WorldWideScience

Sample records for retarding lipid oxidation

  1. Retardation of lipid oxidation using gelatin film incorporated with longan seed extract compared with BHT.

    Science.gov (United States)

    Sai-Ut, Samart; Benjakul, Soottawat; Rawdkuen, Saroat

    2015-09-01

    The aim of the present work was to apply the gelatin films with different levels of longan seed extract (LS) or butylated hydroxytoluene (BHT) on retardation of lipid oxidation in soybean oil. The films incorporated with various concentrations of aqueous LS (0, 50, 100, 300, and 500 ppm) or BHT (50, and 100 ppm) were developed. The films had transmittance percentages of 60-80 % at 570 nm and showed good light barrier properties when the concentration of LS or BHT increased. About 97 % protein solubility and 41 to 54 % water solubility were obtained for the developed films. Antioxidative activity of gelatin films incorporated with LS increased markedly with increasing storage time as indicated by the increase in DPPH radical scavenging activity (41-50 %) (P BHT showed the preventive effect on lipid oxidation of soybean oil during 30 days of storage. At the level of 500 ppm, LS provided the highest efficacy for lipid oxidation retardation as evidenced by lower conjugated diene (CD) values (P > 0.05). According to these findings, gelatin film incorporated with longan seed extract or BHT could be used as a tool to prolong the shelf-life of oily foods.

  2. Retardation Of Lipid Oxidation In Fish Oil-Enriched Fish Pâté- Combination Effects

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Jacobsen, Charlotte

    2013-01-01

    stored at 2 or 10C were equally stable. Mixing fish oil with rapeseed oil before emulsification slightly increased the stability of the fish pâtés. Addition of antimicrobial agents, sodium benzoate and potassium sorbate increased oxidative stability. It is recommended to produce enriched fish pâté...

  3. Lipid oxidation induced oxidative degradation of cereal beta-glucan.

    Science.gov (United States)

    Wang, Yu-Jie; Mäkelä, Noora; Maina, Ndegwa Henry; Lampi, Anna-Maija; Sontag-Strohm, Tuula

    2016-04-15

    In food systems, lipid oxidation can cause oxidation of other molecules. This research for the first time investigated oxidative degradation of β-glucan induced by lipid oxidation using an oil-in-water emulsion system which simulated a multi-phased aqueous food system containing oil and β-glucan. Lipid oxidation was monitored using peroxide value and hexanal production while β-glucan degradation was evaluated by viscosity and molecular weight measurements. The study showed that while lipid oxidation proceeded, β-glucan degradation occurred. Emulsions containing β-glucan, oil and ferrous ion showed significant viscosity and molecular weight decrease after 1 week of oxidation at room temperature. Elevated temperature (40°C) enhanced the oxidation reactions causing higher viscosity drop. In addition, the presence of β-glucan appeared to retard the hexanal production in lipid oxidation. The study revealed that lipid oxidation may induce the degradation of β-glucan in aqueous food systems where β-glucan and lipids co-exist.

  4. NMR spectroscopy for evaluation of lipid oxidation

    Science.gov (United States)

    During storage and use of edible oils and other lipid-containing foods, reactions between lipids and oxygen occur, resulting in lipid oxidation and the subsequent development of off-flavors and odors. Accurate and timely assessment of lipid oxidation is critical for effective quality control of food...

  5. Myoglobin-induced lipid oxidation : A review

    DEFF Research Database (Denmark)

    Baron, Caroline; Andersen, H.J.

    2002-01-01

    An overview of myoglobin-initiated lipid oxidation in simple model systems, muscle, and muscle-based foods is presented. The potential role of myoglobin spin and redox states in initiating lipid oxidation is reviewed. Proposed mechanisms for myoglobin- initiated lipid oxidation in muscle tissue (p...

  6. NMR spectroscopy for assessing lipid oxidation

    Science.gov (United States)

    Although lipid oxidation involves a variety of chemical reactions to produce numerous substances, most of traditional methods assessing lipid oxidation measure only one kind of oxidation product. For this reason, in general, one indicator of oxidation is not enough to accurately describe the oxidati...

  7. Do Lipids Retard the Evaporation of the Tear Fluid?

    DEFF Research Database (Denmark)

    Rantamaki, A. H.; Javanainen, M.; Vattulainen, I.

    2012-01-01

    . Lipids were applied to an air-water interface, and the evaporation rate through the lipid layer was defined as water loss from the interface. A thick layer of olive oil and a monolayer of long-chain alcohol were used as controls. The artificial TFLLs were composed of 1 to 4 lipid species: polar...... phosphatidylcholine (PC), nonpolar cholesteryl ester, triglycerides, and wax ester (WE). Brewster angle microscopy (BAM) and interfacial shear rheometry (ISR) were used to assess the lateral structure and shear stress response of the lipid layers, respectively. RESULTS. Olive oil and long-chain alcohol decreased...

  8. [Nitric oxide and lipid peroxidation].

    Science.gov (United States)

    Cristol, J P; Maggi, M F; Guérin, M C; Torreilles, J; Descomps, B

    1995-01-01

    Nitric oxide (NO) is a free radical produced enzymatically in biological systems from the guanidino group of L-arginine. Its large spectrum of biological effects is achieved through chemical interactions with different targets including oxygen (O2), superoxide (O2o-) and other oxygen reactive species (ROS), transition metals and thiols. Superoxide anions and other ROS have been reported to react with NO to produce peroxynitrite anions that can decompose to form nitrogen dioxide (NO2) and hydroxyl radial (OHo). Thus, NO has been reported to have a dual effect on lipid peroxidation (prooxidant via the peroxynitrite or antioxydant via the chelation of ROS). In the present study we have investigated in different models the in vitro and in vivo action of NO on lipid peroxidation. Copper-induced LDL oxidation were used as an in vitro model. Human LDL (100 micrograms ApoB/ml) were incubated in oxygene-saturated PBS buffer in presence or absence of Cu2+ (2.5 microM) with increasing concentrations of NO donnors (sodium nitroprussiate or nitroso-glutathione). LDL oxidation was monitored continuously for conjugated diene formation (234 nm) and 4-hydroxynonenal (HNE) accumulation. Exogenous NO prevents in a dose dependent manner the progress of copper-induced oxidation. Ischaemia-reperfusion injury (I/R), characterized by an overproduction of ROS, is used as an in vivo model. Anaesthetized rats were submitted to 1 hour renal ischaemia following by 2 hours of reperfusion. Sham-operated rats (SOP) were used as control. Lipid peroxidation was evaluated by measuring the HNE accumulated in rats kidneys in presence or absence of L-arginine or D-arginine infusion. L-arginine, but not D-arginine, enhances HNE accumulation in I/R but not in SOP (< 0.050 pmol/g tissue in SOP versus 0.6 nmol/g tissue in I/R), showing that, in this experimental conditions, NO produced from L-arginine, enhances the toxicity of ROS. This study shows that the pro- or antioxydant effects of NO are different

  9. Oxidized lipoprotein lipids and atherosclerosis.

    Science.gov (United States)

    Ahotupa, Markku

    2017-04-01

    Plasma lipoproteins contain variable amounts of lipid oxidation products (LOP), which are known to impair normal physiological functions and stimulate atherosclerotic processes. Recent evidence indicates that plasma lipoproteins are active carriers of LOP, low-density lipoprotein (LDL) directing transport toward peripheral tissues, and high-density lipoprotein (HDL) being active in the reverse transport. It has been proposed that the lipoprotein-specific transport of LOP could play a role in atherosclerosis-related effects of LDL and HDL. This article gives an overview of the present knowledge of lipoprotein LOP transport and its association with the risk of atherosclerosis and cardiovascular diseases (CVD). Evidence of the significance of lipoprotein LOP transport comes mainly from studies of physiological oxidative stress and is supported by studies of the functionality apolipoprotein A-1 mimetic peptides. A large body of data has accumulated indicating that lipoprotein LOP transport is connected to the risk of atherosclerosis. While high levels of LOP carried by LDL are indicative of elevated risk, high LOP level in HDL appears to associate with protection. If confirmed, the proposed lipoprotein LOP transport function would affect conception of the etiology of atherosclerosis, but would not conflict current views of the pathophysiological mechanisms. It could open new perspectives, such as the dietary origin of LOP, and the protective function of HDL in clearance of LOP. Focusing on LOP could give additional tools especially for prevention and diagnosis, but would not radically change the management of atherosclerosis and CVD.

  10. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    Science.gov (United States)

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of pomegranate peel extract on lipid and protein oxidation in beef meatballs during refrigerated storage.

    Science.gov (United States)

    Turgut, Sebahattin Serhat; Soyer, Ayla; Işıkçı, Fatma

    2016-06-01

    Antioxidant effect of pomegranate peel extract (PE) to retard lipid and protein oxidation was investigated in meatballs during refrigerated storage at 4±1°C. Concentrated lyophilised water extract of pomegranate peel was incorporated into freshly minced beef meat at 0.5% and 1% concentrations and compared with 0.01% butylated hydroxytoluene (BHT) as a reference and control (without any antioxidant). PE showed high phenolic content and antioxidant activity. In PE added samples, thiobarbituric acid reactive substances (TBARS) value, peroxide formation, loss of sulfhydryl groups and formation of protein carbonyls were lower than control (P<0.01) after 8 days of storage. Sensory evaluation with respect to colour and rancid odour revealed that PE incorporation in meatballs prolonged the refrigerated storage up to 8 days. Addition of both 0.5 and 1% PE in meatballs reduced lipid and protein oxidation and improved sensory scores. These results indicated that PE was effective on retarding lipid and protein oxidation.

  12. Impact of Association Colloids on Lipid Oxidation in Triacylglycerols and Fatty Acid Ethyl Esters.

    Science.gov (United States)

    Homma, Rika; Suzuki, Karin; Cui, Leqi; McClements, David Julian; Decker, Eric A

    2015-11-25

    The impact of association colloids on lipid oxidation in triacylglycerols and fatty acid ethyl esters was investigated. Association colloids did not affect lipid oxidation of high oleic safflower and high linoleic safflower triacylglycerols, but were prooxidative in fish triacylglycerols. Association colloids retarded aldehyde formation in stripped ethyl oleate, linoleate, and fish oil ethyl esters. Interfacial tension revealed that lipid hydroperoxides were surface active in the presence of the surfactants found in association colloids. The lipid hydroperoxides from ethyl esters were less surface active than triacylglycerol hydroperoxides. Stripping decreased iron and copper concentrations in all oils, but more so in fatty acid ethyl esters. The combination of lower hydroperoxide surface activity and low metal concentrations could explain why association colloids inhibited lipid oxidation in fatty acid ethyl esters. This research suggests that association colloids could be used as an antioxidant technology in fatty acid ethyl esters.

  13. Mobilization of seed storage lipid by Arabidopsis seedlings is retarded in the presence of exogenous sugars

    Directory of Open Access Journals (Sweden)

    Gibson Susan I

    2002-05-01

    Full Text Available Abstract Background Soluble sugar levels must be closely regulated in germinating seeds to ensure an adequate supply of energy and building materials for the developing seedling. Studies on germinating cereal seeds indicate that production of sugars from starch is inhibited by increasing sugar levels. Although numerous studies have focused on the regulation of starch metabolism, very few studies have addressed the control of storage lipid metabolism by germinating oilseeds. Results Mobilization of storage lipid by germinating seeds of the model oilseed plant Arabidopsis thaliana (L. Heynh. occurs at a greatly reduced rate in the presence of exogenous glucose or mannose, but not in the presence of equi-molar 3-O-methylglucose or sorbitol. The sugar-insensitive5-1/abscisic acid-insensitive4-101 (sis5-1/abi4-101 mutant is resistant to glucose inhibition of seed storage lipid mobilization. Wild-type seedlings become insensitive to glucose inhibition of storage lipid breakdown within 3 days of the start of imbibition. Conclusions Growth in the presence of exogenous glucose significantly retards mobilization of seed storage lipid in germinating seeds from wild-type Arabidopsis. This effect is not solely due to the osmotic potential of the media, as substantially higher concentrations of sorbitol than of glucose are required to exert significant effects on lipid breakdown. The inhibitory effect of glucose on lipid breakdown is limited to a narrow developmental window, suggesting that completion of some critical metabolic transition results in loss of sensitivity to the inhibitory effect of glucose on lipid breakdown.

  14. The dynamic of lipid oxidation in human myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    Both endogenous and exogenous lipid levels may be regulators of total lipid oxidation in skeletal muscles. We studied the dynamics of lipid oxidation in human myotubes established from healthy, lean subjects exposed to acutely and chronically increased palmitate concentrations. The intramyocellul...... oxidation in human myotubes. A reduced exogenous lipid oxidation, secondary to increased triacylglycerol levels, may redirect free fatty acids into esterification and oxidation from intracellular stores, thereby protecting myotubes from FFA lipotoxic effects....

  15. DISPERSION OF GRAPHENE OXIDE AND ITS FLAME RETARDANCY EFFECT ON EPOXY NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Zhou Wang; Xiu-zhi Tang; Zhong-zhen Yu; Peng Guo; Huai-he Song; Xu-sheng Du

    2011-01-01

    Grraphene oxide was prepared by ultrasonication of completely oxidized graphite and used to improve the flame retardancy of epoxy. The epoxy/graphene oxide nanocomposite was studied in terms of exfoliation/dispersion, thermal stability and flame retardancy. X-ray diffraction and transmission electron microscopy confirmed the exfoliation of the graphene oxide nanosheets in epoxy matrix. Cone calorimeter measurements showed that the time to ignition of the epoxy/graphene oxide nanocomposite was longer than that of neat epoxy. The heat release rate curve of the nanocomposite was broadened compared to that of neat epoxy and the peak heat release rate decreased as well.

  16. Impact of lipid content and composition on lipid oxidation and protein carbonylation in experimental fermented sausages.

    Science.gov (United States)

    Fuentes, Verónica; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2014-03-15

    This study aims to investigate the effect of lipid content (∼4%, ∼10% and ∼15%) and composition (different lipid sources; animal fat and sunflower oil) on the oxidative stability of proteins and lipids in experimental fermented sausages. Increasing the lipid content of sausages enhanced the susceptibility of lipids to oxidation whereas the effect on the formation of specific carbonyls from protein oxidation was not so evident. Sausages manufactured with different lipid sources affected the susceptibility of lipids and proteins to oxidation as a likely result of the modifications in the fatty acid profile, as well as to the presence of antioxidant compounds. While the fatty acid profile had a major effect on the occurrence and extent of lipid oxidation, the presence of compounds with potential antioxidant activity may be more influential on the extent of protein carbonylation.

  17. Lipid Oxidation Promotes Acrylamide Formation in Fat-Rich Systems

    NARCIS (Netherlands)

    Capuano, Edoardo

    2016-01-01

    Evidence from model systems suggests that lipid oxidation can contribute to acrylamide (AA) formation through the generation of secondary lipid oxidation carbonyl products, mainly aldehydes, which are able to degrade asparagine to AA. In this respect, factors affecting the extent of lipid

  18. Lipid Oxidation Promotes Acrylamide Formation in Fat-Rich Systems

    NARCIS (Netherlands)

    Capuano, Edoardo

    2016-01-01

    Evidence from model systems suggests that lipid oxidation can contribute to acrylamide (AA) formation through the generation of secondary lipid oxidation carbonyl products, mainly aldehydes, which are able to degrade asparagine to AA. In this respect, factors affecting the extent of lipid oxidati

  19. Lipid Oxidation Promotes Acrylamide Formation in Fat-Rich Systems

    NARCIS (Netherlands)

    Capuano, Edoardo

    2016-01-01

    Evidence from model systems suggests that lipid oxidation can contribute to acrylamide (AA) formation through the generation of secondary lipid oxidation carbonyl products, mainly aldehydes, which are able to degrade asparagine to AA. In this respect, factors affecting the extent of lipid oxidati

  20. Effect of Treatment with Natural Antioxidant on the Chilled Beef Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    G.Y. Ivanov

    2010-07-01

    Full Text Available The effect of superficial treatment of beef trimm ings and beef knuckles with bone with taxifolin solution (1 g/L on the lipid oxidation development during chilled storage was studied. Beef samples were airpacked or packaged in modified atmosphere consisting of 80%O2/20%CO2. It was found that the combined application of taxifolin treatment and MAP inhibited effectively formation of secondary derivates of lipid oxidation. The lipid hydroperoxides formation of these samples was reduced by 50-60% and accumulation of TBARS was significantly retarded in com parison with untreated w ith taxifolin, air-packed control samples. The MAP was found as the crucial factor for minimization of the FAME composition changes of chilled beef.

  1. Resistant starch consumption promotes lipid oxidation

    Directory of Open Access Journals (Sweden)

    Higgins Janine A

    2004-10-01

    Full Text Available Abstract Background Although the effects of resistant starch (RS on postprandial glycemia and insulinemia have been extensively studied, little is known about the impact of RS on fat metabolism. This study examines the relationship between the RS content of a meal and postprandial/post-absorbative fat oxidation. Results 12 subjects consumed meals containing 0%, 2.7%, 5.4%, and 10.7% RS (as a percentage of total carbohydrate. Blood samples were taken and analyzed for glucose, insulin, triacylglycerol (TAG and free fatty acid (FFA concentrations. Respiratory quotient was measured hourly. The 0%, 5.4%, and 10.7% meals contained 50 μCi [1-14C]-triolein with breath samples collected hourly following the meal, and gluteal fat biopsies obtained at 0 and 24 h. RS, regardless of dose, had no effect on fasting or postprandial insulin, glucose, FFA or TAG concentration, nor on meal fat storage. However, data from indirect calorimetry and oxidation of [1-14C]-triolein to 14CO2 showed that addition of 5.4% RS to the diet significantly increased fat oxidation. In fact, postprandial oxidation of [1-14C]-triolein was 23% greater with the 5.4% RS meal than the 0% meal (p = 0.0062. Conclusions These data indicate that replacement of 5.4% of total dietary carbohydrate with RS significantly increased post-prandial lipid oxidation and therefore could decrease fat accumulation in the long-term.

  2. Investigation of Lipid Oxidation in High- and Low-Lipid-Containing Topical Skin Formulations

    DEFF Research Database (Denmark)

    Raagaard Thomsen, Birgitte; Frisenfeldt Horn, Anna; Hyldig, G.

    2017-01-01

    Abstract: Lipid oxidation can impact the odour of skin care products during storage. A study was conducted to identify and monitor representative markers for lipid oxidation in skin care products over time. Four lip care formulations and three skin care formulations with different lipid contents...... were stored at various cosmetic industry-relevant conditions for 84 days. The skin care products were analysed for lipid hydroperoxides and secondary volatile oxidation products. A trained sensory panel performed an odour difference (triangle) test and odour-profiled the products to detect and describe...... odour changes during storage. Several potential markers for lipid oxidation were identified. In skin care formulations, peroxide value (PV) analysis was a useful marker for lipid oxidation if the product was exposed to light during storage, but no clear changes were observed for PV in samples stored...

  3. Bilayer Deformation, Pores, and Micellation Induced by Oxidized Lipids.

    Science.gov (United States)

    Boonnoy, Phansiri; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak

    2015-12-17

    The influence of different oxidized lipids on lipid bilayers was investigated with 16 individual 1 μs atomistic molecular dynamics (MD) simulations. Binary mixtures of lipid bilayers of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) and its peroxide and aldehyde products were performed at different concentrations. In addition, an asymmetrical short chain lipid, 1-palmitoyl-2-decanoyl-sn-glycero-3-phosphatidylcholine (PDPC), was used to compare the effects of polar/apolar groups in the lipid tail on lipid bilayer. Although water defects occurred with both aldehyde and peroxide lipids, full pore formation was observed only for aldehyde lipids. At medium concentrations the pores were stable. At higher concentrations, however, the pores became unstable and micellation occurred. Data analysis shows that aldehyde lipids' propensity for pore formation is due to their shorter and highly mobile tail. The highly polar peroxide lipids are stabilized by strong hydrogen bonds with interfacial water.

  4. Exposure to oxidized nitrogen: lipid peroxidation and neonatal health risk.

    Science.gov (United States)

    Tabacova, S; Baird, D D; Balabaeva, L

    1998-01-01

    Pregnant women exposed to extensive environmental contamination by oxidized nitrogen compounds were studied at parturition, their neonatal health status was assessed and the involvement of oxidative stress in pathology was evaluated. Methemoglobin in maternal and cord blood was measured as a biomarker of individual exposure. Blood lipid peroxides and glutathione (reduced and total) were determined as oxidative stress biomarkers. Birthweight, Apgar scores, and clinical diagnosis at birth were used as neonatal health endpoints. Elevated exposure to oxidized nitrogen compounds was associated with increased lipid peroxidation in both maternal and cord blood. Poor birth outcome was associated with high blood lipid peroxides. Controlling for maternal age, parity, and smoking did not affect the relationships materially. The results showed that maternal/fetal exposure to oxidized nitrogen compounds is associated with increased risk of adverse birth outcome and suggest a role of oxidative damage in the pathogenic pathway.

  5. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka

    2014-01-01

    We claim that (1) cholesterol protects bilayers from disruption caused by lipid oxidation by sequestering conical shaped oxidized lipid species such as 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PZPC) away from phospholipid, because cholesterol and the oxidized lipid have complementary...... shapes and (2) mixtures of cholesterol and oxidized lipids can self-assemble into bilayers much like lysolipid–cholesterol mixtures. The evidence for bilayer protection comes from molecular dynamics (MD) simulations and dynamic light scattering (DLS) measurements. Unimodal size distributions of extruded...... vesicles (LUVETs) made up of a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PZPC containing high amounts of PZPC are only obtained when cholesterol is present in high concentrations. In simulations, bilayers containing high amounts of PZPC become porous, unless cholesterol is also present...

  6. Factors Affecting Lipid Oxidation Due to Pig and Turkey Hemolysate.

    Science.gov (United States)

    Wu, Haizhou; Yin, Jie; Zhang, Jianhao; Richards, Mark P

    2017-09-13

    Turkey hemolysate promoted lipid oxidation in washed muscle more effectively than pig hemolysate, which was partly attributed to the greater ability of H2O2 that formed during auto-oxidation to oxidize the avian hemoglobin (Hb). Turkey and pig hemolysate (2.5 μM Hb) exposed to 10 μM H2O2 oxidized to 48% and 4% metHb, respectively. Catalase activity, which converts H2O2 to water, was elevated in the pig hemolysate. The larger difference in Hb oxidation when comparing turkey and pig hemolysate in washed muscle (relative to their auto-oxidation rates) suggested that lipid oxidation products facilitated formation of metHb. Turkey metHb released hemin more readily than pig metHb, which coincided with turkey metHb promoting lipid oxidation more effectively than pig metHb. Ferryl Hb was not detected during storage of turkey or pig hemolysate in washed muscle, which suggested a minor role for hypervalent forms of Hb in the oxidation of the lipids.

  7. Advances in NMR Spectroscopy for Lipid Oxidation Assessment

    Science.gov (United States)

    Although there are many analytical methods developed for the assessment of lipid oxidation, different analytical methods often give different, sometimes even contradictory, results. The reason for this inconsistency is that although there are many different kinds of oxidation products, most methods ...

  8. Control of lipid oxidation at the mitochondrial level

    DEFF Research Database (Denmark)

    Sahlin, Kent

    2009-01-01

    , but the mechanisms regulating fuel preferences remain unclear. During intense exercise, oxidation of long-chain fatty acids (LCFAs) decreases, and the major control is likely to be at the mitochondrial level. Potential mitochondrial sites for control of lipid oxidation include transport of LCFAs into mitochondrial...

  9. The choice of homogenisation equipment affects lipid oxidation in emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jensen, Louise Helene Søgaard

    2012-01-01

    in emulsions has been shown to be affected by the emulsification conditions. The objective of this study was to investigate the influence of homogenisation equipment (microfluidizer vs. two-stage valve homogeniser) on lipid oxidation in 10% fish oil-in-water emulsions prepared with two different milk proteins....... Emulsions were prepared at pH 7 with similar droplet sizes. Results showed that the oxidative stability of emulsions prepared with sodium caseinate was not influenced by the type of homogeniser used. In contrast, the type of homogenisation equipment significantly influenced lipid oxidation when whey protein...

  10. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice.

    Directory of Open Access Journals (Sweden)

    Elise F Hoek-van den Hil

    Full Text Available Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD. In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control or with supplementation of 0.33% (w/w quercetin for 12 weeks. Gas chromatography and (1H nuclear magnetic resonance were used to quantitatively measure serum lipid profiles. Whole genome microarray analysis of liver tissue was used to identify possible mechanisms underlying altered circulating lipid levels. Body weight, energy intake and hepatic lipid accumulation did not differ significantly between the quercetin and the control group. In serum of quercetin-fed mice, triglycerides (TG were decreased with 14% (p<0.001 and total poly unsaturated fatty acids (PUFA were increased with 13% (p<0.01. Palmitic acid, oleic acid, and linoleic acid were all decreased by 9-15% (p<0.05 in quercetin-fed mice. Both palmitic acid and oleic acid can be oxidized by omega (ω-oxidation. Gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially ω-oxidation. At the gene level, this was reflected by the up-regulation of cytochrome P450 (Cyp 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3. Two relevant regulators, cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s and the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3 were also up-regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid ω-oxidation and lowered corresponding circulating lipid levels, which may contribute to potential beneficial effects on CVD.

  11. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice.

    Science.gov (United States)

    Hoek-van den Hil, Elise F; Keijer, Jaap; Bunschoten, Annelies; Vervoort, Jacques J M; Stankova, Barbora; Bekkenkamp, Melissa; Herreman, Laure; Venema, Dini; Hollman, Peter C H; Tvrzicka, Eva; Rietjens, Ivonne M C M; van Schothorst, Evert M

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and (1)H nuclear magnetic resonance were used to quantitatively measure serum lipid profiles. Whole genome microarray analysis of liver tissue was used to identify possible mechanisms underlying altered circulating lipid levels. Body weight, energy intake and hepatic lipid accumulation did not differ significantly between the quercetin and the control group. In serum of quercetin-fed mice, triglycerides (TG) were decreased with 14% (p<0.001) and total poly unsaturated fatty acids (PUFA) were increased with 13% (p<0.01). Palmitic acid, oleic acid, and linoleic acid were all decreased by 9-15% (p<0.05) in quercetin-fed mice. Both palmitic acid and oleic acid can be oxidized by omega (ω)-oxidation. Gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially ω-oxidation. At the gene level, this was reflected by the up-regulation of cytochrome P450 (Cyp) 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3). Two relevant regulators, cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s) and the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3) were also up-regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid ω-oxidation and lowered corresponding circulating lipid levels, which may contribute to potential beneficial effects on CVD.

  12. Is the oxidation of high-density lipoprotein lipids different than the oxidation of low-density lipoprotein lipids?

    Science.gov (United States)

    Thomas, M J; Chen, Q; Zabalawi, M; Anderson, R; Wilson, M; Weinberg, R; Sorci-Thomas, M G; Rudel, L L

    2001-02-13

    This article gives detailed insight into the kinetics of high-density lipoprotein (HDL) oxidation catalyzed by azobis(2-amidinopropane).dihydrochloride (ABAP) or by copper. ABAP initialized oxidation of human HDL 3-4 times faster than non-human primate HDL with a similar composition. The oxidizability of non-human primate HDL was 1000 times lower than the oxidizability calculated from rate constants derived from liposome oxidation, suggesting that there is a slow step in HDL oxidation not present in liposomes. Saturable binding of copper to HDL was a significant feature of copper-catalyzed oxidation. Binding constants (K(m)) for non-human primate HDL were 2-3-fold lower than those for human HDL. Copper-catalyzed oxidation of non-human primate HDL was slower than that of human HDL, but human HDL(2) and HDL(3) oxidized at about the same rate. Overall, the kinetics describing the oxidation of HDL were mechanistically similar to those reported for LDL, suggesting that HDL lipids were as easily oxidized as LDL lipids and that HDL will be easily oxidized in vivo when exposed to agents that oxidize LDL.

  13. Modification of Casein by the Lipid Oxidation Product Malondialdehyde

    NARCIS (Netherlands)

    Adams, A.; Kimpe, de N.; Boekel, van T.

    2008-01-01

    The reaction of malondialdehyde with casein was studied in aqueous solution to evaluate the impact of this lipid oxidation product on food protein modification. By using multiresponse modeling, a kinetic model was developed for this reaction. The influence of temperature and pH on protein browning a

  14. Digestibility of energy and lipids and oxidative stress in nursery pigs fed commercially available lipids

    Science.gov (United States)

    An experiment was conducted to evaluate the impact of lipid source on GE and ether extract (EE) digestibility, oxidative stress, and gut integrity in nursery pigs fed diets containing 10% of soybean oil (SO), choice white grease (CWG), palm oil (PO), or 2 different distillers corn oils (DCO-1 and DC...

  15. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene

    Science.gov (United States)

    Gao, Yanshan; Zhang, Yu; Williams, Gareth R.; O’Hare, Dermot; Wang, Qiang

    2016-01-01

    Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH–oxidized carbon nanotube (AMO-LDH–OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this endows the hybrid material with enhanced flame retardancy, thermal stability, and mechanical properties. The thermal stability of polypropylene (PP) was significantly enhanced by adding AMO-LDH–OCNT hybrids. For PP mixed with AMO-LDH–OCNT hybrids to produce a composite with 10 wt% LDH and 2 wt% OCNT, the 50% weight loss temperature was increased by 43 °C. Further, a system with 10 wt% of AMO-LDH and 1 wt% OCNT showed a peak heat release rate (PHRR) reduction of 40%, greater than the PHRR reduction with PP/20 wt% AMO-LDH (31%). The degree of dispersion (mixability) between AMO-LDH and OCNT has a significant effect on the flame retardant performance of the hybrids. In addition, the incorporation of AMO-LDH–OCNT hybrids led to better mechanical properties, such as higher tensile strength (27.5 MPa) and elongation at break (17.9%), than those composites containing only AMO-LDH (25.6 MPa and 7.5%, respectively). PMID:27752096

  16. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene

    Science.gov (United States)

    Gao, Yanshan; Zhang, Yu; Williams, Gareth R.; O'Hare, Dermot; Wang, Qiang

    2016-10-01

    Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH-oxidized carbon nanotube (AMO-LDH-OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this endows the hybrid material with enhanced flame retardancy, thermal stability, and mechanical properties. The thermal stability of polypropylene (PP) was significantly enhanced by adding AMO-LDH-OCNT hybrids. For PP mixed with AMO-LDH-OCNT hybrids to produce a composite with 10 wt% LDH and 2 wt% OCNT, the 50% weight loss temperature was increased by 43 °C. Further, a system with 10 wt% of AMO-LDH and 1 wt% OCNT showed a peak heat release rate (PHRR) reduction of 40%, greater than the PHRR reduction with PP/20 wt% AMO-LDH (31%). The degree of dispersion (mixability) between AMO-LDH and OCNT has a significant effect on the flame retardant performance of the hybrids. In addition, the incorporation of AMO-LDH-OCNT hybrids led to better mechanical properties, such as higher tensile strength (27.5 MPa) and elongation at break (17.9%), than those composites containing only AMO-LDH (25.6 MPa and 7.5%, respectively).

  17. Supported lipid bilayers as templates to design manganese oxide nanoparticles

    Indian Academy of Sciences (India)

    J Maheshkumar; B Sreedhar; B U Nair; A Dhathathreyan

    2012-09-01

    This work reports on the preparation of nanoclusters of manganese oxide using biotemplating techniques. Supported lipid bilayers (SLBs) on quartz using cationic lipid [Dioctadecyldimethylammonium bromide (DOMA)] and mixed systems with neutral phospholipids dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) have been used as templates to synthesize these nanoparticles in a waterbased medium at room temperature. The Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) show manganese oxide nanostructures that are composed of crystals or small clusters in the size range of 20-50 nm in diameter. Small angle XRD showed that template removal through calcining process results in nanostructures of the manganese oxide in sizes from 30 to 50 nm. Using these organized assemblies it is possible to control the nano and mesoscopic morphologies of particles and both rod-like and spherical particles can be synthesized.

  18. LKB1 regulates lipid oxidation during exercise independently of AMPK.

    Science.gov (United States)

    Jeppesen, Jacob; Maarbjerg, Stine J; Jordy, Andreas B; Fritzen, Andreas M; Pehmøller, Christian; Sylow, Lykke; Serup, Annette Karen; Jessen, Niels; Thorsen, Kasper; Prats, Clara; Qvortrup, Klaus; Dyck, Jason R B; Hunter, Roger W; Sakamoto, Kei; Thomson, David M; Schjerling, Peter; Wojtaszewski, Jørgen F P; Richter, Erik A; Kiens, Bente

    2013-05-01

    Lipid metabolism is important for health and insulin action, yet the fundamental process of regulating lipid metabolism during muscle contraction is incompletely understood. Here, we show that liver kinase B1 (LKB1) muscle-specific knockout (LKB1 MKO) mice display decreased fatty acid (FA) oxidation during treadmill exercise. LKB1 MKO mice also show decreased muscle SIK3 activity, increased histone deacetylase 4 expression, decreased NAD⁺ concentration and SIRT1 activity, and decreased expression of genes involved in FA oxidation. In AMP-activated protein kinase (AMPK)α2 KO mice, substrate use was similar to that in WT mice, which excluded that decreased FA oxidation in LKB1 MKO mice was due to decreased AMPKα2 activity. Additionally, LKB1 MKO muscle demonstrated decreased FA oxidation in vitro. A markedly decreased phosphorylation of TBC1D1, a proposed regulator of FA transport, and a low CoA content could contribute to the low FA oxidation in LKB1 MKO. LKB1 deficiency did not reduce muscle glucose uptake or oxidation during exercise in vivo, excluding a general impairment of substrate use during exercise in LKB1 MKO mice. Our findings demonstrate that LKB1 is a novel molecular regulator of major importance for FA oxidation but not glucose uptake in muscle during exercise.

  19. Role of oxidized lipids in pulmonary arterial hypertension

    Science.gov (United States)

    Ruffenach, Grégoire; Umar, Soban; Motayagheni, Negar; Reddy, Srinivasa T.; Eghbali, Mansoureh

    2016-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a multifactorial disease characterized by interplay of many cellular, molecular, and genetic events that lead to excessive proliferation of pulmonary cells, including smooth muscle and endothelial cells; inflammation; and extracellular matrix remodeling. Abnormal vascular changes and structural remodeling associated with PAH culminate in vasoconstriction and obstruction of pulmonary arteries, contributing to increased pulmonary vascular resistance, pulmonary hypertension, and right ventricular failure. The complex molecular mechanisms involved in the pathobiology of PAH are the limiting factors in the development of potential therapeutic interventions for PAH. Over the years, our group and others have demonstrated the critical implication of lipids in the pathogenesis of PAH. This review specifically focuses on the current understanding of the role of oxidized lipids, lipid metabolism, peroxidation, and oxidative stress in the progression of PAH. This review also discusses the relevance of apolipoprotein A-I mimetic peptides and microRNA-193, which are known to regulate the levels of oxidized lipids, as potential therapeutics in PAH. PMID:27683603

  20. Asparagine decarboxylation by lipid oxidation products in model systems.

    Science.gov (United States)

    Hidalgo, Francisco J; Delgado, Rosa M; Navarro, José L; Zamora, Rosario

    2010-10-13

    The decarboxylation of asparagine in the presence of alkanals, alkenals, and alkadienals, among other lipid derivatives, was studied in an attempt to understand the reaction pathways by which some lipid oxidation products are able to convert asparagine into acrylamide. Asparagine was converted into 3-aminopropionamide in the presence of lipid derivatives as a function of reaction conditions (pH, water content, time, and temperature), as well as the type and amount of lipid compound involved. Alkadienals (and analogous ketodienes) were the most reactive lipids followed by hydroperoxides and alkenals. Saturated carbonyls and polyunsaturated fatty acids, or other polyunsaturated derivatives, also exhibited some reactivity. On the other hand, saturated lipids or monounsaturated alcohols did not degrade asparagine. A mechanism for the decarboxylation of asparagine in the presence of alkadienals based on the deuteration results obtained when asparagine/2,4-decadienal model systems were heated in the presence of deuterated water was proposed. The activation energy (E(a)) of asparagine decarboxylation by 2,4-decadienal was 81.0 kJ/mol, which is higher than that found for the conversion of 3-aminopropionamide into acrylamide in the presence of 2,4-decadienal. This result points to the decarboxylation step as the key step in the conversion of asparagine into acrylamide in the presence of alkadienals. Therefore, any inhibiting strategy for suppressing the formation of acrylamide by alkadienals should be mainly directed to the inhibition of this step.

  1. Retarding of electrochemical oxidation of formate on the platinum anode by a coat of Nafion membrane

    Science.gov (United States)

    Zhang, Rui; Lv, Weixin; Li, Guanghua; Mezaal, Mohammed Adnan; Li, Xiaojing; Lei, Lixu

    2014-12-01

    It has been found that the faradaic efficiency is decreasing with the electrolysis time for electrochemical reduction of CO2 to formate on a Sn cathode with a Pt anode in an undivided electrolytic cell, because the oxidation of formed formate takes place on the Pt anode, which also limits seriously the highest concentration of formate in the system. Here, we report that a coat of Nafion membrane on the Pt anode can retard the oxidation of formate: even if the concentration of the formate in the electrolyte reaches to 0.12 mol L-1, the faradaic efficiency still maintains above 61.3%; in contrast, the oxidation reaction of the formate on the naked Pt electrode is very fast, when the concentration of the formate in the electrolyte reaches to 0.023 mol L-1, the faradaic efficiency decreases to 35.3%. This is very important because the separation of formic acid could not be economical when its concentration is not high enough, and it is also costly if the depleted solution allows too less of its concentration because the solution has to be reused in the electrochemical process.

  2. Mitochondrial mass is inversely correlated to complete lipid oxidation in human myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2011-01-01

    Exercise increases while physical inactivity decrease mitochondrial content and oxidative capacity of skeletal muscles in vivo. It is unknown whether mitochondrial mass and substrate oxidation are related in non-contracting skeletal muscle. Mitochondrial mass, ATP, ADP, AMP, glucose and lipid......, basal glucose oxidation and incomplete lipid oxidation were significantly increased while complete lipid oxidation was lower. Mitochondrial mass was not correlated to glucose oxidation or incomplete lipid oxidation in human myotubes but inversely correlated to complete lipid oxidation. Thus within...... a stable energetic background, an increased mitochondrial mass in human myotubes was not positive correlated to an increased substrate oxidation as expected from skeletal muscles in vivo but surprisingly with a reduced complete lipid oxidation....

  3. Lipid oxidation in omega-3 emulsions prepared with milk proteins

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Andersen, Ulf

    components. In these three studies different parameters that are expected to change the properties and structure of the proteins at the interface were investigated. The first study compares 70% emulsions with either sodium caseinate or whey protein isolate at two pH values with and without iron addition....... The properties of the emulsifier used and the structure at the interface are therefore expected to be of great importance for oxidation in emulsions. This presentation will include results from mainly three different studies of lipid oxidation in omega-3 emulsions prepared with milk proteins and protein....... The second study evaluates the effect of two different high pressure homogenizers on oxidation in 10% emulsions with the same emulsifiers as in the first study. Finally, the third study considers the effect of changing pH on oxidation in emulsions prepared with different whey protein components. Results...

  4. Variables affecting lipid oxidation in dried microencapsulated oils

    Directory of Open Access Journals (Sweden)

    Márquez-Ruiz, Gloria

    2003-09-01

    Full Text Available Dried microencapsulated oils are powdery foods or ingredients, prepared by drying natural or formulated emulsions, wherein the oil globules are dispersed in a matrix of saccharides and/or proteins. The study of lipid oxidation in microencapsulated oils is a very difficult task since, in addition to the numerous variables normally involved in lipid oxidation, mainly unsaturation degree, oxygen, light, temperature, prooxidants and antioxidants, other factors exert an important influence in these heterophasic lipid systems. In this paper, the present state of the art on lipid oxidation in dried microencapsulated oils is reviewed, focused on the variables specifically involved in oxidation of these lipid systems. Such variables include those pertaining to the preparation process (type and concentration of the matrix components and drying procedure and those related to the physicochemical properties of microencapsulated oils (particle size, oil globule size, lipid distribution, water activity, pH and interactions between matrix components.Los aceites microencapsulados son alimentos o ingredientes en polvo preparados mediante secado de emulsiones naturales o formuladas, donde los glóbulos de aceite se encuentran dispersos en una matriz de hidratos de carbono y/o proteínas. El estudio de la oxidación lipídica en aceites microencapsulados es muy difícil ya que, además de las numerosas variables implicadas normalmente en la oxidación lipídica, principalmente el grado de insaturación, oxígeno, luz, temperatura, prooxidantes y antioxidantes, en estos sistemas lipídicos heterofásicos existen otros factores que ejercen una importante influencia. En este trabajo, se revisa la situación actual del conocimiento sobre oxidación lipídica en aceites microencapsulados en relación con las variables que intervienen específicamente en la oxidación de estos sistemas lipídicos. Concretamente, dichas variables incluyen las implicadas en el proceso de

  5. Reduced lipid oxidation in myotubes established from obese and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    To date, it is unknown whether reduced lipid oxidation of skeletal muscle of obese and obese type 2 diabetic (T2D) subjects partly is based on reduced oxidation of endogenous lipids. Palmitate (PA) accumulation, total oxidation and lipolysis were not different between myotubes established from le...... lipid and mitochondria in obese and obese diabetic myotubes and secondly, a mismatch between beta-oxidation and citric acid cycle in obese diabetic myotubes....

  6. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    Science.gov (United States)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  7. An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations

    DEFF Research Database (Denmark)

    Siani, P; de Souza, R M; Dias, L G

    2016-01-01

    Biological membranes and model lipid systems containing high amounts of unsaturated lipids and sterols are subject to chemical and/or photo-induced lipid oxidation, which leads to the creation of exotic oxidized lipid products (OxPLs). OxPLs are known to have significant physiological impact in c...

  8. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike;

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...

  9. Thermal and Thermo-oxidative Degradation of Flame Retardant High Impact Polystyrene with Triphenyl Phosphate and Novolac Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Thermal and thermo-oxidative decomposition and decomposition kinetics of flame retardant high impact polystyrene (HIPS) with triphenyl phosphate (TPP) and novolac type epoxy resin (NE) were characterized using thermo-gravimetric experiment. And the flammability was determined by limited oxygen indices (LOI). The LOI results show that TPP and NE had a good synthetic effect on the flame retardancy of HIPS. Compared with pure HIPS, the LOI values of HIPS/NE and HIPS/TPP only increased by about 5%, and the LOI value of HIPS/TPP/NE reached 42.3%, nearly 23% above that of HIPS. All materials showed one main decomposition.step, as radical H1PS scission predominated during anaerobic decomposition. TPP increased the activity energy effectively while NE affected the thermal-oxidative degradation more with the help of the char formation. With both TPP and NE, the materials could have a comparable good result of both thermal and thermal-oxidative degradation, which could contribute to their effect on the flame retardancy.

  10. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria.

    Science.gov (United States)

    Xiao, Mengqing; Zhong, Huiqin; Xia, Lin; Tao, Yongzhen; Yin, Huiyong

    2017-10-01

    Mitochondrial lipids are essential for maintaining the integrity of mitochondrial membranes and the proper functions of mitochondria. As the "powerhouse" of a cell, mitochondria are also the major cellular source of reactive oxygen species (ROS). Oxidative stress occurs when the antioxidant system is overwhelmed by overproduction of ROS. Polyunsaturated fatty acids in mitochondrial membranes are primary targets for ROS attack, which may lead to lipid peroxidation (LPO) and generation of reactive lipids, such as 4-hydroxynonenal. When mitochondrial lipids are oxidized, the integrity and function of mitochondria may be compromised and this may eventually lead to mitochondrial dysfunction, which has been associated with many human diseases including cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. How mitochondrial lipids are oxidized and the underlying molecular mechanisms and pathophysiological consequences associated with mitochondrial LPO remain poorly defined. Oxidation of the mitochondria-specific phospholipid cardiolipin and generation of bioactive lipids through mitochondrial LPO has been increasingly recognized as an important event orchestrating apoptosis, metabolic reprogramming of energy production, mitophagy, and immune responses. In this review, we focus on the current understanding of how mitochondrial LPO and generation of bioactive lipid mediators in mitochondria are involved in the modulation of mitochondrial functions in the context of relevant human diseases associated with oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  12. Augmentation of blood lipid glycation and lipid oxidation in diabetic patients.

    Science.gov (United States)

    Suzuki, Koichiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-01-01

    Lipid oxidation plays a role in the pathophysiology of several diseases, including diabetes. Patients with type 2 diabetes show abnormally high plasma levels of phosphatidylcholine hydroperoxide (PCOOH). However, little is known about the biochemical processes that increase plasma PCOOH in diabetes. We hypothesized that "glycated lipid moieties" may form in diabetic plasma and cause oxidative stress resulting in PCOOH formation. To evaluate this hypothesis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed to analyze Amadori-glycated phosphatidylethanolamine (Amadori-PE, an early stage Maillard product), as well as the advanced glycation end products (AGE) carboxymethyl-PE (CM-PE) and carboxyethyl-PE (CE-PE). The product ion scan, neutral loss scanning, and multiple reaction monitoring provide useful structural and quantitative information about Amadori-PE, CM-PE, and CE-PE in diabetic plasma and erythrocytes. We found that plasma and erythrocyte Amadori-PE concentrations were significantly higher in diabetic patients (757±377 nM plasma, 2793±989 nM packed cells) than in normal subjects (165±66 nM plasma, 712±52 nM packed cells), and that Amadori-PE concentrations were positively correlated with PCOOH. By contrast, no significant differences were observed in blood AGE-PE concentrations between diabetic patients (CM-PE: 7.7±3.5 nM plasma, 528±83 nM packed cells; CE-PE: 2.5±1.1 nM plasma, 82±24 nM packed cells) and normal subjects (CM-PE: 6.6±3.1 nM plasma, 705±533 nM packed cells; CE-PE: 4.2±1.5 nM plasma, 68±16 nM packed cells). These results suggest that Amadori-PE is more prone to accumulation in the blood with diabetes than CM-PE or CE-PE. This review describes the involvement of blood lipid glycation and lipid oxidation in the development of diabetes.

  13. Effects of Oxidized Tallow on the Rabbit Serum Lipids and Antioxidant Activity of the In-vitro Lipids.

    Science.gov (United States)

    Zeb, Alam; Rahman, Waheed Ur

    2012-09-01

    This paper describes the effects of thermally oxidized tallow on the serum lipids profile and radical scavenging activity (RSA) of the lipids extracted from the different tissues of the rabbits. Tallow was thermally oxidized at 130℃ for 9, 18, 27, 36 and 45 h respectively. Thermally oxidized tallow was fed to the local strain of Himalayan rabbits for one week. Results show that oxidation increases the formation of hydroperoxides and decrease the level of radical scavenging activity of the tallow. The rabbit serum lipids profile showed a dose dependent increase in triglyceride, total cholesterol and LDL-cholesterol. However, no statistically significant increase was observed in the HDL-cholesterol with an increase of oxidation time. Serum glucose and rabbits body weight decrease significantly (p tallow is harmful and therefore an alternative way of cooking should be used.

  14. Heterogeneous OH initiated oxidation: a possible explanation for the persistence of organophosphate flame retardants in air.

    Science.gov (United States)

    Liu, Yongchun; Liggio, John; Harner, Tom; Jantunen, Liisa; Shoeib, Mahiba; Li, Shao-Meng

    2014-01-21

    Heterogeneous reactions between OH radicals and emerging flame retardant compounds coated on inert particles have been investigated. Organophosphate esters (OPEs) including triphenyl phosphate (TPhP), tris-2-ethylhexyl phosphate (TEHP), and tris-1,3-dichloro-2-propyl phosphate (TDCPP) were coated on (NH4)2SO4 particles and exposed to OH radicals in a photochemical flow tube at 298 K and (38.0 ± 2.0) % RH. The degradation of these particle-bound OPEs was observed as a result of OH exposure, as measured using a Time-of-Flight Aerosol Mass Spectrometer. The derived second-order rate constants for the heterogeneous loss of TPhP, TEHP, and TDCPP were (2.1 ± 0.19) × 10(-12), (2.7 ± 0.63) × 10(-12), and (9.2 ± 0.92) × 10(-13) cm(3) molecule(-1) s(-1), respectively, from which approximate atmospheric lifetimes are estimated to be 5.6 (5.2-6.0), 4.3 (3.5-5.6), and 13 (11-14) days. Additional coating of the OPE coated particles with an OH radical active species further increased the lifetimes of these OPEs. These results represent the first reported estimates of heterogeneous reaction rate constants for these species. The results demonstrate that particle bound OPEs are highly persistent in the atmosphere with regard to OH radical oxidation, consistent with the assumption that OPEs can undergo medium or long-range transport, as previously proposed on the basis of field measurements. Finally, these results indicate that future risk assessment and transport modeling of emerging priority chemicals with semi- to low-volatility must consider particle phase heterogeneous loss processes when evaluating environmental persistence.

  15. Association of Lipids with Oxidative Stress Biomarkers in Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Adriana Santi

    2012-01-01

    Full Text Available Objective. The aim of the present study was to evaluate the oxidative stress biomarkers in patients with subclinical hypothyroidism (n=20 and health controls (n=20. Subjects and Methods. Total cholesterol (TC, triglycerides (TGs, low-density lipoprotein-cholesterol (LDL-C, high-density lipoprotein cholesterol (HDL-C, thiobarbituric acid reactive substances (TBARSs, catalase (CAT, superoxide dismutase (SOD, and arylesterase (ARE were analyzed. Results. TC, LDL-C, TBARS, and CAT were higher in subclinical hypothyroidism patients, whereas SOD did not change. Arylesterase activity was significantly lower in the SH group, compared with the control group. Correlation analyses revealed the association of lipids (TC and LDL-C with both oxidative stress biomarkers and thyrotropin (TSH. Thyroid hormones were correlated only with triglyceride levels. In addition, TSH was significantly correlated with TBARS, CAT, and SOD. However, no significant correlations were observed after controlling TC levels. Conclusions. We found that SH patients are under increased oxidative stress manifested by reduced ARE activity and elevated lipoperoxidation and CAT activity. Secondary hypercholesterolemia to thyroid dysfunction and not hypothyroidism per se appears to be associated with oxidative stress in subclinical hypothyroidism.

  16. Oxidative stress: Lipid peroxidation products as predictors in disease progression

    Directory of Open Access Journals (Sweden)

    Suranjana Ray Halder

    2014-09-01

    Full Text Available Oxidative stress is implicated in the pathogenesis of numerous disease processes, including diabetes mellitus, atherosclerosis, ischemia reperfusion injury, rheumatoid arthritis, neurodegenerative diseases as well as in the aging process. Chemical modification of amino acids in protein during lipid peroxidation (LPO results in the formation of lipoxidation products, which may serve as indicators of oxidative stress in vivo. The various types of aldehydes such as 4-hydroxynonenal, malondialdehyde, acrolein and others produced during LPO may serve as potent oxidative stress biomarkers. Their activation in different signaling cascades lead to apoptosis, differentiation, proliferation, etc., Increased amount of these aldehydes in aging or with metabolic complications or in other diseases indicate their pathophysiological significance. Thus, LPO products or other oxidative stress biomarkers may open the way for the development of early detection, prevention, and therapeutic strategies for stress associated human diseases. Now-a-days, antioxidant supplementation has become an increasingly popular practice to restore the redox homeostatic condition of the cell. Disease specific, target directed, bioavailable antioxidants may be beneficial for sustenance of the quality-of-life in future days. [J Exp Integr Med 2014; 4(3.000: 151-164

  17. Vascular lipid accumulation, lipoprotein oxidation and macrophage lipid uptake in hypercholesterolemic zebrafish

    Science.gov (United States)

    Stoletov, Konstantin; Fang, Longhou; Choi, Soo-Ho; Hartvigsen, Karsten; Hansen, Lotte F.; Hall, Chris; Pattison, Jennifer; Juliano, Joseph; Miller, Elizabeth R.; Almazan, Felicidad; Crosier, Phil; Witztum, Joseph L.; Klemke, Richard L.; Miller, Yury I.

    2010-01-01

    Lipid accumulation in arteries induces vascular inflammation and atherosclerosis, the major cause of heart attack and stroke in humans. Extreme hyperlipidemia induced in mice and rabbits enables modeling many aspects of human atherosclerosis, but microscopic examination of plaques is possible only postmortem. Here we report that feeding adult zebrafish (Danio rerio) a high-cholesterol diet (HCD) resulted in hypercholesterolemia, remarkable lipoprotein oxidation and fatty streak formation in the arteries. Feeding an HCD supplemented with a fluorescent cholesteryl ester to optically transparent fli1:EGFP zebrafish larvae in which endothelial cells (EC) express GFP, and using confocal microscopy enabled monitoring vascular lipid accumulation and the EC layer disorganization and thickening in a live animal. The HCD feeding also increased leakage of a fluorescent dextran from the blood vessels. Administering ezetimibe significantly diminished the HCD-induced EC layer thickening and improved its barrier function. Feeding HCD to lyz:DsRed2 larvae in which macrophages and granulocytes express DsRed, resulted in the accumulation of fluorescent myeloid cells in the vascular wall. Using a fluorogenic substrate for phospholipase A2 (PLA2), we observed an increased vascular PLA2 activity in live HCD-fed larvae compared to control larvae. Furthermore, by transplanting genetically modified murine cells into HCD-fed larvae, we demonstrated that toll-like receptor-4 (TLR4) was required for efficient in vivo lipid uptake by macrophages. These results suggest that the novel zebrafish model is suitable for studying temporal characteristics of certain inflammatory processes of early atherogenesis and the in vivo function of vascular cells. PMID:19265037

  18. Elastin aging and lipid oxidation products in human aorta

    Directory of Open Access Journals (Sweden)

    Kamelija Zarkovic

    2015-04-01

    Full Text Available Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM components. Among the factors known to accumulate with aging, advanced lipid peroxidation end products (ALEs are a hallmark of oxidative stress-associated diseases such as atherosclerosis. Aldehydes generated from the peroxidation of polyunsaturated fatty acids (PUFA, (4-hydroxynonenal, malondialdehyde, acrolein, form adducts on cellular proteins, leading to a progressive protein dysfunction with consequences in the pathophysiology of vascular aging. The contribution of these aldehydes to ECM modification is not known. This study was carried out to investigate whether aldehyde-adducts are detected in the intima and media in human aorta, whether their level is increased in vascular aging, and whether elastin fibers are a target of aldehyde-adduct formation. Immunohistological and confocal immunofluorescence studies indicate that 4-HNE-histidine-adducts accumulate in an age-related manner in the intima, media and adventitia layers of human aortas, and are mainly expressed in smooth muscle cells. In contrast, even if the structure of elastin fiber is strongly altered in the aged vessels, our results show that elastin is not or very poorly modified by 4-HNE. These data indicate a complex role for lipid peroxidation and in particular for 4-HNE in elastin homeostasis, in the vascular wall remodeling during aging and atherosclerosis development.

  19. Lipid oxidation promotes acrylamide formation in fat-rich model systems

    NARCIS (Netherlands)

    Capuano, E.; Oliviero, T.; Açar, Ö.; Gökmen, V.; Fogliano, V.

    2010-01-01

    Lipid oxidation is one of the major chemical reactions occurring during food processing or storage and may have a strong impact on the final quality of foods. A significant role of carbonyl compounds derived from lipid oxidation in acrylamide formation has been recently proposed. In this work, the

  20. Lipid oxidation promotes acrylamide formation in fat-rich model systems

    NARCIS (Netherlands)

    Capuano, E.; Oliviero, T.; Açar, Ö.; Gökmen, V.; Fogliano, V.

    2010-01-01

    Lipid oxidation is one of the major chemical reactions occurring during food processing or storage and may have a strong impact on the final quality of foods. A significant role of carbonyl compounds derived from lipid oxidation in acrylamide formation has been recently proposed. In this work, the e

  1. Non-destructive detection of flawed hazelnut kernels and lipid oxidation assessment using NIR spectroscopy

    NARCIS (Netherlands)

    Pannico, A.; Schouten, R.E.; Basile, B.; Woltering, E.J.; Cirillo, C.

    2015-01-01

    Microbial contamination, seed browning, bad taste and lipid oxidation are primary causes of quality deterioration in stored hazelnuts, affecting their marketability. The feasibility of NIR spectroscopy to detect flawed kernels and estimate lipid oxidation in in-shell and shelled hazelnuts was invest

  2. Oxidative fate of lipid structures in food and during digestion – possible metabolic significance

    OpenAIRE

    Genot, Claude; Kenmogne Domguia , Hernan; Michalski, Marie-Caroline; Awada, Manar; Meynier, Anne

    2011-01-01

    Although excessive lipid consumption should be avoided, dietary lipids are now recognized as having various beneficial nutritional effects, especially regarding the need for a balanced supply in both omega-6 and omega-3 polyunsaturated fatty acids (PUFA). Improving the lipid profiles through an increase of PUFA supply also increases risks of (per)oxidation with possible negative consequences for food technological, sensory and nutritional properties. Food lipids exhibit various molecular and ...

  3. Gamma radiation induces growth retardation, impaired egg production, and oxidative stress in the marine copepod Paracyclopina nana

    Energy Technology Data Exchange (ETDEWEB)

    Won, Eun-Ji; Lee, Jae-Seong, E-mail: jslee2@skku.edu

    2014-05-01

    Highlights: • Mortality was increased with a dose dependent manner in ovigerous females of Paracyclopina nana. • Developmental impairments were observed in gamma irradiated nauplii. • Ovigerous females exposed to more than 50 Gy could not have normal two bilateral egg sacs. • Oxidative levels increased with antioxidant enzyme activities in the gamma irradiated P. nana. • The molecular indices (antioxidant enzymes and heat shock protein) were also increased. - Abstract: Accidental nuclear radioisotope release into the ocean from nuclear power plants is of concern due to ecological and health risks. In this study, we used the marine copepod Paracyclopina nana to examine the effects of radioisotopes on marine organisms upon gamma radiation, and to measure the effects on growth and fecundity, which affect population and community structure. Upon gamma radiation, mortality (LD50 – 96 h = 172 Gy) in P. nana was significantly increased in a dose-dependent manner in ovigerous P. nana females. For developmental impairment of gamma-irradiated nauplii, we observed growth retardation; in over 30 Gy-irradiated groups, offspring did not grow to adults. Particularly, over 50 Gy-irradiated ovigerous P. nana females did not have normal bilateral egg sacs, and their offspring did not develop normally to adulthood. Additionally, at over 30 Gy, we found dose-dependent increases in oxidative levels with elevated antioxidant enzyme activities and DNA repair activities. These findings indicate that gamma radiation can induce oxidative stress and DNA damage with growth retardation and impaired reproduction.

  4. Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysate.

    Science.gov (United States)

    Yin, Jie; Zhang, Wenjing; Richards, Mark P

    2017-11-01

    Bovine hemolysate was purified by size exclusion chromatography, and one high molecular weight protein was detected relative to the hemoglobin (Hb) fraction. Purified Hb promoted lipid oxidation in washed muscle slightly but significantly better than hemolysate, which may have been due to the absence of catalase and peroxiredoxin in the purified Hb. Purified Hb auto-oxidized to metHb more rapidly than Hb in the hemolysate (Poxidation in washed muscle more effectively compared to oxyMb (Poxidation more readily than oxidative forms of Mb that retain their protoporphyrin moiety. A 3:1 ratio of Mb:Hb promoted lipid oxidation similarly compared to adding a 1:1 ratio of Mb:Hb to washed muscle. Lipid oxidation products due to Hb-mediated lipid oxidation were elevated 60-fold at pH 6.3 compared to pH 6.7. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Gamma radiation induces growth retardation, impaired egg production, and oxidative stress in the marine copepod Paracyclopina nana.

    Science.gov (United States)

    Won, Eun-Ji; Lee, Jae-Seong

    2014-05-01

    Accidental nuclear radioisotope release into the ocean from nuclear power plants is of concern due to ecological and health risks. In this study, we used the marine copepod Paracyclopina nana to examine the effects of radioisotopes on marine organisms upon gamma radiation, and to measure the effects on growth and fecundity, which affect population and community structure. Upon gamma radiation, mortality (LD50 - 96 h=172 Gy) in P. nana was significantly increased in a dose-dependent manner in ovigerous P. nana females. For developmental impairment of gamma-irradiated nauplii, we observed growth retardation; in over 30 Gy-irradiated groups, offspring did not grow to adults. Particularly, over 50 Gy-irradiated ovigerous P. nana females did not have normal bilateral egg sacs, and their offspring did not develop normally to adulthood. Additionally, at over 30 Gy, we found dose-dependent increases in oxidative levels with elevated antioxidant enzyme activities and DNA repair activities. These findings indicate that gamma radiation can induce oxidative stress and DNA damage with growth retardation and impaired reproduction.

  6. Aroma profiles of vegetable oils varying in fatty acid composition vs. concentrations of primary and secondary lipid oxidation products

    NARCIS (Netherlands)

    Ruth, van S.M.; Roozen, J.P.; Jansen, F.J.H.M.

    2000-01-01

    The aroma compositions of oxidised sunflower oil, linseed oil and a blend thereof (85/15) were compared with frequently used indicators for primary and secondary lipid oxidation. Primary lipid oxidation was followed by the formation of conjugated dienes, secondary lipid oxidation by proponal and

  7. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  8. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    of adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk...... drink could not be ascribed was most likely influenced by the structure of the lipid and to a single factor, differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL....

  9. Investigation of heat induced reactions between lipid oxidation products and amino acids in lipid rich model systems and hazelnuts.

    Science.gov (United States)

    Karademir, Yeşim; Göncüoğlu, Neslihan; Gökmen, Vural

    2013-07-01

    This study aimed to investigate the contribution of lipid oxidation to non-enzymatic browning reactions in lipid rich model and actual food systems. Hazelnut oil and model reaction mixtures consisting of different amino acids were heated under certain conditions to determine possible lipid oxidation and non-enzymatic browning reaction products. In model systems, the Schiff base of 2,4-decadienal, its decarboxylated form, and reaction products formed after hydrolytic cleavage of the Schiff base or decarboxylated form were identified by high resolution mass spectrometry. No furosine was detected in hazelnuts after roasting at 160 °C while the concentration of free amino acids significantly decreased. 2,4-Decadienal reacted effectively with all amino acids studied through a Maillard type carbonyl-amine condensation pathway. (2E,4E)-Deca-2,4-dien-1-amine was identified as a typical reaction product in model systems and roasted hazelnuts. In lipid-rich foods like hazelnuts, lipid-derived carbonyls might be responsible for potential modifications of free and protein bound amino acids during heating.

  10. The impact of beef steak thermal processing on lipid oxidation and postprandial inflammation related responses.

    Science.gov (United States)

    Nuora, Anu; Chiang, Vic Shao-Chih; Milan, Amber M; Tarvainen, Marko; Pundir, Shikha; Quek, Siew-Young; Smith, Greg C; Markworth, James F; Ahotupa, Markku; Cameron-Smith, David; Linderborg, Kaisa M

    2015-10-01

    Oxidised lipid species, their bioavailability and impact on inflammatory responses from cooked beef steak are poorly characterised. Oxidised lipid species from pan-fried (PF) and sous-vide (SV) thermally processed beef were determined with UHPLC-ESI/MS. Twenty-three lipid oxidation products increased with thermal processing and differences between the PF and SV steaks were measured. Fifteen oxidised lipids were measured in post-meal plasma after a cross-over randomised clinical study. Postprandial plasma inflammatory markers tended to remain lower following the SV meal than the PF meal. High levels of conjugated dienes were measured in the HDL fraction, suggesting that the protective effect of HDL may extend to the reverse-transport of oxidised lipid species. Oxidised lipids in a single meal may influence postprandial oxidative stress and inflammation. Further studies are required to examine the lipid oxidative responses to increased dietary oxidative lipid load, including the reverse transport activity of HDL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Lipid Oxidation in Oil‐in‐Water Emulsions: Involvement of the Interfacial Layer

    National Research Council Canada - National Science Library

    Berton‐Carabin, Claire C; Ropers, Marie‐Hélène; Genot, Claude

    2014-01-01

    .... This review establishes the state‐of‐the‐art on lipid oxidation in oil‐in‐water (O/W) emulsions, with an emphasis on the role of the interfacial region, a critical area in the system in that respect...

  12. Lipid oxidation in fish oil enriched mayonnaise: calcium disodium ethylenediaminetetraacetate, but not gallic acid, strongly inhibited oxidative deterioration.

    Science.gov (United States)

    Jacobsen, C; Hartvigsen, K; Thomsen, M K; Hansen, L F; Lund, P; Skibsted, L H; Hølmer, G; Adler-Nissen, J; Meyer, A S

    2001-02-01

    The antioxidative effects of gallic acid, EDTA, and extra emulsifier Panodan DATEM TR in mayonnaise enriched with 16% fish oil were investigated. EDTA reduced the formation of free radicals, lipid hydroperoxides, volatiles, and fishy and rancid off-flavors. The antioxidative effect of EDTA was attributed to its ability to chelate free metal ions and iron from egg yolk located at the oil-water interface. Gallic acid reduced the levels of both free radicals and lipid hydroperoxides but promoted slightly the oxidative flavor deterioration in mayonnaise and influenced the profile of volatiles. Gallic acid may therefore promote the decomposition of lipid hydroperoxides to volatile oxidation products. Addition of extra emulsifier reduced the lipid hydroperoxide levels but did not influence the level of free radicals or the oxidative flavor deterioration in mayonnaisse; however, it appeared to alter the profile of volatiles. The effect of the emulsifier on the physical structure and rheological properties depended on the presence of antioxidants.

