WorldWideScience

Sample records for retain ancestral mitochondrial

  1. Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species.

    Science.gov (United States)

    Peris, David; Arias, Armando; Orlić, Sandi; Belloch, Carmela; Pérez-Través, Laura; Querol, Amparo; Barrio, Eladio

    2017-03-01

    Horizontal gene transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested between S. cerevisiae and S. paradoxus. However, few strains have been explored given the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur, and their role in cytonuclear incompatibilities and fitness. Indeed, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. We herein explored the mitochondrial inheritance of several worldwide distributed wild Saccharomyces species and their hybrids isolated from different sources and geographic origins. We demonstrated the existence of several recombination points in mitochondrial region COX2-ORF1, likely mediated by either the activity of the protein encoded by the ORF1 (F-SceIII) gene, a free-standing homing endonuclease, or mostly facilitated by A+T tandem repeats and regions of integration of GC clusters. These introgressions were shown to occur among strains of the same species and among strains of different species, which suggests a complex model of Saccharomyces evolution that involves several ancestral hybridization events in wild environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D

    2004-10-01

    Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and

  3. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    Directory of Open Access Journals (Sweden)

    Kyle S. McCommis

    2016-08-01

    Full Text Available Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-producing cells. Results: In both species, MPC deficiency results in elevated blood sugar concentrations and glucose intolerance accompanied by impaired glucose-stimulated insulin secretion. In mouse islets, β-cell MPC-deficiency resulted in decreased respiration with glucose, ATP-sensitive potassium (KATP channel hyperactivity, and impaired insulin release. Moreover, treatment of pancreas-specific MPC knockout mice with glibenclamide, a sulfonylurea KATP channel inhibitor, improved defects in islet insulin secretion and abnormalities in glucose homeostasis in vivo. Finally, using a recently-developed biosensor for MPC activity, we show that the MPC is rapidly stimulated by glucose treatment in INS-1 insulinoma cells suggesting that glucose sensing is coupled to mitochondrial pyruvate carrier activity. Conclusions: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia. Keywords: Stimulus-coupled secretion, Insulin, β-Cell, Diabetes, Pyruvate, Mitochondria, Drosophila

  4. A linear mitochondrial genome of Cyclospora cayetanensis (Eimeriidae, Eucoccidiorida, Coccidiasina, Apicomplexa) suggests the ancestral start position within mitochondrial genomes of eimeriid coccidia.

    Science.gov (United States)

    Ogedengbe, Mosun E; Qvarnstrom, Yvonne; da Silva, Alexandre J; Arrowood, Michael J; Barta, John R

    2015-05-01

    The near complete mitochondrial genome for Cyclospora cayetanensis is 6184 bp in length with three protein-coding genes (Cox1, Cox3, CytB) and numerous lsrDNA and ssrDNA fragments. Gene arrangements were conserved with other coccidia in the Eimeriidae, but the C. cayetanensis mitochondrial genome is not circular-mapping. Terminal transferase tailing and nested PCR completed the 5'-terminus of the genome starting with a 21 bp A/T-only region that forms a potential stem-loop. Regions homologous to the C. cayetanensis mitochondrial genome 5'-terminus are found in all eimeriid mitochondrial genomes available and suggest this may be the ancestral start of eimeriid mitochondrial genomes. Copyright © 2015 Australian Society for Parasitology Inc. All rights reserved.

  5. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    OpenAIRE

    McCommis, Kyle S.; Hodges, Wesley T.; Bricker, Daniel K.; Wisidagama, Dona R.; Compan, Vincent; Remedi, Maria S.; Thummel, Carl S.; Finck, Brian N.

    2016-01-01

    Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC) is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-prod...

  6. Mitochondrial uncoupling proteins and phylogenesis - UCP4 as the ancestral uncoupling protein

    Czech Academy of Sciences Publication Activity Database

    Hanák, Petr; Ježek, Petr

    2001-01-01

    Roč. 495, č. 3 (2001), s. 137-141 ISSN 0014-5793 R&D Projects: GA ČR GA301/98/0568; GA AV ČR IAA5011106 Institutional research plan: CEZ:AV0Z5011922 Keywords : phylogenesis of mitochondrial uncoupling protein * specific sequence motif Subject RIV: CE - Biochemistry Impact factor: 3.644, year: 2001

  7. The mitochondrial genomes of Nuttalliella namaqua (Ixodoidea: Nuttalliellidae and Argas africolumbae (Ixodoidae: Argasidae: estimation of divergence dates for the major tick lineages and reconstruction of ancestral blood-feeding characters.

    Directory of Open Access Journals (Sweden)

    Ben J Mans

    Full Text Available Ixodida are composed of hard (Ixodidae, soft (Argasidae and the monotypic Nuttalliellidae (Nuttalliella namaqua tick families. Nuclear 18S rRNA analysis suggested that N. namaqua was the closest extant relative to the last common ancestral tick lineage. The mitochondrial genomes of N. namaqua and Argas africolumbae were determined using next generation sequencing and de novo assembly to investigate this further. The latter was included since previous estimates on the divergence times of argasids lacked data for this major genus. Mitochondrial gene order for both was identical to that of the Argasidae and Prostriata. Bayesian analysis of the COI, Cytb, ND1, ND2 and ND4 genes confirmed the monophyly of ticks, the basal position of N. namaqua to the other tick families and the accepted systematic relationships of the other tick genera. Molecular clock estimates were derived for the divergence of the major tick lineages and supported previous estimates on the origins of ticks in the Carboniferous. N. namaqua larvae fed successfully on lizards and mice in a prolonged manner similar to many argasids and all ixodids. Excess blood meal-derived water was secreted via the salivary glands, similar to ixodids. We propose that this prolonged larval feeding style eventually gave rise to the long feeding periods that typify the single larval, nymphal and adult stages of ixodid ticks and the associated secretion of water via the salivary glands. Ancestral reconstruction of characters involved in blood-feeding indicates that most of the characteristics unique to either hard or soft tick families were present in the ancestral tick lineage.

  8. Retainer Positioner

    Directory of Open Access Journals (Sweden)

    Sanjeeb Kumar Sahu

    2012-01-01

    Full Text Available Several techniques are used to keep the retainer wire in the proper position during direct bonding, of lingual bonded retainers. Proper placement helps prevent occlusal wear of the composite over the retainer wire, thus reducing the risk of breakage. This article describes a new chairside time saving retainer positioner which allows accurate placement and direct bonding of all types of fixed lingual retainers, with solid or multistranded wires.

  9. Clear retainer

    Directory of Open Access Journals (Sweden)

    Priyakorn Chaimongkol

    2017-01-01

    Full Text Available A clear retainer is a removable retainer that is popular in the present day. Compared with conventional fixed and removable orthodontic retainers, it is a more esthetic, comfortable, and inexpensive appliance. Although several studies have been published about clear retainers, it could be difficult to interpret the results because of the variety of study designs, sample sizes, and research methods. This article is intended to compile the content from previous studies and discuss advantages, disadvantages, fabrication, insertion, and adjustment. Moreover, the effectiveness in maintaining dental position, occlusion, retention protocols, thickness, and survival rate of clear retainers is discussed.

  10. Are palaeoscolecids ancestral ecdysozoans?

    Science.gov (United States)

    Harvey, Thomas H P; Dong, Xiping; Donoghue, Philip C J

    2010-01-01

    The reconstruction of ancestors is a central aim of comparative anatomy and evolutionary developmental biology, not least in attempts to understand the relationship between developmental and organismal evolution. Inferences based on living taxa can and should be tested against the fossil record, which provides an independent and direct view onto historical character combinations. Here, we consider the nature of the last common ancestor of living ecdysozoans through a detailed analysis of palaeoscolecids, an early and extinct group of introvert-bearing worms that have been proposed to be ancestral ecdysozoans. In a review of palaeoscolecid anatomy, including newly resolved details of the internal and external cuticle structure, we identify specific characters shared with various living nematoid and scalidophoran worms, but not with panarthropods. Considered within a formal cladistic context, these characters provide most overall support for a stem-priapulid affinity, meaning that palaeoscolecids are far-removed from the ecdysozoan ancestor. We conclude that previous interpretations in which palaeoscolecids occupy a deeper position in the ecdysozoan tree lack particular morphological support and rely instead on a paucity of preserved characters. This bears out a more general point that fossil taxa may appear plesiomorphic merely because they preserve only plesiomorphies, rather than the mélange of primitive and derived characters anticipated of organisms properly allocated to a position deep within animal phylogeny.

  11. Integrating Principles Underlying Ancestral Spirits Belief in ...

    African Journals Online (AJOL)

    , associated with ancestral spirits and its use as powerful therapeutic agent for influencing behavior or lifestyle changes. Explanatory models of attachment to ancestral spirits by living descendants are first discussed, followed by a discussion ...

  12. REGEN: Ancestral Genome Reconstruction for Bacteria

    OpenAIRE

    Yang, Kuan; Heath, Lenwood S.; Setubal, João C.

    2012-01-01

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deleti...

  13. Ancestral sequence reconstruction with Maximum Parsimony

    OpenAIRE

    Herbst, Lina; Fischer, Mareike

    2017-01-01

    One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference as well as for ancestral sequence inference is Maximum Parsimony (...

  14. Ancestral sequence alignment under optimal conditions

    Directory of Open Access Journals (Sweden)

    Brown Daniel G

    2005-11-01

    Full Text Available Abstract Background Multiple genome alignment is an important problem in bioinformatics. An important subproblem used by many multiple alignment approaches is that of aligning two multiple alignments. Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a multiple alignment is the sum of its induced pairwise alignment scores. However, the biological meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment algorithms. An alternative approach to aligning alignments is to first infer ancestral sequences for each alignment, and then align the two ancestral sequences. In addition to being fast, this method has a clear biological basis that takes into account the evolution implied by an underlying phylogenetic tree. In this study we explore the accuracy of aligning alignments by ancestral sequence alignment. We examine the use of both maximum likelihood and parsimony to infer ancestral sequences. Additionally, we investigate the effect on accuracy of allowing ambiguity in our ancestral sequences. Results We use synthetic sequence data that we generate by simulating evolution on a phylogenetic tree. We use two different types of phylogenetic trees: trees with a period of rapid growth followed by a period of slow growth, and trees with a period of slow growth followed by a period of rapid growth. We examine the alignment accuracy of four ancestral sequence reconstruction and alignment methods: parsimony, maximum likelihood, ambiguous parsimony, and ambiguous maximum likelihood. Additionally, we compare against the alignment accuracy of two sum-of-pairs algorithms: ClustalW and the heuristic of Ma, Zhang, and Wang. Conclusion We find that allowing ambiguity in ancestral sequences does not lead to better multiple alignments. Regardless of whether we use parsimony or maximum likelihood, the

  15. REGEN: Ancestral Genome Reconstruction for Bacteria

    Directory of Open Access Journals (Sweden)

    João C. Setubal

    2012-07-01

    Full Text Available Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  16. REGEN: Ancestral Genome Reconstruction for Bacteria.

    Science.gov (United States)

    Yang, Kuan; Heath, Lenwood S; Setubal, João C

    2012-07-18

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  17. Resolution effects in reconstructing ancestral genomes.

    Science.gov (United States)

    Zheng, Chunfang; Jeong, Yuji; Turcotte, Madisyn Gabrielle; Sankoff, David

    2018-05-09

    The reconstruction of ancestral genomes must deal with the problem of resolution, necessarily involving a trade-off between trying to identify genomic details and being overwhelmed by noise at higher resolutions. We use the median reconstruction at the synteny block level, of the ancestral genome of the order Gentianales, based on coffee, Rhazya stricta and grape, to exemplify the effects of resolution (granularity) on comparative genomic analyses. We show how decreased resolution blurs the differences between evolving genomes, with respect to rate, mutational process and other characteristics.

  18. Ancestral Sequence Reconstruction with Maximum Parsimony.

    Science.gov (United States)

    Herbst, Lina; Fischer, Mareike

    2017-12-01

    One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference and for ancestral sequence inference is Maximum Parsimony (MP). In this manuscript, we focus on this method and on ancestral state inference for fully bifurcating trees. In particular, we investigate a conjecture published by Charleston and Steel in 1995 concerning the number of species which need to have a particular state, say a, at a particular site in order for MP to unambiguously return a as an estimate for the state of the last common ancestor. We prove the conjecture for all even numbers of character states, which is the most relevant case in biology. We also show that the conjecture does not hold in general for odd numbers of character states, but also present some positive results for this case.

  19. Assessing the Accuracy of Ancestral Protein Reconstruction Methods

    OpenAIRE

    Williams, Paul D; Pollock, David D; Blackburne, Benjamin P; Goldstein, Richard A

    2006-01-01

    The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolu...

  20. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  1. Animal regeneration: ancestral character or evolutionary novelty?

    Science.gov (United States)

    Slack, Jonathan Mw

    2017-09-01

    An old question about regeneration is whether it is an ancestral character which is a general property of living matter, or whether it represents a set of specific adaptations to the different circumstances faced by different types of animal. In this review, some recent results on regeneration are assessed to see if they can throw any new light on this question. Evidence in favour of an ancestral character comes from the role of Wnt and bone morphogenetic protein signalling in controlling the pattern of whole-body regeneration in acoels, which are a basal group of bilaterian animals. On the other hand, there is some evidence for adaptive acquisition or maintenance of the regeneration of appendages based on the occurrence of severe non-lethal predation, the existence of some novel genes in regenerating organisms, and differences at the molecular level between apparently similar forms of regeneration. It is tentatively concluded that whole-body regeneration is an ancestral character although has been lost from most animal lineages. Appendage regeneration is more likely to represent a derived character resulting from many specific adaptations. © 2017 The Author.

  2. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  3. Robustness of ancestral sequence reconstruction to phylogenetic uncertainty.

    Science.gov (United States)

    Hanson-Smith, Victor; Kolaczkowski, Bryan; Thornton, Joseph W

    2010-09-01

    Ancestral sequence reconstruction (ASR) is widely used to formulate and test hypotheses about the sequences, functions, and structures of ancient genes. Ancestral sequences are usually inferred from an alignment of extant sequences using a maximum likelihood (ML) phylogenetic algorithm, which calculates the most likely ancestral sequence assuming a probabilistic model of sequence evolution and a specific phylogeny--typically the tree with the ML. The true phylogeny is seldom known with certainty, however. ML methods ignore this uncertainty, whereas Bayesian methods incorporate it by integrating the likelihood of each ancestral state over a distribution of possible trees. It is not known whether Bayesian approaches to phylogenetic uncertainty improve the accuracy of inferred ancestral sequences. Here, we use simulation-based experiments under both simplified and empirically derived conditions to compare the accuracy of ASR carried out using ML and Bayesian approaches. We show that incorporating phylogenetic uncertainty by integrating over topologies very rarely changes the inferred ancestral state and does not improve the accuracy of the reconstructed ancestral sequence. Ancestral state reconstructions are robust to uncertainty about the underlying tree because the conditions that produce phylogenetic uncertainty also make the ancestral state identical across plausible trees; conversely, the conditions under which different phylogenies yield different inferred ancestral states produce little or no ambiguity about the true phylogeny. Our results suggest that ML can produce accurate ASRs, even in the face of phylogenetic uncertainty. Using Bayesian integration to incorporate this uncertainty is neither necessary nor beneficial.

  4. Recruiting and Retaining Cyberwarriors

    National Research Council Canada - National Science Library

    Westermeyer, Roger H

    2008-01-01

    .... Recruiting and retaining this highly skilled workforce is a significant challenge for the Air Force due to the high public and private sector demand for people with IT and related engineering skills...

  5. Reality of Retainers

    Science.gov (United States)

    ... the cafeteria take out his retainer before eating lunch. Carefully, he places it in a plastic container to make sure that it's safe while he eats. You can tell that this small plastic and metal mouthpiece is important to him. ...

  6. Earth retaining structures manual

    Science.gov (United States)

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  7. Ancestral Relationships Using Metafounders: Finite Ancestral Populations and Across Population Relationships.

    Science.gov (United States)

    Legarra, Andres; Christensen, Ole F; Vitezica, Zulma G; Aguilar, Ignacio; Misztal, Ignacy

    2015-06-01

    Recent use of genomic (marker-based) relationships shows that relationships exist within and across base population (breeds or lines). However, current treatment of pedigree relationships is unable to consider relationships within or across base populations, although such relationships must exist due to finite size of the ancestral population and connections between populations. This complicates the conciliation of both approaches and, in particular, combining pedigree with genomic relationships. We present a coherent theoretical framework to consider base population in pedigree relationships. We suggest a conceptual framework that considers each ancestral population as a finite-sized pool of gametes. This generates across-individual relationships and contrasts with the classical view which each population is considered as an infinite, unrelated pool. Several ancestral populations may be connected and therefore related. Each ancestral population can be represented as a "metafounder," a pseudo-individual included as founder of the pedigree and similar to an "unknown parent group." Metafounders have self- and across relationships according to a set of parameters, which measure ancestral relationships, i.e., homozygozities within populations and relationships across populations. These parameters can be estimated from existing pedigree and marker genotypes using maximum likelihood or a method based on summary statistics, for arbitrarily complex pedigrees. Equivalences of genetic variance and variance components between the classical and this new parameterization are shown. Segregation variance on crosses of populations is modeled. Efficient algorithms for computation of relationship matrices, their inverses, and inbreeding coefficients are presented. Use of metafounders leads to compatibility of genomic and pedigree relationship matrices and to simple computing algorithms. Examples and code are given. Copyright © 2015 by the Genetics Society of America.

  8. A retained menstrual cup.

    Science.gov (United States)

    Day, S

    2012-05-01

    A 20-year-old woman attended a genitourinary clinic with a retained vaginal Mooncup that she had inserted the night before. A Mooncup is one type of menstrual cup. On speculum examination the device was visualized high in the vagina and the cervix appeared firmly lodged within it. The physician experienced difficulty in retrieving the cup despite following product instructions. This case highlights a new adverse event with an increasingly used sanitation product. It is important that clinicians are familiar with the cup, its removal process and are able to counsel patients with retained devices on future correct placement.

  9. Retained surgical sponge

    International Nuclear Information System (INIS)

    Koyama, Masashi; Kurono, Kenji; Iida, Akihiko; Suzuki, Hirochika; Hara, Masaki; Mizutani, Hirokazu; Ohba, Satoru; Mizutani, Masaru; Nakajima, Yoichiro.

    1993-01-01

    The CT, US, and MRI findings of confirmed retained surgical sponges were reviewed. The CT examinations in eight lesions demonstrated round or oval masses with heterogeneous internal structures. The US examinations in 5 lesions demonstrated low echogenic masses with high echogenic internal structures, which suggested retained surgical sponges. MR imagings in three lesions showed slightly high intensity comparable to that of muscles on T1-weighted images and high signal intensity on T2-weighted images, suggesting fluid collections of high protein concentration. (author)

  10. Assessing the accuracy of ancestral protein reconstruction methods.

    Directory of Open Access Journals (Sweden)

    Paul D Williams

    2006-06-01

    Full Text Available The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation, and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the properties of "ancestral sequences" inferred by maximum parsimony, maximum likelihood, and Bayesian methods. Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a "best guess" amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated.

  11. Assessing the accuracy of ancestral protein reconstruction methods.

    Science.gov (United States)

    Williams, Paul D; Pollock, David D; Blackburne, Benjamin P; Goldstein, Richard A

    2006-06-23

    The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation, and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the properties of "ancestral sequences" inferred by maximum parsimony, maximum likelihood, and Bayesian methods. Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a "best guess" amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated.

  12. Do Père David's deer lose memories of their ancestral predators?

    Directory of Open Access Journals (Sweden)

    Chunwang Li

    Full Text Available Whether prey retains antipredator behavior after a long period of predator relaxation is an important question in predator-prey evolution. Père David's deer have been raised in enclosures for more than 1200 years and this isolation provides an opportunity to study whether Père David's deer still respond to the cues of their ancestral predators or to novel predators. We played back the sounds of crows (familiar sound and domestic dogs (familiar non-predators, of tigers and wolves (ancestral predators, and of lions (potential naïve predator to Père David's deer in paddocks, and blank sounds to the control group, and videoed the behavior of the deer during the experiment. We also showed life-size photo models of dog, leopard, bear, tiger, wolf, and lion to the deer and video taped their responses after seeing these models. Père David's deer stared at and approached the hidden loudspeaker when they heard the roars of tiger or lion. The deer listened to tiger roars longer, approached to tiger roars more and spent more time staring at the tiger model. The stags were also found to forage less in the trials of tiger roars than that of other sound playbacks. Additionally, it took longer for the deer to restore their normal behavior after they heard tiger roars, which was longer than that after the trial of other sound playbacks. Moreover, the deer were only found to walk away after hearing the sounds of tiger and wolf. Therefore, the tiger was probably the main predator for Père David's deer in ancient time. Our study implies that Père David's deer still retain the memories of the acoustic and visual cues of their ancestral predators in spite of the long term isolation from natural habitat.

  13. Control component retainer

    International Nuclear Information System (INIS)

    Walton, L.A.; King, R.A.

    1983-01-01

    An apparatus is described for retaining an undriven control component assembly disposed in a fuel assembly in a nuclear reactor of the type having a core grid plate. The first part of the mechanism involves a housing for the control component and the second part is a brace with a number of arms that reach under the grid plate. The brace and the housing are coupled together to firmly hold the control components in place even under strong flows of th coolant

  14. Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan.

    Science.gov (United States)

    Webster, Bonnie L; Copley, Richard R; Jenner, Ronald A; Mackenzie-Dodds, Jacqueline A; Bourlat, Sarah J; Rota-Stabelli, Omar; Littlewood, D T J; Telford, Maximilian J

    2006-01-01

    Research into arthropod evolution is hampered by the derived nature and rapid evolution of the best-studied out-group: the nematodes. We consider priapulids as an alternative out-group. Priapulids are a small phylum of bottom-dwelling marine worms; their tubular body with spiny proboscis or introvert has changed little over 520 million years and recognizable priapulids are common among exceptionally preserved Cambrian fossils. Using the complete mitochondrial genome and 42 nuclear genes from Priapulus caudatus, we show that priapulids are slowly evolving ecdysozoans; almost all these priapulid genes have evolved more slowly than nematode orthologs and the priapulid mitochondrial gene order may be unchanged since the Cambrian. Considering their primitive bodyplan and embryology and the great conservation of both nuclear and mitochondrial genomes, priapulids may deserve the popular epithet of "living fossil." Their study is likely to yield significant new insights into the early evolution of the Ecdysozoa and the origins of the arthropods and their kin as well as aiding inference of the morphology of ancestral Ecdysozoa and Bilateria and their genomes.

  15. Mitochondrial myopathies.

    Science.gov (United States)

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  16. Retained gas inventory comparison

    International Nuclear Information System (INIS)

    BARTON, W.B.

    1999-01-01

    Gas volume data derived from four different analytical methods were collected and analyzed for comparison to volumes originally used in the technical basis for the Basis for Interim Operations (BIO). The original volumes came from Hodgson (1996) listed in the reference section of this document. Hodgson (1996) screened all 177 single and double-shell tanks for the presence of trapped gas in waste via two analytical methods: Surface Level Rise (SLR), and Barometric Pressure Effect (BPE). More recent gas volume projections have been calculated using different analytical techniques along with updates to the parameters used as input to the SLR and BPE models. Gas volumes derived from new analytical instruments include those as measured by the Void Fraction Instrument (VFI) and Retained Gas Sampler (RGS). The results of this comparison demonstrate that the original retained gas volumes of Hodgson (1996) used as a technical basis in developing the BIO were conservative, and were conservative from a safety analysis standpoint. These results represent only comparisons to the original reported volumes using the limited set of newly acquired data that is available

  17. Why Meillassoux’s Speculative Materialism Struggles with Ancestrality

    Directory of Open Access Journals (Sweden)

    Ciprian Jeler

    2014-12-01

    Full Text Available This paper shows that Quentin Meillassoux’s speculative materialism doesn’t offer us the means to account for the ancestral statements that the modern sciences produce, i.e. for the scientific statements about events preceding all forms of life. An analysis of the reasons why Meillassoux thinks that the problem of ancestrality problematizes the contemporary self-evidence of correlationism is first offered. The results of this analysis are then applied to speculative materialism itself and the consequences are not very promising: very much like correlationism, speculative materialism explicitly denies what I call the “generalized version of the realistic assumption of science” and, in so doing, renders scientific ancestral statements de jure unverifiable. Therefore, if correlationism is rendered suspicious by the issue of ancestrality, the same can be said of speculative materialism.

  18. WARACS: Wrappers to Automate the Reconstruction of Ancestral Character States.

    Science.gov (United States)

    Gruenstaeudl, Michael

    2016-02-01

    Reconstructions of ancestral character states are among the most widely used analyses for evaluating the morphological, cytological, or ecological evolution of an organismic lineage. The software application Mesquite remains the most popular application for such reconstructions among plant scientists, even though its support for automating complex analyses is limited. A software tool is needed that automates the reconstruction and visualization of ancestral character states with Mesquite and similar applications. A set of command line-based Python scripts was developed that (a) communicates standardized input to and output from the software applications Mesquite, BayesTraits, and TreeGraph2; (b) automates the process of ancestral character state reconstruction; and (c) facilitates the visualization of reconstruction results. WARACS provides a simple tool that streamlines the reconstruction and visualization of ancestral character states over a wide array of parameters, including tree distribution, character state, and optimality criterion.

  19. Why Meillassoux’s Speculative Materialism Struggles with Ancestrality

    OpenAIRE

    Ciprian Jeler

    2014-01-01

    This paper shows that Quentin Meillassoux’s speculative materialism doesn’t offer us the means to account for the ancestral statements that the modern sciences produce, i.e. for the scientific statements about events preceding all forms of life. An analysis of the reasons why Meillassoux thinks that the problem of ancestrality problematizes the contemporary self-evidence of correlationism is first offered. The results of this analysis are then applied to speculative materialism itself and the...

  20. Retained Herrick Plug

    Directory of Open Access Journals (Sweden)

    Justin B. Hellman

    2018-05-01

    Full Text Available A 79-year-old female with a history of keratoconjunctivitis sicca presented with several years of epiphora of both eyes. Thirteen years earlier, intracanalicular Herrick lacrimal plugs (Lacrimedics, Eastsound, WA, USA had been placed in both eyes to treat her dry eye syndrome. After 13 years the patient felt the epiphora was intolerable and underwent endoscopic dacryocystorhinostomy (DCR of the left, then the right side. Intraoperatively, during the right endoscopic DCR, a Herrick lacrimal plug was found in the common canaliculus into the lacrimal sac. Postoperatively, the patient did well with improved epiphora. The Herrick plug is designed to be intracanalicular, and this case illustrates that the plug can migrate and be retained for many years. Collared punctal plugs have a lower risk of this type of complication.

  1. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  2. Ancestral Rocky Mountian Tectonics: A Sedimentary Record of Ancestral Front Range and Uncompahgre Exhumation

    Science.gov (United States)

    Smith, T. M.; Saylor, J. E.; Lapen, T. J.

    2015-12-01

    The Ancestral Rocky Mountains (ARM) encompass multiple crustal provinces with characteristic crystallization ages across the central and western US. Two driving mechanisms have been proposed to explain ARM deformation. (1) Ouachita-Marathon collision SE of the ARM uplifts has been linked to an E-to-W sequence of uplift and is consistent with proposed disruption of a larger Paradox-Central Colorado Trough Basin by exhumation of the Uncompahgre Uplift. Initial exhumation of the Amarillo-Wichita Uplift to the east would provide a unique ~530 Ma signal absent from source areas to the SW, and result in initial exhumation of the Ancestral Front Range. (2) Alternatively, deformation due to flat slab subduction along a hypothesized plate boundary to the SW suggests a SW-to-NE younging of exhumation. This hypothesis suggests a SW-derived Grenville signature, and would trigger uplift of the Uncompahgre first. We analyzed depositional environments, sediment dispersal patterns, and sediment and basement zircon U-Pb and (U-Th)/He ages in 3 locations in the Paradox Basin and Central Colorado Trough (CCT). The Paradox Basin exhibits an up-section transition in fluvial style that suggests a decrease in overbank stability and increased lateral migration. Similarly, the CCT records a long-term progradation of depositional environments from marginal marine to fluvial, indicating that sediment supply in both basins outpaced accommodation. Preliminary provenance results indicate little to no input from the Amarillo-Wichita uplift in either basin despite uniformly westward sediment dispersal systems in both basins. Results also show that the Uncompahgre Uplift was the source for sediment throughout Paradox Basin deposition. These observations are inconsistent with the predictions of scenario 1 above. Rather, they suggest either a synchronous response to tectonic stress across the ARM provinces or an SW-to-NE pattern of deformation.

  3. Mitochondrial Myopathies

    Science.gov (United States)

    ... noting “soft signs” in unaffected relatives. These include deaf- ness, short stature, migraine headaches and PEO. Muscle ... mitochondrial defects and provide valuable information for family planning. Perhaps most important, knowing the genetic defects that ...

  4. Ancestral origins and invasion pathways in a globally invasive bird correlate with climate and influences from bird trade.

    Science.gov (United States)

    Jackson, Hazel; Strubbe, Diederik; Tollington, Simon; Prys-Jones, Robert; Matthysen, Erik; Groombridge, Jim J

    2015-08-01

    Invasive species present a major threat to global biodiversity. Understanding genetic patterns and evolutionary processes that reinforce successful establishment is paramount for elucidating mechanisms underlying biological invasions. Among birds, the ring-necked parakeet (Psittacula krameri) is one of the most successful invasive species, established in over 35 countries. However, little is known about the evolutionary genetic origins of this species and what population genetic signatures tell us about patterns of invasion. We reveal the ancestral origins of populations across the invasive range and explore the potential influence of climate and propagule pressure from the pet trade on observed genetic patterns. Ring-necked parakeet samples representing the ancestral native range (n = 96) were collected from museum specimens, and modern samples from the invasive range (n = 855) were gathered from across Europe, Mauritius and Seychelles, and sequenced for two mitochondrial DNA markers comprising 868 bp of cytochrome b and control region, and genotyped at 10 microsatellite loci. Invasive populations comprise birds that originate predominantly from Pakistan and northern areas of India. Haplotypes associated with more northerly distribution limits in the ancestral native range were more prevalent in invasive populations in Europe, and the predominance of Asian haplotypes in Europe is consistent with the higher number of Asian birds transported by the pet trade outside the native range. Successful establishment of invasive species is likely to be underpinned by a combination of environmental and anthropogenic influences. © 2015 John Wiley & Sons Ltd.

  5. Ancestrality and evolution of trait syndromes in finches (Fringillidae).

    Science.gov (United States)

    Ponge, Jean-François; Zuccon, Dario; Elias, Marianne; Pavoine, Sandrine; Henry, Pierre-Yves; Théry, Marc; Guilbert, Éric

    2017-12-01

    Species traits have been hypothesized by one of us (Ponge, 2013) to evolve in a correlated manner as species colonize stable, undisturbed habitats, shifting from "ancestral" to "derived" strategies. We predicted that generalism, r-selection, sexual monomorphism, and migration/gregariousness are the ancestral states (collectively called strategy A) and evolved correlatively toward specialism, K-selection, sexual dimorphism, and residence/territoriality as habitat stabilized (collectively called B strategy). We analyzed the correlated evolution of four syndromes, summarizing the covariation between 53 traits, respectively, involved in ecological specialization, r-K gradient, sexual selection, and dispersal/social behaviors in 81 species representative of Fringillidae, a bird family with available natural history information and that shows variability for all these traits. The ancestrality of strategy A was supported for three of the four syndromes, the ancestrality of generalism having a weaker support, except for the core group Carduelinae (69 species). It appeared that two different B-strategies evolved from the ancestral state A, both associated with highly predictable environments: one in poorly seasonal environments, called B1, with species living permanently in lowland tropics, with "slow pace of life" and weak sexual dimorphism, and one in highly seasonal environments, called B2, with species breeding out-of-the-tropics, migratory, with a "fast pace of life" and high sexual dimorphism.

  6. Reproductive function in mice exposed to ancestral and direct irradiation

    International Nuclear Information System (INIS)

    Nash, D.J.; Sprackling, L.S.

    1978-01-01

    Reproduction was studied in 13 inbred strains of mice that had been exposed continuously to 60 Co gamma radiation for varying numbers of generations. At weaning the mice were removed from the irradiation chamber and were tested for reproductive performance. Ancestral and direct levels of irradiation were determined for each animal. Each irradiated or control female was scored as fertile or sterile, and in utero litter counts were made in pregnant females that were dissected past the 10th day of pregnancy. The number of resorptions, dead embryos, and live embryos were counted, and the ratio of living embryos to the total number of embryos was determined for each litter. The overall fertility curves were sigmoid in the range of doses below those which caused complete sterility, which indicated some sort of cumulative damage. In 11 of the 13 strains studied, an increase in ancestral and/or direct irradiation led to significant decreases in fertility. The means of the number alive in the litters for the control and irradiated mice in each strain showed a definite trend toward fewer live mice in utero after irradiation. Least-squares analyses of variance were made to detect possible effects of any of six irradiation variables (ancestral linear, ancestral quadratic, ancestral cubic, direct linear, direct quadratic, or direct cubic) or of strain differences on total litter size and on ratio. Strain effects were significant in each instance. Litter size was more likely to be affected by radiation variables than ratios were

  7. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates

    Science.gov (United States)

    Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.

    2012-01-01

    In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396

  8. Isolation of Ancestral Sylvatic Dengue Virus Type 1, Malaysia

    Science.gov (United States)

    Teoh, Boon-Teong; Sam, Sing-Sin; Abd-Jamil, Juraina

    2010-01-01

    Ancestral sylvatic dengue virus type 1, which was isolated from a monkey in 1972, was isolated from a patient with dengue fever in Malaysia. The virus is neutralized by serum of patients with endemic DENV-1 infection. Rare isolation of this virus suggests a limited spillover infection from an otherwise restricted sylvatic cycle. PMID:21029545

  9. An Epistemological Analysis of the African Ontology of `Ancestral ...

    African Journals Online (AJOL)

    The paper explores the contemporary debate surrounding the idea of ancestral reincarnation in African society and philosophy. It analyzes various problem areas having to do with the physical and spiritual status of ancestors, their relationship with their societies of orientation, the philosophical contexts of their existence, ...

  10. Musculature in sipunculan worms: ontogeny and ancestral states.

    Science.gov (United States)

    Schulze, Anja; Rice, Mary E

    2009-01-01

    Molecular phylogenetics suggests that the Sipuncula fall into the Annelida, although they are morphologically very distinct and lack segmentation. To understand the evolutionary transformations from the annelid to the sipunculan body plan, it is important to reconstruct the ancestral states within the respective clades at all life history stages. Here we reconstruct the ancestral states for the head/introvert retractor muscles and the body wall musculature in the Sipuncula using Bayesian statistics. In addition, we describe the ontogenetic transformations of the two muscle systems in four sipunculan species with different developmental modes, using F-actin staining with fluorescent-labeled phalloidin in conjunction with confocal laser scanning microscopy. All four species, which have smooth body wall musculature and less than the full set of four introvert retractor muscles as adults, go through developmental stages with four retractor muscles that are eventually reduced to a lower number in the adult. The circular and sometimes the longitudinal body wall musculature are split into bands that later transform into a smooth sheath. Our ancestral state reconstructions suggest with nearly 100% probability that the ancestral sipunculan had four introvert retractor muscles, longitudinal body wall musculature in bands and circular body wall musculature arranged as a smooth sheath. Species with crawling larvae have more strongly developed body wall musculature than those with swimming larvae. To interpret our findings in the context of annelid evolution, a more solid phylogenetic framework is needed for the entire group and more data on ontogenetic transformations of annelid musculature are desirable.

  11. A comparison of ancestral state reconstruction methods for quantitative characters.

    Science.gov (United States)

    Royer-Carenzi, Manuela; Didier, Gilles

    2016-09-07

    Choosing an ancestral state reconstruction method among the alternatives available for quantitative characters may be puzzling. We present here a comparison of seven of them, namely the maximum likelihood, restricted maximum likelihood, generalized least squares under Brownian, Brownian-with-trend and Ornstein-Uhlenbeck models, phylogenetic independent contrasts and squared parsimony methods. A review of the relations between these methods shows that the maximum likelihood, the restricted maximum likelihood and the generalized least squares under Brownian model infer the same ancestral states and can only be distinguished by the distributions accounting for the reconstruction uncertainty which they provide. The respective accuracy of the methods is assessed over character evolution simulated under a Brownian motion with (and without) directional or stabilizing selection. We give the general form of ancestral state distributions conditioned on leaf states under the simulation models. Ancestral distributions are used first, to give a theoretical lower bound of the expected reconstruction error, and second, to develop an original evaluation scheme which is more efficient than comparing the reconstructed and the simulated states. Our simulations show that: (i) the distributions of the reconstruction uncertainty provided by the methods generally make sense (some more than others); (ii) it is essential to detect the presence of an evolutionary trend and to choose a reconstruction method accordingly; (iii) all the methods show good performances on characters under stabilizing selection; (iv) without trend or stabilizing selection, the maximum likelihood method is generally the most accurate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Modeling X-linked ancestral origins in multiparental populations

    NARCIS (Netherlands)

    Zheng, Chaozhi

    2015-01-01

    The models for the mosaic structure of an individual's genome from multiparental populations have been developed primarily for autosomes, whereas X chromosomes receive very little attention. In this paper, we extend our previous approach to model ancestral origin processes along two X chromosomes

  13. Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees.

    Directory of Open Access Journals (Sweden)

    Paul H Williams

    Full Text Available Our grasp of biodiversity is fine-tuned through the process of revisionary taxonomy. If species do exist in nature and can be discovered with available techniques, then we expect these revisions to converge on broadly shared interpretations of species. But for the primarily arctic bumblebees of the subgenus Alpinobombus of the genus Bombus, revisions by some of the most experienced specialists are unusual for bumblebees in that they have all reached different conclusions on the number of species present. Recent revisions based on skeletal morphology have concluded that there are from four to six species, while variation in colour pattern of the hair raised questions as to whether at least seven species might be present. Even more species are supported if we accept the recent move away from viewing species as morphotypes to viewing them instead as evolutionarily independent lineages (EILs using data from genes. EILs are recognised here in practice from the gene coalescents that provide direct evidence for their evolutionary independence. We show from fitting both general mixed Yule/coalescent (GMYC models and Poisson-tree-process (PTP models to data for the mitochondrial COI gene that there is support for nine species in the subgenus Alpinobombus. Examination of the more slowly evolving nuclear PEPCK gene shows further support for a previously unrecognised taxon as a new species in northwestern North America. The three pairs of the most morphologically similar sister species are separated allopatrically and prevented from interbreeding by oceans. We also find that most of the species show multiple shared colour patterns, giving the appearance of mimicry among parts of the different species. However, reconstructing ancestral colour-pattern states shows that speciation is likely to have cut across widespread ancestral polymorphisms, without or largely without convergence. In the particular case of Alpinobombus, morphological, colour-pattern, and

  14. Co-invading symbiotic mutualists of Medicago polymorpha retain high ancestral diversity and contain diverse accessory genomes.

    Science.gov (United States)

    Porter, Stephanie S; Faber-Hammond, Joshua J; Friesen, Maren L

    2018-01-01

    Exotic, invasive plants and animals can wreak havoc on ecosystems by displacing natives and altering environmental conditions. However, much less is known about the identities or evolutionary dynamics of the symbiotic microbes that accompany invasive species. Most leguminous plants rely upon symbiotic rhizobium bacteria to fix nitrogen and are incapable of colonizing areas devoid of compatible rhizobia. We compare the genomes of symbiotic rhizobia in a portion of the legume's invaded range with those of the rhizobium symbionts from across the legume's native range. We show that in an area of California the legume Medicago polymorpha has invaded, its Ensifer medicae symbionts: (i) exhibit genome-wide patterns of relatedness that together with historical evidence support host-symbiont co-invasion from Europe into California, (ii) exhibit population genomic patterns consistent with the introduction of the majority of deep diversity from the native range, rather than a genetic bottleneck during colonization of California and (iii) harbor a large set of accessory genes uniquely enriched in binding functions, which could play a role in habitat invasion. Examining microbial symbiont genome dynamics during biological invasions is critical for assessing host-symbiont co-invasions whereby microbial symbiont range expansion underlies plant and animal invasions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data.

    Science.gov (United States)

    Fenn, J Daniel; Song, Hojun; Cameron, Stephen L; Whiting, Michael F

    2008-10-01

    The phylogenetic utility of mitochondrial genomes (mtgenomes) is examined using the framework of a preliminary phylogeny of Orthoptera. This study presents five newly sequenced genomes from four orthopteran families. While all ensiferan and polyneopteran taxa retain the ancestral gene order, all caeliferan lineages including the newly sequenced caeliferan species contain a tRNA rearrangement from the insect ground plan tRNA(Lys)(K)-tRNA(Asp)(D) swapping to tRNA(Asp) (D)-tRNA(Lys) (K) confirming that this rearrangement is a possible molecular synapomorphy for this suborder. The phylogenetic signal in mtgenomes is rigorously examined under the analytical regimens of parsimony, maximum likelihood and Bayesian inference, along with how gene inclusion/exclusion, data recoding, gap coding, and different partitioning schemes influence the phylogenetic reconstruction. When all available data are analyzed simultaneously, the monophyly of Orthoptera and its two suborders, Caelifera and Ensifera, are consistently recovered in the context of our taxon sampling, regardless of the optimality criteria. When protein-coding genes are analyzed as a single partition, nearly identical topology to the combined analyses is recovered, suggesting that much of the signals of the mtgenome come from the protein-coding genes. Transfer and ribosomal RNAs perform poorly when analyzed individually, but contribute signal when analyzed in combination with the protein-coding genes. Inclusion of third codon position of the protein-coding genes does not negatively affect the phylogenetic reconstruction when all genes are analyzed together, whereas recoding of the protein-coding genes into amino acid sequences introduces artificial resolution. Over-partitioning in a Bayesian framework appears to have a negative effect in achieving convergence. Our findings suggest that the best phylogenetic inferences are made when all available nucleotide data from the mtgenome are analyzed simultaneously, and that

  16. The complete mitochondrial genome of a stonefly species, Togoperla sp. (Plecoptera: Perlidae).

    Science.gov (United States)

    Wang, Kai; Wang, Yuyu; Yang, Ding

    2016-05-01

    The complete mitochondrial (mt) genome of a stonefly species, Togoperla sp. (Plecoptera: Perlidae), was sequenced. The 15,723 bp long genome has the standard metazoan complement of 37 genes and an A+T-rich region, which is the same as the insect ancestral genome arrangement.

  17. From Endosymbiont to Host-Controlled Organelle: The Hijacking of Mitochondrial Protein Synthesis and Metabolism

    NARCIS (Netherlands)

    Gabaldon, T.; Huynen, M.A.

    2007-01-01

    Mitochondria are eukaryotic organelles that originated from the endosymbiosis of an alpha-proteobacterium. To gain insight into the evolution of the mitochondrial proteome as it proceeded through the transition from a free-living cell to a specialized organelle, we compared a reconstructed ancestral

  18. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism.

    NARCIS (Netherlands)

    Gabaldon, T.; Huynen, M.A.

    2007-01-01

    Mitochondria are eukaryotic organelles that originated from the endosymbiosis of an alpha-proteobacterium. To gain insight into the evolution of the mitochondrial proteome as it proceeded through the transition from a free-living cell to a specialized organelle, we compared a reconstructed ancestral

  19. Historian: accurate reconstruction of ancestral sequences and evolutionary rates.

    Science.gov (United States)

    Holmes, Ian H

    2017-04-15

    Reconstruction of ancestral sequence histories, and estimation of parameters like indel rates, are improved by using explicit evolutionary models and summing over uncertain alignments. The previous best tool for this purpose (according to simulation benchmarks) was ProtPal, but this tool was too slow for practical use. Historian combines an efficient reimplementation of the ProtPal algorithm with performance-improving heuristics from other alignment tools. Simulation results on fidelity of rate estimation via ancestral reconstruction, along with evaluations on the structurally informed alignment dataset BAliBase 3.0, recommend Historian over other alignment tools for evolutionary applications. Historian is available at https://github.com/evoldoers/historian under the Creative Commons Attribution 3.0 US license. ihholmes+historian@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance

    Directory of Open Access Journals (Sweden)

    Asunción Delgado

    2017-05-01

    Full Text Available Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance.

  1. Perianth evolution in Ranunculaceae: are petals ancestral in the family?

    Directory of Open Access Journals (Sweden)

    Sophie Nadot

    2016-04-01

    Full Text Available Progress has been made recently towards the elucidation of phylogenetic relationships among subfamilies and tribes of the Ranunculaceae – the most recent hypothesis was published in 2016 by our team. Although relationships among the 10 tribes of the subfamily Ranunculoideae remain incompletely supported, this hypothesis provides an interesting framework to address the key issue of the ancestral vs. derived nature of a differentiated perianth within the family, and at the level of Ranunculales as a whole. Here, we present ancestral state reconstructions for several perianth characters, such as differentiation into sepals and petals, shape of petals, presence/absence of nectaries, and petaloid or sepaloid aspect of sepals. Characters were scored using the PROTEUS database and optimized on the most recent phylogeny of Ranunculaceae using parsimony and maximum likelihood methods. The results are discussed with regard to recent evo-devo studies focused on identifying genes involved in floral organs identity (the so-called ABC model in Ranunculales.

  2. The ancestral selection graph under strong directional selection.

    Science.gov (United States)

    Pokalyuk, Cornelia; Pfaffelhuber, Peter

    2013-08-01

    The ancestral selection graph (ASG) was introduced by  Neuhauser and Krone (1997) in order to study populations of constant size which evolve under selection. Coalescence events, which occur at rate 1 for every pair of lines, lead to joint ancestry. In addition, splitting events in the ASG at rate α, the scaled selection coefficient, produce possible ancestors, such that the real ancestor depends on the ancestral alleles. Here, we use the ASG in the case without mutation in order to study fixation of a beneficial mutant. Using our main tool, a reversibility property of the ASG, we provide a new proof of the fact that a beneficial allele fixes roughly in time (2logα)/α if α is large. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Prenatal effects of ancestral irradiation in inbred mice

    International Nuclear Information System (INIS)

    Sprackling, L.E.S.

    1975-01-01

    Mice from 13 inbred strains (S, Z, E, Bab, BaB, BrR, C, K, N, Q, G, CFW, CF1) received continuous cobalt 60 irradiation at low dose rates for varying numbers of consecutive generations. Some Bab and BaB mice had received continuous irradiation for from 24 to 31 generations and the other mice had up to six generations of continuous irradiation in their ancestry. At weaning, the mice were removed from the irradiation room and were mated within strains either to sibs or nonsibs. Ancestral and direct irradiation doses were calculated. The ancestral dose was the effective accumulated dose to the progeny of the mated mice. The direct dose was the amount of irradiation received by any mated female from her conception to her weaning. Each irradiated or control female was scored as fertile or sterile and in utero litter counts were made in pregnant females that were dissected past the tenth day of pregnancy; the sum of moles, dead embryos, and live embryos was the total in utero litter size. A ratio of the living embryos to the total number of embryos in utero was determined for each litter. An increase in ancestral or direct irradiation dose significantly decreased fertility in 11 of the 13 strains. The fertility curves for the pooled data were sigmoid in the area of the doses below those that caused complete sterility. Among the controls, there were significant strain differences in total litter size and in the ratio. Strain X--Y plots, with ancestral or direct doses plotted against total litter size or ratio, revealed the tendency for litter size to decrease as dose increased. The only trend shown for ratio was for the litters with ratios of 0.50 or less to appear more frequently among the irradiated mice. The few corpora lutea counts revealed nothing of significance. Generally, there was a definite trend toward fewer mice alive in utero among the irradiated mice

  4. Ancestrality and evolution of trait syndromes in finches (Fringillidae)

    OpenAIRE

    Ponge, Jean‐François; Zuccon, Dario; Elias, Marianne; Pavoine, Sandrine; Henry, Pierre‐Yves; Théry, Marc; Guilbert, Éric

    2017-01-01

    International audience; Species traits have been hypothesized by one of us (Ponge, 2013) to evolve in a correlated manner as species colonize stable, undisturbed habitats, shifting from “ancestral” to “derived” strategies. We predicted that generalism, r-selection, sexual monomorphism, and migration/gregariousness are the ancestral states (collectively called strategy A) and evolved correlatively toward specialism, K-selection, sexual dimorphism, and residence/territoriality as habitat stabil...

  5. Reconstruction of ancestral RNA sequences under multiple structural constraints

    OpenAIRE

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldisp?hl, J?r?me

    2016-01-01

    Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given...

  6. NERVA turbopump bearing retainer fabrication on nonmetallic retainer

    Science.gov (United States)

    Accinelli, J. B.

    1972-01-01

    The need for a low-wear, lightweight, high strength bearing retainer material with a radiation degradation threshold of 10 to the 9th power rads (C) prompted development of nonmetallic reinforced polymers of the following types: (1) polybenzimidazole, (2) polyimide, and (3) polyquinoxaline. Retainers were machined from tubular laminates (billets), including reinforcement by either glass or graphite fabric or filament. Fabrication of billets involves hot preimpregnation of the reinforcement fabric or filament with polymer followed by wrapping this prepreg over a heated mandrel to form a tube with the required thickness and length.

  7. Infant and juvenile growth in ancestral Pueblo Indians.

    Science.gov (United States)

    Schillaci, Michael A; Nikitovic, Dejana; Akins, Nancy J; Tripp, Lianne; Palkovich, Ann M

    2011-06-01

    The present study examines patterns of infant and juvenile growth in a diachronic sample of ancestral Pueblo Indians (AD 1300-1680) from the American Southwest. An assessment of growth patterns is accompanied by an evaluation of pathological conditions often considered to be indicators of nutritional deficiencies and/or gastrointestinal infections. Growth patterns and the distribution of pathological conditions are interpreted relative to culturally relevant age categories defined by Puebloan rites of passage described in the ethnographic literature. A visual comparison of growth distance curves revealed that relative to a modern comparative group our sample of ancestral Pueblo infant and juveniles exhibited faltering growth beginning soon after birth to about 5 years of age. A comparison of curves describing growth relative to adult femoral length, however, indicated reduced growth occurring later, by around 2 years of age. Similar to previous studies, we observed a high proportion of nonsurvivors exhibiting porotic cranial lesions during the first 2 years of life. Contrary to expectations, infants and juveniles without evidence of porotic cranial lesions exhibited a higher degree of stunting. Our study is generally consistent with previous research reporting poor health and high mortality for ancestral Pueblo Indian infants and juveniles. Through use of a culturally relevant context defining childhood, we argue that the observed poor health and high mortality in our sample occur before the important transition from young to older child and the concomitant initial incorporation into tribal ritual organization. Copyright © 2011 Wiley-Liss, Inc.

  8. Cases in which ancestral maximum likelihood will be confusingly misleading.

    Science.gov (United States)

    Handelman, Tomer; Chor, Benny

    2017-05-07

    Ancestral maximum likelihood (AML) is a phylogenetic tree reconstruction criteria that "lies between" maximum parsimony (MP) and maximum likelihood (ML). ML has long been known to be statistically consistent. On the other hand, Felsenstein (1978) showed that MP is statistically inconsistent, and even positively misleading: There are cases where the parsimony criteria, applied to data generated according to one tree topology, will be optimized on a different tree topology. The question of weather AML is statistically consistent or not has been open for a long time. Mossel et al. (2009) have shown that AML can "shrink" short tree edges, resulting in a star tree with no internal resolution, which yields a better AML score than the original (resolved) model. This result implies that AML is statistically inconsistent, but not that it is positively misleading, because the star tree is compatible with any other topology. We show that AML is confusingly misleading: For some simple, four taxa (resolved) tree, the ancestral likelihood optimization criteria is maximized on an incorrect (resolved) tree topology, as well as on a star tree (both with specific edge lengths), while the tree with the original, correct topology, has strictly lower ancestral likelihood. Interestingly, the two short edges in the incorrect, resolved tree topology are of length zero, and are not adjacent, so this resolved tree is in fact a simple path. While for MP, the underlying phenomenon can be described as long edge attraction, it turns out that here we have long edge repulsion. Copyright © 2017. Published by Elsevier Ltd.

  9. Choosing the best ancestral character state reconstruction method.

    Science.gov (United States)

    Royer-Carenzi, Manuela; Pontarotti, Pierre; Didier, Gilles

    2013-03-01

    Despite its intrinsic difficulty, ancestral character state reconstruction is an essential tool for testing evolutionary hypothesis. Two major classes of approaches to this question can be distinguished: parsimony- or likelihood-based approaches. We focus here on the second class of methods, more specifically on approaches based on continuous-time Markov modeling of character evolution. Among them, we consider the most-likely-ancestor reconstruction, the posterior-probability reconstruction, the likelihood-ratio method, and the Bayesian approach. We discuss and compare the above-mentioned methods over several phylogenetic trees, adding the maximum-parsimony method performance in the comparison. Under the assumption that the character evolves according a continuous-time Markov process, we compute and compare the expectations of success of each method for a broad range of model parameter values. Moreover, we show how the knowledge of the evolution model parameters allows to compute upper bounds of reconstruction performances, which are provided as references. The results of all these reconstruction methods are quite close one to another, and the expectations of success are not so far from their theoretical upper bounds. But the performance ranking heavily depends on the topology of the studied tree, on the ancestral node that is to be inferred and on the parameter values. Consequently, we propose a protocol providing for each parameter value the best method in terms of expectation of success, with regard to the phylogenetic tree and the ancestral node to infer. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. 7 CFR 1767.25 - Retained earnings.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Retained earnings. 1767.25 Section 1767.25....25 Retained earnings. The retained earnings accounts identified in this section shall be used by all RUS borrowers. Retained Earnings 433-439 [Reserved] Retained Earnings 433-439 [Reserved] ...

  11. Evolutionary history of Lissotriton helveticus: multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula.

    Science.gov (United States)

    Recuero, Ernesto; García-París, Mario

    2011-07-01

    The Pleistocene was characterized by climatic changes that greatly altered the distribution of organisms. Population extinctions, bottlenecks, isolation, range expansions and contractions were often associated with glaciations, leaving signatures in the spatial patterns of genetic diversity across species. Lissotriton helveticus belongs to a Pan-European lineage of newts that were strongly affected by glaciations and represent an excellent model to analyse the effect of generalized climatic changes in phylogeographic patterns. We studied the genetic diversity of the species using data from two mitochondrial and three nuclear genes analyzed in a Bayesian phylogenetic framework to investigate the historical processes shaping spatial patterns of genetic diversity. Mitochondrial haplotypes cluster in four different groups present in the Iberian Peninsula and of Pleistocene origin, probably by allopatric fragmentation. Nuclear genes present no obvious geographic structure patterns, suggesting gene flow and generalized incomplete lineage sorting. Populations north of the Pyrenees are closely related to those from northeastern Iberia, suggesting recent range expansion from this region. Historical demographic analyses indicate a demographic expansion starting about 100,000years ago and more recent population declines. Compared to other Lissotriton species, L. helveticus includes only relatively young genetic lineages, suggesting a Central European pre-Pleistocene distribution followed by complete extirpation of the species during glaciations in that area. Historical demographic trends in the Iberian Peninsula are reversed with respect to the more Mediterranean species Lissotriton boscai, indicating different responses of both species to climate changes. Diversity patterns among Lissotriton species seem to be defined by four main factors: ancestral distributions, colonization capabilities, interactions with other species and effective population sizes. Differences in these

  12. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  13. Genome digging: insight into the mitochondrial genome of Homo.

    Directory of Open Access Journals (Sweden)

    Igor V Ovchinnikov

    2010-12-01

    Full Text Available A fraction of the Neanderthal mitochondrial genome sequence has a similarity with a 5,839-bp nuclear DNA sequence of mitochondrial origin (numt on the human chromosome 1. This fact has never been interpreted. Although this phenomenon may be attributed to contamination and mosaic assembly of Neanderthal mtDNA from short sequencing reads, we explain the mysterious similarity by integration of this numt (mtAncestor-1 into the nuclear genome of the common ancestor of Neanderthals and modern humans not long before their reproductive split.Exploiting bioinformatics, we uncovered an additional numt (mtAncestor-2 with a high similarity to the Neanderthal mtDNA and indicated that both numts represent almost identical replicas of the mtDNA sequences ancestral to the mitochondrial genomes of Neanderthals and modern humans. In the proteins, encoded by mtDNA, the majority of amino acids distinguishing chimpanzees from humans and Neanderthals were acquired by the ancestral hominins. The overall rate of nonsynonymous evolution in Neanderthal mitochondrial protein-coding genes is not higher than in other lineages. The model incorporating the ancestral hominin mtDNA sequences estimates the average divergence age of the mtDNAs of Neanderthals and modern humans to be 450,000-485,000 years. The mtAncestor-1 and mtAncestor-2 sequences were incorporated into the nuclear genome approximately 620,000 years and 2,885,000 years ago, respectively.This study provides the first insight into the evolution of the mitochondrial DNA in hominins ancestral to Neanderthals and humans. We hypothesize that mtAncestor-1 and mtAncestor-2 are likely to be molecular fossils of the mtDNAs of Homo heidelbergensis and a stem Homo lineage. The d(N/d(S dynamics suggests that the effective population size of extinct hominins was low. However, the hominin lineage ancestral to humans, Neanderthals and H. heidelbergensis, had a larger effective population size and possessed genetic diversity

  14. Evolution of gastropod mitochondrial genome arrangements

    Directory of Open Access Journals (Sweden)

    Zardoya Rafael

    2008-02-01

    . dolabrata nor Pulmonata (polyphyletic nor Opisthobranchia (because of the inclusion S. pectinata were recovered as monophyletic groups. The gene order of the Vetigastropoda might represent the ancestral mitochondrial gene order for Gastropoda and we propose that at least three major rearrangements have taken place in the evolution of gastropods: one in the ancestor of Caenogastropoda, another in the ancestor of Patellogastropoda, and one more in the ancestor of Heterobranchia.

  15. 47 CFR 32.4550 - Retained earnings.

    Science.gov (United States)

    2010-10-01

    ... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.4550 Retained earnings. (a) This account shall include the undistributed balance of retained earnings derived from the...

  16. Visual system evolution and the nature of the ancestral snake.

    Science.gov (United States)

    Simões, B F; Sampaio, F L; Jared, C; Antoniazzi, M M; Loew, E R; Bowmaker, J K; Rodriguez, A; Hart, N S; Hunt, D M; Partridge, J C; Gower, D J

    2015-07-01

    The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  17. Ancestral Variations in the Shape and Size of the Zygoma.

    Science.gov (United States)

    Oettlé, Anna C; Demeter, Fabrice P; L'abbé, Ericka N

    2017-01-01

    The variable development of the zygoma, dictating its shape and size variations among ancestral groups, has important clinical implications and valuable anthropological and evolutionary inferences. The purpose of the study was to review the literature regarding the variations in the zygoma with ancestry. Ancestral variation in the zygoma reflects genetic variations because of genetic drift as well as natural selection and epigenetic changes to adapt to diet and climate variations with possible intensification by isolation. Prominence of the zygoma, zygomaxillary tuberosity, and malar tubercle have been associated with Eastern Asian populations in whom these features intensified. Prominence of the zygoma is also associated with groups from Eastern Europe and the rest of Asia. Diffusion of these traits occurred across the Behring Sea to the Arctic areas and to North and South America. The greatest zygomatic projections are exhibited in Arctic groups as an adaptation to extreme cold conditions, while Native South American groups also present with other features of facial robusticity. Groups from Australia, Malaysia, and Oceania show prominence of the zygoma to a certain extent, possibly because of archaic occupations by undifferentiated Southeast Asian populations. More recent interactions with Chinese groups might explain the prominent cheekbones noted in certain South African groups. Many deductions regarding evolutionary processes and diversifications of early groups have been made. Cognisance of these ancestral variations also have implications for forensic anthropological assessments as well as plastic and reconstructive surgery. More studies are needed to improve accuracy of forensic anthropological identification techniques. Anat Rec, 300:196-208, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance.

    Science.gov (United States)

    Delgado, Asunción; Arco, Rocio; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2017-05-09

    Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Reconstruction of ancestral RNA sequences under multiple structural constraints

    Directory of Open Access Journals (Sweden)

    Olivier Tremblay-Savard

    2016-11-01

    Full Text Available Abstract Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. Results We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Conclusions Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  20. Reconstruction of ancestral RNA sequences under multiple structural constraints.

    Science.gov (United States)

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldispühl, Jérôme

    2016-11-11

    Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  1. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  2. An ancestral bacterial division system is widespread in eukaryotic mitochondria

    Czech Academy of Sciences Publication Activity Database

    Leger, M.M.; Petrů, M.; