (OCT, OCT angiography (OCTA, photoacoustic microscopy (PAM, scanning laser ophthalmoscopy (SLO, adaptive optics (AO, fundus autofluorescence (FAF, and molecular imaging (MI. These imaging modalities have enabled improved visualization of retinal pathophysiology and have had a substantial impact on basic and translational medical research. These improvements in technology have translated into early disease detection, more accurate diagnosis, and improved management of numerous chorioretinal diseases. This article summarizes recent advances and applications of retinal optical imaging techniques, discusses current clinical challenges, and predicts future directions in retinal optical imaging.

  19. Activation of the Basal Forebrain by the Orexin/Hypocretin Neurons: Orexin International Symposium

    Science.gov (United States)

    Arrigoni, Elda; Mochizuki, Takatoshi; Scammell, Thomas E.

    2010-01-01

    The orexin neurons play an essential role in driving arousal and in maintaining normal wakefulness. Lack of orexin neurotransmission produces a chronic state of hypoarousal characterized by excessive sleepiness, frequent transitions between wake and sleep, and episodes of cataplexy. A growing body of research now suggests that the basal forebrain (BF) may be a key site through which the orexin-producing neurons promote arousal. Here we review anatomical, pharmacological and electrophysiological studies on how the orexin neurons may promote arousal by exciting cortically-projecting neurons of the BF. Orexin fibers synapse on BF cholinergic neurons and orexin-A is released in the BF during waking. Local application of orexins excites BF cholinergic neurons, induces cortical release of acetylcholine, and promotes wakefulness. The orexin neurons also contain and probably co-release the inhibitory neuropeptide dynorphin. We found that orexin-A and dynorphin have specific effects on different classes of BF neurons that project to the cortex. Cholinergic neurons were directly excited by orexin-A, but did not respond to dynorphin. Non-cholinergic BF neurons that project to the cortex seem to comprise at least two populations with some directly excited by orexin that may represent wake-active, GABAergic neurons, whereas others did not respond to orexin but were inhibited by dynorphin and may be sleep-active, GABAergic neurons. This evidence suggests that the BF is a key site through which orexins activate the cortex and promotes behavioral arousal. In addition, orexins and dynorphin may act synergistically in the BF to promote arousal and improve cognitive performance. PMID:19723027

  20. Retinal shows its true colours

    DEFF Research Database (Denmark)

    Coughlan, N. J.A.; Adamson, B. D.; Gamon, L.

    2015-01-01

    Retinal is one of Nature's most important and widespread chromophores, exhibiting remarkable versatility in its function and spectral response, depending on its protein environment. Reliable spectroscopic and photochemical data for the isolated retinal molecule are essential for calibrating theor...

  1. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene.

    Science.gov (United States)

    Rezanejad, Habib; Soheili, Zahra-Soheila; Haddad, Farhang; Matin, Maryam M; Samiei, Shahram; Manafi, Ali; Ahmadieh, Hamid

    2014-04-01

    The neural retina is subjected to various degenerative conditions. Regenerative stem-cell-based therapy holds great promise for treating severe retinal degeneration diseases, although many drawbacks remain to be overcome. One important problem is to gain authentically differentiated cells for replacement. Paired box 6 protein (5a) (PAX6 (5a)) is a highly conserved master control gene that has an essential role in the development of the vertebrate visual system. Human adipose-tissue-derived stem cell (hADSC) isolation was performed by using fat tissues and was confirmed by the differentiation potential of the cells into adipocytes and osteocytes and by their surface marker profile. The coding region of the human PAX6 (5a) gene isoform was cloned and lentiviral particles were propagated in HEK293T. The differentiation of hADSCs into retinal cells was characterized by morphological characteristics, quantitative real-time reverse transcription plus the polymerase chain reaction (qPCR) and immunocytochemistry (ICC) for some retinal cell-specific and retinal pigmented epithelial (RPE) cell-specific markers. hADSCs were successfully isolated. Flow cytometric analysis of surface markers indicated the high purity (~97 %) of isolated hADSCs. After 30 h of post-transduction, cells gradually showed the characteristic morphology of neuronal cells and small axon-like processes emerged. qPCR and ICC confirmed the differentiation of some neural retinal cells and RPE cells. Thus, PAX6 (5a) transcription factor expression, together with medium supplemented with fibronectin, is able to induce the differentiation of hADSCs into retinal progenitors, RPE cells and photoreceptors.

  2. Paediatric retinal detachment: aetiology, characteristics and outcomes.

    Science.gov (United States)

    McElnea, Elizabeth; Stephenson, Kirk; Gilmore, Sarah; O'Keefe, Michael; Keegan, David

    2018-01-01

    To provide contemporary data on the aetiology, clinical features and outcomes of paediatric retinal detachment. A retrospective review of all those under 16y who underwent surgical repair for retinal detachment at a single centre between the years 2008 and 2015 inclusive was performed. In each case the cause of retinal detachment, the type of detachment, the presence or absence of macular involvement, the number and form of reparative surgeries undertaken, and the surgical outcome achieved was recorded. Twenty-eight eyes of 24 patients, 15 (62.5%) of whom were male and 9 (37.5%) of whom were female, their mean age being 11.6y and range 2-16y developed retinal detachment over the eight year period studied. Trauma featured in the development of retinal detachment in 14 (50.0%) cases. Retinal detachment was associated with other ocular and/or systemic conditions in 11 (39.3%) cases. A mean of 3.0 procedures with a range of 1-9 procedures per patient were undertaken in the management of retinal detachment. Complex vitrectomy combined with scleral buckling or complex vitrectomy alone were those most frequently performed. Mean postoperative visual acuity was 1.2 logMAR with range 0.0-3.0 logMAR. In 22 of 26 (84.6%) cases which underwent surgical repair the retina was attached at last follow-up. Aggressive management of paediatric retinal detachment including re-operation increases the likelihood of anatomical success. In cases where the retinal detachment can be repaired by an external approach alone there is a more favourable visual outcome.

  3. Retrobulbar optic neuritis and rhegmatogenous retinal detachment in a fourteen-year-old girl with retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Hatta, M; Hayasaka, S; Kato, T; Kadoi, C

    2000-01-01

    A 14-year-old girl complained of a sudden decrease in right visual acuity. The patient had night blindness, a mottled retina but no pigments, extinguished scotopic electroretinographic response, central scotoma in the right eye and rhegmatogenous retinal detachment. She had initially received laser photocoagulation around the retinal tear and then corticosteroid therapy, cryoretinopexy and segmental buckling. Her right visual acuity increased to 1.0. The association of retinitis pigmentosa sine pigmento, retrobulbar optic neuritis and rhegmatogenous retinal detachment, as demonstrated in our patient, may be uncommon. Copyright 2000 S. Karger AG, Basel

  4. Properties of bilateral spinocerebellar activation of cerebellar cortical neurons

    Directory of Open Access Journals (Sweden)

    Pontus eGeborek

    2014-10-01

    Full Text Available We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT and the dorsal spinocerebellar tract (DSCT, respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF and the ipsilateral LF (iLF at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e. that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.

  5. Retinal ganglion cell topography and spatial resolving power in penguins.

    Science.gov (United States)

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  6. Genomic analysis of mouse retinal development.

    Directory of Open Access Journals (Sweden)

    Seth Blackshaw

    2004-09-01

    Full Text Available The vertebrate retina is comprised of seven major cell types that are generated in overlapping but well-defined intervals. To identify genes that might regulate retinal development, gene expression in the developing retina was profiled at multiple time points using serial analysis of gene expression (SAGE. The expression patterns of 1,051 genes that showed developmentally dynamic expression by SAGE were investigated using in situ hybridization. A molecular atlas of gene expression in the developing and mature retina was thereby constructed, along with a taxonomic classification of developmental gene expression patterns. Genes were identified that label both temporal and spatial subsets of mitotic progenitor cells. For each developing and mature major retinal cell type, genes selectively expressed in that cell type were identified. The gene expression profiles of retinal Müller glia and mitotic progenitor cells were found to be highly similar, suggesting that Müller glia might serve to produce multiple retinal cell types under the right conditions. In addition, multiple transcripts that were evolutionarily conserved that did not appear to encode open reading frames of more than 100 amino acids in length ("noncoding RNAs" were found to be dynamically and specifically expressed in developing and mature retinal cell types. Finally, many photoreceptor-enriched genes that mapped to chromosomal intervals containing retinal disease genes were identified. These data serve as a starting point for functional investigations of the roles of these genes in retinal development and physiology.

  7. Vitreo-retinal eye surgery robot : sustainable precision

    NARCIS (Netherlands)

    Meenink, H.C.M.

    2011-01-01

    Vitreo-retinal eye surgery encompasses the surgical procedures performed on the vitreous humor and the retina. A procedure typically consists of the removal of the vitreous humor, the peeling of a membrane and/or the repair of a retinal detachment. Vitreo-retinal surgery is performed minimal

  8. Achalasia: virus-induced euthanasia of neurons?

    NARCIS (Netherlands)

    Boeckxstaens, Guy E.

    2008-01-01

    Achalasia, a motor disorder of the esophagus, is characterized by myenteric plexitis leading to neuronal loss. Cytotoxic T cells, isolated from the lower esophageal sphincter of achalasia patients, respond to human herpes virus-1 (HSV-1) with gamma-IFN (and to a lesser extent IL-2) production and

  9. In vitro activation of retinal cells: estimating location of stimulated cell by using a mathematical model

    Science.gov (United States)

    Ziv, Ofer R.; Rizzo, Joseph F., III; Jensen, Ralph J.

    2005-03-01

    Activation of neurons at different depths within the retina and at various eccentricities from the stimulating electrode will presumably influence the visual percepts created by a retinal prosthesis. With an electrical prosthesis, neurons will be activated in relation to the stimulating charge that impacts their cell membranes. The common model used to predict charge density is Coulomb's law, also known as the square law. We propose a modified model that can be used to predict neuronal depth that takes into account: (1) finite dimensions related to the position and size of the stimulating and return electrodes and (2) two-dimensional displacements of neurons with respect to the electrodes, two factors that are not considered in the square law model. We tested our model by using in vitro physiological threshold data that we had obtained previously for eight OFF-center brisk-transient rabbit retinal ganglion cells. For our most spatially dense threshold data (25 µm increments up to 100 µm from the cell body), our model estimated the depth of one RGC to be 76 ± 76 µm versus 87 ± 62 µm (median: SD) for the square law model, respectively. This difference was not statistically significant. For the seven other RGCs for which we had obtained threshold data up to 800 µm from the cell body, the estimate of the RGC depth (using data obtained along the X axis) was 96 ± 74 versus 20 ± 20 µm for the square law and our modified model, respectively. Although this difference was not statistically significant (Student t-test: p = 0.12), our model provided median values much closer to the estimated depth of these RGCs (Gt25 µm). This more realistic estimate of cell depth predicted by our model is not unexpected in this latter data set because of the more spatially distributed threshold data points that were evaluated. Our model has theoretical advantages over the traditional square law model under certain conditions, especially when considering neurons that are

  10. [Indications for Retinal Laser Therapy Revisited].

    Science.gov (United States)

    Enders, P; Schaub, F; Fauser, S

    2017-02-10

    Background Laser therapy is an important treatment option in retinal diseases, especially in cases of vascular involvement. Most approaches are based on coagulation of retinal structures. As there is increasing use of agents targetting vascular endothelial growth factor in the treatment of macular diseases, indications for the use of laser treatment need to be reviewed carefully, especially with respect to their significance in first line therapy. This article explains recent strategies and treatment protocols. Materials and Methods Review of current literature in PubMed as well as synopsis of relevant guidelines. Results and Conclusion Retinal laser therapy is still widely used within retinal opthalmology and covers a large spectrum of indications. Despite the success of medical approaches, retinal laser therapy remains an indispensable treatment option for proliferative diabetic retinopathy, central or peripheral vein occlusion and less frequent pathologies, such as retinopathy of prematurity or Coats's disease. Georg Thieme Verlag KG Stuttgart · New York.

  11. Ceroid lipofuscinosis in the border collie dog: retinal lesions in an animal model of juvenile Batten disease.

    Science.gov (United States)

    Taylor, R M; Farrow, B R

    1992-02-15

    Ceroid lipofuscinosis, an inherited disorder of lipopigment accumulation, was identified in a group of Border Collie dogs. The dogs developed mental, motor, and visual signs between age 15 and 22 months and progressed rapidly to severe neurological disease. The principal signs were blindness and gait and behavioural abnormalities with progressive dementia. Lipopigment accumulation was severe in neurones and glial cells of the central nervous system and was present in some visceral cells. Inclusions with variable ultrastructure were common in all cells of the retina, but the pigment accumulation did not damage the retinal architecture. The cytoplasmic inclusions were granular, sudanophilic, eosinophilic, and autofluorescent. Ultrastructural morphology varied, but fingerprint and curvilinear patterns predominated. The retinal lesions in the Border Collies were similar to those in English Setters with ceroid lipofuscinosis, but were much less severe than in juvenile human ceroid lipofuscinosis. This disorder bears a close resemblance to ceroid lipofuscinosis in English Setters and is another useful model for Batten's disease.

  12. Human induced pluripotent stem cell (hiPSC)-derived neurons respond to convulsant drugs when co-cultured with hiPSC-derived astrocytes.

    Science.gov (United States)

    Ishii, Misawa Niki; Yamamoto, Koji; Shoji, Masanobu; Asami, Asano; Kawamata, Yuji

    2017-08-15

    Accurate risk assessment for drug-induced seizure is expected to be performed before entering clinical studies because of its severity and fatal damage to drug development. Induced pluripotent stem cell (iPSC) technology has allowed the use of human neurons and glial cells in toxicology studies. Recently, several studies showed the advantage of co-culture system of human iPSC (hiPSC)-derived neurons with rodent/human primary astrocytes regarding neuronal functions. However, the application of hiPSC-derived neurons for seizure risk assessment has not yet been fully addressed, and not at all when co-cultured with hiPSC-derived astrocytes. Here, we characterized hiPSC-derived neurons co-cultured with hiPSC-derived astrocytes to discuss how hiPSC-derived neurons are useful to assess seizure risk of drugs. First, we detected the frequency of spikes and synchronized bursts hiPSC-derived neurons when co-cultured with hiPSC-derived astrocytes for 8 weeks. This synchronized burst was suppressed by the treatment with 6-cyano-7-nitroquinoxaline-2,3-dione, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, and D-(-)-2-amino-5-phosphonopentanoic acid, an N-Methyl-d-aspartate (NMDA) receptor antagonist. These data suggested that co-cultured hiPSC-derived neurons formed synaptic connections mediated by AMPA and NMDA receptors. We also demonstrated that co-cultured hiPSC-derived neurons showed epileptiform activity upon treatment with gabazine or kaliotoxin. Finally, we performed single-cell transcriptome analysis in hiPSC-derived neurons and found that hiPSC-derived astrocytes activated the pathways involved in the activities of AMPA and NMDA receptor functions, neuronal polarity, and axon guidance in hiPSC-derived neurons. These data suggested that hiPSC-derived astrocytes promoted the development of action potential, synaptic functions, and neuronal networks in hiPSC-derived neurons, and then these functional alterations result in the epileptiform

  13. Glutamate mediated astrocytic filtering of neuronal activity.

    Directory of Open Access Journals (Sweden)

    Gilad Wallach

    2014-12-01

    Full Text Available Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.

  14. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    Science.gov (United States)

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  15. Retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Hamel Christian

    2006-10-01

    Full Text Available Abstract Retinitis pigmentosa (RP is an inherited retinal dystrophy caused by the loss of photoreceptors and characterized by retinal pigment deposits visible on fundus examination. Prevalence of non syndromic RP is approximately 1/4,000. The most common form of RP is a rod-cone dystrophy, in which the first symptom is night blindness, followed by the progressive loss in the peripheral visual field in daylight, and eventually leading to blindness after several decades. Some extreme cases may have a rapid evolution over two decades or a slow progression that never leads to blindness. In some cases, the clinical presentation is a cone-rod dystrophy, in which the decrease in visual acuity predominates over the visual field loss. RP is usually non syndromic but there are also many syndromic forms, the most frequent being Usher syndrome. To date, 45 causative genes/loci have been identified in non syndromic RP (for the autosomal dominant, autosomal recessive, X-linked, and digenic forms. Clinical diagnosis is based on the presence of night blindness and peripheral visual field defects, lesions in the fundus, hypovolted electroretinogram traces, and progressive worsening of these signs. Molecular diagnosis can be made for some genes, but is not usually performed due to the tremendous genetic heterogeneity of the disease. Genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, so the visual prognosis is poor. The therapeutic approach is restricted to slowing down the degenerative process by sunlight protection and vitaminotherapy, treating the complications (cataract and macular edema, and helping patients to cope with the social and psychological impact of blindness. However, new therapeutic strategies are emerging from intensive research (gene therapy, neuroprotection, retinal prosthesis.

  16. A spectral element method with adaptive segmentation for accurately simulating extracellular electrical stimulation of neurons.

    Science.gov (United States)

    Eiber, Calvin D; Dokos, Socrates; Lovell, Nigel H; Suaning, Gregg J

    2017-05-01

    The capacity to quickly and accurately simulate extracellular stimulation of neurons is essential to the design of next-generation neural prostheses. Existing platforms for simulating neurons are largely based on finite-difference techniques; due to the complex geometries involved, the more powerful spectral or differential quadrature techniques cannot be applied directly. This paper presents a mathematical basis for the application of a spectral element method to the problem of simulating the extracellular stimulation of retinal neurons, which is readily extensible to neural fibers of any kind. The activating function formalism is extended to arbitrary neuron geometries, and a segmentation method to guarantee an appropriate choice of collocation points is presented. Differential quadrature may then be applied to efficiently solve the resulting cable equations. The capacity for this model to simulate action potentials propagating through branching structures and to predict minimum extracellular stimulation thresholds for individual neurons is demonstrated. The presented model is validated against published values for extracellular stimulation threshold and conduction velocity for realistic physiological parameter values. This model suggests that convoluted axon geometries are more readily activated by extracellular stimulation than linear axon geometries, which may have ramifications for the design of neural prostheses.

  17. Visual Acuity is Related to Parafoveal Retinal Thickness in Patients with Retinitis Pigmentosa and Macular Cysts

    Science.gov (United States)

    Brockhurst, Robert J.; Gaudio, Alexander R.; Berson, Eliot L.

    2008-01-01

    Purpose To quantify the prevalence and effect on visual acuity of macular cysts in a large cohort of patients with retinitis pigmentosa. Methods In 316 patients with typical forms of retinitis pigmentosa, we measured visual acuities with Early Treatment Diabetic Retinopathy Study (ETDRS) charts, detected macular cysts with optical coherence tomography (OCT), and quantified retinal thicknesses by OCT. We used the FREQ, LOGISTIC, and GENMOD procedures of SAS to evaluate possible risk factors for cyst prevalence and the MIXED procedure to quantify the relationships of visual acuity to retinal thickness measured at different locations within the macula. Results We found macular cysts in 28% of the patients, 40% of whom had cysts in only one eye. Macular cysts were seen most often in patients with dominant disease and not at all in patients with X-linked disease (p = 0.006). In eyes with macular cysts, multiple regression analysis revealed that visual acuity was inversely and independently related to retinal thickness at the foveal center (p = 0.038) and within a ring spanning an eccentricity of 5° to 10° from the foveal center (p = 0.004). Conclusions Macular cysts are a common occurrence in retinitis pigmentosa, especially among patients with dominantly-inherited disease. Visual acuity is influenced by edema in the parafovea, as well as in the fovea. PMID:18552390

  18. Retinal oximetry during treatment of retinal vein occlusion by ranibizumab in patients with high blood pressure and dyslipidemia.

    Science.gov (United States)

    Keilani, C; Halalchi, A; Wakpi Djeugue, D; Regis, A; Abada, S

    2016-12-01

    In the present study, we examined retinal vascular oxygen saturation in patients with retinal vein occlusion (RVO), high blood pressure (HBP) and dyslipidemia, before and during intravitreal vascular endothelial growth factor (VEGF) injection (ranibizumab). We retrospectively reviewed the medical records of six patients with visual acuity (VA) reduced by macular edema (ME) secondary to RVO with HBP and dyslipidemia, who underwent intravitreal anti-VEGF injection between October 2014 and February 2015 in the department of ophthalmology of François-Quesnay Hospital at Mantes-la-Jolie (France). The main inclusion criterion was the presence of RVO with ME and decreased VA. The primary endpoint was improvement of retinal venous oxygen saturation in patients with RVO before and 3 months after intravitreal ranibizumab injection. Secondary outcomes were improvement of retinal arterial oxygen saturation, improvement of best-corrected visual acuity (BCVA) on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale, regression of ME measured by the central macular thickness (CMT) in nm and studying the correlation between blood pressure (BP) and retinal venous oxygen saturation before and after ranibizumab. Six eyes of six patients were included. Before treatment, the mean (standard deviation [SD]) of the retinal venous saturation (%) was 38.1±14.2. Three months after the injections, the mean (SD) of the retinal venous saturation (%) increased statistically significantly 49.2±11 (P=0.03). In this study, retinal venous oxygen saturation in patients with RVO, HBP and dyslipidemia was partially normalized during intravitreal ranibizumab treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Paediatric retinal detachment: aetiology, characteristics and outcomes

    Directory of Open Access Journals (Sweden)

    Elizabeth McElnea

    2018-02-01

    Full Text Available AIM: To provide contemporary data on the aetiology, clinical features and outcomes of paediatric retinal detachment. METHODS: A retrospective review of all those under 16y who underwent surgical repair for retinal detachment at a single centre between the years 2008 and 2015 inclusive was performed. In each case the cause of retinal detachment, the type of detachment, the presence or absence of macular involvement, the number and form of reparative surgeries undertaken, and the surgical outcome achieved was recorded. RESULTS: Twenty-eight eyes of 24 patients, 15 (62.5% of whom were male and 9 (37.5% of whom were female, their mean age being 11.6y and range 2-16y developed retinal detachment over the eight year period studied. Trauma featured in the development of retinal detachment in 14 (50.0% cases. Retinal detachment was associated with other ocular and/or systemic conditions in 11 (39.3% cases. A mean of 3.0 procedures with a range of 1-9 procedures per patient were undertaken in the management of retinal detachment. Complex vitrectomy combined with scleral buckling or complex vitrectomy alone were those most frequently performed. Mean postoperative visual acuity was 1.2 logMAR with range 0.0-3.0 logMAR. In 22 of 26 (84.6% cases which underwent surgical repair the retina was attached at last follow-up. CONCLUSION: Aggressive management of paediatric retinal detachment including re-operation increases the likelihood of anatomical success. In cases where the retinal detachment can be repaired by an external approach alone there is a more favourable visual outcome.

  20. TRPA1 expression levels and excitability brake by KV channels influence cold sensitivity of TRPA1-expressing neurons.

    Science.gov (United States)

    Memon, Tosifa; Chase, Kevin; Leavitt, Lee S; Olivera, Baldomero M; Teichert, Russell W

    2017-06-14

    The molecular sensor of innocuous (painless) cold sensation is well-established to be transient receptor potential cation channel, subfamily M, member 8 (TRPM8). However, the role of transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in noxious (painful) cold sensation has been controversial. We find that TRPA1 channels contribute to the noxious cold sensitivity of mouse somatosensory neurons, independent of TRPM8 channels, and that TRPA1-expressing neurons are largely non-overlapping with TRPM8-expressing neurons in mouse dorsal-root ganglia (DRG). However, relatively few TRPA1-expressing neurons (e.g., responsive to allyl isothiocyanate or AITC, a selective TRPA1 agonist) respond overtly to cold temperature in vitro, unlike TRPM8-expressing neurons, which almost all respond to cold. Using somatosensory neurons from TRPM8-/- mice and subtype-selective blockers of TRPM8 and TRPA1 channels, we demonstrate that responses to cold temperatures from TRPA1-expressing neurons are mediated by TRPA1 channels. We also identify two factors that affect the cold-sensitivity of TRPA1-expressing neurons: (1) cold-sensitive AITC-sensitive neurons express relatively more TRPA1 transcripts than cold-insensitive AITC-sensitive neurons and (2) voltage-gated potassium (K V ) channels attenuate the cold-sensitivity of some TRPA1-expressing neurons. The combination of these two factors, combined with the relatively weak agonist-like activity of cold temperature on TRPA1 channels, partially explains why few TRPA1-expressing neurons respond to cold. Blocking K V channels also reveals another subclass of noxious cold-sensitive DRG neurons that do not express TRPM8 or TRPA1 channels. Altogether, the results of this study provide novel insights into the cold-sensitivity of different subclasses of somatosensory neurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Apelin-13 enhances arcuate POMC neuron activity via inhibiting M-current.

    Directory of Open Access Journals (Sweden)

    Dong Kun Lee

    Full Text Available The hypothalamus is a key element of the neural circuits that control energy homeostasis. Specific neuronal populations within the hypothalamus are sensitive to a variety of homeostatic indicators such as circulating nutrient levels and hormones that signal circulating glucose and body fat content. Central injection of apelin secreted by adipose tissues regulates feeding and glucose homeostasis. However, the precise neuronal populations and cellular mechanisms involved in these physiological processes remain unclear. Here we examine the electrophysiological impact of apelin-13 on proopiomelanocortin (POMC neuron activity. Approximately half of POMC neurons examined respond to apelin-13. Apelin-13 causes a dose-dependent depolarization. This effect is abolished by the apelin (APJ receptor antagonist. POMC neurons from animals pre-treated with pertussis toxin still respond to apelin, whereas the Gβγ signaling inhibitor gallein blocks apelin-mediated depolarization. In addition, the effect of apelin is inhibited by the phospholipase C and protein kinase inhibitors. Furthermore, single-cell qPCR analysis shows that POMC neurons express the APJ receptor, PLC-β isoforms, and KCNQ subunits (2, 3 and 5 which contribute to M-type current. Apelin-13 inhibits M-current that is blocked by the KCNQ channel inhibitor. Therefore, our present data indicate that apelin activates APJ receptors, and the resultant dissociation of the Gαq heterotrimer triggers a Gβγ-dependent activation of PLC-β signaling that inhibits M-current.

  2. A method for volumetric retinal tissue oxygen tension imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Teng, Pang-Yu; Blair, Norman P; Shahidi, Mahnaz

    2018-01-01

    Inadequate retinal oxygenation occurs in many vision-threatening retinal diseases, including diabetic retinopathy, retinal vascular occlusions, and age-related macular degeneration. Therefore, techniques that assess retinal oxygenation are necessary to understand retinal physiology in health and disease. The purpose of the current study is to report a method for the three-dimensional (3D) imaging of retinal tissue oxygen tension (tPO 2 ) in rats. Imaging was performed in Long Evans pigmented rats under systemic normoxia (N = 6) or hypoxia (N = 3). A vertical laser line was horizontally scanned on the retina and a series of optical section phase-delayed phosphorescence images were acquired. From these images, phosphorescence volumes at each phase delay were constructed and a 3D retinal tPO 2 volume was generated. Retinal tPO 2 volumes were quantitatively analyzed by generating retinal depth profiles of mean tPO 2 (M tPO2 ) and the spatial variation of tPO 2 (SV tPO2 ). The effects of systemic condition (normoxia/hypoxia) and retinal depth on M tPO2 and SV tPO2 were determined by mixed linear model. Each 3D retinal tPO 2 volume was approximately 500 × 750 × 200 μm (horizontal × vertical × depth) and consisted of 45 en face tPO 2 images through the retinal depth. M tPO2 at the chorioretinal interface was significantly correlated with systemic arterial oxygen tension (P = 0.007; N = 9). There were significant effects of both systemic condition and retinal depth on M tPO2 and SV tPO2 , such that both were lower under hypoxia than normoxia and higher in the outer retina than inner retina (P < 0.001). For the first time, 3D imaging of retinal tPO 2 was demonstrated, with potential future application for assessment of physiological alterations in animal models of retinal diseases.

  3. The surface morphology of retinal breaks and lattice retinal degeneration. A scanning electron microscopic study.

    Science.gov (United States)

    Robinson, M R; Streeten, B W

    1986-02-01

    In 14 of 110 eye bank eyes, lesions characteristic of peripheral retinal surface pathology were examined by scanning electron microscopy (SEM). These included operculated and flap tears, trophic round holes, lattice degeneration with holes, and paravascular retinal "pitting" degeneration. By SEM, the edges of the retinal breaks were covered by smooth cellular membranes, merging peripherally with a meshwork of vitreous fibrils. The membrane cells had poorly defined borders, a pitted surface, and variable numbers of microvilli consistent with glia. Lattice surfaces and foci of paravascular retinal degeneration were covered by similar membrane, but showed characteristic differences. It appears that breaks in the internal limiting membrane always stimulate proliferation of preretinal glial membranes. Similar cellular morphology of the membranes associated with breaks is consistent with a common cell of origin. Limited proliferation of these membranes suggests that surface gliosis is normally inhibited when the cells contact either intact basement membrane or vitreous.

  4. Detection of DNA Double Strand Breaks by γH2AX Does Not Result in 53bp1 Recruitment in Mouse Retinal Tissues

    Directory of Open Access Journals (Sweden)

    Brigitte Müller

    2018-05-01

    Full Text Available Gene editing is an attractive potential treatment of inherited retinopathies. However, it often relies on endogenous DNA repair. Retinal DNA repair is incompletely characterized in humans and animal models. We investigated recruitment of the double stranded break (DSB repair complex of γH2AX and 53bp1 in both developing and mature mouse neuroretinas. We evaluated the immunofluorescent retinal expression of these proteins during development (P07-P30 in normal and retinal degeneration models, as well as in potassium bromate induced DSB repair in normal adult (3 months retinal explants. The two murine retinopathy models used had different mutations in Pde6b: the severe rd1 and the milder rd10 models. Compared to normal adult retina, we found increased numbers of γH2AX positive foci in all retinal neurons of the developing retina in both model and control retinas, as well as in wild type untreated retinal explant cultures. In contrast, the 53bp1 staining of the retina differed both in amount and character between cell types at all ages and in all model systems. There was strong pan nuclear staining in ganglion, amacrine, and horizontal cells, and cone photoreceptors, which was attenuated. Rod photoreceptors did not stain unequivocally. In all samples, 53bp1 stained foci only rarely occurred. Co-localization of 53bp1 and γH2AX staining was a very rare event (< 1% of γH2AX foci in the ONL and < 3% in the INL, suggesting the potential for alternate DSB sensing and repair proteins in the murine retina. At a minimum, murine retinal DSB repair does not appear to follow canonical pathways, and our findings suggests further investigation is warranted.

  5. Toward high-resolution optoelectronic retinal prosthesis

    Science.gov (United States)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  6. Neuron responses to substance P and enkephalin in rat dorso-lateral septum in vitro.

    Science.gov (United States)

    Nayar, R; Sirett, N E; Hubbard, J I

    1987-10-01

    Using an in vitro brain slice technique the responses of spontaneously active neurons in the rat dorso-lateral septum to 10 nM substance P (SP) and enkephalin were determined. Fewer neurons responded to SP (41%) than to enkephalin (55%). The SP responses were 13 excitations, 14 inhibitions, the enkephalin responses were 13 excitations, 14 inhibitions and 11 responded to both, 6 of these were inhibited by both. Immunocytochemical techniques have shown there is a discrete localisation of SP and enkephalin axons and terminals in the rat septum. SP responsive neurons were associated with the SP terminal-rich region (p = 0.01) but no association was found for enkephalin responses in the enkephalin terminal-rich region (p = 0.7).

  7. Silver nano - a trove for retinal therapies.

    Science.gov (United States)

    Kalishwaralal, Kalimuthu; Barathmanikanth, Selvaraj; Pandian, Sureshbabu Ram Kumar; Deepak, Venkatraman; Gurunathan, Sangiliyandi

    2010-07-14

    Pathological retinal angiogenesis (neovascularization) is one of the most feared complications among retinal diseases, leading to visual impairment and irreversible blindness. Recent findings made by us on therapeutic applications of biologically synthesized silver nanoparticles (AgNPs) against VEGF induced retinal endothelial cells, elucidates the effectual inhibitory activities of AgNPs over the downstream signaling pathways (Src and AKT/PI3K) leading to retinal angiogenesis. The current review focuses on the imperative role of VEGF induced angiogenesis in the development of retinal neovascularization and despite the fact that several VEGF targeting ocular drugs are available; the review examines the need for a cost economic alternative, thereby suggesting the role of AgNPs as an emerging economic ocular drug for retinal therapies. The current technologies available for the development of targeted and controlled release of drugs is being discussed and a model has been proposed for the amenable targeting mechanism, by which Poly gamma glutamic acid (PGA) capsulated AgNPs conjugated to cyclic RGD peptides carry out a sustained controlled release specifically targeting the neovascularization cells and induce apoptosis unaffecting the normal retinal cells. These constructs consequently affirm the futuristic application of silver nanoparticles as a boon to ocular therapies. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Neuroprotective and Antiapoptotic Activity of Lineage-Negative Bone Marrow Cells after Intravitreal Injection in a Mouse Model of Acute Retinal Injury

    Directory of Open Access Journals (Sweden)

    Anna Machalińska

    2015-01-01

    Full Text Available We investigated effects of bone marrow-derived, lineage-negative cell (Lin−BMC transplantation in acute retinal injury. Lin−BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin−BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin−BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin−BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin−BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors.

  9. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future

    Directory of Open Access Journals (Sweden)

    Mingyue Luo

    2018-01-01

    Full Text Available As a constituent of blood-retinal barrier and retinal outer segment (ROS scavenger, retinal pigmented epithelium (RPE is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  10. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future.

    Science.gov (United States)

    Luo, Mingyue; Chen, Youxin

    2018-01-01

    As a constituent of blood-retinal barrier and retinal outer segment (ROS) scavenger, retinal pigmented epithelium (RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  11. A Method for Combined Retinal Vascular and Tissue Oxygen Tension Imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Tan, Michael R; Blair, Norman P; Shahidi, Mahnaz

    2017-09-06

    The retina requires adequate oxygenation to maintain cellular metabolism and visual function. Inner retinal oxygen metabolism is directly related to retinal vascular oxygen tension (PO 2 ) and inner retinal oxygen extraction fraction (OEF), whereas outer retinal oxygen consumption (QO 2 ) relies on oxygen availability by the choroid and is contingent upon retinal tissue oxygen tension (tPO 2 ) gradients across the retinal depth. Thus far, these oxygenation and metabolic parameters have been measured independently by different techniques in separate animals, precluding a comprehensive and correlative assessment of retinal oxygenation and metabolism dynamics. The purpose of the current study is to report an innovative optical system for dual oxyphor phosphorescence lifetime imaging to near-simultaneously measure retinal vascular PO 2 and tPO 2 in rats. The use of a new oxyphor with different spectral characteristics allowed differentiation of phosphorescence signals from the retinal vasculature and tissue. Concurrent measurements of retinal arterial and venous PO 2 , tPO 2 through the retinal depth, inner retinal OEF, and outer retinal QO 2 were demonstrated, permitting a correlative assessment of retinal oxygenation and metabolism. Future application of this method can be used to investigate the relations among retinal oxygen content, extraction and metabolism under pathologic conditions and thus advance knowledge of retinal hypoxia pathophysiology.

  12. Retinal layer measurements after successful macula-off retinal detachment repair using optical coherence tomography.

    Science.gov (United States)

    Menke, Marcel N; Kowal, Jens H; Dufour, Pascal; Wolf-Schnurrbusch, Ute E; Ceklic, Lala; Framme, Carsten; Wolf, Sebastian

    2014-09-04

    Optical coherence tomography (OCT) was used to analyze the thickness of various retinal layers of patients following successful macula-off retinal detachment (RD) repair. Optical coherence tomography scans of patients after successful macula-off RD repair were reanalyzed with a subsegmentation algorithm to measure various retinal layers. Regression analysis was performed to correlate time after surgery with changes in layer thickness. In addition, patients were divided in two groups. Group 1 had a follow-up period after surgery of up to 7 weeks (range, 21-49 days). In group 2, the follow-up period was >8 weeks (range, 60-438 days). Findings were compared to a group of age-matched healthy controls. Correlation analysis showed a significant positive correlation between inner nuclear-outer plexiform layer (INL-OPL) thickness and time after surgery (P=0.0212; r2=0.1551). Similar results were found for the ellipsoid zone-retinal pigment epithelium complex (EZ-RPE) thickness (P=0.005; r2=0.2215). Ganglion cell-inner plexiform layer thickness (GCL-IPL) was negatively correlated with time after surgery (P=0.0064; r2=0.2101). For group comparison, the retinal nerve fiber layer in both groups was thicker compared to controls. The GCL-IPL showed significant thinning in group 2. The outer nuclear layer was significantly thinner in groups 1 and 2 compared to controls. The EZ-RPE complex was significantly thinner in groups 1 and 2 compared to controls. In addition, values in group 1 were significantly thinner than in group 2. Optical coherence tomography retinal layer thickness measurements after successful macular-off RD repair revealed time-dependent thickness changes. Inner nuclear-outer plexiform layer thickness and EZ-RPE thickness was positively correlated with time after surgery. Ganglion cell-inner plexiform layer thickness was negatively correlated with time after surgery. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  13. Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients

    Directory of Open Access Journals (Sweden)

    Wen-Li Deng

    2018-04-01

    Full Text Available Summary: Retinitis pigmentosa (RP is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. : Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy. Keywords: RPGR, photoreceptor, electrophysiology, retinitis pigmentosa, patient-derived iPSCs, retinal organoid, RPE cells, cilium, ciliopathy, disease modeling

  14. Two-population model for medial temporal lobe neurons: The vast majority are almost silent.

    Science.gov (United States)

    Magyar, Andrew; Collins, John

    2015-07-01

    Recordings in the human medial temporal lobe have found many neurons that respond to pictures (and related stimuli) of just one particular person of those presented. It has been proposed that these are concept cells, responding to just a single concept. However, a direct experimental test of the concept cell idea appears impossible, because it would need the measurement of the response of each cell to enormous numbers of other stimuli. Here we propose a new statistical method for analysis of the data that gives a more powerful way to analyze how close data are to the concept-cell idea. Central to the model is the neuronal sparsity, defined as the total fraction of stimuli that elicit an above-threshold response in the neuron. The model exploits the large number of sampled neurons to give sensitivity to situations where the average response sparsity is much less than one response for the number of presented stimuli. We show that a conventional model where a single sparsity is postulated for all neurons gives an extremely poor fit to the data. In contrast, a model with two dramatically different populations gives an excellent fit to data from the hippocampus and entorhinal cortex. In the hippocampus, one population has 7% of the cells with a 2.6% sparsity. But a much larger fraction (93%) respond to only 0.1% of the stimuli. This can result in an extreme bias in the responsiveness of reported neurons compared with a typical neuron. Finally, we show how to allow for the fact that some identified units correspond to multiple neurons and find that our conclusions at the neural level are quantitatively changed but strengthened, with an even stronger difference between the two populations.

  15. Redefining the role of metallothionein within the injured brain: extracellular metallothioneins play an important role in the astrocyte-neuron response to injury

    DEFF Research Database (Denmark)

    Chung, Roger S; Penkowa, Milena; Dittmann, Justin

    2008-01-01

    for the first time the transfer of MT from astrocytes to neurons over a specific time course in vitro. Finally, we show that MT is rapidly internalized via the cell bodies of retinal ganglion cells in vivo and is a powerful promoter of axonal regeneration through the inhibitory environment of the completely...

  16. Expanded progenitor populations, vitreo-retinal abnormalities, and Müller glial reactivity in the zebrafish leprechaun/patched2 retina

    Directory of Open Access Journals (Sweden)

    Bibliowicz Jonathan

    2009-10-01

    Full Text Available Abstract Background The roles of the Hedgehog (Hh pathway in controlling vertebrate retinal development have been studied extensively; however, species- and context-dependent findings have provided differing conclusions. Hh signaling has been shown to control both population size and cell cycle kinetics of proliferating retinal progenitors, and to modulate differentiation within the retina by regulating the timing of cell cycle exit. While cell cycle exit has in turn been shown to control cell fate decisions within the retina, a direct role for the Hh pathway in retinal cell fate decisions has yet to be established in vivo. Results To gain further insight into Hh pathway function in the retina, we have analyzed retinal development in leprechaun/patched2 mutant zebrafish. While lep/ptc2 mutants possessed more cells in their retinas, all cell types, except for Müller glia, were present at identical ratios as those observed in wild-type siblings. lep/ptc2 mutants possessed a localized upregulation of GFAP, a marker for 'reactive' glia, as well as morphological abnormalities at the vitreo-retinal interface, where Müller glial endfeet terminate. In addition, analysis of the over-proliferation phenotype at the ciliary marginal zone (CMZ revealed that the number of proliferating progenitors, but not the rate of proliferation, was increased in lep/ptc2 mutants. Conclusion Our results indicate that Patched2-dependent Hh signaling does not likely play an integral role in neuronal cell fate decisions in the zebrafish retina. ptc2 deficiency in zebrafish results in defects at the vitreo-retinal interface and Müller glial reactivity. These phenotypes are similar to the ocular abnormalities observed in human patients suffering from Basal Cell Naevus Syndrome (BCNS, a disorder that has been linked to mutations in the human PTCH gene (the orthologue of the zebrafish ptc2, and point to the utility of the lep/ptc2 mutant line as a model for the study of BCNS

  17. Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex.

    Science.gov (United States)

    Benedetti, B; Matyash, V; Kettenmann, H

    2011-03-01

    Astrocytes in the barrel cortex respond with a transient Ca2+ increase to neuronal stimulation and this response is restricted to the stimulated barrel field. In the present study we suppressed the astrocyte response by dialysing these cells with the Ca2+ chelator BAPTA. Electrical stimulation triggered a depolarization in stellate or pyramidal ‘regular spiking' neurons from cortex layer 4 and 2/3 and this response was augmented in amplitude and duration after astrocytes were dialysed with BAPTA. Combined blockade of GABAA and GABAB receptors mimicked the effect of BAPTA dialysis, while glutamate receptor blockers had no effect. Moreover, the frequency of spontaneous postsynaptic currents was increased after BAPTA dialysis. Outside the range of BAPTA dialysis astrocytes responded with a Ca2+ increase, but in contrast to control, the response was no longer restricted to one barrel field. Our findings indicate that astrocytes control neuronal inhibition in the barrel cortex.

  18. A clinical approach to the diagnosis of retinal vasculitis.

    Science.gov (United States)

    El-Asrar, Ahmed M Abu; Herbort, Carl P; Tabbara, Khalid F

    2010-04-01

    Retinal vasculitis is a sight-threatening inflammatory eye condition that involves the retinal vessels. Detection of retinal vasculitis is made clinically, and is confirmed with the help of fundus fluorescein angiography. Active vascular disease is characterized by exudates around retinal vessels resulting in white sheathing or cuffing of the affected vessels. In this review, a practical approach to the diagnosis of retinal vasculitis is discussed based on ophthalmoscopic and fundus fluorescein angiographic findings.

  19. MR detection of retinal hemorrhages: correlation with graded ophthalmologic exam

    International Nuclear Information System (INIS)

    Beavers, Angela J.; Allbery, Sandra M.; Stagner, Anna M.; Hejkal, Thomas W.; Lyden, Elizabeth R.; Haney, Suzanne B.

    2015-01-01

    Dilated fundoscopic exam is considered the gold standard for detecting retinal hemorrhage, but expertise in obtaining this exam is not always immediately available. MRI can detect retinal hemorrhages, but correlation of the grade or severity of retinal hemorrhage on dilated fundoscopic exam with retinal hemorrhage visibility on MRI has not been described. To determine the value of standard brain protocol MRI in detecting retinal hemorrhage and to determine whether there is any correlation with MR detection of retinal hemorrhage and the dilated fundoscopic exam grade of hemorrhage. We conducted a retrospective chart review of 77 children <2 years old who were seen for head trauma from April 2007 to July 2013 and had both brain MRI and dilated fundoscopic exam or retinal camera images. A staff pediatric radiologist and radiology resident reviewed the MR images. Retinal hemorrhages were graded by a chief ophthalmology resident on a 12-point scale based on the retinal hemorrhage type, size, location and extent as seen on review of retinal camera images and detailed reports by ophthalmologists. Higher scores indicated increased severity of retinal hemorrhages. There was a statistically significant difference in the median grade of retinal hemorrhage examination between children who had retinal hemorrhage detected on MRI and children who did not have retinal hemorrhage detected on MRI (P = 0.02). When examination grade was categorized as low-grade (1-4), moderate-grade (5-8) or high-grade (>8) hemorrhage, there was a statistically significant association between exam grade and diagnosis based on MRI (P = 0.008). For example, only 14% of children with low-grade retinal hemorrhages were identified on MRI compared to 76% of children with high-grade hemorrhages. MR detection of retinal hemorrhage demonstrated a sensitivity of 61%, specificity of 100%, positive predictive value of 100% and negative predictive value of 63%. Retinal hemorrhage was best seen on the gradient

  20. Retinal phlebitis associated with autoimmune hemolytic anemia.

    Science.gov (United States)

    Chew, Fiona L M; Tajunisah, Iqbal

    2009-01-01

    To describe a case of retinal phlebitis associated with autoimmune hemolytic anemia. Observational case report. A 44-year-old Indian man diagnosed with autoimmune hemolytic anemia presented with a 1-week history of blurred vision in both eyes. Fundus biomicroscopy revealed bilateral peripheral retinal venous sheathing and cellophane maculopathy. Fundus fluorescent angiogram showed bilateral late leakage from the peripheral venous arcades and submacular fluid accumulation. The retinal phlebitis resolved following a blood transfusion and administration of systemic steroids. Retinopathy associated with autoimmune hemolytic anemia is not well known. This is thought to be the first documentation of retinal phlebitis occurring in this condition.

  1. Retinal astrocytoma in a dog.

    Science.gov (United States)

    Kuroki, Keiichi; Kice, Nathan; Ota-Kuroki, Juri

    2017-09-01

    A miniature schnauzer dog presenting with hyphema and glaucoma of the right eye had a retinal neoplasm. Neoplastic cells stained positively for glial fibrillary acidic protein, vimentin, and S-100 and largely negatively for oligodendrocyte transcription factor 2 by immunohistochemistry. The clinical and histopathological features of canine retinal astrocytomas are discussed.

  2. Retinal oxygen saturation before and after glaucoma surgery.

    Science.gov (United States)

    Nitta, Eri; Hirooka, Kazuyuki; Shimazaki, Takeru; Sato, Shino; Ukegawa, Kaori; Nakano, Yuki; Tsujikawa, Akitaka

    2017-08-01

    This study compared retinal vessel oxygen saturation before and after glaucoma surgery. Retinal oxygen saturation in glaucoma patients was measured using a non-invasive spectrophotometric retinal oximeter. Adequate image quality was found in 49 of the 108 consecutive glaucoma patients recruited, with 30 undergoing trabeculectomy, 11 EX-PRESS and eight trabeculotomy. Retinal oxygen saturation measurements in the retinal arterioles and venules were performed at 1 day prior to and at approximately 10 days after surgery. Statistical analysis was performed using a Student's t-test. After glaucoma surgery, intraocular pressure (IOP) decreased from 19.8 ± 7.7 mmHg to 9.0 ± 5.7 mmHg (p glaucoma surgery had an effect on the retinal venous oxygen saturation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. Risk of Retinal Detachment After Pediatric Cataract Surgery

    DEFF Research Database (Denmark)

    Haargaard, Birgitte; Andersen, Elisabeth W; Oudin, Anna

    2014-01-01

    PURPOSE: To determine the long-term risk of retinal detachment following pediatric cataract surgery and to identify risk factors for retinal detachment. METHODS: We included all children (aged 0 to 17 years) who during the time period of 1977 to 2005 underwent pediatric cataract surgery in Denmark...... was based on medical chart review. RESULTS: Among 1043 eyes of 656 children undergoing surgery for pediatric cataract, 25 eyes (23 children) developed retinal detachment at a median time of 9.1 years after surgery. The overall 20-year risk of retinal detachment was 7% (95% confidence interval [CI]: 3...... (16% [95% CI: 6%-24%]). CONCLUSIONS: The estimated overall risk of retinal detachment 20 years after pediatric cataract surgery was 7%, but only 3% for isolated cataract. Particularly high risks of retinal detachment after cataract surgery were associated with mental retardation and having other...

  4. [To cognize retinitis pigmentosa with scientific view].

    Science.gov (United States)

    Li, Gen-lin

    2009-03-01

    Retinitis pigmentosa (RP) is the most common inherited eye disease that usually leads into blind, and is high simplex and clinical heterogeneity. Recent years, some new hereditary forms have been found, such as digenic RP, mitochondrial RP, incomplete dominant inheritance RP. The phenotype of RP is multiplicity. Incompatible phenomenon between genotype and phenotypes was shown in some genes such as peripherin/RDS, RHO, RP2 and RP3. The complicated phenotype was shown in the rare RP forms, such as centricity RP, stemma RP, retinitis pigmentosa sine pigmento, and retinal degeneration slow. Retinal transplantation, retinal implantation, drug and neurotrophic factor therapy, and gene therapy have been well studied worldwide and presented some hopeful efficacy. Ophthalmologists and practitioners should cognize the new advance and new knowledge on RP therapy with a scientific view for better serving the RP patients.

  5. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice.

    Science.gov (United States)

    Fox, Donald A; Hamilton, W Ryan; Johnson, Jerry E; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B; O'Callaghan, James P

    2011-11-01

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was ≤ 1, ≤ 10, ~25 and ~40 μg/dL, respectively, on PN10 and by PN30 all were ≤ 1 μg/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Retinitis pigmentosa, pigmentary retinopathies, and neurologic diseases.

    Science.gov (United States)

    Bhatti, M Tariq

    2006-09-01

    Retinitis pigmentosa (RP) refers to a group of inherited retinal diseases with phenotypic and genetic heterogeneity. The pathophysiologic basis of the progressive visual loss in patients with RP is not completely understood but is felt to be due to a primary retinal photoreceptor cell degenerative process mainly affecting the rods of the peripheral retina. In most cases RP is seen in isolation (nonsyndromic), but in some other cases it may be a part of a genetic, metabolic, or neurologic syndrome or disorder. Nyctalopia, or night blindness, is the most common symptom of RP. The classic fundus appearance of RP includes retinal pigment epithelial cell changes resulting in retinal hypo- or hyperpigmentation ("salt-and-pepper"), retinal granularity, and bone spicule formation. The retinal vessels are often narrowed or attenuated and there is a waxy pallor appearance of the optic nerve head. Electroretinography will demonstrate rod and cone photoreceptor cell dysfunction and is a helpful test in the diagnosis and monitoring of patients with RP. A detailed history with pedigree analysis, a complete ocular examination, and the appropriate paraclinical testing should be performed in patients complaining of visual difficulties at night or in dim light. This review discusses the clinical manifestations of RP as well as describing the various systemic diseases, with a special emphasis on neurologic diseases, associated with a pigmentary retinopathy.

  7. Cytomegalovirus retinitis

    Science.gov (United States)

    ... have weakened immune systems as a result of: HIV/AIDS Bone marrow transplant Chemotherapy Drugs that suppress the immune system Organ transplant Symptoms Some people with CMV retinitis have no symptoms. ...

  8. Retinal vascular and structural dynamics during acute hyperglycaemia

    DEFF Research Database (Denmark)

    Klefter, Oliver N; Lauritsen, Tina Vilsbøll; Knop, Filip K

    2015-01-01

    PURPOSE: To compare retinal vascular dynamics during acute hyperglycaemia in patients with type 2 diabetes and healthy volunteers. METHODS: Twenty-one patients with type 2 diabetes and 27 healthy controls were examined with fundus photographic measurement of retinal vessel diameters, retinal...

  9. Nanowire arrays restore vision in blind mice.

    Science.gov (United States)

    Tang, Jing; Qin, Nan; Chong, Yan; Diao, Yupu; Yiliguma; Wang, Zhexuan; Xue, Tian; Jiang, Min; Zhang, Jiayi; Zheng, Gengfeng

    2018-03-06

    The restoration of light response with complex spatiotemporal features in retinal degenerative diseases towards retinal prosthesis has proven to be a considerable challenge over the past decades. Herein, inspired by the structure and function of photoreceptors in retinas, we develop artificial photoreceptors based on gold nanoparticle-decorated titania nanowire arrays, for restoration of visual responses in the blind mice with degenerated photoreceptors. Green, blue and near UV light responses in the retinal ganglion cells (RGCs) are restored with a spatial resolution better than 100 µm. ON responses in RGCs are blocked by glutamatergic antagonists, suggesting functional preservation of the remaining retinal circuits. Moreover, neurons in the primary visual cortex respond to light after subretinal implant of nanowire arrays. Improvement in pupillary light reflex suggests the behavioral recovery of light sensitivity. Our study will shed light on the development of a new generation of optoelectronic toolkits for subretinal prosthetic devices.

  10. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation.

    Science.gov (United States)

    Chaney, Shawnta Y; Mukherjee, Shradha; Giddabasappa, Anand; Rueda, Elda M; Hamilton, W Ryan; Johnson, Jerry E; Fox, Donald A

    2016-01-01

    Studies of neuronal development in the retina often examine the stages of proliferation, differentiation, and synaptic development, albeit independently. Our goal was to determine if a known neurotoxicant insult to a population of retinal progenitor cells (RPCs) would affect their eventual differentiation and synaptic development. To that end, we used our previously published human equivalent murine model of low-level gestational lead exposure (GLE). Children and animals with GLE exhibit increased scotopic electroretinogram a- and b-waves. Adult mice with GLE exhibit an increased number of late-born RPCs, a prolonged period of RPC proliferation, and an increased number of late-born rod photoreceptors and rod and cone bipolar cells (BCs), with no change in the number of late-born Müller glial cells or early-born neurons. The specific aims of this study were to determine whether increased and prolonged RPC proliferation alters the spatiotemporal differentiation and synaptic development of rods and BCs in early postnatal GLE retinas compared to control retinas. C57BL/6N mouse pups were exposed to lead acetate via drinking water throughout gestation and until postnatal day 10, which is equivalent to the human gestation period for retinal neurogenesis. RT-qPCR, immunohistochemical analysis, and western blots of well-characterized, cell-specific genes and proteins were performed at embryonic and early postnatal ages to assess rod and cone photoreceptor differentiation, rod and BC differentiation and synaptic development, and Müller glial cell differentiation. Real-time quantitative PCR (RT-qPCR) with the rod-specific transcription factors Nrl , Nr2e3 , and Crx and the rod-specific functional gene Rho , along with central retinal confocal studies with anti-recoverin and anti-rhodopsin antibodies, revealed a two-day delay in the differentiation of rod photoreceptors in GLE retinas. Rhodopsin immunoblots supported this conclusion. No changes in glutamine synthetase gene

  11. Retinal pigment epithelium culture;a potential source of retinal stem cells.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-07-01

    To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered.

  12. Oxygen-induced retinopathy in mice with retinal photoreceptor cell degeneration.

    Science.gov (United States)

    Zhang, Qian; Zhang, Zuo-Ming

    2014-04-25

    It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration. Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21. Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (Poxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice. Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Adaptive Optics Technology for High-Resolution Retinal Imaging

    Science.gov (United States)

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  14. DRP1 Suppresses Leptin and Glucose Sensing of POMC Neurons.

    Science.gov (United States)

    Santoro, Anna; Campolo, Michela; Liu, Chen; Sesaki, Hiromi; Meli, Rosaria; Liu, Zhong-Wu; Kim, Jung Dae; Diano, Sabrina

    2017-03-07

    Hypothalamic pro-opiomelanocortin (POMC) neurons regulate energy and glucose metabolism. Intracellular mechanisms that enable these neurons to respond to changes in metabolic environment are ill defined. Here we show reduced expression of activated dynamin-related protein (pDRP1), a mitochondrial fission regulator, in POMC neurons of fed mice. These POMC neurons displayed increased mitochondrial size and aspect ratio compared to POMC neurons of fasted animals. Inducible deletion of DRP1 of mature POMC neurons (Drp1 fl/fl -POMC-cre:ER T2 ) resulted in improved leptin sensitivity and glucose responsiveness. In Drp1 fl/fl -POMC-cre:ER T2 mice, POMC neurons showed increased mitochondrial size, ROS production, and neuronal activation with increased expression of Kcnj11 mRNA regulated by peroxisome proliferator-activated receptor (PPAR). Furthermore, deletion of DRP1 enhanced the glucoprivic stimulus in these neurons, causing their stronger inhibition and a greater activation of counter-regulatory responses to hypoglycemia that were PPAR dependent. Together, these data unmasked a role for mitochondrial fission in leptin sensitivity and glucose sensing of POMC neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Retinal Detachment

    Science.gov (United States)

    ... to your brain. It provides the sharp, central vision needed for reading, driving, and seeing fine detail. A retinal detachment lifts or pulls the retina from its normal position. It can occur at ...

  16. Coincidence of retinitis pigmentosa and pseudoexfoliative glaucoma

    Directory of Open Access Journals (Sweden)

    Božić Marija

    2017-01-01

    Full Text Available Introduction. This is an observational case report presenting retinitis pigmentosa associated with pseudoexfoliative glaucoma. Case outline. A 69-year-old man presented with retinitis pigmentosa. On examination, pseudoexfoliative material was detected on anterior segment structures, and intraocular pressure was 26 mmHg in the right and 24 mmHg in the left eye. The patient was commenced on topical antiglaucomatous therapy (timolol + dorzolamide twice daily, latanoprost once in the evening to both eyes. Conclusion. To the best of our knowledge, this is the first reported case of retinitis pigmentosa associated with pseudoexfoliative glaucoma. Although rare, retinitis pigmentosa and glaucoma can occur in the same eye.

  17. Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    Full Text Available A goal in human embryonic stem cell (hESC research is the faithful differentiation to given cell types such as neural lineages. During embryonic development, a basement membrane surrounds the neural plate that forms a tight, apico-basolaterally polarized epithelium before closing to form a neural tube with a single lumen. Here we show that the three-dimensional epithelial cyst culture of hESCs in Matrigel combined with neural induction results in a quantitative conversion into neuroepithelial cysts containing a single lumen. Cells attain a defined neuroepithelial identity by 5 days. The neuroepithelial cysts naturally generate retinal epithelium, in part due to IGF-1/insulin signaling. We demonstrate the utility of this epithelial culture approach by achieving a quantitative production of retinal pigment epithelial (RPE cells from hESCs within 30 days. Direct transplantation of this RPE into a rat model of retinal degeneration without any selection or expansion of the cells results in the formation of a donor-derived RPE monolayer that rescues photoreceptor cells. The cyst method for neuroepithelial differentiation of pluripotent stem cells is not only of importance for RPE generation but will also be relevant to the production of other neuronal cell types and for reconstituting complex patterning events from three-dimensional neuroepithelia.

  18. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech.

    Science.gov (United States)

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.

  19. Inherited Retinal Degenerative Clinical Trial Network. Addendum

    Science.gov (United States)

    2013-10-01

    inherited orphan retinal degenerative diseases and dry age-related macular degeneration (AMD) through the conduct of clinical trials and other...design and conduct of effective and efficient clinical trials for inherited orphan retinal degenerative diseases and dry AMD; • Limited number and...linica l trial in the NEER network for autosomal dominant retinitis pigmentosa, and the ProgSTAR studies for Stargardt disease ) . As new interventions b

  20. Inner neural retina loss in central retinal artery occlusion.

    Science.gov (United States)

    Ikeda, Fumiko; Kishi, Shoji

    2010-09-01

    To report morphologic retinal changes and visual outcomes in acute and chronic central retinal artery occlusion (CRAO). We reviewed ten eyes of ten patients with CRAO (age, 65.3 ± 10.2 years) and measured retinal thicknesses at the central fovea and the perifovea using optical coherence tomography (OCT) over 8 ± 4 months. During the acute phase (within 10 days), the mean inner retinal thicknesses were 148% and 139% of normal values at 1 mm nasal and temporal to the fovea. They decreased to 22% and 11% of normal inner retinal thickness during the chronic phase (3 months or later). The retinal thickness at the perifovea decreased linearly until 3 months but was stable during the chronic phase. In contrast, the foveal thickness increased slightly in the acute phase but was equivalent to the normal level during the chronic phase. As a result of inner retinal atrophy, the foveal pit was shallow during the chronic phase. The final visual acuity was correlated positively with retinal thickness at the perifovea during the chronic CRAO phase. OCT showed that inner retinal necrosis with early swelling and late atrophy occurred in CRAO. The fovea and outer retina appeared to be excluded from ischemic change. The residual inner retina at the perifovea determined the final visual outcomes.

  1. Multiple evanescent white dot syndrome associated with retinal vasculitis

    Directory of Open Access Journals (Sweden)

    Takahashi A

    2015-09-01

    Full Text Available Akihiro Takahashi, Wataru Saito, Yuki Hashimoto, Susumu Ishida Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan Purpose: A recent study revealed thickening of the inner retinal layers in acute stage of multiple evanescent white dot syndrome (MEWDS; however, the pathogenesis is still unknown. We report two cases with MEWDS whose funduscopy showed obvious retinal vasculitis. Methods: Case reports. Results: Healthy myopic 16- and 27-year-old women were the cases under study. In both cases, funduscopic examination revealed multiple, faint, small, subretinal white dots at the posterior pole to the midperiphery and macular granularity oculus dexter. Retinal vascular sheathing was also observed at midperiphery. Late-phase fluorescein angiography revealed leakages corresponding to the vascular sheathing. Enhanced depth imaging optical coherence tomography revealed the discontinuity of the ellipsoid zone corresponding to the white dots and increased macular choroidal thickness. One month later, these white dots and retinal sheathing spontaneously resolved in both cases. Three months later, impairments of the outer retinal morphology and the visual acuity were restored. Conclusion: These results suggest that retinal vasculitis possibly plays a role in the pathogenesis of thickened inner retinal layers in acute stage of MEWDS. Keywords: enhanced depth imaging optical coherence tomography, choroidal thickness, inner retinal layer, retinal vascular sheathing

  2. Mitochondrial dysfunction underlying outer retinal diseases

    DEFF Research Database (Denmark)

    Lefevere, Evy; Toft-Kehler, Anne Katrine; Vohra, Rupali

    2017-01-01

    Dysfunction of photoreceptors, retinal pigment epithelium (RPE) or both contribute to the initiation and progression of several outer retinal disorders. Disrupted Müller glia function might additionally subsidize to these diseases. Mitochondrial malfunctioning is importantly associated with outer...

  3. Posterior vitreous detachment - prevalence of and risk factors for retinal tears

    Directory of Open Access Journals (Sweden)

    Bond-Taylor M

    2017-09-01

    Full Text Available Martin Bond-Taylor,1 Gunnar Jakobsson,1,2 Madeleine Zetterberg1,2 1Department of Ophthalmology, Sahlgrenska University Hospital, Mölndal, 2Department of Clinical Neuroscience/Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden Purpose: The present study aimed to describe clinical characteristics of patients with posterior vitreous detachment (PVD, to determine the prevalence of retinal tears in PVD patients, and to find predictors for retinal tears in this patient group. Methods: Retrospective analysis of medical records on patients diagnosed with PVD, retinal tears, or vitreous hemorrhage at the Department of Ophthalmology at Sahlgrenska University Hospital, a tertiary eye center. Results: Between February and July 2009, 365 patients consulted the Department of Ophthalmology for PVD-related symptoms. The incidence of retinal tears was 14.5% (n=53 and that of vitreous and/or retinal hemorrhage was 22.7% (n=83. For analysis of possible predictors for complications to PVD, patients diagnosed with retinal tears or vitreous hemorrhage between May and July 2009 were also included in the study, resulting in a total of 426 patients. Predictors of a retinal tear were symptoms of visual impairment (P=0.024, the presence of vitreous or retinal hemorrhage at examination (P<0.001, and a duration of symptoms for <24 hours (P=0.004. Symptoms of flashes did not constitute an extra risk of retinal tears (P=0.135. Subsequent retinal pathology (follow-up time 4.5 years, including vitreous detachment/hemorrhage or retinal tears/detachment, occurred more often in patients presenting with a retinal tear. For patients with a retinal tear, the relative risk of having a retinal detachment in the same eye during the follow-up time was 17.7 when compared to patients without a retinal tear (risk ratio 17.7, 95% confidence interval 2.2–145. Conclusion: Patients seeking care on the first day have a

  4. Coats-like retinitis pigmentosa: Reports of three cases.

    Science.gov (United States)

    Kan, Emrah; Yilmaz, Turgut; Aydemir, Orhan; Güler, Mete; Kurt, Jülide

    2007-06-01

    Describing the ophthalmic findings of an exudative vasculopathy called as Coats-like retinitis pigmentosa on three patients. The etiology of the Coats-like retinitis pigmentosa is obscure. The principal theories have been discussed in this article. Three observational case series have been discussed. Complete ophthalmic examinations and color fundus photos, visual field, and fluorescein angiography have been performed. We have identified 3 patients who have some typical clinical features of Coats-like retinitis pigmentosa; peripheral serous retinal detachment, telangiectasia, prominent lipid deposition, pigmentary changes in peripheral retina, and loss of vision. None of the three patients had positive family history. All of the patients have had symptoms of nyctalopia, decreased central vision, and two of them have had constriction of visual field. All of the patients have had cataracts and two of them underwent cataract surgery. Fundus examination and fluorescein angiography of patients revealed typical retinitis pigmentosa with Coats-type changes in bilateral inferiotemporal quadrants. A better understanding of clinical features and genetic etiology of Coats-type retinitis pigmentosa will aid diagnosis and development of new therapies. If sufficient conditions arise, genetic factors that influence the expression of CRB1 mutations in Coats-like retinitis pigmentosa should be detected.

  5. Dexamethasone Implant (Ozurdex in a Case with Unilateral Simultaneous Central Retinal Vein and Branch Retinal Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Taylan Ozturk

    2015-02-01

    Full Text Available Simultaneous branch retinal artery and vein occlusion is a rare condition that may cause severe visual loss, and its treatment is often unrewarding. Herein, we report a case with simultaneous central retinal vein and branch retinal artery occlusion; it was successfully treated with a single dexamethasone intravitreal implant. The affected eye attained a visual acuity level of 20/25 from the visual acuity of hand motions at presentation with a residual, but relatively diminished, altitudinal scotoma during a follow-up period of 6 months.

  6. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.

    Directory of Open Access Journals (Sweden)

    Tristan Aumentado-Armstrong

    2015-10-01

    Full Text Available Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.

  7. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.

    Science.gov (United States)

    Aumentado-Armstrong, Tristan; Metzen, Michael G; Sproule, Michael K J; Chacron, Maurice J

    2015-10-01

    Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.

  8. Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex

    Science.gov (United States)

    Benedetti, B; Matyash, V; Kettenmann, H

    2011-01-01

    Astrocytes in the barrel cortex respond with a transient Ca2+ increase to neuronal stimulation and this response is restricted to the stimulated barrel field. In the present study we suppressed the astrocyte response by dialysing these cells with the Ca2+ chelator BAPTA. Electrical stimulation triggered a depolarization in stellate or pyramidal ‘regular spiking’ neurons from cortex layer 4 and 2/3 and this response was augmented in amplitude and duration after astrocytes were dialysed with BAPTA. Combined blockade of GABAA and GABAB receptors mimicked the effect of BAPTA dialysis, while glutamate receptor blockers had no effect. Moreover, the frequency of spontaneous postsynaptic currents was increased after BAPTA dialysis. Outside the range of BAPTA dialysis astrocytes responded with a Ca2+ increase, but in contrast to control, the response was no longer restricted to one barrel field. Our findings indicate that astrocytes control neuronal inhibition in the barrel cortex. PMID:21224221

  9. Bilateral acute retinal necrosis after herpetic meningitis

    Directory of Open Access Journals (Sweden)

    Katsura T

    2012-04-01

    Full Text Available Keisho Hirota1,2, Masayuki Akimoto1,3, Toshiaki Katsura21Department of Ophthalmology, Kyoto Medical Center, National Hospital Organization, 2Internal Medicine, Kyoto Medical Center, 3Clinical Research Center, Kyoto Medical Center, Kyoto, JapanPurpose: The report of a case of bilateral acute retinal necrosis after herpetic meningitis.Case report: A 47-year-old man was admitted with the chief complaint of persistent high fever and transient loss of consciousness. Although his general condition improved after intravenous acyclovir administration, the patient presented with visual loss in both eyes 4 days after admission. Visual acuity in his right eye was 20/200 and his left eye had light perception alone. Both eyes showed panretinal arteritis diagnosed as acute retinal necrosis. Panretinal photocoagulation was performed for both eyes. Progression of retinal detachment was prevented in both eyes; however, visual acuity of the left eye was totally lost because of neovascular glaucoma. Visual acuity of the right eye recovered to 20/20.Conclusion: Although cases of bilateral acute retinal necrosis have been reported after herpetic encephalitis, this condition is rare after herpetic meningitis. Prophylactic acyclovir therapy and early panretinal photocoagulation may prevent retinal detachment and improve the prognosis. Neurologists and ophthalmologists should be aware that not only herpetic encephalitis but also herpetic meningitis can lead to acute retinal necrosis within a very short interval.Keywords: acute retinal necrosis, herpetic meningitis, herpes simplex, varicella zoster virus

  10. End-to-End Adversarial Retinal Image Synthesis.

    Science.gov (United States)

    Costa, Pedro; Galdran, Adrian; Meyer, Maria Ines; Niemeijer, Meindert; Abramoff, Michael; Mendonca, Ana Maria; Campilho, Aurelio

    2018-03-01

    In medical image analysis applications, the availability of the large amounts of annotated data is becoming increasingly critical. However, annotated medical data is often scarce and costly to obtain. In this paper, we address the problem of synthesizing retinal color images by applying recent techniques based on adversarial learning. In this setting, a generative model is trained to maximize a loss function provided by a second model attempting to classify its output into real or synthetic. In particular, we propose to implement an adversarial autoencoder for the task of retinal vessel network synthesis. We use the generated vessel trees as an intermediate stage for the generation of color retinal images, which is accomplished with a generative adversarial network. Both models require the optimization of almost everywhere differentiable loss functions, which allows us to train them jointly. The resulting model offers an end-to-end retinal image synthesis system capable of generating as many retinal images as the user requires, with their corresponding vessel networks, by sampling from a simple probability distribution that we impose to the associated latent space. We show that the learned latent space contains a well-defined semantic structure, implying that we can perform calculations in the space of retinal images, e.g., smoothly interpolating new data points between two retinal images. Visual and quantitative results demonstrate that the synthesized images are substantially different from those in the training set, while being also anatomically consistent and displaying a reasonable visual quality.

  11. Optical Coherence Tomography Angiography in Retinal Diseases.

    Science.gov (United States)

    Chalam, K V; Sambhav, Kumar

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm (a vital component of OCTA software) helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD), retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV) in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA). Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases.

  12. Screening retinal transplants with Fourier-domain OCT

    Science.gov (United States)

    Rao, Bin

    2009-02-01

    Transplant technologies have been studied for the recovery of vision loss from retinitis pigmentosa (RP) and age-related macular degeneration (AMD). In several rodent retinal degeneration models and in patients, retinal progenitor cells transplanted as layers to the subretinal space have been shown to restore or preserve vision. The methods for evaluation of transplants are expensive considering the large amount of animals. Alternatively, time-domain Stratus OCT was previously shown to be able to image the morphological structure of transplants to some extent, but could not clearly identify laminated transplants. The efficacy of screening retinal transplants with Fourier-domain OCT was studied on 37 S334ter line 3 rats with retinal degeneration 6-67 days after transplant surgery. The transplants were morphologically categorized as no transplant, detachment, rosettes, small laminated area and larger laminated area with both Fourier-domain OCT and histology. The efficacy of Fourier-domain OCT in screening retinal transplants was evaluated by comparing the categorization results with OCT and histology. Additionally, 4 rats were randomly selected for multiple OCT examinations (1, 5, 9, 14 and 21days post surgery) in order to determine the earliest image time of OCT examination since the transplanted tissue may need some time to show its tendency of growing. Finally, we demonstrated the efficacy of Fourier-domain OCT in screening retinal transplants in early stages and determined the earliest imaging time for OCT. Fourier-domain OCT makes itself valuable in saving resource spent on animals with unsuccessful transplants.

  13. Coding of vocalizations by single neurons in ventrolateral prefrontal cortex.

    Science.gov (United States)

    Plakke, Bethany; Diltz, Mark D; Romanski, Lizabeth M

    2013-11-01

    Neuronal activity in single prefrontal neurons has been correlated with behavioral responses, rules, task variables and stimulus features. In the non-human primate, neurons recorded in ventrolateral prefrontal cortex (VLPFC) have been found to respond to species-specific vocalizations. Previous studies have found multisensory neurons which respond to simultaneously presented faces and vocalizations in this region. Behavioral data suggests that face and vocal information are inextricably linked in animals and humans and therefore may also be tightly linked in the coding of communication calls in prefrontal neurons. In this study we therefore examined the role of VLPFC in encoding vocalization call type information. Specifically, we examined previously recorded single unit responses from the VLPFC in awake, behaving rhesus macaques in response to 3 types of species-specific vocalizations made by 3 individual callers. Analysis of responses by vocalization call type and caller identity showed that ∼19% of cells had a main effect of call type with fewer cells encoding caller. Classification performance of VLPFC neurons was ∼42% averaged across the population. When assessed at discrete time bins, classification performance reached 70 percent for coos in the first 300 ms and remained above chance for the duration of the response period, though performance was lower for other call types. In light of the sub-optimal classification performance of the majority of VLPFC neurons when only vocal information is present, and the recent evidence that most VLPFC neurons are multisensory, the potential enhancement of classification with the addition of accompanying face information is discussed and additional studies recommended. Behavioral and neuronal evidence has shown a considerable benefit in recognition and memory performance when faces and voices are presented simultaneously. In the natural environment both facial and vocalization information is present simultaneously and

  14. Retinitis pigmentosa

    Science.gov (United States)

    ... treatments for retinitis pigmentosa, including the use of DHA, which is an omega-3 fatty acid. Other ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 630. ...

  15. Temporal characteristics of gustatory responses in rat parabrachial neurons vary by stimulus and chemosensitive neuron type.

    Science.gov (United States)

    Geran, Laura; Travers, Susan

    2013-01-01

    It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of "sweet" (sucrose), "salty" (NaCl), "sour" (citric acid), and "bitter" (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500 ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs.

  16. Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats.

    Directory of Open Access Journals (Sweden)

    Felix Ulbrich

    Full Text Available Retinal ischemia and reperfusion injuries (IRI permanently affect neuronal tissue and function by apoptosis and inflammation due to the limited regenerative potential of neurons. Recently, evidence emerged that the noble gas Argon exerts protective properties, while lacking any detrimental or adverse effects. We hypothesized that Argon inhalation after IRI would exert antiapoptotic effects in the retina, thereby protecting retinal ganglion cells (RGC of the rat's eye.IRI was performed on the left eyes of rats (n = 8 with or without inhaled Argon postconditioning (25, 50 and 75 Vol% for 1 hour immediately or delayed after ischemia (i.e. 1.5 and 3 hours. Retinal tissue was harvested after 24 hours to analyze mRNA and protein expression of Bcl-2, Bax and Caspase-3, NF-κB. Densities of fluorogold-prelabeled RGCs were analyzed 7 days after injury in whole-mounts. Histological tissue samples were prepared for immunohistochemistry and blood was analyzed regarding systemic effects of Argon or IRI. Statistics were performed using One-Way ANOVA.IRI induced RGC loss was reduced by Argon 75 Vol% inhalation and was dose-dependently attenuated by lower concentrations, or by delayed Argon inhalation (1504±300 vs. 2761±257; p<0.001. Moreover, Argon inhibited Bax and Bcl-2 mRNA expression significantly (Bax: 1.64±0.30 vs. 0.78±0.29 and Bcl-2: 2.07±0.29 vs. 0.99±0.22; both p<0.01, as well as caspase-3 cleavage (1.91±0.46 vs. 1.05±0.36; p<0.001. Expression of NF-κB was attenuated significantly. Immunohistochemistry revealed an affection of Müller cells and astrocytes. In addition, IRI induced leukocytosis was reduced significantly after Argon inhalation at 75 Vol%.Immediate and delayed Argon postconditioning protects IRI induced apoptotic loss of RGC in a time- and dose-dependent manner, possibly mediated by the inhibition of NF-κB. Further studies need to evaluate Argon's possible role as a therapeutic option.

  17. Surgical and visual outcomes of retinal detachment surgery in eyes with chorio-retinal coloboma

    International Nuclear Information System (INIS)

    Zafar, S.A.; Qureshi, N.A.; Pathan, A.H.K.

    2016-01-01

    Objective: To evaluate the anatomical and visual outcome of surgical management of retinal detachment associated with chorio-retinal coloboma. Study Design: Prospective interventional case series Place and Duration of Study: This study was conducted at Al-Shifa Trust Eye Hospital Rawalpindi from Jan 2012 to Dec 2013. Material and Methods: Twenty one eyes (21 patients) that underwent surgery for retinal detachment associated with chorio-retinal colobomas were selected. Evaluation was done on the basis of type of intervention, final visual acuity and anatomical outcome and complications. Out of 21, 19(90.47 percent) eyes underwent pars plana vitrectomy with silicone oil (SO) and 2(9.52 percent) underwent primary scleral buckling surgery. SO was removed in 9 (47.36 percent) eyes at final follow up. Encircling band was placed in 12 (63.15 percent) eyes based on peroperative judgment of surgeon. Intra-operative lensectomy was performed in 6 (28.57 percent) eyes. The main outcome measures were retinal re-attachment and visual recovery. Statistical analysis was performed using IBM statistical package for social sciences (SPSS) Statistics (version 17.0, Chicago, Illinois, USA). Qualitative variables were described using percentage; quantitative data were defined using mean +- standard deviation. The pre op and post op frequency of best corrected visual acuity (BVA) was compared using Wilcoxan Signed Ranks Test. Confidence interval was 95 percent (level of significance p<0.05). Results: The mean number of operations per eye were 1.57+- 0.74; mean follow-up was 13.1 months (range 12-18). The retina remained attached in 18 eyes (85.71 percent) at final follow-up. The post op BCVA improved significantly as compared to pre op BCVA (p< 0.01). Mean pre op BCVA was counting fingers (CF) and mean post op value of BCVA was 3/60. Conclusion: Pars plana vitrectomy along with silicon oil tamponade for retinal detachment related to choroiretinal coloboma improves the long

  18. Low Vision Rehabilitation of Retinitis Pigmentosa. Practice Report

    Science.gov (United States)

    Rundquist, John

    2004-01-01

    Retinitis pigmentosa is a rod-cone dystrophy, commonly genetic in nature. Approximately 60-80% of those with retinitis pigmentosa inherit it by an autosomal recessive transmission (Brilliant, 1999). There have been some reported cases with no known family history. The symptoms of retinitis pigmentosa are decreased acuity, photophobia, night…

  19. Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats☆

    Science.gov (United States)

    Li, Guang; Garza, Bryan De La; Shih, Yen-Yu I.; Muir, Eric R.; Duong, Timothy Q.

    2013-01-01

    The Royal College of Surgeons (RCS) rat is an established animal model of retinitis pigmentosa, a family of inherited retinal diseases which starts with loss of peripheral vision and progresses to eventual blindness. Blood flow (BF), an important physiological parameter, is intricately coupled to metabolic function under normal physiological conditions and is perturbed in many neurological and retinal diseases. This study reports non-invasive high-resolution MRI (44 × 44 × 600 μm) to image quantitative retinal and choroidal BF and layer-specific retinal thicknesses in RCS rat retinas at different stages of retinal degeneration compared with age-matched controls. The unique ability to separate retinal and choroidal BF was made possible by the depth-resolved MRI technique. RBF decreased with progressive retinal degeneration, but ChBF did not change in RCS rats up to post-natal day 90. We concluded that choroidal and retinal circulations have different susceptibility to progressive retinal degeneration in RCS rats. Layer-specific retinal thickness became progressively thinner and was corroborated by histological analysis in the same animals. MRI can detect progressive anatomical and BF changes during retinal degeneration with laminar resolution. PMID:22721720

  20. Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats.

    Science.gov (United States)

    Li, Guang; De La Garza, Bryan; Shih, Yen-Yu I; Muir, Eric R; Duong, Timothy Q

    2012-08-01

    The Royal College of Surgeons (RCS) rat is an established animal model of retinitis pigmentosa, a family of inherited retinal diseases which starts with loss of peripheral vision and progresses to eventual blindness. Blood flow (BF), an important physiological parameter, is intricately coupled to metabolic function under normal physiological conditions and is perturbed in many neurological and retinal diseases. This study reports non-invasive high-resolution MRI (44 × 44 × 600 μm) to image quantitative retinal and choroidal BF and layer-specific retinal thicknesses in RCS rat retinas at different stages of retinal degeneration compared with age-matched controls. The unique ability to separate retinal and choroidal BF was made possible by the depth-resolved MRI technique. RBF decreased with progressive retinal degeneration, but ChBF did not change in RCS rats up to post-natal day 90. We concluded that choroidal and retinal circulations have different susceptibility to progressive retinal degeneration in RCS rats. Layer-specific retinal thickness became progressively thinner and was corroborated by histological analysis in the same animals. MRI can detect progressive anatomical and BF changes during retinal degeneration with laminar resolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Regulatory and Economic Considerations of Retinal Drugs.

    Science.gov (United States)

    Shah, Ankoor R; Williams, George A

    2016-01-01

    The advent of anti-VEGF therapy for neovascular age-related macular degeneration and macular edema secondary to retinal vein occlusion and diabetes mellitus has prevented blindness in tens of thousands of people. However, the costs of these drugs are without precedent in ophthalmic drug therapeutics. An analysis of the financial implications of retinal drugs and the impact of the Food and Drug Administration on treatment of retinal disease must include not only an evaluation of the direct costs of the drugs and the costs associated with their administration, but also the cost savings which accrue from their clinical benefit. This chapter will discuss the financial and regulatory issues associated with retinal drugs. © 2016 S. Karger AG, Basel.

  2. Nerve Growth Factor Gene Therapy Activates Neuronal Responses in Alzheimer’s Disease

    Science.gov (United States)

    Tuszynski, Mark H.; Yang, Jennifer H.; Barba, David; U, H S.; Bakay, Roy; Pay, Mary M.; Masliah, Eliezer; Conner, James M.; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H.

    2016-01-01

    IMPORTANCE Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and lacks effective disease modifying therapies. In 2001 we initiated a clinical trial of Nerve Growth Factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in AD patients. We present post-mortem findings in 10 subjects with survival times ranging from 1 to 10 years post-treatment. OBJECTIVE To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. DESIGN, SETTING, AND PARTICIPANTS 10 patients with early AD underwent NGF gene therapy using either ex vivo or in vivo gene transfer. The brains of all eight patients in the first Phase 1 ex vivo trial and two patients in a subsequent Phase 1 in vivo trial were examined. MAIN OUTCOME MEASURES Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In two cases, NGF protein levels were measured by ELISA. RESULTS Degenerating neurons in the AD brain respond to NGF. All patients exhibited a trophic response to NGF, in the form of axonal sprouting toward the NGF source. Comparing treated and non-treated sides of the brain in three patients that underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P>0.05). Activation of cellular signaling and functional markers were present in two patients that underwent AAV2-mediated NGF gene transfer. Neurons exhibiting tau pathology as well as neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic genes with resulting activation of cell signaling. No adverse pathological effects related to NGF were observed. CONCLUSIONS AND RELEVANCE These findings indicate that

  3. Prolonged Prevention of Retinal Degeneration with Retinylamine Loaded Nanoparticles

    OpenAIRE

    Puntel, Anthony; Maeda, Akiko; Golczak, Marcin; Gao, Song-Qi; Yu, Guanping; Palczewski, Krzysztof; Lu, Zheng-Rong

    2015-01-01

    Retinal degeneration impairs the vision of millions in all age groups worldwide. Increasing evidence suggests that the etiology of many retinal degenerative diseases is associated with impairment in biochemical reactions involved in the visual cycle, a metabolic pathway responsible for regeneration of the visual chromophore (11-cis-retinal). Inefficient clearance of toxic retinoid metabolites, especially all-trans-retinal, is considered responsible for photoreceptor cytotoxicity. Primary amin...

  4. Retinal vascular speed prematurity requiring treatment.

    Science.gov (United States)

    Solans Pérez de Larraya, Ana M; Ortega Molina, José M; Fernández, José Uberos; Escudero Gómez, Júlia; Salgado Miranda, Andrés D; Chaves Samaniego, Maria J; García Serrano, José L

    2018-03-01

    To analyse the speed of temporal retinal vascularisation in preterm infants included in the screening programme for retinopathy of prematurity. A total of 185 premature infants were studied retrospectively between 2000 and 2017 in San Cecilio University Hospital of Granada, Spain. The method of binocular indirect ophthalmoscopy with indentation was used for the examination. The horizontal disc diameter was used as a unit of length. Speed of temporal retinal vascularisation (disc diameter/week) was calculated as the ratio between the extent of temporal retinal vascularisation (disc diameter) and the time in weeks. The weekly temporal retinal vascularisation (0-1.25 disc diameter/week, confidence interval) was significantly higher in no retinopathy of prematurity (0.73 ± 0.22 disc diameter/week) than in stage 1 retinopathy of prematurity (0.58 ± 0.22 disc diameter/week). It was also higher in stage 1 than in stages 2 (0.46 ± 0.14 disc diameter/week) and 3 of retinopathy of prematurity (0.36 ± 0.18 disc diameter/week). The rate of temporal retinal vascularisation (disc diameter/week) decreases when retinopathy of prematurity stage increases. The area under the receiver operating characteristic curve was 0.85 (95% confidence interval: 0.79-0.91) for retinopathy of prematurity requiring treatment versus not requiring treatment. The best discriminative cut-off point was a speed of retinal vascularisation prematurity may be required. However, before becoming a new standard of care for treatment, it requires careful documentation, with agreement between several ophthalmologists.

  5. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  6. First-spike latency in Hodgkin's three classes of neurons.

    Science.gov (United States)

    Wang, Hengtong; Chen, Yueling; Chen, Yong

    2013-07-07

    We study the first-spike latency (FSL) in Hodgkin's three classes of neurons with the Morris-Lecar neuron model. It is found that all the three classes of neurons can encode an external stimulus into FSLs. With DC inputs, the FSLs of all of the neurons decrease with input intensity. With input current decreased to the threshold, class 1 neurons show an arbitrary long FSL whereas class 2 and 3 neurons exhibit the short-limit FSLs. When the input current is sinusoidal, the amplitude, frequency and initial phase can be encoded by all the three classes of neurons. The FSLs of all of the neurons decrease with the input amplitude and frequency. When the input frequency is too high, all of the neurons respond with infinite FSLs. When the initial phase increases, the FSL decreases and then jumps to a maximal value and finally decreases linearly. With changes in the input parameters, the FSLs of the class 1 and 2 neurons exhibit similar properties. However, the FSL of the class 3 neurons became slightly longer and only produces responses for a narrow range of initial phase if input frequencies are low. Moreover, our results also show that the FSL and firing rate responses are mutually independent processes and that neurons can encode an external stimulus into different FSLs and firing rates simultaneously. This finding is consistent with the current theory of dual or multiple complementary coding mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Alterations in NMDA receptor expression during retinal degeneration in the RCS rat.

    Science.gov (United States)

    Gründer, T; Kohler, K; Guenther, E

    2001-01-01

    To determine how a progressive loss of photoreceptor cells and the concomitant loss of glutamatergic input to second-order neurons can affect inner-retinal signaling, glutamate receptor expression was analyzed in the Royal College of Surgeons (RCS) rat, an animal model of retinitis pigmentosa. Immunohistochemistry was performed on retinal sections of RCS rats and congenic controls between postnatal (P) day 3 and the aged adult (up to P350) using specific antibodies against N-methyl-D-aspartate (NMDA) subunits. All NMDA subunits (NR1, NR2A-2D) were expressed in control and dystrophic retinas at all ages, and distinct patterns of labeling were found in horizontal cells, subpopulations of amacrine cells and ganglion cells, as well as in the outer and inner plexiform layer (IPL). NRI immunoreactivity in the inner plexiform layer of adult control retinas was concentrated in two distinct bands, indicating a synaptic localization of NMDA receptors in the OFF and ON signal pathways. In the RCS retina, these bands of NRI immunoreactivity in the IPL were much weaker in animals older than P40. In parallel, NR2B immunoreactivity in the outer plexiform layer (OPL) of RCS rats was always reduced compared to controls and vanished between P40 and P120. The most striking alteration observed in the degenerating retina, however, was a strong expression of NRI immunoreactivity in Müller cell processes in the inner retina which was not observed in control animals and which was present prior to any visible sign of photoreceptor degeneration. The results suggest functional changes in glutamatergic receptor signaling in the dystrophic retina and a possible involvement of Müller cells in early processes of this disease.

  8. Probabilistic retinal vessel segmentation

    Science.gov (United States)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  9. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.

    Science.gov (United States)

    Rueda, Elda M; Johnson, Jerry E; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J; Sigel, Irena; Chaney, Shawnta Y; Fox, Donald A

    2016-01-01

    combined results indicate that glycolysis is regulated by the compartmental expression of hexokinase 2, pyruvate kinase M1, and pyruvate kinase M2 in photoreceptors, whereas the inner retinal neurons exhibit a lower capacity for glycolysis and aerobic glycolysis. Expression of nucleoside diphosphate kinase, mitochondria-associated adenylate kinase, and several mitochondria-associated creatine kinase isozymes was highest in the outer retina, whereas expression of cytosolic adenylate kinase and brain creatine kinase was higher in the cones, horizontal cells, and amacrine cells indicating the diversity of ATP-buffering strategies among retinal neurons. Based on the antibody intensities and the COX and LDH activity, Müller glial cells (MGCs) had the lowest capacity for glycolysis, aerobic glycolysis, and OXPHOS. However, they showed high expression of glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate thiokinase, GABA transaminase, and ~P transferring kinases. This suggests that MGCs utilize TCA cycle anaplerosis and cataplerosis to generate GTP and ~P transferring kinases to produce ATP that supports MGC energy requirements. Our comprehensive and integrated results reveal that the adult mouse retina expresses numerous isoforms of ATP synthesizing, regulating, and buffering genes; expresses differential cellular and compartmental levels of glycolytic, OXPHOS, TCA cycle, and ~P transferring kinase proteins; and exhibits differential layer-by-layer LDH and COX activity. New insights into cell-specific and compartmental ATP and GTP production, as well as utilization and buffering strategies and their relationship with known retinal and cellular functions, are discussed. Developing therapeutic strategies for neuroprotection and treating retinal deficits and degeneration in a cell-specific manner will require such knowledge. This work provides a platform for future research directed at identifying the molecular targets and proteins that regulate these processes.

  10. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.

    Directory of Open Access Journals (Sweden)

    Pavel Masek

    Full Text Available Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.

  11. An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment

    OpenAIRE

    Mathew, David J.; Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V.

    2016-01-01

    Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were al...

  12. Stem Cell Therapies in Retinal Disorders

    Directory of Open Access Journals (Sweden)

    Aakriti Garg

    2017-02-01

    Full Text Available Stem cell therapy has long been considered a promising mode of treatment for retinal conditions. While human embryonic stem cells (ESCs have provided the precedent for regenerative medicine, the development of induced pluripotent stem cells (iPSCs revolutionized this field. iPSCs allow for the development of many types of retinal cells, including those of the retinal pigment epithelium, photoreceptors, and ganglion cells, and can model polygenic diseases such as age-related macular degeneration. Cellular programming and reprogramming technology is especially useful in retinal diseases, as it allows for the study of living cells that have genetic variants that are specific to patients’ diseases. Since iPSCs are a self-renewing resource, scientists can experiment with an unlimited number of pluripotent cells to perfect the process of targeted differentiation, transplantation, and more, for personalized medicine. Challenges in the use of stem cells are present from the scientific, ethical, and political realms. These include transplant complications leading to anatomically incorrect placement, concern for tumorigenesis, and incomplete targeting of differentiation leading to contamination by different types of cells. Despite these limitations, human ESCs and iPSCs specific to individual patients can revolutionize the study of retinal disease and may be effective therapies for conditions currently considered incurable.

  13. Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging

    Science.gov (United States)

    Bartczak, Piotr; Fält, Pauli; Penttinen, Niko; Ylitepsa, Pasi; Laaksonen, Lauri; Lensu, Lasse; Hauta-Kasari, Markku; Uusitalo, Hannu

    2017-04-01

    Retinal photography is a standard method for recording retinal diseases for subsequent analysis and diagnosis. However, the currently used white light or red-free retinal imaging does not necessarily provide the best possible visibility of different types of retinal lesions, important when developing diagnostic tools for handheld devices, such as smartphones. Using specifically designed illumination, the visibility and contrast of retinal lesions could be improved. In this study, spectrally optimal illuminations for diabetic retinopathy lesion visualization are implemented using a spectrally tunable light source based on digital micromirror device. The applicability of this method was tested in vivo by taking retinal monochrome images from the eyes of five diabetic volunteers and two non-diabetic control subjects. For comparison to existing methods, we evaluated the contrast of retinal images taken with our method and red-free illumination. The preliminary results show that the use of optimal illuminations improved the contrast of diabetic lesions in retinal images by 30-70%, compared to the traditional red-free illumination imaging.

  14. STRUCTURAL ASSESSMENT OF HYPERAUTOFLUORESCENT RING IN PATIENTS WITH RETINITIS PIGMENTOSA

    Science.gov (United States)

    LIMA, LUIZ H.; CELLA, WENER; GREENSTEIN, VIVIENNE C.; WANG, NAN-KAI; BUSUIOC, MIHAI; THEODORE SMITH, R.; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.

    2009-01-01

    Purpose To analyze the retinal structure underlying the hyperautofluorescent ring visible on fundus autofluorescence in patients with retinitis pigmentosa. Methods Twenty-four eyes of 13 patients with retinitis pigmentosa, aged 13 years to 67 years, were studied. The integrity of the photoreceptor cilia, also known as the inner/outer segment junction of the photoreceptors, the outer nuclear layer, and retinal pigment epithelium, was evaluated outside, across, and inside the ring with spectral-domain optical coherence tomography (OCT). Results Inside the foveal area, fundus autofluorescence did not detect abnormalities. Outside the ring, fundus autofluorescence revealed hypoautofluorescence compatible with the photoreceptor/retinal pigment epithelium degeneration. Spectral-domain OCT inside the ring, in the area of normal foveal fundus autofluorescence, revealed an intact retinal structure in all eyes and total retinal thickness values that were within normal limits. Across the ring, inner/outer segment junction disruption was observed and the outer nuclear layer was decreased in thickness in a centrifugal direction in all eyes. Outside the hyperautofluorescent ring, the inner/outer segment junction and the outer nuclear layer appeared to be absent and there were signs of retinal pigment epithelium degeneration. Conclusion Disruption of the inner/outer segment junction and a decrease in outer retinal thickness were found across the central hyperautofluorescent ring seen in retinitis pigmentosa. Outer segment phagocytosis by retinal pigment epithelium is necessary for the formation of an hyperautofluorescent ring. PMID:19584660

  15. RETINAL NEOVASCULARIZATION FROM A PATIENT WITH CUTIS MARMORATA TELANGIECTATICA CONGENITA.

    Science.gov (United States)

    Sassalos, Thérèse M; Fields, Taylor S; Levine, Robert; Gao, Hua

    2018-03-14

    To report a rare case of peripheral retinal neovascularization in a patient diagnosed with cutis marmorata telangiectatica congenita (CMTC). Observational case report. A 16-year-old girl was referred to clinic for retinal evaluation. The patient had a clinical diagnosis of CMTC later confirmed by skin biopsy. Examination revealed temporal peripheral retinal sheathing, as well as lattice degeneration in both eyes. Wide-field fluorescein angiogram showed substantive peripheral retinal nonperfusion with evidence of vascular leakage from areas of presumed retinal neovascularization. The patient subsequently had pan retinal photocoagulation laser treatment to each eye without complication. Cutis marmorata telangiectatica congenita is a rare vascular condition known to affect multiple organ systems including the eyes. Although ocular manifestations of CMTC are rare, instances of congenital glaucoma, suprachoroidal hemorrhage, and bilateral total retinal detachments resulting in secondary neovascular glaucoma have been reported. Our patient demonstrates the first reported findings of peripheral nonperfusion and retinal neovascularization related to CMTC in a 16-year-old girl. We propose early retinal examination, wide-field fluorescein angiogram, and early pan retinal photocoagulation laser treatment in patients with peripheral nonperfusion and retinal neovascularization from CMTC.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  16. Population coding in sparsely connected networks of noisy neurons.

    Science.gov (United States)

    Tripp, Bryan P; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.

  17. Population Coding in Sparsely Connected Networks of Noisy Neurons

    Directory of Open Access Journals (Sweden)

    Bryan Patrick Tripp

    2012-05-01

    Full Text Available This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behaviour. However, population coding theory has often ignored network structure, or assumed discrete, fully-connected populations (in contrast with the sparsely connected, continuous sheet of the cortex. In this study, we model a sheet of cortical neurons with sparse, primarily local connections, and find that a network with this structure can encode multiple internal state variables with high signal-to-noise ratio. However, in our model, although connection probability varies with the distance between neurons, we find that the connections cannot be instantiated at random according to these probabilities, but must have additional structure if information is to be encoded with high fidelity.

  18. Bilateral Rhegmatogenous Retinal Detachment during External Beam Radiotherapy

    Directory of Open Access Journals (Sweden)

    Takako Hidaka

    2016-06-01

    Full Text Available Herein, we report a case of nontraumatic bilateral rhegmatogenous retinal detachment (RRD during external beam radiotherapy for nonocular tumor, presented as an observational case study in conjunction with a review of the relevant literature. A 65-year-old male was referred to our hospital due to bilateral RRD. He underwent a biopsy for a tumor of the left frontal lobe 4 months prior to presentation, and the tumor had been diagnosed as primary central nerve system B-cell type lymphoma. He received chemotherapy and external beam radiotherapy for 1 month. There were no traumatic episodes. Bilateral retinal detachment occurred during a series of radiotherapies. Simultaneous nontraumatic bilateral retinal detachment is rare. The effects of radiotherapy on ocular functionality, particularly in cases involving retinal adhesion and vitreous contraction, may include RRD. Thus, it is necessary to closely monitor the eyes of patients undergoing radiotherapy, particularly those undergoing surgery for retinal detachment and those with a history of photocoagulation for retinal tears, a relevant family history, or risk factors known to be associated with RRD.

  19. Effects of lipopolysaccharide-induced inflammation on expression of growth-associated genes by corticospinal neurons

    Directory of Open Access Journals (Sweden)

    Lieberman AR

    2006-01-01

    Full Text Available Abstract Background Inflammation around cell bodies of primary sensory neurons and retinal ganglion cells enhances expression of neuronal growth-associated genes and stimulates axonal regeneration. We have asked if inflammation would have similar effects on corticospinal neurons, which normally show little response to spinal cord injury. Lipopolysaccharide (LPS was applied onto the pial surface of the motor cortex of adult rats with or without concomitant injury of the corticospinal tract at C4. Inflammation around corticospinal tract cell bodies in the motor cortex was assessed by immunohistochemistry for OX42 (a microglia and macrophage marker. Expression of growth-associated genes c-jun, ATF3, SCG10 and GAP-43 was investigated by immunohistochemistry or in situ hybridisation. Results Application of LPS induced a gradient of inflammation through the full depth of the motor cortex and promoted c-Jun and SCG10 expression for up to 2 weeks, and GAP-43 upregulation for 3 days by many corticospinal neurons, but had very limited effects on neuronal ATF3 expression. However, many glial cells in the subcortical white matter upregulated ATF3. LPS did not promote sprouting of anterogradely labelled corticospinal axons, which did not grow into or beyond a cervical lesion site. Conclusion Inflammation produced by topical application of LPS promoted increased expression of some growth-associated genes in the cell bodies of corticospinal neurons, but was insufficient to promote regeneration of the corticospinal tract.

  20. touché is required for touch evoked generator potentials within vertebrate sensory neurons

    Science.gov (United States)

    Low, Sean E.; Ryan, Joel; Sprague, Shawn M.; Hirata, Hiromi; Cui, Wilson W.; Zhou, Weibin; Hume, Richard I.; Kuwada, John Y.; Saint-Amant, Louis

    2010-01-01

    The process by which light-touch in vertebrates is transformed into an electrical response in cutaneous mechanosensitive neurons is a largely unresolved question. To address this question we undertook a forward genetic screen in zebrafish (Danio rerio) to identify mutants exhibiting abnormal touch-evoked behaviors, despite the presence of sensory neurons and peripheral neurites. One family, subsequently named touché, was found to harbor a recessive mutation which produced offspring that were unresponsive to light-touch, but responded to a variety of other sensory stimuli. The optogenetic activation of motor behaviors by touché mutant sensory neurons expressing ChannelRhodopsin-2 suggested that the synaptic output of sensory neurons was intact, consistent with a defect in sensory neuron activation. To explore sensory neuron activation we developed an in vivo preparation permitting the precise placement of a combined electrical and tactile stimulating probe upon eGFP positive peripheral neurites. In wild type larva electrical and tactile stimulation of peripheral neurites produced action potentials detectable within the cell body. In a subset of these sensory neurons an underlying generator potential could be observed in response to subthreshold tactile stimuli. A closer examination revealed that the amplitude of the generator potential was proportional to the stimulus amplitude. When assayed touché mutant sensory neurons also responded to electrical stimulation of peripheral neurites similar to wild type larvae, however tactile stimulation of these neurites failed to uncover a subset of sensory neurons possessing generator potentials. These findings suggest that touché is required for generator potentials, and that generator potentials underlie responsiveness to light-touch in zebrafish. PMID:20631165

  1. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    Directory of Open Access Journals (Sweden)

    Hyde David R

    2007-10-01

    Full Text Available Abstract Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO, subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease.

  2. Retinal complications after aqueous shunt surgical procedures for glaucoma.

    Science.gov (United States)

    Law, S K; Kalenak, J W; Connor, T B; Pulido, J S; Han, D P; Mieler, W F

    1996-12-01

    To assess retinal complications and to identify risk factors for retinal complications following aqueous shunt procedures. Records of 38 consecutive aqueous shunt procedures that were performed on 36 patients at the Eye Institute of the Medical College of Wisconsin, Milwaukee, from June 1993 to March 1995 (minimum follow-up, 6 months) were reviewed. The mean +/- SD follow-up was 11.4 +/- 5.2 months (median, 10.5 months). Twelve patients (32%) had the following retinal complications: 4 serous choroidal effusions (10%) that required drainage, 3 suprachoroidal hemorrhages (8%), 2 vitreous hemorrhages (5%), 1 rhegmatogenous retinal detachment (3%), 1 endophthalmitis (3%), and 1 scleral buckling extrusion (3%). Surgical procedures for retinal complications were required in 8 (67%) of these 12 patients. Visual acuity decreased 2 lines or more in 9 (75%) of these 12 patients. The median onset of a postoperative retinal complication was 12.5 days, with 10 patients (83%) experiencing complications within 35 days. Serous choroidal effusions developed in 10 other patients (26%), and these effusions resolved spontaneously. Visual acuity decreased 2 lines or more in 2 (20%) of these additional 10 patients. Patients who experienced serious retinal complications were significantly older, had a higher rate of hypertension, and postoperative ocular hypotony. Serious retinal complications were distributed evenly among patients with Krupin valves with discs and Molteno and Baerveldt devices. Experience with the Ahmed glaucoma valve implant was limited. Aqueous shunt procedures may be associated with significant retinal complications and subsequent visual loss.

  3. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    Directory of Open Access Journals (Sweden)

    Su Luo

    2017-01-01

    Full Text Available Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

  4. Development of on-off spiking in superior paraolivary nucleus neurons of the mouse

    Science.gov (United States)

    Felix, Richard A.; Vonderschen, Katrin; Berrebi, Albert S.

    2013-01-01

    The superior paraolivary nucleus (SPON) is a prominent cell group in the auditory brain stem that has been increasingly implicated in representing temporal sound structure. Although SPON neurons selectively respond to acoustic signals important for sound periodicity, the underlying physiological specializations enabling these responses are poorly understood. We used in vitro and in vivo recordings to investigate how SPON neurons develop intrinsic cellular properties that make them well suited for encoding temporal sound features. In addition to their hallmark rebound spiking at the stimulus offset, SPON neurons were characterized by spiking patterns termed onset, adapting, and burst in response to depolarizing stimuli in vitro. Cells with burst spiking had some morphological differences compared with other SPON neurons and were localized to the dorsolateral region of the nucleus. Both membrane and spiking properties underwent strong developmental regulation, becoming more temporally precise with age for both onset and offset spiking. Single-unit recordings obtained in young mice demonstrated that SPON neurons respond with temporally precise onset spiking upon tone stimulation in vivo, in addition to the typical offset spiking. Taken together, the results of the present study demonstrate that SPON neurons develop sharp on-off spiking, which may confer sensitivity to sound amplitude modulations or abrupt sound transients. These findings are consistent with the proposed involvement of the SPON in the processing of temporal sound structure, relevant for encoding communication cues. PMID:23515791

  5. Stem cell therapy for retinal diseases

    Science.gov (United States)

    Garcia, José Mauricio; Mendonça, Luisa; Brant, Rodrigo; Abud, Murilo; Regatieri, Caio; Diniz, Bruno

    2015-01-01

    In this review, we discuss about current knowledge about stem cell (SC) therapy in the treatment of retinal degeneration. Both human embryonic stem cell and induced pluripotent stem cell has been growth in culture for a long time, and started to be explored in the treatment of blinding conditions. The Food and Drug Administration, recently, has granted clinical trials using SC retinal therapy to treat complex disorders, as Stargardt’s dystrophy, and patients with geographic atrophy, providing good outcomes. This study’s intent is to overview the critical regeneration of the subretinal anatomy through retinal pigment epithelium transplantation, with the goal of reestablish important pathways from the retina to the occipital cortex of the brain, as well as the differentiation from pluripotent quiescent SC to adult retina, and its relationship with a primary retinal injury, different techniques of transplantation, management of immune rejection and tumorigenicity, its potential application in improving patients’ vision, and, finally, approaching future directions and challenges for the treatment of several conditions. PMID:25621115

  6. Ultra-Widefield Steering-Based SD-OCT Imaging of the Retinal Periphery

    Science.gov (United States)

    Choudhry, Netan; Golding, John; Manry, Matthew W.; Rao, Rajesh C.

    2016-01-01

    Objective To describe the spectral-domain optical coherence tomography (SD-OCT) features of peripheral retinal findings using an ultra-widefield (UWF) steering technique to image the retinal periphery. Design Observational study. Participants 68 patients (68 eyes) with 19 peripheral retinal features. Main Outcome Measures SD-OCT-based structural features. Methods Nineteen peripheral retinal features including: vortex vein, congenital hypertrophy of the retinal pigment epithelium (CHRPE), pars plana, ora serrata pearl, typical cystoid degeneration (TCD), cystic retinal tuft, meridional fold, lattice and cobblestone degeneration, retinal hole, retinal tear, rhegmatogenous retinal detachment (RRD), typical degenerative senile retinoschisis, peripheral laser coagulation scars, ora tooth, cryopexy scars (retinal tear and treated retinoblastoma scar), bone spicules, white without pressure, and peripheral drusen were identified by peripheral clinical examination. Near infrared (NIR) scanning laser ophthalmoscopy (SLO) images and SD-OCT of these entities were registered to UWF color photographs. Results SD-OCT resolved structural features of all peripheral findings. Dilated hyporeflective tubular structures within the choroid were observed in the vortex vein. Loss of retinal lamination, neural retinal attenuation, RPE loss or hypertrophy were seen in several entities including CHRPE, ora serrata pearl, TCD, cystic retinal tuft, meridional fold, lattice and cobblestone degenerations. Hyporeflective intraretinal spaces, indicating cystoid or schitic fluid, were seen in ora serrata pearl, ora tooth, TCD, cystic retinal tuft, meridional fold, retinal hole, and typical degenerative senile retinoschisis. The vitreoretinal interface, which often consisted of lamellae-like structures of the condensed cortical vitreous near or adherent to the neural retina, appeared clearly in most peripheral findings, confirming its association with many low-risk and vision-threatening pathologies

  7. Subclinical primary retinal pathology in neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Jeong, In Hye; Kim, Ho Jin; Kim, Nam-Hee; Jeong, Kyoung Sook; Park, Choul Yong

    2016-07-01

    Foveal thickness may be a more sensitive indicator of primary retinal pathology than retinal nerve fiber layer thickness since the fovea contains no or sparse retinal nerve fiber layer, which coalesces into axons of the optic nerve. To our knowledge, few quantitative in vivo studies have investigated foveal thickness. By using optical coherence tomography, we measured foveal thickness to evaluate intrinsic retinal pathology. Seventy-two neuromyelitis optica spectrum disorder patients (99 eyes with optic neuritis and 45 eyes without optic neuritis) and 34 age-matched controls were included. Foveal thinning was observed both in eyes with non-optic neuritis (185.1 µm, p optica spectrum disorder, foveal thickness correlated with 2.5 % low contrast visual acuity, while retinal nerve fiber layer thickness correlated with high or low contrast visual acuity, extended disability status scale, and disease duration. In this study, we observed foveal thinning irrespective of optic neuritis; thus, we believe that subclinical primary retinal pathology, prior to retinal nerve fiber layer thinning, may exist in neuromyelitis optica spectrum disorder.

  8. Retinal image quality during accommodation.

    Science.gov (United States)

    López-Gil, Norberto; Martin, Jesson; Liu, Tao; Bradley, Arthur; Díaz-Muñoz, David; Thibos, Larry N

    2013-07-01

    We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Subjects viewed a monochromatic (552 nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye's higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful

  9. Structural analysis of retinal photoreceptor ellipsoid zone and postreceptor retinal layer associated with visual acuity in patients with retinitis pigmentosa by ganglion cell analysis combined with OCT imaging

    Science.gov (United States)

    Liu, Guodong; Li, Hui; Liu, Xiaoqiang; Xu, Ding; Wang, Fang

    2016-01-01

    Abstract The aim of this study was to examine changes in photoreceptor ellipsoid zone (EZ) and postreceptor retinal layer in retinitis pigmentosa (RP) patients by ganglion cell analysis (GCA) combined with optical coherence tomography (OCT) imaging to evaluate the structure–function relationships between retinal layer changes and best corrected visual acuity (BCVA). Sixty-eight eyes of 35 patients with RP and 65 eyes of 35 normal controls were analyzed in the study. The average length of EZ was 911.1 ± 208.8 μm in RP patients, which was shortened with the progression of the disease on the OCT images. The average ganglion cell–inner plexiform layer thickness (GCIPLT) was 54.7 ± 18.9 μm in RP patients, while in normal controls it was 85.6 ± 6.8 μm. The GCIPLT in all quarters became significantly thinner along with outer retinal thinning. There was a significantly positive correlation between BCVA and EZ (r = −0.7622, P retinal layer changes from a new perspective in RP patients, which suggests that EZ and GCIPLT obtained by GCA combined with OCT imaging are the direct and valid indicators to diagnosis and predict the pathological process of RP. PMID:28033301

  10. Neurodegeneration in Autoimmune Optic Neuritis Is Associated with Altered APP Cleavage in Neurons and Up-Regulation of p53.

    Directory of Open Access Journals (Sweden)

    Sabine Herold

    Full Text Available Multiple Sclerosis (MS is a chronic autoimmune inflammatory disease of the central nervous system (CNS. Histopathological and radiological analysis revealed that neurodegeneration occurs early in the disease course. However, the pathological mechanisms involved in neurodegeneration are poorly understood. Myelin oligodendrocyte glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE in Brown Norway rats (BN-rats is a well-established animal model, especially of the neurodegenerative aspects of MS. Previous studies in this animal model indicated that loss of retinal ganglion cells (RGCs, the neurons that form the axons of the optic nerve, occurs in the preclinical phase of the disease and is in part independent of overt histopathological changes of the optic nerve. Therefore, the aim of this study was to identify genes which are involved in neuronal cell loss at different disease stages of EAE. Furthermore, genes that are highly specific for autoimmune-driven neurodegeneration were compared to those regulated in RGCs after optic nerve axotomy at corresponding time points. Using laser capture micro dissection we isolated RNA from unfixed RGCs and performed global transcriptome analysis of retinal neurons. In total, we detected 582 genes sequentially expressed in the preclinical phase and 1150 genes in the clinical manifest EAE (P 1.5. Furthermore, using ingenuity pathway analysis (IPA, we identified amyloid precursor protein (APP as a potential upstream regulator of changes in gene expression in the preclinical EAE but neither in clinical EAE, nor at any time point after optic nerve transection. Therefore, the gene pathway analysis lead to the hypothesis that altered cleavage of APP in neurons in the preclinical phase of EAE leads to the enhanced production of APP intracellular domain (AICD, which in turn acts as a transcriptional regulator and thereby initiates an apoptotic signaling cascade via up-regulation of the target gene p

  11. Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington's disease as a potential biomarker.

    Science.gov (United States)

    Gulmez Sevim, Duygu; Unlu, Metin; Gultekin, Murat; Karaca, Cagatay

    2018-02-12

    There have been ongoing clinical trials of therapeutic agents in Huntington's disease (HD) which requires development of reliable biomarkers of disease progression. There have been studies in the literature with conflicting results on the involvement of retina in HD, and up to date there is not a study evaluating the single retinal layers in HD. We aimed to evaluate the specific retinal changes in HD and their usability as potential disease progression markers. This cross-sectional study used spectral-domain optical coherence tomography with automatic segmentation to measure peripapillary retinal nerve fiber layer (pRNFL) thickness and the thickness and volume of retinal layers in foveal scans of 15 patients with HD and 15 age- and sex-matched controls. Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scales motor scores were acquired for the patients. Temporal pRNFL, macular RNFL (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer and outer plexiform layer thicknesses and IPL, retinal pigment epithelium and outer macular volume were found lower in HD compared to controls, while outer nuclear layer and outer retinal layer thickness were increased (p layer thicknesses, most significantly with mRNFL and GCL and disease progression markers. The outcomes of this study points out that retinal layers, most significantly mRNFL and GCL, are strongly correlated with the disease progression in HD and could serve as useful biomarkers for disease progression.

  12. Arrestin gene mutations in autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Nakazawa, M; Wada, Y; Tamai, M

    1998-04-01

    To assess the clinical and molecular genetic studies of patients with autosomal recessive retinitis pigmentosa associated with a mutation in the arrestin gene. Results of molecular genetic screening and case reports with DNA analysis and clinical features. University medical center. One hundred twenty anamnestically unrelated patients with autosomal recessive retinitis pigmentosa. DNA analysis was performed by single strand conformation polymorphism followed by nucleotide sequencing to search for a mutation in exon 11 of the arrestin gene. Clinical features were characterized by visual acuity slitlamp biomicroscopy, fundus examinations, fluorescein angiography, kinetic visual field testing, and electroretinography. We identified 3 unrelated patients with retinitis pigmentosa associated with a homozygous 1-base-pair deletion mutation in codon 309 of the arrestin gene designated as 1147delA. All 3 patients showed pigmentary retinal degeneration in the midperipheral area with or without macular involvement. Patient 1 had a sibling with Oguchi disease associated with the same mutation. Patient 2 demonstrated pigmentary retinal degeneration associated with a golden-yellow reflex in the peripheral fundus. Patients 1 and 3 showed features of retinitis pigmentosa without the golden-yellow fundus reflex. Although the arrestin 1147delA has been known as a frequent cause of Oguchi disease, this mutation also may be related to the pathogenesis of autosomal recessive retinitis pigmentosa. This phenomenon may provide evidence of variable expressivity of the mutation in the arrestin gene.

  13. LONGITUDINAL STRUCTURAL CHANGES IN LATE-ONSET RETINAL DEGENERATION.

    Science.gov (United States)

    Cukras, Catherine; Flamendorf, Jason; Wong, Wai T; Ayyagari, Radha; Cunningham, Denise; Sieving, Paul A

    2016-12-01

    To characterize longitudinal structural changes in early stages of late-onset retinal degeneration to investigate pathogenic mechanisms. Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence images, near-infrared reflectance fundus images, and spectral domain optical coherence tomography scans were acquired during follow-up. Both patients, aged 45 and 50 years, had good visual acuities (>20/20) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on fundus autofluorescence and near-infrared reflectance imaging. Baseline spectral domain optical coherence tomography imaging revealed subretinal deposits that resemble reticular pseudodrusen described in age-related macular degeneration. During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt retinal pigment epithelium and outer retinal atrophy. Structural changes in early stages of late-onset retinal degeneration, revealed by multimodal imaging, resemble those of reticular pseudodrusen observed in age-related macular degeneration and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations.

  14. Retinal changes in pregnancy-induced hypertension

    Directory of Open Access Journals (Sweden)

    Akash Pankaj Shah

    2015-01-01

    Full Text Available Aims: The aim was to determine the prevalence of retinal changes in pregnancy-induced hypertension (PIH and any association between the retinal changes and age, parity, blood pressure, proteinuria, and severity of the disease. Settings and Design: Hospital-based cross-sectional study. Materials and Methods: All the patients admitted with a diagnosis of PIH were included in this study. Age, gravida, gestation period, blood pressure, and proteinuria were noted from the case records. Fundus examination was done with a direct ophthalmoscope. The findings were noted and were analyzed using SPSS program. Results: A total of 150 patients of PIH were examined. The mean age of patients was 25.1 years. The gestation period ranged from 27 weeks to 42 weeks; 76 (50.67% were the primi gravida. 92 (61.33% patients had gestational hypertension, 49 (32.67% patients had preeclampsia, and 9 (6% had eclampsia. Retinal changes (hypertensive retinopathy were noted in 18 (12% patients - Grade 1 in 12 (8% and Grade 2 in 6 (4%. Hemorrhages or exudates or retinal detachment were not seen in any patient. There was statistically significant positive association of retinal changes and blood pressure (P = 0.037, proteinuria (P = 0.0005, and severity of the PIH (P = 0.004. Conclusions: Retinal changes were seen in 12% of patients with PIH. Occurrence of hypertensive retinopathy in PIH cases has been decreased due to better antenatal care and early detection and treatment of PIH cases. There is a greater chance of developing retinopathy with increase in blood pressure, severity of PIH, and proteinuria in cases of PIH.

  15. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kirstin B. Langer

    2018-04-01

    Full Text Available Summary: Retinal ganglion cells (RGCs are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs, this class of cell is remarkably diverse, comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models, but less attention has been paid to human RGCs. Thus, efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics, confirming the combinatorial expression of molecular markers associated with these subtypes, and also provided insight into more subtype-specific markers. Thus, the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs. : In this article, Langer and colleagues present extensive characterization of RGC subtypes derived from human pluripotent stem cells, with multiple subtypes identified by subtype-specific molecular markers. Their results present a more detailed analysis of RGC diversity in human cells and yield the use of different markers to identify RGC subtypes. Keywords: iPSC, retina, retinal ganglion cell, RGC subtype, stem cell, ipRGC, alpha RGC, direction selective RGC, RNA-seq

  16. Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits.

    Science.gov (United States)

    Mowery, Todd M; Harrold, Jon B; Alloway, Kevin D

    2011-05-01

    The dorsolateral striatum (DLS) receives extensive projections from primary somatosensory cortex (SI), but very few studies have used somesthetic stimulation to characterize the sensory coding properties of DLS neurons. In this study, we used computer-controlled whisker deflections to characterize the extracellular responses of DLS neurons in rats lightly anesthetized with isoflurane. When multiple whiskers were synchronously deflected by rapid back-and-forth movements, whisker-sensitive neurons in the DLS responded to both directions of movement. The latency and magnitude of these neuronal responses displayed very little variation with changes in the rate (2, 5, or 8 Hz) of whisker stimulation. Simultaneous recordings in SI barrel cortex and the DLS revealed important distinctions in the neuronal responses of these serially connected brain regions. In contrast to DLS neurons, SI neurons were activated by the initial deflection of the whiskers but did not respond when the whiskers moved back to their original position. As the rate of whisker stimulation increased, SI responsiveness declined, and the latencies of the responses increased. In fact, when whiskers were deflected at 5 or 8 Hz, many neurons in the DLS responded before the SI neurons. These results and earlier anatomic findings suggest that a component of the sensory-induced response in the DLS is mediated by inputs from the thalamus. Furthermore, the lack of sensory adaptation in the DLS may represent a critical part of the neural mechanism by which the DLS encodes stimulus-response associations that trigger motor habits and other stimulus-evoked behaviors that are not contingent on rewarded outcomes.

  17. Comparison of low-cost handheld retinal camera and traditional table top retinal camera in the detection of retinal features indicating a risk of cardiovascular disease

    Science.gov (United States)

    Joshi, V.; Wigdahl, J.; Nemeth, S.; Zamora, G.; Ebrahim, E.; Soliz, P.

    2018-02-01

    Retinal abnormalities associated with hypertensive retinopathy are useful in assessing the risk of cardiovascular disease, heart failure, and stroke. Assessing these risks as part of primary care can lead to a decrease in the incidence of cardiovascular disease-related deaths. Primary care is a resource limited setting where low cost retinal cameras may bring needed help without compromising care. We compared a low-cost handheld retinal camera to a traditional table top retinal camera on their optical characteristics and performance to detect hypertensive retinopathy. A retrospective dataset of N=40 subjects (28 with hypertensive retinopathy, 12 controls) was used from a clinical study conducted at a primary care clinic in Texas. Non-mydriatic retinal fundus images were acquired using a Pictor Plus hand held camera (Volk Optical Inc.) and a Canon CR1-Mark II tabletop camera (Canon USA) during the same encounter. The images from each camera were graded by a licensed optometrist according to the universally accepted Keith-Wagener-Barker Hypertensive Retinopathy Classification System, three weeks apart to minimize memory bias. The sensitivity of the hand-held camera to detect any level of hypertensive retinopathy was 86% compared to the Canon. Insufficient photographer's skills produced 70% of the false negative cases. The other 30% were due to the handheld camera's insufficient spatial resolution to resolve the vascular changes such as minor A/V nicking and copper wiring, but these were associated with non-referable disease. Physician evaluation of the performance of the handheld camera indicates it is sufficient to provide high risk patients with adequate follow up and management.

  18. Human bone marrow mesenchymal stem cells for retinal vascular injury.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Jonas, Jost B; Xu, Liang; Zhang, Wei

    2017-09-01

    To examine the potential of intravitreally implanted human bone marrow-derived mesenchymal stem cells (BMSCs) to affect vascular repair and the blood-retina barrier in mice and rats with oxygen-induced retinopathy, diabetic retinopathy or retinal ischaemia-reperfusion damage. Three study groups (oxygen-induced retinopathy group: 18 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received BMSCs injected intravitreally. Control groups (oxygen-induced retinopathy group: 12 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received an intravitreal injection of phosphate-buffered saline. We applied immunohistological techniques to measure retinal vascularization, spectroscopic measurements of intraretinally extravasated fluorescein-conjugated dextran to quantify the blood-retina barrier breakdown, and histomorphometry to assess retinal thickness and retinal ganglion cell count. In the oxygen-induced retinopathy model, the study group with intravitreally injected BMSCs as compared with the control group showed a significantly (p = 0.001) smaller area of retinal neovascularization. In the diabetic retinopathy model, study group and control group did not differ significantly in the amount of intraretinally extravasated dextran. In the retinal ischaemia-reperfusion model, on the 7th day after retina injury, the retina was significantly thicker in the study group than in the control group (p = 0.02), with no significant difference in the retinal ganglion cell count (p = 0.36). Intravitreally implanted human BMSCs were associated with a reduced retinal neovascularization in the oxygen-induced retinopathy model and with a potentially cell preserving effect in the retinal ischaemia-reperfusion model. Intravitreal BMSCs may be of potential interest for the therapy of retinal vascular disorders. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley

  19. Thinning of Inner Retinal Layers after Vitrectomy with Silicone Oil versus Gas Endotamponade in Eyes with Macula-Off Retinal Detachment.

    Science.gov (United States)

    Purtskhvanidze, Konstantine; Hillenkamp, Jost; Tode, Jan; Junge, Olaf; Hedderich, Jürgen; Roider, Johann; Treumer, Felix

    2017-01-01

    To evaluate retinal layer thickness with optical coherence tomography (OCT) in eyes with macula-off retinal detachment after silicone oil (SiO) or gas endotamponade. Cross-sectional study of 40 eyes with macula-off rhegmatogenous retinal detachment that underwent vitrectomy. 20 eyes received SiO tamponade and 20 matched eyes received gas. 33 healthy fellow eyes served as controls. Macular spectral domain OCT was performed with automated layer detection in the 5 inner subfields of the Early Treatment Diabetic Retinopathy Study (ETDRS) map. Comparing the SiO group with the gas group, the ganglion cell layer showed a significant thinning in all fields of the inner ring of the ETDRS map, the inner plexiform layer in the nasal, superior and temporal quadrants, and the outer plexiform layer in the nasal quadrant. Inner retinal layers in the fovea/parafovea were significantly thinner in the SiO group. Prospective studies are warranted to further elucidate possible retinal adverse effects of SiO tamponade. © 2017 S. Karger AG, Basel.

  20. Automated retinal fovea type distinction in spectral-domain optical coherence tomography of retinal vein occlusion

    Science.gov (United States)

    Wu, Jing; Waldstein, Sebastian M.; Gerendas, Bianca S.; Langs, Georg; Simader, Christian; Schmidt-Erfurth, Ursula

    2015-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high- resolution, three-dimensional (3D) cross-sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD), glaucoma and retinal vein occlusion (RVO). Disease diagnosis, assessment, and treatment will require a patient to undergo multiple OCT scans, possibly using multiple scanners, to accurately and precisely gauge disease activity, progression and treatment success. However, cross-vendor imaging and patient movement may result in poor scan spatial correlation potentially leading to incorrect diagnosis or treatment analysis. The retinal fovea is the location of the highest visual acuity and is present in all patients, thus it is critical to vision and highly suitable for use as a primary landmark for cross-vendor/cross-patient registration for precise comparison of disease states. However, the location of the fovea in diseased eyes is extremely challenging to locate due to varying appearance and the presence of retinal layer destroying pathology. Thus categorising and detecting the fovea type is an important prior stage to automatically computing the fovea position. Presented here is an automated cross-vendor method for fovea distinction in 3D SD-OCT scans of patients suffering from RVO, categorising scans into three distinct types. OCT scans are preprocessed by motion correction and noise filing followed by segmentation using a kernel graph-cut approach. A statistically derived mask is applied to the resulting scan creating an ROI around the probable fovea location from which the uppermost retinal surface is delineated. For a normal appearance retina, minimisation to zero thickness is computed using the top two retinal surfaces. 3D local minima detection and layer thickness analysis are used

  1. [Paediatric retinal detachment and hereditary vitreoretinal disorders].

    Science.gov (United States)

    Meier, P

    2013-09-01

    The number of retinal detachments in children is very low in comparison to the number in adults. One predisposing factor for development of paediatric retinal detachment is suffering from hereditary vitreoretinal degeneration (e.g., Stickler syndrome, Wagner syndrome, Kniest dysplasia, familial exudative vitreoretinopathy, congenital X-linked retinoschisis, Knobloch syndrome, incontinentia pigmenti, Norrie disease). Hereditary vitreoretinopathies are characterised by an abnormal-appearing vitreous gel with associated retinal changes. In most of these eyes further ocular abnormalities can be diagnosed. A group of hereditary disorders is associated with characteristic systemic abnormalities. Allied conditions should be considered in the clinical diagnosis. Vitreoretinopathies are the most common cause of inherited retinal detachment. In most eyes primary vitrectomy is necessary, and disease-specific surgical treatment is discussed. Georg Thieme Verlag KG Stuttgart · New York.

  2. Unilateral retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Pearlman, J T; Saxton, J; Hoffman, G

    1976-05-01

    A patient presented with unilateral findings of night blindness shown by impaired rod function and dark adaptation, constricted visual fields with good central acuity, a barely recordable electro-retinographic b-wave, and a unilaterally impaired electro-oculogram. There were none of the pigmentary changes usually associated with retinitis pigmentosa. The unaffected right eye was normal in all respects. Therefore the case is most probably one of unilateral retinitis pigmentosa sine pigmento.

  3. Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells.

    Science.gov (United States)

    Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A

    2016-10-01

    Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    Science.gov (United States)

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  5. Effect of Intravasclar Influsion of Endogenous Pyrogen or Prostaglandin E2 on Neuronal Activity of Rat's Hypothalamus

    OpenAIRE

    Sakata, Yoshiyuki; Watanabe, Tatsuo; Morimoto, Akio; Murakami, Naotoshi

    1989-01-01

    We investigated the effects of intracarotid infusion of prostaglandin E2 or intravenous infusion of an endogenous pyrogen on the neuronal activity of the neuronal activity of the preoptic and anterior hypothalamic (PO/AH) region in rats. The present results suggest that thermore sponsive neurons of the PO/AH region respond well to intravascular application of prostaglandin E2 or the endogenous pyrogen, compared with thermally insensive neurons. Intravenous infusion of the endogenous pyrogen a...

  6. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells

    Science.gov (United States)

    Gray, Daniel C.; Merigan, William; Wolfing, Jessica I.; Gee, Bernard P.; Porter, Jason; Dubra, Alfredo; Twietmeyer, Ted H.; Ahamd, Kamran; Tumbar, Remy; Reinholz, Fred; Williams, David R.

    2006-08-01

    The ability to resolve single cells noninvasively in the living retina has important applications for the study of normal retina, diseased retina, and the efficacy of therapies for retinal disease. We describe a new instrument for high-resolution, in vivo imaging of the mammalian retina that combines the benefits of confocal detection, adaptive optics, multispectral, and fluorescence imaging. The instrument is capable of imaging single ganglion cells and their axons through retrograde transport in ganglion cells of fluorescent dyes injected into the monkey lateral geniculate nucleus (LGN). In addition, we demonstrate a method involving simultaneous imaging in two spectral bands that allows the integration of very weak signals across many frames despite inter-frame movement of the eye. With this method, we are also able to resolve the smallest retinal capillaries in fluorescein angiography and the mosaic of retinal pigment epithelium (RPE) cells with lipofuscin autofluorescence.

  7. Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina.

    Science.gov (United States)

    White, David T; Sengupta, Sumitra; Saxena, Meera T; Xu, Qingguo; Hanes, Justin; Ding, Ding; Ji, Hongkai; Mumm, Jeff S

    2017-05-02

    Müller glia (MG) function as inducible retinal stem cells in zebrafish, completely repairing the eye after damage. The innate immune system has recently been shown to promote tissue regeneration in which classic wound-healing responses predominate. However, regulatory roles for leukocytes during cellular regeneration-i.e., selective cell-loss paradigms akin to degenerative disease-are less well defined. To investigate possible roles innate immune cells play during retinal cell regeneration, we used intravital microscopy to visualize neutrophil, macrophage, and retinal microglia responses to induced rod photoreceptor apoptosis. Neutrophils displayed no reactivity to rod cell loss. Peripheral macrophage cells responded to rod cell loss, as evidenced by morphological transitions and increased migration, but did not enter the retina. Retinal microglia displayed multiple hallmarks of immune cell activation: increased migration, translocation to the photoreceptor cell layer, proliferation, and phagocytosis of dying cells. To test function during rod cell regeneration, we coablated microglia and rod cells or applied immune suppression and quantified the kinetics of ( i ) rod cell clearance, ( ii ) MG/progenitor cell proliferation, and ( iii ) rod cell replacement. Coablation and immune suppressants applied before cell loss caused delays in MG/progenitor proliferation rates and slowed the rate of rod cell replacement. Conversely, immune suppressants applied after cell loss had been initiated led to accelerated photoreceptor regeneration kinetics, possibly by promoting rapid resolution of an acute immune response. Our findings suggest that microglia control MG responsiveness to photoreceptor loss and support the development of immune-targeted therapeutic strategies for reversing cell loss associated with degenerative retinal conditions.

  8. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    Directory of Open Access Journals (Sweden)

    O. G. Pozdeyeva

    2013-01-01

    Full Text Available Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of optical coherence tomography («RTVue-100,» USA. The fundography was carried out using a Nikon NF505‑AF (Japan fundus camera. All patients were examined with a Goldmann lens.Results: Optical coherence tomography was used to evaluate different kinds of peripheral retinal degenerations, such as lattice and snail track degeneration, isolated retinal tears, cystoid retinal degeneration, pathological hyperpigmentation, retinoschisis and cobblestone degeneration. The following morphometric data were studied: dimensions of the lesion (average length, retinal thickness along the edge of the lesion, retinal thickness at the base of the lesion and the vitreoretinal interface.Conclusion: Optical coherence tomography is a promising in vivo visualization method which is useful in evaluation of peripheral retinal degenerations, vitreoretinal adhesions and tractions. It also provides a comprehensive protocolling system and monitoring. It will enable ophthalmologists to better define laser and surgical treatment indications and evaluate therapy effectiveness.

  9. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    Directory of Open Access Journals (Sweden)

    O. G. Pozdeyeva

    2014-07-01

    Full Text Available Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of optical coherence tomography («RTVue-100,» USA. The fundography was carried out using a Nikon NF505‑AF (Japan fundus camera. All patients were examined with a Goldmann lens.Results: Optical coherence tomography was used to evaluate different kinds of peripheral retinal degenerations, such as lattice and snail track degeneration, isolated retinal tears, cystoid retinal degeneration, pathological hyperpigmentation, retinoschisis and cobblestone degeneration. The following morphometric data were studied: dimensions of the lesion (average length, retinal thickness along the edge of the lesion, retinal thickness at the base of the lesion and the vitreoretinal interface.Conclusion: Optical coherence tomography is a promising in vivo visualization method which is useful in evaluation of peripheral retinal degenerations, vitreoretinal adhesions and tractions. It also provides a comprehensive protocolling system and monitoring. It will enable ophthalmologists to better define laser and surgical treatment indications and evaluate therapy effectiveness.

  10. [Spinocerebellar ataxia type 2 associated to pigmentary retinitis].

    Science.gov (United States)

    Jiménez-Caballero, Pedro Enrique; Serviá, Mónica

    2010-07-01

    Ocular disorders are useful in the characterisation of the different types of spinocerebellar ataxias (SCA); pigmentary retinitis is an alteration that is specifically associated to SCA type 7 and is characterised by night blindness, sensitivity to glare and progressive narrowing of the visual field. A 34-year-old woman with clinical symptoms of progressive ataxia and visual impairment secondary to pigmentary retinitis. The patient had a personal history with an autosomal dominant pattern of a similar disorder in her father and paternal grandmother. In the genetic study she presented a triplet expansion in the SCA type 2 gene. CONCLUSIONS; Although pigmentary retinitis belongs to the SCA type 7 phenotype, our patient presented this retinal disorder, as in other cases of SCA type 2. A genetic study for SCA type 2 must therefore be conducted in patients with a degenerative ataxic clinical picture and who present evidence of pigmentary retinitis.

  11. Ocular hemodynamics in patients with rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    N. H. Zavgorodnya

    2014-10-01

    Full Text Available Aim. In case of retinal detachment atrophic processes lead to irreversible loss of functions within 4–6 days, it happens on underlying low ocular blood flow. In order to evaluate the degree of violation of regional hemodynamics in patients with retinal detachment two groups of patients were examined: the main group (52 patients with rhegmatogenous retinal detachment and the control group (24 myopic patients with lattice form of peripheral chorioretinal dystrophy. Methods and results. Doppler and reography results had been compared, significant decrease of blood flow in patients with retinal detachment was found. No differences between affected and fellow eye in these patients, close negative correlation between the level of ocular blood flow and the degree of myopia in the control group. Conclusion. This demonstrates the feasibility of actions to improve regional blood flow in patients operated on for retinal detachment.

  12. LIN-32/Atonal Controls Oxygen Sensing Neuron Development in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Romanos, Teresa Rojo; Pladevall-Morera, David; Langebeck-Jensen, Kasper

    2017-01-01

    HLH) family of transcription factors has multiple functions in neurogenesis. Here, we identified the LIN-32/Atonal bHLH transcription factor as a key regulator of URXL/R oxygen-sensing neuron development in Caenorhabditis elegans. When LIN-32/Atonal expression is lost, the expression of URX specification......Development of complex nervous systems requires precisely controlled neurogenesis. The generation and specification of neurons occur through the transcriptional and post-Transcriptional control of complex regulatory networks. In vertebrates and invertebrates, the proneural basic-helix-loop-helix (b...... and terminal differentiation genes is abrogated. As such, lin-32 mutant animals are unable to respond to increases in environmental oxygen. The URX neurons are generated from a branch of the cell lineage that also produces the CEPDL/R and URADL/R neurons. We found development of these neurons is also defective...

  13. Optogenetically enhanced axon regeneration: motor versus sensory neuron-specific stimulation.

    Science.gov (United States)

    Ward, Patricia J; Clanton, Scott L; English, Arthur W

    2018-02-01

    Brief neuronal activation in injured peripheral nerves is both necessary and sufficient to enhance motor axon regeneration, and this effect is specific to the activated motoneurons. It is less clear whether sensory neurons respond in a similar manner to neuronal activation following peripheral axotomy. Further, it is unknown to what extent enhancement of axon regeneration with increased neuronal activity relies on a reflexive interaction within the spinal circuitry. We used mouse genetics and optical tools to evaluate the precision and selectivity of system-specific neuronal activation to enhance axon regeneration in a mixed nerve. We evaluated sensory and motor axon regeneration in two different mouse models expressing the light-sensitive cation channel, channelrhodopsin (ChR2). We selectively activated either sensory or motor axons using light stimulation combined with transection and repair of the sciatic nerve. Regardless of genotype, the number of ChR2-positive neurons whose axons had regenerated successfully was greater following system-specific optical treatment, with no effect on the number of ChR2-negative neurons (whether motor or sensory neurons). We conclude that acute system-specific neuronal activation is sufficient to enhance both motor and sensory axon regeneration. This regeneration-enhancing effect is likely cell autonomous. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Radiation Retinopathy Associated with Central Retinal Vein Occlusion

    Institute of Scientific and Technical Information of China (English)

    Yan; Liu; FengWen

    2007-01-01

    Purpose: To report a case of radiation retinopathy associated with central retinal vein occlusion.Methods: The clinical features and fundus fluorescein angiography of this case were analyzed.Results: The patient had been treated with radiotherapy for her nasopharyngeal carcinoma, and presented with sudden visual loss in the left eye. The funduscopic examination and fluorescein angiography showed the features of radiation retinopathy in both eyes, and central retinal vein occlusion in the left eye.Conclusions: Radiation retinopathy can be associated with central retinal vein occlusion in the same eye, and it seems that the endothelial cell loss caused by radiation retinopathy may lead to retinal vein occlusion.

  15. Response sensitivity of barrel neuron subpopulations to simulated thalamic input.

    Science.gov (United States)

    Pesavento, Michael J; Rittenhouse, Cynthia D; Pinto, David J

    2010-06-01

    Our goal is to examine the relationship between neuron- and network-level processing in the context of a well-studied cortical function, the processing of thalamic input by whisker-barrel circuits in rodent neocortex. Here we focus on neuron-level processing and investigate the responses of excitatory and inhibitory barrel neurons to simulated thalamic inputs applied using the dynamic clamp method in brain slices. Simulated inputs are modeled after real thalamic inputs recorded in vivo in response to brief whisker deflections. Our results suggest that inhibitory neurons require more input to reach firing threshold, but then fire earlier, with less variability, and respond to a broader range of inputs than do excitatory neurons. Differences in the responses of barrel neuron subtypes depend on their intrinsic membrane properties. Neurons with a low input resistance require more input to reach threshold but then fire earlier than neurons with a higher input resistance, regardless of the neuron's classification. Our results also suggest that the response properties of excitatory versus inhibitory barrel neurons are consistent with the response sensitivities of the ensemble barrel network. The short response latency of inhibitory neurons may serve to suppress ensemble barrel responses to asynchronous thalamic input. Correspondingly, whereas neurons acting as part of the barrel circuit in vivo are highly selective for temporally correlated thalamic input, excitatory barrel neurons acting alone in vitro are less so. These data suggest that network-level processing of thalamic input in barrel cortex depends on neuron-level processing of the same input by excitatory and inhibitory barrel neurons.

  16. Detection of retinal nerve fiber layer defects in retinal fundus images using Gabor filtering

    Science.gov (United States)

    Hayashi, Yoshinori; Nakagawa, Toshiaki; Hatanaka, Yuji; Aoyama, Akira; Kakogawa, Masakatsu; Hara, Takeshi; Fujita, Hiroshi; Yamamoto, Tetsuya

    2007-03-01

    Retinal nerve fiber layer defect (NFLD) is one of the most important findings for the diagnosis of glaucoma reported by ophthalmologists. However, such changes could be overlooked, especially in mass screenings, because ophthalmologists have limited time to search for a number of different changes for the diagnosis of various diseases such as diabetes, hypertension and glaucoma. Therefore, the use of a computer-aided detection (CAD) system can improve the results of diagnosis. In this work, a technique for the detection of NFLDs in retinal fundus images is proposed. In the preprocessing step, blood vessels are "erased" from the original retinal fundus image by using morphological filtering. The preprocessed image is then transformed into a rectangular array. NFLD regions are observed as vertical dark bands in the transformed image. Gabor filtering is then applied to enhance the vertical dark bands. False positives (FPs) are reduced by a rule-based method which uses the information of the location and the width of each candidate region. The detected regions are back-transformed into the original configuration. In this preliminary study, 71% of NFLD regions are detected with average number of FPs of 3.2 per image. In conclusion, we have developed a technique for the detection of NFLDs in retinal fundus images. Promising results have been obtained in this initial study.

  17. Impairment of visual function and retinal ER stress activation in Wfs1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Delphine Bonnet Wersinger

    Full Text Available Wolfram syndrome is an early onset genetic disease (1/180,000 featuring diabetes mellitus and optic neuropathy, associated to mutations in the WFS1 gene. Wfs1-/- mouse model shows pancreatic beta cell atrophy, but its visual performance has not been investigated, prompting us to study its visual function and histopathology of the retina and optic nerve. Electroretinogram and visual evoked potentials (VEPs were performed in Wfs1-/- and Wfs1+/+ mice at 3, 6, 9 and 12 months of age. Fundi were pictured with Micron III apparatus. Retinal ganglion cell (RGC abundance was determined from Brn3a immunolabeling of retinal sections. RGC axonal loss was quantified by electron microscopy in transversal optic nerve sections. Endoplasmic reticulum stress was assessed using immunoglobulin binding protein (BiP, protein disulfide isomerase (PDI and inositol-requiring enzyme 1 alpha (Ire1α markers. Electroretinograms amplitudes were slightly reduced and latencies increased with time in Wfs1-/- mice. Similarly, VEPs showed decreased N+P amplitudes and increased N-wave latency. Analysis of unfolded protein response signaling revealed an activation of endoplasmic reticulum stress in Wfs1-/- mutant mouse retinas. Altogether, progressive VEPs alterations with minimal neuronal cell loss suggest functional alteration of the action potential in the Wfs1-/- optic pathways.

  18. Retinal vascular calibres are significantly associated with cardiovascular risk factors

    DEFF Research Database (Denmark)

    von Hanno, T.; Bertelsen, G.; Sjølie, Anne K.

    2014-01-01

    . Association between retinal vessel calibre and the cardiovascular risk factors was assessed by multivariable linear and logistic regression analyses. Results: Retinal arteriolar calibre was independently associated with age, blood pressure, HbA1c and smoking in women and men, and with HDL cholesterol in men......Purpose: To describe the association between retinal vascular calibres and cardiovascular risk factors. Methods: Population-based cross-sectional study including 6353 participants of the TromsO Eye Study in Norway aged 38-87years. Retinal arteriolar calibre (central retinal artery equivalent...... cardiovascular risk factors were independently associated with retinal vascular calibre, with stronger effect of HDL cholesterol and BMI in men than in women. Blood pressure and smoking contributed most to the explained variance....

  19. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure

    Directory of Open Access Journals (Sweden)

    Cameron David A

    2011-08-01

    Full Text Available Abstract Background Retinoic acid (RA is important for vertebrate eye morphogenesis and is a regulator of photoreceptor development in the retina. In the zebrafish, RA treatment of postmitotic photoreceptor precursors has been shown to promote the differentiation of rods and red-sensitive cones while inhibiting the differentiation of blue- and UV-sensitive cones. The roles played by RA and its receptors in modifying photoreceptor fate remain to be determined. Results Treatment of zebrafish embryos with RA, beginning at the time of retinal progenitor cell proliferation and prior to photoreceptor terminal mitosis, resulted in a significant alteration of rod and cone mosaic patterns, suggesting an increase in the production of rods at the expense of red cones. Quantitative pattern analyses documented increased density of rod photoreceptors and reduced local spacing between rod cells, suggesting rods were appearing in locations normally occupied by cone photoreceptors. Cone densities were correspondingly reduced and cone photoreceptor mosaics displayed expanded and less regular spacing. These results were consistent with replacement of approximately 25% of positions normally occupied by red-sensitive cones, with additional rods. Analysis of embryos from a RA-signaling reporter line determined that multiple retinal cell types, including mitotic cells and differentiating rods and cones, are capable of directly responding to RA. The RA receptors RXRγ and RARαb are expressed in patterns consistent with mediating the effects of RA on photoreceptors. Selective knockdown of RARαb expression resulted in a reduction in endogenous RA signaling in the retina. Knockdown of RARαb also caused a reduced production of rods that was not restored by simultaneous treatments with RA. Conclusions These data suggest that developing retinal cells have a dynamic sensitivity to RA during retinal neurogenesis. In zebrafish RA may influence the rod vs. cone cell fate

  20. Noggin and Wnt3a enable BMP4-dependent differentiation of telencephalic stem cells into GluR-agonist responsive neurons

    DEFF Research Database (Denmark)

    Andersson, Therese; Duckworth, Joshua K; Fritz, Nicolas

    2011-01-01

    levels, that in turn exerted a concentration-dependent inhibition of BMP4-mediated mesenchymal differentiation of NSCs. Instead, BMP4 exposure of NSCs induced neuronal differentiation in mesenchyme-preventing conditions, whereas treatment with recombinant noggin alone did not. Wnt signaling is known...... to be essential for the development of neurons derived from the dorsal telencephalon, and co-stimulation of NSCs with BMP4+Wnt3a resulted in a synergistic effect yielding significantly increased number of mature neurons compared to stimulation with each factor alone. Thus whereas only a subset of BMP4-induced...... neurons derived from telencephalic NSCs, responded to glutamate receptor (GluR) agonists, over 80% of BMP4+Wnt3a-induced neurons responded appropriately to GluR-agonists. Our results increase the understanding of the role for BMP4 in differentiation of telencephalic multipotent progenitors, and reveal...