  13. Methods to create thermally oxidized lipids and comparison of analytical procedures to characterize peroxidation.

    Science.gov (United States)

    Liu, P; Kerr, B J; Chen, C; Weber, T E; Johnston, L J; Shurson, G C

    2014-07-01

    The objective of this experiment was to evaluate peroxidation in 4 lipids, each with 3 levels of peroxidation. Lipid sources were corn oil (CN), canola oil (CA), poultry fat, and tallow. Peroxidation levels were original lipids (OL), slow-oxidized lipids (SO), and rapid-oxidized lipids (RO). To produce peroxidized lipids, OL were either heated at 95°C for 72 h to produce SO or heated at 185°C for 7 h to produce RO. Five indicative measurements (peroxide value [PV], p-anisidine value [AnV], thiobarbituric acid reactive substances [TBARS] concentration, hexanal concentration, 4-hydroxynonenal [HNE] concentration, and 2,4-decadienal [DDE]) and 2 predictive tests (active oxygen method [AOM] stability and oxidative stability index [OSI]) were performed to quantify the level of oxidation of the subsequent 12 lipids with varying levels of peroxidation. Analysis showed that a high PV accurately indicated the high level of lipid peroxidation, but a moderate or low PV may be misleading due to the unstable characteristics of hydroperoxides as indicated by the unchanged PV of rapidly oxidized CN and CA compared to their original state (OL). However, additional tests, which measure secondary peroxidation products such as AnV, TBARS, hexanal, HNE, and DDE, may provide a better indication of lipid peroxidation than PV for lipids subjected to a high level of peroxidation. Similar to PV analysis, these tests may also not provide irrefutable information regarding the extent of peroxidation because of the volatile characteristics of secondary peroxidation products and the changing stage of lipid peroxidation. For the predictive tests, AOM accurately reflected the increased lipid peroxidation caused by SO and RO as indicated by the increased AOM value in CN and CA but not in poultry fat and tallow, which indicated a potential disadvantage of the AOM test. Oxidative stability index successfully showed the increased lipid peroxidation caused by SO and RO in all lipids, but it too may

  14. Blocked muscle fat oxidation during exercise in neutral lipid storage disease

    DEFF Research Database (Denmark)

    Laforêt, Pascal; Ørngreen, Mette; Preisler, Nicolai

    2012-01-01

    To determine whether impaired exercise capacity in neutral lipid storage disease with myopathy is solely caused by muscle weakness or whether a defect in energy metabolism (blocked fat oxidation) may also play a role.......To determine whether impaired exercise capacity in neutral lipid storage disease with myopathy is solely caused by muscle weakness or whether a defect in energy metabolism (blocked fat oxidation) may also play a role....

  15. Lipid components and oxidative status of selected specialty oils

    Energy Technology Data Exchange (ETDEWEB)

    Madawala, S. R. P.; Kochhar, S. P.; Dutta, P. C.

    2012-11-01

    Many vegetable oils are marketed as specialty oils because of their retained flavors, tastes and distinct characteristics. Specialty oil samples which were commercially produced and retailed were purchased from local superstores in Reading, UK, and Uppsala, Sweden and profiled for detailed lipid composition and oxidative status. These oil samples include: almond, hazelnut, walnut, macadamia nut, argan, avocado, grape seed, roasted sesame, rice bran, cold pressed, organic and cold pressed, warm pressed and refined rapeseed oils. The levels of PV were quite low (0.5-1.3mEq O{sub 2}/kg) but AV and Rancimat values at 100 degree centigrade (except for rapeseed oils) varied considerably at (0.5-15.5) and (4.2-37.0 h) respectively. Macadamia nut oil was found to be the most stable oil followed by argan oil, while walnut oil was the least stable. Among the specialty oils, macadamia nut oil had the lowest (4%) and walnut oil had the highest (71%) level of total PUFA. The organic cold pressed rapeseed oil had considerably lower PUFA (27%) compared with other rapeseed oils (28- 35%). In all the samples, {alpha}- and {gamma}- tocopherols were the major tocopherols; nut oils had generally lower levels. Total sterols ranged from 889 to 15,106 {mu}g/g oil. The major sterols were {beta}-sitosterol (61-85%) and campesterol (6-20%). Argan oil contained schottenol (35%) and spinasterol (32%). Compared with literature values, no marked differences were observed among the differently processed, organically grown or cold pressed rapeseed oils and other specialty oils in this study. (Author) 33 refs.

  16. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice.

    NARCIS (Netherlands)

    n den Hil, E.F. Hoek-va; Keijer, J.; Bunschoten, A.; Vervoort, J.J.; Stankova, B.; Bekkenkamp, M.; Herreman, L.; Venema, D.; Hollman, P.C.H.; Tvrzicka, E.; Rietjens, I.M.C.M.; Schothorst, E.M. van

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and (1)

  17. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice

    NARCIS (Netherlands)

    Hoek-van den Hil, E.F.; Keijer, J.; Bunschoten, A.; Vervoort, Jacques; Stankova, B.; Bekkenkamp-Grovestein, M.; Herreman, L.; Venema, D.P.; Hollman, P.C.H.; Tvrzicka, E.; Rietjens, I.; Schothorst, van E.M.

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H

  18. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice.

    NARCIS (Netherlands)

    n den Hil, E.F. Hoek-va; Keijer, J.; Bunschoten, A.; Vervoort, J.J.; Stankova, B.; Bekkenkamp, M.; Herreman, L.; Venema, D.; Hollman, P.C.H.; Tvrzicka, E.; Rietjens, I.M.C.M.; Schothorst, E.M. van

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and (1)

  19. Protection against inhaled oxidants through scavenging of oxidized lipids by macrophage receptors MARCO and SR-AI/II

    DEFF Research Database (Denmark)

    Dahl, Morten; Bauer, Alison K; Arredouani, Mohamed

    2007-01-01

    Alveolar macrophages (AMs) express the class A scavenger receptors (SRAs) macrophage receptor with collagenous structure (MARCO) and scavenger receptor AI/II (SRA-I/II), which recognize oxidized lipids and provide innate defense against inhaled pathogens and particles. Increased MARCO expression......, consistent with SRA function in binding oxidized lipids. SR-AI/II-/- mice showed similar enhanced acute lung inflammation after beta-epoxide or another inhaled oxidant (aerosolized leachate of residual oil fly ash). In contrast, subacute ozone exposure did not enhance inflammation in SR-AI/II-/- versus SR-AI...

  20. Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages.

    Science.gov (United States)

    Berardo, A; De Maere, H; Stavropoulou, D A; Rysman, T; Leroy, F; De Smet, S

    2016-11-01

    The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products.

  1. Effect of emulsifier on oxidation properties of fish oil-based structured lipid emulsions.

    Science.gov (United States)

    Fomuso, Lydia B; Corredig, Milena; Akoh, Casimir C

    2002-05-08

    The effects of the emulsifiers lecithin, Tween 20, whey protein isolate, mono-/diacylglycerols, and sucrose fatty acid ester on oxidation stability of a model oil-in-water emulsion prepared with enzymatically synthesized menhaden oil-caprylic acid structured lipid were evaluated. Oxidation was monitored by measuring lipid hydroperoxides, thiobarbituric acid reactive substances, and the ratio of combined docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents to palmitic acid in the emulsion. After high-pressure homogenization, all emulsions, except those prepared with lecithin, had similar droplet size distributions. All structured lipid emulsions, except for the lecithin-stabilized emulsions, were stable to creaming over the 48-day period studied. Emulsifier type and concentration affected oxidation rate, with 0.25% emulsifier concentration generally having a higher oxidation rate than 1% emulsifier concentration. Overall, oxidation did not progress significantly enough in 48 days of storage to affect DHA and EPA levels in the emulsion.

  2. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Danielsen, Pernille H; Folkmann, Janne K

    2014-01-01

    and subsequently incubated for another 18h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid...... single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral......Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3h...

  3. Individual whey protein components influence lipid oxidation dependent on pH

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    amounts of the two. Emulsions were prepared at pH4 and pH7. Emulsions were characterized by their droplet sizes, viscosities, and contents of proteins in the water phase. Lipid oxidation was assessed by PV and secondary volatile oxidation products. Results showed that pH greatly influenced the oxidative......In emulsions, lipid oxidation is expected to be initiated at the oil-water interface. The properties of the emulsifier used and the composition at the interface is therefore expected to be of great importance for the resulting oxidation. Previous studies have shown that individual whey protein...... components (α-lactalbumin and β-lactoglobulin) adsorb differently to the interface depending on pH. In addition, differences has been shown to exists between the oxidative stability provided by α-lactalbumin and β-lactoglobulin. The hypothesis is that pH influences the oxidative stability of emulsions...

  4. Piperitenone oxide as toxic, repellent, and reproduction retardant toward malarial vector Anopheles stephensi (Diptera: Anophelinae).

    Science.gov (United States)

    Tripathi, Arun K; Prajapati, Veena; Ahmad, Ateeque; Aggarwal, Kishan K; Khanuja, Suman P S

    2004-07-01

    Anopheles stephensi (Liston) is a well-known vector of malarial parasite in tropical countries. The developing trend of resistance in mosquitoes toward synthetic mosquitocidal agents makes their management extremely difficult. Effectiveness of essential oils with aroma therapeutic values seems to be an emerging tool to combat this vector. Piperitenone oxide isolated from essential oil of a new genotype, Mentha spicata L. variety viridis, has been evaluated for larvicidal, ovicidal, oviposition-deterrent, developmental toxicity, and repellent properties against various stages of A. stephensi. The results indicated the higher efficacy of piperitenone oxide than the crude essential oil of M. spicata variety viridis in all the bioassay experiments. The lethal response of piperitenone oxide and the oil toward fourth instar larvae showed LD50 values of 61.64 and 82.95 microg/ml, respectively. Female adults of A. stephensi exposed to the oil laid approximately 42 times less number of eggs at the dose of 60.0 microg/ml as compared with control, whereas exposure of piperitenone oxide at the same dose completely inhibited the oviposition. Furthermore, piperitenone oxide also completely inhibited egg hatching at the dose of 75.0 microg/ml in ovicidal assay. Developmental toxicity studies showed the significant developmental inhibition potential of the compound and oil. Additionally, piperitenone oxide was found to be highly toxic and repellent toward adults of A. stephensi as compared with oil.

  5. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    . Furthermore, the potential antioxidative effect of adding lactoferrin, propyl gallate or EDTA to the mayonnaise with SL was also investigated. Mayonnaise based on SL oxidized faster than mayonnaise based on RL or SO. The reduced oxidative stability in the SL mayonnaise could not be ascribed to a single factor......, but was most likely influenced by the structure of the lipid, the lower tocopherol content and the higher initial levels of lipid hydroperoxides and secondary volatile oxidation compounds in the SL itself compared with the RL and traditional sunflower oil employed. EDTA was a strong antioxidant, while propyl...

  6. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties....... Furthermore, the potential antioxidative effect of adding lactoferrin, propyl gallate or EDTA to the mayonnaise with SL was also investigated. Mayonnaise based on SL oxidized faster than mayonnaise based on RL or SO. The reduced oxidative stability in the SL mayonnaise could not be ascribed to a single factor...... gallate and lactoferrin did not exert any antioxidative effect in the SL mayonnaise...

  7. Lipid oxidation and fatty acid composition in salt-dried yellow croaker ( Pseudosciaena polyactis) during processing

    Science.gov (United States)

    Cai, Qiuxing; Wu, Yanyan; Li, Laihao; Wang, Yueqi; Yang, Xianqing; Zhao, Yongqiang

    2017-10-01

    Lipid oxidation in salt-dried yellow croaker ( Pseudosciaena polyactis) was evaluated during processing with commonly used analytical indices, such as the peroxide value (POV), the thiobarbituric acid reactive substances (TBARS) value, and oxidative-relative lipoxygenase (LOX) activity. Additionally, fatty acids were analyzed using gas chromatography-mass spectrometry. Both POV and TBARS increased significantly ( P lipid oxidation. C18:0, C16:1n7, C19:0, and C22:6n3 showed clear changes in principle component one of a principle components analysis. These fatty acids are potential markers for evaluating lipid oxidation in fish muscle because there was a significant correlation between these markers and TBARS and LOX activity ( P 0.931.

  8. An increase in lipoprotein oxidation and endogenous lipid peroxides in serum of obese women.

    Science.gov (United States)

    Mutlu-Türkoğlu, U; Oztezcan, S; Telci, A; Orhan, Y; Aykaç-Toker, G; Sivas, A; Uysal, M

    2003-02-01

    Endogenous malondialdehyde and diene conjugate levels, the susceptibility of apolipoprotein B-containing lipoproteins to copper-induced lipid peroxidation, and antibody titer against oxidized low-density lipoproteins were increased, but serum antioxidant activity was unchanged in obese women. Serum cholesterol, low-density lipoproteincholesterol, and trigliceride levels were also elevated, but high-density lipoprotein-cholesterol levels remained unchanged in obese women. In vitro, oxidation of apolipoprotein B-containing lipoproteins and levels of antibody against oxidized low-density lipoprotein correlated with body mass index, serum total cholesterol, and low-density lipoproteincholesterol levels in obese women. These results indicate that obesity is associated with increases in endogenous lipid peroxides, oxidation of low-density lipoproteins, and lipids in serum.

  9. Oxidation of lipid and protein in horse mackerel (Trachurus trachurus) mince and washed minces during processing and storage

    DEFF Research Database (Denmark)

    Eymard, Sylvie; Baron, Caroline; Jacobsen, Charlotte

    2009-01-01

    on oxidation. Subsequently the different products were stored for up to 96 h at 5 degrees C and samples were taken out regularly for analysis. Lipid oxidation was investigated by measuring primary oxidation products (lipid hydroperoxides) and secondary oxidation products (volatiles). Protein oxidation...... was followed by determination of protein solubility, protein thiol groups and protein carbonyl groups using colorimetric methods as well as western blotting for protein carbonyl groups. Lipid and protein oxidation markers indicated that both lipid and protein oxidation took place during processing......Protein and lipid oxidation was followed during processing and storage of mince and washed minces prepared from horse mackerel (Trachurus trachunts). Briefly horse mackerel mince (MO) was washed with three volumes of water, mimicking the surimi production and different washed products were obtained...

  10. The Effects of Soy Protein and Isoflavones on Lipid Oxidation and Blood Lipid Profile on Humans Participating in Moderate Physical Activity

    OpenAIRE

    Shehadeh, Sandra C

    1999-01-01

    THE EFFECTS OF SOY PROTEIN AND ISOFLAVONES ON LIPID OXIDATION AND BLOOD LIPID PROFILE ON HUMANS PARTICIPATING IN MODERATE PHYSICAL ACTIVITY Sandra C. Shehadeh The purpose of our study was to compare the effects of dietary soy protein and animal protein (casein) on plasma lipoprotein concentrations, and exercise induced oxidation in human subjects. Sixteen normocholesterolemic young men participated in 30 min of cycling at 70% VO2pk to induce plasma oxidation. Each subject then followe...

  11. Increased hepatic fatty acids uptake and oxidation by LRPPRC-driven oxidative phosphorylation reduces blood lipid levels

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    2016-07-01

    Full Text Available Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc. Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, oxidative phosphorylation, and lipid metabolism. Increased oxidative phosphorylation in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic oxidative phosphorylation could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels.

  12. Effects of Aminoguanidine on Lipid and Protein Oxidation in Diabetic Rat Kidneys

    OpenAIRE

    Yavuz, Dilek Gogas; Küçükkaya, Belgin; Ersöz, H. önder; Yalçin, A. Süha; Emerk, Kaya; Akalin, Sema

    2002-01-01

    Nonenzymatic glycation of tissue and plasma proteins may stimulate the production of oxidant and carbonyl stress in diabetes. The aim of this study was to evaluate the effects of aminoguanidine (AG) on lipid peroxidation, protein oxidation and nitric oxide (NO) release in diabetic rat kidneys. After induction of diabetes with streptozotocin, female Wistar rats were divided into 2 groups. Group DAG (n=9) rats were given AG hydrogen carbonate (1 g/L) in drinking water and group D (n=8) was diab...

  13. Products of DNA, protein and lipid oxidative damage in relation to vitamin C plasma concentration.

    Science.gov (United States)

    Krajcovicová-Kudlácková, M; Dusinská, M; Valachovicová, M; Blazícek, P; Pauková, V

    2006-01-01

    Oxidative stress plays an important role in the pathogenesis of numerous chronic age-related free radical-induced diseases. Improved antioxidant status minimizes oxidative damage to DNA, proteins, lipids and other biomolecules. Diet-derived antioxidants such as vitamin C, vitamin E, carotenoids and related plant pigments are important in antioxidative defense and maintaining health. The results of long-term epidemiological and clinical studies suggest that protective vitamin C plasma concentration for minimum risk of free radical disease is higher than 50 micromol/l. Products of oxidative damage to DNA (DNA strand breaks with oxidized purines and pyrimidines), proteins (carbonyls) and lipids (conjugated dienes of fatty acids, malondialdehyde) were estimated in a group of apparently healthy adult non-smoking population in dependence on different vitamin C plasma concentrations. Under conditions of protective plasma vitamin C concentrations (>50 micromol/l) significantly lower values of DNA, protein and lipid oxidative damage were found in comparison with the vitamin C-deficient group (fruit and vegetable consumption (leading to higher vitamin C intake and higher vitamin C plasma concentrations) on oxidation of DNA, proteins and lipids is also expressed by an inverse significant correlation between plasma vitamin C and products of oxidative damage. The results suggest an important role of higher and frequent consumption of protective food (fruit, vegetables, vegetable oils, nuts, seeds and cereal grains) in prevention of free radical disease.

  14. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain.

    Science.gov (United States)

    Yilancioglu, Kaan; Cokol, Murat; Pastirmaci, Inanc; Erman, Batu; Cetiner, Selim

    2014-01-01

    Green algae offer sustainable, clean and eco-friendly energy resource. However, production efficiency needs to be improved. Increasing cellular lipid levels by nitrogen depletion is one of the most studied strategies. Despite this, the underlying physiological and biochemical mechanisms of this response have not been well defined. Algae species adapted to hypersaline conditions can be cultivated in salty waters which are not useful for agriculture or consumption. Due to their inherent extreme cultivation conditions, use of hypersaline algae species is better suited for avoiding culture contamination issues. In this study, we identified a new halophilic Dunaliella salina strain by using 18S ribosomal RNA gene sequencing. We found that growth and biomass productivities of this strain were directly related to nitrogen levels, as the highest biomass concentration under 0.05 mM or 5 mM nitrogen regimes were 495 mg/l and 1409 mg/l, respectively. We also confirmed that nitrogen limitation increased cellular lipid content up to 35% under 0.05 mM nitrogen concentration. In order to gain insight into the mechanisms of this phenomenon, we applied fluorometric, flow cytometric and spectrophotometric methods to measure oxidative stress and enzymatic defence mechanisms. Under nitrogen depleted cultivation conditions, we observed increased lipid peroxidation by measuring an important oxidative stress marker, malondialdehyde and enhanced activation of catalase, ascorbate peroxidase and superoxide dismutase antioxidant enzymes. These observations indicated that oxidative stress is accompanied by increased lipid content in the green alga. In addition, we also showed that at optimum cultivation conditions, inducing oxidative stress by application of exogenous H2O2 leads to increased cellular lipid content up to 44% when compared with non-treated control groups. Our results support that oxidative stress and lipid overproduction are linked. Importantly, these results also suggest that

  15. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain.

    Directory of Open Access Journals (Sweden)

    Kaan Yilancioglu

    Full Text Available Green algae offer sustainable, clean and eco-friendly energy resource. However, production efficiency needs to be improved. Increasing cellular lipid levels by nitrogen depletion is one of the most studied strategies. Despite this, the underlying physiological and biochemical mechanisms of this response have not been well defined. Algae species adapted to hypersaline conditions can be cultivated in salty waters which are not useful for agriculture or consumption. Due to their inherent extreme cultivation conditions, use of hypersaline algae species is better suited for avoiding culture contamination issues. In this study, we identified a new halophilic Dunaliella salina strain by using 18S ribosomal RNA gene sequencing. We found that growth and biomass productivities of this strain were directly related to nitrogen levels, as the highest biomass concentration under 0.05 mM or 5 mM nitrogen regimes were 495 mg/l and 1409 mg/l, respectively. We also confirmed that nitrogen limitation increased cellular lipid content up to 35% under 0.05 mM nitrogen concentration. In order to gain insight into the mechanisms of this phenomenon, we applied fluorometric, flow cytometric and spectrophotometric methods to measure oxidative stress and enzymatic defence mechanisms. Under nitrogen depleted cultivation conditions, we observed increased lipid peroxidation by measuring an important oxidative stress marker, malondialdehyde and enhanced activation of catalase, ascorbate peroxidase and superoxide dismutase antioxidant enzymes. These observations indicated that oxidative stress is accompanied by increased lipid content in the green alga. In addition, we also showed that at optimum cultivation conditions, inducing oxidative stress by application of exogenous H2O2 leads to increased cellular lipid content up to 44% when compared with non-treated control groups. Our results support that oxidative stress and lipid overproduction are linked. Importantly, these

  16. Study on Mechanism of Soy Protein Oxidation Induced by Lipid Peroxidation Products

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2013-01-01

    Full Text Available Oxidative modification of soy protein by lipid peroxidation products, which was potentially present in a lipoxygenase-catalyzed polyunsaturated fatty acid peroxidation system, was investigated in this study. 13S-Hydroperoxy-9Z, 11E-Octadecadienoic acid (HPODE, malondialdehyde and acrolein were selected as representative primary product and secondary byproducts of lipid peroxidation and 2, 2’-azobis-(2-amidinopropane dihydrochloride (AAPH -derived peroxyl radical peroxyl radicals were chosen to simulate lipid peroxidation-derived free radical. Incubation of soy protein with increasing concentration of AAPH, HPODE, malondialdehyde and acrolein resulted in gradual generation of protein carbonyl derivatives, loss of free sulphydryl groups, total sulphydryl groups, free amine, available lysine, surface hydrophobicity and formation of oxidation aggregates. The average distribution model of protein accessible groups could explain majority mechanism of lipid peroxidation products-mediated soy protein oxidation. Primary oxidation aggregates further developed into insoluble aggregates by covalent cross-linking also may provide a partial mechanism of lipid peroxidation products-mediated soy protein oxidation.

  17. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Nam Kyu; Lee, Bongsoo; Choi, Gang-Guk; Moon, Myounghoon; Park, Min S.; Yang, Ji-Won [Daejeon, Daejeon (Korea, Republic of); Lim, JitKang [Universiti Sains Malaysia, Penang (Malaysia)

    2014-05-15

    Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO{sub 2} nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO{sub 2} ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO{sub 2} concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO{sub 2} (5 g/L TiO{sub 2}) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO{sub 2} (0.1 g/L) and a short induction time (two days). The controlled condition of TiO{sub 2}/UV-A inducing oxidative stress (0.1 g/L TiO{sub 2} and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO{sub 2}/UV-A.

  18. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise.

    Science.gov (United States)

    Hamadeh, Mazen J; Devries, Michaela C; Tarnopolsky, Mark A

    2005-06-01

    Healthy active men exhibit higher rates of carbohydrate (CHO) and leucine oxidation and lower rates of lipid oxidation compared with their female counterparts both at rest and during moderate intensity endurance exercise. We postulated that this reduced dependence on amino acids as a fuel source in women was due to the female sex hormone estrogen. In a randomized, double-blind, placebo-controlled, cross-over design, we investigated the effect of supplementing 12 recreationally active men with estrogen on whole body substrate oxidation and leucine kinetics at rest and during moderate intensity endurance exercise. Subjects cycled for 90 min at an intensity of 65% maximum O(2) consumption after 8 d of either estrogen supplementation (2 mg 17beta-estradiol/d) or placebo (polycose). After a 2-wk washout period, they repeated the test after 8 d of the alternate treatment. On the test day, after a primed continuous infusion of l-[(13)C]leucine, O(2) consumption, CO(2) production, steady-state breath (13)CO(2), and plasma alpha-[(13)C]ketoisocaproate enrichments were measured at rest and at 60, 75, and 90 min during exercise in the postabsorptive state. Exercise increased energy expenditure more than 5-fold, CHO oxidation more than 6-fold, lipid oxidation more than 4-fold, and leucine oxidation 2.2-fold (all P Estrogen supplementation decreased respiratory exchange ratio during exercise (P = 0.03). Estrogen supplementation significantly decreased CHO oxidation by 5-16% (P = 0.04) and leucine oxidation by 16% (P = 0.01), whereas it significantly increased lipid oxidation by 22-44% (P = 0.024) at rest and during exercise. We conclude that estrogen influences fuel source selection at rest and during endurance exercise in recreationally active men, characterized by a reduced dependence on amino acids and CHO and an increased reliance on lipids as a fuel source.

  19. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions.

    Science.gov (United States)

    Requena, J R; Fu, M X; Ahmed, M U; Jenkins, A J; Lyons, T J; Thorpe, S R

    1996-01-01

    Oxidative stress is implicated in the pathogenesis of numerous disease processes including diabetes mellitus, atherosclerosis, ischaemia reperfusion injury and rheumatoid arthritis. Chemical modification of amino acids in protein during lipid peroxidation results in the formation of lipoxidation products which may serve as indicators of oxidative stress in vivo. The focus of the studies described here was initially to identify chemical modifications of protein derived exclusively from lipids in order to assess the role of lipid peroxidative damage in the pathogenesis of disease. Malondialdehye (MDA) and 4-hydroxynonenal (HNE) are well characterized oxidation products of polyunsaturated fatty acids on low-density lipoprotein (LDL) and adducts of these compounds have been detected by immunological means in atherosclerotic plaque. Thus, we first developed gas chromatography-mass spectrometry assays for the Schiff base adduct of MDA to lysine, the lysine-MDA-lysine diimine cross-link and the Michael addition product of HNE to lysine. Using these assays, we showed that the concentrations of all three compounds increased significantly in LDL during metal-catalysed oxidation in vitro. The concentration of the advanced glycation end-product N epsilon-(carboxymethyl)lysine (CML) also increased during LDL oxidation, while that of its putative carbohydrate precursor the Amadori compound N epsilon-(1-deoxyfructose-1-yl)lysine did not change, demonstrating that CML is a marker of both glycoxidation and lipoxidation reactions. These results suggest that MDA and HNE adducts to lysine residues should serve as biomarkers of lipid modification resulting from lipid peroxidation reactions, while CML may serve as a biomarker of general oxidative stress resulting from both carbohydrate and lipid oxidation reactions.

  20. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein

    DEFF Research Database (Denmark)

    Knott, Heather M; Baoutina, Anna; Davies, Michael Jonathan

    2002-01-01

    Free radicals damage both lipids and proteins and evidence has accumulated for the presence of both oxidised lipids and proteins in aged tissue samples as well as those from a variety of pathologies including atherosclerosis, diabetes, and Parkinson's disease. Oxidation of the protein and lipid...... moieties of low-density lipoprotein is of particular interest due to its potential role in the unregulated uptake of lipids and cholesterol by macrophages; this may contribute to the initial stage of foam cell formation in atherosclerosis. In the study reported here, we examined the comparative time......-courses of lipid and protein oxidation during copper-ion-mediated oxidation of low-density lipoprotein. We show that there is an early, lipid-mediated loss of 40-50% of the Trp residues of the apoB100 protein. There is no comparable loss over an identical period during the copper-ion-mediated oxidation of lipid...

  1. Hypoxia and oxidation levels of DNA and lipids in humans and animal experimental models

    DEFF Research Database (Denmark)

    Møller, Peter; Risom, Lotte; Lundby, Carsten

    2008-01-01

    The objective of this review was to evaluate the association between hypoxia and oxidative damage to DNA and lipids. Evaluation criteria encompassed specificity and validation status of the biomarkers, study design, strength of the association, dose-response relationship, biological plausibility,...... in subjects at high altitude. Most of the animal experimental models should be interpreted with caution because the assays for assessment of lipid peroxidation products have suboptimal validity....

  2. Changes and Effects of Dietary Oxidized Lipids in the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    F. Holgado

    2008-01-01

    Full Text Available This paper is focused on the present state-of-the art of modifications and effects of dietary oxidized lipids during their transit along the gastrointestinal tract. A survey of the literature reporting changes and effects of oxidized lipids before absorption, first in the stomach and then during enzymatic lipolysis in the small intestine, are addressed. Also, the fate of non-absorbed compounds and their potential implications at the colorectal level are discussed. Among the results found, it is shown that acidic gastric conditions and the influence of other dietary components may lead to either further oxidation or antioxidative effects in the stomach. Also, changes in oxidized functions, especially of hydroperoxy and epoxy groups, seem likely to occur. Enzymatic hydrolysis by pancreatic lipase is not effective for triacylglycerol polymers, and hence they can be found as non-absorbed oxidized lipids in the large intestine. Interactions of oxidized lipids with cholesterol absorption in the small intestine and with microflora metabolism have been also observed.

  3. Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants

    Directory of Open Access Journals (Sweden)

    Jagna eChmielowska-Bąk

    2015-06-01

    Full Text Available Reactive oxygen species (ROS are engaged in several processes essential for normal cell functioning, such as differentiation, anti-microbial defense, stimulus sensing and signaling. Interestingly, recent studies imply that cellular signal transduction and gene regulation are mediated not only directly by ROS but also by the molecules derived from ROS-mediated oxidation. Lipid peroxidation leads to non-enzymatic formation of oxylipins. These molecules were shown to modulate expression of signaling associated genes including genes encoding phosphatases, kinases and transcription factors. Oxidized peptides derived from protein oxidation might be engaged in organelle-specific ROS signaling. In turn, oxidation of particular mRNAs leads to decrease in the level of encoded proteins and thus, contributes to the post-transcriptional regulation of gene expression. Present mini review summarizes latest findings concerning involvement of products of lipid, protein and RNA oxidation in signal transduction and gene regulation.

  4. Electrocatalytic Oxidation of Dopamine by Ferrocene in Lipid Film Cast on a Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG,Jian-Guo(王建国); WU,Zheng-Yan(吴正岩); TANG,Ji-Lin(唐纪琳); TENG,Ren-Rui(滕人瑞); WANG,Er-Kang(汪尔康)

    2002-01-01

    The ferrocene-lipid film electrode was successfully prepared by means of casting the solution of ferrocene and lipid in chloroform onto a glassy carbon (GC) electrode surface. Ferrocene saved in the biological membrane gave a couple of quasi-reversble peaks of cyclic voltammmogram. The electrode displays a preferential electrocatalytic oxidation of dopamine (DA).The effect of electrocatalytic oxidation of DA depends on the solution pH and the negative charge lipid is in favor of catalytic oxidation of DA. The charistic was employed for separating the electrochemical responses of DA and ascorbic acid (AA). The electrode was assessed for the voltammtric differentiation of DA and AA. The measurement of DA can be achieved with differential pulse voltammetry in the presence of high conentration of AA. The catalytic peak current was proportional to the concentration of DA in the range of 1 ×10- 4-3 × 10-3 mol/L.

  5. Reducing retrogradation and lipid oxidation of normal and glutinous rice flours by adding mango peel powder.

    Science.gov (United States)

    Siriamornpun, Sirithon; Tangkhawanit, Ekkarat; Kaewseejan, Niwat

    2016-06-15

    Green and ripe mango peel powders (MPP) were added to normal rice flour (NRF) and glutinous rice flour (GRF) at three levels (400, 800 and 1200 ppm) and their effects on physicochemical properties and lipid oxidation inhibition were investigated. Overall, MPP increased the breakdown viscosity and reduced the final viscosity in rice flours when compared to the control. Decreasing in retrogradation was observed in both NRF and GRF with MPP added of all levels. MPP addition also significantly inhibited the lipid oxidation of all flours during storage (30 days). Retrogradation values were strongly negatively correlated with total phenolic and flavonoid contents, but not with fiber content. The hydrogen bonds and hydrophilic interactions between phenolic compounds with amylopectin molecule may be involved the decrease of starch retrogradation, especially GRF. We suggest that the addition of MPP not only reduced the retrogradation but also inhibited the lipid oxidation of rice flour.

  6. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica.

    Science.gov (United States)

    Xu, Peng; Qiao, Kangjian; Stephanopoulos, Gregory

    2017-07-01

    Microbially derived lipids have recently attracted renewed interests due to their broad applications in production of green diesels, cosmetic additives, and oleochemicals. Metabolic engineering efforts have targeted a large portfolio of biosynthetic pathways to efficiently convert sugar to lipids in oleaginous yeast. In the engineered overproducing strains, endogenous cell metabolism typically generates harmful electrophilic molecules that compromise cell fitness and productivity. Lipids, particularly unsaturated fatty acids, are highly susceptible to oxygen radical attack and the resulting oxidative species are detrimental to cell metabolism and limit lipid productivity. In this study, we investigated cellular oxidative stress defense pathways in Yarrowia lipolytica to further improve the lipid titer, yield, and productivity. Specifically, we determined that coupling glutathione disulfide reductase and glucose-6-phosphate dehydrogenase along with aldehyde dehydrogenase are efficient solutions to combat reactive oxygen and aldehyde stress in Y. lipolytica. With the reported engineering strategies, we were able to synchronize cell growth and lipid production, improve cell fitness and morphology, and achieved industrially-relevant level of lipid titer (72.7 g/L), oil content (81.4%) and productivity (0.97 g/L/h) in controlled bench-top bioreactors. The strategies reported here represent viable steps in the development of sustainable biorefinery platforms that potentially upgrade low value carbons to high value oleochemicals and biofuels. Biotechnol. Bioeng. 2017;114: 1521-1530. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat.

    Science.gov (United States)

    Narciso-Gaytán, C; Shin, D; Sams, A R; Keeton, J T; Miller, R K; Smith, S B; Sánchez-Plata, M X

    2011-02-01

    Lipid oxidation is known to occur rather rapidly in cooked chicken meat containing relatively high amounts of polyunsaturated fatty acids. To assess the lipid oxidation stability of sous vide chicken meat enriched with n-3 and conjugated linoleic acid (CLA) fatty acids, 624 Cobb × Ross broilers were raised during a 6-wk feeding period. The birds were fed diets containing CLA (50% cis-9, trans-11 and 50% trans-10, cis-12 isomers), flaxseed oil (FSO), or menhaden fish oil (MFO), each supplemented with 42 or 200 mg/kg of vitamin E (dl-α-tocopheryl acetate). Breast or thigh meat was vacuum-packed, cooked (74°C), cooled in ice water, and stored at 4.4°C for 0, 5, 10, 15, and 30 d. The lipid oxidation development of the meat was estimated by quantification of malonaldehyde (MDA) values, using the 2-thiobarbituric acid reactive substances analysis. Fatty acid, nonheme iron, moisture, and fat analyses were performed as well. Results showed that dietary CLA induced deposition of cis-9, trans-11 and trans-10, cis-12 CLA isomers, increased the proportion of saturated fatty acids, and decreased the proportions of monounsaturated and polyunsaturated fatty acids. Flaxseed oil induced higher deposition of C18:1, C18:2, C18:3, and C20:4 fatty acids, whereas MFO induced higher deposition of n-3 fatty acids, eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6; P 0.05) lipid oxidation development. In conclusion, dietary CLA, FSO, and MFO influenced the fatty acid composition of chicken muscle and the lipid oxidation stability of meat over the storage time. Supranutritional supplementation of vitamin E enhanced the lipid oxidation stability of sous vide chicken meat.

  8. Antioxidative/oxidative effects and retarding osteoconductivity of ciprofloxacin-loaded porous polyvinyl alcohol/bioactive glass hybrid.

    Science.gov (United States)

    Boulila, Salha; Oudadesse, Hassane; Badraoui, Riadh; Lefeuvre, Bertrand; Mabrouk, Mostafa; Chaabouni, Khansa; Mostafa, Amany; Makni-Ayedi, Fatma; Barroug, Allal; Rebai, Tarek; Elfeki, Abdelfattah; Elfeki, Hafed

    2017-01-01

    This study investigated the effect of bioglass (melting)-polyvinyl alcohol (BG (M)-PVA) and bioglass (melting)-polyvinyl alcohol-20 %ciprofloxacin (BG(M)-PVA-20Cip) in improving antioxidant activity and regenerating bone capacity. These composites were implanted in femoral condyles of ovariectomized Wistar rats and compared to that of controls groups. After the different period of implantation (15, 30, 60 and 90 days), the treatment of ovariectomized rats with BG(M)-PVA-20Cip showed a significantly higher malondialdehyde concentration when compared to that of BG(M)-PVA group. The superoxide dismutase, glutathione peroxidase and catalase in BG(M)-PVA-20Cip group showed significantly lower activities when compared to those in BG(M)-PVA group. So, BG(M)-PVA is more tolerated by organism than BG(M)-PVA-20Cip. Moreover, the alkaline phosphatase and acid phosphatase activities showed an excellent osteoinductive property of BG (M)-PVA. This property decreased with the presence of ciprofloxacin which is confirmed by histopathological analysis. Several physicochemical techniques showed a rapid reduction in Si and Na in one hand and an accelerator rise in Ca and P ions concentrations in other hand in BG(M)-PVA than in the BG(M)-PVA-20Cip. Therefore, the incorporation of ciprofloxacin in BG(M)-PVA is characterized by a prooxidant effect in oxidant-antioxidant balance at the beginning of treatment and a retard effect of formation of apatitic phase.

  9. Effect of emulsifiers and physical structure on lipid oxidation in omega-3 emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    The body of evidence supporting health beneficial effects of long-chain omega-3 polyunsaturated fatty acids has increased over the last decades. Consequently, the interest in fish oil-enriched foods has also increased. However, addition of these highly unsaturated fatty acids to foods also adds...... the challenge of lipid oxidation. In order to limit lipid oxidation and the consecutive development of unpleasant off-flavours, the manner in which the fish oil is introduced to the food product should be carefully considered, e.g. an emulsion could be used as delivery system for the omega-3s. The aim...

  10. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    and differences in production/purification, which caused lower tocopherol content and higher initial levels of primary and secondary oxidation products in SL compared with RL and SO. Grindox 117 and gallic acid did not exert a distinct antioxidative effect in the SL oil samples during storage......Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...

  11. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption.

    Science.gov (United States)

    Chen, Guanliang; Jin, Yuanxiang; Wu, Yan; Liu, Ling; Fu, Zhengwei

    2015-07-01

    Triphenyl phosphate (TPP) and tris(2-chloroethyl) phosphate (TCEP) are two of the most common organophosphate flame retardants in the ecosystem. Effects of TPP and TCEP on the induction of oxidative stress and endocrine disruption were evaluated in five weeks old male mice. After receiving 100, 300 mg/kg/bodyweight oral exposure to TPP and TCEP for 35 days, the body and testis weights decreased in 300 mg/kg TPP and TCEP treated groups. Hepatic malondialdehyde (MDA) contents increased significantly in both TPP treated groups, while the contents of glutathione (GSH) decreased significantly in 300 mg/kg TPP and both TCEP treated groups. In addition, the hepatic activities of antioxidant enzymes including glutathione peroxidase (GPX), catalase (CAT) and glutathione S-transferase (GST) as well as their related gene expression were affected by TPP or TECP exposure. On the other hand, 300 mg/kg of TPP or TECP treatment resulted in histopathological damage and the decrease of testicular testosterone levels. Moreover, the expression of main genes related to testosterone synthesis including steroidogenic acute regulatory protein (StAR), low-density lipoprotein receptor (LDL-R), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) and cytochrome P450 17α-hydroxysteroid dehydrogenase (P450-17α) in the testes also decreased after the exposure to 300 mg/kg TPP or TCEP for 35 days. Combined with the effects on physiology, histopathology and the expression of genes, TPP and TCEP can induce oxidative stress and endocrine disruption in mice.

  12. Vitamin C fails to protect amino acids and lipids from oxidation during acute inflammation.

    Science.gov (United States)

    Gaut, Joseph P; Belaaouaj, Abderrazzaq; Byun, Jaeman; Roberts, L Jackson; Maeda, Nobuyo; Frei, Balz; Heinecke, Jay W

    2006-05-01

    The observation that antioxidant vitamins fail to confer protective benefits in large, well-designed randomized clinical trials has led many to question the role of oxidative stress in the pathogenesis of disease. However, there is little evidence that proposed antioxidants actually scavenge reactive intermediates in vivo. Ascorbate reacts rapidly with oxidants produced by activated neutrophils in vitro, and neutrophils markedly increase their oxidant production when mice are infected intraperitoneally with the gram-negative bacterium Klebsiella pneumoniae. To explore the antioxidant properties of ascorbate in vivo, we therefore used K. pneumoniae infection as a model of oxidative stress. When mice deficient in L-gulono-gamma-lactone oxidase (Gulo(-/-)), the rate-limiting enzyme in ascorbate synthesis, were depleted of ascorbate and infected with K. pneumoniae, they were three times as likely as ascorbate-replete Gulo(-/-)mice to die from infection. Mass spectrometric analysis of peritoneal lavage fluid revealed a marked increase in the levels of oxidized amino acids and of F2-isoprostanes (sensitive and specific markers of lipid oxidation) in infected animals. Surprisingly, there were no significant differences in the levels of the oxidation products in the ascorbate-deficient and -replete Gulo(-/-)mice. Our observations suggest that ascorbate plays a previously unappreciated role in host defense mechanisms against invading pathogens but that the vitamin does not protect amino acids and lipids from oxidative damage during acute inflammation. To examine the oxidation hypothesis of disease, optimal antioxidant regimens that block oxidative reactions in animals and humans need to be identified.

  13. Effect of different cooking methods on lipid oxidation and formation of free cholesterol oxidation products (COPs) in Latissimus dorsi muscle of Iberian pigs.

    Science.gov (United States)

    Broncano, J M; Petrón, M J; Parra, V; Timón, M L

    2009-11-01

    The aim of this work was to study the influence of different cooking methods (grilled (GR), fried (FP), microwave (MW) and roasted (RO)) on lipid oxidation and formation of free cholesterol oxidation products (COPs) of meat from Iberian pigs that have been fed on an intensive system. Moisture and total lipid content, TBARs, hexanal and COPs were measured in Latissimus dorsi muscle samples. Cooking did not produce changes in total lipid content in meat but induced significantly higher lipid oxidation (TBARs and hexanal values) (p<0.001) and cholesterol oxidation (COPs) (p<0.01). When the different cooking methods were studied, the grilled method was the least affected by lipid oxidation (TBARs and hexanal) compared to the others. There were no significant differences among different cooking methods on COPs values. The most abundant cholesterol oxides were both 7α-hydroxycholesterol and 7β-hydroxycholesterol in all groups studied.

  14. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis.

    Science.gov (United States)

    Giardino, I; Fard, A K; Hatchell, D L; Brownlee, M

    1998-07-01

    Aminoguanidine (AG) treatment, like nerve growth factor (NGF) treatment, prevents diabetes-induced apoptosis of retinal Müller cells in the rat eye, but the mechanism involved is unknown. In this study, the effects of preincubation with AG on oxidant-induced apoptosis, oxidant-induced intracellular reactive oxygen species (ROS) production, and lipid peroxidation were determined in rat retinal Müller cells and compared with the effects of NGF, a protein that protects neuronal cells from oxidative stress. The effect of AG on rabbit vitreous lipid peroxide levels was also determined. After exposure to increasing concentrations of H2O2, there was a corresponding increase in the percentage of apoptotic Müller cells. Preincubation with AG for 48 h completely inhibited oxidant-induced apoptosis in response to 10 micromol/l H2O2 (+AG 0 vs. 10 micromol/l, NS), and reduced the percentage of apoptotic cells in response to 50 micromol/l H2O2 by 50% (+AG vs. -AG, P NGF. Both AG and NGF preincubation prevented the twofold increase in oxidant-induced lipid peroxides. The fivefold increase in oxidant-induced ROS production was decreased 100% by NGF, but only 61% by AG preincubation. The twofold increase in vitreous lipid peroxide level in diabetic rabbits was completely prevented by AG treatment. AG reduced H2O2-induced benzoate hydroxylation in a dose-dependent manner. Intracellular glutathione content was unchanged. These data demonstrate that AG can act as an antioxidant in vivo, quenching hydroxyl radicals and lipid peroxidation in cells and tissues and preventing oxidant-induced apoptosis.

  15. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    Science.gov (United States)

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake.

  16. ω-3 in meat products: benefits and effects on lipid oxidative stability.

    Science.gov (United States)

    Bernardi, Daniela Miotto; Bertol, Teresinha Marisa; Pflanzer, Sérgio Bertelli; Sgarbieri, Valdemiro Carlos; Pollonio, Marise Aparecida Rodrigues

    2016-06-01

    Although ω-3 intake has been associated with numerous health benefits, its addition to certain food matrices, and in particular meat products, may involve various technological barriers influencing the final quality of the products. Lipid oxidation must be highlighted due to the modification of both the sensory characteristics and the shelf-life of meat products. In order to reduce the impact of chemical changes and promote oxidative stability, the use of natural antioxidants has gained ground owing to the health and safety advantages linked to its effectiveness at reducing lipid oxidation. Many natural compounds have also been successfully tested in animal feed, in order to protect the raw meat materials and reduce the risk of lipid oxidation in processed products. This review aims to address the challenges and advantages of the incorporation of ω-3 fatty acids in raw meat materials and processed meat products, and to describe the use of different compounds to enhance lipid oxidative stability. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. The effects of Corylus Avellana on serum lipid profile and oxidative stress in hyperlipidemic-diabetic rats

    Directory of Open Access Journals (Sweden)

    Emel Serdaroglu Kasikci

    2014-06-01

    Conclusions: Consumption of hazelnut at this dose (0.63% may improve oxidant-antioxidant balance in healthy and hyperlipidemic-diabetic status without increasing blood lipids. Keywords: Hazelnut, hyperlipidemia, diabetes, lipids, glutathione, lipid peroxidation. [Dis Mol Med 2014; 2(3.000: 45-50

  18. Lipid components and oxidative status of selected specialty oils

    Directory of Open Access Journals (Sweden)

    P. Madawala, S. R.

    2012-06-01

    Full Text Available Many vegetable oils are marketed as specialty oils because of their retained flavors, tastes and distinct characteristics. Specialty oil samples which were commercially produced and retailed were purchased from local superstores in Reading, UK, and Uppsala, Sweden and profiled for detailed lipid composition and oxidative status. These oil samples include: almond, hazelnut, walnut, macadamia nut, argan, avocado, grape seed, roasted sesame, rice bran, cold pressed, organic and cold pressed, warm pressed and refined rapeseed oils. The levels of PV were quite low (0.5-1.3mEq O₂/kg but AV and Rancimat values at 100 °C (except for rapeseed oils varied considerably at (0.5-15.5 and (4.2-37.0 h respectively. Macadamia nut oil was found to be the most stable oil followed by argan oil, while walnut oil was the least stable. Among the specialty oils, macadamia nut oil had the lowest (4% and walnut oil had the highest (71% level of total PUFA. The organic cold pressed rapeseed oil had considerably lower PUFA (27% compared with other rapeseed oils (28- 35%. In all the samples, α- and γ- tocopherols were the major tocopherols; nut oils had generally lower levels. Total sterols ranged from 889 to 15,106 μg/g oil. The major sterols were β-sitosterol (61-85% and campesterol (6-20%. Argan oil contained schottenol (35% and spinasterol (32%. Compared with literature values, no marked differences were observed among the differently processed, organically grown or cold pressed rapeseed oils and other specialty oils in this study.

    Muchos aceites vegetales se venden como aceites especiales debido a su flavor, gusto y características distintas. Muestras de aceites especiales de almendra, avellana, nuez, nuez de macadamia, argán, aguacate, semillas de uva, de sésamo tostadas, salvado de arroz, y aceites orgánico de semillas de colza prensado en frío y, prensado caliente, y refinados que se producen y comercializan al por menor, se obtuvieron en

  19. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    Science.gov (United States)

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs.

  20. Characterization of lipid oxidation in plant oils by micro-calorimetry.

    Science.gov (United States)

    Dridi, Wafa; Toutain, Jean; Sommier, Alain; Essafi, Wafa; Gargouri, Mohamed; Leal-Calderon, Fernando; Cansell, Maud

    2016-04-15

    A new experimental device was developed, based on the measurement of the heat flux dissipated during chemical reactions. The technique was exploited for real time monitoring of lipid oxidation in plant oils. The thermopiles were used in adiabatic configuration in order to measure the entire heat flux and improve sensitivity. Measurements were operated with a resolution of few μW as required to follow low exothermic reactions like oxidation. The validation of the device was performed by correlating conjugated diene concentrations measured by spectrophotometry and the heat flux dissipated by oxidation reactions. Our experimental approach involved several plant oils analyzed in isothermal conditions. This novel technique provides a versatile, sensitive, solvent-free and yet low-cost method to assess lipid oxidation stability, particularly suitable for the fast screening of plant oils.

  1. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    Directory of Open Access Journals (Sweden)

    José A. Hernández

    2016-01-01

    Full Text Available The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  2. Retinoic acid treatment enhances lipid oxidation and inhibits lipid biosynthesis capacities in the liver of mice.

    Science.gov (United States)

    Amengual, Jaume; Ribot, Joan; Bonet, M Luisa; Palou, Andreu

    2010-01-01

    Vitamin A, mainly as retinoic acid (RA), is known to affect the development and function of adipose tissues. Treatment with RA reduces body weight and adiposity independent of changes in food intake in mice. Lipid metabolism in liver can have a major impact on whole body adiposity. The aim of this work was to investigate the effects of an in vivo treatment with RA on hepatic lipid metabolism in mice. Adult, standard diet-fed mice were treated with different doses of all-trans RA or vehicle (subcutaneous injection) for 4 days before sacrifice. Food intake and body weight changes during treatment were determined, as well as adiposity, liver composition, levels of circulating metabolites and lipoproteins and expression levels of key mRNA species in liver following sacrifice. RA treatment resulted in reduced body weight and adiposity, as expected. In the liver, RA treatment triggered an increase in the mRNA expression levels of peroxisome proliferator-activated receptor alpha, retinoid X receptor alpha, uncoupling protein 2, liver-type carnitine palmitoyltransferase 1, and carnitine/acylcarnitine carrier, and a reduction in the mRNA expression levels of sterol regulatory element binding protein 1c and fatty acid synthase. Consistent with the changes in gene expression, hepatic triacylglycerol content and circulating VLDL fraction were reduced and levels of circulating ketone bodies increased after RA treatment. These results point to a capacity of active vitamin A forms to shift liver lipid metabolism in vivo towards increased catabolism and reduced lipogenesis. These effects might contribute to the reduction of adiposity brought about by RA treatment.

  3. Turkish Tombul hazelnut (Corylus avellana L.). 2. Lipid characteristics and oxidative stability.

    Science.gov (United States)

    Alasalvar, Cesarettin; Shahidi, Fereidoon; Ohshima, Toshiaki; Wanasundara, Udaya; Yurttas, Hasan C; Liyanapathirana, Chandrika M; Rodrigues, Fabiana B

    2003-06-18

    The quality of crude hazelnut oil extracted from Tombul (Round) hazelnut, grown in the Giresun province of Turkey, was determined by measuring lipid classes, fatty acids, and fat soluble bioactives (tocopherols and phytosterols). Oxygen uptake, peroxide value, thiobarbituric acid reactive substances, and alpha-tocopherol levels of stripped and crude hazelnut oils in bulk and oil-in-water (o/w) emulsion systems were also evaluated as indices of lipid oxidation over a 21 day storage period at 60 degrees C in the dark. The total lipid content of Tombul hazelnut was 61.2%, of which 98.8% were nonpolar and 1.2% polar constituents. Triacylglycerols were the major nonpolar lipid class and contributed nearly 100% to the total amount. Phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol were the most abundant polar lipids, respectively. Sixteen fatty acids were identified, among which oleic acid contributed 82.7% to the total, followed by linoleic, palmitic, and stearic acids. Unsaturated fatty acids accounted for 92.2% of the total fatty acids present. Among oil soluble bioactives, alpha-tocopherol (38.2 mg/100 g) and beta-sitosterol (105.5 mg/100 g) were predominant in hazelnut oil and comprised 88 and 93% of the total tocopherols and phytosterols present, respectively. The results also showed that both stripped and crude hazelnut oils were more stable in terms of lipid oxidation in the bulk oil as compared to those in an o/w emulsion.

  4. Fluorescence monitoring of the effect of oxidized lipids on the process of protein fibrillization

    Science.gov (United States)

    Vus, Kateryna; Sood, Rohit; Gorbenko, Galyna; Kinnunen, Paavo

    2016-09-01

    The kinetics of lysozyme and insulin amyloid formation in the presence of the oxidized phospholipids (oxPLs) was investigated using Thioflavin T fluorescence assay. The kinetic parameters of fibrillization process (lag time and apparent rate constant) have been determined upon varying the following experimental parameters: the type of lipid assemblies (premicellar aggregates and lipid bilayer vesicles), pH, temperature and lipid-to-protein molar ratio. It was found that oxPLs premicellar aggregates induced the more pronounced increase of the maximum Thioflavin T fluorescence, which is proportional to the extent of fibril formation, compared to the vesicles composed of the oxidized and unoxidized lipids. In contrast, the oxPLs, used as dispersions or included into vesicles, inhibited fibril nucleation and elongation under near-physiological conditions in vitro compared to liposomes containing unoxidized lipids. The results obtained provide deeper insight into the molecular mechanisms of the oxidative stress-modulated conformational diseases, and could be employed for the anti-amyloid drug development.

  5. Formation of Poultry Meat Flavor by Heating Process and Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Maijon Purba

    2014-09-01

    Full Text Available Flavor is an important factor in the acceptance of food. Flavor of poultry meat is naturally formed through a specific process of heating, where various chemical reactions complex occurred among nonvolatile precursors in fatty tissue or in lean tissue. The main flavor in the form of volatile and nonvolatile components play a major influence on the acceptance of various processed meat, especially the taste. Removal of sulfur components decreases meat flavor (meaty, while removal of carbonyl compounds decrease the specific flavor and increases common flavor of the meat. Poultry meat has a fairly high fat content that easily generates lipid oxidation. Lipid oxidation in poultry meat is a sign that the meat was damaged and caused off odor. Addition of antioxidants in the diet can inhibit lipid oxidation in the meat. Lipids interaction with proteins and carbohydrates is unavoidable during the thermal processing of food, causing the appearance of volatile components. The main reaction in meat flavor formation mechanism is Maillard reaction followed by Stecker reaction and degradation of lipids and thiamine. They involve in the reaction between carbonyl and amine components to form flavor compounds, which enhance the flavor of poultry meat.

  6. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors

    DEFF Research Database (Denmark)

    Sahlin, K; Harris, R C

    2008-01-01

    to an exercise intensity of about 50-60% of VO(2max) after which the contribution of lipid decreases. The switch from lipid to carbohydrate (CHO) is of energetic advantage due to the increased ATP/O(2) yield. In the low-intensity domain (VO(2max)) a moderate reduction in energy state will stimulate both LOx...... and CHO oxidation and relative fuel utilization is mainly controlled by substrate availability and the capacity of the metabolic pathways. In the high-intensity domain (>60%VO(2max)) there is a pronounced decrease in energy state, which will stimulate glycolysis in excess of the substrate requirements......Despite considerable progress during recent years our understanding of how lipid oxidation (LOx) is controlled during exercise remains incomplete. This review focuses on the role of mitochondria and energy state in the control of LOx. LOx increases in parallel with increased energy demand up...

  7. Clinical presentation, lipid peroxidation intensity, and features of nitric oxide production in patients with erysipelas

    Directory of Open Access Journals (Sweden)

    L. I. Ratnikova

    2011-01-01

    Full Text Available 65 patients with a diagnosis of erysipelas. Examination of the patients included an analysis of lipid peroxidation products (common polyene, diene conjugates, and conjugate ketodieny trieny, Schiff bases, antioxidant defense system (enzymatic activity of superoxide dismutase and nitric oxide metabolites (nitrates and nitrites. It was established that imbalance between excess activated lipid peroxidation and inadequate functioning of antioxidant defense system was remained during the entire period of the disease. The relationships between nitric oxide and lipid peroxidation were established. It was proved the advisability of developing and introducing new, improved schemes of pathogenetic therapy of erysipelas.

  8. ANTIOXIDANT STATUS, OXIDATIVE STRESS AND LIPID PROF ILE IN ESSENTIAL HYPERTENSIVE MEN

    Directory of Open Access Journals (Sweden)

    Shantha Kumari

    2013-04-01

    Full Text Available ABSTRACT: Hypertension is a major health burden and coexists o f with imbalance in antioxidants and lipid profile. This study is done to evaluate the total antioxidant status and oxidative stress like Malondialdehyde (MDA, catala se, superoxide dismutase (SOD, uric acid and correlate with lipid profile among hypertensive m en. Significant increase in MDA, uric acid and dyslipidemia was found among hypertensive men. Al so total antioxidant status and other antioxidants like SOD, catalase was found to be dec reased in hypertensive men. Hence it is concluded that lipid peroxidation occur in hypertensi on which leads to endothelial dysfunction, renal blood flow alteration and tissue damage. As a result of which dyslipidemia, hyperuricemia and decrease in anti oxidants are seen. Hence decre ase in antioxidants is a useful marker for antioxidant therapy to prevent organ damage among hype rtensive.

  9. Prooxidant and antioxidant effects of Trolox on ferric ion-induced oxidation of erythrocyte membrane lipids.

    Science.gov (United States)

    Ko, K M; Yick, P K; Poon, M K; Ip, S P

    1994-12-07

    The prooxidant and antioxidant actions of Trolox were examined in an in vitro system measuring ferric ion-induced oxidation of erythrocyte membrane lipids. Trolox was found to produce a concentration-dependent biphasic effect on the ferric ion-stimulated lipid peroxidation, with the mode of action being similar to those produced by reducing-agent antioxidants, such as ascorbic acid and reduced glutathione, and iron chelator, such as desferrioxamine. Phytic acid, a potent iron chelator, could suppress the prooxidant actions of Trolox and desferrioxamine, but not those of ascorbic acid and reduced glutathione. The ability of Trolox to stimulate ferric ion-catalyzed ascorbate oxidation, as similar to the action produced by ethylenediaminetetraacetic acid, indicates the presence of iron-chelating activity. The ensemble of results suggests the possible involvement of iron chelation in the prooxidant action of Trolox in ferric ion-stimulated lipid peroxidation reactions.

  10. Disruption of the Class IIa HDAC Corepressor Complex Increases Energy Expenditure and Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Vidhi Gaur

    2016-09-01

    Full Text Available Drugs that recapitulate aspects of the exercise adaptive response have the potential to provide better treatment for diseases associated with physical inactivity. We previously observed reduced skeletal muscle class IIa HDAC (histone deacetylase transcriptional repressive activity during exercise. Here, we find that exercise-like adaptations are induced by skeletal muscle expression of class IIa HDAC mutants that cannot form a corepressor complex. Adaptations include increased metabolic gene expression, mitochondrial capacity, and lipid oxidation. An existing HDAC inhibitor, Scriptaid, had similar phenotypic effects through disruption of the class IIa HDAC corepressor complex. Acute Scriptaid administration to mice increased the expression of metabolic genes, which required an intact class IIa HDAC corepressor complex. Chronic Scriptaid administration increased exercise capacity, whole-body energy expenditure and lipid oxidation, and reduced fasting blood lipids and glucose. Therefore, compounds that disrupt class IIa HDAC function could be used to enhance metabolic health in chronic diseases driven by physical inactivity.

  11. Mechanism of catalytic oxidation of water-lipid substrate

    Science.gov (United States)

    Kraynik, V. V.; Ushkalova, V. N.

    2010-05-01

    The processes of ethyl oleate water-emulsion oxidation in the presence of copper (II) complexes with α-alanine as a catalyst were investigated spectroscopically. UV spectra of the samples revealed the competitive nature of the formation and decomposition of hydroperoxides in the course of oxidation. Vis spectra of the aqueous phase revealed the constant presence of copper (II) complex with α-alanine and the formation of a similar complex with copper (I) in organic phase. The involvement of these complexes in the reactions of chain nucleation and decay of hydroperoxides is suggested.

  12. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution

    DEFF Research Database (Denmark)

    Møller, Peter; Loft, Steffen

    2010-01-01

    of each of the biomarkers, for total and stratified formal meta-analyses. DATA SYNTHESIS: In the meta-analysis, the standardized mean differences (95% confidence interval) between exposed and unexposed subjects for oxidized DNA and lipids were 0.53 (0.29-0.76) and 0.73 (0.18-1.28) in blood and 0.52 (0......BACKGROUND: Air pollution is thought to exert health effects through oxidative stress, which causes damage to DNA and lipids. OBJECTIVE: We determined whether levels of oxidatively damaged DNA and lipid peroxidation products in cells or bodily fluids from humans are useful biomarkers.......22-0.82) and 0.49 (0.01-0.97) in urine, respectively. The standardized mean difference for oxidized lipids was 0.64 (0.07-1.21) in the airways. Restricting analyses to studies unlikely to have substantial biomarker or exposure measurement error, studies likely to have biomarker and/or exposure error, or studies...

  13. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation.

    Science.gov (United States)

    Bartesaghi, Silvina; Herrera, Daniel; Martinez, Débora M; Petruk, Ariel; Demicheli, Verónica; Trujillo, Madia; Martí, Marcelo A; Estrín, Darío A; Radi, Rafael

    2017-05-15

    Tyrosine nitration is an oxidative post-translational modification that can occur in proteins associated to hydrophobic bio-structures such as membranes and lipoproteins. In this work, we have studied tyrosine nitration in membranes using a model system consisting of phosphatidylcholine liposomes with pre-incorporated tyrosine-containing 23 amino acid transmembrane peptides. Tyrosine residues were located at positions 4, 8 or 12 of the amino terminal, resulting in different depths in the bilayer. Tyrosine nitration was accomplished by exposure to peroxynitrite and a peroxyl radical donor or hemin in the presence of nitrite. In egg yolk phosphatidylcholine liposomes, nitration was highest for the peptide with tyrosine at position 8 and dramatically increased as a function of oxygen levels. Molecular dynamics studies support that the proximity of the tyrosine phenolic ring to the linoleic acid peroxyl radicals contributes to the efficiency of tyrosine oxidation. In turn, α-tocopherol inhibited both lipid peroxidation and tyrosine nitration. The mechanism of tyrosine nitration involves a "connecting reaction" by which lipid peroxyl radicals oxidize tyrosine to tyrosyl radical and was fully recapitulated by computer-assisted kinetic simulations. Altogether, this work underscores unique characteristics of the tyrosine oxidation and nitration process in lipid-rich milieu that is fueled via the lipid peroxidation process. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Anti-radical power gives insight into early lipid oxidation events during frying

    NARCIS (Netherlands)

    Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2006-01-01

    The aim of this research was to use anti-radical power (ARP) to study early lipid oxidation events during frying. The 2,2-diphenyl-1-picrylhydrazyl radical (DPPH¿) test was used to determine the ARP. As oil does not dissolve completely in methanol, which is generally used for the DPPH¿ test, butanol

  15. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids

    NARCIS (Netherlands)

    Corpeleijn, Eva; Hessvik, Nina P.; Bakke, Siril S.; Levin, Klaus; Blaak, Ellen E.; Thoresen, G. Hege; Gaster, Michael; Rustan, Arild C.

    2010-01-01

    Corpeleijn E, Hessvik NP, Bakke SS, Levin K, Blaak EE, Thoresen GH, Gaster M, Rustan AC. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids. Am J Physiol Endocrinol Metab 299: E14-E22, 2010. First published May 4, 2010; doi:1

  16. Anti-radical power gives insight into early lipid oxidation events during frying

    NARCIS (Netherlands)

    Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2006-01-01

    The aim of this research was to use anti-radical power (ARP) to study early lipid oxidation events during frying. The 2,2-diphenyl-1-picrylhydrazyl radical (DPPH¿) test was used to determine the ARP. As oil does not dissolve completely in methanol, which is generally used for the DPPH¿ test, butanol

  17. Archaeal lipids in Mediterranean Cold Seeps: Molecular proxies for anaerobic methane oxidation

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Pancost, R.D.; Hopmans, E.C.

    2001-01-01

    We investigated the distributions and 13C values of biomarkers for Archaea associated with anaerobic methane oxidation in disparate settings throughout two Eastern Mediterranean mud dome fields. All major classes of archaeal lipids are present in the studied sediments, including isoprenoid glycerol

  18. Oxidative stability of mayonnaise and milk drink produced with structured lipids based on fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2004-01-01

    The oxidative stabilities of traditional fish oil (FO), randomized lipids (RFO), or specific structured lipids (SFO) produced from fish oil were compared when incorporated into either milk drink or mayonnaise. Furthermore, the effect of adding the potential antioxidants EDTA (240 mg/kg) or lactof......The oxidative stabilities of traditional fish oil (FO), randomized lipids (RFO), or specific structured lipids (SFO) produced from fish oil were compared when incorporated into either milk drink or mayonnaise. Furthermore, the effect of adding the potential antioxidants EDTA (240 mg....../kg) or lactoferrin (1000 mg/kg) to the milk drink based on SFO was investigated. The lipid type significantly affected the oxidative stability of both mayonnaises and milk drinks: The oxidative stability decreased in the order RFO>FO>SFO. The reduced oxidative stability in the SFO food emulsions could...

  19. Impact of ultrasound treatment on lipid oxidation of Cheddar cheese whey.

    Science.gov (United States)

    Torkamani, Amir Ehsan; Juliano, Pablo; Ajlouni, Said; Singh, Tanoj Kumar

    2014-05-01

    Ultrasound (US) has been suggested for many whey processing applications. This study examined the effects of ultrasound treatment on the oxidation of lipids in Cheddar cheese whey. Freshly pasteurized whey (0.86 L) was ultrasonicated in a contained environment at the same range of frequencies and energies for 10 and 30 min at 37°C. The US reactor used was characterized by measuring the generation of free radicals in deionized water at different frequencies (20-2000 kHz) and specific energies (8.0-390 kJ/kg). Polar lipid (PL), free and bound fatty acids and lipid oxidation derived compounds were identified and quantified before and after US processing using high performance liquid chromatography equipped with an evaporative light scattering detector (HPLC-ELSD), methylation followed by gas chromatography flame ionized detector (GC-FID) and solid phase micro-extraction gas chromatography mass spectrometry (SPME-GCMS), respectively. The highest concentration of hydroxyl radical formation in the sonicated whey was found between 400 and 1000 kHz. There were no changes in phospholipid composition after US processing at 20, 400, 1000 and 2000 kHz compared to non-sonicated samples. Lipid oxidation volatile compounds were detected in both non-sonicated and sonicated whey. Lipid oxidation was not promoted at any tested frequency or specific energy. Free fatty acid concentration was not affected by US treatment per se. Results revealed that US can be utilized in whey processing applications with no negative impact on whey lipid chemistry.

  20. LKB1 regulates lipid oxidation during exercise independently of AMPK

    DEFF Research Database (Denmark)

    Jeppesen, Jacob Fuglsbjerg; Maarbjerg, Stine Just; Jordy, Andreas Børsting;

    2013-01-01

    exercise. LKB1 MKO mice also show decreased muscle SIK3 activity, increased histone deacetylase 4 expression, decreased NAD(+) concentration and SIRT1 activity, and decreased expression of genes involved in FA oxidation. In AMPKa2 KO mice, substrate use was similar to that in WT mice, which excluded...

  1. Reduction of irradiation off-odor and lipid oxidation in ground beef by {alpha}-tocopherol addition and the use of a charcoal pack

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S.H. [Busan Regional Food and Drug Administration, Busan 608-829 (Korea, Republic of); Jang, A. [National Institute of Animal Science, RDA, Suwon 441-706 (Korea, Republic of); Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, J.K. [Cooperative Research, Extension, and Education Service, Northern Marianas College, Saipan, MP 96950 (Korea, Republic of); Song, H.P. [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, J.H. [Cooperative Research, Extension, and Education Service, Northern Marianas College, Saipan, MP 96950 (Korea, Republic of); Lee, M. [Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Jo, C. [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)], E-mail: cheorun@cnu.ac.kr

    2009-02-15

    A combination of a charcoal pack during irradiation and {alpha}-tocopherol addition into ground beef was applied to eliminate an irradiation characteristic off-odor and to retard the lipid oxidation caused by the irradiation process. Ground beef was mixed with 200 ppm {alpha}-tocopherol and gamma irradiated with 0, 5, and 10 kGy with or without a charcoal pack present during the irradiation treatment. The pH of the control group was lower than that of {alpha}-tocopherol and charcoal pack treatment initially but increased rapidly and showed higher pH at day 7. Addition of {alpha}-tocopherol with or without charcoal pack addition showed lower 2-thiobarbituric acid reactive substances values in irradiated ground beef at days 3 and 7 compared to those without addition. The color of ground beef was not significantly affected by the treatment. However, odor preference result showed that 10 kGy-irradiated ground beef with a combination of charcoal pack and {alpha}-tocopherol addition had higher scores than the control group regardless of irradiation. Solid-phase microextraction (SPME) gas chromatograph/mass spectrometry (GC/MS) analysis identified various volatile compounds that were created by irradiation of ground beef. These compounds were reduced or eliminated when a charcoal pack was used during the irradiation process. The results of the present study imply that combination of packaging with a charcoal pack during the irradiation process and addition of {alpha}-tocopherol into ground beef is a good method to effectively eliminate an irradiation off-odor and retard the lipid oxidation development in ground beef caused by irradiation.

  2. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    Energy Technology Data Exchange (ETDEWEB)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter, E-mail: pemo@sund.ku.dk

    2014-01-15

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered

  3. Oxidation of Membrane Curvature-Regulating Phosphatidylethanolamine Lipid Results in Formation of Bilayer and Cubic Structures.

    Science.gov (United States)

    Sankhagowit, Shalene; Lee, Ernest Y; Wong, Gerard C L; Malmstadt, Noah

    2016-03-15

    Oxidation is associated with conditions related to chronic inflammations and aging. Cubic structures have been observed in the smooth endoplasmic reticulum and mitochondrial membranes of cells under oxidative stress (e.g., tumor cells and virus-infected cells). It has been previously suspected that oxidation can result in the rearrangement of lipids from a fluid lamellar phase to a cubic structure in organelles containing membranes enriched with amphiphiles that have nonzero intrinsic curvature, such as phosphatidylethanolamine (PE) and cardiolipin. This study focuses on the oxidation of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), a lipid that natively forms an inverted hexagonal phase at physiological conditions. The oxidized samples contain an approximately 3:2 molar ratio of nonoxidized to oxidized DOPE. Optical microscopy images collected during the hydration of this mixture from a dried film suggest that the system evolves into a coexistence of a stable fluid lamellar phase and transient square lattice structures with unit cell sizes of 500-600 nm. Small-angle X-ray scattering of the same lipid mixture yielded a body-centered Im3m cubic phase with the lattice parameter of 14.04 nm. On average, the effective packing parameter of the oxidized DOPE species was estimated to be 0.657 ± 0.069 (standard deviation). This suggests that the oxidation of PE leads to a group of species with inverted molecular intrinsic curvature. Oxidation can create amphiphilic subpopulations that potently impact the integrity of the membrane, since negative Gaussian curvature intrinsic to cubic phases can enable membrane destabilization processes.

  4. A novel reduced graphene oxide decorated with halloysite nanotubes (HNTs-d-rGO hybrid composite and its flame-retardant application for polyamide 6

    Directory of Open Access Journals (Sweden)

    M. F. Zhu

    2014-06-01

    Full Text Available The improvement of flame-retardant properties of polyamide 6 (PA6 was achieved by using reduced graphene oxide decorated with halloysite nanotubes (HNTs-d-rGO hybrid composite as the additive in PA6 matrix. The intimate integration of reduced graphene oxide (rGO and halloysite nanotubes (HNTs through a three-step chemical functionalization, enabled the combination of their unique physical and chemical characteristics together. The nanostructure of HNTs-d-rGO was determined by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS and transmission electron microscopy (TEM. A morphological study revealed that HNTs-d-rGO was dispersed uniformly in PA6 matrix. From the results of cone calorimetry measurements, the fire retardant properties of PA6 were further improved with the addition of HNTs-d-rGO when compared with that of either HNTs, or GO, or a mixture of HNTs and GO (HNTs-m-GO used in PA6 matrix. The results indicate clearly that higher flame-retardant activity of the integrated HNTs-d-rGO nanostructures than that of the simple mixture verifies the importance of the intimate integration between HNTs and rGO, which ascribe to the combination of the stable silica layer created by HNT and the barrier effect of rGO.

  5. Glutathione delays varies as-tocopherol oxidation and subsequent lipid peroxidation in rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Robey, S.; Mavis, R.

    1986-05-01

    A method has been developed for in vitro trace radiolabeling of rat liver microsomes with /sup 3/H-..cap alpha..-tocopherol (..cap alpha..T*) which allows virtually complete oxidation of the ..cap alpha..T* under oxidizing conditions. The supernatant of a 16,000 xg centrifugation of homogenized rat liver, containing the cytosolic rat liver vitamin E (VE) transfer protein, was incubated with an ethanolic solution of ..cap alpha..T* for 10 minutes at 37/sup 0/C. Labeled microsomes were collected in the washed 100,000 xg pellet. Microsomes were then incubated with 30 ..mu..M Fe/sup 2 +/ in an NADPH-generating system, and both production of malondialdehyde (MDA) (a product of lipid peroxidation) and oxidation of ..cap alpha..T* were monitored over a time course in the presence and absence of glutathione (GSH). The results indicate virtually complete oxidation of ..cap alpha..T* precedes significant membrane lipid peroxidation, and that addition of 5 mM GSH delays both ..cap alpha..T* oxidation and subsequent MDA production. This suggests that the previously observed VE-dependent heat labile inhibition of microsomal lipid peroxidation by GSH involves maintaining membrane levels of ..cap alpha..-tocopherol.

  6. Roles of Fatty Acid oversupply and impaired oxidation in lipid accumulation in tissues of obese rats.

    Science.gov (United States)

    Oakes, Nicholas D; Kjellstedt, Ann; Thalén, Pia; Ljung, Bengt; Turner, Nigel

    2013-01-01

    To test the roles of lipid oversupply versus oxidation in causing tissue lipid accumulation associated with insulin resistance/obesity, we studied in vivo fatty acid (FA) metabolism in obese (Obese) and lean (Lean) Zucker rats. Indices of local FA utilization and storage were calculated using the partially metabolizable [9,10-(3)H]-(R)-2-bromopalmitate ((3)H-R-BrP) and [U-(14)C]-palmitate ((14)C-P) FA tracers, respectively. Whole-body FA appearance (R a ) was estimated from plasma (14)C-P kinetics. Whole-body FA oxidation rate (R ox) was assessed using (3)H2O production from (3)H-palmitate infusion, and tissue FA oxidative capacity was evaluated ex vivo. In the basal fasting state Obese had markedly elevated FA levels and R a , associated with elevated FA utilization and storage in most tissues. Estimated rates of muscle FA oxidation were not lower in obese rats and were similarly enhanced by contraction in both lean and obese groups. At comparable levels of FA availability, achieved by nicotinic acid, R ox was lower in Obese than Lean. In Obese rats, FA oxidative capacity was 35% higher than that in Lean in skeletal muscle, 67% lower in brown fat and comparable in other organs. In conclusion, lipid accumulation in non-adipose tissues of obese Zucker rats appears to result largely from systemic FA oversupply.

  7. Roles of Fatty Acid Oversupply and Impaired Oxidation in Lipid Accumulation in Tissues of Obese Rats

    Directory of Open Access Journals (Sweden)

    Nicholas D. Oakes

    2013-01-01

    Full Text Available To test the roles of lipid oversupply versus oxidation in causing tissue lipid accumulation associated with insulin resistance/obesity, we studied in vivo fatty acid (FA metabolism in obese (Obese and lean (Lean Zucker rats. Indices of local FA utilization and storage were calculated using the partially metabolizable [9,10-3H]-(R-2-bromopalmitate (3H-R-BrP and [U-14C]-palmitate (14C-P FA tracers, respectively. Whole-body FA appearance (Ra was estimated from plasma 14C-P kinetics. Whole-body FA oxidation rate (Rox was assessed using 3H2O production from 3H-palmitate infusion, and tissue FA oxidative capacity was evaluated ex vivo. In the basal fasting state Obese had markedly elevated FA levels and Ra, associated with elevated FA utilization and storage in most tissues. Estimated rates of muscle FA oxidation were not lower in obese rats and were similarly enhanced by contraction in both lean and obese groups. At comparable levels of FA availability, achieved by nicotinic acid, Rox was lower in Obese than Lean. In Obese rats, FA oxidative capacity was 35% higher than that in Lean in skeletal muscle, 67% lower in brown fat and comparable in other organs. In conclusion, lipid accumulation in non-adipose tissues of obese Zucker rats appears to result largely from systemic FA oversupply.

  8. Evaluation of free radical scavenging and anti-oxidative capacity of polydatin-nanostructured lipid carriers

    Science.gov (United States)

    Meng, Xiang-Ping; Shi, Fan; Li, Hai-Jie; Yin, Li-De; Wang, Yi-Fei; Wang, Zhi-ping; Chen, Tong-sheng

    2016-10-01

    Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical (ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, polydatin loaded nanostructured lipid carriers (Pol-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Pol-NLC on free radical scavenging and anti-oxidative capacity is investigated. The particle size and zeta potential of Pol-NLC were 113.9 +/- 1.1 nm and -16.3 1 +/- 0.27 mV, respectively. By free radical scavenging assays, the IC50 value of Pol-NLC were 28.71, 9.83 μg/mL with DPPH, ABTS assay respectively, and 0.143 mg ferrous sulfate/1 mg Pol-NLC with FRAP assay. These results indicated that the antioxidant properties of Pol-NLC hold great potential used as an alternative to more toxic synthetic anti-oxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.

  9. Lipid and cholesterol oxidation, color changes, and volatile compounds production in irradiated raw pork batters with different fat content

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Cheo Run; Byun, Myung Woo [KAERI, Taejon (Korea, Republic of)

    2000-05-01

    An emulsion-type product was prepared to determine the effect of irradiation on lipid and cholesterol oxidation, color change, and volatile production in raw pork with different fat content. Lipid oxidation increased with an increase in fat content or irradiation dose. Irradiated batters had higher cholesterol oxides than did non-irradiated batters, and the major cholesterol oxides formed in irradiated pork batters were 7{alpha}- and 7{beta}- hydroxycholesterol. Hunter color a- and b-values of raw pork batters were decreased by irradiation regardless of fat content. Irradiation significantly increased the amount of volatile compounds. Although lipid oxidation of high fat products (10 and 15% fat) was higher than that of low fat products (4%), high fat products did not always produce greater amount of volatile compounds in raw pork batters. In summary, irradiation increased lipid and cholesterol oxidation, and volatile compounds production, and had detrimental effects on the color of raw pork batter under aerobic conditions.

  10. Lipid-Mediated Oxidative Stress and Inflammation in the Pathogenesis of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Tahira Farooqui

    2011-01-01

    Full Text Available Parkinson's disease (PD is a neurodegenerative movement disorder of unknown etiology. PD is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, depletion of dopamine in the striatum, abnormal mitochondrial and proteasomal functions, and accumulation of α-synuclein that may be closely associated with pathological and clinical abnormalities. Increasing evidence indicates that both oxidative stress and inflammation may play a fundamental role in the pathogenesis of PD. Oxidative stress is characterized by increase in reactive oxygen species (ROS and depletion of glutathione. Lipid mediators for oxidative stress include 4-hydroxynonenal, isoprostanes, isofurans, isoketals, neuroprostanes, and neurofurans. Neuroinflammation is characterized by activated microglial cells that generate proinflammatory cytokines, such as TNF-α and IL-1β. Proinflammatory lipid mediators include prostaglandins and platelet activating factor, together with cytokines may play a prominent role in mediating the progressive neurodegeneration in PD.

  11. Effect of relative humidity on lipid oxidation in freezedried emulsions

    Directory of Open Access Journals (Sweden)

    Chinachoti, P.

    2000-10-01

    Full Text Available Oxidative stability was studied in a freeze-dried emulsion consisting of linoleic acid (LA, Tween-20, sucrose and maltodextrin in the presence of a catalyst (FeSO4/ascorbic acid. Changes in residual LA and conjugated dienes as a function of time were monitored at 0, 32, 43 and 75% relative humidities (RH. Based on GC analyses, LA oxidation was more significant in the surface fraction than the entrapped. The loss of surface oil upon storage may also be due to partial entrapment. However faster oxidation of the surface oil was confirmed by measurement of diene conjugation. Oxidation was more rapid at the lower relative humidities (0 and 32% RH and decreased with increasing RH. At high moisture, physical modifications in the sample were observed, including reduced porosity, structural collapse, reduction of the surface oil and coalescence of oil droplets triggered by sucrose crystallization. These may be responsible for the decreased oxidation. Sucrose crystallization at the higher humidities inhibited oxidation. In addition, while samples with similar glass transition temperature (Tg range behaved differently, samples with different glass transition range showed similar oxidative behaviour. Microstructural changes leading to oil entrapment and oil droplet coalescence were found to be significant, in this case.Se ha estudiado la estabilidad oxidativa en una emulsión liofilizada compuesta de ácido linoleico (LA, Tween-20, sacarosa y maltodextrina en presencia de un catalizador (FeSO4/ácido ascórbico. Los cambios en ácido linoleico remanente (LA y dienos conjugados en función del tiempo fueron monitorizados a humedades relativas (RH del 0, 32, 43 y 75%. Basado en análisis por cromatografía gaseosa, la oxidación de LA fue más significativa en la fracción superficial que en la encapsulada. La pérdida de aceite superficial con el almacenamiento puede deberse también al encapsulado parcial. Sin embargo, la más rápida oxidación del aceite

  12. KLF15 and PPARα Cooperate to Regulate Cardiomyocyte Lipid Gene Expression and Oxidation

    Directory of Open Access Journals (Sweden)

    Domenick A. Prosdocimo

    2015-01-01

    Full Text Available The metabolic myocardium is an omnivore and utilizes various carbon substrates to meet its energetic demand. While the adult heart preferentially consumes fatty acids (FAs over carbohydrates, myocardial fuel plasticity is essential for organismal survival. This metabolic plasticity governing fuel utilization is under robust transcriptional control and studies over the past decade have illuminated members of the nuclear receptor family of factors (e.g., PPARα as important regulators of myocardial lipid metabolism. However, given the complexity of myocardial metabolism in health and disease, it is likely that other molecular pathways are likely operative and elucidation of such pathways may provide the foundation for novel therapeutic approaches. We previously demonstrated that Kruppel-like factor 15 (KLF15 is an independent regulator of cardiac lipid metabolism thus raising the possibility that KLF15 and PPARα operate in a coordinated fashion to regulate myocardial gene expression requisite for lipid oxidation. In the current study, we show that KLF15 binds to, cooperates with, and is required for the induction of canonical PPARα-mediated gene expression and lipid oxidation in cardiomyocytes. As such, this study establishes a molecular module involving KLF15 and PPARα and provides fundamental insights into the molecular regulation of cardiac lipid metabolism.

  13. Inhibition of lipid oxidation in pork bundles processing by superheated steam frying.

    Science.gov (United States)

    Huang, Tzou-Chi; Ho, Chi-Tang; Fu, Hui-Yin

    2004-05-19

    The effect of superheated steam treatment on the oxidative stability of lipids in packaged Zousoon (pork bundles) was investigated. The aroma quality of Zousoon samples was evaluated by sensory analysis and chromatographic analysis of volatiles. Results of this study indicated that oxidation of lipids occurred in pan-fried Zousoon after prolonged storage. Significant amounts of highly volatile compounds such as formaldehyde, acetaldehyde, acetone, and hexanal in Zousoon were identified by a modified method of cysteamine derivatization followed by gas chromatography-mass spectrometry (GC-MS) analysis. Superheated steam was found to be effective in suppressing lipid oxidation in canned Zousoon as compared with Zousoon fried by the conventional method in a frying pan. The superheated steam-fried samples had relatively low thiobarbituric acid reactive substance (TBARS) and peroxide (POV) values before and after storage, whereas samples prepared by pan frying had relatively high TBARS and POV values before and after storage. Superheated steam-fried Zousoon had superior lipid stability to that prepared by the conventional pan-frying method.

  14. Consumption of Argan Oil Improves Anti-Oxidant and Lipid Status in Hemodialysis Patients.

    Science.gov (United States)

    Eljaoudi, Rachid; Elkabbaj, Driss; Bahadi, Abdelali; Ibrahimi, Azeddine; Benyahia, Mohammed; Errasfa, Mourad

    2015-10-01

    Virgin Argan oil (VAO) is of interest in oxidative stress and lipid profile because of its fat composition and antioxidant compounds. We investigated the effect of VAO consumption on lipid profile and antioxidant status in hemodialysis patients after a 4-week period of consumption. In a crossover, controlled trial, 37 patients (18 men, 19 women) with end-stage renal disease on maintenance hemodialysis, were randomly assigned to a 4-week VAO diet. Fasting plasma lipids, vitamin E and oxidized LDL (ox-LDL) were analyzed. Malondialdehyde (MDA) was determined before and after hemodialysis session. There was no significant change in serum total cholesterol and ox-LDL. However, VAO consumption decreased the levels of triglyceride (p = 0.03), total cholesterol (p = 0.02) and low-density lipoprotein (p = 0.03) and increased the levels of high-density lipoprotein (p = 0.01). Plasma vitamin E contents significantly increased from baseline only in VAO-group (p < 0.001). Hemodialysis session increased MDA levels, but the increase in VAO group was less than in control group. VAO consumption improved lipid profile and oxidative stress status in hemodialysis patients. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Mercury distribution and lipid oxidation in fish muscle: Effects of washing and isoelectric protein precipitation

    Science.gov (United States)

    Gong, Y.; Krabbenhoft, D.P.; Ren, L.; Egelandsdal, B.; Richards, M.P.

    2011-01-01

    Nearly all the mercury (Hg) in whole muscle from whitefish (Coregonus clupeaformis) and walleye (Sander vitreus) was present as methyl mercury (MeHg). The Hg content in whole muscle from whitefish and walleye was 0.04-0.09 and 0.14-0.81 ppm, respectively. The myofibril fraction contained approximately three-fourths of the Hg in whitefish and walleye whole muscle. The sarcoplasmic protein fraction (e.g., press juice) was the next most abundant source of Hg. Isolated myosin, triacylglycerols, and cellular membranes contained the least Hg. Protein isolates prepared by pH shifting in the presence of citric acid did not decrease Hg levels. Addition of cysteine during washing decreased the Hg content in washed muscle probably through the interaction of the sulfhydryl group in cysteine with MeHg. Primary and secondary lipid oxidation products were lower during 2 ??C storage in isolates prepared by pH shifting compared to those of washed or unwashed mince from whole muscle. This was attributed to removing some of the cellular membranes by pH shifting. Washing the mince accelerated lipid peroxide formation but decreased secondary lipid oxidation products compared to that of the unwashed mince. This suggested that there was a lipid hydroperoxide generating system that was active upon dilution of aqueous antioxidants and pro-oxidants. ?? 2011 American Chemical Society.

  16. Regulation of egg quality and lipids metabolism by Zinc Oxide Nanoparticles.

    Science.gov (United States)

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Liu, Xin-Qi; Zhang, Wei-Dong; Ding, Zhao-Peng; Wang, Shi-Wen; Shen, Wei; Min, Ling-Jiang; Hao, Zhi-Hui

    2016-04-01

    This investigation was designed to explore the effects of Zinc Oxide Nanoparticles (ZnO NP) on egg quality and the mechanism of decreasing of yolk lipids. Different concentration of ZnO NP and ZnSO4 were used to treat hens for 24 weeks. The body weight and egg laying frequency were recorded and analyzed. Albumen height, Haugh unit, and yolk color score were analyzed by an Egg Multi Tester. Breaking strength was determined by an Egg Force Reader. Egg shell thickness was measured using an Egg Shell Thickness Gouge. Shell color was detected by a spectrophotometer. Egg shape index was measured by Egg Form Coefficient Measuring Instrument. Albumen and yolk protein was determined by the Kjeldahl method. Amino acids were determined by an amino acids analyzer. Trace elements Zn, Fe, Cu, and P (mg/kg wet mass) were determined in digested solutions using Inductively Coupled Plasma-Optical Emission Spectrometry. TC and TG were measured using commercial analytical kits. Yolk triglyceride, total cholesterol, pancreatic lipase, and phospholipids were determined by appropriate kits. β-carotene was determined by spectrophotometry. Lipid metabolism was also investigated with liver, plasma, and ovary samples. ZnO NP did not change the body weight of hens during the treatment period. ZnO NP slowed down egg laying frequency at the beginning of egg laying period but not at later time. ZnO NP did not affect egg protein or water contents, slightly decreased egg physical parameters (12 to 30%) and trace elements (20 to 35%) after 24 weeks treatment. However, yolk lipids content were significantly decreased by ZnO NP (20 to 35%). The mechanism of Zinc oxide nanoparticles decreasing yolk lipids was that they decreased the synthesis of lipids and increased lipid digestion. These data suggested ZnO NP affected egg quality and specifically regulated lipids metabolism in hens through altering the function of hen's ovary and liver.

  17. Role of the raw composition of pelagic fish muscle on the development of lipid oxidation and rancidity during storage.

    Science.gov (United States)

    Maestre, Rodrigo; Pazos, Manuel; Medina, Isabel

    2011-06-08

    The muscle composition of a pelagic fish species, Atlantic mackerel (Scomber scombrus), has been studied to determine the relationship with its susceptibility to develop lipid oxidation during chilled storage. For such an aim, the initial concentrations of the major components (water, total lipids, protein, and PUFAs) and minor pro-oxidant and antioxidant components (ascorbic acid, α-tocopherol, hemoglobin, total iron, LMW-iron, copper, and zinc) of different batches of mackerel were characterized. For the study, several batches of mackerel were caught during the spring and summer periods. The different batches were subjected to chilled storage, and the onset of lipid oxidation was statistically related with the initial muscle composition. Results showed significant compositional differences among the mackerel lots, especially for the muscle lipid content (2.83-9.50%). In a first step, a Pearson correlation test was used to check the influence of each component on the progress of lipid oxidation. Results showed a significant relationship between shelf life and water and total lipid contents. Multiple regression was performed to reveal the contribution of each component to the susceptibility to lipid oxidation. The model obtained combines the content of PUFAs, total iron, hemoglobin, and ascorbic acid. An accurate prediction of shelf life in terms of rancidity was achieved by the model created (R(2) = 0.9975). These results establish that the levels of endogenous pro-oxidants and antioxidants present in fish muscle together with the polyunsaturated lipids are relevant factors affecting the shelf life of mackerel muscle.

  18. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage.

    Science.gov (United States)

    Lu, F S H; Bruheim, I; Haugsgjerd, B O; Jacobsen, C

    2014-08-15

    The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40 °C) for 28 or 42 days. The oxidative stability of krill oil was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature firstly increased the lipid oxidation in krill oil and subsequently the non-enzymatic browning reactions. The occurrence of these reactions was most likely due to the reaction between α-dicarbonyl or carbonyl compounds with amino acids or ammonia. In addition to tocopherol and astaxanthin esters, the formation of pyrroles might help to protect the krill oil against lipid oxidation.

  19. Nitrogen substituent polarity influences dithiocarbamate-mediated lipid oxidation, nerve copper accumulation, and myelin injury.

    Science.gov (United States)

    Valentine, Holly L; Viquez, Olga M; Amarnath, Kalyani; Amarnath, Venkataraman; Zyskowski, Justin; Kassa, Endalkachew N; Valentine, William M

    2009-01-01

    Dithiocarbamates have a wide spectrum of applications in industry, agriculture, and medicine, with new applications being investigated. Past studies have suggested that the neurotoxicity of some dithiocarbamates may result from copper accumulation, protein oxidative damage, and lipid oxidation. The polarity of a dithiocarbamate's nitrogen substituents influences the lipophilicity of the copper complexes that it generates and thus potentially determines its ability to promote copper accumulation within nerve and induce myelin injury. In the current study, a series of dithiocarbamate-copper complexes differing in their lipophilicity were evaluated for their relative abilities to promote lipid peroxidation determined by malondialdehyde levels generated in an ethyl arachidonate oil-in-water emulsion. In a second component of this study, rats were exposed to either N,N-diethyldithiocarbamate or sarcosine dithiocarbamate; both generated dithiocarbamate-copper complexes that were lipid- and water-soluble, respectively. Following the exposures, brain, tibial nerve, spinal cord, and liver tissue copper levels were measured by inductively coupled mass spectroscopy to assess the relative abilities of these two dithiocarbamates to promote copper accumulation. Peripheral nerve injury was evaluated using grip strengths, nerve conduction velocities, and morphologic changes at the light microscope level. Additionally, the protein expression levels of glutathione transferase alpha and heme-oxygenase-1 in nerve were determined, and the quantity of protein carbonyls was measured to assess levels of oxidative stress and injury. The data provided evidence that dithiocarbamate-copper complexes are redox active and that the ability of dithiocarbamate complexes to promote lipid peroxidation is correlated to the lipophilicity of the complex. Consistent with neurotoxicity requiring the formation of a lipid-soluble copper complex, significant increases in copper accumulation, oxidative

  20. Modifications and oxidation of lipids and proteins in human serum detected by thermochemiluminescence.

    Science.gov (United States)

    Shnizer, Sergei; Kagan, Tamara; Lanir, Amos; Maor, Irit; Reznick, Abraham Z

    2003-01-01

    Detection of electronically excited species (EES) in body fluids may constitute an important diagnostic tool in various pathologies. Examples of such products are triplet excited carbonyls (TEC), which can be a source for photon emission in the 400-550 nm range. The aim of the present study was to determine the actual contribution of lipid and protein components (protein carbonyls) to photon emission generated by thermochemiluminescence (TCL) during the heating of biological fluids. In this study, a new TCL Photometer device, designed by Lumitest Ltd, Israel, was used. Samples were heated to a constant temperature of 80 +/- 0.5 degrees C for 280 s and photon emission was measured at several time points. In order to compare the results of TCL measurements to conventional methods of detecting lipid and protein oxidation, each examined sample was also heated in a waterbath at 80 degrees C for 10-280 s. Lipid and protein oxidation were subsequently measured using conventional methods. The TCL of four polyunsaturated fatty acids (PUFA) with three to six double bonds was measured. The elevation of the PUFA TCL amplitude correlated with the increase in the number of double bonds of PUFA. A correlation between the increase in TCL intensity and protein carbonyl generation in bovine serum albumin (BSA) was also observed. In the venous blood serum, our study showed that an increase of TCL intensity during heating reflected the cleavage of TEC of lipid origin. Our study suggests that biological molecules such as proteins, lipids and other molecules, which may become unstable during heating, are capable of generating EES. We demonstrated that a TCL curve can be used as a kinetic model for measuring oxidative processes, which reflects modifications of different molecules involved in the oxidative stress phenomena.

  1. Nitric oxide consumption through lipid peroxidation in brain cell suspensions and homogenates.

    Science.gov (United States)

    Keynes, Robert G; Griffiths, Charmaine H; Hall, Catherine; Garthwaite, John

    2005-05-01

    Mechanisms which inactivate NO (nitric oxide) are probably important in governing the physiological and pathological effects of this ubiquitous signalling molecule. Cells isolated from the cerebellum, a brain region rich in the NO signalling pathway, consume NO avidly. This property was preserved in brain homogenates and required both particulate and supernatant fractions. A purified fraction of the particulate component was rich in phospholipids, and NO consumption was inhibited by procedures that inhibited lipid peroxidation, namely a transition metal chelator, the vitamin E analogue Trolox and ascorbate oxidase. The requirement for the supernatant was accounted for by its content of ascorbate which catalyses metal-dependent lipid peroxidation. The NO-degrading activity of the homogenate was mimicked by a representative mixture of brain lipids together with ascorbate and, under these conditions, the lipids underwent peroxidation. In a suspension of cerebellar cells, there was a continuous low level of lipid peroxidation, and consumption of NO by the cells was decreased by approx. 50% by lipid-peroxidation inhibitors. Lipid peroxidation was also abolished when NO was supplied at a continuously low rate (approximately 100 nM/min), which explains why NO consumption by this process is saturable. Part of the activity remaining after the inhibition of lipid peroxidation was accounted for by contaminating red blood cells, but there was also another component whose activity was greatly enhanced when the cells were maintained under air-equilibrated conditions. A similar NO-consuming process was present in cerebellar glial cells grown in tissue culture but not in blood platelets or leucocytes, suggesting a specialized mechanism.

  2. Lipid oxidation degree and antioxidant activity of several polyphenolic extracts in porcine meat during storage

    Directory of Open Access Journals (Sweden)

    ILIR LLOHA

    2014-03-01

    Full Text Available Extracts of vegetable origin are used widely nowdays in the food industry in the role of antioxidants, especially in the meat processing industry and in the industry of its byproducts. Subject of this study have been porcine meat samples, which have been subjected to polyphenolic extracts, such as those from: tea, rosemary and oregano conserved in a timeframe of 1, 4, 7 and 10 days. TBA (thiobarbituric acid assay show that polyphenolic extracts tend to increase oxidative endurance of meat sample, while DPPH assay shows an increased level of antioxidant activity. Lipids oxidation degree and antioxidant activity of the samples of porcine meat treated with rosemary, oregano and tea polyphenolic extracts is lower than the control samples either in treated or not treated in 85°C samples. The samples which have been subjected to tea polyphenolic extract show a lower lipid oxidation degree and a higher antioxidant activity compared not only to control samples, but also to the samples treated with other polyphenolic extracts. Lipid oxidation degree and antioxidant activity result are greater in temperature treated samples compared to those in raw state.

  3. Lipid oxidation degree and antioxidant activity of several polyphenolic extracts in bovine meat during storage

    Directory of Open Access Journals (Sweden)

    Ilir Lloha

    2013-12-01

    Full Text Available Extracts of vegetable origin are used widely nowdays in the food industry in the role of antioxidants, especially in the meat processing industry and in the industry of its byproducts. Subject of this study have been bovine meat samples, which have been subjected to polyphenolic extracts, such as those from: tea, rosemary and oregano conserved in a timeframe of 1, 4, 7 and 10 days. TBA (thiobarbituric acid assay shows that polyphenolic extracts tend to increase oxidative endurance of meat sample, while DPPH assay shows the level of antioxidant activity. Lipids oxidation degree and antioxidant activity of the samples of bovine meat treated with rosemary, oregano and tea polyphenolic extracts is lower than the control samples either in treated or not treated in 85°C samples. The samples which have been subjected to tea polyphenolic extract shows a lower lipid oxidation degree and a higher antioxidant activity compared not only to control samples but also to the samples treated with the other polyphenolic extracts. Lipid oxidation degree and antioxidant activity results greater in temperature treated samples compared to those in raw state.

  4. In Vitro lipolysis is associated with whole-body lipid oxidation and weight gain in humans.

    Science.gov (United States)

    Frankl, Joseph; Piaggi, Paolo; Foley, James E; Krakoff, Jonathan; Votruba, Susanne B

    2017-01-01

    To assess the association of adipocyte size with cellular lipolysis and between cellular lipolysis and whole-body lipid oxidation. This study also assessed the association between adipocyte size and cellular lipolysis with weight and fat mass gain. Subjects had assessment of percent body fat (%fat) and adipose tissue biopsy for in vitro lipolysis (n = 325), and a subset of subjects had measurement of whole-body lipid oxidation (n = 112). A subset of subjects (n = 243) returned for repeated measurements of body weight and composition (mean follow-up 8.2 ± 5.5 years). In vitro lipolysis (r = 0.47, P lipolysis (P = 0.04) but not adipocyte size (P = 0.44) was associated with whole-body fat oxidation. Adipocyte size was not associated with rate of percent weight gain (P = 0.20) but was negatively associated with rate of percent fat mass gain (P = 0.01). In vitro lipolysis was negatively associated with rate of percent weight gain (P = 0.02) and had a marginal negative association with rate of percent fat mass gain (P = 0.08). These results indicate inherent characteristics of adipocytes, including size and lipolytic activity, may be important determinants of whole-body lipid oxidation and subsequent weight gain. © 2016 The Obesity Society.

  5. Carotenoid consumption is related to lower lipid oxidation and DNA damage in middle-aged men.

    Science.gov (United States)

    Cocate, P G; Natali, A J; Alfenas, R C G; de Oliveira, A; dos Santos, E C; Hermsdorff, H H M

    2015-07-01

    The present cross-sectional study assessed the potential relationships of carotenoid intake with lipid and oxidative stress markers in middle-aged men. A total of 296 apparently healthy middle-aged men (mean age 50.5 (SD 5.0) years, BMI 25.8 (SD 3.5) kg/m(2)) were recruited to participate in the study. Dietary intake, anthropometry, blood pressure, lifestyle features, blood and urine biomarkers were assessed using validated procedures. The lipid markers included NEFA, Castelli index, and TAG:HDL ratio; oxidative stress markers included urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-iso-PGF2α and plasma oxidised-LDL (ox-LDL). We observed a significant inverse association (P carotenoid, while Castelli index was negatively associated with daily intake of lycopene, β-carotene and total carotenoids. Regarding oxidative stress biomarkers, urinary 8-OHdG and ox-LDL concentrations were also inversely associated (P carotenoids, regardless of confounding variables. Moreover, there was a negative association of urinary 8-iso-PGF2α concentration with dietary lutein plus zeaxanthin (β - 0.135, 95% CI - 0.268, - 0.001), β-carotene (β - 0.156, 95% CI - 0.277, - 0.034) and with the sum of all carotenoids (β - 0.189, 95% CI - 0.333, - 0.046). In conclusion, total daily carotenoid intake based on five investigated carotenoid types (β-cryptoxanthin, lycopene, lutein plus zeaxanthin, β-carotene and α-carotene) was inversely associated with relevant lipid and oxidative stress markers in middle-aged men, with emphasis on β-carotene that was negatively associated with five of the six lipid and oxidative stress markers evaluated in the present study.

  6. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.

    Science.gov (United States)

    Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A

    2014-08-13

    Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

  7. Effects of ultra-high-pressure homogenization treatment on the lipolysis and lipid oxidation of milk during refrigerated storage.

    Science.gov (United States)

    Pereda, Julieta; Ferragut, Victoria; Quevedo, Joan Miquel; Guamis, Buenaventura; Trujillo, Antonio J

    2008-08-27

    Free fatty acid (FFA) release and quantification and lipid oxidation extent of ultra-high-pressure homogenized (UHPH) milk samples were evaluated to assess the effect of UHPH on the susceptibility of milk lipids to lipolysis and oxidation. Milk was UHPH-treated at 200 and 300 MPa with inlet temperatures of 30 and 40 degrees C. UHPH-treated samples were compared to high-pasteurized milk (PA; 90 degrees C, 15 s). Results showed that all FFA increased significantly during storage only in 200 MPa samples. Lipid oxidation was measured as an accumulation of lipid hydroperoxides as the primary oxidation product and malondialdehyde and hexanal as the secondary oxidation products. Samples treated at 300 MPa presented higher malondialdehyde and hexanal content compared to 200 MPa treated-samples and to PA milk.

  8. Evaluation of lipid profile and oxidative stress in STZ-induced rats treated with antioxidant vitamin

    Directory of Open Access Journals (Sweden)

    Danielle Ayr Tavares de Almeida

    2012-08-01

    Full Text Available The present study investigated the effect of supplementation of vitamin E on streptozotocin (STZ-induced diabetic rats by measuring blood glucose, changes in body weight, food and water intake, lipid profile, serum urea and creatinine level, and antioxidant enzyme activity. Male Wistar rats were divided into four groups: control rats (GI; rats receiving vitamin E (GII; STZ-induced diabetic rats (GIII and STZ-induced diabetic rats treated with vitamin E (GIV. Vitamin E reduced (p<0.05 blood glucose and urea, improved the lipid profile (decreased the serum levels of total cholesterol, LDL cholesterol, VLDL cholesterol and triacylglycerols, and increased HDL cholesterol and increased total protein in STZ-induced diabetic rats (GIV. Vitamin prevented changes in the activity of SOD and GSH-Px and in the concentration of lipid hydroperoxide. These results suggested that vitamin E improved hyperglycaemia and dyslipidaemia while inhibiting the progression of oxidative stress in STZ-induced diabetic rats.

  9. Lipid oxidation in overweight men after exercise and food intake.

    Science.gov (United States)

    Pillard, Fabien; Van Wymelbeke, Virginie; Garrigue, Eric; Moro, Cédric; Crampes, François; Guilland, Jean-Claude; Berlan, Michel; de Glisezinski, Isabelle; Harant, Isabelle; Rivière, Daniel; Brondel, Laurent

    2010-02-01

    Fat oxidation (FO) is optimized during low- to moderate-intensity exercise in lean and obese subjects, whereas high-intensity exercise induces preferential FO during the recovery period. After food intake during the postexercise period, it is unknown if FO differs according to the intensity exercise in overweight subjects. Fat oxidation was thus evaluated in overweight men after low- and high-intensity exercise during the recovery period before and after food intake as well as during a control session. Ten healthy, sedentary, overweight men (age, 27.9 +/- 5.6 years; body mass index, 27.8 +/- 1.3 kg m(-2); maximal oxygen consumption, 37 +/- 3.9 mL min(-1) kg(-1)) exercised on a cycloergometer (energy expenditure = 300 kcal) at 35% (E35) or 70% (E70) maximal oxygen consumption or rested (Cont). The subjects were fed 30 minutes after the exercise with 300 kcal (1256 kJ) more energy in the exercise sessions than in the Cont session. Respiratory quotient and FO were calculated by indirect calorimetry. Blood samples were analyzed to measure plasma glycerol, nonesterified fatty acid, glucose, and insulin. During exercise, mean respiratory quotient was lower (P < .05) and FO was higher (P < .01) in the E35 than in the E70 session (FO [in mg min(-1)]: E35 = 290 +/- 12, E70 = 256 +/- 38, and Cont = 131 +/- 7). Conversely, FO was higher in the E70 than in both the E35 session and the Cont session during the immediate recovery as well as during the postprandial recovery period (P = .005 for all; FO from the end of the exercise to the end of the session [in grams]: E70 = 45.7 +/- 8.9, E35 = 38.2 +/- 6.8, and Cont = 36.0 +/- 4.3). Blood parameters did not differ between the 3 sessions but changed according to the absorption of the nutrients. In overweight subjects, high-intensity exercise increased FO during the postexercise period even after food intake compared with the low-intensity exercise and the control session.

  10. Oxidation of parenteral lipid emulsion by ambient and phototherapy lights: potential toxicity of routine parenteral feeding.

    Science.gov (United States)

    Neuzil, J; Darlow, B A; Inder, T E; Sluis, K B; Winterbourn, C C; Stocker, R

    1995-05-01

    Vitamin E can be a prooxidant in isolated lipoprotein suspensions. Because lipid emulsions used in parenteral nutrition are lipoprotein-like suspensions rich in polyunsaturated fatty acids and vitamin E, we hypothesized that vitamin E may act as a prooxidant in lipid emulsions, as it is in lipoprotein suspensions. We therefore exposed an intravenously administered lipid emulsion (Intralipid) to a single spotlight commonly used in the treatment of neonatal jaundice, and measured the formation of triglyceride hydroperoxides by using high-performance liquid chromatography with postcolumn chemiluminescence detection. Concentrations of these hydroperoxides in different batches of fresh intralipid were usually approximately 10 mumol/L but increased up to 60 times after exposure to phototherapy light for a period of 24 hours, even though significant amounts of vitamin E were present at the end of the exposure. Triglyceride hydroperoxides were formed during phototherapy light exposure whether the intralipid was in plastic tubing used routinely for infusion or in glass containers. Ambient light also caused significant peroxidation of the formula lipids, although to a much lesser extent than observed with phototherapy light. For infants in the neonatal intensive care unit who were receiving intralipid but not phototherapy, solutions being infused at the end of 24 hours contained a mean of 40 mumol/L hydroperoxides. For infants receiving phototherapy, the mean was 97 mumol/L. Phototherapy light-induced formation of triglyceride hydroperoxides was prevented by covering the intralipid with aluminum foil or supplementation with sodium ascorbate before light exposure. We conclude that intralipid is highly susceptible to oxidation and that elevated levels of oxidized lipids can be formed during its clinical use, especially when intralipid infusion is combined with phototherapy. Because lipid hydroperoxides are cytotoxic and can cause adverse effects, inadvertent infusion of rancid

  11. Lipid peroxidation and cell death mechanisms in pulmonary epithelial cells induced by peroxynitrite and nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Yuan-Soon [School of Medical Technology, Taipei Medical University, Taipei (Taiwan); Liou, Hung-Bin; Lin, Yu-Ping; Guo, How-Ran; Ho, Sheng-Yow; Lee, Ching-Chang; Wang, Ying-Jan [Department of Environmental and Occupational Health, National Cheng Kung University Medical College, 138 Sheng-Li Road, Tainan (Taiwan); Lin, Jen-Kun; Pan, Min-Hsiung [Institute of Biochemistry, National Taiwan University, Medical College, Taipei (Taiwan); Jeng, Jiiang-Huei [School of Dentistry, National Taiwan University and Hospital, Medical College, Taipei (Taiwan)

    2002-08-01

    Nitric oxide (NO) is an environmental pollutant found in smog and cigarette smoke. Recently, NO has been discovered to act as a molecular messenger, mediating various physiological functions. However, when an excess of NO is present, cytotoxic and mutagenic effects can also be induced. The reaction of NO with superoxide results in the formation of peroxynitrite (ONOO{sup -}), which decomposes into the hydroxyl radical and nitrogen dioxide. Both of them are potent oxidant species that may initiate and propagate lipid peroxidation. In the present study, we examined the effects of NO and ONOO{sup -} on the induction of lipid peroxidation and cell death mechanisms in rats and in A549 pulmonary epithelial cells. The results showed that ONOO{sup -} is able to induce lipid peroxidation in pulmonary epithelial cells in a dose-dependent manner. 8-Epi-prostaglandin F{sub 2{alpha}} can serve as a good biomarker of lipid peroxidation both in vitro and in vivo. Postmitotic apoptosis was found in A549 cells exposed to NO, whereas ONOO{sup -} induced cell death more characteristic of necrosis than apoptosis. Apoptosis that occurred in cells may be related to the dysfunction of mitochondria, the release of cytochrome c into cytosol, and the activation of caspase-9. The relationship between caspase activation and the cleavage of other death substrates during postmitotic apoptosis in A549 cells needs further investigation. (orig.)

  12. Effect of mustard seed and sodium isoascorbate on lipid oxidation and colour of ground beef

    Directory of Open Access Journals (Sweden)

    Małgorzata Karwowska

    2013-12-01

    Full Text Available The aim of this study was to determine the effectiveness of the mustard seed in reducing lipid oxidation in ground beef compared to sodium isoascorbate. The research material were meat samples, prepared in four variants. The differentiating addition was ground white mustard (Sinapis alba, used in the native and autoclaved form. Reference were a control sample and a sample with the addition of sodium isoascorbate. The following were assayed during the study: TBARS value, redox potential, pH and colour parameters CIE L*a*b*. The addition of mustard had no effect on the pH value in comparison to the control sample and sodium isoascorbate. It has been shown that the use of mustard either native and autoclaved, decreased the value of TBARS ratio, and showed a similar effectiveness in preventing the oxidation of lipids as sodium isoascorbate.

  13. Influence of the Siberian larch extract on the processes of peroxide oxidation of lipids in experiment

    Directory of Open Access Journals (Sweden)

    Pateyuk Andrey

    2016-03-01

    Full Text Available In modern conditions wood processing is one of the primary branches of production in Transbaikal region. In connection with big squares of logging the question of processing and utilizing waste products directly on the spot is particularly acute. We researched the activity of water extract from sawdust of Siberian larch "Ekstrapinus" on the power exchange and processes of peroxide oxidation of lipids against immobilized stress in experiment. The data provided in the article prove that the use of Ekstrapinus extract reduces the pathological violations arising under stress. So, Ekstrapinus extract restores energy potential of cages when modeling stress, restores energy potential of cells, normalizes balance in the system "peroxide oxidation of lipids – antioxidant protection" and supports the balance of tiol in an animal organism in the state of stress. Considering absence of toxicity in the recommended doses, it is possible to recommend their application under stress.

  14. Comparison of Performance, Meat Lipids and Oxidative Status of Pigs from Commercial Breed and Organic Crossbreed

    Directory of Open Access Journals (Sweden)

    Giuseppe Martino

    2014-06-01

    Full Text Available The aim of this research was to determine the effect of rearing systems for pig production, as concerns performance, meat lipid content, the fatty acid profile, histidinic antioxidants, coenzyme Q10, and TBARs. One hundred pigs were assigned to one of three treatments: intensively reared commercial hybrid pig (I, free range commercial hybrid pig (FR or organically reared crossbred pig (O, according to organic EU Regulations. I pigs showed the best productive performance, but FR and O increased: C20:1n9, Δ9-desaturase (C18 and thioesterase indices in meat. Lipid, dipeptides and CoQ10 appeared correlated to glycolytic and oxidative metabolic pathways. We can conclude that all studied parameters were influenced by the rearing system used, and that differences were particularly evident in the O system, which produced leaner meat with higher oxidative stability. In this respect, the organic pig rearing system promotes and enhances biodiversity, environmental sustainability and food quality.

  15. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements

    Directory of Open Access Journals (Sweden)

    Rune Blomhoff

    2011-06-01

    Full Text Available Background : There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective : To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design : A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C and time (25 minutes resembling conditions typically used during cooking. Results : The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions : The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.

  16. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2012-04-05

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H{sub 2}O{sub 2}). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H{sub 2}O{sub 2} (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H{sub 2}O{sub 2} (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  17. The influence of emulsifier type on lipid oxidation in fish-oil-enriched light mayonnaise

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Nielsen, Nina Skall; Hyldig, Grethe

    2010-01-01

    The oxidative stability of fish oil-enriched light mayonnaise (40% oil) and the influence of two different emulsifiers, egg yolk and milk protein-based emulsifier, were evaluated. Moreover, the effects of different fish oil concentrations (4, 10 and 14%) and storage temperatures (2 and 20 degrees C...... mayonnaise due to significant lipid oxidation even in mayonnaises without fish oil. However, enrichment of light mayonnaises with 4% fish oil without adding antioxidant did not result in increased oxidation when stored at 2 degrees C, and thus seems feasible; however, this has to be confirmed by sensory...... analysis. Surprisingly, our hypothesis that substitution of egg yolk with a less iron-containing emulsifier (milk protein-based emulsifier) could increase the oxidative stability of fish oil-enriched mayonnaises was not confirmed. These findings suggest that the initial quality of the emulsifiers was more...

  18. Macrophage Differentiation from Monocytes Is Influenced by the Lipid Oxidation Degree of Low Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Jin-Won Seo

    2015-01-01

    Full Text Available LDL plays an important role in atherosclerotic plaque formation and macrophage differentiation. However, there is no report regarding the oxidation degree of LDL and macrophage differentiation. Our study has shown that the differentiation into M1 or M2 macrophages is related to the lipid oxidation level of LDL. Based on the level of lipid peroxidation, LDL is classified into high-oxidized LDL (hi-oxLDL and low-oxidized LDL (low-oxLDL. The differentiation profiles of macrophages were determined by surface receptor expression and cytokine secretion profiles. Low-oxLDL induced CD86 expression and production of TNF-α and IL-12p40 in THP-1 cells, indicating an M1 macrophage phenotype. Hi-oxLDL induced mannose receptor expression and production of IL-6 and monocyte chemoattractant protein-1, which mostly match the phenotype of M2 macrophages. Further supporting evidence for an M2 polarization by hi-oxLDL was the induction of LOX-1 in THP-1 cells treated with hi-oxLDL but not with low-oxLDL. Similar results were obtained in primary human monocytes. Therefore, our results strongly suggest that the oxidation degree of LDL influences the differentiation of monocytes into M1 or M2 macrophages and determines the inflammatory fate in early stages of atherosclerosis.

  19. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products

    Science.gov (United States)

    Feng, Xi; Ahn, Dong Uk

    2016-10-01

    Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant.

  20. Lipid mobilisation and oxidative stress as metabolic adaptation processes in dairy heifers during transition period.

    Science.gov (United States)

    Turk, R; Podpečan, O; Mrkun, J; Kosec, M; Flegar-Meštrić, Z; Perkov, S; Starič, J; Robić, M; Belić, M; Zrimšek, P

    2013-10-01

    The objective of this study was to evaluate metabolic disorders and oxidative stress in dairy heifers during the transition period. Possible relationships between lipid mobilisation indicators and oxidative stress markers were investigated as well. Nineteen dairy heifers were included in the study. Blood samples were collected at the time of estrus synchronisation in heifers, at insemination, three weeks after insemination, one week before calving, at calving and 1, 2, 4 and 8 weeks postpartum. Common metabolic parameters, beta-hydroxybutyrate (BHB), free fatty acids (FFA), paraoxonase-1 (PON1) activity and total antioxidative status (TAS) were analysed. Around insemination, no significant difference was observed in the majority of tested parameters (P>0.05). However, the transition period markedly affected the concentration of triglycerides, total cholesterol, HDL-C, BHB, FFA, TAS and PON1activity. Positive correlations between PON1 activity and total cholesterol, HDL-C and triglycerides were noted but inverse correlations with FFA, BHB and bilirubin were found indicating that PON1 activity changed with lipid metabolism and was influenced by negative energy balance. These findings suggest that lipid mobilisation and oxidative stress are part of a complex metabolic adaptation to low energy balance which reaches equilibrium later in advanced lactation.

  1. The effect of electron beam irradiation on lipid oxidation in sausages

    Directory of Open Access Journals (Sweden)

    atefeh yousefi

    2017-09-01

    Full Text Available Introduction: Irradiation treatment is one of the best techniques to extend the shelf-life of meat, without emerging the nutritional properties and sensory quality of irradiated meat products.  However electron -beam  may cause transformations in foods but has been known as to the most easily-applied irradiation technique in food industries. Electron-beam irradiation is an environment friendly, low cost and time effective alternative to other decontamination technologies. Lipid oxidation could produce of irradiated meat. This study aimed at evaluating the state of lipid oxidation of irradiated sausages. Its findings could help the control, improve food safety and quality properties to food industries. Methods: Sausages were purchased in a local supermarket, minced sausages blended for thiobarbituric acid reactive substances (TBARS analysis and divided into 25 g pieces. The samples including one control group and four case groups. Packaged sausage were exposed at doses of 0 (control, 1, 2, 3 and 5 kGy and analyzed on various days 0, 5, 10 and 30. Results: Thiobarbituric acid reactive substances (TBARS has increased as time goes on (P<0.05. A significant relationship was observed on different Doses. But, the maximum of TBARS was observed in 3 kGy. Conclusion: Utilizing of Electron-beam irradiation in low doses does not have significant difference on lipid oxidation. Irradiating of meat products by addition of antioxidants can minimize or avoid the development of rancidity.

  2. Dose dependent oxidation kinetics of lipids in fish during irradiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Tukenmez, I.; Ersen, M.S.; Bakioglu, A.T. [Turkish Atomic Energy Authority, Ankara (Turkey). Lalahan Nuclear Research Inst.; Bicer, A.; Pamuk, V. [Gazi University, Ankara (Turkey). Dept. of Chemical Engineering

    1997-10-01

    Kinetic aspects of the development of lipid oxidation in complex foods as fish in the course of irradiation were analyzed with respect to the associated formation of malonaldehyde (MA) through the reactions modified so as to be consistent with those in complex foods as fish. Air-packed anchovy (Engraulis encrasicholus) samples in polyethylene pouches were irradiated at the doses of 1, 2, 5, 10, 15,20 and 25 kGy at 20{sup o} C in a Cs-137 gamma irradiator of 1.806 kGy/h dose rate. Immediately after each irradiation, MA contents of irradiated and unirradiated samples were determined by thiobarbituric acid test. Based on the MA formation, a kinetic model to simulate the apparent oxidation of lipid in fish as a function of irradiation dose was derived from the rate equations consistent with modified reactions. Kinetic parameters and simulation were related to conditions of lipid oxidation, and associated rancidity state of fish with respect to the doses applied in different irradiation-preservation processes. Numerical values of kinetic parameters based on the MA formation were found as a threshold dose of 0.375 kGy, an apparent yield of 1.871 {mu}mol/kg kGy, and a maximum attainable concentration of 15.853 {mu}mol/kg which may be used for process control and dosimetry. (author).

  3. Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties

    DEFF Research Database (Denmark)

    Bolumar Garcia, Jose Tomas; Lapena Gomez, David; Skibsted, Leif Horsfelt;

    2016-01-01

    Three different packaging systems: vacuum packaging, rosemary active packaging, and oxygen scavenger packaging were compared for their ability to counteract lipid oxidation in pork patties upon storage at 5 °C for 60 days following high pressure processing (HPP) (700 MPa, 10 min, 5 °C). Lipid...

  4. Alpha-tocopherol protects against oxidative damage to lipids of the rod outer segments of the equine retina.

    Science.gov (United States)

    Terrasa, Ana M; Guajardo, Margarita H; Marra, Carlos A; Zapata, Gustavo

    2009-12-01

    Oxidative stress is a possible risk factor for eye diseases. Lipid peroxidation is one of the major events induced by oxidative stress and is particularly active in polyunsaturated fatty acid (PUFA)-rich biomembranes. This work evaluated endogenous lipid antioxidants, in vitro non-enzymatic lipid peroxidation of rod outer segment membranes (ROS), the fatty acid composition during oxidative damage of total lipids from equine retina and ROS, and the protective action of alpha-tocopherol (alpha-Toc). The major lipid soluble antioxidant was alpha-Toc followed by retinoids and carotenoids. The retina contained a high percentage of PUFAs, mainly docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6). Lipid peroxidation of the equine ROS, induced by Fe(2+)-ascorbate, was monitored using chemiluminescence (CL) with or without pre-treatment with alpha-Toc. With alpha-Toc pre-treatment, CL values were significantly decreased. The most abundant fatty acid was 22:6n-3. After 3h incubation, 95% of total PUFAs were destroyed by peroxidation, whereas in alpha-Toc pre-treated ROS the percentage was significantly decreased. The results show that the retina has an endogenous lipid soluble antioxidant system. ROS were highly sensitive to oxidative damage, since their fatty acid composition was markedly modified during the lipid peroxidation process. The protective role of alpha-Toc as an antioxidant was evident and it could be used in the treatment of equine ocular diseases in which free radicals are involved.

  5. Oxidative stability of mayonnaise and milk drink produced with structured lipids based on fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2004-01-01

    The oxidative stabilities of traditional fish oil (FO), randomized lipids (RFO), or specific structured lipids (SFO) produced from fish oil were compared when incorporated into either milk drink or mayonnaise. Furthermore, the effect of adding the potential antioxidants EDTA (240 mg/kg) or lactof...

  6. Oxidative stress in severe dengue viral infection: association of thrombocytopenia with lipid peroxidation.

    Science.gov (United States)

    Soundravally, R; Sankar, P; Bobby, Z; Hoti, S L

    2008-09-01

    Oxidative stress in viral infections has been suggested. The study was carried out to assess the oxidative stress in the different clinical spectrums of dengue infection and to evaluate if thrombocytopenia is associated with lipid and protein oxidative injury. Twenty-seven dengue fever (DF), 32 dengue hemorrhagic fever (DHF) and 21 dengue shock syndrome (DSS) cases were studied at 3, 5 and 7 days of illness. Sixty-three healthy subjects were selected as controls. Serum protein carbonyls (PCOs), malendialdehyde (MDA) and total antioxidant status (TAS) were estimated in blood. Dengue infected individuals had significantly high levels of PCOs and MDA on the three days tested in comparison to controls. In DF cases, no significant changes in the levels of MDA and PCOs were found in course of time. However, among DHF and DSS, significant increase in MDA levels was found in the fifth and seventh day samples in comparison to their respective third day sample (P platelet count and plasma lipid peroxidation levels among DHF and DSS on all three days tested [day 3 (DHF r = -0.392; p = 0.012 and DSS r = -0.453; p = 0.004), day 5 (DHF r = -0.592; p viral infection. The level of oxidative stress was maximal in DSS followed by DHF and its severity was minimal in DF. The thrombocytopenia of dengue infection was associated with the extent of lipid peroxidation. Future studies might be carried out to find the role of oxidative damage in the ethiopathogenesis of thrombocytopenia and vascular leakage in dengue infection.

  7. Gene Transcription, Metabolite and Lipid Profiling in Eco-Indicator Daphnia magna Indicate Diverse Mechanisms of Toxicity by Legacy and Emerging Flame-Retardants

    Science.gov (United States)

    The use of chemical flame-retardants (FR) in consumer products has steadily increased over the last 30 years. Toxicity data exist for legacy FRs such as pentabromodiphenyl ether (pentaBDE), but less is known about effects of new formulations. To address this issue, the toxicity o...

  8. Gene Transcription, Metabolite and Lipid Profiling in Eco-Indicator Daphnia magna Indicate Diverse Mechanisms of Toxicity by Legacy and Emerging Flame-Retardants

    Science.gov (United States)

    The use of chemical flame-retardants (FR) in consumer products has steadily increased over the last 30 years. Toxicity data exist for legacy FRs such as pentabromodiphenyl ether (pentaBDE), but less is known about effects of new formulations. To address this issue, the toxicity o...

  9. Late-onset temperature reduction can retard the aging process in aged fish via a combined action of an anti-oxidant system and the insulin/insulin-like growth factor 1 signaling pathway.

    Science.gov (United States)

    Wang, Xia; Chang, Qingyun; Wang, Yu; Su, Feng; Zhang, Shicui

    2014-12-01

    Two different mechanisms are considered to be related to aging. Cumulative molecular damage caused by reactive oxygen species (ROS), the by-products of oxidative phosphorylation, is one of these mechanisms (ROS concept). Deregulated nutrient sensing by the insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway is the second mechanism (IIS concept). Temperature reduction (TR) is known to modulate aging and prolong life span in a variety of organisms, but the mechanisms remain poorly defined. Here we first demonstrate that late-onset TR from 26 °C to 22 °C extends mean life span and maximum life span by approximately 5.2 and 3 weeks, respectively, in the annual fish Nothobranchius guentheri. We then show that TR is able to decrease the accumulation of the histological aging markers senescence-associated β-galactosidase (SA-β-Gal) in the epithelium and lipofuscin (LF) in the liver and to reduce protein oxidation and lipid peroxidation levels in the muscle. We also show that TR can enhance the activities of catalase, glutathione peroxidase, and superoxide dismutase, and stimulate the synthesis of SirT1 and FOXO3A/FOXO1A, both of which are the downstream regulators of the IIS pathway. Taken together, our findings suggest that late-onset TR, a simple non-intrusion intervention, can retard the aging process in aged fish, resulting in their life span extension, via a synergistic action of an anti-oxidant system and the IIS pathway. This also suggests that combined assessment of the ROS and IIS concepts will contribute to providing a more comprehensive view of the anti-aging process.

  10. Acute Normobaric Hypoxia Increases Post-exercise Lipid Oxidation in Healthy Males.

    Science.gov (United States)

    Kelly, Liam P; Basset, Fabien A

    2017-01-01

    The primary objective of the current study was to determine the effect of moderate normobaric hypoxia exposure during constant load cycling on post-exercise energy metabolism recorded in normoxia. Indirect calorimetry was used to examine whole body substrate oxidation before, during, 40-60 min post, and 22 h after performing 60 min of cycling exercise at two different fractions of inspired oxygen (FIO2): (i) FIO2 = 0.2091 (normoxia) and (ii) FIO2 = 0.15 (hypoxia). Seven active healthy male participants (26 ± 4 years of age) completed both experimental trials in randomized order with a 7-day washout period to avoid carryover effects between conditions. Resting energy expenditure was initially elevated following cycling exercise in normoxia and hypoxia (Δ 0.14 ± 0.05, kcal min(-1), p = 0.037; Δ 0.19 ± 0.03 kcal min(-1), p oxidation occurred after exercise performed in hypoxia while post-exercise measurements were similar to baseline after cycling exercise in normoxia. The additional metabolic stress of hypoxia exposure was sufficient to increase the rate of lipid oxidation (Δ 42 ± 11 mg min(-1), p = 0.019) and tended to suppress carbohydrate oxidation (Δ -55 ± 26 mg min(-1), p = 0.076) 40-60 min post-exercise. This shift in substrate oxidation persisted the next morning, where lipid oxidation remained elevated (Δ 9 ± 3 mg min(-1), p = 0.0357) and carbohydrate oxidation was suppressed (Δ -22 ± 6 mg min(-1), p = 0.019). In conclusion, prior exercise performed under moderate normobaric hypoxia alters post-exercise energy metabolism. This is an important consideration when evaluating the metabolic consequences of hypoxia exposure during prolonged exercise, and future studies should evaluate its role in the beneficial effects of intermittent hypoxia training observed in persons with obesity and insulin resistance.

  11. A hydrated phospholipid polymer-grafted layer prevents lipid-related oxidative degradation of cross-linked polyethylene.

    Science.gov (United States)

    Kyomoto, Masayuki; Moro, Toru; Yamane, Shihori; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko

    2017-01-01

    The surface and substrate of a cross-linked polyethylene (CLPE) liner are designed to achieve resistance against oxidative degradation in the construction of hip joint replacements. In this study, we aimed to evaluate the oxidative degradation caused by lipid absorption of a highly hydrophilic nanometer-scaled thickness layer prepared by grafting a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer and a high-dose gamma-ray irradiated CLPE with vitamin E blending (HD-CLPE[VE]). The HD-CLPE(VE) and PMPC-grafted HD-CLPE(VE) exhibited extremely high oxidation resistance regardless of lipid absorption, even though residual-free radical levels were detectable. The water wettability of the PMPC-grafted CLPE and PMPC-grafted HD-CLPE(VE) surfaces was considerably greater than that of untreated surfaces. The hydrated PMPC-grafted layer also exhibited extremely low solubility for squalene. Lipids such as squalene and cholesterol esters diminished the oxidation resistance of CLPE despite the vitamin E improvement. Notably, the PMPC-grafted surface was resistant to lipid absorption and diffusion as well as subsequent lipid-related oxidative degradation, likely because of the presence of the hydrated PMPC-grafted layer. Together, these results provide preliminary evidence that the resistance against lipid absorption and diffusion of a hydrated PMPC-grafted layer might positively affect the extent of resistance to the in vivo oxidation of orthopedic implants.

  12. Flame-retardancy of a Cellulosic Fabric by the Application of Synergistic Effect between Ammonium Bromide and Antimony (Ⅲ)Oxide

    Institute of Scientific and Technical Information of China (English)

    MOSTASHARI Seyed Morteza; MOAFI Hadi Fallah

    2009-01-01

    The synergistic effect between ammonium bromide and antimony(Ⅲ) oxide as a nondurable finish on the flammability of 100% woven plain cotton fabric(with a density of 144 g/m2,the number of yarns 21 per 10 mm),has been investigated in this study. The laundered totally-dried, weighed specimens were impregnated with suitable concentration individual aqueous ammonium bromide and/or antimony (Ⅲ)oxide suspension solutions and some sets weIle impregnated with appropriate admixed solutions of the both chemicals.A vertical flame spread test Was then carried-out to characterize the flammability of the samples.An acceptable synergistic effect was then experi.enced by using an admixed bath containing 0.1 molar ammonium bromide and O.05 unit formal antimony trioxide solutions for impartation of flame.retardancy to a cotton fabric.The optimum mass of the mixture required to lm.Dart flame-retardancy was about 3.64 g of anhydrous additives per 100 g of fabric.The results obtained are in favor 0f Wall Effect Theory.Moreover synergistic eflfect indicating dehydration of the treated substrate by using this combination via thermogravimetry could be deduced.

  13. The flame retardant properties of nano magnesium oxide on wood%纳米氧化镁对木材的阻燃特性

    Institute of Scientific and Technical Information of China (English)

    云维采; 纪全; 谭利文; 宗鲁; 夏延致

    2015-01-01

    将纳米氧化镁作为阻燃剂利用物理机械混合的方法加入到木粉中,经极限氧指数( LOI )、锥形量热仪( CONE)测试结果表明,纳米氧化镁能显著提高木制品的氧指数,燃烧过程中的热释放速率、热释放量、烟产生速率、总生烟量和CO产率明显降低,具有很好的阻燃效果。经计算纳米氧化镁的加入能够提高样品的残炭率,残炭率提高10%左右。其阻燃机理一方面是由于纳米氧化镁可以作为物理屏障层,起到耐高温绝热和隔绝氧气的作用;另一方面,纳米氧化镁会参与木材的燃烧,改变木材的裂解途径,残留有更多的不可燃物质。%Nano magnesium oxide as flame retardant was added into wood powder by mechanical mixing, and the samples were tested by the limiting oxygen index(LOI),cone calorimeter(CONE). The test re-sults showed that nano magnesium oxide could improve the oxygen index of wood products. Meanwhile, heat release rate,total heat release,smoke production rate,total smoke rate and the yield of CO decreased obviously,and the samples had good flame retardant effect. The calculation of carbon residue ratio showed that adding nano magnesium oxide could improve the residual carbon sample ratio, which increased by 10%. The flame retardant mechanism, on the one hand, the nano magnesium oxide serve as a physical barrier layer,have a high temperature resistant and insulating effect and isolate the wood from oxygen;On the other hand,nano magnesium oxide can participate in the combustion of wood,change the wood pyroly-sis pathway and leave more flammable materials.

  14. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds.

    Science.gov (United States)

    Sousa, Bebiana C; Pitt, Andrew R; Spickett, Corinne M

    2017-10-01

    The process of lipid oxidation generates a diverse array of small aldehydes and carbonyl-containing compounds, which may occur in free form or esterified within phospholipids and cholesterol esters. These aldehydes mostly result from fragmentation of fatty acyl chains following radical oxidation, and the products can be subdivided into alkanals, alkenals (usually α,β-unsaturated), γ-substituted alkenals and bis-aldehydes. Isolevuglandins are non-fragmented di-carbonyl compounds derived from H2-isoprostanes, and oxidation of the ω-3-fatty acid docosahexenoic acid yield analogous 22 carbon neuroketals. Non-radical oxidation by hypochlorous acid can generate α-chlorofatty aldehydes from plasmenyl phospholipids. Most of these compounds are reactive and have generally been considered as toxic products of a deleterious process. The reactivity is especially high for the α,β-unsaturated alkenals, such as acrolein and crotonaldehyde, and for γ-substituted alkenals, of which 4-hydroxy-2-nonenal and 4-oxo-2-nonenal are best known. Nevertheless, in recent years several previously neglected aldehydes have been investigated and also found to have significant reactivity and biological effects; notable examples are 4-hydroxy-2-hexenal and 4-hydroxy-dodecadienal. This has led to substantial interest in the biological effects of all of these lipid oxidation products and their roles in disease, including proposals that HNE is a second messenger or signalling molecule. However, it is becoming clear that many of the effects elicited by these compounds relate to their propensity for forming adducts with nucleophilic groups on proteins, DNA and specific phospholipids. This emphasizes the need for good analytical methods, not just for free lipid oxidation products but also for the resulting adducts with biomolecules. The most informative methods are those utilizing HPLC separations and mass spectrometry, although analysis of the wide variety of possible adducts is very challenging

  15. Identifying initial molecular targets of PDT: protein and lipid oxidation products

    Science.gov (United States)

    Oleinick, Nancy L.; Kim, Junhwan; Rodriguez, Myriam E.; Xue, Liang-yan; Kenney, Malcolm E.; Anderson, Vernon E.

    2009-06-01

    Photodynamic Therapy (PDT) generates singlet oxygen (1O2) which oxidizes biomolecules in the immediate vicinity of its formation. The phthalocyanine photosensitizer Pc 4 localizes to mitochondria and endoplasmic reticulum, and the primary targets of Pc 4-PDT are expected to be lipids and proteins of those membranes. The initial damage then causes apoptosis in cancer cells via the release of cytochrome c (Cyt-c) from mitochondria into the cytosol, followed by the activation of caspases. That damage also triggers the induction of autophagy, an attempt by the cells to eliminate damaged organelles, or when damage is too extensive, to promote cell death. Cyt-c is bound to the cytosolic side of the mitochondrial inner membrane through association with cardiolipin (CL), a phospholipid containing four unsaturated fatty acids and thus easily oxidized by 1O2 or by other oxidizing agents. Increasing evidence suggests that oxidation of CL loosens its association with Cyt-c, and that the peroxidase activity of Cyt-c can oxidize CL. In earlier studies of Cyt-c in homogeneous medium by MALDI-TOF-MS and LC-ESI-MS, we showed that 1O2 generated by Pc 4-PDT oxidized histidine, methionine, tryptophan, and unexpectedly phenylalanine but not tyrosine. Most of the oxidation products were known to be formed by other oxidizing agents, such as hydroxyl radical, superoxide radical anion, and peroxynitrite. However, two products of histidine were unique to 1O2 and may be useful for reporting the action of 1O2 in cells and tissues. These products, as well as CL oxidation products, have now been identified in liposomes and mitochondria after Pc 4-PDT. In mitochondria, the PDT dose-dependent oxidations can be related to specific changes in mitochondrial function, Bcl-2 photodamage, and Cyt-c release. Thus, the role of PDT-generated 1O2 in oxidizing Cyt-c and CL and the interplay between protein and lipid targets may be highly relevant to understanding one mechanism for cell killing by PDT.

  16. Direct technique for monitoring lipid oxidation in water-in-oil emulsions based on micro-calorimetry.

    Science.gov (United States)

    Dridi, Wafa; Toutain, Jean; Sommier, Alain; Essafi, Wafa; Leal-Calderon, Fernando; Cansell, Maud

    2017-09-01

    An experimental device based on the measurement of the heat flux dissipated during chemical reactions, previously validated for monitoring lipid oxidation in plant oils, was extended to follow lipid oxidation in water-in-oil emulsions. Firstly, validation of the approach was performed by correlating conjugated diene concentrations measured by spectrophotometry and the heat flux dissipated by oxidation reactions and measured directly in water-in-oil emulsions, in isothermal conditions at 60°C. Secondly, several emulsions based on plant oils differing in their n-3 fatty acid content were compared. The oxidability parameter derived from the enthalpy curves reflected the α-linolenic acid proportion in the oils. On the whole, the micro-calorimetry technique provides a sensitive method to assess lipid oxidation in water-in-oil emulsions without requiring any phase extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Environmental monitoring of brominated flame retardants

    Science.gov (United States)

    Vagula, Mary C.; Kubeldis, Nathan; Nelatury, Charles F.

    2011-06-01

    Brominated flame retardants (BFRs) are synthetic organobromide compounds which inhibit ignition and combustion processes. Because of their immense ability to retard fire and save life and property, they have been extensively used in many products such as TVs, computers, foam, plastics etc. The five major classes of BFRs are tetrabromobisphenol-A (TBBPA), hexabromocyclododecane (HBCD), pentabromodiphenyl ether, octabromodiphenyl ether, and decabromodiphenyl ether. The last three are also commonly called PBDEs. BDE-85 and BDE-209 are the two prominent congeners of PBDEs and this study reports the adverse effects of these congeners in rodents. Exposure of rat sciatic nerves to 5 μg/mL and 20 μg/mL of BDE-85 and BDE-209 respectively lead to significant, concentration dependent reduction in nerve conduction function. Glucose absorption in the rat intestinal segments exposed to 5 μg/mL of BDE-85 and BDE-209 was significantly reduced for both the compounds tested. Lastly, mice when exposed to 0.25 mg/kg body weight for four days showed a disruption in oxidant and antioxidant equilibrium. The tissues namely liver and brain have shown increase in the levels of lipid hydroperoxides indicating oxidative stress. Moreover, all the protective enzymes namely superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and glutathione S transferase (GST) have shown tissue specific alterations indicating the induction of damaging oxidative stress and setting in of lipid peroxidation in exposed animals. The results indicate monitoring of PBDEs in the environment is essential because levels as low as 5 μg/mL and 0.25 mg/kg body weight were able to cause damage to the functions of rodents.

  18. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Hoon [Cheongju Univ., Cheongju (Korea, Republic of)

    2013-11-15

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD.

  19. Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids.

    Science.gov (United States)

    Davies, Sean S; Guo, Lilu

    2014-07-01

    Peroxidation of membranes and lipoproteins converts "inert" phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease.

  20. Plasma lipid oxidation predicts atherosclerotic status better than cholesterol in diabetic apolipoprotein E deficient mice

    DEFF Research Database (Denmark)

    Petersen, Karen Ekkelund; Lykkesfeldt, Jens; Raun, Kirsten

    2017-01-01

    significantly different from the control group as they had higher blood glucose, HbA1c, total cholesterol, low-density lipoprotein, very low-density lipoprotein, together with a lower high-density lipoprotein concentration and body weight. Animals in the diabetic group had significantly higher plaque area......Increased levels of oxidative stress have been suggested to play a detrimental role in the development of diabetes-related vascular complications. Here, we investigated whether the concentration of malondialdehyde, a marker of lipid oxidation correlated to the degree of aortic plaque lesions...... in a proatherogenic diabetic mouse model. Three groups of apolipoprotein E knockout mice were studied for 20 weeks, a control, a streptozotocin-induced diabetic, and a diabetic enalapril-treated group. Enalapril was hypothesized to lower oxidative stress level and thus the plaque burden. Both diabetic groups were...

  1. Effects of rapeseed oil on fatty acid oxidation and lipid levels in rat heart and liver.

    Science.gov (United States)

    Kienle, M G; Cighetti, G; Spagnuolo, C; Galli, C

    1976-09-01

    The comparative rates of oxidation of erucic and oleic acids and of their CoA esters were studied in heart and liver mitochondria of rats fed a standard diet or semisynthetic diets containing 25% of the calories as either rapeseed oil (46.6% erucic and 10.4% eicosenoic acid) or olive oil, for a period of 5 months. The long exposure to the diet containing 25% rapeseed oil did not alter the oxidative activity of mitochondria and did not induce morphological changes in the heart. It is confirmed that erucic acid is oxidized in mitochondria at lower rates than other long chain fatty acids and that its activation as CoA derivative may be one of the rate limiting steps of the overall oxidationprocess. Total lipids and triglycerides do not significantly change in the heart whereas they increase in the liver of rats fed the diet containing rapeseed oil.

  2. Oxidative Damage to DNA and Lipids: Correlation with Protein Glycation in Patients with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    M.T. Goodarzi

    2008-01-01

    Full Text Available Introduction & Objective: Diabetic hyperglycemia is associated with increased production of Reactive Oxygen Species (ROS. ROS reacts with DNA results in products such as 8-hydroxydeoxyguanosine that excrete in urine due to DNA repair processes. This study aims to evaluate correlation between oxidative damage of DNA and protein glycation in patients with Type 1 diabetes. We measured urinary 8-OHdG level in diabetic and control group and evaluated its correlation to glycated hemoglobin (HbA1c and glycated serum protein (GSP levels. Furthermore plasma malondialdehyde (MDA level was measured as an important indicator of lipid peroxidation in diabetes.Materials & Methods: We studied 32 patients with diabetes mellitus Type 1 and compared them with 48 sex and age-matched non-diabetic controls. GSP and MDA measurement were made by colorimetric assay. Hemoglobin A1c measured by ion-exchange chromatography method and urinary 8-OHdG measurement was made by competitive in vitro enzyme-linked immunosorbent assay (ELISA.Results: In the present study urinary 8-OHdG, blood HbA1c, plasma MDA and GSP levels were significantly higher in diabetics comparing to the control subjects (P<0.05. Furthermore, we found significant correlation between urinary 8-OHdG and HbA1c (P<0.05 in diabetic group. In addition, fasting blood sugar showed significant correlation with GSP and MDA (P<0.05. However the correlation of MDA with HbA1c was not significant in diabetic patients.Conclusion: This case-control study in young diabetic patients showed that increased blood glucose and related metabolic disorders result in oxidative stress and oxidative damage to DNA and lipids. Furthermore oxidative damage to DNA correlated to glycemic control, while there was no significant correlation between lipid peroxidation and the level of HbA1c.

  3. Dietary Brazilian red pepper essential oil on pork meat quality and lipid oxidation

    Directory of Open Access Journals (Sweden)

    Franz Dias Gois

    Full Text Available ABSTRACT: The purpose of this study was to evaluate the effects of feeding pigs with diets containing increasing levels of Brazilian red pepper essential oil ( Schinus terebinthifolius Raddi on the physical attributes, fatty acid profile and oxidative stability of precooked meat. Seventy-two weanling pigs (5.7±0.8kg were allotted in a completely randomized block design experiment with four treatments, six replicates per treatment, and three animals per experimental unit (pen. Animals were fed with a basal diet supplemented with 0, 500, 1,000, or 1,500mg kg-1 Brazilian red pepper essential oil during the 35-d experimental period. At the end of the experiment, one animal per experimental unit (16.4±2.2kg was slaughtered to sample Longissimus dorsi muscle for analysis. Dietary supplementation of Brazilian red pepper had no effect (P>0.05 on pork meat color, pH, cooking loss and shear force. Inclusion of essential oil in the diet provided a linear increase (P<0.05 of the saturated fatty acids content of L. dorsi, especially myristic (C14:0 and stearic (C18:0 fatty acids. Utilization of essential oil in pig diets reduced significantly the production of secondary lipid oxidation compounds measured as TBARS in raw pork meat (P<0.001 and immediately after cooking (P<0.001. However, during 8-d storage assay, the addition of essential oil in the diet did not protect pork meat lipids from oxidation. Therefore, Brazilian red pepper added to pig diets increased the saturated fatty acids content and reduced lipid oxidation in fresh meat and short-term heat treatment without affecting pork meat physical attributes.

  4. Oxidative Stability of Lipid Fraction of Cookies Enriched with Chokeberry Polyphenols Extract

    Directory of Open Access Journals (Sweden)

    Bialek Malgorzata

    2016-06-01

    Full Text Available The effect of incorporation of different contents of chokeberry polyphenols extract (CPE into cookie recipe on the oxidative stability of the lipid fraction of cookies was determined in the study. Margarine and butter cookies with different contents of CPE were prepared. Contents of primary (Peroxide value, PV and secondary (Anisidine value, AV; thiobarbituric acid reactive substances, TBARS lipid oxidation products and fatty acids profile were measured during storage. Different course of lipid degradation depending on both polyphenols content and storage time was shown. Cookies were characterised by a low PV (1.45 and 4.90 meq of O/kg of fat in margarine and butter cookies, respectively. The AV increased during storage both in margarine and in butter cookies. Losses of PUFA in margarine cookies (0.34% apply mainly to α-linolenic acid. It appears safe to incorporate 100 mg and 250 mg of CPE into margarine cookies stored for 9 weeks and 1000 mg of CPE into butter cookies stored for 9 weeks. The incorporation of 1000 mg CPE into cookies resulted in a significant increase in the intensity of astringent taste, acidic taste, off-taste and off-flavour.

  5. Role of lipid peroxidation and oxidative stress in 3-methylindole pneumotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Cary, M.G.

    1985-01-01

    The cytochrome P-450-catalyzed metabolism of 3-methylindole (3-MI) results in acute lung injury in ruminants and horses. Experiments were conducted to determine the role of lipid peroxidation and oxidative stress in 3-MI pneumotoxicity in goats. Goats were given methylethylketone peroxide (MEKP), a potent peroxidant, 3-MI, indole, or cremophor-EL vehicle. The levels of shortchain hydrocarbons in expired air were measured for 6 hours post-dosing by gas chromatography. Exhaled hydrocarbons increased 20 to 30 fold within 1 hour in goats given MEKP. No significant changes were seen in goats given 3-Mi, indole or cremophor-EL. Levels of thiobarbituric acid-reactive substances, an indicator of lipid peroxidation, were significantly increased in lung tissue from goats given MEKP. In goats given 3-MI, indole or cremophor-EL, the levels were not significantly different from each other. Goats were killed at 6 hours post-dosing and examined post mortem. Bronchiolar epithelial necrosis was seen in goats given 3-MI but there were not lung lesions in other groups. The role of oxygen radicals in 3-MI pneumotoxicity was examined in a goat lung explant system using /sup 51/Cr release as an indicator of cytotoxicity. The results of these studies provide no evidence to support the view that 3-MI pneumotoxicity involves lipid peroxidation or oxidative stress as a result of formation of oxygen or xenobiotic radicals.

  6. Lipolysis and lipid oxidation during processing of Chinese traditional smoke-cured bacon.

    Science.gov (United States)

    Huang, Yechuan; Li, Hongjun; Huang, Tian; Li, Feng; Sun, Juan

    2014-04-15

    Lipolysis and lipid oxidation as well as the relationship between them during processing of Chinese traditional smoke-cured bacon were studied by evaluating the changes in physicochemical parameters, lipase and lipoxygenase (LOX) activities, lipid content, fatty acid composition, peroxide value (POV), and thiobarbituric acid reactive substances (TBARS). Besides phospholipids, triacylglycerols (TAG) were an important source of free fatty acids in bacon, resulting in an increase in free fatty acid content in the mid-late stage of processing, whilst phospholipids hydrolysed intensely in the early stage. Preferential lipolysis was observed for polyunsaturated fatty acids in phospholipids and for linoleic and palmitic acids in TAG. The lipolysis of TAG and phospholipids was independent and catalysed by acid lipase and phospholipase, respectively. ANOVA-partial least squares regression (APLSR) analysis showed that POV and TBARS were poorly related to LOX and closely associated with phospholipid degradation. Therefore, autoxidation may be the main cause of muscle lipid oxidation in smoke-cured bacon, which was promoted by phospholipid hydrolysis.

  7. Temperature effect on lactose crystallization, maillard reactions, and lipid oxidation in whole milk powder.

    Science.gov (United States)

    Thomsen, Marianne K; Lauridsen, Lene; Skibsted, Leif H; Risbo, Jens

    2005-09-07

    Whole milk powder with an initial water content of 4.4% (w/w) and a water activity of 0.23 stored in hermetically sealed vials for up to 147 days below (37 and 45 degrees C) and above (55 degrees C) the glass transition temperature (T(g) determined to have the value 48 degrees C) showed a strong temperature dependence for quality deterioration corresponding to energies of activation close to 200 kJ/mol for most deteriorative processes. The glass transition was found not to cause any deviation from Arrhenius temperature dependence. Lactose crystallization, which occurred as a gradual process as monitored by isothermal calorimetry, is concluded to liberate bound water (a(w) increase to 0.46) with a modest time delay (approximately 2 days at 55 degrees C) and with concomitant surface browning as evidenced by an increasing Hunter b-value. Browning and formation of bound hydroxymethyl-furfural determined by HPLC seem to be coupled, while formation of another Maillard reaction product, furosine, occurred gradually and was initiated prior to crystallization. Initiation of lipid oxidation, as detected by lipid-derived radicals (high g-value ESR spectra), and progression of lipid oxidation, as detected by headspace GC, seem not to be affected by lactose crystallization and browning, and no indication of browning products acting as antioxidants could be determined.

  8. Membrane lipids protected from oxidation by red wine tannins: a proton NMR study.

    Science.gov (United States)

    Furlan, Aurélien L; Jobin, Marie-Lise; Buchoux, Sébastien; Grélard, Axelle; Dufourc, Erick J; Géan, Julie

    2014-12-01

    Dietary polyphenols widespread in vegetables and beverages like red wine and tea have been reported to possess antioxidant properties that could have positive effects on human health. In this study, we propose a new in situ and non-invasive method based on proton liquid-state nuclear magnetic resonance (NMR) to determine the antioxidant efficiency of red wine tannins on a twice-unsaturated phospholipid, 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC), embedded in a membrane model. Four tannins were studied: (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG). The lipid degradation kinetics was determined by measuring the loss of the bis-allylic protons during oxidation induced by a radical initiator, 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). The antioxidant efficiency, i.e. the ability of tannins to slow down the lipid oxidation rate, was shown to be higher for galloylated tannins, ECG and EGCG. Furthermore, the mixture of four tannins was more efficient than the most effective tannin, EGCG, demonstrating a synergistic effect. To better understand the antioxidant action mechanism of polyphenols on lipid membranes, the tannin location was investigated by NMR and molecular dynamics. A correlation between antioxidant action of tannins and their location at the membrane interface (inserted at the glycerol backbone level) could thus be established. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation.

    Science.gov (United States)

    Dias, Irundika H K; Mistry, Jayna; Fell, Shaun; Reis, Ana; Spickett, Corinne M; Polidori, Maria C; Lip, Gregory Y H; Griffiths, Helen R

    2014-10-01

    Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4μg oxLDL and 25µM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells.

  10. The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders.

    Science.gov (United States)

    Morris, Gerwyn; Walder, Ken; Puri, Basant K; Berk, Michael; Maes, Michael

    2016-09-01

    Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.

  11. Impact of green tea extract addition on oxidative changes in the lipid fraction of pastry products

    Directory of Open Access Journals (Sweden)

    Anna Żbikowska

    2017-03-01

    Full Text Available Background. Alongside flour, fat is the key ingredient of sponge cakes, including those with long shelf lives. It is an unstable food component, whose quality and nutritional safety depend on the composition and pres- ence of oxidation products. Consumption of fat oxidation products adversely affects the human body and contributes to the incidence of a number of medical conditions. Qualitative changes in fats extracted from thermostat sponge cakes with and without antioxidant additions were determined in this study. Material and methods. In the study, two types of antioxidant were used: natural – green tea extract in three doses (0.02%; 0.2% and 1.0% and synthetic BHA (0.02% and 100%, solid bakery shortening. Sponge-cakes were thermostatted at temperatures 63°C after twenty-eight days. In this study, the quality of the lipid fraction was analyzed. The amount of primary (PV and secondary (AnV oxidation products was determined, and   a Rancimat test was performed. Results. Adding antioxidants to fats varied in the degree to which oxidation processes of lipids fractions were inhibited. The peroxide value after twenty-eight days of thermostatting ranged from 3.57 meq O/kg (BHA and 11.14 O meq/kg (extract content – 1% to 62.85 meq O/kg (control sample. In turn, the value of AnV after the storage period ranged from 4.84 (BHA and 6.71 (extract content – 1% to 16.83 (control sample. Conclusion. The best protective effects in the process of oxidation was achieved by BHA. The longest in- duction time and the lowest peroxide value and anisidine value were obtained for this antioxidant. It was achieved after twenty-eight days of fat thermostatting. Nonetheless, the results demonstrated it is possible to use the commercially available green tea extract to slow the adverse process of fat oxidation in sponge cake products.

  12. Surface oxidation under ambient air--not only a fast and economical method to identify double bond positions in unsaturated lipids but also a reminder of proper lipid processing.

    Science.gov (United States)

    Zhou, Ying; Park, Hyejung; Kim, Philseok; Jiang, Yan; Costello, Catherine E

    2014-06-17

    A simple, fast approach elucidated carbon-carbon double bond positions in unsaturated lipids. Lipids were deposited onto various surfaces and the products from their oxidation in ambient air were observed by electrospray ionization (ESI) mass spectrometry (MS). The most common oxidative products, aldehydes, were detected as transformations at the cleaved double bond positions. Ozonides and carboxylic acids were generated in certain lipids. Investigations of the conditions controlling the appearance of these products indicated that the surface oxidation depends on light and ambient air. Since the lipid oxidation was slower in a high concentration of ozone, singlet oxygen appeared to be a parallel oxidant for unsaturated lipids. The 3-hydroxyl group in the sphingoid base of sulfatides offered some protection from oxidation for the Δ4,5-double bond, slowing its oxidation rate relative to that of the isolated double bond in the N-linked fatty acyl chain. Direct sampling by thin-layer chromatography (TLC)-ESI-MS provides a powerful approach to elucidate detailed structural information on biological samples. Co-localization of the starting lipids and their oxidation products after TLC separation allowed assignment of the native unsaturation sites. Phosphatidylserine and N,N-dimethyl phosphatidylethanolamine isomers in a bovine brain total lipid extract were distinguished on the basis of their oxidation products. Meanwhile, the findings reported herein reveal a potential pitfall in the assignment of structures to lipids extracted from TLC plates because of artifactual oxidation after the plate development.

  13. The influence of achyrocline satureioides ("Marcela" extract on the lipid oxidation of salami

    Directory of Open Access Journals (Sweden)

    Paulo Cezar Bastianello Campagnol

    2011-03-01

    Full Text Available The effect of two levels (0.5 and 1% of hydroalcoholic extract of Achyrocline satureioides on the safety (TBARS values and quality (pH, water activity, colour, weight loss, and sensorial attributes of salami was evaluated. The addition of Achyrocline satureioides extract decreased TBARS values significantly during the storage of salami when compared to the control, which was elaborated without Achyrocline satureioides extract. The treatment with 1% of "Marcela" extract showed larger lipid stability than that of the lot with 0.5%, However, it presented a decrease (p < 0.05 in the sensorial acceptance. The two levels of "Marcela" extract did not influence pH, water activity, colour, and weight loss significantly. This study indicates that the hydroalcoholic extract of "Marcela" was effective in decreasing the lipid oxidation and at 0.5% it did not alter the sensorial features; therefore, it may be used in salami to provide safer products for the consumers.

  14. Dietary supplementation of garlic and rosemary: effects on colour stability and lipid oxidation in lamb meat

    Directory of Open Access Journals (Sweden)

    M. Scafizzari

    2010-01-01

    Full Text Available The colour of fresh meat is an important criterion consumers take into consideration when purchasing meat. Meat colour depends on the occurrence of chemical and microbial deterioration processes. The role of vitamin E and other antioxidants on ruminant meat colour stability and prevention of lipid oxidation has been widely investigated (Macit et al., 2003; Realini et al., 2004. Many natural herbs and plant extracts exert antioxidant effects such as garlic (Yin and Cheng, 2003 and rosemary (Sánchez-Escalante et al., 2001. Their use as additives for animal feeding may be a valid alternative to synthetic antioxidants since they show beneficial effects also on animal welfare and other physiological functions (Tedesco, 2001. The aim of this study was to evaluate whether garlic and rosemary dietary supplementation as compared with vitamin E affects lamb meat colour and lipid stability during storage.

  15. Fat oxidation, fitness and skeletal muscle expression of oxidative/lipid metabolism genes in South Asians: implications for insulin resistance?

    Directory of Open Access Journals (Sweden)

    Lesley M L Hall

    Full Text Available BACKGROUND: South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures. METHODOLOGY/PRINCIPAL FINDINGS: Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010; lower VO2max (40.6±6.6 vs 52.4±5.7 ml x kg(-1 x min(-1, p = 0.001; and reduced fat oxidation during submaximal exercise at the same relative (3.77±2.02 vs 6.55±2.60 mg x kg(-1 x min(-1 at 55% VO2max, p = 0.013, and absolute (3.46±2.20 vs 6.00±1.93 mg x kg(-1 x min(-1 at 25 ml O(2 x kg(-1 x min(-1, p = 0.021, exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10-13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity. CONCLUSIONS/SIGNIFICANCE: These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.

  16. Effect of short-duration lipid supplementation on fat oxidation during exercise and cycling performance.

    Science.gov (United States)

    Décombaz, Jacques; Grathwohl, Dominik; Pollien, Philippe; Schmitt, Jeroen A J; Borrani, Fabio; Lecoultre, Virgile

    2013-07-01

    The effect of intramyocellular lipids (IMCLs) on endurance performance with high skeletal muscle glycogen availability remains unclear. Previous work has shown that a lipid-supplemented high-carbohydrate (CHO) diet increases IMCLs while permitting normal glycogen loading. The aim of this study was to assess the effect of fat supplementation on fat oxidation (Fox) and endurance performance. Twenty-two trained male cyclists performed 2 simulated time trials (TT) in a randomized crossover design. Subjects cycled at ∼53% maximal voluntary external power for 2 h and then followed 1 of 2 diets for 2.5 days: a high-CHO low-fat (HC) diet, consisting of CHO 7.4 g·kg(-1)·day(-1) and fat 0.5 g·kg(-1)·day(-1); or a high-CHO fat-supplemented (HCF) diet, which was a replication of the HC diet with ∼240 g surplus fat (30% saturation) distributed over the last 4 meals of the diet period. On trial morning, fasting blood was sampled and Fox was measured during an incremental exercise; a ∼1-h TT followed. Breath volatile compounds (VOCs) were measured at 3 time points. Mental fatigue, measured as reaction time, was evaluated during the TT. Plasma free fatty acid concentration was 50% lower after the HCF diet (p diet. Performance was not significantly different between the HCF and HC diets (3369 ± 46 s vs 3398 ± 48 s; p = 0.39), nor were reaction times to the attention task and VOCs (p = NS for both). In conclusion, the short-term intake of a lipid supplement in combination with a glycogen-loading diet designed to boost intramyocellular lipids while avoiding fat adaptation did not alter substrate oxidation during exercise or 1-hour cycling performance.

  17. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium.

    Science.gov (United States)

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S; Han, Zhong

    2016-08-22

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0-4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms.

  18. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium

    Directory of Open Access Journals (Sweden)

    Ou Yun

    2016-08-01

    Full Text Available Salmonella typhimurium cells were subjected to pulsed electric field (PEF treatment at 25 kV/cm for 0–4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi, possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression, which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids. In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms.

  19. Paraoxonase and Arylesterase Activities, Lipid Profile, and Oxidative Damage in Experimental Ischemic Colitis Model

    Directory of Open Access Journals (Sweden)

    Ethem Unal

    2012-01-01

    Full Text Available Objective. In the present study, since PON1 is known as an HDL-associated antioxidant enzyme that inhibits the oxidative modification of LDL and oxidative stress plays a role in the pathogenesis of mesenteric ischemia, we investigated the changes in PON1 activity and lipid profile in an experimental ischemic colitis model. Methods. Forty male Wistar albino rats were divided into two groups: the control group (N=15 and the experimental group (N=25. All animals were anesthetized with ether and ketamine anesthesia to undergo a midline laparotomy. Ischemic colitis was induced by marginal vessel ligation in the splenic flexura (devascularization process. A sham laparotomy was performed in the control group. All animals were sacrificed on the seventh postoperative day. Oxidative stress marker (malonyldialdehyde, MDA, lipid profile, and paraoxonase (PON-1 and arylesterase activities were determined. Histopathological evaluation was done under light microscopy, after sectioning and staining with hematoxyline and eosin. Statistical analysis was conducted using Student’s t-test and Mann-Whitney U test, and P0.05. Conclusions. PON1 and arylesterase play an important role in the pathophysiology of ischemic colitis.

  20. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Science.gov (United States)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  1. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  2. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium

    Science.gov (United States)

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S.; Han, Zhong

    2016-01-01

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0–4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms. PMID:27556460

  3. Genome-wide transcriptional responses to a lipid hydroperoxide: adaptation occurs without induction of oxidant defenses.

    Science.gov (United States)

    Alic, Nazif; Felder, Thomas; Temple, Mark D; Gloeckner, Christian; Higgins, Vincent J; Briza, Peter; Dawes, Ian W

    2004-07-01

    Free radicals can initiate the oxidation of polyunsaturated fatty acids in cells through the process of lipid peroxidation. The genome-wide transcriptional changes in Saccharomyces cerevisiae after treatment with the toxic lipid peroxidation product linoleic acid hydroperoxide (LoaOOH) were identified. High-dose treatment led to a switch in transcription from biosynthetic to protective functions. This response encompassed a set of genes stimulated predominantly by LoaOOH, and not by other oxidants or heat shock, which contained components of the pleiotropic drug resistance system. The dose dependence of the transcriptional response revealed that large and widespread changes occur only in response to higher doses. Pretreatment of cells with sublethal doses of LoaOOH induces resistance to an otherwise lethal dose through the process of adaptation. Adaptive doses elicited a more subtle transcriptional response affecting metabolic functions, including an increase in the capacity for detoxification and downregulation of the rate of protein synthesis. Surprisingly, the cellular response to adaptive doses did not include induction of oxidative-stress defense enzymes nor of transcripts involved in general cellular defense systems.

  4. Lipid oxidation in minced beef meat with added Krebs cycle substrates to stabilise colour.

    Science.gov (United States)

    Yi, G; Grabež, V; Bjelanovic, M; Slinde, E; Olsen, K; Langsrud, O; Phung, V T; Haug, A; Oostindjer, M; Egelandsdal, B

    2015-11-15

    Krebs cycle substrates (KCS) can stabilise the colour of packaged meat by oxygen reduction. This study tested whether this reduction releases reactive oxygen species that may lead to lipid oxidation in minced meat under two different storage conditions. KCS combinations of succinate and glutamate increased peroxide forming potential (PFP, 1.18-1.32 mmol peroxides/kg mince) and thiobarbituric acid reactive substances (TBARS, 0.30-0.38 mg malondialdehyde (MDA) equivalents/kg mince) under low oxygen storage conditions. Both succinate and glutamate were metabolised. Moreover, under high oxygen (75%) storage conditions, KCS combinations of glutamate, citrate and malate increased PFP (from 1.22 to 1.29 mmol peroxides/kg) and TBARS (from 0.37 to 0.40 mg MDA equivalents/kg mince). Only glutamate was metabolised. The KCS combinations that were added to stabilise colour were metabolised during storage, and acted as pro-oxidants that promoted lipid oxidation in both high and low oxygen conditions.

  5. Protein and lipid oxidation affect the viscoelasticity of whey protein layers at the oil-water interface

    NARCIS (Netherlands)

    Berton-Carabin, Claire C.; Schroder, Anja; Rovalino-Cordova, Ana; Schroën, Karin; Sagis, Leonard

    2016-01-01

    Protein and lipid oxidation are prevailing issues that negatively affect the nutritional and sensory quality of food emulsions. It is probable that such oxidative modifications affect the functional properties of proteins, and in particular their ability to form densely packed, interconnected viscoe

  6. Protein and lipid oxidation affect the viscoelasticity of whey protein layers at the oil-water interface

    NARCIS (Netherlands)

    Berton-Carabin, Claire C.; Schroder, Anja; Rovalino-Cordova, Ana; Schroën, Karin; Sagis, Leonard

    2016-01-01

    Protein and lipid oxidation are prevailing issues that negatively affect the nutritional and sensory quality of food emulsions. It is probable that such oxidative modifications affect the functional properties of proteins, and in particular their ability to form densely packed, interconnected viscoe

  7. Postpartum weight retention is associated with elevated ratio of oxidized LDL lipids to HDL-cholesterol.

    Science.gov (United States)

    Puhkala, Jatta; Luoto, Riitta; Ahotupa, Markku; Raitanen, Jani; Vasankari, Tommi

    2013-12-01

    Oxidized LDL lipids (ox-LDL) are associated with lifestyle diseases such as cardiovascular diseases, metabolic syndrome and type 2 diabetes. The present study investigated how postpartum weight retention effects on ox-LDL and serum lipids. The study is a nested comparative research of a cluster-randomized controlled trial, NELLI (lifestyle and counselling during pregnancy). During early pregnancy (8-12 weeks) and 1 year postpartum, 141 women participated in measurements for determining of plasma lipids: total cholesterol (T-C), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), triacylglycerols (TAG) and ox-LDL. Subjects were stratified into tertiles (weight loss, unaltered weight and weight gain groups) based on their weight change from baseline to follow-up. Ox-LDL was determined by baseline level of conjugated dienes in LDL lipids. Among the group of weight gainers, concentration of TAG reduced less (-0.14 vs. -0.33, p = 0.002), HDL-C reduced more (-0.31 vs. -0.16, p = 0.003) and ox-LDL/HDL-C ratio increased (3.0 vs. -0.2, p = 0.003) when compared to group of weight loss. Both T-C and LDL-C elevated more (0.14 vs. -0.21, p = 0.008; 0.31 vs. 0.07, p = 0.015) and TAG and ox-LDL reduced less (-0.33 vs. 0.20, p = 0.033; -3.33 vs. -0.68, p = 0.026) in unaltered weight group compared to weight loss group. The women who gained weight developed higher TAG and ox-LDL/HDL-C ratio as compared to those who lost weight. Postpartum weight retention of 3.4 kg or more is associated with atherogenic lipid profile.

  8. Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhuang, Ting-Zhou; Huang, Jia-Qi; Peng, Hong-Jie; He, Lian-Yuan; Cheng, Xin-Bing; Chen, Cheng-Meng; Zhang, Qiang

    2016-01-20

    The reversible electrochemical transformation from lithium (Li) and sulfur (S) into Li2 S through multielectron reactions can be utilized in secondary Li-S batteries with very high energy density. However, both the low Coulombic efficiency and severe capacity degradation limits the full utilization of active sulfur, which hinders the practical applications of Li-S battery system. The present study reports a ternary-layered separator with a macroporous polypropylene (PP) matrix layer, graphene oxide (GO) barrier layer, and Nafion retarding layer as the separator for Li-S batteries with high Coulombic efficiency and superior cyclic stability. In the ternary-layered separator, ultrathin layer of GO (0.0032 mg cm(-2) , estimated to be around 40 layers) blocks the macropores of PP matrix, and a dense ion selective Nafion layer with a very low loading amount of 0.05 mg cm(-2) is attached as a retarding layer to suppress the crossover of sulfur-containing species. The ternary-layered separators are effective in improving the initial capacity and the Coulombic efficiency of Li-S cells from 969 to 1057 mAh g(-1) , and from 80% to over 95% with an LiNO3 -free electrolyte, respectively. The capacity degradation is reduced from 0.34% to 0.18% per cycle within 200 cycles when the PP separator is replaced by the ternary-layered separators. This work provides the rational design strategy for multifunctional separators at cell scale to effective utilizing of active sulfur and retarding of polysulfides, which offers the possibility of high energy density Li-S cells with long cycling life.

  9. Iron-mediated lipid oxidation in 70% fish oil-in-ater emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    2012-01-01

    The objective of this study was to investigate the protective effect of five different emulsifiers on iron‐mediated lipid oxidation in 70% fish oil‐in‐water emulsions. The emulsifiers were either based on protein (whey protein isolate and sodium caseinate) or based on phospholipid (soy lecithin...... oxidised more at low pH than at high pH, and casein emulsions oxidised the least (Peroxide value (PV) at day 7 was 0.5–0.7 meq kg−1). Among emulsions prepared with phospholipids, emulsions with MPL75 were the most oxidised followed by emulsions prepared with lecithin and MPL20. Thus, PV in MPL75 emulsions...

  10. Enhancement of Muscle Mitochondrial Oxidative Capacity and Alterations in Insulin Action Are Lipid Species Dependent

    OpenAIRE

    Turner, Nigel; Hariharan, Krit; TidAng, Jennifer; Frangioudakis, Georgia; Beale, Susan M.; Wright, Lauren E.; Zeng, Xiao Yi; Leslie, Simon J; LI Jing-ya; Kraegen, Edward W.; Cooney, Gregory J.; Ye, Ji-Ming

    2009-01-01

    OBJECTIVE Medium-chain fatty acids (MCFAs) have been reported to be less obesogenic than long-chain fatty acids (LCFAs); however, relatively little is known regarding their effect on insulin action. Here, we examined the tissue-specific effects of MCFAs on lipid metabolism and insulin action. RESEARCH DESIGN AND METHODS C57BL6/J mice and Wistar rats were fed either a low-fat control diet or high-fat diets rich in MCFAs or LCFAs for 4–5 weeks, and markers of mitochondrial oxidative capacity, l...

  11. Homogenization conditions affect the oxidative stability of fish oil enriched milk emulsions: lipid oxidation.

    Science.gov (United States)

    Let, Mette B; Jacobsen, Charlotte; Sørensen, Ann-Dorit M; Meyer, Anne S

    2007-03-07

    In this study fish oil was incorporated into commercial homogenized milk using different homogenization temperatures and pressures. The main aim was to understand the significance of homogenization temperature and pressure on the oxidative stability of the resulting milks. Increasing homogenization temperature from 50 to 72 degrees C decreased droplet size only slightly, whereas a pressure increase from 5 to 22.5 MPa decreased droplet size significantly. Surprisingly, emulsions having small droplets, and therefore large interfacial area, were less oxidized than emulsions having bigger droplets. Emulsions with similar droplet size distributions, but resulting from different homogenization conditions, had significantly different oxidative stabilities, indicating that properties of significance to oxidation other than droplet size itself were affected by the different treatments. In general, homogenization at 72 degrees C appeared to induce protective effects against oxidation as compared to homogenization at 50 degrees C. The results thus indicated that the actual composition of the oil-water interface is more important than total surface area itself.

  12. Graphene oxide based sol-gel stainless steel fiber for the headspace solid-phase microextraction of organophosphate ester flame retardants in water samples.

    Science.gov (United States)

    Jin, Tingting; Cheng, Jing; Cai, Cuicui; Cheng, Min; Wu, Shiju; Zhou, Hongbin

    2016-07-29

    In this paper, graphene oxide was coated onto a stainless steel wire through sol-gel technique and it was used as a solid phase microextraction (SPME) fiber. The prepared fiber was characterized by scanning electron microscopy (SEM), which displayed that the fiber had crinkled surface and porous structure The application of the fiber was evaluated through the headspace SPME of nine organophosphate ester flame retardants (OPFRs) with different characteristics in water samples followed by gas chromatography and nitrogen-phosphorous detector (GC/NPD). The major factors influencing the extraction efficiency, including the extraction and desorption conditions, were studied and optimized. Under the optimum conditions, the proposed method was evaluated, and applied to the analysis of organophosphate ester flame retardants in real environmental water samples. The results demonstrated the HS-SPME method based on GO sol-gel fiber had good linearity (R>0.9928), and limits of detection (1.4-135.6ngL(-1)), high repeatability (RSDsol-gel fiber displayed bigger extraction capability than the commercial PDMS fiber and the pure sol-gel fiber for both polar and apolar organophosphate esters, especially for the OPFRs containing benzene rings.

  13. Monitoring of cholesterol oxidation in a lipid bilayer membrane using streptolysin O as a sensing and signal transduction element.

    Science.gov (United States)

    Shoji, Atsushi; Ikeya, Kana; Aoyagi, Miki; Takatsuji, Ryutaro; Yanagida, Akio; Shibusawa, Yoichi; Sugawara, Masao

    2016-09-01

    Streptolysin O (SLO), which recognizes sterols and forms nanopores in lipid membranes, is proposed as a sensing element for monitoring cholesterol oxidation in a lipid bilayer. The structural requirements of eight sterols for forming nanopores by SLO confirmed that a free 3-OH group in the β-configuration of sterols is required for recognition by SLO in a lipid bilayer. The extent of nanopore formation by SLO in lipid bilayers increased in the order of cholestanoloxidation of cholesterol in a lipid bilayer. The potential of the SLO nanopore-based method for monitoring cholesterol oxidation in a lipid bilayer by other oxidative enzymes is also discussed.

  14. Preparation and Properties of Graphene Straw Retardant Composites

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang

    2016-01-01

    Full Text Available This article was prepared by spin-coating the evaporation process graphene oxide having a shell core structure GO/straw flame retardant composite materials, through the oxygen index apparatus and SEM measured the relationship between the flame retardant properties and the morphological structure of the flame retardant composite material, the experiment preparation process is simple, environmentally friendly non-toxic, and the resulting GO/straw flame retardant composite material having a high fire retardant properties.

  15. Investigation of lipid oxidation and non-enzymatic browning reactions in marine PL emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    from PE or amino acids affected the oxidative stability of purified marine PL emulsions. The secondary objective was to study the non-enzymatic browning reactions in the emulsions which included both Strecker degradation (SD) and pyrroles formation. Emulsions were prepared with and without addition...... of amino acids (leucine, methionine and lysine) from 2 authentic standards (PC and PE) and 2 purified marine PL (LC and MPL) through sonication method. Emulsions were incubated at 60 ºC for 0, 2, 4 and 6 days. Non-enzymatic browning reactions were investigated through measurement of i) Strecker aldehydes......, ii) yellowness index (YI), iii) hydrophobic and hydrophilic pyrroles content. On the other hand, the oxidative stability of emulsion was measured through secondary lipid derived volatiles. The result showed that the presence of PE and amino acids caused the formation of pyrroles, generated...

  16. Oxidative quality of commercial fried nuts: evaluation of a surface and an internal lipid fraction

    Directory of Open Access Journals (Sweden)

    Dobarganes, M. C.

    2006-09-01

    Full Text Available The oxidative quality of commercial fried nuts was evaluated by independent analyses of two lipid fractions, the surface oil, and the internal lipid fraction. The nuts studied were 6 samples of almonds, 10 samples of peanuts, 4 samples of sunflower seeds and 2 samples of cashew nuts. The oil content, peroxide value, polymer content, and fatty acid composition were analyzed. The results showed two lipid fractions with different oxidation status. Higher oxidation levels were normally found in the oil fraction more exposed  to air, although considerably higher oxidation status in the internal oil was also detected in various samples. Oxidative quality was also evaluated in selected samples of each nut after 1 year of storage at room temperature, in the dark . Only the almonds and cashew nuts exhibited acceptable oxidative quality after storage. In addition, a study on the changes due to frying and the contribution of the frying oil to the lipids in the final product showed that the composition of the surface oil can be changed by the incorporation of substantial contents of the frying fat. Consequently, the frying fat may exert some effect on the oxidative quality and oxidative stability of the surface oil.En este estudio se evalúa la calidad oxidativa de muestras comerciales de frutos secos fritos mediante el análisis independiente de dos fracciones lipídicas, el aceite superficial, fácilmente extraíble con disolventes orgánicos, y la fracción de lípidos internos. Las muestras estudiadas fueron 6 muestras de almendras, 10 muestras de cacahuetes, 4 muestras de pipas de girasol y 2 muestras de anacardos. Se analizaron el contenido de aceite, el índice de peróxidos, el contenido de polímeros y la composición de ácidos grasos. Los resultados mostraron dos fracciones lipídicas con diferente estado de oxidación. Mayores niveles de oxidación fueron normalmente encontrados en la fracción más expuesta al aire, aunque estados de oxidaci

  17. Allium sativum aqueous extract prevents potassium dichromate-induced nephrotoxicity and lipid oxidation in rats

    Directory of Open Access Journals (Sweden)

    Sergio L. Becerra-Torres

    2014-04-01

    Full Text Available Context: The potassium dichromate (K2Cr2O7 induces nephrotoxicity by oxidative stress mechanisms. Aims: To study the potential protection of an aqueous extract of Allium sativum against the K2Cr2O7-induced nephrotoxicity and lipid oxidation in rats. Methods: Twenty four hours after treatment, biomarkers such as proteinuria, creatinine clearance, malondialdehyde production, specific enzyme activity of gamma glutamyl transpeptidase and alanine aminopeptidase, and renal clearance of para-aminohippuric acid and inulin were measured. Results: The K2Cr2O7 caused significant renal dysfunction, but A. sativum extract prevented this condition by improving all measured biomarkers. Conclusions: A single injection of K2Cr2O7 induced nephrotoxicity in rats, but the supply of an Allium sativum aqueous extract prevented the disorders caused by this metal.

  18. Testosterone therapy increased muscle mass and lipid oxidation in aging men

    DEFF Research Database (Denmark)

    Frederiksen, Louise; Højlund, Kurt; Hougaard, David M

    2011-01-01

    .92). Testosterone therapy increased muscle mass and lipid oxidation in aging men with low normal bioavailable testosterone levels; however, our data did not support an effect of testosterone on whole-body insulin sensitivity using the euglycemic hyperinsulinemic clamp technique.......-stimulated glucose disposal (Rd) and substrate oxidation were assessed by euglycemic hyperinsulinemic clamps combined with indirect calorimetry. Lean body mass (LBM) and total fat mass (TFM) were measured by dual x-ray absorptiometry, and serum total testosterone was measured by tandem mass spectrometry....... Bioavailable testosterone was calculated. Coefficients (b) represent the placebo-controlled mean effect of intervention. LBM (b = 1.9 kg, p = 0.003) increased while HDL-cholesterol (b = -0.12 mmol/l, p = 0.043) and TFM decreased (b = -1.2 kg, p = 0.038) in the testosterone group compared to placebo. Basal...

  19. Methods to assess secondary volatile lipid oxidation products in complex food matrices

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Yesiltas, Betül

    A range of different methods are available to determine secondary volatile lipid oxidation products. These methods include e.g. spectrophotometric determination of anisidine values and TBARS as well as GC based methods for determination of specific volatile oxidation products such as pentanal...... and hexanal. Different extraction methods for extracting volatiles before GC analysis can be used, e.g static headspace, dynamic headspace and solid phase microextraction. Traditionally, dynamic headspace extraction has been performed manually. However, recently automated dynamic headspace methods have become...... available. This presentation will briefly discuss advantages and disadvantages of spectrophotometric methods versus GC- based methods. Moreover, the different extraction methods used for GC-based analysis will be discussed and examples on results obtained with SPME, the traditional and the automated dynamic...

  20. AN OVERVIEW OF TRAINING METHODS THAT PROMOTE THE HIGHEST LIPID OXIDATION DURING AND AFTER A SINGLE EXERCISE SESSION

    Directory of Open Access Journals (Sweden)

    Barbara Purkart

    2016-02-01

    Full Text Available Given that physical activity is the most effective way to increase lipid oxidation, its effects are influenced by several factors. The goal of this review was to identify the most effective methods that facilitate the highest lipid oxidation during and after a single exercise session. For this purpose, the available scientific literature was examined using PubMed, Web of Science, Google Scholar and Cochrane Library databases up to June 2013 with the following keywords: excess post exercise oxygen consumption, exercise fatty acid, energy expenditure exercise and interval training. From the identified 48,583 potentially relevant references, 172 of them met all the required criteria. It was found out that prolonged (> 30 min moderate intensity (55 − 70 % VO2max exercise such as walking, jogging or cycling is the most effective way to increase lipid oxidation during and after a single exercise session. Low-volume high-intensity interval exercise is supposed to be as effective as traditional exercise with continuous endurance, with the main effect on lipid oxidation after the session and similar long-term metabolic adaptations. However, more research is still needed to compare the effects of regular resistance exercise with traditional endurance and high-intensity interval exercise. Finally, nutrition is also a significant factor since food rich in fat and low in carbohydrates promotes greater lipid oxidation.

  1. Different patterns of oxidized lipid products in plasma and urine of dengue fever, stroke, and Parkinson's disease patients: cautions in the use of biomarkers of oxidative stress.

    Science.gov (United States)

    Lee, Chung-Yung J; Seet, Raymond C S; Huang, Shan Hong; Long, Lee Hua; Halliwell, Barry

    2009-03-01

    Many products of lipid oxidation have been associated with human diseases. These include F2-isoprostanes (F2-IsoPs), hydroxyeicosatetraenoic acid products (HETEs), and cholesterol oxidation products (COPs). Here we present measurements of F2-IsoPs, HETEs, COPs, and arachidonate in single plasma samples of patients with acute (dengue fever and ischemic stroke) and chronic (Parkinson's) diseases, and in age-matched study controls. Urine samples were collected for F2-IsoPs analysis. Our analysis demonstrated elevated F2-IsoPs levels in ischemic stroke, HETEs in Parkinson's disease, dengue fever, and ischemic stroke, and COPs in Parkinson's disease and dengue fever patients, as compared with those in age-matched study controls. Strong but complex correlations were observed between levels of certain oxidized lipid products and age. The relations between various oxidized lipids and dengue fever, stroke, and Parkinson's disease are discussed in relation to the selection and application of biomarkers of oxidative lipid damage, in particular the need for corrections for age and lipid levels.

  2. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    Science.gov (United States)

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  3. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    DEFF Research Database (Denmark)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner;

    2016-01-01

    OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related t...... catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D....... methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate...... fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA...

  4. Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex.

    Science.gov (United States)

    Sgaravatti, Angela M; Magnusson, Alessandra S; de Oliveira, Amanda S; Rosa, Andréa P; Mescka, Caroline Paula; Zanin, Fernanda R; Pederzolli, Carolina D; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir; Dutra-Filho, Carlos Severo

    2009-09-01

    Tyrosine levels are abnormally elevated in tissues and physiological fluids of patients with inborn errors of tyrosine catabolism especially in tyrosinemia type II which is caused by deficiency of tyrosine aminotransferase (TAT) and provokes eyes, skin and central nervous system disturbances. We have recently reported that tyrosine promoted oxidative stress in vitro but the exact mechanisms of brain damage in these disorder are poorly known. In the present study, we investigated the in vivo effect of L-tyrosine (500 mg/Kg) on oxidative stress indices in cerebral cortex homogenates of 14-day-old Wistar rats. A single injection of L-tyrosine decreased glutathione (GSH) and thiol-disulfide redox state (SH/SS ratio) while thiobarbituric acid-reactive substances, protein carbonyl content and glucose-6-phosphate dehydrogenase activity were enhanced. In contrast, the treatment did not affect ascorbic acid content, and the activities of superoxide dismutase, catalase and glutathione peroxidase. These results indicate that acute administration of L-tyrosine may impair antioxidant defenses and stimulate oxidative damage to lipids and proteins in cerebral cortex of young rats in vivo. This suggests that oxidative stress may represent a pathophysiological mechanism in hypetyrosinemic patients.

  5. Antioxidant status, lipid peroxidation and nitric oxide in fibromyalgia: etiologic and therapeutic concerns.

    Science.gov (United States)

    Ozgocmen, Salih; Ozyurt, Huseyin; Sogut, Sadik; Akyol, Omer; Ardicoglu, Ozge; Yildizhan, Hulya

    2006-05-01

    We proposed to assess the oxidant/antioxidant status, lipid peroxidation and nitric oxide (NO) in untreated fibromyalgia (FM) patients and controls. The effect of amitriptyline (A, 20 mg daily) and sertraline (S, 100 mg daily) treatment on patients' superoxide dismutase (SOD), xanthine oxidase (XO), adenosine deaminase (ADA) enzyme activities, thiobarbituric acid reactive substances (TBARS) and NO levels was investigated. Thirty female patients with primary FM and age-matched 16 healthy female controls were included. Patients received an 8-week course of treatment with either A or S. FM patients had higher serum levels of TBARS (particularly malondialdehyde) and lower levels of nitrite compared to controls whereas enzyme activities were similar. A and S significantly improved Fibromyalgia Impact Questionnaire (FIQ) pain scores, Hamilton anxiety and depression rating scales. But neither A nor S had significant effects on measured oxidative stress parameters, except SOD activity that was significantly reduced after S treatment. Total myalgic scores negatively correlated with XO activity, and depression scales negatively correlated with levels of TBARS. Our results indicate that patients with FM are under oxidative stress. These findings represent a rationale for further research assessing the effect of free radical scavengers or antioxidant agents like vitamins and omega-3 fatty acids on peripheral and central mechanisms in FM.

  6. Study on Targeting and in vitro Anti-oxidation of Baicalin Solid Lipid Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    PING Yang; YU Lian; HU Yan-qiu; MA Li-na; CAO Yue-sheng; ZHANG Lei; MIYAMURA Mitsuhiko; YOKOTA Junko; YOSHIOKA Saburo

    2012-01-01

    Objective To prepare liver-targeted baicalin solid lipid nanoparticles(BSLNs)and to study their in vitro anti-oxidative activity.Methods BSLNs were prepared by emulsification ultrasonic dispersion method and characterized by transmission electron microscopy and laser particle size distribution;The tissue in vivo distribution was detected by pharmacokinetics;In vitro anti-superoxide dismutase(SOD)activity and reduction capacity of BSLNs were determined;The ability of removing hydroxyl radical was determined by phenanthroline-Fe2+oxidation.Results The best prescription was baicalin-soybean lecithin-glyeeryl monostearate-poloxamer 188(1:5:15:30);The encapsulation efficiency and drug loading were 84.7% and 5.65%,respectively,mean size of particles was(68.6±8)nm,Zeta potential was-22.13 mV;The in vitro anti-oxidant results showed that BSLNs had a significant inhibitory effect on SOD and a strong reducing capacity as well as a removing hydroxide radical ability.The targeting rate of BSLNs was 6.931 for liver.Conclusion The results demonstrate that BSLNs could enhance the liver targeting ability and in vitro anti-oxidative activity significantly.

  7. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid oxidation-derived aldehydes, and glucose

    OpenAIRE

    Adams, An; Kitrytė, Vaida; Venskutonis, Rimantas; De Kimpe, Norbert

    2011-01-01

    The development of flavor and browning in thermally treated foods results mainly from the Maillard reaction and lipid degradation but also from the interactions between both reaction pathways. To study these interactions, we analyzed the volatile compounds resulting from model reactions of lysine or glycine with aldehydes originating from lipid oxidation [hexanal, (E)-2-hexenal, or (2E,4E)-decadienal] in the presence and absence of glucose. The main reaction products identified in these model...

  8. High density lipoprotein level is negatively associated with the increase of oxidized low density lipoprotein lipids after a fatty meal.

    Science.gov (United States)

    Tiainen, Sanna; Ahotupa, Markku; Ylinen, Petteri; Vasankari, Tommi

    2014-12-01

    Recent reports show that a fatty meal can substantially increase the concentration of oxidized lipids in low density lipoprotein (LDL). Knowing the LDL-specific antioxidant effects of high density lipoprotein (HDL), we aimed to investigate whether HDL can modify the postprandial oxidative stress after a fatty meal. Subjects of the study (n = 71) consumed a test meal (a standard hamburger meal) rich in lipid peroxides, and blood samples were taken before, 120, 240, and 360 min after the meal. The study subjects were divided into four subgroups according to the pre-meal HDL cholesterol value (HDL subgroup 1, 0.66-0.91; subgroup 2, 0.93-1.13; subgroup 3, 1.16-1.35; subgroup 4, 1.40-2.65 mmol/L). The test meal induced a marked postprandial increase in the concentration of oxidized LDL lipids in all four subgroups. The pre-meal HDL level was associated with the extent of the postprandial rise in oxidized LDL lipids. From baseline to 6 h after the meal, the concentration of ox-LDL increased by 48, 31, 24, and 16% in the HDL subgroup 1, 2, 3, and 4, respectively, and the increase was higher in subgroup 1 compared to subgroup 3 (p = 0.028) and subgroup 4 (p = 0.0081), respectively. The pre-meal HDL correlated with both the amount and the rate of increase of oxidized LDL lipids. Results of the present study show that HDL is associated with the postprandial appearance of lipid peroxides in LDL. It is therefore likely that the sequestration and transport of atherogenic lipid peroxides is another significant mechanism contributing to cardioprotection by HDL.

  9. Oxidative stability and lipid oxidation flavoring volatiles in antioxidants treated chicken meat patties during storage.

    Science.gov (United States)

    Sohaib, Muhammad; Anjum, Faqir Muhammad; Arshad, Muhammad Sajid; Imran, Muhammad; Imran, Ali; Hussain, Shahzad

    2017-02-01

    Chicken meat contains higher percentage of polyunsaturated fatty acids that are susceptible to oxidative deterioration ultimately leading towards lower consumer acceptability for chicken meat products. Accordingly, meat processing industries are looking for combinations of natural antioxidants to enhance the oxidative stability and consumer acceptability of meat based products. The present study aimed to investigate the influence of directly added quercetin dihydrate in combination with α-tocopherol on oxidative stability, color characteristics, total carbonyls and flavor volatile compounds in chicken meat patties. Considering the preliminary studies, 3 levels of quercetin dihdrate @ 25, 50 and 100 mg/kg meat in combination with α-tocopherol at the rate 100 and 200 mg/kg meat were added to develop chicken meat patties and were stored at refrigeration temperature for 7 days. The oxidative stability of the antioxidant treated patties was determined by measuring malonaldehydes using TBARS and total carbonyls assay. The color (Lightness, redness and yellowness) of the patties was determined by using Konica Minolta Color Meter. Moreover, the volatile compounds were measured through gas chromatography at various storage intervals. The results elucidated that quercetin dehydrate inclusion at the rate of 50 mg/kg meat as well as particularly 100 mg/kg meat decreased the oxidation by reducing generation of malonaldehydes and total carbonyls in treated patties. Highest value for TBARS at initiation of storage was reported in (T0) as 1.93 ± 0.02 whereas lowest were reported in T6 and T5 as 0.37 ± 0.01 and 0.38 ± 0.03 that were increased to 3.47 ± 0.14, 0.90 ± 0.05 and 0.94 ± 0.34 at the completion of storage. Moreover, the lowest carbonyls also reported in T6 and the values at various storage intervals (1st, 3rd and 7th) were as 0.59 ± 0.025, 0.77 ± 0.015 and 1.02 ± 0.031, respectively. The antioxidants inclusion also

  10. Combination of aerobic and vacuum packaging to control lipid oxidation and off-odor volatiles of irradiated raw turkey breast.

    Science.gov (United States)

    Nam, K C; Ahn, D U

    2003-03-01

    Effects of the combination of aerobic and anaerobic packaging on color, lipid oxidation, and volatile production were determined to establish a modified packaging method to control quality changes in irradiated raw turkey meat. Lipid oxidation was the major problem with aerobically packaged irradiated turkey breast, while retaining characteristic irradiation off-odor volatiles such as dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide was the concern for vacuum-packaged breast during the 10-day refrigerated storage. Vacuum packaging of aerobically packaged irradiated turkey breast meat at 1 or 3 days of storage lowered the amounts of S-volatiles and lipid oxidation products compared with vacuum- and aerobically packaged meats, respectively. Irradiation increased the a-value of raw turkey breast, but exposing the irradiated meat to aerobic conditions alleviated the intensity of redness.

  11. Minor components in food oils: a critical review of their roles on lipid oxidation chemistry in bulk oils and emulsions.

    Science.gov (United States)

    Chen, Bingcan; McClements, David Julian; Decker, Eric Andrew

    2011-12-01

    Food oils are primarily composed of triacylglycerols (TAG), but they may also contain a variety of other minor constituents that influence their physical and chemical properties, including diacylglycerols (DAG), monoacylglycerols (MAG), free fatty acids (FFA), phospholipids (PLs), water, and minerals. This article reviews recent research on the impact of these minor components on lipid oxidation in bulk oils and oil-in-water emulsions. In particular, it highlights the origin of these minor components, the influence of oil refining on the type and concentration of minor components present, and potential physicochemical mechanisms by which these minor components impact lipid oxidation in bulk oils and emulsions. This knowledge is crucial for designing food, pharmaceutical, personal care, and other products with improved stability to lipid oxidation.

  12. Effect of different temperature-time combinations on lipid and protein oxidation of sous-vide cooked lamb loins.

    Science.gov (United States)

    Roldan, Mar; Antequera, Teresa; Armenteros, Monica; Ruiz, Jorge

    2014-04-15

    Forty-five lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70 and 80 °C) and time (6, 12 and 24 h) to assess the effect on the oxidative stability of lipids and proteins. Heating induced both lipid and protein oxidation in lamb loins. Higher cooking temperature-time combinations increased conjugated dienes and decreased thiobarbituric reactive substances (TBARS) values and hexanal. Total protein carbonyls increased throughout time at all cooking temperatures considered, while α-aminoadipic (AAS) and γ-glutamic semialdehydes (GGS) increased when cooking at 60 °C but not at 80 °C. Links between the decrease in secondary compounds from lipid oxidation due to cooking at higher temperatures and for longer times with the increased levels of 3-methylbutanal and greater differences between total protein carbonyls and AAS plus GGS were hypothesised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The effect of iodine salts on lipid oxidation and changes in nutritive value of protein in stored processed meats.

    Science.gov (United States)

    Hęś, Marzanna; Waszkowiak, Katarzyna; Szymandera-Buszka, Krystyna

    2012-10-01

    The aim was to assess the effect of iodine salts (KI or KIO(3)) on lipid oxidation as well as changes in the availability of lysine and methionine and protein digestibility in frozen-stored processed meats. Three types of iodine salt carriers were used: table salt, wheat fiber and soy protein isolate. The results showed no catalytic effect of iodine salts on lipid oxidation in stored processed meats. The application of a protein isolate and wheat fiber resulted in the inhibition of lipid oxidation in meatballs. During storage of meat products the contents of available lysine and methionine as well as protein digestibility were decreased. The utilization of wheat fiber as an iodine salt carrier had a significant effect on the reduction of lysine losses. No protective properties were found for the wheat fiber or soy protein isolate towards methionine.

  14. Bilirubin scavenges chloramines and inhibits myeloperoxidase-induced protein/lipid oxidation in physiologically relevant hyperbilirubinemic serum.

    Science.gov (United States)

    Boon, A C; Hawkins, C L; Coombes, J S; Wagner, K H; Bulmer, A C

    2015-09-01

    Hypochlorous acid (HOCl), an oxidant produced by myeloperoxidase (MPO), induces protein and lipid oxidation, which is implicated in the pathogenesis of atherosclerosis. Individuals with mildly elevated bilirubin concentrations (i.e., Gilbert syndrome; GS) are protected from atherosclerosis, cardiovascular disease, and related mortality. We aimed to investigate whether exogenous/endogenous unconjugated bilirubin (UCB), at physiological concentrations, can protect proteins/lipids from oxidation induced by reagent and enzymatically generated HOCl. Serum/plasma samples supplemented with exogenous UCB (≤250µM) were assessed for their susceptibility to HOCl and MPO/H2O2/Cl(-) oxidation, by measuring chloramine, protein carbonyl, and malondialdehyde (MDA) formation. Serum/plasma samples from hyperbilirubinemic Gunn rats and humans with GS were also exposed to MPO/H2O2/Cl(-) to: (1) validate in vitro data and (2) determine the relevance of endogenously elevated UCB in preventing protein and lipid oxidation. Exogenous UCB dose-dependently (P<0.05) inhibited HOCl and MPO/H2O2/Cl(-)-induced chloramine formation. Albumin-bound UCB efficiently and specifically (3.9-125µM; P<0.05) scavenged taurine, glycine, and N-α-acetyllysine chloramines. These results were translated into Gunn rat and GS serum/plasma, which showed significantly (P<0.01) reduced chloramine formation after MPO-induced oxidation. Protein carbonyl and MDA formation was also reduced after MPO oxidation in plasma supplemented with UCB (P<0.05; 25 and 50µM, respectively). Significant inhibition of protein and lipid oxidation was demonstrated within the physiological range of UCB, providing a hypothetical link to protection from atherosclerosis in hyperbilirubinemic individuals. These data demonstrate a novel and physiologically relevant mechanism whereby UCB could inhibit protein and lipid modification by quenching chloramines induced by MPO-induced HOCl.

  15. Accumulation of Oxidized Low-Density Lipoprotein in Psoriatic Skin and Changes of Plasma Lipid Levels in Psoriatic Patients

    Directory of Open Access Journals (Sweden)

    Nilgun Solak Tekin

    2007-01-01

    Full Text Available Background. Psoriasis is a chronic inflammatory skin disease characterized by an accelerated turnover of epidermal cells and an incomplete differentiation in epidermis with lesion. However, the exact etiology of psoriasis is unknown. Abnormalities in essential fatty acid metabolism, free radical generation, lipid peroxidation, and release of lymphokines have been proposed. Objective. Our purpose was to evaluate the plasma lipids and oxidized low-density lipoprotein accumulation in psoriatic skin lesion in order to ascertain the possible participation of oxidative stress and oxidative modification of lipids in pathogenesis of psoriasis. Methods. The study group included 84 patients with psoriasis, and 40 sex- and age-matched healthy volunteers. Blood lipid profile was determined. Psoriatic and nonlesional skin samples of psoriatic patients were evaluated for the presence of oxidized low-density lipoprotein by using an immune-fluorescent staining method. Results. The mean levels of lipids (total cholesterol, triglyceride, and LDL cholesterol in patients with psoriasis were found to be significantly higher than those of healthy subjects. Psoriatic skins were shown positive oxidized low-density lipoprotein staining. There was no staining in nonlesional skin samples of the same individuals. Conclusion. Lipid peroxidation mediated by free radicals is believed to be one of the important causes of cell membrane destruction and cell damage. This study shows for the first time the accumulation of oxidized low-density lipoprotein in psoriatic skin lesion. We believe that accumulation of ox-LDL in psoriatic skin may have an important role in the immune-inflammatory events that result in progressive skin damage.

  16. Effects of Loud Noise on Oxidation and Lipid peroxidation Variations of Liver Tissue of Rabbit

    Directory of Open Access Journals (Sweden)

    Mirzaei Ramazan

    2009-06-01

    Full Text Available Background: In today's world, noise is one of the major physical pollutants. The exact mechanism leading to tissue damage in loud noise is not clear. There are increasing evidences that show damage to cochlear tissue by noise is linked to cell injury induced by free radical species. The aim of this study was to investigate the relationship between change in liver tissue glutathione (anti- oxidant and malondialdehyde (one metabolite of lipid oxidation levels that occur in rabbits which were exposed to continuous loud noise.Materials and Methods: This experimental study was performed on 12 white Newzeland male rabbits in Tarbiat Modarres University in 2004. The rabbits were assigned to the following two groups: control, and exposed to continuous loud noise for 96 hours (8 h/day for 12 days, SPL=110dBA and 250Hz to 20 KHz. The concentration of malondialdehyde (MDA and glutathione (GSH in liver tissue samples were measured in rabbits after exposure to noise. Thiobarbituric acid reacting substance, Ellman's reagent and spectrophotometry techniques were used for this measurement. The data were statically analyzed by SPSS software and 2 groups were compared by t-test. Differences at the level of P<0.05 were considered statistically significant.Results: Comparison of the biochemical parameters of GSH and MDA measured in treated group with control indicated that antioxidant and lipid peroxidants parameters were suppressed in treated group compared to control group (p<0.05.Conclusion: Possible similarities between rabbit and human biological system indicate the possible role of noise in causation of oxidative stress in context with liver tissue impairm

  17. Development of novel fire retardants

    Science.gov (United States)

    Sigdel Regmi, Bhawani

    Numerous candidate environmentally-friendly, water-soluble, and non-toxic fire retardants and fire-retarding processes were developed and tested according to the ASTM D 3801 flammability test and the NRL 8093 smoldering test. Flame retardants that passed the ASTM D 3801 flammability test with the highest V0 rating were boron esters of guanidinium hydroxycarboxylate (glycolate, salicylate and dihydroxybenzoate), zinc gluconate borate ester, and cyanoacetate salts of organic bases (melaminium, cyanoguanidinium, and ammonium). Several related compounds pass this test with the lower V1 rating. Two new synergistic flame and smolder retarding systems were developed in which the individual components were incapable of preventing flame spread or smoldering but in combination they were highly effective. These systems were mixtures of either guanyl urea phosphate and boric acid or beta-alanine and boric acid. Compositions leading to the maximum solubility of boron oxides in the ammonium borate/sodium borate system were determined at several temperatures and the formation of mixtures exceeding 50% dissolved boric acid equivalents was found possible. These mixtures were applied as flame retardants for wood, paper, and carbon-loaded polyurethane foam both directly and indirectly by in situ precipitation of boric acid or zinc borate by appropriate chemical treatments. These all passed the ASTM flammability test with V0 rating. The performance of the boron-containing fire retardants is likely due to deposition of protective boron oxide coatings at elevated temperatures except where phosphate was present and a protective boron phosphate was deposited instead. In all cases, the oxidation of carbonaceous char was strongly inhibited. The hydroxycarboxylate groups generally formed intumescent chars during thermal decomposition that also contributed to fire retardancy.

  18. The effect of photodynamic action on leakage of ions through liposomal membranes that contain oxidatively modified lipids.

    Science.gov (United States)

    Ytzhak, Shany; Ehrenberg, Benjamin

    2014-01-01

    Singlet oxygen, created in photosensitization, peroxidizes unsaturated fatty acids of the membrane's lipids. This generates alcoholic or aldehyde groups at double bonds' breakage points. In a previous study, we examined the leakage of a K(+) -induced cross-membrane electric potential of liposomes that undergo photosensitization. The question remains to what extent peroxidized lipids can compromise the stability of the membrane. In this study, we studied the effect of the oxidatively modified lipids PGPC and ALDOPC in the membrane on its stability, by monitoring the membrane electric potential with the potentiometric dye DiSC(2)(5). As the content of the modified lipids increases the membrane becomes less stable, and even at just 2% of the modified lipids the membrane's integrity is affected, in respect to the leakage of ions through it. When the liposomes that contain the modified lipids undergo photosensitization by hematoporphyrin, the lipid bilayer becomes even more unstable and passage of ions is accelerated. We conclude that the existence of lipids with a shortened fatty acid that is terminated by a carboxylic acid or an aldehyde and more so when photosensitized damage occurs to unsaturated fatty acids in lecithin, add up to a critical alteration of the membrane, which becomes leaky to ions.

  19. Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency.

    Science.gov (United States)

    Geric, Ivana; Tyurina, Yulia Y; Krysko, Olga; Krysko, Dmitri V; De Schryver, Evelyn; Kagan, Valerian E; Van Veldhoven, Paul P; Baes, Myriam; Verheijden, Simon

    2017-09-22

    Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal β-oxidation during macrophage activation. In this study, we show that peroxisomal β-oxidation is strongly decreased in classically activated bone marrow derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal β-oxidation in macrophages, we used Mfp2(-/-) BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal β-oxidation in Mfp2(-/-) BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very long chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2(-/-) macrophages led to decreased inflammatory activation of Mfp2(-/-) BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2(-/-) macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal β-oxidation is involved in fine-tuning the phenotype of macrophages, likely by influencing the dynamic lipid profile during macrophage polarization. This article is protected by copyright. All rights reserved

  20. Protein and lipid oxidation in Longissimus dorsi and dry cured loin from Iberian pigs as affected by crossbreeding and diet.

    Science.gov (United States)

    Ventanas, Sonia; Estevez, Mario; Tejeda, Juan Florencio; Ruiz, Jorge

    2006-04-01

    Lipid and protein oxidation in Longissimus dorsi (LD) and dry-cured loins from pigs with different genetic (pure Iberian (IBP), Iberian female×Duroc male (IB×D) and Duroc female×Iberian male (D×IB)) and feeding backgrounds (free rearing on acorn and pasture (MON), concentrates high in oleic acid and supplemented with 250ppm of vitamin E(HOVE) and control concentrates (CON)) were investigated. Diet influenced the fatty acids profile from PL and α- and γ-tocopherol contents of LD. IBP-MON pigs showed the lowest malonaldehyde (MDA) values at 200min of iron induced muscle oxidation. Dry-cured loins from IBP-HOVE pigs had significantly (p<0.05) higher values of TBARS than those from the other batches. Neither the diet nor crossbreeding affected hexanal counts in dry-cured loins. Protein carbonyl content showed a similar trend to that observed for MDA values in LD, suggesting a protective role of tocopherol against lipid and protein oxidation. The positive and significant correlations between iron induced lipid oxidation in LD (200 min) and carbonyl content in LD and dry-cured loin (R(2): 0.55 and R(2): 0.52, respectively, p<0.01) support the relationship between lipid and protein oxidation.

  1. ELEVATED LIPID PEROXIDATION AND DNA OXIDATION IN NERVE FROM DIABETIC RATS: EFFECTS OF ALDOSE REDUCTASE INHIBITION, INSULIN AND NEUROTROPHIC FACTORS

    Science.gov (United States)

    Cunha, Joice M.; Jolivalt, Corinne G.; Ramos, Khara M.; Gregory, Joshua A.; Calcutt, Nigel A.; Mizisin, Andrew P.

    2008-01-01

    We investigated the effect of treatment with an aldose reductase inhibitor, insulin or select neurotrophic factors on the generation of oxidative damage in peripheral nerve. Rats were either treated with streptozotocin (STZ) to induce insulin-deficient diabetes or fed with a diet containing 40% D-galactose to promote hexose metabolism by aldose reductase. Initial time-course studies showed that lipid peroxidation and DNA oxidation were significantly elevated in sciatic nerve after 1 week or 2 weeks of STZ-induced diabetes, respectively, and that both remained elevated after 12 weeks of diabetes. The increase in nerve lipid peroxidation was completely prevented or reversed by treatment with the aldose reductase inhibitor, ICI 222155, or by insulin, but not by the neurotrophic factors, prosaptide TX14(A) or neurotrophin-3. The increase in nerve DNA oxidation was significantly prevented by insulin treatment. In contrast, up to 16 weeks of galactose feeding did not alter nerve lipid peroxidation or protein oxidation, despite evidence of ongoing nerve conduction deficits. These observations demonstrate that nerve oxidative damage develops early after the onset of insulin-deficient diabetes and that it is not induced by increased hexose metabolism by aldose reductase per se, but rather is a downstream consequence of flux through this enzyme. Furthermore, the beneficial effect of prosaptide TX14(A) and neurotrophin-3 on nerve function and structure in diabetic rats are not due to amelioration of increased lipid peroxidation. PMID:18555826

  2. Methionine sulfoxide profiling of milk proteins to assess the influence of lipids on protein oxidation in milk.

    Science.gov (United States)

    Wüst, Johannes; Pischetsrieder, Monika

    2016-06-15

    Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk.

  3. Long chain fatty acid acylated derivatives of quercetin-3-o-glucoside as antioxidants to prevent lipid oxidation.

    Science.gov (United States)

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2014-11-06

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  4. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Sumudu N. Warnakulasuriya

    2014-11-01

    Full Text Available Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G was esterified individually with six selected long chain fatty acids: stearic acid (STA, oleic acid (OLA, linoleic acid (LNA, α-linolenic acid (ALA, eicosapentaenoic acid (EPA and decosahexaenoic acid (DHA, using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL, in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  5. Oxidation-reduction potential and lipid oxidation in ready-to-eat blue mussels in red sauce: criteria for package design.

    Science.gov (United States)

    Bhunia, Kanishka; Ovissipour, Mahmoudreza; Rasco, Barbara; Tang, Juming; Sablani, Shyam S

    2017-01-01

    Ready-to-eat in-package pasteurized blue mussels in red sauce requires refrigerated storage or in combination with an aerobic environment to prevent the growth of anaerobes. A low barrier packaging may create an aerobic environment; however, it causes lipid oxidation in mussels. Thus, evaluation of the oxidation-reduction potential (Eh) (aerobic/anaerobic nature of food) and lipid oxidation is essential. Three packaging materials with oxygen transmission rate (OTR) of 62 (F-62), 40 (F-40) and 3 (F-3) cm(3) m(-2) day(-1) were selected for this study. Lipid oxidation was measured by color changes in thiobarbituric acid reactive substances (TBARS) at 532 nm (TBARS@532) and 450 nm (TBARS@450). Significantly higher (P packaged in higher OTR film. TBARS@450 in mussels packaged with F-62 and F-40 gradually increased during refrigerated storage (3.5 ± 0.5 °C), but remained constant after 20 days of storage for mussels packaged with F-3. The Eh of pasteurized sauce was not significantly affected (P > 0.05) by OTR and remained negative (packaged with higher OTR film. Mussels packed with high OTR film showed higher lipid oxidation, indicating that high barrier film is required for packaging of mussels. Pasteurized mussels must be kept in refrigerated storage to prevent growth of anaerobic proteolytic C. botulinum spores under temperature abuse. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Altered Antioxidant Status and Increased Lipid Per-Oxidation in Seminal Plasma of Tunisian Infertile Men

    Science.gov (United States)

    Atig, Fatma; Raffa, Monia; Ali, Habib Ben; Abdelhamid, Kerkeni; Saad, Ali; Ajina, Mounir

    2012-01-01

    Human seminal plasma is a natural reservoir of antioxidants that protect spermatozoa from oxidative damages. There is evidence in literature supports the fact that impairments in seminal antioxidant and lipid per-oxidation status play important roles in the physiopathology of male infertility. Our present study forms the first one which was carried out in Tunisia. We evaluated the antioxidant status in the seminal plasma of 120 infertile men programmed to In Vitro Fertilization (IVF) for the first tentative. Patients were characterized by an idiopathic infertility. They were divided into three groups: normozoospermics who were considered as controls (n=40), asthenozoospermics (Astheno; n=45) and oligoasthenoteratozoospermics (OAT; n=35). Seminal activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) and the levels of glutathione (GSH), zinc (Zn) and malondialdehyde (MDA) were measured. With the significant increase of the seminal activities of SOD and GPX in normozoospermics group, there were positive correlations observed between this enzymes and sperm quality. Also, significant elevated rates of seminal zinc and GSH were observed in control group, but there was contradictory associations reflecting the effects of these antioxidants on semen parameters. However, we noted significant increase of MDA levels in groups with abnormal seminogram. We showed negative associations between this per-oxidative marker and sperm parameters. These results obviously suggested that impairment on seminal antioxidants is an important risk factor for low sperm quality associated to idiopathic infertility and as a result can lead to poor IVF outcome. PMID:22211112

  7. Altered Antioxidant Status and Increased Lipid Per-Oxidation in Seminal Plasma of Tunisian Infertile Men

    Directory of Open Access Journals (Sweden)

    Fatma Atig, Monia Raffa, Habib Ben Ali, Kerkeni Abdelhamid, Ali Saad, Mounir Ajina

    2012-01-01

    Full Text Available Human seminal plasma is a natural reservoir of antioxidants that protect spermatozoa from oxidative damages. There is evidence in literature supports the fact that impairments in seminal antioxidant and lipid per-oxidation status play important roles in the physiopathology of male infertility. Our present study forms the first one which was carried out in Tunisia. We evaluated the antioxidant status in the seminal plasma of 120 infertile men programmed to In Vitro Fertilization (IVF for the first tentative. Patients were characterized by an idiopathic infertility. They were divided into three groups: normozoospermics who were considered as controls (n=40, asthenozoospermics (Astheno; n=45 and oligoasthenoteratozoospermics (OAT; n=35. Seminal activities of superoxide dismutase (SOD and glutathione peroxidase (GPX and the levels of glutathione (GSH, zinc (Zn and malondialdehyde (MDA were measured. With the significant increase of the seminal activities of SOD and GPX in normozoospermics group, there were positive correlations observed between this enzymes and sperm quality. Also, significant elevated rates of seminal zinc and GSH were observed in control group, but there was contradictory associations reflecting the effects of these antioxidants on semen parameters. However, we noted significant increase of MDA levels in groups with abnormal seminogram. We showed negative associations between this per-oxidative marker and sperm parameters. These results obviously suggested that impairment on seminal antioxidants is an important risk factor for low sperm quality associated to idiopathic infertility and as a result can lead to poor IVF outcome.

  8. Effect of high fluoride and high fat on serum lipid levels and oxidative stress in rabbits.

    Science.gov (United States)

    Sun, Liyan; Gao, Yanhui; Zhang, Wei; Liu, Hui; Sun, Dianjun

    2014-11-01

    The purpose of this study was to explore the effects of high fluoride and high fat on triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total antioxidant capacity (T-AOC), lipid peroxide (LPO) and malondialdehyde (MDA) in rabbits. A factorial experimental design was used, with two factors (fluoride and fat) and three levels. Seventy-two male rabbits were randomly assigned into nine groups according to initial weight and serum lipid levels. The rabbits were fed with basic feed, moderate fat feed or high fat feed and drank tap water, fluoridated water at levels of 50 and 100mgfluorion/L freely. Biological materials were collected after 5 months, and serum lipid, T-AOC, LPO, and MDA levels were then measured. Using these data, the separate and interactive effects of high fluoride and high fat were analyzed. High fluoride and high fat both increased serum levels of TC, HDL-C and LDL-C significantly (Pfluoride and high fat (Pfluoride and high fat had different effects on TG levels: high fat significantly increased TG levels (Pfluoride had nothing to do with TG levels (P>0.05). High fat significantly elevated LPO and MDA levels and lowered T-AOC levels in serum (Pfluoride significantly increased LPO and MDA levels in serum (Pfluoride on these indexes. In summary, high fluoride and high fat increased serum TC and LDL-C levels individually and synergistically, and this would cause and aggravate hypercholesterolemia in rabbits. At the same time, high fluoride and high fat both made the accumulation of product of oxidative stress in experimental animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Lipid oxidation and color changes of goose meat stored under vacuum and modified atmosphere conditions.

    Science.gov (United States)

    Orkusz, A; Haraf, G; Okruszek, A; Werenska-Sudnik, M

    2017-03-01

    The objective of the work was to investigate the color and lipid oxidation changes of goose breast meat packaged in vacuum and modified atmosphere (MA) conditions consisting of 80% O2, 20% CO2, and stored in refrigerated conditions at 4°C. Color stability was monitored by determining total heme pigments concentration; relative concentration of myoglobin, oxymyoglobin, and metmyoglobin; parameters of color L*, a*, b*, and sensory evaluation of the surface color. Lipid stability was measured by determining thiobarbituric acid reactive substances (TBARS). The samples were examined in 24 h after slaughter (unpacked muscles) and on d 4, 7, 9, 11 of storage (muscles packed in vacuum and in MA). Through the time of storage, samples packed in MA had higher TBARS values in comparison to the meat packed in vacuum. For samples packed in two types of atmospheres, the total pigments concentration decreased gradually within 11 d of storage. It was observed that relative metmyoglobin concentration increased whereas relative oxymyoglobin concentration decreased in total heme pigments in the MA stored muscle. The relative concentration of all three myoglobin forms sample packed in vacuum remained unchanged. The color parameters (L*, a*, b*) did not change for 11 d of storage for the vacuum packed meat. The value of the color parameter a* decreased and the value of the color parameters L* and b* increased in the samples packaged in MA. The data prove that if you store goose meat in MA (consisting of 80% O2, 20% CO2) or vacuum, the unchanged surface color is preserved for 9 and 11 day, respectively.Vacuum appears to be a better method as regards the maintaining of lipid stability in goose meat. © 2016 Poultry Science Association Inc.

  10. Prevention of lipid oxidation in omega-3 enriched oofds by antioxidants and the use of delivery systems

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte

    Due to the health beneficial effects of marine omega-3 fatty acids there is an increasing interest in developing functional foods containing these healthy fatty acids. However, such foods are very susceptible to lipid oxidation, which will give rise to undesirable off-flavours and unhealthy...... oxidation products. Efficients strategies to prevent lipid oxidation are therefore required. Such strategies include addition of antioxidants or the use of omega-3 delivery emulsions. However, antioxidant efficacy in complex omega-3 enriched foods are influenced by many factors including the lipophilicity...... of the antioxidants. Selection of the optimal antioxidant system is therefore a major challenge. Likewise, a range of factors can influence the ability of omega-3 delivery systems to protect the omega-3 fatty acids against oxidation after addition to food systems. These challenges will be discussed...

  11. Effects of capsinoid ingestion on energy expenditure and lipid oxidation at rest and during exercise

    Directory of Open Access Journals (Sweden)

    Staples Aaron W

    2010-08-01

    Full Text Available Abstract Background The thermogenic and metabolic properties of capsinoids appear to mimic those of the more pungent sister compound capsaicin. However, few data exist on how capsinoid ingestion affects energy expenditure in humans and no data exist on its interaction with exercise. We aimed to determine how ingestion of capsinoids affected energy expenditure, lipid oxidation and blood metabolites at rest and during moderate intensity exercise. Methods Twelve healthy young men (age = 24.3 ± 3 yr, BMI = 25.5 ± 1.7 kg·m-2 were studied on two occasions in a double-blind design following ingestion of either placebo or 10 mg of purified capsinoids at rest, after 90 min of cycling at 55% VO2 peak, and for 30 min into recovery. Subjects ingested the capsules 30 min prior to exercise. Results At rest, following ingestion of capsinoids, we observed increases in VO2 and plasma norepinephrine levels, and decreases in concentrations of serum free fatty acids, plasma glycerol and the respiratory exchange ratio (all P Conclusion The ingestion of 10 mg of capsinoids increased adrenergic activity, energy expenditure, and resulted in a shift in substrate utilization toward lipid at rest but had little effect during exercise or recovery. The changes we observed confirm previous data on the thermogenic and metabolic effects of capsinoids at rest and further promote its potential role as an adjunct weight loss aid, in addition to diet and exercise.

  12. Lipid Oxidation Inhibitory Effects and Phenolic Composition of Aqueous Extracts from Medicinal Plants of Colombian Amazonia

    Directory of Open Access Journals (Sweden)

    José Ignacio Ruiz-Sanz

    2012-05-01

    Full Text Available Diverse plants of ethnobotanic interest in Amazonia are commonly used in traditional medicine. We determined the antioxidant potential against lipid peroxidation, the antimicrobial activity, and the polyphenol composition of several Amazonian plants (Brownea rosademonte, Piper glandulosissimum, Piper krukoffii, Piper putumayoense, Solanum grandiflorum, and Vismia baccifera. Extracts from the plant leaf, bark, and stem were prepared as aqueous infusions, as used in folk medicine, and added to rat liver microsomes exposed to iron. The polyphenolic composition was detected by reverse-phase HPLC coupled to diode-array detector and MS/MS analysis. The antimicrobial activity was tested by the spot-on-a-lawn method against several indicator microorganisms. All the extracts inhibited lipid oxidation, except the P. glandulosissimum stem. The plant extracts exhibiting high antioxidant potential (V. baccifera and B. rosademonte contained high levels of flavanols (particularly, catechin and epicatechin. By contrast, S. grandiflorum leaf, which exhibited very low antioxidant activity, was rich in hydroxycinnamic acids. None of the extracts showed antimicrobial activity. This study demonstrates for the first time the presence of bioactive polyphenolic compounds in several Amazonian plants, and highlights the importance of flavanols as major phenolic contributors to antioxidant activity.

  13. Gaucher disease: plasmalogen levels in relation to primary lipid abnormalities and oxidative stress.

    Science.gov (United States)

    Moraitou, Marina; Dimitriou, Evangelia; Dekker, Nick; Monopolis, Ioannis; Aerts, Johannes; Michelakakis, Helen

    2014-01-01

    Plasmalogens represent a unique class of phospholipids. Reduced red blood cell plasmalogen levels in Gaucher disease patients were reported, correlating to total disease burden. The relation between plasmalogen abnormalities in Gaucher disease patients and primary glycosphingolipid abnormalities, malonyldialdehyde levels, an indicator of lipid peroxidation, and the total antioxidant status was further investigated. Significant reduction of C16:0 and C18:0 plasmalogens in red blood cells of Gaucher disease patients was confirmed. In parallel, a significant increase in the glucosylceramide/ceramide ratio in red blood cell membranes, as well as an average 200-fold increase in plasma glucosylsphingosine levels was observed. Red blood cell malonyldialdehyde levels were significantly increased in patients, whereas their total antioxidant status was significantly reduced. A negative correlation between plasmalogen species and glucosylceramide, ceramide, glucosylceramide/ceramide ratio, glucosylsphingosine and malonyldialdehyde, significant for the C16:0 species and all the above parameters with the exception of malonyldialdehyde levels, was found along with a positive non-significant correlation with the total antioxidant status. Our results indicate that increased lipid peroxidation and reduced total antioxidant status exist in Gaucher disease patients. They demonstrate a clear link between plasmalogen levels and the primary glycolipid abnormalities characterizing the disorder and an association with the increased oxidative stress observed in Gaucher disease patients.

  14. Lipid Peroxidation, Nitric Oxide Metabolites, and Their Ratio in a Group of Subjects with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Gregorio Caimi

    2014-01-01

    Full Text Available Our aim was to evaluate lipid peroxidation, expressed as thiobarbituric acid-reactive substances (TBARS, nitric oxide metabolites (nitrite + nitrate expressed as NOx, and TBARS/NOx ratio in a group of subjects with metabolic syndrome (MS. In this regard we enrolled 106 subjects with MS defined according to the IDF criteria, subsequently subdivided into diabetic (DMS and nondiabetic (NDMS and also into subjects with a low triglycerides/HDL-cholesterol (TG/HDL-C index or with a high TG/HDL-C index. In the entire group and in the four subgroups of MS subjects we found an increase in TBARS and NOx levels and a decrease in TBARS/NOx ratio in comparison with normal controls. Regarding all these parameters no statistical difference between DMS and NDMS was evident, but a significant increase in NOx was present in subjects with a high TG/HDL-C index in comparison with those with a low index. In MS subjects we also found a negative correlation between TBARS/NOx ratio and TG/HDL-C index. Considering the hyperactivity of the inducible NO synthase in MS, these data confirm the altered redox and inflammatory status that characterizes the MS and suggest a link between lipid peroxidation, inflammation, and insulin resistance, evaluated as TG/HDL-C index.

  15. CYP2E1, oxidative stress, post-translational modifications and lipid metabolism.

    Science.gov (United States)

    Lakshman, M Raj; Garige, Mamatha; Gong, Maokai A; Leckey, Leslie; Varatharajalu, Ravi; Redman, Robert S; Seth, Devanshi; Haber, Paul S; Hirsch, Kenneth; Amdur, Richard; Shah, Ruchi

    2013-01-01

    Chronic alcohol-mediated down-regulation of hepatic ST6Gal1 gene leads to defective glycosylation of lipid-carrying apolipoproteins such as apo E and apo J, resulting in defective VLDL assembly and intracellular lipid and lipoprotein transport, which in turn is responsible for alcoholic hepatosteatosis and ALD. The mechanism of ethanol action involves thedepletion of a unique RNA binding protein that specifically interacts with its 3'-UTR region of ST6Gal1 mRNA resulting in its destabilization and consequent appearance of asialoconjugates as alcohol biomarkers. With respect to ETOH effects on Cardio-Vascular Diseases, we conclude that CYP2E1 and ETOH mediated oxidative stress significantly down regulates not only the hepatic PON1 gene expression, but also serum PON1 and HCTLase activities accompanied by depletion of hepatic GSH, the endogenous antioxidant. These results strongly implicate the susceptibility of PON1 to increased ROS production. In contrast, betaine seems to be both hepatoprotective and atheroprotective by reducing hepatosteatosis and restoring not only liver GSH that quenches free radicals, but also the antiatherogenic PON1 gene expression and activity.

  16. Levels of lipid peroxidation, nitric oxide, and antioxidant vitamins in plasma of patients with fibromyalgia.

    Science.gov (United States)

    Akkuş, Selami; Naziroğlu, Mustafa; Eriş, Sevilay; Yalman, Kadir; Yilmaz, Nigar; Yener, Mahmut

    2009-06-01

    The etiology of fibromyalgia is not clearly understood. In recent years, a few studies have investigated the possible role of reactive oxygen species (ROS) in the etiology and pathogenesis of fibromyalgia. The aim of this study was to investigate plasma antioxidant vitamins, lipid peroxidation (LP), and nitric oxide (NO) levels in patients with fibromyalgia and controls. The study was performed on the blood plasma of 30 female patients and 30 age-matched controls. After a fast of 12 h, blood samples were taken, and plasma samples were obtained for measurement of vitamins A, C, E, and beta-carotene concentrations and levels of LP and NO. Concentrations of vitamins A (p fibromyalgia than in controls, and LP levels were significantly (p vitamin C and beta-carotene and levels of NO did not change significantly. These results provide some evidence for a potential role of LP and fat-soluble antioxidants in the patients with fibromyalgia.

  17. Investigating the effect of antioxidant extract from orange peel on lipids oxidation

    Directory of Open Access Journals (Sweden)

    Uduak G. AKPAN*

    2015-12-01

    Full Text Available This research involved investigation of the extraction yield and antioxidant property of orange peel on lipid oxidation. Orange peel was oven dried, grinded to powder and extraction procedure carried out using methanol as solvent in a soxhlet extractor. The effects of time and temperature on the extraction process were considered and results obtained showed an optimum extraction temperature and time of 50ºC and 120 minutes respectively. X-ray fluorescence analysis of the orange peel extract showed that potassium and calcium are the major elements by percentag mposition of 55.5 and 32.65 respectively. In studying the effects of oran eel extract on the melon oil sample, peroxide, free fatty acid and pH analysis were carried out for a period of 60 day. The result obtained confirmed the of ability orange peel extract as antioxidant agent.

  18. Antioxidant Effectiveness of Vegetable Powders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties: Implications for Health

    OpenAIRE

    Duthie, Garry; Campbell, Fiona; Bestwick, Charles; Stephen, Sylvia; Russell, Wendy

    2013-01-01

    Lipid and protein oxidation decreases the shelf-life of foods and may result in formation of end-products potentially detrimental for health. Consumer pressure to decrease the use of synthetic phenolic antioxidants has encouraged identification of alternative compounds or extracts from natural sources. We have assessed whether inclusion of dried vegetable powders improves the oxidative stability of turkey meat patties. Such powders are not only potentially-rich sources of phenolic antioxidant...

  19. Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy.

    Science.gov (United States)

    Hurley, Sarah J; Elling, Felix J; Könneke, Martin; Buchwald, Carolyn; Wankel, Scott D; Santoro, Alyson E; Lipp, Julius Sebastian; Hinrichs, Kai-Uwe; Pearson, Ann

    2016-07-12

    Archaeal membrane lipids known as glycerol dibiphytanyl glycerol tetraethers (GDGTs) are the basis of the TEX86 paleotemperature proxy. Because GDGTs preserved in marine sediments are thought to originate mainly from planktonic, ammonia-oxidizing Thaumarchaeota, the basis of the correlation between TEX86 and sea surface temperature (SST) remains unresolved: How does TEX86 predict surface temperatures, when maximum thaumarchaeal activity occurs below the surface mixed layer and TEX86 does not covary with in situ growth temperatures? Here we used isothermal studies of the model thaumarchaeon Nitrosopumilus maritimus SCM1 to investigate how GDGT composition changes in response to ammonia oxidation rate. We used continuous culture methods to avoid potential confounding variables that can be associated with experiments in batch cultures. The results show that the ring index scales inversely (R(2) = 0.82) with ammonia oxidation rate (ϕ), indicating that GDGT cyclization depends on available reducing power. Correspondingly, the TEX86 ratio decreases by an equivalent of 5.4 °C of calculated temperature over a 5.5 fmol·cell(-1)·d(-1) increase in ϕ. This finding reconciles other recent experiments that have identified growth stage and oxygen availability as variables affecting TEX86 Depth profiles from the marine water column show minimum TEX86 values at the depth of maximum nitrification rates, consistent with our chemostat results. Our findings suggest that the TEX86 signal exported from the water column is influenced by the dynamics of ammonia oxidation. Thus, the global TEX86-SST calibration potentially represents a composite of regional correlations based on nutrient dynamics and global correlations based on archaeal community composition and temperature.

  20. Effects of Sesame Seed Supplementation on Lipid Profile and Oxidative Stress Biomarkers in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Mahdieh Khadem Haghighian

    2014-07-01

    Full Text Available Background: This study was designed to assess the effect of sesame seed on lipid profile and oxidative stress biomarkers in knee osteoarthritis (OA patients. Methods: Fifty patients with knee OA were allocated into two groups receiving 40 g of sesame seed daily along with standard medical therapy (n=25 or standard treatment (n=25 for two months. Serum total antioxidant capacity, malondialdehyde (MDA and lipid profile (total cholesterol (TC, HDL-cholesterol, LDL-cholesterol, triglycerides were measured. Results: After the intervention period two months of study, serum TC, LDL-cholesterol and MDA decreased significantly in the sesame group (P0.05. There was no significant difference in pre and post-treatment values of lipid profile and oxidative parameters between the two groups (P>0.05. Conclusion: Current study showed a positive effect of sesame seed in improving lipid profile and oxidative stress in patients with knee OA and indicated the fact that sesame seed might be of help to reduce oxidative stress in OA patients.

  1. Effect of the dietary supplementation with vitamin E on colour stability and lipid oxidation in packaged, minced pork

    NARCIS (Netherlands)

    Houben, J.H.; Eikelenboom, G.; Hoving-Bolink, A.H.

    1997-01-01

    The effect of supplementation of vitamin E (200 IU kg-1 feed) in the diet of pigs on colour stability and lipid oxidation in minced pork was studied. Control and enriched diets were provided for the last 12 weeks before slaughter. Half of the samples of minced shoulder meat from control and suppleme

  2. In depth study of acrylamide formation in coffee during roasting: role of sucrose decomposition and lipid oxidation.

    Science.gov (United States)

    Kocadağlı, Tolgahan; Göncüoğlu, Neslihan; Hamzalıoğlu, Aytül; Gökmen, Vural

    2012-09-01

    Coffee, as a source of acrylamide, needs to be investigated in depth to understand the contribution of different precursors. This study aimed to investigate the contributions of sucrose decomposition and lipid oxidation on acrylamide formation in coffee during roasting. Coffee beans and model systems were used to monitor the accumulation of neo-formed carbonyls during heating through sucrose decomposition and lipid oxidation. High resolution mass spectrometry analyses confirmed the formation of 5-hydroxymethylfurfural (HMF) and 3,4-dideoxyosone, which were identified as the major sugar decomposition products in both roasted coffee and model systems. Among others, 2-octenal, 2,4-decadienal, 2,4-heptadienal, 4-hydroxynonenal, and 4,5-epoxy-2-decenal were identified in relatively high quantities in roasted coffee. Formation and elimination of HMF in coffee during roasting had a kinetic pattern similar to those of acrylamide. Its concentration rapidly increased within 10 min followed by an exponential decrease afterward. The amount of lipid oxidation products tended to increase linearly during roasting. It was concluded from the results that roasting formed a pool of neo-formed carbonyls from sucrose decomposition and lipid oxidation, and they play certain role on acrylamide formation in coffee.

  3. Antioxidant activity and inhibitory effects of lead (Leucaena leucocephala) seed extracts against lipid oxidation in model systems.

    Science.gov (United States)

    Benjakul, Soottawat; Kittiphattanabawon, Phanat; Shahidi, Fereidoon; Maqsood, Sajid

    2013-08-01

    Antioxidant activity of brown lead (Leucaena leucocephala) seed extracts with and without prior chlorophyll removal was studied in comparison with mimosine. Both extracts showed similar hydroxyl radical (HO(•)) scavenging activity, hydrogen peroxide (H2O2) scavenging activity, singlet oxygen inhibition and hypochlorous acid (HOCl) scavenging capacity (p > 0.05). Nevertheless, the extract without prior chlorophyll removal had higher oxygen radical absorbance capacity than that with prior chlorophyll removal (p < 0.05). Generally, lead seed extracts with and without prior chlorophyll removal possessed a lower antioxidant activity, compared with mimosine. When lead seed extract without prior chlorophyll removal (100 and 200 ppm) was used in different lipid oxidation model systems, including β-carotene-linoleic acid and lecithin liposome systems, the preventive effect toward lipid oxidation was dose-dependent. At the same level of use, mimosine exhibited a higher efficacy in prevention of lipid oxidation in both systems as indicated by the lower increases in thiobarbituric acid reactive substances. A similar result was obtained in minced mackerel. Therefore, lead seed extract containing mimosine could act as a natural antioxidant to prevent lipid oxidation in foods.

  4. [Perfluoran influence upon lipids peroxide oxidation and oral fluid antioxidant system activity in patients with chronic generalized parodontitis].

    Science.gov (United States)

    Bespalova, N A; Kontorshchikova, K N; Vorob'eva, A V

    2010-01-01

    The efficacy of perfluoran submucous administration in the postoperative period in patients with chronic parodontal diseases was studied over the dynamics of indicators of oral fluid antioxidant system and lipids peroxide oxidation. It was established that perfluoran submucous administration during postoperative period increased the efficacy of postoperative wound healing and decreased the risk of disease relapse development.

  5. Impact of antioxidants on the formation of volatile secondary lipid oxidation products in oil-in-water emulsions

    Science.gov (United States)

    Food emulsions are particularly susceptible to lipid oxidation, which leads to the formation of off-flavors and odors, and ultimately, shorter product shelf lives. Here we examine antioxidants for use in emulsions from a variety of different sources, including natural product extracts as well as rat...

  6. L-Carnitine supplementation improved clinical status without changing oxidative stress and lipid profile in women with knee osteoarthritis.

    Science.gov (United States)

    Malek Mahdavi, Aida; Mahdavi, Reza; Kolahi, Sousan; Zemestani, Maryam; Vatankhah, Amir-Mansour

    2015-08-01

    Considering the pathologic importance of oxidative stress and altered lipid metabolism in osteoarthritis (OA), this study aimed to investigate the effect of l-carnitine supplementation on oxidative stress, lipid profile, and clinical status in women with knee OA. We hypothesized that l-carnitine would improve clinical status by modulating serum oxidative stress and lipid profile. In this randomized double-blind, placebo-controlled trial, 72 overweight or obese women with mild to moderate knee OA were randomly allocated into 2 groups to receive 750 mg/d l-carnitine or placebo for 8 weeks. Dietary intake was evaluated using 24-hour recall for 3 days. Serum malondialdehyde (MDA), total antioxidant capacity (TAC) and lipid profile, visual analog scale for pain intensity, and patient global assessment of severity of disease were assessed before and after supplementation. Only 69 patients (33 in the l-carnitine group and 36 in the placebo group) completed the study. l-Carnitine supplementation resulted in significant reductions in serum MDA (2.46 ± 1.13 vs 2.16 ± 0.94 nmol/mL), total cholesterol (216.09 ± 34.54 vs 206.12 ± 39.74 mg/dL), and low-density lipoprotein cholesterol (129.45 ± 28.69 vs 122.05 ± 32.76 mg/dL) levels compared with baseline (P .05). No significant differences were observed in dietary intake, serum lipid profile, MDA, and TAC levels between groups after adjusting for baseline values and covariates (P > .05). There were significant intragroup and intergroup differences in pain intensity and patient global assessment of disease status after supplementation (P carnitine improved clinical status without changing oxidative stress and lipid profile significantly in women with knee OA.

  7. The Synergistic Effect of Bismuth Oxide on Flame Retardancy and Smoke Suppression of the Cotton Fabric Flame-retarded with Cyclic Phosphonate%氧化铋对环状膦酸酯阻燃棉织物的协效阻燃抑烟作用

    Institute of Scientific and Technical Information of China (English)

    孙才英; 王红; 董春梅

    2011-01-01

    The synergistic effect of bismuth oxide on flame retardancy and smoke suppression of the cotton fabric flame-retarded with cyclic phosphonate ester MCPPE was discussed in this paper. The results show that the LOI of the cotton fabric flame-retarded with MCPPE increased from 43% to 52% when 0.4 g/L bismuth oxide was added in MCPPE flame retardant finishing agent. Damaged carbon length shortened to 5 cm,and vertical flame reached B, level. Yet for breaking strength the influence was not so significant. Thermogravimetrie analysis shows that bismuth oxide further reduced the initial decomposition temperature and maximum pyrolysis temperature. SEM shows that the char of the burned cotton was denser after adding bismuth oxide and bismuth oxide had obvious resistance to deformation. Cone test shows that bismuth oxide not only reduced the total heat release rate of flame retarded cotton fabrics but also lowered the total smoke yield by 60%.%通过阻燃性能测试、热重分析、锥形量热分析等研究手段,考察了氧化铋对环状膦酸酯阻燃棉织物的阻燃抑烟协效作用.结果发现,在阻燃整理剂中添加0.4 g/L的氧化铋,可以使阻燃棉布的极限氧指数从43%提高到52%;损毁炭长缩短到5 cm,垂直燃烧达到B1级;而对断裂强度影响不大.热重分析表明,氧化铋的加入进一步降低了阻燃棉织物的初始分解温度和最大热解速率,500℃时的成炭量有所增加;扫描电镜显示,添加氧化铋后,棉织物燃烧成炭更致密;氧化铋具有明显的抗燃烧变形能力;锥形量热测试表明,氧化铋的添加不仅降低了阻燃棉织物的总热释放速率,而且使阻燃棉织物的总烟释放量降低了60%.

  8. Myeloperoxidase-dependent lipid peroxidation promotes the oxidative modification of cytosolic proteins in phagocytic neutrophils.

    Science.gov (United States)

    Wilkie-Grantham, Rachel P; Magon, Nicholas J; Harwood, D Tim; Kettle, Anthony J; Vissers, Margreet C; Winterbourn, Christine C; Hampton, Mark B

    2015-04-10

    Phagocytic neutrophils generate reactive oxygen species to kill microbes. Oxidant generation occurs within an intracellular phagosome, but diffusible species can react with the neutrophil and surrounding tissue. To investigate the extent of oxidative modification, we assessed the carbonylation of cytosolic proteins in phagocytic neutrophils. A 4-fold increase in protein carbonylation was measured within 15 min of initiating phagocytosis. Carbonylation was dependent on NADPH oxidase and myeloperoxidase activity and was inhibited by butylated hydroxytoluene and Trolox, indicating a role for myeloperoxidase-dependent lipid peroxidation. Proteomic analysis of target proteins revealed significant carbonylation of the S100A9 subunit of calprotectin, a truncated form of Hsp70, actin, and hemoglobin from contaminating erythrocytes. The addition of the reactive aldehyde 4-hydroxynonenal (HNE) caused carbonylation, and HNE-glutathione adducts were detected in the cytosol of phagocytic neutrophils. The post-translational modification of neutrophil proteins will influence the functioning and fate of these immune cells in the period following phagocytic activation, and provides a marker of neutrophil activation during infection and inflammation.

  9. Folic acid mediated solid lipid nanocarriers loaded with docetaxel and oxidized single-walled carbon nanotubes

    Science.gov (United States)

    Zhu, Xiali; Huang, Shengnan; Xie, Yingxia; Zhang, Huijuan; Hou, Lin; Zhang, Yingjie; Huang, Heqing; Shi, Jinjin; Wang, Lei; Zhang, Zhenzhong

    2014-01-01

    Single-walled carbon nanotubes (SWNT) possess high-near-infrared absorption coefficient, large surface area, and have great potential in drug delivery. In this study, we obtained ultrashort oxidized SWNT (OSWNT) using mixed acid oxidation method. Then, docetaxel (DTX) and folic acid (FA) are conjugated with OSWNT via π- π accumulation and amide linkage, respectively. A targeting and photothermal sensitive drug delivery system FA-DTX-OSWNT-SLN was prepared following a microemulsion technique. The size and zeta potential of FA-DTX-OSWNT-SLN were 182.8 ± 2.8 nm and -34.59 ± 1.50 mV, respectively. TEM images indicated that FA-DTX-OSWNT-SLN was spherical and much darker than general solid lipid nanoparticles (SLN). Furthermore, OSWNT may wind round, insert into or be encapsulated into the nanocarriers. Compared with free DTX, FA-DTX-OSWNT-SLN could efficiently cross cell membranes and afford higher antitumor efficacy in MCF-7 cells in vitro. Meanwhile, the combination of near-infrared laser (NIR) irradiation at 808 nm significantly enhanced cell inhibition. In conclusion, FA-DTX-OSWNT-SLN drug delivery system in combination with 808 nm NIR laser irradiation may be promising for targeting and photothermal cancer therapy with multiple mechanisms in future.

  10. Effects of storage time and temperature on lipid oxidation of egg powders enriched with natural antioxidants.

    Science.gov (United States)

    Matumoto-Pintro, Paula Toshimi; Murakami, Alice Eiko; Vital, Ana Carolina Pelaes; Croge, Camila; da Silva, Denise Felix; Ospina-Roja, Ivan Camilo; Guerra, Ana Flávia Quiles Garcia

    2017-08-01

    The lipid fraction of egg powder may be affected by storage conditions due to the development of oxidative rancidity caused by polyunsaturated fatty acids. This study evaluated egg powders enriched with antioxidants [tocopherol, catechin, lycopene, and butylated hydroxyanisole (BHA)] for conjugated dienes (during a 90-day period) and for malonaldehydes (during a 210-day period) at 25±2 and 4±1°C. The presence of lycopene and BHA increases the total phenolic compounds in the enriched egg powders, and BHA exhibits the most antioxidant activity, as quantified by an ABTS assay. Egg powders enriched with antioxidants do not show any reduction in conjugate diene production compared to controls, and no effect of storage temperature is observed; however, in the production of malonaldehyde, greater stability is observed at 4°C, and catechin is more effective in reducing oxidation during storage. The results show that natural antioxidants can be used in egg powder instead of synthetic compounds to reduce malonaldehyde production during storage.

  11. A Methionine Deficient Diet Enhances Adipose Tissue Lipid Metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs.

    Directory of Open Access Journals (Sweden)

    Rosa Castellano

    Full Text Available Methionine is a rate-limiting amino-acid for protein synthesis but non-proteinogenic roles on lipid metabolism and oxidative stress have been demonstrated. Contrary to rodents where a dietary methionine deficiency led to a lower adiposity, an increased lipid accretion rate has been reported in growing pigs fed a methionine deficient diet. This study aimed to clarify the effects of a dietary methionine deficiency on different aspects of tissue lipid metabolism and anti-oxidant pathways in young pigs. Post-weaned pigs (9.8 kg initial body weight were restrictively-fed diets providing either an adequate (CTRL or a deficient methionine supply (MD during 10 days (n=6 per group. At the end of the feeding trial, pigs fed the MD diet had higher lipid content in subcutaneous adipose tissue. Expression levels of genes involved in glucose uptake, lipogenesis but also lipolysis, and activities of NADPH enzyme suppliers were generally higher in subcutaneous and perirenal adipose tissues of MD pigs, suggesting an increased lipid turnover in those pigs. Activities of the anti-oxidant enzymes superoxide dismutase, catalase and glutathione reductase were increased in adipose tissues and muscle of MD pigs. Expression level and activity of the glutathione peroxidase were also higher in liver of MD pigs, but hepatic contents in the reduced and oxidized forms of glutathione and glutathione reductase activity were lower compared with control pigs. In plasma, superoxide dismutase activity was higher but total anti-oxidant power was lower in MD pigs. These results show that a dietary methionine deficiency resulted in increased levels of lipogenesis and lipolytic indicators in porcine adipose tissues. Decreased glutathione content in the liver and coordinated increase of enzymatic antioxidant activities in adipose tissues altered the cellular redox status of young pigs fed a methionine-deficient diet. These findings illustrate that a rapidly growing animal differently

  12. A Methionine Deficient Diet Enhances Adipose Tissue Lipid Metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs.

    Science.gov (United States)

    Castellano, Rosa; Perruchot, Marie-Hélène; Conde-Aguilera, José Alberto; van Milgen, Jaap; Collin, Anne; Tesseraud, Sophie; Mercier, Yves; Gondret, Florence

    2015-01-01

    Methionine is a rate-limiting amino-acid for protein synthesis but non-proteinogenic roles on lipid metabolism and oxidative stress have been demonstrated. Contrary to rodents where a dietary methionine deficiency led to a lower adiposity, an increased lipid accretion rate has been reported in growing pigs fed a methionine deficient diet. This study aimed to clarify the effects of a dietary methionine deficiency on different aspects of tissue lipid metabolism and anti-oxidant pathways in young pigs. Post-weaned pigs (9.8 kg initial body weight) were restrictively-fed diets providing either an adequate (CTRL) or a deficient methionine supply (MD) during 10 days (n=6 per group). At the end of the feeding trial, pigs fed the MD diet had higher lipid content in subcutaneous adipose tissue. Expression levels of genes involved in glucose uptake, lipogenesis but also lipolysis, and activities of NADPH enzyme suppliers were generally higher in subcutaneous and perirenal adipose tissues of MD pigs, suggesting an increased lipid turnover in those pigs. Activities of the anti-oxidant enzymes superoxide dismutase, catalase and glutathione reductase were increased in adipose tissues and muscle of MD pigs. Expression level and activity of the glutathione peroxidase were also higher in liver of MD pigs, but hepatic contents in the reduced and oxidized forms of glutathione and glutathione reductase activity were lower compared with control pigs. In plasma, superoxide dismutase activity was higher but total anti-oxidant power was lower in MD pigs. These results show that a dietary methionine deficiency resulted in increased levels of lipogenesis and lipolytic indicators in porcine adipose tissues. Decreased glutathione content in the liver and coordinated increase of enzymatic antioxidant activities in adipose tissues altered the cellular redox status of young pigs fed a methionine-deficient diet. These findings illustrate that a rapidly growing animal differently adapts tissue

  13. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai Connie [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-01

    Oxidative stress and lipid accumulation play important roles in alcohol-induced liver injury. Previous reports showed that, in livers of nuclear factor erythroid 2-related factor 2 (Nrf2)-activated mice, genes involved in antioxidant defense are induced, whereas genes involved in lipid biosynthesis are suppressed. To investigate the role of Nrf2 in ethanol-induced hepatic alterations, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation, were treated with ethanol (5 g/kg, po). Blood and liver samples were collected 6 h thereafter. Ethanol increased alanine aminotransferase and lactate dehydrogenase activities as well as thiobarbituric acid reactive substances in serum of Nrf2-null and wild-type mice, but not in Nrf2-enhanced mice. After ethanol administration, mitochondrial glutathione concentrations decreased markedly in Nrf2-null mice but not in Nrf2-enhanced mice. H{sub 2}DCFDA staining of primary hepatocytes isolated from the four genotypes of mice indicates that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. Ethanol increased serum triglycerides and hepatic free fatty acids in Nrf2-null mice, and these increases were blunted in Nrf2-enhanced mice. In addition, the basal mRNA and nuclear protein levels of sterol regulatory element-binding protein 1(Srebp-1) were decreased with graded Nrf2 activation. Ethanol further induced Srebp-1 mRNA in Nrf2-null mice but not in Nrf2-enhanced mice. In conclusion, Nrf2 activation prevented alcohol-induced oxidative stress and accumulation of free fatty acids in liver by increasing genes involved in antioxidant defense and decreasing genes involved in lipogenesis. -- Highlights: ► Ethanol depleted mitochondrial GSH in Nrf2-null mice but not in Keap1-KD mice. ► Ethanol increased ROS in hepatocytes isolated from Nrf2-null and wild

  14. Prevention of lipid oxidation in omega-3 enriched oofds by antioxidants and the use of delivery systems

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte

    oxidation products. Efficients strategies to prevent lipid oxidation are therefore required. Such strategies include addition of antioxidants or the use of omega-3 delivery emulsions. However, antioxidant efficacy in complex omega-3 enriched foods are influenced by many factors including the lipophilicity...... of the antioxidants. Selection of the optimal antioxidant system is therefore a major challenge. Likewise, a range of factors can influence the ability of omega-3 delivery systems to protect the omega-3 fatty acids against oxidation after addition to food systems. These challenges will be discussed...... in this presentation and examples from the authors own research on antioxidants and omega-3 delivery systems will be given....

  15. Oxidative Stress Induced Lipid Peroxidation And DNA Adduct Formation In The Pathogenesis Of Multiple Myeloma And Lymphoma

    Directory of Open Access Journals (Sweden)

    Tandon, Ravi

    2013-02-01

    Full Text Available Objective: To access the oxidative stress status by quantification of byproducts generated during lipid peroxidation and DNA breakdown products generated during DNA damage in the blood serum of multiple myeloma and lymphoma patients.Material & Methods: Case control study comprised of 40 patients of multiple myeloma and 20 patients of lymphoma along with 20 age and sex-matched healthy subjects as controls. Levels of Malondialdehyde and 8-hydroxy-2-deoxy-Guanosine were measured to study the oxidative stress status in the study subjects.Results: The level of markers of DNA damage and lipid peroxidation were found to be raised significantly in the study subjects in comparison to healthy controls. The results indicate oxidative stress and DNA damage activity increase progressively with the progression of disease.Conclusion: Oxidative stress causes DNA damage and Lipid peroxidation which results in the formation of DNA adducts leading to mutations thereby indicate the role of oxidative stress in the pathogenesis of multiple myeloma and lymphoma.

  16. Antioxidant Effectiveness of Vegetable Powders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties: Implications for Health

    Directory of Open Access Journals (Sweden)

    Wendy Russell

    2013-04-01

    Full Text Available Lipid and protein oxidation decreases the shelf-life of foods and may result in formation of end-products potentially detrimental for health. Consumer pressure to decrease the use of synthetic phenolic antioxidants has encouraged identification of alternative compounds or extracts from natural sources. We have assessed whether inclusion of dried vegetable powders improves the oxidative stability of turkey meat patties. Such powders are not only potentially-rich sources of phenolic antioxidants, but also may impart additional health benefits, as inadequate vegetable consumption is a risk factor for heart disease and several cancers. In an accelerated oxidation system, six of eleven vegetable powders significantly (p < 0.05 improved oxidative stability of patties by 20%–30% (spinach < yellow pea < onion < red pepper < green pea < tomato. Improved lipid oxidative stability was strongly correlated with the decreased formation of protein carbonyls (r = 0.747, p < 0.01. However, improved lipid stability could not be ascribed to phenolic acids nor recognized antioxidants, such as α- and γ-tocopherol, despite their significant (p < 0.01 contribution to the total antioxidant capacity of the patties. Use of chemically complex vegetable powders offers an alternative to individual antioxidants for increasing shelf-life of animal-based food products and may also provide additional health benefits associated with increased vegetable intake.

  17. Eff ects of natural antioxidants on colour stability, lipid oxidation and metmyoglobin reducing activity in raw beef patties

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2015-03-01

    Full Text Available Background. Minced meats undergo oxidative changes and develop rancidity more quickly than intact muscle since grinding exposes more of the muscle surface to air and microbial contamination. Due to concerns about toxicological safety of synthetic antioxidants, recent studies have put more focus on natural antioxidant compounds derived from food components. Material and methods. The effects of four natural antioxidants (vitamin E, carnosine, grape seed extract and tea catechins on oxidative processes and metmyoglobin reducing activity in raw beef patties during refrigerated (4°C storage were investigated and the results were compared with butylated hydroxyanisole treatment patties. The correlation of lipid oxidation, colour and metmyoglobin reducing activity of beef patties were also studied. Results. Samples treated with carnosine had the highest redness values on the eighth day. Tea catechins, vitamin E and grape seed extract showed higher protective effect against lipid oxidation than carnosine. Metmyoglobin reducing activity increased greatly in all samples during the storage. Signifi cant correlation between redness value and lipid oxidation was demonstrated, while a weak correlation between metmyoglobin reducing activity and any other parameters was shown.

  18. The application of natural antioxidants via brine injection protects Iberian cooked hams against lipid and protein oxidation.

    Science.gov (United States)

    Armenteros, Mónica; Morcuende, David; Ventanas, Jesús; Estévez, Mario

    2016-06-01

    In response to the increasing consumers' mistrust in synthetic additives, the meat industry is focused on searching sources of natural antioxidants. Two different sources of natural antioxidants i) a mixture of garlic, cinnamon, cloves and rosemary essential oils and ii) a Rosa canina L. extract, were compared with a commercial antioxidant additive (Artinox®) for their ability to control protein and lipid oxidation in cooked hams after a settling period of 30 days and at the end of a chilled storage (150 days). The mixture of essential oils was the most effective against lipid oxidation while R. canina L. extracts were the most effective in controlling protein carbonylation at day 150. Accordingly, the use of these antioxidants via brine injection is a successful strategy to enhance the oxidative stability of cooked hams without modifying their physicochemical properties.

  19. Butyl hydroxytoluene (BHT)-induced oxidative stress: effects on serum lipids and cardiac energy metabolism in rats.

    Science.gov (United States)

    Faine, L A; Rodrigues, H G; Galhardi, C M; Ebaid, G M X; Diniz, Y S; Fernandes, A A H; Novelli, E L B

    2006-01-01

    Recent lines of evidences indicate that several pathological conditions, as cardiovascular diseases, are associated with oxidative stress. In order to validate a butylated hydroxytoluene (BHT)-induced experimental model of oxidative stress in the cardiac tissue and serum lipids, 12 Wistar rats were divided into two groups, a control group and the BHT group, which received BHT i.p. twice a week (1500 mg/kg body weight) during 30 days. BHT group presented lower body weight gain and heart weight. BHT induced toxic effects on serum through increased triacylglycerols (TG), VLDL and LDL-cholesterol concentrations. The heart of BHT animals showed alteration of antioxidant defenses and increased concentrations of lipid hydroperoxides, indicating elevated lipoperoxidation. TG concentrations and lactate dehydrogenase activities were elevated in the cardiac muscle of BHT animals. Thus, long-term administration of BHT is capable to induce oxidative and metabolic alterations similarly to some pathological disorders, constituting an efficient experimental model to health scientific research.

  20. Antioxidant activity and prevention of pork meat lipid oxidation using traditional Mexican condiments (pasilla dry pepper, achiote, and mole sauce

    Directory of Open Access Journals (Sweden)

    Emilio Alvarez-Parrilla

    2014-06-01

    Full Text Available Considering the extensive use of hot peppers and spicy sauces in the Mexican cuisine, in the present paper, three widely consumed Mexican condiments (mole sauce, achiote, and pasilla hot pepper were analyzed for their total phenols, flavonoids and proanthocyanidins, antioxidant activity, and protective effect against lipid oxidation in chopped pork meat. All samples were extracted first with methanol and then with acetone, and the extracts were compared. Pasilla pepper showed the highest phenolic and flavonoid content in both solvents, followed by mole and achiote. Achiote showed the highest proanthocyanidin concentration. All samples showed high antioxidant activity, and good correlations with phenolic compounds and flavonoids, while no correlation was observed in the case of condensed tannins. Mole sauce methanolic extract showed the highest inhibition of pork meat oxidation, followed by pasilla pepper, and finally achiote paste extracts. These results suggest that these condiments are useful to prevent meat lipid oxidation during storage.

  1. Higher serum lipids and oxidative stress in patients with normal tension glaucoma, but not pseudoexfoliative glaucoma

    Science.gov (United States)

    Yilmaz, Necat; Coban, Deniz Turgut; Bayindir, Asli; Erol, Muhammet Kazim; Ellidag, Hamit Yasar; Giray, Ozlem; Sayrac, Suha; Tekeli, Seckin Ozgur; Eren, Esin

    2016-01-01

    This study entailed a cross-examination of oxidant/antioxidant balance, high-density lipoprotein (HDL)-linked paraoxonase 1 (PON1) phenotypes, and levels of serum routine lipids among patients with normal tension glaucoma (NTG) or pseudoexfoliative glaucoma (PEXG) compared with healthy control groups. We aimed to investigate the links between oxidative stress (OS), HDL-related antioxidant enzyme activities and dyslipidemia in distinct subtypes of glaucoma. The study included 32 patients with NTG, 31 patients with PEXG, and 40 control subjects. Levels of PON1 and arylesterase enzymatic activity, total oxidant status (TOS), and total antioxidant status were measured by spectrophotometry and OS indexes (OSI) were calculated. The phenotype distribution of PON1 was determined using the dual substrate method. Blood serum levels of HDL, low-density lipoprotein, total cholesterol (TC), and triglyceride (TG) were measured. The TOS and OSI values in the NTG group were significantly higher compared with the other groups (both p < 0.01). The phenotype distribution found in the glaucoma and control groups were NTG: QQ, 59.4%; QR, 37.5%; RR, 3.1%; PEXG: QQ, 45.1%; QR, 48.4%; RR, 6.5%; and in the control group: QQ, 42.5%; QR, 50.0%; RR, 7.5%. Serum TC levels were significantly higher than the control in both NTG and PEXG groups, whereas TG was significantly higher in NTG only (p < 0.01 and p < 0.02, respectively). Hyperlipidemia, OS and variations in phenotype distribution of PON1 may play a role in the pathogenesis of different types of glaucoma. PMID:26773174

  2. Higher serum lipids and oxidative stress in patients with normal tension glaucoma, but not pseudoexfoliative glaucoma

    Directory of Open Access Journals (Sweden)

    Necat Yilmaz

    2016-01-01

    Full Text Available This study entailed a cross-examination of oxidant/antioxidant balance, high-density lipoprotein (HDL-linked paraoxonase 1 (PON1 phenotypes, and levels of serum routine lipids among patients with normal tension glaucoma (NTG or pseudoexfoliative glaucoma (PEXG compared with healthy control groups. We aimed to investigate the links between oxidative stress (OS, HDL-related antioxidant enzyme activities and dyslipidemia in distinct subtypes of glaucoma. The study included 32 patients with NTG, 31 patients with PEXG, and 40 control subjects. Levels of PON1 and arylesterase enzymatic activity, total oxidant status (TOS, and total antioxidant status were measured by spectrophotometry and OS indexes (OSI were calculated. The phenotype distribution of PON1 was determined using the dual substrate method. Blood serum levels of HDL, low-density lipoprotein, total cholesterol (TC, and triglyceride (TG were measured. The TOS and OSI values in the NTG group were significantly higher compared with the other groups (both p < 0.01. The phenotype distribution found in the glaucoma and control groups were NTG: QQ, 59.4%; QR, 37.5%; RR, 3.1%; PEXG: QQ, 45.1%; QR, 48.4%; RR, 6.5%; and in the control group: QQ, 42.5%; QR, 50.0%; RR, 7.5%. Serum TC levels were significantly higher than the control in both NTG and PEXG groups, whereas TG was significantly higher in NTG only (p < 0.01 and p < 0.02, respectively. Hyperlipidemia, OS and variations in phenotype distribution of PON1 may play a role in the pathogenesis of different types of glaucoma.

  3. Argan Oil Exerts an Antiatherogenic Effect by Improving Lipids and Susceptibility of LDL to Oxidation in Type 2 Diabetes Patients

    Directory of Open Access Journals (Sweden)

    M. M. Ould Mohamedou

    2011-01-01

    Full Text Available In this study, we investigate the effect of argan oil consumption on serum lipids, apolipoproteins (AI and B, CRP, and LDL susceptibility to oxidation in type 2 diabetic patients which are known to have a high level of cardiovascular risk due to lipid abnormalities and lipid peroxidation. For that, 86 type 2 diabetic patients with dyslipidemia were randomized to one group consuming 25 mL/day of argan oil during 3 weeks and control group consuming 20 g/day of butter in breakfast. After argan oil intervention, serum triglycerides decreased by 11.84%, (P=0.001, total chol by 9.13%, (P=0.01, and LDL-chol by 11.81%, (P=0.02. However, HDL-chol and Apo AI increased (10.51%, P=0.01 and 9.40%,  P=0.045, resp.. Susceptibility of LDL to lipid peroxidation was significantly reduced by increasing of 20.95%, (P=0.038 in lag phase after argan oil consumption. In conclusion, we show for the first time that consumption of argan oil may have an antiatherogenic effect by improving lipids, and the susceptibility of LDL to oxidation in type 2 diabetes patients with dyslipidemia, and can therefore be recommended in the nutritional management of type 2 diabetes.

  4. Argan Oil Exerts an Antiatherogenic Effect by Improving Lipids and Susceptibility of LDL to Oxidation in Type 2 Diabetes Patients.

    Science.gov (United States)

    Ould Mohamedou, M M; Zouirech, K; El Messal, M; El Kebbaj, M S; Chraibi, A; Adlouni, A

    2011-01-01

    In this study, we investigate the effect of argan oil consumption on serum lipids, apolipoproteins (AI and B), CRP, and LDL susceptibility to oxidation in type 2 diabetic patients which are known to have a high level of cardiovascular risk due to lipid abnormalities and lipid peroxidation. For that, 86 type 2 diabetic patients with dyslipidemia were randomized to one group consuming 25 mL/day of argan oil during 3 weeks and control group consuming 20 g/day of butter in breakfast. After argan oil intervention, serum triglycerides decreased by 11.84%, (P = 0.001), total chol by 9.13%, (P = 0.01), and LDL-chol by 11.81%, (P = 0.02). However, HDL-chol and Apo AI increased (10.51%, P = 0.01 and 9.40%,  P = 0.045, resp.). Susceptibility of LDL to lipid peroxidation was significantly reduced by increasing of 20.95%, (P = 0.038) in lag phase after argan oil consumption. In conclusion, we show for the first time that consumption of argan oil may have an antiatherogenic effect by improving lipids, and the susceptibility of LDL to oxidation in type 2 diabetes patients with dyslipidemia, and can therefore be recommended in the nutritional management of type 2 diabetes.

  5. Rapid determination of lipid peroxidation using a novel pyridoxamine-participating ferrous oxidation-sulfosalicylic acid spectrophotometric method.

    Science.gov (United States)

    Chen, Jingnan; Cai, Danqian; Zhang, Yu

    2016-11-15

    A novel method is developed to rapidly analyze lipid peroxidation in edible oils and fatty foods at room temperature, which is called the pyridoxamine-participating ferrous oxidation-sulfosalicylic acid (PFOS) method. The PFOS method evaluates the lipid peroxide value colorimetrically via detecting the pyridoxamine-mediated pigment produced by 5-sulfosalicylic acid and Fe(3+) at 500nm, while the latter is converted from Fe(2+) in the presence of lipid peroxides. The optimized formulation was ethanol (70%, v/v), Fe(2+) (4mmol/L), 5-sulfosalicylic acid (40mmol/L) and pyridoxamine (18mmol/L). The limit of quantitation is 0.087mmol Fe(3+)/L with acceptable reproducibility. In addition, current method has a significant linear correlation with both conventional thiobarbituric acid (R(2)=0.9999) and ferric thiocyanate assays (R(2)=0.9675). This method offers a rapid technique for evaluating lipid peroxidation without heating and sophisticated instrumental procedures. Besides, current method provides a new option to evaluate the lipid peroxidation state and improve the reproducibility of ferrous-oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Conformations of double-headed, triple-tailed phospholipid oxidation lipid products in model membranes

    DEFF Research Database (Denmark)

    Hermetter, Albin; Kopec, Wojciech; Khandelia, Himanshu

    2013-01-01

    lipid in a Schiff base reaction to form a conjugate lipid (SCH) with two head groups, and three acyl tails. We investigate the conformations and properties of this unique class of adduct lipids using molecular dynamics simulations, and show that their insertion into lipid bilayers of POPC increases...... between the two head groups of the SCH. Schiff base formation of lipids can alter the concentration, homeostasis and localizations of phosphatidylserine and phosphatidylethanol lipids in membranes, and can therefore influence several membrane-associated processes including fusion and budding. The current...

  7. Positive Association between Urinary Concentration of Phthalate Metabolites and Oxidation of DNA and Lipid in Adolescents and Young Adults

    Science.gov (United States)

    Lin, Chien-Yu; Chen, Pau-Chung; Hsieh, Chia-Jung; Chen, Chao-Yu; Hu, Anren; Sung, Fung-Chang; Lee, Hui-Ling; Su, Ta-Chen

    2017-01-01

    Phthalate has been used worldwide in various products for years. Little is known about the association between phthalate exposure and biomarkers of oxidative stress in adolescents and young adults. Among 886 subjects recruited from a population-based cohort during 2006 to 2008, 751 subjects (12–30 years) with complete phthalate metabolites and oxidation stress measurement were enrolled in this study. Nine urine phthalate metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso prostaglandin F2α (8-isoPGF2α) were measured in urine to assess exposure and oxidative stress to DNA and lipid, respectively. Multiple linear regression analysis revealed that an ln-unit increase in mono-methyl phthalate (MMP) concentration in urine was positively associated with an increase in urine biomarkers of oxidative stress (in μg/g; creatinine of 0.098 ± 0.028 in 8-OHdG; and 0.253 ± 0.051 in 8-isoPGF2α). There was no association between other eight phthalate metabolite concentrations and oxidative stress. In conclusion, a higher MMP concentration in urine was associated with an increase in markers of oxidative stress to DNA and lipid in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to phthalate and oxidative stress. PMID:28290483

  8. Positive Association between Urinary Concentration of Phthalate Metabolites and Oxidation of DNA and Lipid in Adolescents and Young Adults

    Science.gov (United States)

    Lin, Chien-Yu; Chen, Pau-Chung; Hsieh, Chia-Jung; Chen, Chao-Yu; Hu, Anren; Sung, Fung-Chang; Lee, Hui-Ling; Su, Ta-Chen

    2017-03-01

    Phthalate has been used worldwide in various products for years. Little is known about the association between phthalate exposure and biomarkers of oxidative stress in adolescents and young adults. Among 886 subjects recruited from a population-based cohort during 2006 to 2008, 751 subjects (12–30 years) with complete phthalate metabolites and oxidation stress measurement were enrolled in this study. Nine urine phthalate metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso prostaglandin F2α (8-isoPGF2α) were measured in urine to assess exposure and oxidative stress to DNA and lipid, respectively. Multiple linear regression analysis revealed that an ln-unit increase in mono-methyl phthalate (MMP) concentration in urine was positively associated with an increase in urine biomarkers of oxidative stress (in μg/g creatinine of 0.098 ± 0.028 in 8-OHdG; and 0.253 ± 0.051 in 8-isoPGF2α). There was no association between other eight phthalate metabolite concentrations and oxidative stress. In conclusion, a higher MMP concentration in urine was associated with an increase in markers of oxidative stress to DNA and lipid in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to phthalate and oxidative stress.

  9. Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes.

    Science.gov (United States)

    Gaster, Michael; Rustan, Arild C; Aas, Vigdis; Beck-Nielsen, Henning

    2004-03-01

    Insulin resistance in skeletal muscle in vivo is associated with reduced lipid oxidation and lipid accumulation. It is still uncertain whether changes in lipid metabolism represent an adaptive compensation at the cellular level or a direct expression of a genetic trait. Studies of palmitate metabolism in human myotubes established from control and type 2 diabetic subjects may solve this problem, as genetic defects are preserved and expressed in vitro. In this study, total uptake of palmitic acid was similar in myotubes established from both control and type 2 diabetic subjects under basal conditions and acute insulin stimulation. Myotubes established from diabetic subjects expressed a primary reduced palmitic acid oxidation to carbon dioxide with a concomitantly increased esterification of palmitic acid into phospholipids compared with control myotubes under basal conditions. Triacylglycerol (TAG) content and the incorporation of palmitic acid into diacylglycerol (DAG) and TAG at basal conditions did not vary between the groups. Acute insulin treatment significantly increased palmitate uptake and incorporation of palmitic acid into DAG and TAG in myotubes established from both study groups, but no difference was found in myotubes established from control and diabetic subjects. These results indicate that the reduced lipid oxidation in diabetic skeletal muscle in vivo may be of genetic origin; it also appears that TAG metabolism is not primarily affected in diabetic muscles under basal physiological conditions.

  10. Effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile in chronic obstructive pulmonary disease patients.

    Science.gov (United States)

    Ismail, Md; Hossain, Md Faruk; Tanu, Arifur Rahman; Shekhar, Hossain Uddin

    2015-01-01

    Oxidative stress is intimately associated with many diseases, including chronic obstructive pulmonary disease (COPD). Study objectives include a comparison of the oxidative stress, antioxidant status, and lipid profile between COPD patients and controls and evaluation of the effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile of COPD patients. 30 patients with COPD and 20 controls with no respiratory problems were selected. Global Initiative for Chronic Obstructive Lung Disease criteria were served as the basis of COPD diagnosis. The serum content of malondialdehyde (MDA), lipid hydroperoxide, glutathione (GSH), vitamin C, cholesterol, triglyceride (TG), and high density lipoprotein (HDL) was measured. The activity of superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST) was also measured. Two different doses, (500 × 2) mg and (500 × 4) mg spirulina, were given to two groups, each of which comprises 15 COPD patients. All targeted blood parameters have significant difference (P = 0.000) between COPD patients and controls except triglyceride (TG). Spirulina intake for 30 and 60 days at (500 × 2) mg dose has significantly reduced serum content of MDA, lipid hydroperoxide, and cholesterol (P = 0.000) while increasing GSH, Vit C level (P = 0.000), and the activity of SOD (P = 0.000) and GST (P = 0.038). At the same time, spirulina intake for 30 and 60 days at (500 × 4) mg dose has favorable significant effect (P = 0.000) on all targeted blood parameters except for HDL (P = 0.163).

  11. Effect of curcumin on LDL oxidation in vitro, and lipid peroxidation and antioxidant enzymes in cholesterol fed rabbits.

    Science.gov (United States)

    Mahfouz, Mohamedain M; Zhou, Qi; Kummerow, Fred A

    2011-11-01

    In this study we examined the antioxidant effect of curcumin on lipid oxidation in vitro and in vivo. In vitro, curcumin at 5 microgM concentration completely prevented low-density lipoprotein (LDL) oxidation by CuS0(4), indicating that curcumin is an effective antioxidant in vitro. In vivo, feeding a pure cholesterol (PC)-rich diet to rabbits significantly increased the plasma and liver lipids as well as thiobarbituric acid reactive substances (TBARS) levels. Addition of curcumin to the PC diet did not show any effect on either plasma lipid and TBARS or liver lipids. Liver TBARS tended to decrease but that decrease was not significant. Erythrocyte glutathione peroxidase (GSH-Px) activity was significantly decreased while catalase activity was significantly increased in rabbits fed a PC diet. The addition of curcumin to a PC diet did not show any significant effect on erythrocyte enzyme activities compared to the rabbits fed a PC diet. The liver GSH-Px and catalase activities were significantly decreased in rabbits fed a PC diet, but the addition of curcumin to the PC diet enhanced the liver GSH-Px activity, which became nonsignificantly different from the control group. These results were discussed considering that curcumin may not be well absorbed and it did not reach a level high enough in vivo to overcome the severe hypercholesterolemia and oxidative stress produced by the PC-rich diet.

  12. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity1

    Science.gov (United States)

    Delles, Rebecca M.; Xiong, Youling L.; True, Alma D.; Ao, Touying; Dawson, Karl A.

    2014-01-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. PMID:24879706

  13. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity.

    Science.gov (United States)

    Delles, Rebecca M; Xiong, Youling L; True, Alma D; Ao, Touying; Dawson, Karl A

    2014-06-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. Poultry Science Association Inc.

  14. Vanadium distribution, lipid peroxidation and oxidative stress markers upon decavanadate in vivo administration.

    Science.gov (United States)

    Soares, S S; Martins, H; Duarte, R O; Moura, J J G; Coucelo, J; Gutiérrez-Merino, C; Aureliano, M

    2007-01-01

    The contribution of decameric vanadate species to vanadate toxic effects in cardiac muscle was studied following an intravenous administration of a decavanadate solution (1mM total vanadium) in Sparus aurata. Although decameric vanadate is unstable in the assay medium, it decomposes with a half-life time of 16 allowing studying its effects not only in vitro but also in vivo. After 1, 6 and 12h upon decavanadate administration the increase of vanadium in blood plasma, red blood cells and in cardiac mitochondria and cytosol is not affected in comparison to the administration of a metavanadate solution containing labile oxovanadates. Cardiac tissue lipid peroxidation increases up to 20%, 1, 6 and 12h after metavanadate administration, whilst for decavanadate no effects were observed except 1h after treatment (+20%). Metavanadate administration clearly differs from decavanadate by enhancing, 12h after exposure, mitochondrial superoxide dismutase (SOD) activity (+115%) and not affecting catalase (CAT) activity whereas decavanadate increases SOD activity by 20% and decreases (-55%) mitochondrial CAT activity. At early times of exposure, 1 and 6h, the only effect observed upon decavanadate administration was the increase by 20% of SOD activity. In conclusion, decavanadate has a different response pattern of lipid peroxidation and oxidative stress markers, in spite of the same vanadium distribution in cardiac cells observed after decavanadate and metavanadate administration. It is suggested that once formed decameric vanadate species has a different reactivity than vanadate, thus, pointing out that the differential contribution of vanadium oligomers should be taken into account to rationalize in vivo vanadate toxicity.

  15. Effect of Folk Dance Training on Blood Oxidative Stress Level, Lipids, and Lipoproteins

    Directory of Open Access Journals (Sweden)

    Okdan Bora

    2016-09-01

    Full Text Available Introduction. Folk dance is a form of physical activity which helps develop the ability to use the whole body in a coordinated way with music, and folk dancers’ characteristics vary according to the particular type of dance practised in a given geographic region. The aims of the study were to evaluate the effects of 12-week folk dance training on blood oxidative stress level, lipids, lipoproteins, as well as muscle damage markers and to define some physical and physiological properties of folk dancers. Material and methods. Thirty-eight healthy male folk dancers aged 21-28 years having an average of 11 years of dance training experience voluntarily participated in the study. All of the physical and physiological measurements and the blood analysis were performed twice, before and after the training period which focused on different regional dances (Caucasus, Bar, Zeybek, Spoon Dance, Thracian dances, and Horon. The training was done 2 hours per day (a total of 10 hours a week, during a 12-week-long period. Results. All the blood parameters were found to be within the specified reference ranges. The training programme had no significant effect on the blood lipid profile, whereas it was found to have positive effects on body fat (p ≤ 0.012, peak oxygen consumption (VO2peak; p = 0.000, muscle damage markers (creatine kinase, Δ% = −19.6, and total antioxidant capacity (p ≤ 0.002. Conclusions. Regular folk dance training was found to have positive effects on body fat, VO2peak, blood total antioxidant capacity, and muscle damage markers. Based on these results, the community should be encouraged to perform folk dance as a recreational physical activity, and public awareness should be raised about the health benefits of practising folk dances.

  16. Cold fluorescent light as major inducer of lipid oxidation in soybean oil stored at household conditions for eight weeks.

    Science.gov (United States)

    Pignitter, Marc; Stolze, Klaus; Gartner, Stephanie; Dumhart, Bettina; Stoll, Christiane; Steiger, Georg; Kraemer, Klaus; Somoza, Veronika

    2014-03-12

    Light, temperature, and oxygen availability has been shown to promote rancidity in vegetable oils. However, the contribution of each of these environmental factors to lipid oxidation in oil stored under household conditions is not known. We aimed to identify the major inducer of oxidative deterioration of soybean oil stored at constant (67.0 mL) or increasing (67.0-283 mL) headspace volume, 22 or 32 °C, with or without illumination by cold fluorescent light for 56 days by means of fatty acid composition, peroxide value, formation of conjugated dienes, lipid radicals, hexanal, and the decrease in the contents of tocopherols. Soybean oil stored in the dark for 56 days showed an increase of the peroxide value by 124 ± 0.62% (p = 0.006), whereas exposure of the oil to light in a cycle of 12 h light alternating with 12 h darkness for 56 days led to a rise of the peroxide value by 1473 ± 1.79% (p ≤ 0.001). Little effects on the oxidative status of the oil were observed after elevating the temperature from 22 to 32 °C and the headspace volume from 67.0 to 283 mL during 56 days of storage. We conclude that storing soybean oil in transparent bottles under household conditions might pose an increased risk for accelerated lipid oxidation induced by exposure to cold fluorescent light.

  17. Relationships between serum adiponectin and soluble TNF-α receptors and glucose and lipid oxidation in lean and obese subjects.

    Science.gov (United States)

    Adamska, A; Nikołajuk, A; Karczewska-Kupczewska, M; Kowalska, I; Otziomek, E; Górska, M; Strączkowski, M

    2012-02-01

    Insulin resistance might be associated with an impaired ability of insulin to stimulate glucose oxidation and inhibit lipid oxidation. Insulin action is also inversely associated with TNF-α system and positively related to adiponectin. The aim of the present study was to analyze the associations between serum adiponectin, soluble TNF-α receptors concentrations and the whole-body insulin sensitivity, lipid and glucose oxidation, non-oxidative glucose metabolism (NOGM) and metabolic flexibility in lean and obese subjects. We examined 53 subjects: 25 lean (BMI 25 kg × m(-2)) with normal glucose tolerance. Hyperinsulinemic euglycemic clamp and indirect calorimetry were performed. An increase in respiratory exchange ratio in response to insulin was used as a measure of metabolic flexibility. Obese subjects had lower insulin sensitivity, adiponectin and higher sTNFR1 (all P rate of glucose (r = 0.47, P flexibility (r = 0.36, P = 0.007). Serum sTNFR1 and sTNFR2 were associated with the rate of glucose (r = -0.45, P = 0.001; r = -0.51, P flexibility (r = -0.47 and r = -0.51, respectively, both P < 0.001) in an opposite manner than adiponectin. Our data suggest that soluble TNF-α receptors and adiponectin have multiple effects on glucose and lipid metabolism in obesity.

  18. The Role of Propolis in Oxidative Stress and Lipid Metabolism: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Verónica Mujica

    2017-01-01

    Full Text Available Although there is evidence of the benefits of propolis on human health, the vast majority of studies have been conducted using animal models. The present study includes the chemical characterization and clinical evaluation of the effects of the oral administration of propolis solution on the oxidative status and modulation of lipids in a human population in Talca, Chile. Chemical characterization of propolis, total phenol, flavonoids, and total antioxidant capacity were determined by ORAC. Identification of phenols and flavonoids in propolis was assessed by HPLC-DAD. A double-blind, placebo-controlled clinical trial was conducted. Subjects provided informed consent form and the Bioethics Committee of the Universidad de Talca approved protocol. Eligible subjects (n=67 were randomized in two groups: propolis (n=35 and placebo (n=32. All subjects were evaluated at 0 (baseline, 45, and 90 days. In the propolis group, we observed that increases in HDL-c went from 53.9 ± 11.9 to 65.8 ± 16.7 mg/dL (p<0.001 from baseline to 90 days. Compared to placebo subjects, consumption of propolis induced a net increase in GSH levels (p<0.0001 and a decrease (p<0.001 in TBARS levels for the propolis group. Our findings indicate potential benefits of propolis use in human health. The use of propolis appears to have positive effects on oxidative status and improvement of HDL-c, both of which contribute to a reduced risk of cardiovascular disease.

  19. Oxidative stability of structured lipids containing C18:0, C18:1, C18:2, C18:3 or CLA in sn 2-position - as bulk lipids and in milk drinks

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Nielsen, Nina Skall; Xu, Xuebing

    2004-01-01

    by enzymatic interesterification with caprylic acid. Oxidative stability was compared in the five lipids themselves and in milk drinks containing 5% of the different SL. During storage, samples were taken for chemical and physical analyses. Moreover, sensory assessments were performed on milk drinks....... The oxidative stability of our SL was very different when comparing (a) bulk lipids and milk drink and (b) the five different batches of each product. SL based on oleic acid was the most unstable as bulk lipid, while SL based on linoleic acid was the most unstable in milk drink. SL based on CLA was the second...

  20. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase

    Directory of Open Access Journals (Sweden)

    Yen Tzung-Hai

    2011-06-01

    Full Text Available Abstract Background Diabetic nephropathy (DN has been recognized as the leading cause of end-stage renal disease. Resveratrol (RSV, a polyphenolic compound, has been indicated to possess an insulin-like property in diabetes. In the present study, we aimed to investigate the renoprotective effects of RSV and delineate its underlying mechanism in early-stage DN. Methods The protective effects of RSV on DN were evaluated in streptozotocin (STZ-induced diabetic rats. Results The plasma glucose, creatinine, and blood urea nitrogen were significantly elevated in STZ-induced diabetic rats. RSV treatment markedly ameliorated hyperglycemia and renal dysfunction in STZ-induced diabetic rats. The diabetes-induced superoxide anion and protein carbonyl levels were also significantly attenuated in RSV-treated diabetic kidney. The AMPK protein phosphorylation and expression levels were remarkably reduced in diabetic renal tissues. In contrast, RSV treatment significantly rescued the AMPK protein expression and phosphorylation compared to non-treated diabetic group. Additionally, hyperglycemia markedly enhanced renal production of proinflammatory cytokine IL-1β. RSV reduced IL-1β but increased TNF-α and IL-6 levels in the diabetic kidneys. Conclusions Our findings suggest that RSV protects against oxidative stress, exhibits concurrent proinflammation and anti-inflammation, and up-regulates AMPK expression and activation, which may contribute to its beneficial effects on the early stage of DN.

  1. The relationships between exogenous and endogenous antioxidants with the lipid profile and oxidative damage in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Brucker Natália

    2011-10-01

    Full Text Available Abstract Background We sought to investigate the relationships among the plasma levels of carotenoids, tocopherols, endogenous antioxidants, oxidative damage and lipid profiles and their possible effects on the cardiovascular risk associated with hemodialysis (HD patients. Methods The study groups were divided into HD and healthy subjects. Plasma carotenoid, tocopherol and malondialdehyde (MDA levels, as well as erythrocyte reduced glutathione (GSH, were measured by HPLC. Blood antioxidant enzymes, kidney function biomarkers and the lipid profiles were analyzed by spectrophotometric methods. Results Plasma lycopene levels and blood glutathione peroxidase (GPx activity were significantly decreased in HD patients compared with healthy subjects. Total cholesterol, low-density lipoprotein cholesterol (LDL-c, creatinine, urea, MDA, GSH, superoxide dismutase (SOD and catalase (CAT were significantly increased in HD (p Conclusions Lycopene may represent an additional factor that contributes to reduced lipid peroxidation and atherogenesis in hemodialysis patients.

  2. Additions of caffeic acid, ascorbyl palmitate or gamma-tocopherol to fish oil-enriched energy bars affect lipid oxidation differently

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    2009-01-01

    The objectives of the study were to investigate the effects of caffeic acid, ascorbyl palmitate and gamma-tocopherol on protection of fish oil-enriched energy bars against lipid oxidation during storage for 10 weeks at room temperature. The lipophilic gamma-tocopherol reduced lipid oxidation during......, or the hydrophilic caffeic acid, or the amphiphilic ascorbyl palmitate at concentrations of 75, 150 and 300 mu g/g fish oil. Prooxidative effects were observed as an increase in the formation of lipid hydroperoxides and volatile secondary oxidation products, as well as the development of rancid off...

  3. Alkali-aided protein extraction of chicken dark meat: composition and stability to lipid oxidation of the recovered proteins.

    Science.gov (United States)

    Moayedi, V; Omana, D A; Chan, J; Xu, Y; Betti, M

    2010-04-01

    Chicken dark meat has been considered as a major underused commodity due to the increasing demand for further-processed breast meat products. One option to increase the utilization of chicken dark meat is to extract myofibrillar proteins and separate them from fat and pigments to enhance their application for the preparation of further-processed meat products. The objective of the current study was to determine the effect of pH, in the range of 10.5 to 12.0, on the alkaline solubilization process of chicken dark meat. Aspects studied were the effect of the alkali-aided process on protein content, lipid composition, lipid oxidation, and color characteristics of the extracted meat. Each experiment and each assay were done at least in triplicate. Lipid content of the extracted meat showed a 50% reduction compared with the chicken dark meat. Neutral lipids were reduced by 61.51%, whereas polar lipids were not affected by the alkali treatments. There was a higher amount of TBA reactive substances observed in the extracted meat compared with chicken dark meat, indicating that extracted meat was more susceptible to oxidation. Long-chain polyunsaturated fatty acids (22:4n-6, 20:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3), which were detected only in the polar lipids, were responsible for increasing lipid oxidation susceptibility of extracted meat compared with chicken dark meat. Alkali-aided extraction of chicken dark meat lightened the color of the meat. The redness, yellowness, and total heme pigments in extracted meat significantly decreased by 83, 11, and 53%, respectively, compared with chicken dark meat. Even though this process did not remove polar lipids, based on our early findings, the extracted meat had considerable physicochemical and textural properties for product preparation compared with those of raw dark meat. Hence, alkali recovery of protein can be considered a potentially useful method to increase the utilization of dark chicken meat.

  4. Myoglobins: the link between discoloration and lipid oxidation in muscle and meat

    Directory of Open Access Journals (Sweden)

    Jens K. S. Møller

    2006-12-01

    Full Text Available Aerobic metabolism changes rapidly to glycolysis post-mortem resulting in a pH-decrease during the transformation of muscle in to meat affecting ligand binding and redox potential of the heme iron in myoglobin, the meat pigment. The "inorganic chemistry" of meat involves (i redox-cycling between iron(II, iron(III, and iron(IV/protein radicals; (ii ligand exchange processes; and (iii spin-equilibra with a change in coordination number for the heme iron. In addition to the function of myoglobin for oxygen storage, new physiological roles of myoglobin are currently being discovered, which notably find close parallels in the processes in fresh meat and nitrite-cured meat products. Myoglobin may be characterized as a bioreactor for small molecules like O2, NO, CO, CO2, H2O, and HNO with importance in bio-regulation and in protection against oxidative stress in vivo otherwise affecting lipids in membranes. Many of these processes may be recognised as colour changes in fresh meat and cured meat products under different atmospheric conditions, and could also be instructive for teaching purposes.

  5. Effects of fermented soy milk on the liver lipids under oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Ching-Yi Lin; Zheng-Yu Tsai; I-Chi Cheng; Shyh-Hsiang Lin

    2005-01-01

    AIM: To investigate the effects of fermented soy milk powder on the antioxidative status and lipid metabolism in the livers of CCl4-injected rats.METHODS: Forty-five healthy male Sprague-Dawley rats were randomly assigned to five groups according to five different diets: control (AIN-76), AIN-76+highdose fermented soy milk powder, AIN-76+low-dose fermented soy milk powder, AIN-76+high-dose milk yogurt powder and AIN-76+low-dose milk yogurt powder. The experiment lasted for 8 wk. After 4 wk, all the rats received intraperitoneal administration of CCl4 (0.2 mL/100 g body weight) every week. Total cholesterol (TC), triglyceride (TG), TBARS, ALP, and antioxidative enzymes in the liver were evaluated.RESULTS: There was also no significant difference in TBARS and antioxidative enzymes in the liver. TC and TG in the groups fed with fermented soy milk powder were generally lower than those fed with casein powder.CONCLUSION: Consumption of fermented soy milk was positive in lowering total cholesterol and TG accumulation in the liver under CCl4-induced oxidative stress.

  6. Protective effect of black raspberry seed containing anthocyanins against oxidative damage to DNA, protein, and lipid.

    Science.gov (United States)

    Choi, Mi-Hee; Shim, Soon-Mi; Kim, Gun-Hee

    2016-02-01

    This study aimed to determine bioactive components and radical scavenging capacity of black raspberry seed extracts as byproducts obtaining during the juice (FSE) and wine (WSE) making process. Cyanidin-3-O-rutinoside was identified as a major anthocyanin and the total anthocyanin contents of fresh and wine seed were 78.24 and 41.61 mg/100 g of dry weight, respectively. The total phenolic and flavonoid contents of FSE and WSE were 2.31 g gallic acid equivalent (GAE) and 360.95 mg catechin equivalent (CE), and 2.44 g GAE and 379.54 mg CE per 100 g dry weight, respectively. The oxygen radical absorbance capacity (ORAC) values were 1041.9 μM TE/g for FSE and 1060.4 μM TE/g for WSE. Pretreatment of the FSE and WSE inhibited the generation of intracellular reactive oxygen species (ROS), DNA and protein damage induced by hydroxyl radicals, and Fe(3+)/ascorbic acid-induced lipid peroxidation in a dose dependent manner. WSE more effectively protected from oxidative damage than FSE. Results from the current study suggest that black raspberry seeds as byproducts from juice and wine processing could be potential sources for natural antioxidants.

  7. Texture, color, lipid oxidation and sensory acceptability of gamma-irradiated marinated anchovy fillets

    Science.gov (United States)

    Tomac, Alejandra; Cova, María C.; Narvaiz, Patricia; Yeannes, María I.

    2015-01-01

    The effect of gamma irradiation (0, 2, 3 and 4 kGy) on vacuum-packed marinated anchovy fillets was analyzed for their texture, color, lipid oxidation and sensory acceptability after 10 months under refrigeration. Marinated (3% acetic acid, 10% sodium chloride and 0.2% citric acid) Engraulis anchoita fillets were vacuum-packed and irradiated with a cobalt-60 source at a semi-industrial irradiation facility. The irradiation caused a slight increase in hardness values regardless of the applied dose but maintained a consistent texture over the 10 months, even though the control samples softened, most likely due to degradation. This hardness increase did not affect the textural sensory acceptability. Irradiation did not modify the color but still reduced color changes during storage, benefitting the product's quality. TBARS was increased in every sample throughout storage, but irradiation decreased these values. Sensory acceptability was not affected by gamma irradiation. Therefore, gamma irradiation could be successfully applied to this type of product for the purpose of shelf-life extension.

  8. Effect of Centella asiatica on Oxidative Stress and Lipid Metabolism in Hyperlipidemic Animal Models

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    2014-01-01

    Full Text Available Hyperlipidemia and many other metabolic diseases are related to oxidative stress. Centella asiatica is a traditional Chinese medicine whose antioxidant effect in vitro has been reported. We are interested in whether it possesses this effect in vivo and hence modulates lipid metabolism. Therefore, experiments were carried out on mice and golden hamsters regarding its antioxidant and hypolipidemic effect. We observed that a fraction (CAF3 of the ethanol extract (CAE of Centella asiatica had a cholesterol decrease of 79% and a triglyceride decrease of 95% in acute mice model, so CAF3 was further investigated in high-fat-fed hamster model. It was shown that CAF3 increased SOD and GSH-Px activities and decreased MDA level, and it also improved TC, TG, LDL-C, HDL-C, AST, and ALT levels. L-CAT and SR-BI gene expression in hamsters were increased. Taken together, our data suggest that the CAF3 fraction of Centella asiatica has antioxidant and hypolipidemic properties.

  9. Caesalpinia decapetala Extracts as Inhibitors of Lipid Oxidation in Beef Patties

    Directory of Open Access Journals (Sweden)

    Maria G. Gallego

    2015-07-01

    Full Text Available In this study we investigated the effects of Caesalpinia decapetala (CD extracts on lipid oxidation in ground beef patties. Plant extracts and butylated hydroxytoluene (BHT were individually added to patties at both 0.1% and 0.5% (w/w concentrations. We assessed the antioxidant efficacy of CD by the ferric reducing antioxidant power (FRAP assay and evaluated their potential as natural antioxidants for meat preservation by thiobarbituric acid reactive substance (TBARS values, hexanal content, fatty acid composition and color parameters. These were tested periodically during 11 days of refrigerated storage. TBARS levels were significantly lower (p ≤ 0.05 in the samples containing plant extracts or BHT than in the non-treated control. In addition, the beef patties formulated with the selected plant extracts showed significantly (p ≤ 0.05 better color stability than those without antioxidants. These results indicate that edible plant extracts are promising sources of natural antioxidants and can potentially be used as functional preservatives in meat products.

  10. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation.

    Science.gov (United States)

    Malandrino, Maria Ida; Fucho, Raquel; Weber, Minéia; Calderon-Dominguez, María; Mir, Joan Francesc; Valcarcel, Lorea; Escoté, Xavier; Gómez-Serrano, María; Peral, Belén; Salvadó, Laia; Fernández-Veledo, Sonia; Casals, Núria; Vázquez-Carrera, Manuel; Villarroya, Francesc; Vendrell, Joan J; Serra, Dolors; Herrero, Laura

    2015-05-01

    Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.

  11. Effect of immunological castration management strategy on lipid oxidation and sensory characteristics of bacon stored under simulated food service conditions.

    Science.gov (United States)

    Herrick, R T; Tavárez, M A; Harsh, B N; Mellencamp, M A; Boler, D D; Dilger, A C

    2016-07-01

    The objectives of this study were to determine the effect of 1) immunological castration (Improvest, a gonadotropin releasing factor analog-diphtheria toxoid conjugate) management strategy (age at slaughter and time of slaughter after second dose) and 2) sex on lipid oxidation and sensory characteristics of bacon stored under simulated food service conditions. For Objective 1, immunological castration management strategies included 24-wk-old immunologically castrated (IC) barrows 4, 6, 8, or 10 wk after the second Improvest dose (ASD); 26-wk-old IC barrows 6 wk ASD; and 28-wk-old IC barrows 8 wk ASD ( = 63). Objective 2 ( = 97) included IC barrows, physically castrated (PC) barrows, and gilts slaughtered at 24, 26, and 28 wks of age. Bellies from 2 slaughter dates were manufactured into bacon under commercial conditions. Bacon slices were laid out on parchment paper, packaged in oxygen-permeable poly-vinyl-lined boxes, and frozen (-33°C) for 1, 4, 8, or 12 wk to simulate food service conditions. At the end of each storage period, bacon was evaluated for lipid oxidation, moisture and lipid content, and sensory characteristics. Data from both objectives were analyzed using the MIXED procedure in SAS with belly as the experimental unit. For both objectives, as storage time increased, lipid oxidation of bacon increased ( bacon from IC barrows increased as time of slaughter ASD increased ( bacon across management strategies. For the evaluation of sex effects in Objective 2, lipid oxidation was greater ( 0.05). After 12 wk of frozen storage, lipid oxidation values for IC barrows, PC barrows, and gilts were still below 0.5 mg malondialdehyde/kg of meat, the threshold at which trained panelists may deem a food to be rancid. In conclusion, bacon shelf life characteristics were not altered by the immunological castration management strategy and bacon from IC barrows was similar to bacon from gilts. Therefore, bacon from IC barrows would result in shelf life and sensory

  12. Apple cider vinegar modulates serum lipid profile, erythrocyte, kidney, and liver membrane oxidative stress in ovariectomized mice fed high cholesterol.

    Science.gov (United States)

    Nazıroğlu, Mustafa; Güler, Mustafa; Özgül, Cemil; Saydam, Gündüzalp; Küçükayaz, Mustafa; Sözbir, Ercan

    2014-08-01

    The purpose of this study was to investigate the potentially beneficial effects of apple cider vinegar (ACV) supplementation on serum triglycerides, total cholesterol, liver and kidney membrane lipid peroxidation, and antioxidant levels in ovariectomized (OVX) mice fed high cholesterol. Four groups of ten female mice were treated as follows: Group I received no treatment and was used as control. Group II was OVX mice. Group III received ACV intragastrically (0.6% of feed), and group IV was OVX and was treated with ACV as described for group III. The treatment was continued for 28 days, during which the mice were fed a high-cholesterol diet. The lipid peroxidation levels in erythrocyte, liver and kidney, triglycerides, total, and VLDL cholesterol levels in serum were higher in the OVX group than in groups III and IV. The levels of vitamin E in liver, the kidney and erythrocyte glutathione peroxidase (GSH-Px), and erythrocyte-reduced glutathione (GSH) were decreased in group II. The GSH-Px, vitamin C, E, and β-carotene, and the erythrocyte GSH and GSH-Px values were higher in kidney of groups III and IV, but in liver the vitamin E and β-carotene concentrations were decreased. In conclusion, ACV induced a protective effect against erythrocyte, kidney, and liver oxidative injury, and lowered the serum lipid levels in mice fed high cholesterol, suggesting that it possesses oxidative stress scavenging effects, inhibits lipid peroxidation, and increases the levels of antioxidant enzymes and vitamin.

  13. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bokoch, Michael P.; Devadoss, Anando; Palencsar, Mariela S.; Burgess, James D

    2004-08-09

    Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 {mu}M. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 {mu}M for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented.

  14. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid-oxidation-derived aldehydes, and glucose.

    Science.gov (United States)

    Adams, An; Kitryté, Vaida; Venskutonis, Rimantas; De Kimpe, Norbert

    2011-02-23

    The development of flavor and browning in thermally treated foods results mainly from the Maillard reaction and lipid degradation but also from the interactions between both reaction pathways. To study these interactions, we analyzed the volatile compounds resulting from model reactions of lysine or glycine with aldehydes originating from lipid oxidation [hexanal, (E)-2-hexenal, or (2E,4E)-decadienal] in the presence and absence of glucose. The main reaction products identified in these model mixtures were carbonyl compounds, resulting essentially from amino-acid-catalyzed aldol condensation reactions. Several 2-alkylfurans were detected as well. Only a few azaheterocyclic compounds were identified, in particular 5-butyl-2-propylpyridine from (E)-2-hexenal model systems and 2-pentylpyridine from (2E,4E)-decadienal model reactions. Although few reaction products were found resulting from the condensation of an amino acid with a lipid-derived aldehyde, the amino acid plays an important role in catalyzing the degradation and further reaction of these carbonyl compounds. These results suggest that amino-acid-induced degradations and further reactions of lipid oxidation products may be of considerable importance in thermally processed foods.

  15. Mediterranean Berries as Inhibitors of Lipid Oxidation in Porcine Burger Patties Subjected to Cooking and Chilled Storage

    Institute of Scientific and Technical Information of China (English)

    Rui Ganho; Mario Estvez; Mnica Armenteros; David Morcuende

    2013-01-01

    The efifciency of extracts from Arbutus unedo L. (AU), Crataegus monogyna L. (CM), Rosa canina L. (RC), and Rubus ulmifolius Schott. (RU) to inhibit lipid oxidation in raw, cooked and cooked and chilled (2°C/12 d) porcine burger patties, was investigated. The modiifcation of the fatty acid proifle during processing treatments (cooking and chilling), the quantitative measurements of thiobarbituric acid reactive substances (TBA-RS), and lipid-derived volatiles, were used as indicators of lipid oxidation. Polyunsaturated fatty acids (PUFA) gradually decreased during cooking and the subsequent storage of cooked burger patties with this decrease being signiifcantly greater (P<0.05) in control patties than in those with added berry extracts. In accordance, the control patties showed signiifcantly higher TBA-RS numbers and counts of lipid-derived volatiles in all treatments when compared to the berry-added counterparts (P<0.05). Results from the present work show, for the ifrst time, that extracts from A. unedo, C. monogyna, R. canina, and R. ulmifolius are promising antioxidants which could enhance the nutritional, safety and sensory properties of porcine burger patties.

  16. Spirulina platensis Enhances the Beneficial Effect of Exercise on Oxidative Stress and the Lipid Profile in Rats

    Directory of Open Access Journals (Sweden)

    Daiane Mazzola

    2015-12-01

    Full Text Available ABSTRACT This study aimed to evaluate the effect of Spirulina platensis and moderate exercise on oxidative stress and lipid profiles in the rats. Forty male Wistar rats were allocated to the following 10-week treatments, three times a week: exercise (E, 30 min swimming,S. platensis (SP, 26 mg/Kg; exercise andSpirulina (ES; and control (C. Outcomes were Thiobarbituric Acid Reactive Substances (TBARS in serum and brain, and cholesterol and triglycerides (TG in serum. Rats treated with exercise showed lower brain TBARS than the controls, mostly in association withS. platensis. In the groups E and ES, serum TBARS decreased after intervention. Compared with the controls, both E and ES prevented an increase in cholesterol and reduced triglycerides. Results demonstrated thatS. platensis enhanced the beneficial effect of exercise on oxidative stress and lipid profiles in rats, which might be a promising approach for treating metabolic syndrome in humans.

  17. Effect of Persimmon Peel (Diospyros kaki Thumb.) Extracts on Lipid and Protein Oxidation of Raw Ground Pork During Refrigerated Storage

    Science.gov (United States)

    Choe, Ju-Hui; Kim, Hack-Youn

    2017-01-01

    The inhibition effect of persimmon peel extracts (PPE) (0.05(PPE-0.05), 0.1(PPE-0.1), and 0.2 g(PPE-0.2) per meat sample) on lipid and protein oxidation of pork patties during chilled storage for 12 days were investigated and compared to ascorbic acid (As-0.05) and butylhydroxytoluene (BHT) (BHT-0.01). The meat samples treated with PPE had greater (pBHT-0.01 had the lowest in decrease rate of free thiol content (0.24 and 0.22 times) during chilled storage. Therefore, results of this study suggest that PPE can be considered a potential antioxidant against lipid and protein oxidation of raw meat products. PMID:28515649

  18. Impact of air pollution on oxidative DNA damage and lipid peroxidation in mothers and their newborns.

    Science.gov (United States)

    Ambroz, Antonin; Vlkova, Veronika; Rossner, Pavel; Rossnerova, Andrea; Svecova, Vlasta; Milcova, Alena; Pulkrabova, Jana; Hajslova, Jana; Veleminsky, Milos; Solansky, Ivo; Sram, Radim J

    2016-08-01

    Ambient air particulate matter (PM) represents a class of heterogeneous substances that form one component of air pollution. Oxidative stress has been implicated as an important action mechanism for PM on the human organism. Oxidative damage induced by reactive oxygen species (ROS) may affect any cellular macromolecule. The aim of our study was to investigate the impact of air pollution on oxidative DNA damage [8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)] and lipid peroxidation [15-F2t-isoprostane (15-F2t-IsoP)] in the urine and blood from mothers and newborns from two localities with different levels of air pollution: Ceske Budejovice (CB), a locality with a clean air, and Karvina, a locality with high air pollution. The samples from normal deliveries (38-41 week+) of nonsmoking mothers and their newborns were collected in the summer and winter seasons. Higher PM2.5 concentrations were found in Karvina than in CB in the summer 2013 (mean±SD: 20.41±6.28 vs. 9.45±3.62μg/m(3), P<0.001), and in the winter 2014 (mean±SD: 53.67±19.76 vs. 27.96±12.34μg/m(3), P<0.001). We observed significant differences in 15-F2t-IsoP levels between the summer and winter seasons in Karvina for newborns (mean±SD: 64.24±26.75 vs. 104.26±38.18pg/ml plasma, respectively) (P<0.001). Levels of 8-oxodG differed only in the winter season between localities, they were significantly higher (P<0.001) in newborns from Karvina in comparison with CB (mean±SD: 5.70±2.94 vs. 4.23±1.51 nmol/mmol creatinine, respectively). The results of multivariate regression analysis in newborns from Karvina showed PM2.5 concentrations to be a significant predictor for 8-oxodG excretion, PM2.5 and B[a]P (benzo[a]pyrene) concentrations to be a significant predictor for 15-F2t-IsoP levels. The results of multivariate regression analysis in mothers showed PM2.5 concentrations to be a significant predictor of 8-oxodG levels.

  19. Products of lipid peroxidation, but not membrane susceptibility to oxidative damage, are conserved in skeletal muscle following temperature acclimation

    OpenAIRE

    Grim, Jeffrey M.; Semones, Molly C.; Kuhn, Donald E.; Kriska, Tamas; Keszler, Agnes; Crockett, Elizabeth L

    2014-01-01

    Changes in oxidative capacities and phospholipid remodeling accompany temperature acclimation in ectothermic animals. Both responses may alter redox status and membrane susceptibility to lipid peroxidation (LPO). We tested the hypothesis that phospholipid remodeling is sufficient to offset temperature-driven rates of LPO and, thus, membrane susceptibility to LPO is conserved. We also predicted that the content of LPO products is maintained over a range of physiological temperatures. To assess...

  20. Both poor cardiorespiratory and weak muscle fitness are related to a high concentration of oxidized low-density lipoprotein lipids.

    Science.gov (United States)

    Kosola, J; Ahotupa, M; Kyröläinen, H; Santtila, M; Vasankari, T

    2012-12-01

    Good physical fitness is associated with favorable serum lipids. Oxidized low-density lipoprotein (ox-LDL) could be even more atherogenic than serum lipids. We studied the association of ox-LDL and serum lipids with physical fitness. Healthy young (mean age 25 years) men (n=846) underwent maximal oxygen uptake (VO(2max)) and muscle fitness index (MFI) tests and completed a leisure-time physical activity (LTPA) questionnaire. Age (ANCOVA1), age+waist circumference+systolic blood pressure+fasting blood glucose+smoking (ANCOVA3) were used as covariates. The groups with the lowest VO(2max), MFI and LTPA had 23%, 16% and 8% higher concentrations of ox-LDL than the groups with the highest VO(2max) (PLDL/high-density lipoprotein (HDL)-cholesterol, total cholesterol, LDL-cholesterol, triglycerides and a low level of HDL-cholesterol (ANCOVA1, in all, PLDL/HDL-cholesterol and triglycerides, and with a low level of HDL-cholesterol (ANCOVA3, in all, PLDL/HDL-cholesterol (ANCOVA1, P=0.001). In conclusion, both poor fitness (both low VO(2max) and low MFI) and low LTPA are associated with a higher concentration of ox-LDL lipids and serum lipids, which may indicate a higher risk for atherosclerosis.

  1. The effects of ethylene oxide containing lipopolymers and tri-block copolymers on lipid bilayers of dipalmitoylphosphatidylcholine

    DEFF Research Database (Denmark)

    Baekmark, T. R.; Pedersen, S.; Jorgensen, K.;

    1997-01-01

    oxide moity, anchored to the bilayer by a 1,2-dioctadecanoyl-s,n-glycero-3-phosphoethanolamine (DC18PE) lipid. The second type, which is a novel type of membrane-spanning object, is an amphiphilic tri-block copolymer composed of two hydrophilic stretches of polyethylene oxide separated by a hydrophobic...... stretch of polystyrene. Hence the tri-block copolymer may act as a membrane-spanning macromolecule mimicking an amphiphilic protein or polypeptide. Differential scanning calorimetry is used to determine a partial phase diagram for the lipopolymer systems and to assess the amount of lipopolymer that can...

  2. The effects of ethylene oxide containing lipopolymers and tri-block copolymers on lipid bilayers of dipalmitoylphosphatidylcholine

    DEFF Research Database (Denmark)

    Baekmark, T. R.; Pedersen, S.; Jorgensen, K.

    1997-01-01

    oxide moity, anchored to the bilayer by a 1,2-dioctadecanoyl-s,n-glycero-3-phosphoethanolamine (DC18PE) lipid. The second type, which is a novel type of membrane-spanning object, is an amphiphilic tri-block copolymer composed of two hydrophilic stretches of polyethylene oxide separated by a hydrophobic...... stretch of polystyrene. Hence the tri-block copolymer may act as a membrane-spanning macromolecule mimicking an amphiphilic protein or polypeptide. Differential scanning calorimetry is used to determine a partial phase diagram for the lipopolymer systems and to assess the amount of lipopolymer that can...

  3. Comparison of natural polyphenol antioxidants from extra virgin olive oil with synthetic antioxidants in tuna lipids during thermal oxidation.

    Science.gov (United States)

    Medina, I; Satué-Gracia, M T; German, J B; Frankel, E N

    1999-12-01

    Polyphenols extracted from extra virgin olive oil (EVOO) were tested for their ability to inhibit lipid oxidation of canned tuna. Hydroperoxide formation during oxidation was monitored by measurement of peroxide value and decomposition of hydroperoxides by static headspace gas chromatographic analysis of volatiles. In tuna oxidized at 40 and 100 degrees C, 400 ppm of the EVOO polyphenols was an effective antioxidant as compared with 100 ppm of a 1:1 mixture of the synthetic antioxidants butylated hydroxytoluene and butylated hydroxyanisole. However, at concentrations oxidation rate in tuna muscle packed in brine was higher than that of tuna packed in refined olive oil. The EVOO polyphenols had higher antioxidant activity in the brine samples than in the refined olive oil. The higher antioxidant activity of EVOO polyphenols in tuna packed in brine may be explained by their greater affinity toward the more polar interface between water and the fish oil system.

  4. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure.

    Science.gov (United States)

    Fuentes, Verónica; Ventanas, Jesús; Morcuende, David; Estévez, Mario; Ventanas, Sonia

    2010-07-01

    The effect of HHP treatment (600 MPa) on the oxidative stability of lipids and proteins of vacuum-packaged Iberian dry-cured ham and the impact on the sensory characteristics of the product was investigated. In order to assess how different commercial presentations are affected by HHP treatment, three different presentations of vacuum-packaged Iberian dry-cured ham were considered, namely, (i) intact format (IF) corresponding to non-sliced vacuum-packaged dry-cured ham, (ii) conventional-sliced format (CSF) corresponding to dry-cured ham slices placed stretched out in the package and (iii) alternative-sliced format (ASF) corresponding to dry-cured ham slices piled up horizontally. The oxidation of dry-cured ham lipids and proteins was enhanced by HHP-treatment with the presentation being highly influential on these oxidative reactions. Pre-slicing dry-cured ham results in a more susceptible product to oxidative reactions during pressurisation and subsequent refrigerated storage. Possible mechanisms, by which HHP-induced oxidative reactions would affect particular sensory traits in vacuum-packaged Iberian dry-cured ham such as colour, texture and flavour attributes, are discussed.

  5. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    Science.gov (United States)

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain.

  6. The effect of Gongronema latifolium extracts on serum lipid profile and oxidative stress in hepatocytes of diabetic rats

    Indian Academy of Sciences (India)

    N H Ugochukwu; N E Babady; M Cobourne; S R Gasset

    2003-02-01

    Diabetes is known to involve oxidative stress and changes in lipid metabolism. Many secondary plant metabolites have been shown to possess antioxidant activities, improving the effects of oxidative stress on diabetes. This study evaluated the effects of extracts from Gongronema latifolium leaves on antioxidant enzymes and lipid profile in a rat model of non insulin dependent diabetes mellitus (NIDDM). The results confirmed that the untreated diabetic rats were subjected to oxidative stress as indicated by significantly abnormal activities of their scavenging enzymes (low superoxide dismutase and glutathione peroxide activities), compared to treated diabetic rats, and in the extent of lipid peroxidation (high malondialdehyde levels) present in the hepatocytes. The ethanolic extract of G. latifolium leaves possessed antioxidant activity as shown by increased superoxide dismutase and glutathione peroxidase activities and decreases in malondialdehyde levels. High levels of triglycerides and total cholesterol, which are typical of the diabetic condition, were also found in our rat models of diabetes. The ethanolic extract also significantly decreased triglyceride levels and normalized total cholesterol concentration.

  7. Lipid oxidative changes in chitosan-oregano coated traditional dry fermented sausage Petrovská klobása.

    Science.gov (United States)

    Krkić, Nevena; Šojić, Branislav; Lazić, Vera; Petrović, Ljiljana; Mandić, Anamarija; Sedej, Ivana; Tomović, Vladimir

    2013-03-01

    The effect of a chitosan coating with added essential oil of oregano (Origanum vulgare) on lipid oxidation of dry fermented sausage (Petrovská klobása) was investigated. Fatty acid profile, aldehyde contents and sensory analysis of odor and flavor were determined after drying and during seven months of storage. Between coated and control sausage, a difference was observed after two months storage in fatty acid profiles (myristic, oleic and linoleic acids), but after seven months storage there was no difference. Decrease in polyunsaturated acid content was observed (from 17.25% to 15.70%), as well as an increase in total aldehydes (from 4.54 μg/g to 31.80 μg/g), due to lipid oxidation during storage. After seven months storage, the content of most aldehydes was significantly lower in coated sausage than in the control. Sensory characteristics of odor and flavor were better for coated sausage, after seven months of storage. Results suggest that chitosan-oregano coating can be successfully applied to protect dry fermented sausages from lipid oxidation.

  8. Metabolic encephalopathy and lipid storage myopathy associated with a presumptive mitochondrial fatty acid oxidation defect in a dog

    Directory of Open Access Journals (Sweden)

    Vanessa R Biegen

    2015-11-01

    Full Text Available A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurologic examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurologic signs have been described in humans with this group of diseases, descriptions of advanced imaging and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy.

  9. Volatile composition of sunflower oil-in-water emulsions during initial lipid oxidation: influence of pH.

    Science.gov (United States)

    van Ruth, S M; Roozen, J P; Posthumus, M A; Jansen, F J

    1999-10-01

    The formation of odor active compounds resulting from initial lipid oxidation in sunflower oil-in-water emulsions was examined during storage at 60 degrees C. The emulsions differed in initial pH, that is, pH 3 and 6. The volatile compounds were isolated under mouth conditions and were analyzed by gas chromatography/sniffing port analysis. The lipid oxidation rate was followed by the formation of conjugated hydroperoxide dienes and headspace hexanal. The initial pH affected the lipid oxidation rate in the emulsions: the formation of conjugated diene hydroperoxides and the hexanal concentration in the static headspace were increased at pH 6. Pentanal, hexanal, 3-pentanol, and 1-octen-3-one showed odor activity in the emulsions after 6 days of storage, for both pH 3 and 6. Larger amounts of odor active compounds were released from the pH 6 emulsion with extended storage. It was shown that this increased release at pH 6 was not due to increased volatility because an increase in pH diminished the static headspace concentrations of added compounds in emulsions.

  10. Feeding Artemisia annua alters digesta pH and muscle lipid oxidation products in broiler chickens.

    Science.gov (United States)

    Cherian, G; Orr, A; Burke, I C; Pan, W

    2013-04-01

    Because of growing consumer concern about the use of antimicrobials and the ban on most antibiotic feed additives in the European Union, there is increased interest in using alternatives to antimicrobials in poultry diets. Dried leaves of Artemisia annua have been used in Oriental medicine due to their antimicrobial activities. In the current study, the effect of including A. annua in broiler diets on hindgut and ceca pH, lipid oxidation products, and phenolic content of dark and white meat, and bird performance were investigated. A total of 96 broiler chicks were kept in 48 cages. Two cages with 2 birds per each cage are considered as 1 replicate, and there were 8 replications per treatment. The birds were fed corn-soy diets containing 0% (control), 2% (ART2), or 4% (ART4) dried A. annua leaves from d 14 through d 42. Cecal digesta pH was the lowest in birds fed the ART4 diet (P muscle of birds fed ART2 and ART4 diets compared with the control (P abdominal fat pads, or breast or thigh muscle content (P > 0.05). Artemisia annua addition did not affect final BW, weight gain, feed consumption, carcass weight, or feed:gain. No difference was observed in the relative weight of liver, abdominal fat, spleen, or heart tissue. Gastric acidity is protective against intestinal colonization and translocation of pathogenic bacteria. Therefore, gut pH and muscle tissue TBARS reduction in birds fed ART2 and ART4 suggest that A. annua may prove useful as a natural phytogenic feed additive with antioxidant potential that could be incorporated into poultry diets.

  11. Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Liang J

    2017-03-01

    Full Text Available Jinying Liang,1–3 Xinxin Zhang,2 Yunqiu Miao,2 Juan Li,1 Yong Gan2 1Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China; 2Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China; 3School of Pharmacy, Xinxiang Medical University, Xinxiang, People’s Republic of China Abstract: The development of noninvasive imaging techniques for the accurate diagnosis of progressive hepatocellular carcinoma (HCC is of great clinical significance and has always been desired. Herein, a hepatocellular carcinoma cell-targeting fluorescent magnetic nanoparticle (NP was obtained by conjugating near-infrared fluorescence to the surface of Fe3O4 (NIRF-Fe3O4 NPs, followed by coating the lipids consisting of tumoral hepatocytes-targeting polymer (Gal-P123. This magnetic NP (GPC@NIRF-Fe3O4 with superparamagnetic behavior showed high stability and safety in physiological conditions. In addition, GPC@NIRF-Fe3O4 achieved more specific uptake of human liver cancer cells than free Fe3O4 NPs. Importantly, with superparamagnetic iron oxide and strong NIR absorbance, GPC@NIRF-Fe3O4 NPs demonstrate prominent tumor-contrasted imaging performance both on fluorescent and T2-weighted magnetic resonance (MR imaging modalities in a living body. The relative MR signal enhancement of GPC@NIRF-Fe3O4 NPs achieved 5.4-fold improvement compared with NIR-Fe3O4 NPs. Therefore, GPC@NIRF-Fe3O4 NPs may be potentially used as a candidate for dual-modal imaging of tumors with information covalidated and directly compared by combining fluorescence and MR imaging. Keywords: dual-imaging, magnetic resonance imaging, hepatocellular carcinoma, tumor-targeting

  12. Effect of Spirulina Intervention on Oxidative Stress, Antioxidant Status, and Lipid Profile in Chronic Obstructive Pulmonary Disease Patients

    Directory of Open Access Journals (Sweden)

    Md. Ismail

    2015-01-01

    Full Text Available Background and Objective. Oxidative stress is intimately associated with many diseases, including chronic obstructive pulmonary disease (COPD. Study objectives include a comparison of the oxidative stress, antioxidant status, and lipid profile between COPD patients and controls and evaluation of the effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile of COPD patients. Methods. 30 patients with COPD and 20 controls with no respiratory problems were selected. Global Initiative for Chronic Obstructive Lung Disease criteria were served as the basis of COPD diagnosis. The serum content of malondialdehyde (MDA, lipid hydroperoxide, glutathione (GSH, vitamin C, cholesterol, triglyceride (TG, and high density lipoprotein (HDL was measured. The activity of superoxide dismutase (SOD, catalase (CAT, and glutathione-s-transferase (GST was also measured. Two different doses, (500 × 2 mg and (500 × 4 mg spirulina, were given to two groups, each of which comprises 15 COPD patients. Results. All targeted blood parameters have significant difference (P=0.000 between COPD patients and controls except triglyceride (TG. Spirulina intake for 30 and 60 days at (500 × 2 mg dose has significantly reduced serum content of MDA, lipid hydroperoxide, and cholesterol (P=0.000 while increasing GSH, Vit C level (P=0.000, and the activity of SOD (P=0.000 and GST (P=0.038. At the same time, spirulina intake for 30 and 60 days at (500 × 4 mg dose has favorable significant effect (P=0.000 on all targeted blood parameters except for HDL (P=0.163.

  13. Effect of Spirulina Intervention on Oxidative Stress, Antioxidant Status, and Lipid Profile in Chronic Obstructive Pulmonary Disease Patients

    Science.gov (United States)

    Ismail, Md.; Hossain, Md. Faruk; Tanu, Arifur Rahman

    2015-01-01

    Background and Objective. Oxidative stress is intimately associated with many diseases, including chronic obstructive pulmonary disease (COPD). Study objectives include a comparison of the oxidative stress, antioxidant status, and lipid profile between COPD patients and controls and evaluation of the effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile of COPD patients. Methods. 30 patients with COPD and 20 controls with no respiratory problems were selected. Global Initiative for Chronic Obstructive Lung Disease criteria were served as the basis of COPD diagnosis. The serum content of malondialdehyde (MDA), lipid hydroperoxide, glutathione (GSH), vitamin C, cholesterol, triglyceride (TG), and high density lipoprotein (HDL) was measured. The activity of superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST) was also measured. Two different doses, (500 × 2) mg and (500 × 4) mg spirulina, were given to two groups, each of which comprises 15 COPD patients. Results. All targeted blood parameters have significant difference (P = 0.000) between COPD patients and controls except triglyceride (TG). Spirulina intake for 30 and 60 days at (500 × 2) mg dose has significantly reduced serum content of MDA, lipid hydroperoxide, and cholesterol (P = 0.000) while increasing GSH, Vit C level (P = 0.000), and the activity of SOD (P = 0.000) and GST (P = 0.038). At the same time, spirulina intake for 30 and 60 days at (500 × 4) mg dose has favorable significant effect (P = 0.000) on all targeted blood parameters except for HDL (P = 0.163). PMID:25685791

  14. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica.

    Science.gov (United States)

    Wasylenko, Thomas M; Ahn, Woo Suk; Stephanopoulos, Gregory

    2015-07-01

    Oleaginous microbes represent an attractive means of converting a diverse range of feedstocks into oils that can be transesterified to biodiesel. However, the mechanism of lipid overproduction in these organisms is incompletely understood, hindering the development of strategies for engineering superior biocatalysts for "single-cell oil" production. In particular, it is unclear which pathways are used to generate the large quantities of NADPH required for overproduction of the highly reduced fatty acid species. While early studies implicated malic enzyme as having a key role in production of lipogenic NADPH in oleaginous fungi, several recent reports have cast doubts as to whether malic enzyme may contribute to production of lipogenic NADPH in the model oleaginous yeast Yarrowia lipolytica. To address this problem we have used (13)C-Metabolic Flux Analysis to estimate the metabolic flux distributions during lipid accumulation in two Y. lipolytica strains; a control strain and a previously published engineered strain capable of producing lipids at roughly twice the yield. We observe a dramatic rearrangement of the metabolic flux distribution in the engineered strain which supports lipid overproduction. The NADPH-producing flux through the oxidative Pentose Phosphate Pathway is approximately doubled in the engineered strain in response to the roughly two-fold increase in fatty acid biosynthesis, while the flux through malic enzyme does not differ significantly between the two strains. Moreover, the estimated rate of NADPH production in the oxidative Pentose Phosphate Pathway is in good agreement with the estimated rate of NADPH consumption in fatty acid biosynthesis in both strains. These results suggest the oxidative Pentose Phosphate Pathway is the primary source of lipogenic NADPH in Y. lipolytica.

  15. Effects of adipose tissue distribution on maximum lipid oxidation rate during exercise in normal-weight women.

    Science.gov (United States)

    Isacco, L; Thivel, D; Duclos, M; Aucouturier, J; Boisseau, N

    2014-06-01

    Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. The effect of dietary fat and omega-3 fatty acids on whole body lipid oxidation

    Science.gov (United States)

    Lipid peroxidation of polyunsaturated fatty acids yields several electrophilic, reactive carbonyl metabolites. We hypothesized that an increased intake of omega-3 fatty acids (n-3) would lead to increased lipid peroxidation metabolites compared to a diet low in n-3. As part of a randomized crossov...

  17. Inhibition of Oxidative Stress and Lipid Peroxidation by Anthocyanins from Defatted Canarium odontophyllum Pericarp and Peel Using In Vitro Bioassays

    Science.gov (United States)

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah; Hamid, Muhajir

    2014-01-01

    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection. PMID:24416130

  18. Inhibition of oxidative stress and lipid peroxidation by anthocyanins from defatted Canarium odontophyllum pericarp and peel using in vitro bioassays.

    Directory of Open Access Journals (Sweden)

    Hock Eng Khoo

    Full Text Available Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD(+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.

  19. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet.

    Science.gov (United States)

    Xu, Li; Huang, Danping; Hu, Qiaolin; Wu, Jing; Wang, Yizhen; Feng, Jie

    2015-06-28

    To assess the effects of betaine on hepatic lipid accumulation and investigate the underlying mechanism, thirty-two male Sprague-Dawley rats weighing 100 (sd 2·50) g were divided into four groups, and started on one of four treatments: basal diet, basal diet with betaine administration, high-fat diet and high-fat diet with betaine administration. The results showed that no significant difference of body weight was found among experimental groups. Compared with high-fat diet-fed rats, a betaine supplementation decreased (Pbetaine-homocysteine methyltransferase concentration [corrected] as well as its mRNA abundance and lecithin level were found increased (Pbetaine supplementation in both basal diet-fed rats and high-fat diet-fed rats. Betaine administration in high-fat diet-fed rats exhibited a higher (Pbetaine administration in high-fat diet-fed rats elevated (Pbetaine administration in high-fat diet group; meanwhile the gene expression of hepatic AMP-activated protein kinase was increased (Pbetaine administration enhanced hepatic lipid export and fatty acid oxidation in high-fat diet-fed rats, thus effectively alleviating fat accumulation in the liver.

  20. Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane.

    Science.gov (United States)

    Tang, Chuan-Ho; Lin, Ching-Yu; Lee, Shu-Hui; Wang, Wei-Hsien

    2017-06-01

    Zinc oxide nanoparticles (nZnOs) released from popular sunscreens used during marine recreation apparently endanger corals; however, the known biological effects are very limited. Membrane lipids constitute the basic structural element to create cell a dynamic structure according to the circumstance. Nano-specific effects have been shown to mechanically perturb the physical state of the lipid membrane, and the cells accommodating the actions of nZnOs can be involved in the alteration of the membrane lipid composition. To gain insight into the effects of nanoparticles on coral, glycerophosphocholine (GPC) profiling of the coral Seriatopora caliendrum exposed to nZnOs was performed in this study. Increasing lyso-GPCs, docosapentaenoic acid-possessing GPCs and docosahexaenoic acid-possessing GPCs and decreasing arachidonic acid-possessing GPCs were the predominant changes responded to nZnO exposure in the coral. A backfilling of polyunsaturated plasmanylcholines was observed in the coral exposed to nZnO levels over a threshold. These changes can be logically interpreted as an accommodation to nZnOs-induced mechanical disturbances in the cellular membrane based on the biophysical properties of the lipids. Moreover, the coral demonstrated a difference in the changes in lipid profiles between intra-colonial functionally differentiated polyps, indicating an initial membrane composition-dependent response. Based on the physicochemical properties and physiological functions of these changed lipids, some chronic biological effects can be incubated once the coral receives long-term exposure to nZnOs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of cerium oxide supplementation to laying hen diets on performance, egg quality, some antioxidant enzymes in serum and lipid oxidation in egg yolk.

    Science.gov (United States)

    Bölükbaşı, S C; Al-Sagan, A A; Ürüşan, H; Erhan, M K; Durmuş, O; Kurt, N

    2016-08-01

    This study was conducted to determine the effects of dietary cerium oxide levels (0, 100, 200, 300 or 400 mg/kg) on the laying performance, egg quality, some blood serum parameters and egg lipid peroxidation of laying hen. In total, one hundred and twenty 22-week-old brown Lohman LSL laying hens were randomly assigned to five groups equally (n = 24). Each treatment was replicated six times. Dietary supplementation of cerium oxide had no significant effect on feed intake and egg weight. The addition of cerium oxide to the laying hens' feed improved feed conversion ratio and increased (p laying hens feed led to a significant (p laying hen diets. It was also observed that serum superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration decreased significantly with supplementation of cerium oxide in diets. Inclusion of cerium oxide resulted in a significant reduction in thiobarbituric acid reactive substance (TBARS) values in egg yolk in this study. It can be concluded that the addition of cerium oxide had positive effects on egg production, feed conversion ratio and egg shelf life. Based on the results of this study, it could be advised to supplement laying hens feed with cerium oxide as feed additives.

  2. The effect of consuming oxidized oil supplemented with fiber on lipid profiles in rat model

    Directory of Open Access Journals (Sweden)

    Shila Shafaeizadeh

    2011-01-01

    Conclusions: Pectin consumption could decrease serum malondialdehyde and cholesterol in the diet that contains oxidized oil. Pectin supplementation could decrease the detrimental effects of thermally oxidized oil.

  3. Maximal lipid oxidation in patients with type 2 diabetes is normal and shows an adequate increase in response to aerobic training

    DEFF Research Database (Denmark)

    Hey-Mogensen, Martin; Vind, Birgitte Falbe; Højlund, K

    2009-01-01

    Aim: Insulin resistance in subjects with type 2 diabetes (T2D) and obesity is associated with an imbalance between the availability and the oxidation of lipids. We hypothesized that maximal whole-body lipid oxidation during exercise (FATmax) is reduced and that training-induced metabolic adaptation...... in response to training in both groups (all p correlation between Rd and measures of oxidative capacity or lipid oxidation during exercise or the training-induced changes in these parameters. Conclusions: FATmax was not reduced in T2D, and muscle oxidative capacity increased adequately...... is attenuated in T2D. Methods: Obese T2D (n = 12) and control (n = 11) subjects matched for age, sex, physical activity and body mass index completed 10 weeks of aerobic training. Subjects were investigated before and after training with maximal and submaximal exercise tests and euglycaemic...

  4. Antioxidant effectiveness of vegetable powders on the lipid and protein oxidative stability of cooked Turkey meat patties: implications for health.

    Science.gov (United States)

    Duthie, Garry; Campbell, Fiona; Bestwick, Charles; Stephen, Sylvia; Russell, Wendy

    2013-04-17

    Lipid and protein oxidation decreases the shelf-life of foods and may result in formation of end-products potentially detrimental for health. Consumer pressure to decrease the use of synthetic phenolic antioxidants has encouraged identification of alternative compounds or extracts from natural sources. We have assessed whether inclusion of dried vegetable powders improves the oxidative stability of turkey meat patties. Such powders are not only potentially-rich sources of phenolic antioxidants, but also may impart additional health benefits, as inadequate vegetable consumption is a risk factor for heart disease and several cancers. In an accelerated oxidation system, six of eleven vegetable powders significantly (p protein carbonyls (r = 0.747, p powders offers an alternative to individual antioxidants for increasing shelf-life of animal-based food products and may also provide additional health benefits associated with increased vegetable intake.

  5. Fasting activates the gene expression of UCP3 independent of genes necessary for lipid transport and oxidation in skeletal muscle.

    Science.gov (United States)

    Tunstall, Rebecca J; Mehan, Kate A; Hargreaves, Mark; Spriet, Lawrence L; Cameron-Smith, David

    2002-06-07

    Fasting triggers a complex array of adaptive metabolic and hormonal responses including an augmentation in the capacity for mitochondrial fatty acid (FA) oxidation in skeletal muscle. This study hypothesized that this adaptive response is mediated by increased mRNA of key genes central to the regulation of fat oxidation in human skeletal muscle. Fasting dramatically increased UCP3 gene expression, by 5-fold at 15 h and 10-fold at 40 h. However the expression of key genes responsible for the uptake, transport, oxidation, and re-esterification of FA remained unchanged following 15 and 40 h of fasting. Likewise there was no change in the mRNA abundance of transcription factors. This suggests a unique role for UCP3 in the regulation of FA homeostasis during fasting as adaptation to 40 h of fasting does not require alterations in the expression of other genes necessary for lipid metabolism.

  6. From multispectral imaging of autofluorescence to chemical and sensory images of lipid oxidation in cod caviar paste.

    Science.gov (United States)

    Airado-Rodríguez, Diego; Høy, Martin; Skaret, Josefine; Wold, Jens Petter

    2014-05-01

    The potential of multispectral imaging of autofluorescence to map sensory flavour properties and fluorophore concentrations in cod caviar paste has been investigated. Cod caviar paste was used as a case product and it was stored over time, under different headspace gas composition and light exposure conditions, to obtain a relevant span in lipid oxidation and sensory properties. Samples were divided in two sets, calibration and test sets, with 16 and 7 samples, respectively. A third set of samples was prepared with induced gradients in lipid oxidation and sensory properties by light exposure of certain parts of the sample surface. Front-face fluorescence emission images were obtained for excitation wavelength 382 nm at 11 different channels ranging from 400 to 700 nm. The analysis of the obtained sets of images was divided in two parts: First, in an effort to compress and extract relevant information, multivariate curve resolution was applied on the calibration set and three spectral components and their relative concentrations in each sample were obtained. The obtained profiles were employed to estimate the concentrations of each component in the images of the heterogeneous samples, giving chemical images of the distribution of fluorescent oxidation products, protoporphyrin IX and photoprotoporphyrin. Second, regression models for sensory attributes related to lipid oxidation were constructed based on the spectra of homogeneous samples from the calibration set. These models were successfully validated with the test set. The models were then applied for pixel-wise estimation of sensory flavours in the heterogeneous images, giving rise to sensory images. As far as we know this is the first time that sensory images of odour and flavour are obtained based on multispectral imaging.

  7. Radioiodine remnant ablation of differentiated thyroid cancer does not further increase oxidative damage to membrane lipids - early effect

    Directory of Open Access Journals (Sweden)

    Makarewicz Jacek

    2010-10-01

    Full Text Available Abstract Introduction Radioiodine (131I therapy is widely accepted as an essential part of therapeutic regimens in many cases of differentiated thyroid cancer. Radiation-induced oxidative damage to macromolecules is a well known phenomenon. Frequently examined process to evaluate oxidative damage to macromolecules is lipid peroxidation (LPO, resulting from oxidative damage to membrane lipids. The aim of the study was to examine serum LPO level in hypothyroid (after total thyroidectomy cancer patients subjected to ablative activities of 131I. Materials and methods The study was carried out in 21 patients (18 females and 3 males, average age 52.4 ± 16.5 years after total thyroidectomy for papillary (17 patients or follicular (4 patients thyroid carcinoma. Hypothyroidism was confirmed by increased TSH blood concentration (BRAHMS, Germany, measured before 131I therapy. Activity of 2.8 - 6.9 GBq of 131I was administered to the patients orally as sodium iodide (OBRI, Poland. Concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA, as an index of LPO (LPO-586 kit, Calbiochem, USA, were measured in blood serum just before 131I administration (day "0" and on the days 1-4 after 131I therapy. Sera from 23 euthyroid patients served as controls. Correlations between LPO and TSH or 131I activity were calculated. Results Expectedly, serum LPO level, when measured before 131I therapy, was several times higher (p 131I therapy. LPO did not correlate with TSH concentration. In turn, negative correlation was found between 131I activity and LPO level on the day "2" after radioiodine treatment. Conclusions Radioiodine remnant ablation of differentiated thyroid cancer does not further increase oxidative damage to membrane lipids, at least early, after therapy.

  8. Smoke Exposure Causes Endoplasmic Reticulum Stress and Lipid Accumulation in Retinal Pigment Epithelium through Oxidative Stress and Complement Activation*

    Science.gov (United States)

    Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel

    2014-01-01

    Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD. PMID:24711457

  9. Effect of L-Carnitine on Skeletal Muscle Lipids and Oxidative Stress in Rats Fed High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Panchamoorthy Rajasekar

    2007-01-01

    Full Text Available There is evidence that high-fructose diet induces insulin resistance, alterations in lipid metabolism, and oxidative stress in rat tissues. The purpose of this study was to evaluate the effect of L-carnitine (CAR on lipid accumulation and peroxidative damage in skeletal muscle of rats fed high-fructose diet. Fructose-fed animals (60 g/100 g diet displayed decreased glucose/insulin (G/I ratio and insulin sensitivity index (ISI0,120 indicating the development of insulin resistance. Rats showed alterations in the levels of triglycerides, free fatty acids, cholesterol, and phospholipids in skeletal muscle. The condition was associated with oxidative stress as evidenced by the accumulation of lipid peroxidation products, protein carbonyls, and aldehydes along with depletion of both enzymic and nonenzymic antioxidants. Simultaneous intraperitoneal administration of CAR (300 mg/kg/day to fructose-fed rats alleviated the effects of fructose. These rats showed near-normal levels of the parameters studied. The effects of CAR in this model suggest that CAR supplementation may have some benefits in patients suffering from insulin resistance.

  10. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats

    Directory of Open Access Journals (Sweden)

    Samarghandian Saeed

    2015-09-01

    Full Text Available Cadmium (Cd is an environmental toxic metal implicated in lipid abnormalities. The present study was designed to elucidate the possible association between chronic exposure to Cd concentration and alterations in plasma lipid, lipoprotein, and oxidative stress indices in rats. Sixteen male rats were assigned to 2 groups of 8 rats each (test and control. The Cd-exposed group obtained drinking water containing cadmium chloride (CdCl2 in the concentration of 2.0 mg Cd/L in drinking water for 3 months. At the end of the experimental period, blood samples were obtained to determine the changes of serum triglycerides (TG, total cholesterol (TC, high-density lipoprotein cholesterol (HDL-C, low-density lipoprotein cholesterol (LDL-C, reduced glutathione (GSH, malondialdehyde (MDA and also serum Cd contents. The results of the present study indicated that Cd administration significantly increased the serum levels of TG, TC, LDL-C, MDA and Cd with reduction in the HDL-C and GSH levels. In conclusion, evidence is presented that chronic exposure to low Cd concentration can adversely affect the lipid and lipoprotein profile via lipid peroxidation.

  11. Mitochondrial lipid oxidation is impaired in cultured myotubes from obese humans.

    Science.gov (United States)

    Boyle, K E; Zheng, D; Anderson, E J; Neufer, P D; Houmard, J A

    2012-08-01

    The skeletal muscle of obese humans is characterized by an inability to appropriately respond to alterations in substrate availability. The purpose of this study was to determine if this metabolic inflexibility with obesity is retained in mitochondria of human skeletal muscle cells raised in culture (HSkMC) and to identify potential mechanisms involved. Mitochondrial respiration was measured in permeabilized myotubes cultured from lean and obese individuals before and after a 24-h lipid incubation. Mitochondrial respiration (state 3) in the presence of lipid substrate (palmitoyl carnitine) increased by almost twofold after lipid incubation in HSkMC from lean, but not obese subjects, indicative of metabolic inflexibility with obesity. The 24-h lipid incubation increased mitochondrial DNA (mtDNA) copy number in HSkMC from lean subjects by +16% (P<0.05); conversely, mtDNA copy number decreased in myotubes cultured from obese individuals (-13%, P=0.06). When respiration data were normalized to mtDNA copy number and other indices of mitochondrial content (COX-IV protein content and CS activity), the significant treatment effects of lipid incubation persisted in the lean subjects, suggesting concomitant alterations in mitochondrial function; no similar adjustment was evident in HSkMC from obese individuals. These data indicate that the skeletal muscle of obese individuals inherently lacks metabolic flexibility in response to lipid exposure, which consists of an inability to increase mitochondrial respiration in the presence of lipid substrate and perhaps by an inability to induce mitochondrial proliferation.

  12. Lipid oxidation in human low-density lipoprotein induced by metmyoglobin/H2O2

    DEFF Research Database (Denmark)

    Witting, P K; Willhite, C A; Davies, Michael Jonathan

    1999-01-01

    Metmyoglobin (metMb) and H(2)O(2) can oxidize low-density lipoprotein (LDL) in vitro, and oxidized LDL may be atherogenic. The role of alpha-tocopherol (alpha-TOH) in LDL oxidation by peroxidases such as metMb is unclear. Herein, we show that during metMb/H(2)O(2)-induced oxidation of native LDL...

  13. Effect of the presence of protein on lipolysis and lipid oxidation occurring during in vitro digestion of highly unsaturated oils.

    Science.gov (United States)

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Guillén, María D

    2017-11-15

    The effect of the presence of ovalbumin and soy protein isolate on lipolysis and oxidation taking place during in vitro gastrointestinal digestion of slightly oxidized sunflower and flaxseed oils was addressed. The extent of lipolysis, the molar proportions of acyl groups/fatty acids after digestion, and the oxidation products formed were studied by Proton Nuclear Magnetic Resonance. The presence of proteins provoked a higher hydrolysis in triglycerides, a lower decrease of polyunsaturated chains, and a lower generation of oxidation compounds (conjugated dienes in chains having also hydroperoxy/hydroxy groups, epoxides and aldehydes); the formation of hydroxides was clearly favoured over that of hydroperoxides. Study of headspace composition by Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry confirmed that oxidation advanced to a lesser extent in the presence of protein. Thus, amino acids/peptides released during digestion may show antioxidant properties, affecting not only the extent of lipid oxidation, but also reactions pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Simultaneous analysis of multiple lipid oxidation products in vivo by liquid chromatographic-mass spectrometry (LC-MS).

    Science.gov (United States)

    Yin, Huiyong; Davis, Todd; Porter, Ned A

    2010-01-01

    Free radical-induced oxidation of polyunsaturated fatty acid (PUFAs) has been linked to a number of human diseases including atherosclerosis and neurodegenerative disorders. Oxidation of PUFAs generates hydroperoxides and cyclic peroxides that are reduced to lipid alcohol, such as hydroxyeicosatetraenoic acid (HETEs), and isoprostanes (IsoPs) respectively. The IsoPs are isomers of prostaglandins that are generated from autoxidation of arachidonic acid (C20:4). Quantification of F(2)-IsoPs has been regarded as the "gold standard" to assess oxidative stress status in various human diseases. We herein report the protocol of analyzing HETEs and F(2)-IsoPs using a triple quadrupole mass spectrometer coupled to reverse phase liquid chromatography. The selected reaction monitoring (SRM) mode selects the parent ion of interest in the first Quad (m/z 319 for HETE and m/z 353 for F(2)-IsoPs) and fragments it in the second while an ion characteristic of the analyte of interest is monitored in the third Quad. This highly selective technique permits the simultaneous analysis of multiple oxidation products such as the HETEs and F(2)-IsoPs. This LC-MS technique can be applied to study the free radical oxidation mechanism in vitro and assess the oxidative stress status in biological tissues and fluids.

  15. Properties and mechanisms of drug release from matrix tablets containing poly(ethylene oxide) and poly(acrylic acid) as release retardants.

    Science.gov (United States)

    Zhang, Feng; Meng, Fan; Lubach, Joseph; Koleng, Joseph; Watson, N A

    2016-08-01

    The interactions between poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) in aqueous medium at pH 6.8 were investigated in the current study. We have also studied the effect of interpolymer interactions and various formulation variables, including the molecular weight of PEO, the ratio between PEO and PAA, the crystallinity of PEO, and the presence of an acidifying agent, on the release of theophylline from matrix tablets containing both PEO and PAA as release retardants. At pH 6.8, the synergy in solution viscosity between PEO and PAA as the result of ion-dipole interaction was observed in this study. The release of theophylline from the matrix tablets containing physical mixtures of PEO and PAA was found to be a function of dissolution medium pH because of the pH-dependent interactions between these two polymers. Because of the formation of water insoluble interpolymer complex between PEO and PAA in aqueous medium at pH below 4.0, the release of theophylline was independent of PEO molecular weight and was controlled by Fickian diffusion mechanism in 0.01N hydrochloric acid solution. In comparison, the drug release was a function of PEO molecular weight and followed the anomalous transport mechanism in phosphate buffer pH 6.8. The presence of PAA exerted opposite effects on the release of theophylline in phosphate buffer pH 6.8. In one aspect, theophylline release was accelerated because the erosion of PAA was much faster than that of PEO at pH6.8. On the opposite aspect, theophylline release was slowed down because of the formation of insoluble complex inside the gel layer as the result of the acidic microenvironment induced by PAA, and the increase in the viscosity of the gel layer as the result of the synergy between PEO and PAA. These two opposite effects offset each other. As a result, the release of theophylline remained statistically the same even when 75% PEO in the formulation was replaced with PAA. In phosphate buffer pH 6.8, the release of

  16. Effect of vitamin C supplementation on postprandial oxidative stress and lipid profile in type 2 diabetic patients.

    Science.gov (United States)

    Mazloom, Zohreh; Hejazi, Najmeh; Dabbaghmanesh, Mohammad-Hossein; Tabatabaei, Hamid-Reza; Ahmadi, Afsane; Ansar, Hasti

    2011-10-01

    Diabetes mellitus is one of the most wide spread endocrine disorders and an important developing health problem in the world. Cardiovascular disease is a common complication of type 2 diabetes. Several risk factors for coronary heart disease cosegregate in type 2 diabetes, including hyperglycemia, hyperlipaemia, increases production of free radical and decrease in antioxidant defense system. In this study we evaluated the effect of vitamin C supplementation on fasting and postprandial oxidative stress and lipid profile in type 2 diabetic patients. 30 patients with type 2 diabetes from Nader Kazemi Clinic, Shiraz, Iran were randomly divided into 2 groups; vitamin C treatment group (1000 mg d(-1)) and placebo group from May to September 2010. Fasting and postprandial lipid profile and Malondialdehyde (MDA) level were measured at the beginning of the study and after six weeks of supplementation. Data analysis was carried out using Mann-Whitney U test with p diabetes complication.

  17. Caveolin-1 is necessary for hepatic oxidative lipid metabolism: evidence for crosstalk between caveolin-1 and bile acid signaling.

    Science.gov (United States)

    Fernández-Rojo, Manuel A; Gongora, Milena; Fitzsimmons, Rebecca L; Martel, Nick; Martin, Sheree D; Nixon, Susan J; Brooks, Andrew J; Ikonomopoulou, Maria P; Martin, Sally; Lo, Harriet P; Myers, Stephen A; Restall, Christina; Ferguson, Charles; Pilch, Paul F; McGee, Sean L; Anderson, Robin L; Waters, Michael J; Hancock, John F; Grimmond, Sean M; Muscat, George E O; Parton, Robert G

    2013-07-25

    Caveolae and caveolin-1 (CAV1) have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1-/- mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1-/- mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1) hepatic lipid homeostasis and (2) nuclear hormone receptor (PPARα, FXRα, and SHP) and bile acid signaling.

  18. Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling

    Directory of Open Access Journals (Sweden)

    Manuel A. Fernández-Rojo

    2013-07-01

    Full Text Available Caveolae and caveolin-1 (CAV1 have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1−/− mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1−/− mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1 hepatic lipid homeostasis and (2 nuclear hormone receptor (PPARα, FXRα, and SHP and bile acid signaling.

  19. Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans.

    Science.gov (United States)

    Bernat, Przemysław; Gajewska, Ewa; Szewczyk, Rafał; Słaba, Mirosława; Długoński, Jerzy

    2014-03-01

    To investigate the response of the tributyltin-degrading fungal strain Cunninghamella elegans to the organotin, a comparative lipidomics strategy was employed using an LC/MS-MS technique. A total of 49 lipid species were identified. Individual phospholipids were then quantified using a multiple reaction monitoring method. Tributyltin (TBT) caused a decline in the amounts of many molecular species of phosphatidylethanolamine or phosphatidylserine and an increase in the levels of phosphatidic acid, phosphatidylinositol and phosphatidylcholine. In the presence of TBT, it was observed that overall unsaturation was lower than in the control. Lipidome data were analyzed using principal component analysis, which confirmed the compositional changes in membrane lipids in response to TBT. Additionally, treatment of fungal biomass with butyltin led to a significant increase in lipid peroxidation. It is suggested that modification of the phospholipids profile and lipids peroxidation may reflect damage to mycelium caused by TBT.

  20. Oxidative stability of structured lipids containing C18:0, C18:1, C18:2, C18:3 or CLA in sn 2-position - as bulk lipids and in milk drinks

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Nielsen, Nina Skall; Xu, Xuebing

    2004-01-01

    In this study, we compared the oxidative stability of a specific structured lipid (SL) containing conjugated linoleic acid (CLA) in the sn2-position with SL containing other C18 fatty acids of different degree of unsaturation (stearic, oleic, linoleic or linolenic acid). SL was produced by enzyma......In this study, we compared the oxidative stability of a specific structured lipid (SL) containing conjugated linoleic acid (CLA) in the sn2-position with SL containing other C18 fatty acids of different degree of unsaturation (stearic, oleic, linoleic or linolenic acid). SL was produced...... by enzymatic interesterification with caprylic acid. Oxidative stability was compared in the five lipids themselves and in milk drinks containing 5% of the different SL. During storage, samples were taken for chemical and physical analyses. Moreover, sensory assessments were performed on milk drinks....... The oxidative stability of our SL was very different when comparing (a) bulk lipids and milk drink and (b) the five different batches of each product. SL based on oleic acid was the most unstable as bulk lipid, while SL based on linoleic acid was the most unstable in milk drink. SL based on CLA was the second...

  1. Effects of extra virgin olive oil and fish oil on lipid profile and oxidative stress in patients with metabolic syndrome.

    Science.gov (United States)

    Venturini, Danielle; Simão, Andréa Name Colado; Urbano, Mariana Ragassi; Dichi, Isaias

    2015-06-01

    The aim of this study was to verify if extra virgin olive oil and fish oil have a synergistic effect on lipid and oxidative stress parameters in patients with metabolic syndrome (MetS). This intervention study included 102 patients (81 women and 21 men) with MetS (mean age 51.45 ± 8.27 y) from the ambulatory center of the University Hospital of Londrina, Paraná, Brazil. Patients were randomly assigned to one of four groups: Patients in the control group (CG) were instructed to maintain their usual diet; the second group (fish oil group [FO]) received 3 g/d of fish oil ω-3 fatty acids (10 capsules); the third group (extra virgin olive oil group [OO]) received 10 mL/d of extra virgin olive oil at lunch and dinner; and the fourth group (fish oil and extra virgin olive oil group [FOO]) received 3 g/d of fish oil ω-3 fatty acids and 10 mL/d of extra virgin olive oil. MetS related markers and oxidative stress were measured at baseline and after 90 d. Differences across treatment groups showed a statistically significant decrease (P olive oil have beneficial synergistic effects on lipid metabolism and oxidative stress in patients with MetS. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Polyunsaturated lipids and vitamin A oxidation during cod liver oil in vitro gastrointestinal digestion. Antioxidant effect of added BHT.

    Science.gov (United States)

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Guillén, María D

    2017-10-01

    The extent of cod liver oil hydrolysis and oxidation during in vitro gastrointestinal digestion was investigated by Proton Nuclear Magnetic Resonance ((1)H NMR) and Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS). These techniques evidenced the degradation of polyunsaturated ω-3 and ω-6 lipids and, for the first time, that of vitamin A, naturally present in cod liver oil. Cis,trans-conjugated dienes associated with hydroperoxides, as well as monoepoxides, cis,trans-2,4-alkadienals, 4-hydroperoxy- and 4-hydroxy-2-alkenals, and several vitamin A derived metabolites were generated. Moreover, the effect of the addition of the synthetic antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT) at 20 and 800ppm was tackled. Both techniques showed BHT to be efficient in limiting oxidation reactions during digestion, almost inhibiting them at 800ppm. Therefore, the simultaneous intake of antioxidants with cod liver oil should be considered, in order to increase polyunsaturated lipid and vitamin A bioaccessibility and avoid formation of toxic oxidation compounds like oxygenated alpha,beta-unsaturated aldehydes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of physical integrity of lipid bilayer under oxidative stress: application of fluorescence microscopy and digital image processing.

    Science.gov (United States)

    Liang, Ran; Zhang, Jian-Ping; Skibsted, Leif H

    2015-01-01

    Membrane damage as a result of oxidative stress is quantified using digital image heterogeneity analysis of single giant unilamellar vesicles (GUVs) composed of soy phosphatidylcholine (PC), which were found to undergo budding when containing chlorophyll a (Chla) as photosensitizer in the lipid bilayer. Based on digital image heterogeneity analysis, a dimensionless scalar parameter "entropy" for the budding process was found to change linearly during an initial budding stage. Photo-induced peroxidation of PC to form linoleoyl hydroperoxides, further leading to domains of higher polarities in GUVs, was suggested to initiate the budding process. The effect on budding process of GUVs was suggested for use in assays for evaluation of potential protectors of lipid bilayer integrity under oxidative stress, and "entropy" seemed to be a valid descriptor of such membranal integrity. The one-step procedure for quantification of prooxidative effects and antioxidative protection provided by drug candidates and potential food ingredients in membranes could be easily automated for direct measurement of oxidative and antioxidative effects on cellular integrity.

  4. Lipid oxidation in fish oil enriched mayonnaise : Calcium disodium ethylenediaminetetraacetate, but not gallic acid, strongly inhibited oxidative deterioration

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Hartvigsen, Karsten; Thomsen, Mikael Holm;

    2001-01-01

    The antioxidative effects of gallic acid, EDTA, and extra emulsifier Panodan DATEM TR in mayonnaise enriched with 16% fish oil were investigated. EDTA reduced the formation of free radicals, lipid hydroperoxides, volatiles, and fishy and rancid off-flavors. The antioxidative effect of EDTA...

  5. The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis.

    Science.gov (United States)

    Lehman, John J; Boudina, Sihem; Banke, Natasha Hausler; Sambandam, Nandakumar; Han, Xianlin; Young, Deanna M; Leone, Teresa C; Gross, Richard W; Lewandowski, E Douglas; Abel, E Dale; Kelly, Daniel P

    2008-07-01

    High-capacity mitochondrial ATP production is essential for normal function of the adult heart, and evidence is emerging that mitochondrial derangements occur in common myocardial diseases. Previous overexpression studies have shown that the inducible transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha is capable of activating postnatal cardiac myocyte mitochondrial biogenesis. Recently, we generated mice deficient in PGC-1alpha (PGC-1alpha(-/-) mice), which survive with modestly blunted postnatal cardiac growth. To determine if PGC-1alpha is essential for normal cardiac energy metabolic capacity, mitochondrial function experiments were performed on saponin-permeabilized myocardial fibers from PGC-1alpha(-/-) mice. These experiments demonstrated reduced maximal (state 3) palmitoyl-l-carnitine respiration and increased maximal (state 3) pyruvate respiration in PGC-1alpha(-/-) mice compared with PGC-1alpha(+/+) controls. ATP synthesis rates obtained during maximal (state 3) respiration in permeabilized myocardial fibers were reduced for PGC-1alpha(-/-) mice, whereas ATP produced per oxygen consumed (ATP/O), a measure of metabolic efficiency, was decreased by 58% for PGC-1alpha(-/-) fibers. Ex vivo isolated working heart experiments demonstrated that PGC-1alpha(-/-) mice exhibited lower cardiac power, reduced palmitate oxidation, and increased reliance on glucose oxidation, with the latter likely a compensatory response. (13)C NMR revealed that hearts from PGC-1alpha(-/-) mice exhibited a limited capacity to recruit triglyceride as a source for lipid oxidation during beta-adrenergic challenge. Consistent with reduced mitochondrial fatty acid oxidative enzyme gene expression, the total triglyceride content was greater in hearts of PGC-1alpha(-/-) mice relative to PGC-1alpha(+/+) following a fast. Overall, these results demonstrate that PGC-1alpha is essential for the maintenance of maximal, efficient cardiac

  6. Inhibition of lipid oxidation and rancidity in precooked pork patties by radical-scavenging licorice (Glycyrrhiza glabra) extract.

    Science.gov (United States)

    Jiang, Jiang; Zhang, Xin; True, Alma D; Zhou, Lirong; Xiong, Youling L

    2013-11-01

    This study investigated the efficacy of licorice extract (LE) to curtail lipid oxidation and protect sensory attributes of ground pork during refrigerated and frozen storage. Pork patties (20% fat) were formulated with 0%, 0.02%, 0.05%, and 0.1% (meat basis) LE or rosemary extract (RE) as comparison or 0.01% (fat basis) BHA with 0 or 1.5% NaCl. Raw and precooked (75 °C) patties were packaged in polyvinylchloride overwrapped trays and stored at 2 °C up to 7 and 14 d, respectively, or at -20 °C up to 6 mo. Lipid oxidation (thiobarbituric acid-reactive substances [TBARS]) and sensory attributes of stored patty samples were evaluated, radical scavenging activity of the LE was measured, and the active phenolic compounds were identified. Cooking yield (<85%) was similar among antioxidant treatments, and lipid oxidation was minimal in refrigerated or frozen raw samples. However, TBARS values in refrigerated precooked control patties (0.22 mg/kg) rose to 9.3 to 9.4 mg/kg after 14 d, compared to 3.4 to 4.4 and 4.4 to 6.9 mg/kg in patties treated with 0.1% LE and RE, respectively. In frozen precooked samples, TBARS (0.22 mg/kg) increased to 1.3 mg/kg (P < 0.05) in control patties after 6 mo and had no significant change in patties treated with 0.1% LE or 0.01% butylated hydroxyanisol. Sensory panel evaluation confirmed strong inhibition of rancidity production by LE, corroborating its remarkable antiradical activity due to the presence of multiple phenolics. The results indicate that licorice has great potential as a natural antioxidative additive to extend the shelf-life of precooked pork.

  7. Lipid and protein oxidation in the internal part of italian type salami containing basil essential oil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Alexandre José Cichoski

    2011-06-01

    Full Text Available Different concentrations of basil essential oil (Ocimum basilicum L. (0.19; 0.38; 0.75; 1.87; 3.75 and 6.00 mg.g-1 were evaluated in relation to their antioxidant activity using the DPPH● radical methodology. From the IC50 obtained data, the concentrations of 0.19; 0.38; 0.75; 1.87; 3.75; 6.00 and 12.00 mg.mL-1 were applied directly to the product and these were sensorially evaluated by the test of control difference. The concentrations related to the highest acceptability (0.19; 0.38 and 0.75 mg.g-1 were tested for antioxidant activity in the internal part of Italian type salami - during the processing and after 30 days of storage, in terms of lipid and protein oxidation. The oxidation of lipids was determined using the method of TBARS. The method of carbonyl compounds was employed for proteins oxidation. Five different formulations of salami were elaborated: blank (without the use of antioxidant; control (using sodium eritorbate as antioxidant; and adding 0.19; 0.38 and 0.75 mg.g-1 of basil essential oil. The product was kept between 25 ºC and 18 ºC and UR between 95% and 70%, for 28 days. Analyses were carried out on the processing day and after 2, 7, 14, 21 and 28 days, and also following 30 days of storage. The basil essential oil in vitro presented an antioxidant activity of IC50 12 mg.mL-1. In the internal part of the Italian type salami the commercial antioxidant (control and the formulation containing 0.75 mg.g-1 of basil essential oil presented antioxidant activity in relation to the lipids, but not to the proteins - during processing and storage.

  8. Lipid oxidation in fish oil enriched oil-in-water emulsions and cream cheese with pre-emulsified fish oil is affected differently by the emulsifier used

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Andersen, Ulf

    will include results from studies on lipid oxidation in simple oil-in-water emulsions prepared with milk proteins alone or combinations of milk proteins and phospholipids. In addition, a study on fish oil enriched cream cheese will be presented. In this study, the cream cheese was enriched with either neat...... fish oil or a fish oil-in-water delivery emulsion prepared with whey protein isolate, sodium caseinate or a commercially available emulsifier that consisted of ~20% milk phospholipids and ~50% milk proteins. Results showed that simple emulsions prepared with a combination of milk proteins...... acids to foods invariably increases the risk of lipid oxidation. A possible strategy to avoid lipid oxidation and the consecutive development of unpleasant off-flavours is to protect the oil in a delivery emulsion in which the oil droplets are shielded from its possible pro-oxidative surroundings...

  9. The effect of fish oil enriched margarine on plasma lipids, low density lipoprotein particle composition, size and susceptibility to oxidation

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Marckmann, Peter; Høy, Carl-Erik;

    1998-01-01

    We investigated the effect of incorporating n-3 polyunsaturated fatty acids (PUFAs) into the diet on the lipid-class composition of LDLs, their size, and their susceptibility to oxidation. Forty-seven healthy volunteers incorporated 30 g sunflower-oil (SO) margarine/d into their habitual diet...... during a 3-wk run-in period and then used either SQ or a fish-oil-enriched sunflower oil (FO) margarine for the following 4 wk. Plasma concentrations of total cholesterol, triacylglycerols, HDL cholesterol, LDL cholesterol, and apolipoproteins A-I and B did not differ significantly between the groups...

  10. Impact of nitrogen flushing and oil choice on the progression of lipid oxidation in unwashed fried sliced potato crisps.

    Science.gov (United States)

    Marasca, E; Greetham, D; Herring, S D; Fisk, I D

    2016-05-15

    Unwashed, sliced, batch-fried potato crisps have a unique texture and are growing in popularity in the UK/EU premium snack food market. In this study, the storage stability of unwashed sliced (high surface starch) potatoes (crisps) fried in regular sunflower oil (SO) or in high oleic sunflower oil (HOSO) was compared over accelerated shelf life testing (45°C, 6 weeks); with and without nitrogen gas flushing. Primary oxidation products (lipid hydroperoxides) were measured with a ferrous oxidation-xylenol orange (FOX) assay and volatile secondary oxidation products (hexanal) were quantified by using solid phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC/MS). Results revealed that crisps fried in SO were the least stable. Flushing the stored crisps with nitrogen gas proved to be effective in slowing down the oxidation rate after frying with sunflower oil, significantly stabilizing the crisps. However, crisps fried in HOSO were the most stable, with the lowest rate of development of oxidation markers, and this has previously not been shown for crisps with a high free starch content.

  11. The results of the lipids peroxidation products on the DNA bases as biological markers of the oxidative stress; Les adduits des produits de la peroxydation lipidique sur les bases de l'ADN comme biomarqueurs du stress oxydant

    Energy Technology Data Exchange (ETDEWEB)

    Falletti, O

    2007-10-15

    Different ways of DNA damages have been studied, among these ones the direct way of DNA damages formation by the reactive oxygen species (R.O.S.). This way leads to the formation of oxidative DNA damages. In 1990, works have suggested an indirect way of DNA damages formation, the lipids peroxidation. Instead of oxidizing directly DNA, the R.O.S. oxide the lipids present in the cells and their membranes; The products coming from this degradation are able to provoke DNA damages. This way has not been studied very much. The work of this thesis is axed on this DNA theme and lipids peroxidation. In the first chapter, we begin by presenting DNA and the direct way of oxidative damages formation by the R.O.S.Then, we speak about the cell lipids suffering oxidation reactions and the different ways of lipids oxidation. Then, we present how the lipid peroxidation is a source of damages for DNA. (N.C.)

  12. Lipid oxidation in milk, yoghurt, and salad dressing enriched with neat fish oil or pre-emulsified fish oil

    DEFF Research Database (Denmark)

    Bruni Let, Mette; Jacobsen, Charlotte; Meyer, Anne S.

    2007-01-01

    Abstract: This study compared the oxidative stabilities of fish-oil-enriched milk, yoghurt, and salad dressing and investigated the effects on oxidation of adding either neat fish oil or a fish-oil-in-water emulsion to these products. Milk emulsions had higher levels of a fishy off...... stability than fish-oil-enriched dressings, irrespective of the mode of fish oil addition. Yoghurt thus seemed to be a good delivery system of lipids containing n-3 polyunsaturated fatty acids. Different effects of adding fish oil either as neat fish oil or as a fish-oil-in-water emulsion were observed...... for milk, yoghurt, and dressing. Yoghurt and dressing enriched with neat fish oil were more stable than those enriched with a fish-oil-in-water emulsion, whereas milk enriched with neat fish oil was less stable than milk enriched with the fish-oil-in-water emulsion. Overall, it seemed that application...

  13. Two types of radicals in whole milk powder. Effect of lactose crystallization, lipid oxidation, and browning reactions.

    Science.gov (United States)

    Thomsen, Marianne K; Lauridsen, Lene; Skibsted, Leif H; Risbo, Jens

    2005-03-09

    Whole milk powder was stored in closed vials at 60 degrees C to induce crystallization of lactose within a short time scale. After an induction period of 3-4 days simultaneous crystallization of lactose, increase of water activity, formation of browning products, and increase of radical content took place. Radicals detected before lactose crystallization were characterized by a narrow ESR spectrum (g = 2.006) and could be depleted by removal of oxygen and therefore were assigned to oxidation processes. Late-stage radicals present after crystallization of lactose gave much wider spectra (g = 2.0048) and were independent of oxygen availability and assigned to late-stage Maillard reaction products. The study indicates that the processes of lactose crystallization, browning, and formation of radical species (g = 2.0048) are strongly coupled, while lipid oxidation is less dependent on the other processes.

  14. The hybrid nanobiointerface between nitrogen-doped graphene oxide and lipid membranes: a theoretical and experimental study

    Directory of Open Access Journals (Sweden)

    P. Di Pietro

    2016-12-01

    Full Text Available In this study, we present a comparison between graphene oxide (GO and nitrogen-doped GO (N-GO in terms of spectroscopic properties and biomolecule-binding potentiality features. Specifically, GO nanosheets, both in aqueous dispersion and in solid state, were successfully modified with different amino-containing moieties, in order to obtain graphene-based nanostructures able to respond to chemical stimuli (e.g., pH and with tunable surface properties. The physisorption of dye-labelled lipid vesicles loaded with curcumin, was scrutinised both theoretically and experimentally. The energetics of the hybrid lipid membrane-curcumin-GO interface at different pH values, representative respectively of physiological (7.4 and pathological (5.5 environment, were estimated by molecular dynamics (MD simulations. The GO and GO-N samples characterization by Raman, fluorescence, and UV-vis spectroscopies, as well as confocal microscopy demonstrated promising features of the (N-GO/lipid platforms for fluorescence imaging and drug delivery applications.

  15. Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats.

    Science.gov (United States)

    Cahova, Monika; Chrastina, Petr; Hansikova, Hana; Drahota, Zdenek; Trnovska, Jaroslava; Skop, Vojtech; Spacilova, Jana; Malinska, Hana; Oliyarnyk, Olena; Papackova, Zuzana; Palenickova, Eliska; Kazdova, Ludmila

    2015-03-01

    The aim of this study was to estimate the effect of carnitine supplementation on lipid disorders and peripheral tissue insulin sensitivity in a non-obese animal model of insulin resistance, the hereditary hypertriglyceridemic (HHTg) rat. Male HHTg rats were fed a standard diet, and half of them received daily doses of carnitine (500 mg·kg(-1) body weight) for 8 weeks. Rats of the original Wistar strain were used for comparison. HHTg rats exhibited increased urinary excretion of free carnitine and reduced carnitine content in the liver and blood. Carnitine supplementation compensated for this shortage and promoted urinary excretion of acetylcarnitine without any signs of (acyl)carnitine accumulation in skeletal muscle. Compared with their untreated littermates, carnitine-treated HHTg rats exhibited lower weight gain, reduced liver steatosis, lower fasting triglyceridemia, and greater reduction of serum free fatty acid content after glucose load. Carnitine treatment was associated with increased mitochondrial biogenesis and oxidative capacity for fatty acids, amelioration of oxidative stress, and restored substrate switching in the liver. In skeletal muscle (diaphragm), carnitine supplementation was associated with significantly higher palmitate oxidation and a more favorable complete to incomplete oxidation products ratio. Carnitine supplementation further enhanced insulin sensitivity ex vivo. No effects on whole-body glucose tolerance were observed. Our data suggest that some metabolic syndrome-related disorders, particularly fatty acid oxidation, steatosis, and oxidative stress in the liver, could be attenuated by carnitine supplementation. The effect of carnitine could be explained, at least partly, by enhanced substrate oxidation and increased fatty acid transport from tissues in the form of short-chain acylcarnitines.

  16. Seasonal changes in markers of oxidative damage to lipids and DNA; correlations with seasonal variation in diet.

    Science.gov (United States)

    Smolková, Bozena; Dusinská, Mária; Raslová, Katarína; McNeill, Geraldine; Spustová, Viera; Blazícek, Pavol; Horská, Alexandra; Collins, Andrew

    2004-07-13

    We have addressed the question whether the relatively high incidence of cardiovascular disease and certain cancers in countries of central/eastern Europe might be associated with nutritional imbalance, in particular a lack of fresh fruit and vegetables in the diet in winter months. Nutritional parameters and markers of oxidative stress were studied in three Slovak population groups: 46 survivors of myocardial infarction (MI group) and 48 healthy, normolipidemic subjects (NL), living in or near Bratislava; and 70 rural controls (RC group) living a more traditional life style in a country town. Data were collected in February/March and September/October of two consecutive years, representing times of minimum and maximum local availability of fresh fruits and vegetables. Oxidative stress was monitored using two biomarkers; plasma malondialdehyde (MDA, a product of lipid peroxidation), and oxidation of lymphocyte DNA. Dietary antioxidants, folic acid, homocysteine, total antioxidant status (FRAP) and uric acid were measured in plasma. Food frequency questionnaires were administered. Vegetable consumption in summer/autumn was twice as high as in winter/spring. DNA damage did not vary consistently across the seasons. Mean plasma MDA levels for the MI and NL groups showed a clear pattern, with high levels in winter/spring and low levels in summer/autumn. Folic acid showed a reciprocal pattern, similar to the pattern of vegetable consumption. The RC group had the smallest seasonal variations in vegetable consumption, folic acid levels, and MDA. High winter MDA levels are seen in those individuals with relatively low folic acid; they never occur in subjects with high plasma folic acid, implying that folic acid might directly protect against lipid oxidation. This study illustrates the value of the molecular epidemiological approach, while emphasising the need for well characterised population groups and valid biomarkers.

  17. Effects of alcohol consumption on biomarkers of oxidative damage to DNA and lipids in ethanol-fed pigs.

    Science.gov (United States)

    Petitpas, F; Sichel, F; Hébert, B; Lagadu, S; Beljean, M; Pottier, D; Laurentie, M; Prevost, V

    2013-03-01

    Chronic alcohol consumption is known to result in tissue injury, particularly in the liver, and is considered a major risk factor for cancers of the upper respiratory tract. Here we assessed the oxidative effects of subchronic ethanol consumption on DNA and lipids by measuring biomarkers 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and malondialdehyde (MDA), respectively. Physiological responses of pigs (n = 4) administered ethanol in drinking water for 39 days were compared with those of water-fed pigs (n = 4). Alcoholisation resulted in serum ethanol concentration of 1.90 g L(-1) and in a moderate but significant increase in alanine aminotransferase activity, an index of liver injury. However, between the alcoholised and control groups there were no significant differences in the levels of 8-oxodG (8-oxodG per 10(6) 2'deoxyguanosine) from leucocytes (2.52 ± 0.42 Vs 2.39 ± 0.34) or from target organs, liver, cardia and oesophagus. Serum MDA levels were also similar in ethanol-fed pigs (0.33 ± 0.04 μM) and controls (0.28 ± 0.03 μM). Interestingly, levels of 8-oxodG in cardia were positively correlated with those in oesophagus (Spearman correlation coefficient R = 1, P alcohol consumption may not cause oxidative damage to DNA and lipids as measured by 8-oxodG and MDA, respectively. The duration of alcoholisation and the potential alcohol-induced nutritional deficiency may be critical determinants of ethanol toxicity. Relevant biomarkers, such as factors involved in sensitization to ethanol-induced oxidative stress are required to better elucidate the relationship between alcohol consumption, oxidative stress and carcinogenesis.

  18. Lipid hydrolysis and oxidation in farmed gilthead seabream (Sparus aurata slaughtered and chilled under different icing conditions

    Directory of Open Access Journals (Sweden)

    Pena, Javier

    2010-06-01

    Full Text Available This work focuses on the slaughtering and chilled storage (up to 14 days related to the commercialization of fresh farmed gilthead seabream (Sparus aurata. A slurry ice (SI system was applied and evaluated in comparison to traditional flake ice (FI. Lipid hydrolysis and oxidation were analyzed and compared to sensory acceptance and trimethylamine (TMA formation. An important quality loss could be assessed in fish during slaughtering and chilling storage, according to sensory assessment and TMA formation. However, lipid damage development was found relatively low, in agreement to the different lipid quality indexes checked (lipid hydrolysis; primary, secondary and tertiary lipid oxidation. No development of rancid odor and no polyunsaturated fatty acid losses were detected. The employment of SI as a slaughtering and chilling strategy was found useful to inhibit quality loss in gilthead seabream resulting in a shelf life increase and a TMA and free fatty acid formation inhibition.Este trabajo estudia el sacrificio y conservación en hielo (hasta 14 días de dorada (Sparus aurata. Para ello, se aplicó hielo líquido (SI de forma comparativa con hielo tradicional (FI en escamas. Se analizó el desarrollo de hidrólisis y oxidación lipídicas, procediéndose a su comparación con la evaluación sensorial y la formación de trimetilamina (TMA. Se observó una importante pérdida de calidad de acuerdo con la valoración sensorial y la formación de TMA. Sin embargo, la alteración lipídica fue baja, a tenor de los índices ensayados (hidrólisis lipídica; oxidación lipídica primaria, secundaria y terciaria. No se detectaron desarrollo de olor rancio ni pérdida de ácidos grasos poliinsaturados. El empleo de SI en esta especie resultó ser útil al objeto de inhibir la pérdida de calidad; así, se observó un incremento en el tiempo de vida útil y una inhibición en la formación de TMA y ácidos grasos libres.

  19. Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle.

    Science.gov (United States)

    Teodoro, Bruno G; Sampaio, Igor H; Bomfim, Lucas H M; Queiroz, André L; Silveira, Leonardo R; Souza, Anderson O; Fernandes, Anna M A P; Eberlin, Marcos N; Huang, Tai-Yu; Zheng, Donghai; Neufer, P Darrell; Cortright, Ronald N; Alberici, Luciane C

    2017-02-01

    Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or β-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid

  20. Therapeutic effect of aqueous extracts of three dietary spices and their mixture on lipid metabolism and oxidative stress in a rat model of chronic alcohol consumption.

    Science.gov (United States)

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide

    2016-07-01

    The protective effect of aqueous extracts of three dietary spices, garlic, (Allium sativum), ginger (Zingiber officinale) and pepper (Capsicum frutescens) singly and combined was investigated using a rat model of chronic alcohol intake. Rats were given 30% ethanol, with or without aqueous extracts of garlic, ginger, pepper or mixture of the three administered at 200mg/kg body weight by oral gavage for 28 days. Lipid profile, lipid peroxidation, oxidative and antioxidative profiles of serum, faecal, liver, kidney, heart and brain tissues of the rats were analyzed. Alcohol treatment significantly elevated liver enzymes, lipid peroxidation, depleted antioxidant system and induced histopathological changes in the liver. These alterations were markedly ameliorated by treatment with aqueous extracts of the three spices singly or mixed at 200mg/kg body weight. These results suggest that aqueous extracts of garlic, ginger, pepper or a blend of the three protects against alcohol- induced hypercholesterolemia, lipid peroxidation, oxidative stress and liver damage.

  1. Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone

    DEFF Research Database (Denmark)

    Petersson, Stine J; Christensen, Louise L; Kristensen, Jonas M;

    2014-01-01

    therapy on regulators of mitochondrial biogenesis and markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable testosterone levels. METHODS: Skeletal muscle biopsies were obtained before and after treatment with either testosterone gel (n=12) or placebo (n=13......) for 6 months. Insulin sensitivity and substrate oxidation were assessed by euglycemic-hyperinsulinemic clamp and indirect calorimetry. Muscle mRNA levels and protein abundance and phosphorylation of enzymes involved in mitochondrial biogenesis, OxPhos, and lipid metabolism were examined by quantitative......: The beneficial effect of testosterone treatment on lipid oxidation is not explained by increased abundance or phosphorylation-dependent activity of enzymes known to regulate mitochondrial biogenesis or markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable...

  2. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-10-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.

  3. Cholesterol-lowering and lipid oxidation reduction potentials of traditional seasonings in Salchichon dry-fermented sausages.

    Science.gov (United States)

    Seong, Pil-Nam; Seo, Hyun-Woo; Lee, Ga-Young; Cho, Soo-Hyun; Kim, Yoon-Seok; Kang, Sun-Moon; Kim, Jin-Hyoung; Park, Beom-Young; Van-Ba, Hoa

    2016-08-01

    Five different natural/traditional seasonings including doenjang (fermented soybean paste), gochu-jang (red pepper paste), fresh medium-hot and hot peppers, and garlic were used, and 1 % (w/w) each was incorporated into formulations of Salchichon fermented sausage type. After ripening for 51 days, the products were assessed for quality parameters, lipid oxidation, cholesterol content and sensory characteristics. In general, incorporation of the seasonings did not cause color or texture defects whereas it had beneficial effects on improvement of product's quality; however the effects differed depending on each type of seasonings added. Noticeably, most treatments with the seasonings significantly reduced the lipid oxidation. Additionally, incorporating doenjang, gochu-jang, medium-hot peppers, hot peppers and garlic resulted in reduction of 32.03, 28.96, 36.30, 19.53 and 33.03 mg cholesterol/100 g sample, corresponding to 26.78, 24.21, 30.35, 16.33 and 27.61 %, respectively. Higher scores for the sensory traits such as aroma, taste, color and acceptability were also observed for the samples with seasonings. The current work demonstrated that the tested seasonings represent potentially natural ingredients for producing healthier Salchichon fermented sausages.

  4. Effects of different resistance exercise protocols on nitric oxide, lipid peroxidation and creatine kinase activity in sedentary males.

    Science.gov (United States)

    Güzel, Nevin Atalay; Hazar, Serkan; Erbas, Deniz

    2007-01-01

    The purpose of this study was to determine the changes of oxidative response and exercise-induced muscle damage after two different resistance exercise protocols. Whether training with low or high intensity resistance programs cause alterations in the activities of lipid peroxidation, nitric oxide (NOx), and creatine kinase (CK) activity in human plasma was investigated. Twenty untrained males participated into this study. Ten of the subjects performed high intensity resistance (HR) exercise circuit and the rest of them performed low intensity resistance (LR) exercise circuit of 4 different exercises as a single bout. Venous blood samples were drawn pre-exercise, immediately after the exercise, and at the 6(th), 24(th), 48(th) and the72(nd) hours of post-exercise. Samples were analyzed for markers of muscle damage (CK), lipid peroxidation (MDA) and NOx. NOx production increased in HR group (p resistance exercise protocol in this study caused a significant increase between pre and post-exercise values in both groups (p resistance exercise induces free radical production more than low intensity resistance exercise program. Key pointsHigh intensity resistance exercise caused increases in NOx, MDA and CK levels.Light intensity resistance exercises increased MDA and CK levels but did not affect NOx levels.Damage arose during resistance exercises may be related to the level of resistance applied.

  5. Brazil nuts intake improves lipid profile, oxidative stress and microvascular function in obese adolescents: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Koury Josely C

    2011-05-01

    Full Text Available Abstract Background Obesity is a chronic disease associated to an inflammatory process resulting in oxidative stress that leads to morpho-functional microvascular damage that could be improved by some dietary interventions. In this study, the intake of Brazil nuts (Bertholletia excelsa, composed of bioactive substances like selenium, α- e γ- tocopherol, folate and polyunsaturated fatty acids, have been investigated on antioxidant capacity, lipid and metabolic profiles and nutritive skin microcirculation in obese adolescents. Methods Obese female adolescents (n = 17, 15.4 ± 2.0 years and BMI of 35.6 ± 3.3 kg/m2, were randomized 1:1 in two groups with the diet supplemented either with Brazil nuts [BNG, n = 08, 15-25 g/day (equivalent to 3 to 5 units/day] or placebo [PG (lactose, n = 09, one capsule/day] and followed for 16 weeks. Anthropometry, metabolic-lipid profiles, oxidative stress and morphological (capillary diameters and functional [functional capillary density, red blood cell velocity (RBCV at baseline and peak (RBCVmax and time (TRBCVmax to reach it during post-occlusive reactive hyperemia, after 1 min arterial occlusion] microvascular variables were assessed by nailfold videocapillaroscopy at baseline (T0 and after intervention (T1. Results T0 characteristics were similar between groups. At T1, BNG (intra-group variation had increased selenium levels (p = 0.02, RBCV (p = 0.03 and RBCVmax (p = 0.03 and reduced total (TC (p = 0.02 and LDL-cholesterol (p = 0.02. Compared to PG, Brazil nuts intake reduced TC (p = 0.003, triglycerides (p = 0.05 and LDL-ox (p = 0.02 and increased RBCV (p = 0.03. Conclusion Brazil nuts intake improved the lipid profile and microvascular function in obese adolescents, possibly due to its high level of unsaturated fatty acids and bioactive substances. Trial Registration Clinical Trials.gov NCT00937599

  6. Effect of dietary fat saturation on lipid metabolism, arachidonic acid turnover and peritoneal macrophage oxidative stress in mice

    Directory of Open Access Journals (Sweden)

    L.B. Oliveros

    2004-03-01

    Full Text Available We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet, or the control diet containing soybean oil as fat source (10 mice per group. The fat content of each diet was 15% (w/w. Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL + VLDL-cholesterol, thiobarbituric acid-reactive substances (TBARS and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [³H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [³H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [³H]-AA uptake but induced an increase in [³H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress.

  7. Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ryeo-Ok [Department of Chemistry, and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Rhee, Jae-Sung [Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791 (Korea, Republic of); Won, Eun-Ji [Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Kyun-Woo [Department of Chemistry, and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Kang, Chang-Mo [Laboratory of Cytogenetics and Tissue Regeneration, Korea Institute of Radiological and Medical Science, Seoul 139-709 (Korea, Republic of); Lee, Young-Mi [Department of Green Life Science, College of Convergence, Sangmyung University, Seoul 110-743 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@hanyang.ac.kr [Department of Chemistry, and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-02-15

    Ultraviolet B (UV-B) radiation causes direct cellular damage by breakage of DNA strands and oxidative stress induction in aquatic organisms. To understand the effect of UV-B radiation on the rotifer, Brachionus sp., several parameters including 24-h survival rate, population growth rate, and ROS level were measured after exposure to a wide range of UV-B doses. To check the expression of other important inducible genes such as replication protein A (RPA), DNA-dependent protein kinase (DNA-PK), Ku70, Ku80, and heat shock proteins (hsps) after UV-B radiation, we observed dose- and time-dependency at 2 kJ/m{sup 2}. We also examined 13 hsp genes for their roles in the UV-B damaged rotifer. Results showed that UV-B remarkably inhibited the population growth of Brachionus sp. The level of intracellular reactive oxygen species (ROS) was high at 2 kJ/m{sup 2}, suggesting that 2 kJ/m{sup 2} would already be toxic. This result was supported by other enzymatic activities, such as GSH levels, glutathione peroxidase, glutathione S-transferase, and glutathione reductase. For dose dependency, low doses of UV-B radiation (2, 4, and 6 kJ/m{sup 2}) significantly up-regulated the examined genes (e.g. RPA, DNA-PK, Ku70, and Ku80). For the time course study, RPA genes showed immediate up-regulation but returned to basal or lower expression levels compared to the control 3 h after UV-B exposure. The DNA-PK and Ku70/80 genes significantly increased, indicating that they may be involved in repairing processes against a low dose of UV-B exposure (2 kJ/m{sup 2}). At the basal level, the hsp90{alpha}1 gene showed the highest expression, and followed by hsp10, hsp30, hsp60, and hsc70, and hsp90{beta} in adults (w/o egg). In eggs, the hsp10 gene was expressed the highest, and followed by hsp30, hsp27, hsp90{alpha}1, and hsp60 genes. In real-time RT-PCR array on rotifer hsp genes, low doses of UV-B radiation (2 and 4 kJ/m{sup 2}) showed up-regulation of several hsp genes but most of the hsp

  8. Intact polar lipids of ammonia-oxidizing Archaea: structural diversity application in molecular ecology

    NARCIS (Netherlands)

    Pitcher, A.M.

    2011-01-01

    Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by non-extremophilic Crenarchaeota to interpret the presence,

  9. Lipid mediators involved in the oxidative stress and antioxidant defence of human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Agnieszka Gęgotek

    2016-10-01

    Conclusions: This study shows significant differences in the redox status, Nrf2 pathway and endocannabinoid system between SCC and AC tissues. Understanding the relation between the various lipid mediators and antioxidants in different lung cancer subtypes may be beginning for further research on the effective anticancer therapy.

  10. Intact polar lipids of ammonia-oxidizing Archaea: Structural diversity anapplication inmolecular ecology

    NARCIS (Netherlands)

    Pitcher, A.

    2011-01-01

    Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by Crenarchaeota to interpret the presence, distribution, and

  11. Intact polar lipids of ammonia-oxidizing Archaea: Structural diversity anapplication inmolecular ecology

    NARCIS (Netherlands)

    Pitcher, A.

    2011-01-01

    Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by Crenarchaeota to interpret the presence, distribution, and

  12. Intact polar lipids of ammonia-oxidizing Archaea: structural diversity application in molecular ecology

    NARCIS (Netherlands)

    Pitcher, A.M.

    2011-01-01

    Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by non-extremophilic Crenarchaeota to interpret the presence,

  13. Methods for reducing lipid oxidation in fish-oil-enriched energy bars

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Jacobsen, Charlotte

    2009-01-01

    P>Fish oil (FO) enrichment of foods is relevant owing to the beneficial effects of omega-3 polyunsaturated fatty acids on human health. However, the susceptibility of FO to oxidation necessitates careful control to avoid this oxidation. In this study, energy bars were successfully supplemented...... similar protection towards oxidation as packaging the energy bars in modified atmosphere. These protection methods were although not as efficient as addition of FO as micro-encapsulated powder. Addition of the metal chelator ethylene diamine tetra-acetic acid (EDTA) (100-2000 ppm) to emulsified FO...... with 5% FO. Heating of bars during baking did, apparently, not increase oxidation. Energy bars produced with neat FO were oxidatively unstable as measured by peroxide value, secondary volatile oxidation products and sensory analysis. Pre-emulsification of the FO with sodium caseinate in water offered...

  14. Solid Phase Synthesis of Anhydrous Zinc Borate from Zinc and Boron Oxide and Utilization as a Flame Retardant in Dye and Textile

    OpenAIRE

    AYAR, Barış; GÜRÜ, Metin; ÇAKANYILDIRIM, Çetin

    2014-01-01

    Durability of materials to flame and stability at high temperatures are very important in order to increase the field of use. Non-flammability is not the only requirement materials should not have toxic gas products during the burning, also. Anhydrous zinc borate was chosen as flame retardant due to its advantages, such as; light weight, high melting point, low thermal expansion, and intrinsic smoke suppressant and corrosion resistance properties. For the synthesis, metallic zinc and anhydrou...

  15. Impact of high pressure treatment and intramuscular fat content on colour changes and protein and lipid oxidation in sliced and vacuum-packaged Iberian dry-cured ham.

    Science.gov (United States)

    Fuentes, Verónica; Utrera, Mariana; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2014-08-01

    The effect of high hydrostatic pressure (HHP) (600MPa) and intramuscular fat content (IMF) on colour parameters and oxidative stability of lipids and proteins in sliced vacuum-packaged Iberian dry-cured ham during refrigerated storage (120 days at 2°C) was investigated. Several studies have investigated the influence of HHP on lipid oxidation of meat products. However, its effects on protein carbonylation, as also the influence of IMF content on this carbonylation are poorly understood. HHP treatment had a significant effect on lean lightness after 0 and 120 days of storage while IMF content increased lightness and yellowness over time. Regarding oxidative stability, the effect of HHP treatment depended on IMF content samples with a high IMF having greater lipid instability while samples with a low IMF underwent more protein carbonylation.

  16. Valorization of agroindustrial wastes: Identification by LC-MS and NMR of benzylglucosinolate from papaya (Carica papaya L.) seeds, a protective agent against lipid oxidation in edible oils.

    Science.gov (United States)

    Castro-Vargas, Henry I; Baumann, Wolfram; Parada-Alfonso, Fabián

    2016-07-01

    In the present study we report the characterization of benzylglucosinolate (BG) isolated from papaya (Carica papaya L.) seeds. A methanolic extract was fractionated and further purified by solid phase extraction (SPE). It was analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and nuclear magnetic resonance spectroscopy ((1) H and (13) C-NMR) as well, and the target compound BG was identified by these two techniques. The effect of BG on lipid oxidation in edible vegetable oil (EO) was shown by observing some lipid oxidation products (linoleic acid hydroperoxides, LHP; hexanal, HEX; nonanal, NON; thiobarbituric acid reactives species, TBARS). BG reduced lipid oxidation production in EO by over 80%, as compared to a control sample and in this way has proved to be a useful antioxidant, even more effective than some antioxidants used by food industry.

  17. Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits.

    Science.gov (United States)

    Mason, R Preston; Sherratt, Samuel C R

    2017-01-29

    Widely available fish oil dietary supplements (DS) may contain fats and oxidized lipids in addition to the beneficial omega-3 fatty acids (OM3FAs) for which they are purchased. Little is known about the potential biological effects of these oxidized lipids. The objective of this study was to assess the fatty acid content, oxidation products, and biological effects of leading fish oil DS available in the United States. Three top-selling fish oil DS in the US were included in this analysis. Fatty acid composition was measured using gas chromatography. Lipid oxidation (primary and secondary products) was measured by spectroscopy in both DS and a prescription OM3FA product. OM3FAs were also isolated and concentrated from DS and were tested for the ability to inhibit copper-induced oxidation of human small dense low-density lipoprotein particles (sdLDL) in vitro. Fish oil DS were found to contain more than 30 different fatty acids, including 10 to 14 different saturated species comprising up to 36% of the total fatty acid content. Levels of OM3FAs also varied widely among DS (33%-79%). Primary (peroxide), secondary (anisidine), and total oxidation products exceeded maximum levels established by international standards of quality in the DS but not the prescription OM3FA product. Oxidation of sdLDL was inhibited by >95% (P saturated fat and oxidized OM3FAs found in common DS may interfere with their intended/potential biological benefits.

  18. Changes of Intramuscular Fat Composition, Lipid Oxidation and Lipase Activity in Biceps femoris and Semimembranosus of Xuanwei Ham During Controlled Salting Stages

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen-yu; GAO Xiao-guang; ZHANG Ji-hong; ZHANG De-quan; MA Chang-wei

    2013-01-01

    Fatty acid composition of neutral lipids (NLs), phospholipids (PLs) and free fatty acids (FFAs) from intramuscular fat (IMF), lipid oxidation and lipase activity in muscle Semimembranosus (SM) and msucle Biceps femoris (BF) of dry-cured Xuanwei ham during the 90-d salting stages were analysed. The salt content increased from 0.34 to 3.52%in BF and from 0.10 to 5.42%in SM during the 90 d salting stage, respectively. PLs of IMF in both BF and SM decreased 54.70%(P<0.001) and 34.64%(P<0.05), furthermore, the saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) of PLs in both muscles were hydrolysed almost isochronously. FFAs were increased from 0.46 g 100 g-1 lipids to 2.92 g 100 g-1 lipids in BF at the end of salting, which was lower than SM (from 1.29 g 100 g-1 lipids to 9.70 g 100 g-1 lipids). The activities of acid lipase, neutral lipase and acid phospholipase all remained active in the 90 d. The thiobarbituric acid reactive substances (TBARS) was slowly increased to 1.34 mg kg-1 muscle in BF and to 2.44 mg kg-1 muscle in SM during the salting stage. In conclusion, the controlled salting process prompted the hydrolysis of PLs of IMF notably and increased the lipid oxidation of muscles within some limits.

  19. Effect of ethanolic fl ax (Linum usitatissimum L. extracts on lipid oxidation and changes in nutritive value of frozen-stored meat products

    Directory of Open Access Journals (Sweden)

    Katarzyna Waszkowiak

    2014-06-01

    Full Text Available Background. Flaxseed (Linum usitatissimum L. is an important source of phenolic compounds, mainly lignans. Antioxidant capacities of flaxseed extracts that contain the compounds have been reported earlier. However, there is a lack of accessible information about their activity against lipid oxidation in meat products. Therefore, the effect of ethanolic flaxseed extracts (EFEs on lipid stability and changes in nutritive value of frozen-stored meat products (pork meatballs and burgers was determined. Material and methods. EFEs from three Polish flax varieties (Szafir, Oliwin, Jantarol were applied in the study. During 150-day storage of meat products, the lipid oxidation (peroxide and TBARS value and thiamine retention were periodically monitored, alongside with methionine and lysine availability and protein digestibility. Results. The addition of EFEs significantly limited lipid oxidation in stored meatballs and burgers. EFE from brown seeds of Szafir var. was superior to the others from golden seeds of Jantarol and Oliwin. Moreover, the extracts reduced changes in thiamine and available lysine content, as well as protein digestibility, during storage time. The effect of EFE addition on available methionine retention was limited. Conclusion. The ethanolic flaxseed extracts exhibit antioxidant activity during frozen storage of meat products. They can be utilized to prolong shelf-life of the products by protecting them against lipid oxidation and deterioration of their nutritional quality. However, antioxidant efficiency of the extracts seems to depend on chemical composition of raw material (flax variety. Further investigations should be carried on to explain the issue.  

  20. Changes in LDL fatty acid composition as a response to olive oil treatment are inversely related to lipid oxidative damage: The EUROLIVE study

    DEFF Research Database (Denmark)

    Cicero, Arrigo F G; Nascetti, Simona; López-Sabater, Maria C

    2008-01-01

    The aim of our study was to assess the changes in the fatty acid composition of low density lipoproteins (LDL) after sustained consumption of olive oil at real-life doses (25 mL/day) and their relationship with lipid oxidative damage.......The aim of our study was to assess the changes in the fatty acid composition of low density lipoproteins (LDL) after sustained consumption of olive oil at real-life doses (25 mL/day) and their relationship with lipid oxidative damage....

  1. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro.

    Science.gov (United States)

    Hu, C; Kitts, D D

    2005-08-01

    Flavonoids and coumaric acid derivatives were identified from dandelion flower (Taraxacum officinale). Characteristics of chain-breaking antioxidants, such as extended lag phase and reduced propagation rate, were observed in oxidation of linoleic acid emulsion with the addition of dandelion flower extract (DFE). DFE suppressed both superoxide and hydroxyl radical, while the latter was further distinguished by both site-specific and non-specific hydroxyl radical inhibition. DPPH-radical-scavenging activity and a synergistic effect with alpha-tocopherol were attributed to the reducing activity derived from phenolic content of DFE. A significant (p < 0.05) and concentration-dependent, reduced nitric oxide production from acterial-lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells was observed with the addition of DFE. Moreover, peroxyl-radical-induced intracellular oxidation of RAW264.7 cells was inhibited significantly (p < 0.05) by the addition of DFE over a range of concentrations. These results showed that the DFE possessed marked antioxidant activity in both biological and chemical models. Furthermore, the efficacy of DFE in inhibiting both reactive oxygen species and nitric oxide were attributed to its phenolic content.

  2. Fire retardants for wood

    Directory of Open Access Journals (Sweden)

    Vlatka Jirouš-Rajković

    2009-06-01

    Full Text Available Along with many advantages, wood as traditional building material also has some disadvantages. One of them is the flammability. The most usual way to improve the fire performance of wood is by treating it with fire retardants that can be applied to wood composite products during manufacture, pressure impregnated into solid wood or wood products or added as a paint or surface coating. Fire retardants are formulated to control ignition, flame spread on the wood surface and to reduce the amount of heat released from wood. Fire retardants cannot make wood non combustible. According to the European reaction-to-fire “Euroclasses”classification system for construction products, wood treated with fire retardant can meet the requirements of Euroclass B, whereas ordinary wood products typically fall into class D. This article attempts to bring together information related to the burning of wood, fire performance of wood, types of fire retardants and mechanism of fire retardancy. Fire retardant coatings and chemical impregnation by pressure-treating are described separately.

  3. X linked mental retardation.

    Science.gov (United States)

    Rejeb, Imen; Ben Jemaa, Lamia; Chaabouni, Habiba

    2009-05-01

    Mental retardation (MR) is a group of heterogeneous clinical conditions. There are more than 900 genetic disorders associated with MR and it affects around 3% of the general population. Many MR conditions described are syndromic, fragile X syndrome being the most common clinical entity among them. X linked mental retardation (XLMR) is subdivided in two categories: syndromic XLMR (MRXS) when MR is associated with clinical features and non-syndromic XLMR (MRX) when MR is isolated. The aim of this systematic review of the literature was to join together the results of several studies related to X linked mental retardation and to present various genes implicated in this disease. In this review, focus has been given on genes implicated in mental retardation, the clinical data and on phenotype-genotype correlations. An exhaustive electronic and library research of the recent literature was carried out on the Web sites "Science Direct" and "Interscience Wiley". The key words used were "mental retardation", "X chromosome", "gene", "syndromic mental retardation", "non-syndromic mental retardation". In this review a number of X linked genes, the clinical features associated with the gene abnormality, and the prevalence of the disease gene are discussed. We classified these genes by order of their first implication in MR. A table presented on the XLMR Update Web site who list the 82 known XLMR genes is available as XLMR Genes and corresponding proteins.

  4. Effects of dietary oregano essential oil and vitamin E on the lipid oxidation stability of cooked chicken breast meat.

    Science.gov (United States)

    Avila-Ramos, F; Pro-Martínez, A; Sosa-Montes, E; Cuca-García, J M; Becerril-Pérez, C M; Figueroa-Velasco, J L; Narciso-Gaytán, C

    2012-02-01

    The antioxidant effect of oregano essential oil and vitamin E was evaluated in cooked chicken breast meat. In total, 480 broilers were randomly assigned to 6 treatments and 4 replications. Broilers were raised with a corn-soybean meal diet including either crude soybean oil or acidulated soybean oil soapstock, each supplemented with vitamin E at 10 or 100 mg or oregano essential oil at 100 mg/kg of feed. At 42 d, broilers were slaughtered and their breast meat was prepared into strips (1.5 × 10 cm) or patties (150 g). Fatty acid composition of the muscle was determined. For lipid oxidation stability, both meat strips and patties were cooked to an internal temperature of 74°C and malonaldehyde contents were assessed during 0, 3, 6, and 9 d of storage at 4°C. Each storage day had 4 replications per treatment. The meat lipid oxidative stability was estimated by content of malonaldehyde values. Results showed that feed consumption, weight gain, and feed conversion were not affected by the dietary oils or antioxidants, except for the mortality in acidulated soybean oil soapstock with the 10-mg vitamin E treatment. The fatty acid composition of the meat was similar between the 2 diets given the same antioxidant supplement. The oxidation stability of meat lipids in both types of meats showed a significant (P oregano essential oil, and then the 100-mg vitamin E treatment at 9 d of storage, whereas the value of oregano essential oil in the acidulated soybean oil soapstock diet was the highest, followed by the 10-mg vitamin E, and then the 100-mg vitamin E treatment during the 9 d of storage. In conclusion, the dietary oils and antioxidants used can be included in broiler diets without negative effects on their productivity. The antioxidant effect of vitamin E was higher with a higher supplementation level, regardless of the oil treatment, whereas the antioxidant effect of oregano essential oil was better in crude soybean oil than in the acidulated soybean oil soapstock

  5. Iron Dextran Increases Hepatic Oxidative Stress and Alters Expression of Genes Related to Lipid Metabolism Contributing to Hyperlipidaemia in Murine Model

    Directory of Open Access Journals (Sweden)

    Maísa Silva

    2015-01-01

    Full Text Available The objective of this study was to investigate the effects of iron dextran on lipid metabolism and to determine the involvement of oxidative stress. Fischer rats were divided into two groups: the standard group (S, which was fed the AIN-93M diet, and the standard plus iron group (SI, which was fed the same diet but also received iron dextran injections. Serum cholesterol and triacylglycerol levels were higher in the SI group than in the S group. Iron dextran was associated with decreased mRNA levels of pparα, and its downstream gene cpt1a, which is involved in lipid oxidation. Iron dextran also increased mRNA levels of apoB-100, MTP, and L-FABP indicating alterations in lipid secretion. Carbonyl protein and TBARS were consistently higher in the liver of the iron-treated rats. Moreover, a significant positive correlation was found between oxidative stress products, lfabp expression, and iron stores. In addition, a negative correlation was found between pparα expression, TBARS, carbonyl protein, and iron stores. In conclusion, our results suggest that the increase observed in the transport of lipids in the bloodstream and the decreased fatty acid oxidation in rats, which was promoted by iron dextran, might be attributed to increased oxidative stress.

  6. Effects of coffee consumption on oxidative susceptibility of low-density lipoproteins and serum lipid levels in humans.

    Science.gov (United States)

    Yukawa, G S; Mune, M; Otani, H; Tone, Y; Liang, X-M; Iwahashi, H; Sakamoto, W

    2004-01-01

    Since little is known about how coffee intake affects low-density lipoprotein (LDL) oxidative susceptibility and serum lipid levels, we conducted an in vivo study in 11 healthy male students of Wakayama Medical University aged between 20 and 31 years fed an average Japanese diet. On days 1-7 of the study, the subjects drank mineral water. On day 7, the subjects began drinking coffee, 24 g total per day, for one week. This was followed by a one week "washout period" during which mineral water was consumed. Fasting peripheral venous blood samples were taken at the end of each one-week period. LDL oxidation lag time was approximately 8% greater (p coffee drinking period than the other periods. Serum levels of total cholesterol and LDL-cholesterol (LDL-C) and malondialdehyde (MDA) as thiobarbituric acid reactive substances (TBARS) were significantly decreased after the coffee drinking period. Finally, regular coffee ingestion may favorably affect cardiovascular risk status by modestly reducing LDL oxidation susceptibility and decreasing LDL-cholesterol and MDA levels.

  7. Oxidization of squalene, a human skin lipid: a new and reliable marker of environmental pollution studies.

    Science.gov (United States)

    Pham, D-M; Boussouira, B; Moyal, D; Nguyen, Q L

    2015-08-01

    A review of the oxidization of squalene, a specific human compound produced by the sebaceous gland, is proposed. Such chemical transformation induces important consequences at various levels. Squalene by-products, mostly under peroxidized forms, lead to comedogenesis, contribute to the development of inflammatory acne and possibly modify the skin relief (wrinkling). Experimental conditions of oxidation and/or photo-oxidation mechanisms are exposed, suggesting that they could possibly be bio-markers of atmospheric pollution upon skin. Ozone, long UVA rays, cigarette smoke… are shown powerful oxidizing agents of squalene. Some in vitro, ex vivo and in vivo testings are proposed as examples, aiming at studying ingredients or products capable of boosting or counteracting such chemical changes that, globally, bring adverse effects to various cutaneous compartments.

  8. Influence of Mental Oxide Nanocrystallines on Flame Retardant Properties of Rigid Polyurethane Foam%纳米金属氧化物对聚氨酯硬泡阻燃性能的影响∗

    Institute of Scientific and Technical Information of China (English)

    陈涛; 胡爽; 林倬仕; 翟金国; 叶文

    2015-01-01

    在聚氨酯硬泡阻燃配方中加入纳米金属氧化物,利用氧指数分析仪、热重分析仪、微型量热仪和热重红外联用,研究了纳米氧化锌、纳米二氧化钛、纳米三氧化二铁这3种纳米金属氧化物对阻燃改性聚氨酯硬质泡沫的热分解过程和阻燃性能的影响。结果表明,金属纳米氧化物的加入可以减少材料热解过程中可燃性物质的含量,促进不燃性物质的生成,提高残碳量,降低材料的燃烧性能。%Several mental oxide nanocrystallines were used in flame retardant rigid polyurethane foam( PUF) . The influences of nano zinc oxide, nano titanium dioxide, nano ferric oxide on flame retandant properties and the thermal decomposition process of rigid PUF were investigated by LOI, TGA, MCC and TGA⁃FTIR. The results showed that the metal oxide nanocrystallines could increase the formation of incombustible matter, decrease the con⁃tent of combustible materials and increase quantities of carbon residue, while reducing the materials combustion properties.

  9. Flexible PVC flame retarded with expandable graphite

    CSIR Research Space (South Africa)

    Focke, WW

    2014-02-01

    Full Text Available by the polymer matrix and the exfoliating graphite prevents the formation of a flammable air fuel mixture. Keywords: Expandable graphite; graphite oxide; graphite intercalation compound; exfoliation; thermal analysis ________________ *Corresponding author: Tel... char residue [6] and this contributes to the mechanisms of flame retardant action [5]. Expandable graphite (EG) is a partially oxidized form of graphite containing intercalated guest species (e.g., sulfuric acid anions) in-between the stacked...

  10. Relationship of endothelial nitric oxide synthase gene polymorphism with blood pressure,lipid profile and blood glucose level

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To study the relationship of the polymorphism of endothelial nitric oxide synthase(eNOS)gene and blood pressure,lipid profiles and blood glucose level.By using PCR-RFLP,the eNOS Glu298Asp gene polymorphism was detected in 184 patients with essential hypertension and 196 matched healthy individuals with normal blood pressure.Taking into account eNOS Glu298Asp polymorphisms,the relationship of blood pressure with triglycerides(TG),total cholesterol(TC),high density lipoprotein(HDL),low density lipoprotein(LDL)and blood glucose level was analyzed.The distribution of eNOS Glu298Asp polymorphism had no significant difference between different blood pressure groups and gender groups,but there was a significant difference between different age groups,diastolic blood pressure groups or BMI groups(P<0.05).Asp/Asp genotype significantly increased the risk of hypertension in individuals with serum TC above 5.4 mmol/L(P=0.03,OR=2.65).eNOSGlu298Asp polymorphism and serum lipid could synergistically modulate the blood pressure,eNOS Asp/Asp genotype could significantly increase the risk of hypertension in individuals with serum TC over 5.4 mmol/L,eNOS Glu298Asp in combination with serum TC could be used to predict the risk of hypertension.

  11. Efficacy of boswellic acid on lysosomal acid hydrolases, lipid peroxidation and anti-oxidant status in gouty arthritic mice

    Institute of Scientific and Technical Information of China (English)

    Evan Prince Sabina; Haridas Indu; Mahaboobkhan Rasool

    2012-01-01

    Objective:To evaluate the efficacy of boswellic acid against monosodium urate crystal-induced inflammation in mice. Methods:The mice were divided into four experimental groups. Group I served as control;mice in group II were injected with monosodium urate crystal;group III consisted of monosodium urate crystal-induced mice who were treated with boswellic acid (30 mg/kg/b.w.);group IV comprised monosodium urate crystal-induced mice who were treated with indomethacin (3 mg/kg/b.w.). Paw volume and levels/activities of lysosomal enzymes, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-αwere determined in control and monosodium urate crystal-induced mice. In addition, the levels of β-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL) in vitro. Results:The activities of lysosomal enzymes, lipid peroxidation, and tumour necrosis factor-αlevels and paw volume were increased significantly in monosodium urate crystal-induced mice, whereas the activities of antioxidant status were in turn decreased. However, these changes were modulated to near normal levels upon boswellic acid administration. In vitro, boswellic acid reduced the level of β-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated PMNL in concentration dependent manner when compared with control cells. Conclusions: The results obtained in this study further strengthen the anti-inflammatory/antiarthritic effect of boswellic acid, which was already well established by several investigators.

  12. Effect of biopolymer encapsulation on the digestibility of lipid and cholesterol oxidation products in beef during in vitro human digestion.

    Science.gov (United States)

    Hur, Sun Jin; Lee, Seung Yuan; Lee, Seung-Jae

    2015-01-01

    In this study, beef patties were encapsulated with 3% chitosan, pectin, onion powder, or green tea powder and the beef patties were then passed through an in vitro human digestion model. The total lipid digestibility was lowest (pencapsulated with chitosan and pectin after digestion in the small intestine. Thiobarbituric acid reactive substance (TBARS) values were significantly lower (pencapsulated with chitosan and pectin, when compared with the control, after digestion in the small intestine. In contrast, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging activity was highest (pencapsulated with onion powder and green tea powder after digestion in the small intestine. The total cholesterol oxidation product (COP) content was significantly lower (pencapsulated with biopolymers than in the control after digestion in the small intestine.

  13. Correction of Free Radical Lipid Oxidation in Internal Female Genital Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    A. D. Belyaevsky

    2008-01-01

    Full Text Available The paper descries a specific view on the mechanism responsible for development of the resistance of an inflammatory process in the female genital tract to drugs and on the role of a free radical process activation factor in the pathogenesis of the disease. Emphasis is laid on the importance of measures to diminish cell membrane permeability, by correcting their structural and functional states with antioxidants. Key words: inflammatory processes in the female genital organs, lipid peroxidation, antioxidative defense, cell membrane structural and functional state.

  14. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing.

    Science.gov (United States)

    Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu

    2013-12-01

    Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (pbacon processing, antioxidant enzymes could effectively control lipid oxidation.

  15. EFFECTS OF DIFFERENT RESISTANCE EXERCISE PROTOCOLS ON NITRIC OXIDE, LIPID PEROXIDATION AND CREATINE KINASE ACTIVITY IN SEDENTARY MALES

    Directory of Open Access Journals (Sweden)

    Nevin Atalay Güzel

    2007-12-01

    Full Text Available The purpose of this study was to determine the changes of oxidative response and exercise-induced muscle damage after two different resistance exercise protocols. Whether training with low or high intensity resistance programs cause alterations in the activities of lipid peroxidation, nitric oxide (NOx, and creatine kinase (CK activity in human plasma was investigated. Twenty untrained males participated into this study. Ten of the subjects performed high intensity resistance (HR exercise circuit and the rest of them performed low intensity resistance (LR exercise circuit of 4 different exercises as a single bout. Venous blood samples were drawn pre-exercise, immediately after the exercise, and at the 6th, 24th, 48th and the72nd hours of post-exercise. Samples were analyzed for markers of muscle damage (CK, lipid peroxidation (MDA and NOx. NOx production increased in HR group (p < 0.05. The MDA response to the two different resistance exercise protocol in this study caused a significant increase between pre and post-exercise values in both groups (p < 0.05. Also, there was a significant difference in the MDA level between the two groups in post-exercise values (p < 0.05 and higher values were observed in HR group. CK activities showed a significant increase in all post exercise values (p < 0.05 of both groups but there were no difference between HR and LR groups. These findings support that high intensity resistance exercise induces free radical production more than low intensity resistance exercise program

  16. Lipid peroxidation and oxidative stress in rat erythrocytes induced by aspirin and diazinon:the protective role of selenium

    Institute of Scientific and Technical Information of China (English)

    Abdel-Tawab Halim Mossa; Tarek Mohamed Heikal

    2014-01-01

    Objective:To investigate the adverse effect of exposure to acetylsalicylic acid (ASA), diazinon (DIA) and their combination on oxidant/antioxidant status in rat erythrocytes and the ameliorating role of selenium (Se). Methods: Rats were oral administered ASA at the maximum administration dose (1 350 mg/personal/d=2.5 mg/kg body weight/d), DIA at a dose of 20 mg/kg body weight/d and Se at a dose of 200 µg/kg body weight/d and their combinations for 28 consecutive d. Results: Administration of DIA, ASA and ASA+DIA lead to a significant increment (P≤0.05) in lipid peroxidation as evidenced by the increase in erythrocytes MDA levels by 61.8%, 20.79%and 105.62%, respectively. Co-administration of Se to treated rats modulated the augmentation of MDA levels. Administration of DIA, ASA and ASA+DIA lead to significant decreases (P≤0.05) in the activities of catalase, superoxide dismutase and glutathione peroxidase enzymes when compared to the control group. The most influence and decreases in the activities of the aforementioned enzymes were observed in the treatments of ASA+DIA by 30.53%, 43.42%and 48.31%, respectively. However, co-administration of Se mitigated the significant decreases of superoxide dismutase, catalase and glutathione peroxidase activities to by 14.47%, 15, 36%and 12.29%. Conclusions: It can be concluded that DIA and ASA induced oxidative stress and lipid peroxidation in rat erythrocytes. The results reveal the pronounced ameliorating effect of Se in DIA and ASA intoxicated rats. It is supposed that antioxidant supplementation may be beneficial for the people using ASA for longer periods and exposure to pesticides.

  17. Litter-Spinning Retarders

    Science.gov (United States)

    Wilson, John C.

    1995-01-01

    Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.

  18. Genetics of mental retardation

    OpenAIRE

    Ahuja A; Thapar Anita; Owen M

    2005-01-01

    Mental retardation can follow any of the biological, environmental and psychological events that are capable of producing deficits in cognitive functions. Recent advances in molecular genetic techniques have enabled us to understand more about the molecular basis of several genetic syndromes associated with mental retardation. In contrast, where there is no discrete cause, the interplay of genetic and environmental influences remains poorly understood. This article presents a critical review ...

  19. Fire-Retardant Polymeric Additives

    Science.gov (United States)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    Polyhydroxyamide (PHA) and polymethoxyamide (PMeOA) are fire-retardant (FR) thermoplastic polymers and have been found to be useful as an additive for imparting fire retardant properties to other compatible, thermoplastic polymers (including some elastomers). Examples of compatible flammable polymers include nylons, polyesters, and acrylics. Unlike most prior additives, PHA and PMeOA do not appreciably degrade the mechanical properties of the matrix polymer; indeed, in some cases, mechanical properties are enhanced. Also, unlike some prior additives, PHA and PMeOA do not decompose into large amounts of corrosive or toxic compounds during combustion and can be processed at elevated temperatures. PMeOA derivative formulations were synthesized and used as an FR additive in the fabrication of polyamide (PA) and polystyrene (PS) composites with notable reduction (>30 percent for PS) in peak heat release rates compared to the neat polymer as measured by a Cone Calorimeter (ASTM E1354). Synergistic effects were noted with nanosilica composites. These nanosilica composites had more than 50-percent reduction in peak heat release rates. In a typical application, a flammable thermoplastic, thermoplastic blend, or elastomer that one seeks to render flame-retardant is first dry-mixed with PHA or PMeOA or derivative thereof. The proportion of PHA or PMeOA or derivative in the mixture is typically chosen to lie between 1 and 20 weight percent. The dry blend can then be melt-extruded. The extruded polymer blend can further be extruded and/or molded into fibers, pipes, or any other of a variety of objects that may be required to be fire-retardant. The physical and chemical mechanisms which impart flame retardancy of the additive include inhibiting free-radical oxidation in the vapor phase, preventing vaporization of fuel (the polymer), and cooling through the formation of chemical bonds in either the vapor or the condensed phase. Under thermal stress, the cyclic hydroxyl/ methoxy

  20. Ethanol administration exacerbates the abnormalities in hepatic lipid oxidation in genetically obese mice

    Science.gov (United States)

    Everitt, Hannah; Hu, Ming; Ajmo, Joanne M.; Rogers, Christopher Q.; Liang, Xiaomei; Zhang, Ray; Yin, Huquan; Choi, Alison; Bennett, Eric S.

    2013-01-01

    Alcohol consumption synergistically increases the risk and severity of liver damage in obese patients. To gain insight into cellular or molecular mechanisms underlying the development of fatty liver caused by ethanol-obesity synergism, we have carried out animal experiments that examine the effects of ethanol administration in genetically obese mice. Lean wild-type (WT) and obese (ob/ob) mice were subjected to ethanol feeding for 4 wk using a modified Lieber-DeCarli diet. After ethanol feeding, the ob/ob mice displayed much more pronounced changes in terms of liver steatosis and elevated plasma levels of alanine aminotransferase and aspartate aminotransferase, indicators of liver injury, compared with control mice. Mechanistic studies showed that ethanol feeding augmented the impairment of hepatic sirtuin 1 (SIRT1)-AMP-activated kinase (AMPK) signaling in the ob/ob mice. Moreover, the impairment of SIRT1-AMPK signaling was closely associated with altered hepatic functional activity of peroxisome proliferator-activated receptor γ coactivator-α and lipin-1, two vital downstream lipid regulators, which ultimately contributed to aggravated fatty liver observed in ethanol-fed ob/ob mice. Taken together, our novel findings suggest that ethanol administration to obese mice exacerbates fatty liver via impairment of the hepatic lipid metabolism pathways mediated largely by a central signaling system, the SIRT1-AMPK axis. PMID:23139221

  1. Ethanol administration exacerbates the abnormalities in hepatic lipid oxidation in genetically obese mice.

    Science.gov (United States)

    Everitt, Hannah; Hu, Ming; Ajmo, Joanne M; Rogers, Christopher Q; Liang, Xiaomei; Zhang, Ray; Yin, Huquan; Choi, Alison; Bennett, Eric S; You, Min

    2013-01-01

    Alcohol consumption synergistically increases the risk and severity of liver damage in obese patients. To gain insight into cellular or molecular mechanisms underlying the development of fatty liver caused by ethanol-obesity synergism, we have carried out animal experiments that examine the effects of ethanol administration in genetically obese mice. Lean wild-type (WT) and obese (ob/ob) mice were subjected to ethanol feeding for 4 wk using a modified Lieber-DeCarli diet. After ethanol feeding, the ob/ob mice displayed much more pronounced changes in terms of liver steatosis and elevated plasma levels of alanine aminotransferase and aspartate aminotransferase, indicators of liver injury, compared with control mice. Mechanistic studies showed that ethanol feeding augmented the impairment of hepatic sirtuin 1 (SIRT1)-AMP-activated kinase (AMPK) signaling in the ob/ob mice. Moreover, the impairment of SIRT1-AMPK signaling was closely associated with altered hepatic functional activity of peroxisome proliferator-activated receptor γ coactivator-α and lipin-1, two vital downstream lipid regulators, which ultimately contributed to aggravated fatty liver observed in ethanol-fed ob/ob mice. Taken together, our novel findings suggest that ethanol administration to obese mice exacerbates fatty liver via impairment of the hepatic lipid metabolism pathways mediated largely by a central signaling system, the SIRT1-AMPK axis.

  2. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins

    DEFF Research Database (Denmark)

    Pattison, David I; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    and antioxidants in aqueous solution (pH 7.4). The reactions of HOCl with phosphoryl-serine and phosphoryl-ethanolamine are rapid (k approximately 10(5) M(-)(1) s(-)(1)) and of comparable reactivity to many of the protein sites. The major products formed in these reactions are chloramines, which decay to give both...... and yielded k = 9 M(-)(1) s(-)(1). The reactions of the lipid-soluble antioxidants, alpha-tocopherol and ubiquinol-10, with HOCl were investigated with model compounds. For the reactions of HOCl with both Trolox and ubiquinol-0, k = 1.3 x 10(3) M(-)(1) s(-)(1); thus, these lipid soluble antioxidants...... are relatively ineffective as direct scavengers for HOCl as compared to water soluble antioxidants (e.g., ascorbate, k ca. 10(6) M(-)(1) s(-)(1)). The reaction of HOCl with hydroquinone (a simple model for ubiquinol-10) was also investigated both in aqueous solution (k = 45 M(-)(1) s(-)(1)) and in a less polar...

  3. Colour, lipid and protein stability of Rhea americana meat during air- and vacuum-packaged storage: influence of muscle on oxidative processes.

    Science.gov (United States)

    Filgueras, R S; Gatellier, P; Aubry, L; Thomas, A; Bauchart, D; Durand, D; Zambiazi, R C; Santé-Lhoutellier, V

    2010-11-01

    Physicochemical characteristics and oxidative stability during storage were determined in Gastrocnemius pars interna (GN) and Iliofiburalis (IF) muscles of Rhea americana. Glycolytic potential (GP) and pH decline of muscles were measured within the first 24 h post mortem. Colour, lipid and protein stability were determined during storage of meat, i.e. 5 days under air-packaging at 4°C, or 28 days under vacuum-packaging at 4°C. In parallel, anti-oxidant status of muscles was estimated by measuring α-tocopherol content and anti-oxidant enzyme activities (superoxide dismutase and catalase), while pro-oxidant status was evaluated by determining haeminic iron and long chain fatty acids (especially polyunsaturated fatty acids). The ultimate pH was similar in both muscles, but the GP value was significantly higher in IF than in GN muscle. Haeminic iron and alpha-tocopherol content differed between muscles, with 30% more haeminic iron (ppackaging, lipid and protein oxidation of rhea muscles increased up to 275% and 30%, respectively. This increase was more rapidly and marked in IF muscle. The IF also showed high level of metmyoglobin accumulation after 3 days of storage (47%) and was rejected by 1 consumer out of 2 in sensorial analysis. Under vacuum-packaging, both muscles showed a high stability of colour and no oxidation of lipids and proteins.

  4. Enriched n-3 PUFA/konjac gel low-fat pork liver pâté: lipid oxidation, microbiological properties and biogenic amine formation during chilling storage.

    Science.gov (United States)

    Delgado-Pando, G; Cofrades, S; Ruiz-Capillas, C; Triki, M; Jiménez-Colmenero, F

    2012-12-01

    Low-fat pork liver pâtés enriched with n-3 PUFA/konjac gel were formulated by replacing (totally or partially) pork backfat by a combination of healthier oils (olive, linseed and fish oils) and konjac gel. Lipid oxidation, microbiological changes and biogenic amine (BA) formation were studied in healthier-lipid pâtés during chill storage (85 days, 2 °C). Increasing unsaturated fatty acid levels favoured lipid oxidation, although the levels reached were low throughout the storage period, ranging from 0.113 to 0.343 mg malonaldehyde/kg sample. Neither the formulation nor the time in storage affected the microbial load. Biogenic amine contents of products (the sum of initial concentrations and amines formed during storage) varied according to the type of BA but were far below levels that could constitute a consumer health hazard.

  5. Factors Influencing the Effect of Milkbased Emulsifiers on Lipid Oxidation in Omega-3 Emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt

    , the aim was to utilize this knowledge for designing delivery emulsions for the addition of fish oil to foods, and thereby achieve oxidatively stable fish oil enriched products. In simple emulsions, sodium caseinate, whey protein isolate, soy lecithin and combinations of milk proteins and milk...... of soy lecithin or a combination of milk protein and milk phospholipids as emulsifier in these 5% and 70% emulsions was shown only to be advantageous in 70% emulsions at low pH. Moreover, a good quality of the emulsifier was shown to be crucial for obtaining a better oxidative stability of emulsions...

  6. MARKERS OF OXIDATIVE STRESS AND SERUM LIPIDS IN PAT IENTS WITH POLYCYSTIC OVARIAN SYNDROME

    Directory of Open Access Journals (Sweden)

    Madhu Latha

    2012-11-01

    Full Text Available ABSTRACT: Dyslipidemia and oxidative stress were evaluated in patients with polycystic ovarian syndrome. MATERIALS AND METHODS: Total cholesterol, Triglyceride, HDL cholesterol, LDL cholesterol, Malondialdehyde (MDA and Total antioxidant capacity were measured in serum of PCOS subjects and age matche d controls. RESULTS: Study group comprised of 31 women with PCOS and control group wit h 31 healthy volunteers. Mean serum levels of MDA, Cholesterol, Triglycerides and LDL c holesterol were significantly increased and TAC and HDL cholesterol were significantly decrease d in PCOS subjects compared to controls. CONCLUSION: Our results revealed that PCOS is associated with d yslipidemia and altered oxidative status.

  7. Tumor necrosis factor alpha is associated with insulin-mediated suppression of free fatty acids and net lipid oxidation in HIV-infected patients with lipodystrophy

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Pedersen, SB;

    2006-01-01

    Tumor necrosis factor alpha (TNF-alpha) stimulates lipolysis in man. We examined whether plasma TNF-alpha is associated with the degree by which insulin suppresses markers of lipolysis, for example, plasma free fatty acid (FFA) and net lipid oxidation (LIPOX) rate in HIV-infected patients...

  8. The Effect of Dietary Fish Oil in addition to Lifestyle Counselling on Lipid Oxidation and Body Composition in Slightly Overweight Teenage Boys

    DEFF Research Database (Denmark)

    Pedersen, Maiken Højgaard; Mølgaard, C.; Hellgren, Lars

    2011-01-01

    Objective. n-3 long-chain polyunsaturated fatty acids (LCPUFAs) have shown potential to increase lipid oxidation and prevent obesity. Subjects. Seventy-eight boys aged 13–15 y with whole-body fat% of 30 ± 9% were randomly assigned to consume bread with fish oil (FO) (1.5 g n-3 LCPUFA/d) or vegeta...

  9. The effect of combined traditional and novel treatments on oxidative status of dolphinfish (Coryphaena hippurus) and sardine (Sardina pilchardus) muscle lipids.

    Science.gov (United States)

    Gómez-Estaca, Joaquín; Gómez-Guillén, M Carmen; Montero, Pilar

    2014-09-01

    Fish is rich in polyunsaturated fatty acids with beneficial effects on human health; however, these lipids are very sensitive to auto-oxidation reactions, leading to loss of nutritional and sensory quality. The effect of traditional (brining, smoking) and novel (addition of polyphenolic extracts, high pressure) preservation processes on the antioxidant/oxidative status of muscle lipids from dolphinfish and sardine was studied. Brining with oregano or rosemary aqueous extracts, as well as smoking, gave rise to deposition of phenolic compounds (9-42, 1.5-4.5 and 0.4-2.3 µg phenol/g for smoked, oregano-brined and rosemary-brined samples, respectively) in the muscle of both fish species. The antioxidant activity, as measured by ferric reducing ability, was also improved after brining with antioxidant extracts or smoking, results ranging from 8.9 to 82 mM FeSO4 · 7H2O equivalents/mg muscle depending on the treatment and the fish species. Consequently, fish lipid oxidation (as measured by thiobarbituric acid reactive substances) derived from brining and pressurizing, applied alone or in combination, was reduced between 6.6 and 69.8% depending on the treatment and the fish species. The combination of brining with oregano extract and light smoking showed an additional antioxidant effect, as compared with that obtained by smoking, on reducing sardine lipid oxidation derived from brining and pressurizing.

  10. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    Science.gov (United States)

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL.

  11. Inhibition of haemoglobin-mediated lipid oxidation in washed cod muscle and cod protein isolates by Fucus vesiculosus extract and fraction

    DEFF Research Database (Denmark)

    Wang, Tao; Jonsdottir, Rosa; Kristinsson, Hordur

    2010-01-01

    The effects of Fucus vesiculosus extract and fractions towards haemoglobin- (Hb-) catalysed lipid oxidation in washed cod muscle system and cod protein isolates during ice storage were examined. The extract and fractions were characterised in terms of total phlorotannin content (TPC), 2,2-diphenyl...

  12. Nanoscale science and engineering forum (706c) design of solid lipid particles with iron oxide quantum dots for the delivery of therapeutic agents

    Science.gov (United States)

    Solid lipid particles provide a method to encapsulate and control the release of drugs in vivo but lack the imaging capability provided by CdS quantum dots. This shortcoming was addressed by combining these two technologies into a model system that uses iron oxide as a non-toxic imaging component in...

  13. Inhibition of haemoglobin-mediated lipid oxidation in washed cod muscle and cod protein isolates by Fucus vesiculosus extract and fraction

    DEFF Research Database (Denmark)

    Wang, Tao; Jonsdottir, Rosa; Kristinsson, Hordur

    2010-01-01

    The effects of Fucus vesiculosus extract and fractions towards haemoglobin- (Hb-) catalysed lipid oxidation in washed cod muscle system and cod protein isolates during ice storage were examined. The extract and fractions were characterised in terms of total phlorotannin content (TPC), 2,2-diphenyl...

  14. Oxidative status, in vitro iron-induced lipid oxidation and superoxide dismutase, catalase and glutathione peroxidase activities in rhea meat.

    Science.gov (United States)

    Terevinto, A; Ramos, A; Castroman, G; Cabrera, M C; Saadoun, A

    2010-04-01

    Rhea (Rhea americana) muscles Obturatorius medialis (OM) Iliotibialis lateralis (IL) and Iliofibularis (I), obtained from farmed animals, were evaluated regarding their oxidative/antioxidant status. The mean level of thiobarbituric acid reactive substances (TBARS) expressed as malonaldehyde (MDA) content was of 0.84 mg MDA/kg wet tissue for the three muscles. TBARS level was significantly higher in IL than OM and I, with the two latter showing similar levels. The mean level of carbonyl proteins expressed as dinitrophenylhydrazine (DNPH) was 1.59 nmol DNPH mg(-1). Carbonyl protein levels were significantly different (Pmuscles (IL>OM>I). Iron-induced TBARS generation was not significantly different between the three muscles at any time, nor for each muscle during the 5 h of the experiment. Superoxide dismutase activity in IL muscle was significantly higher (Pmuscle. However, the difference between IL and OM muscles was not significant. The differences between the three muscles became not significant when the results were expressed by mg of protein contained in the extract, instead by g of wet tissue. No differences were found for catalase (micromol of discomposed H(2)O(2) min(-1) g(-1) wet tissue or by mg of protein contained in the extract) and glutathione peroxidase (micromol ol of oxidized NADPH min(-1) g(-1) of wet tissue or by mg of protein contained in the extract) activities between the three muscles.

  15. Protective Effects of Simvastatin, a Lipid Lowering Agent, against Oxidative Damage in Experimental Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Ahmed M. Mohamadin

    2011-01-01

    In vitro studies confirmed the free radical scavenging and antioxidant activity of SMV. Therefore, the present results revealed that SMV has a protective effect against STZ-induced oxidative damage by scavenging the free radicals generation and restoring the enzymatic and nonenzymatic antioxidant systems.

  16. Spruce galactoglucomannans inhibit the lipid oxidation in rapeseed oil-in-water emulsions

    Science.gov (United States)

    Oil-in-water emulsions are functional and industrially valuable systems, whose large interfacial area makes them prone to deterioration, due in part to as the oxidation and oligomerization of polyunsaturated fatty acids. Spruce galactoglucomannans (GGM), wood biomacromolecules abundantly available f...

  17. Reliability of ^1^H NMR analysis for assessment of lipid oxidation at frying temperatures

    Science.gov (United States)

    The reliability of a method using ^1^H NMR analysis for assessment of oil oxidation at a frying temperature was examined. During heating and frying at 180 °C, changes of soybean oil signals in the ^1^H NMR spectrum including olefinic (5.16-5.30 ppm), bisallylic (2.70-2.88 ppm), and allylic (1.94-2.1...

  18. Present and past contribution of anaerobic ammonium oxidation to nitrogen cycling as revealed by ladderane lipids

    NARCIS (Netherlands)

    Jaeschke, A.

    2009-01-01

    Anammox, the anaerobic oxidation of ammonium to dinitrogen gas with nitrite as the electron acceptor, constitutes a novel route to convert biologically available (fixed) nitrogen to gaseous N2. This process is mediated by specific bacteria belonging to the Planctomycetes that were initially discover

  19. Present and past contribution of anaerobic ammonium oxidation to nitrogen cycling as revealed by ladderane lipids

    NARCIS (Netherlands)

    Jaeschke, Andrea

    2009-01-01

    Abstract Anammox, the anaerobic oxidation of ammonium to dinitrogen gas with nitrite as the electron acceptor, constitutes a novel route to convert biologically available (fixed) nitrogen to gaseous N2. This process is mediated by specific bacteria belonging to the Planctomycetes that were initially

  20. Reduction of lipid oxidation by formation of caseinate-oil-oat gum emulsions

    Science.gov (United States)

    The concentration of oat gum, though important for formation of stable emulsion, has no effect on oxidation of Omega 3 oil; this is most prominent in fish-oil based Omega 3 oil. The optimal concentration of oat gum is about 0.2% wt for emulsion stability and visual appearance. We found that concentr...

  1. Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer

    NARCIS (Netherlands)

    Berton-Carabin, C.C.; Ropers, M.H.; Genot, C.

    2014-01-01

    More polyunsaturated fats in processed foods and fewer additives are a huge demand of public health agencies and consumers. Consequently, although foods have an enhanced tendency to oxidize, the usage of antioxidants, especially synthetic antioxidants, is restrained. An alternate solution is to bett

  2. Interaction between nitric oxide and lipid-like DDPA LB film investigated with SHG and AFM

    Institute of Scientific and Technical Information of China (English)

    YU, An- Chi; LIU, Ting-Ting; LUO, Guo-Bin; YING, Li-Ming; ZHAO, Xin-Sheng; HUANG, Yan-Yi; HUANG, Chun-Hui

    2000-01-01

    Interactions between Nitric oxide (NO) and DDPA LangmuirBlodgett (LB) film are investigated with second harmonic generation (SHG) and atomic force microscopy (AFM). It has been found that the adsorption of NO molecules on DDPA LB film only changes the value of the second-order susceptibility of the DDPA molecule on film but not its orientation.

  3. Adiponectin increases glucose-induced insulin secretion through the activation of lipid oxidation.

    Science.gov (United States)

    Patané, G; Caporarello, N; Marchetti, P; Parrino, C; Sudano, D; Marselli, L; Vigneri, R; Frittitta, L

    2013-12-01

    The expression of adiponectin receptors has been demonstrated in human and rat pancreatic beta cells, where globular (g) adiponectin rescues rat beta cells from cytokine and fatty acid-induced apoptosis. The aim of our study was to evaluate whether adiponectin has a direct effect on insulin secretion and the metabolic pathways involved. Purified human pancreatic islets and rat beta cells (INS-1E) were exposed (1 h) to g-adiponectin, and glucose-induced insulin secretion was measured. A significant increase in glucose-induced insulin secretion was observed in the presence of g-adiponectin (1 nmol/l) with respect to control cells in both human pancreatic islets (n = 5, p < 0.05) and INS-1E cells (n = 5, p < 0.001). The effect of globular adiponectin on insulin secretion was independent of AMP-dependent protein kinase (AMPK) activation or glucose oxidation. In contrast, g-adiponectin significantly increased oleate oxidation (n = 5, p < 0.05), and the effect of g-adiponectin (p < 0.001) on insulin secretion by INS-1E was significantly reduced in the presence of etomoxir (1 μmol/l), an inhibitor of fatty acid beta oxidation. g-Adiponectin potentiates glucose-induced insulin secretion in both human pancreatic islets and rat beta cells via an AMPK independent pathway. Increased fatty acid oxidation rather than augmented glucose oxidation is the mechanism responsible. Overall, our data indicate that, in addition to its anti-apoptotic action, g-adiponectin has another direct effect on beta cells by potentiating insulin secretion. Adiponectin, therefore, in addition to its well-known effect on insulin sensitivity, has important effects at the pancreatic level.

  4. The Autistic Phenotype Exhibits a Remarkably Localized Modification of Brain Protein by Products of Free Radical-Induced Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Teresa A. Evans

    2008-01-01

    Full Text Available Oxidative damage has been documented in the peripheral tissues of autism patients. In this study, we sought evidence of oxidative injury in autistic brain. Carboxyethyl pyrrole (CEP and iso[4]levuglandin (iso[4]LGE2-protein adducts, that are uniquely generated through peroxidation of docosahexaenoate and arachidonate-containing lipids respectively, and heme oxygenase-1 were detected immunocytochemically in cortical brain tissues and by ELISA in blood plasma. Significant immunoreactivity toward all three of these markers of oxidative damage in the white matter and often extending well into the grey matter of axons was found in every case of autism examined. This striking threadlike pattern appears to be a hallmark of the autistic brain as it was not seen in any control brain, young or aged, used as controls for the oxidative assays. Western blot and immunoprecipitation analysis confirmed neurofilament heavy chain to be a major target of CEP-modification. In contrast, in plasma from 27 autism spectrum disorder patients and 11 age-matched healthy controls we found similar levels of plasma CEP (124.5 ± 57.9 versus 110.4 ± 30.3 pmol/mL, iso[4]LGE2 protein adducts (16.7 ± 5.8 versus 13.4 ± 3.4 nmol/mL, anti-CEP (1.2 ± 0.7 versus 1.2 ± 0.3 and anti-iso[4]LGE2 autoantibody titre (1.3 ± 1.6 versus 1.0 ± 0.9, and no differences between the ratio of NO2Tyr/Tyr (7.81 E-06 ± 3.29 E-06 versus 7.87 E-06 ± 1.62 E-06. These findings provide the first direct evidence of increased oxidative stress in the autistic brain. It seems likely that oxidative injury of proteins in the brain would be associated with neurological abnormalities and provide a cellular basis at the root of autism spectrum disorders.

  5. Cell survival during complete nutrient deprivation depends on lipid droplet-fueled β-oxidation of fatty acids.

    Science.gov (United States)

    Cabodevilla, Ainara G; Sánchez-Caballero, Laura; Nintou, Eleni; Boiadjieva, Violeta G; Picatoste, Fernando; Gubern, Albert; Claro, Enrique

    2013-09-27

    Cells exposed to stress of different origins synthesize triacylglycerols and generate lipid droplets (LD), but the physiological relevance of this response is uncertain. Using complete nutrient deprivation of cells in culture as a simple model of stress, we have addressed whether LD biogenesis has a protective role in cells committed to die. Complete nutrient deprivation induced the biogenesis of LD in human LN18 glioblastoma and HeLa cells and also in CHO and rat primary astrocytes. In all cell types, death was associated with LD depletion and was accelerated by blocking LD biogenesis after pharmacological inhibition of Group IVA phospholipase A2 (cPLA2α) or down-regulation of ceramide kinase. Nutrient deprivation also induced β-oxidation of fatty acids that was sensitive to cPLA2α inhibition, and cell survival in these conditions became strictly dependent on fatty acid catabolism. These results show that, during nutrient deprivation, cell viability is sustained by β-oxidation of fatty acids that requires biogenesis and mobilization of LD.

  6. Effect of chitosan-caraway coating on color stability and lipid oxidation of traditional dry fermented sausage

    Directory of Open Access Journals (Sweden)

    Hromiš Nevena M.

    2013-01-01

    Full Text Available Chitosan, the second most abundant polysaccharide in nature, after cellulose, has been tested for numerous applications, among which for edible film and coating. Chitosan-based coating showed positive results for shelf life prolongation of meet products. In this paper, dry fermented sausage (Petrovská klobása was coated with chitosan-caraway film. The effect of coating on the moisture content, color and lipid oxidation was investigated during a fivemonth period of storage. The moisture content decreased rapidly during the storage and the coating did not slow down the loss of moisture. The Lightness (L* of the sausage surface increased by the coating application, while the redness (a* and yellowness (b* did not change. The coated sausages showed a better color stability of the sausage core through the storage time. Also, coated sausage showed a better oxidative stability till the 60th day of storage, while this difference was not detected at the end of the storage period. Apart from slowing down sausage drying during the storage, chitosan-caraway coating was effective in preserving the sausage quality. [Projekat Ministarstva nauke Republike Srbije, br. TR31032

  7. Hawberry (Crataegus monogyna Jaqc.) extracts inhibit lipid oxidation and improve consumer liking of ready-to-eat (RTE) pork patties.

    Science.gov (United States)

    Akcan, T; Estévez, M; Rico, S; Ventanas, S; Morcuende, D

    2017-04-01

    The objective of this work was to study the effectiveness of extracts from hawberry (Crataegus monogyna Jacq.) to inhibit lipid oxidation and odor deterioration during processing of ready-to-eat (RTE) pork patties subjected to roasting (180 °C/16 min), chilling (10 days/+3 °C) and reheating in microwave (600 mW/1 min). Acetone extracts of hawberry were chosen based on their total phenolic content (1281.1 ± 84.8 mg gallic acid equivalent (GAE)/100 g fruit) and in vitro antiradical activity (DPPH) (53.33 ± 15.40 g equivalent Trolox per g of fruits). Pork patties treated with increasing concentrations of hawberry extract, 200 and 800 ppm GAE (T2 and T8, respectively) and a control group (T0) of samples, were analyzed for TBARS, volatile carbonyls and odor liking in a consumer test. Hawberry extracts significantly improved the oxidative stability of cooked pork patties keeping TBARS and hexanal counts at basal levels during the whole process. The addition of hawberry phenolic-rich extracts significantly improved the degree of consumer satisfaction regarding the odor of patties. In conclusion, the hawberry extract displayed potential usage as an ingredient with antioxidant properties for the manufacture of high-quality RTE meat products.

  8. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles.

    Science.gov (United States)

    Pelclova, Daniela; Zdimal, Vladimir; Kacer, Petr; Komarc, Martin; Fenclova, Zdenka; Vlckova, Stepanka; Zikova, Nadezda; Schwarz, Jaroslav; Makes, Otakar; Navratil, Tomas; Zakharov, Sergey; Bello, Dhimiter

    2017-03-01

    Nanoscale titanium dioxide (nanoTiO2) is a commercially important nanomaterial used in numerous applications. Experimental studies with nanotitania have documented lung injury and inflammation, oxidative stress, and genotoxicity. Production workers in TiO2 manufacturing with a high proportion of nanoparticles and a mixture of other air pollutants, such as gases and organic aerosols, had increased markers of oxidative stress, including DNA and protein damage, as well as lipid peroxidation in their exhaled breath condensate (EBC) compared to unexposed controls. Office workers were observed to get intermittent exposures to nanoTiO2 during their process monitoring. The aim of this study was to investigate the impact of such short-term exposures on the markers of health effects in office workers relative to production workers from the same factory. Twenty-two office employees were examined. They were occupationally exposed to (nano)TiO2 aerosol during their daily visits of the production area for an average of 14±9 min/day. Median particle number concentration in office workers while in the production area was 2.32×104/cm3. About 80% of the particles were meaning of their physiological values in the context of chronic disease development and damage-repair kinetics.

  9. Rosemary extract (Rosmarinus officinalis L. supplementation into the diet of Nero Siciliano pigs: effects on lipid oxidation

    Directory of Open Access Journals (Sweden)

    V. Chiofalo

    2010-04-01

    Full Text Available During the growing-fattening period (93 days; ILW 33.5±6 kg to FLW 67±3 kg, 30 Nero Siciliano pigs were fed on a basal diet supplemented with (ROX group or not (CTR group a rosemary extract (1g?kg-1. At 1, 3 and 5 days after slaughtering, the oxidative stability of the Longissimus dorsi muscle was determined by using TBArs test. Moreover, on the individual samples of the muscle the lipid content, the fatty acid and the sterol composition were determined; the acidic composition of the lard, removed from backfat, was also studied. Data were subjected to ANOVA. The fat content of the muscle was unaffected by the dietary treatment as well as the oxidative stability whereas, significant differences (P²0.01 were observed for the polyunsaturated fatty acid content which showed the highest values in the meat as well as in the lard of the ROX group; PUFA/SFA ratio was also significantly highest in the muscle (P=0.004 and in the lard (P=0.017 of the ROX group, testifying a possible antioxidative activity of the rosemary extract. The sterol fraction (cholesterol, cholestanol, stigmasterol, beta-sitosterol and delta 5-avenasterol of the Longissimus dorsi muscle was unaffected by the rosemary supplementation; a significant difference was observed only for the campesterol (CTR group=1.08, ROX group=0.90; P = 0.021.

  10. The effect of dietary Digestarom® herbal supplementation on rabbit meat fatty acid profile, lipid oxidation and antioxidant content.

    Science.gov (United States)

    Mattioli, S; Dal Bosco, A; Szendrő, Zs; Cullere, M; Gerencsér, Zs; Matics, Zs; Castellini, C; Dalle Zotte, A

    2016-11-01

    The experiment tested the effect of Digestarom® herbal supplementation on the antioxidant content, lipid oxidation and fatty acid profile of rabbit meat. At kindling, rabbit does and litters were divided into two dietary groups (N=162 kits/dietary group) and fed either a control diet (C) or the C diet supplemented with Digestarom® (D: 300mg/kg). At weaning (35days) four experimental fattening groups (54 rabbits each) were considered: CC, CD, DC and DD. After slaughtering (12weeks of age), Longissimus thoracis et lumborum muscles were dissected from 20 rabbits/group and analyzed. Rabbit meat of DD group was enriched in essential C18:3 n-3 fatty acid and in other long-chain PUFA of n-3 series. Despite meat of DD group displayed the highest peroxidability index, TBARs value was the lowest. Meat antioxidant content followed the rank order: DD>CD>DC>CC. Digestarom® improved fatty acid composition and oxidative status of rabbit meat, particularly when administered from weaning throughout the growing period.

  11. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    Directory of Open Access Journals (Sweden)

    T.I. Omotayo

    2015-04-01

    Full Text Available The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump.

  12. 1,8-cineole protected human lipoproteins from modification by oxidation and glycation and exhibited serum lipid-lowering and anti-inflammatory activity in zebrafish

    Directory of Open Access Journals (Sweden)

    Kyung-Hyun Cho1,2,*

    2012-10-01

    Full Text Available We recently reported that a water extract of laurel or turmeric,1,8-cineole enriched fractions, showed hypolipidemic activityin the zebrafish model. Therefore, the present study investigatedthe cineole’s anti-oxidant and anti-inflammatory activitiesin lipoprotein metabolism in vitro and in vivo. Cineolehad inhibitory effects on cupric ion-mediated oxidation of lipoproteinsin general, while simultaneously enhancing ferric ionremoval ability in high-density lipoprotein (HDL. Hypercholesterolemiawas induced in zebrafish using cholesterol-feedingtreatment, 4% cholesterol, for 3 weeks. After feeding with orwithout the addition of cineole, the results revealed that cineolepossessed lipid-lowering and anti-inflammatory activitiesin hypercholesterolemic zebrafish. In addition, serum amyloidA and interleukin-6 levels were lowered and lipid accumulationwas decreased in the liver. Conclusively, 1,8-cineole wasfound to have anti-oxidant activities in lipoprotein metabolismboth in vitro and in vivo with simultaneous reduction of lipidaccumulation in the liver of zebrafish.

  13. Rapid detection of lipid oxidation in beef muscle packed under modified atmosphere by measuring volatile organic compounds using SIFT-MS.

    Science.gov (United States)

    Olivares, Alicia; Dryahina, Kseniya; Spaněl, Patrik; Flores, Mónica

    2012-12-01

    The objective of this work was to evaluate the use of a direct analysis technique (SIFT-MS) to measure the lipid oxidation process in beef meat packed under high oxygen atmosphere and compare it to conventional techniques such as gas chromatography-mass spectrometry analysis and TBARS values. Meat samples from two suppliers were selected and packaged under the same atmosphere conditions. The fatty acid content, the physicochemical (TBARS and volatile compounds) and sensory parameters were measured. The samples from supplier 2 had a highest content of PUFA and n6 fatty acids that was related with a highest oxidation during storage. SIFT-MS and SPME-GC-MS detected a significant increase for most of the volatiles compounds analyzed during storage especially, in aldehyde compounds. High correlation coefficients between TBARS values and linear aldehydes (C3-C7) measured by both techniques were obtained and this indicates that SIFT-MS can be used to monitor lipid oxidation changes.

  14. Induction of epstein-barr virus (EBV lytic cycle in vitro causes lipid peroxidation, protein oxidation and DNA damage in lymphoblastoid B cell lines

    Directory of Open Access Journals (Sweden)

    benmansour Riadh

    2011-07-01

    Full Text Available Abstract Background We investigated the oxidative modifications of lipids, proteins and DNA, potential molecular targets of oxidative stress, in two lymphoblastoid cell lines: B95-8 and Raji, after EBV lytic cycle induction. Conjugated dienes level was measured as biomarker of lipid peroxidation. Malondialdehyde adduct and protein carbonyl levels, as well as protein thiol levels were measured as biomarkers of protein oxidation. DNA fragmentation was evaluated as biomarker of DNA oxidation. Results After 48 h (peak of lytic cycle, a significant increase in conjugated dienes level was observed in B95-8 and Raji cell lines (p = 0.0001 and p = 0.019 respectively. Malondialdehyde adduct, protein carbonyl levels were increased in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls (MDA-adduct: p = 0.008 and p = 0.006 respectively; Carbonyl: p = 0.003 and p = 0.0039 respectively. Proteins thiol levels were decreased by induction in B95-8 and Raji cell lines (p = 0.046; p = 0.002 respectively. DNA fragmentation was also detected in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls. Conclusion The results of this study demonstrate the presence of increased combined oxidative modifications in lipids, proteins in B95-8 and Raji cells lines after EBV lytic cycle induction. These results suggest that lipid peroxidation, protein oxidation and DNA fragmentation are generally induced during EBV lytic cycle induction and probably contribute to the cytopathic effect of EBV.

  15. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction

    Directory of Open Access Journals (Sweden)

    Nicolas ePedrini

    2013-02-01

    Full Text Available Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities.. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP, a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and 4 CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1 out of 6 genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular

  16. Acute effects of epigallocatechin gallate from green tea on oxidation and tissue incorporation of dietary lipids in mice fed a high-fat diet.

    Science.gov (United States)

    Friedrich, M; Petzke, K J; Raederstorff, D; Wolfram, S; Klaus, S

    2012-05-01

    To examine in mice the acute effects of epigallocatechin gallate (EGCG), a green tea bioactive polyphenol on substrate metabolism with focus on the fate of dietary lipids. Male C57BL/6 mice were fed high-fat diets supplemented with EGCG extracted from green tea (TEAVIGO, DSM Nutritional Products Ltd, Basel, Switzerland) at different dosages up to 1% (w/w). Effects of EGCG on body composition (quantitative magnetic resonance), food intake and digestibility, oxidation and incorporation of exogenous lipids (stable isotope techniques: (13)C-labeled palmitate and diet supplemented with corn oil as a natural source of (13)C-enriched lipids) as well as gene expression (quantitative real-time PCR) in liver and intestinal mucosa were investigated. Short-term supplementation (4-7 days) of dietary EGCG increased energy excretion, while food and energy intake were not affected. Fecal energy loss was accompanied by increased fat and nitrogen excretion. EGCG decreased post-prandial triglyceride and glycogen content in liver, increased oxidation of dietary lipids and decreased incorporation of dietary 13C-enriched lipids into fat tissues, liver and skeletal muscle. EGCG dose dependently reversed high-fat diet-induced effects on intestinal substrate transporters (CD36, FATP4 and SGLT1) and downregulated lipogenesis-related genes (ACC, FAS and SCD1) in liver in the post-prandial state. Anti-obesity effects of EGCG can be explained by a decreased food digestibility affecting substrate metabolism of intestinal mucosa and liver, leading to increased post-prandial fat oxidation and reduced incorporation of dietary lipids into tissues.

  17. A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats

    Directory of Open Access Journals (Sweden)

    Jiqu Xu

    2017-03-01

    Full Text Available Hepatic lipid accumulation and oxidative stress are crucial pathophysiological mechanisms for non-alcoholic fatty liver disease (NAFLD. Thus, we examined the effect of a combination of flaxseed oil (FO and astaxanthin (ASX on hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. ASX was dissolved in flaxseed oil (1 g/kg; FO + ASX. Animals were fed diets containing 20% fat, where the source was lard, or 75% lard and 25% FO + ASX, or 50% lard and 50% FO + ASX, or FO + ASX, for 10 weeks. Substitution of lard with FO + ASX reduced steatosis and reduced hepatic triacylglycerol and cholesterol. The combination of FO and ASX significantly decreased hepatic sterol regulatory element-binding transcription factor 1 and 3-hydroxy-3-methylglutaryl-CoA reductase but increased peroxisome proliferator activated receptor expression. FO + ASX significantly suppressed fatty acid synthase and acetyl CoA carboxylase but induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. FO + ASX also significantly elevated hepatic SOD, CAT and GPx activity and GSH, and markedly reduced hepatic lipid peroxidation. Thus, FO and ASX may reduce NAFLD by reversing hepatic steatosis and reducing lipid accumulation and oxidative stress.

  18. Lipid oxidation, sensory characteristics, and color of fresh pork sausage from immunologically castrated pigs stored frozen for up to 12 weeks.

    Science.gov (United States)

    Jones-Hamlow, Katelyn A; Tavárez, Marcos A; Schroeder, Aubrey L; Dilger, Anna C

    2016-05-01

    Two studies were conducted to evaluate the quality characteristics of fresh sausage manufactured from immunologically castrated (IC) pigs, an emerging technology in the pork industry. Study 1: Fresh sausage patties from ground Boston butts fabricated from PC (physically castrated) pigs fed 0.55% SID (standard illeal digestible) lysine, IC pigs fed 0.55% SID lysine, and IC pigs fed 0.65% SID lysine were made and not standardized to a similar content of fat content. Study 2: fat and lean trim obtained from IC and PC pigs was made into fresh sausage patties, targeting 25% lipid. Patties (1.25 cm) were placed on trays and assigned to 0, 4, or 12 weeks frozen storage and then, after frozen storage, placed in simulated retail display conditions for 5 days. Patties were evaluated for color stability, sensory and textural properties, and lipid oxidation. Data were analyzed as a one way ANOVA with repeated measures where appropriate. In both studies, sausage discolored with both increased time in frozen storage and with increased time in retail display (P sausage in either study. Lipid oxidation did not differ by treatment in study 1. In study 2, lipid oxidation was reduced (P sausage.

  19. A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats

    Science.gov (United States)

    Xu, Jiqu; Rong, Shuang; Gao, Hui; Chen, Chang; Yang, Wei; Deng, Qianchun; Huang, Qingde; Xiao, Lingyun; Huang, Fenghong

    2017-01-01

    Hepatic lipid accumulation and oxidative stress are crucial pathophysiological mechanisms for non-alcoholic fatty liver disease (NAFLD). Thus, we examined the effect of a combination of flaxseed oil (FO) and astaxanthin (ASX) on hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. ASX was dissolved in flaxseed oil (1 g/kg; FO + ASX). Animals were fed diets containing 20% fat, where the source was lard, or 75% lard and 25% FO + ASX, or 50% lard and 50% FO + ASX, or FO + ASX, for 10 weeks. Substitution of lard with FO + ASX reduced steatosis and reduced hepatic triacylglycerol and cholesterol. The combination of FO and ASX significantly decreased hepatic sterol regulatory element-binding transcription factor 1 and 3-hydroxy-3-methylglutaryl-CoA reductase but increased peroxisome proliferator activated receptor expression. FO + ASX significantly suppressed fatty acid synthase and acetyl CoA carboxylase but induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. FO + ASX also significantly elevated hepatic SOD, CAT and GPx activity and GSH, and markedly reduced hepatic lipid peroxidation. Thus, FO and ASX may reduce NAFLD by reversing hepatic steatosis and reducing lipid accumulation and oxidative stress. PMID:28335388

  20. Fluorescence formation from the interaction of DNA with lipid oxidation degradation products.

    Science.gov (United States)

    Frankel, E N; Neff, W E; Brooks, D D; Fujimoto, K

    1987-06-23

    To clarify the mechanism of fluorescence formation between DNA and lipid degradation products in the presence of ferric chloride and ascorbic acid, a number of carbonyl compounds and decomposition products of pure methyl linolenate hydroperoxides were examined. Keto derivatives of methyl ricinoleate, linoleate, and oleate, alkanals and 2-alkenals produced little or no fluorescence with DNA in the presence of ferric chloride-ascorbic acid. 2,4-Alkadienals were more active and 2,4,7-decatrienal was the most active. Mixtures of volatile aldehydes prepared from linolenate hydroperoxide decomposed either thermally or with iron and ascorbate had the same activity as 2,4,7-decatrienal. Higher molecular-weight products from the decomposition of methyl linolenate hydroperoxides showed relatively low activity. beta-Carotene, alpha-tocopherol and other antioxidants effectively reduced the amount of fluorescence formed by linolenate hydroperoxides. The results suggest that, in addition to hydroperoxide decomposition products, singlet oxygen and/or free radical species contribute significantly to the fluorescence formed from the interaction of methyl linolenate hydroperoxides with DNA in the presence of ferric chloride and ascorbic acid.

  1. Protective effects of Carissa opaca fruits against CCl4-induced oxidative kidney lipid peroxidation and trauma in rat

    Directory of Open Access Journals (Sweden)

    Sumaira Sahreen

    2015-09-01

    Full Text Available Background: Carbon tetrachloride (CCl4 is a potent nephrotoxin, as it causes acute as well as chronic toxicity in kidneys. Therefore, this study was carried out to assess the pharmacological potential of different fractions of Carissa opaca fruits on CCl4-induced oxidative trauma in the kidney. Methods: The parameters studied in this respect were the kidney function tests viz, serum profile, urine profile, genotoxicity, characteristic morphological findings, and antioxidant enzymatic level of kidneys. Result: The protective effects of various fractions of C. opaca fruits against CCl4 administration were reviewed by rat renal function alterations. Chronic toxicity caused by 8-week treatment of CCl4 to the rats significantly decreased the pH level, activities of antioxidant enzymes, and glutathione contents, whereas a significant increase was found in the case of specific gravity, red blood cells, white blood cells, level of urea, and lipid peroxidation in comparison to control group. Administration of various fractions of C. opaca fruit with CCl4 showed protective ability against CCl4 intoxication by restoring the urine profile, activities of antioxidant enzymes, and lipid peroxidation in rat. CCl4 induction in rats also caused DNA fragmentation and glomerular atrophy by means of dilation, disappearance of Bowmen's space, congestion in the capillary loops, dilation in renal tubules, and foamy look of epithelial cells of tubular region, which were restored by co-admiration of various fractions of C. opaca. Conclusion: Results revealed that the methanolic fractions of C. opaca are the most potent and helpful in kidney trauma.

  2. 氧化锌与膨胀型阻燃剂对聚丙烯的协效阻燃%Synergistic Flame Resistant Effect of Zinc Oxide and Intumescent Flame Retardant in Polypropylene

    Institute of Scientific and Technical Information of China (English)

    孙杰; 焦传梅

    2012-01-01

    A new type of intumescent flame retardant (IFR) has been synthesized using phosphorus acid, pentaerythritol and melamine. Intumescent flame retardant PP composites have been prepared based on PP as matrix resin, intumescent flame retardant as flame retardants and zinc oxide (ZnO) as synergism. The synergist effect between ZnO and IFR has been studied using limiting oxygen index test, UL-94 test and cone calorimeter. The changes of solid-phase structure in the thermal degradation process have been studied by dynamic FTIR spectroscopy. The results showed that the synergist effect obviously did exist between ZnO and a new IFR; the structures of the composites changed severely from 240 ℃ to 330 ℃ , when the sample containing 1. 6% ZnO, the char morphology got the best integrity among all samples, and the peak heat release rate was also the lowest, decreased 80% than PP without flame retardant, the UL-94 of this sample was V-0; when the content of ZnO increased to 3.2%, LOI value got to 25. 6%, and the UL-94 passed V-0.%采用磷酸、季戊四醇和三聚氰胺为原料合成了一种新型膨胀型阻燃荆(IFR).并以IFR为阻燃剂,氧化锌(ZnO)为协效阻燃剂,聚丙烯(PP)为基体树脂制备了膨胀型阻燃PP复合材料,重点研究ZnO与IFR之间的协效阻燃作用.采用氧指数测定仪、UL-94测定仪和锥形量热仪等手段研究阻燃PP复合材料的燃烧性能,用动态傅里叶变换红外光谱(FTIR)研究阻燃PP复合材料在不同温度下凝聚相的结构变化,初步揭示其热降解特性.实验结果表明:ZnO与IFR之间存在明显的协效阻燃效果;复合材料在240~330℃时,结构变化最剧烈;ZnO添加质量分数为1.6%时,炭层完整性最好,热释放速率峰值最低,降低幅度可迭80%,UL-94为V-0级;ZnO添加质量分数为3.2%时,氧指数(LOI)最大为25.6%,UL-94为V-0级.

  3. In Vivo Effects of Free Form Astaxanthin Powder on Anti-Oxidation and Lipid Metabolism with High-Cholesterol Diet.

    Science.gov (United States)

    Chen, Yung-Yi; Lee, Pei-Chi; Wu, Yi-Long; Liu, Li-Yun

    2015-01-01

    Astaxanthin extracted from Pomacea canaliculata eggs was made into free-form astaxanthin powder (FFAP) and its effects on lipid metabolism, liver function, antioxidants activities and astaxanthin absorption rate were investigated. 45 hamsters were split into 5 groups and fed with normal diet, high-cholesterol control (0.2% cholesterol), 1.6FFAP (control+1.6% FFAP), 3.2FFAP (control+3.2% FFAP) and 8.0FFAP (control+8.0% FFAP), respectively, for 6 weeks. FFAP diets significantly decreased the liver total cholesterol, triglyceride levels and increased liver fatty acids (C20:5n3; C22:6n3) compositions. It decreased plasma alanine aminotransferase and aspartate aminotransferase. In terms of anti-oxidative activities, we found 8.0 FFAP diet significantly decreased plasma and liver malonaldehyde (4.96±1.96 μg TEP eq./mL and 1.56±0.38 μg TEP eq./g liver) and liver 8-isoprostane levels (41.48±13.69 μg 8-ISOP/g liver). On the other hand, it significantly increased liver catalase activity (149.10±10.76 μmol/min/g liver), Vitamin C (2082.97±142.23 μg/g liver), Vitamin E (411.32±81.67 μg/g liver) contents, and glutathione levels (2.13±0.42 mg GSH eq./g liver). Furthermore, 80% of astaxanthin absorption rates in all FFAP diet groups suggest FFAP is an effective form in astaxanthin absorption. Finally, astaxanthin was found to re-distribute to the liver and eyes in a dose dependent manner. Taken together, our results suggested that the appropriate addition of FFAP into high cholesterol diets increases liver anti-oxidative activity and reduces the concentration of lipid peroxidase and therefore, it may be beneficial as a material in developing healthy food.

  4. In Vivo Effects of Free Form Astaxanthin Powder on Anti-Oxidation and Lipid Metabolism with High-Cholesterol Diet.

    Directory of Open Access Journals (Sweden)

    Yung-Yi Chen

    Full Text Available Astaxanthin extracted from Pomacea canaliculata eggs was made into free-form astaxanthin powder (FFAP and its effects on lipid metabolism, liver function, antioxidants activities and astaxanthin absorption rate were investigated. 45 hamsters were split into 5 groups and fed with normal diet, high-cholesterol control (0.2% cholesterol, 1.6FFAP (control+1.6% FFAP, 3.2FFAP (control+3.2% FFAP and 8.0FFAP (control+8.0% FFAP, respectively, for 6 weeks. FFAP diets significantly decreased the liver total cholesterol, triglyceride levels and increased liver fatty acids (C20:5n3; C22:6n3 compositions. It decreased plasma alanine aminotransferase and aspartate aminotransferase. In terms of anti-oxidative activities, we found 8.0 FFAP diet significantly decreased plasma and liver malonaldehyde (4.96±1.96 μg TEP eq./mL and 1.56±0.38 μg TEP eq./g liver and liver 8-isoprostane levels (41.48±13.69 μg 8-ISOP/g liver. On the other hand, it significantly increased liver catalase activity (149.10±10.76 μmol/min/g liver, Vitamin C (2082.97±142.23 μg/g liver, Vitamin E (411.32±81.67 μg/g liver contents, and glutathione levels (2.13±0.42 mg GSH eq./g liver. Furthermore, 80% of astaxanthin absorption rates in all FFAP diet groups suggest FFAP is an effective form in astaxanthin absorption. Finally, astaxanthin was found to re-distribute to the liver and eyes in a dose dependent manner. Taken together, our results suggested that the appropriate addition of FFAP into high cholesterol diets increases liver anti-oxidative activity and reduces the concentration of lipid peroxidase and therefore, it may be beneficial as a material in developing healthy food.

  5. Influence of smoking and packaging methods on lipid stability and microbial quality of Capelin (Mallotus villosus) and Sardine (Sardinella gibossa)

    Science.gov (United States)

    Cyprian, Odoli O; Van Nguyen, Minh; Sveinsdottir, Kolbrun; Jonsson, Asbjorn; Tomasson, Tumi; Thorkelsson, Gudjon; Arason, Sigurjon

    2015-01-01

    Lipid and microbial quality of smoked capelin (two groups differing in lipid content) and sardine was studied, with the aim of introducing capelin in the smoked sardine markets. Lipid hydrolysis (phospholipid and free fatty acids) and oxidation index (hydroperoxides and thiobarbituric acid-reactive substances), fatty acid composition, and total viable count were measured in raw and packaged smoked fish during chilled storage (day 2, 10, 16, 22, 28). Lipid hydrolysis was more pronounced in low lipid capelin, whereas accelerated lipid oxidation occurred in high lipid capelin. Muscle lipid was less stable in sardine than capelin. Essential polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) constituted 12% of fatty acids in capelin and 19% in sardine. Vacuum packaging as well as hot smoking retarded bacterial growth, recording counts of ≤log 5 CFU/g compared to ≥log 7CFU/g in cold smoked air packaged. Smoked low lipid capelin was considered an alternative for introduction in smoked sardine markets. PMID:26405526

  6. Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity

    NARCIS (Netherlands)

    Bosma, M.; Sparks, L.M.; Hooiveld, G.J.E.J.; Jorgensen, J.A.; Houten, S.M.; Schrauwen, P.; Kersten, A.H.; Hesselink, M.K.C.

    2013-01-01

    Aims/hypothesis: While lipid deposition in the skeletal muscle is considered to be involved in obesity-associated insulin resistance, neutral intramyocellular lipid (IMCL) accumulation per se does not necessarily induce insulin resistance. We previously demonstrated that overexpression of the lipid

  7. Inhibitory Effects of Red Wine on Lipid Oxidation in Fish Oil Emulsion and Angiogenesis in Zebrafish Embryo.

    Science.gov (United States)

    Sun, Haiyan; Zhang, Yulin; Shen, Yixiao; Zhu, Yongchao; Wang, Hua; Xu, Zhimin

    2017-03-01

    The capabilities of red wine against lipid oxidation and angiogenesis were evaluated by using a fish oil emulsion system and an in vivo zebrafish embryos model, respectively. The red wine contained 12 different antioxidant phenolics which levels were led by anthocyanins (140.46 mg/L), catechin (55.08 mg/L), and gallic acid (46.76 mg/L). The diversity of the phenolics in red wine was greater than the tea, coffee, or white wine selected as a peer control in this study. The total phenolics concentration of red wine was 305.53 mg/L, although the levels of tea, coffee, and white wine were 85.59, 76.85, and 26.57 mg/L, respectively. The activity of red wine in scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl) free radicals was approximately 4 times higher than the tea and 8 times than the coffee or white wine. The red wine showed the highest capability in preventing long chain PUFA oxidation in the fish oil emulsion. Because of the outstanding antioxidant activity of red wine, the red wine dried extract was used to monitor its inhibitory effect against angiogenesis by using transgenic zebrafish embryos (Tg[fli1:egfp](y1) ) with fluorescent blood vessels. After incubated in 100 μg/mL of the extract solution for 26 h pf, each of the embryos had a lower number of intersegmental vessel than the control embryo. The inhibition rate of red wine extract against growing of angiogenic blood vessel reached 100%. © 2017 Institute of Food Technologists®.

  8. Effects of dietary protein type on oxidized cholesterol-induced alteration in age-related modulation of lipid metabolism and indices of immune function in rats.

    Science.gov (United States)

    Minehira, K; Inoue, S; Nonaka, M; Osada, K; Yamada, K; Sugano, M

    2000-01-03

    Exogenous oxidized chole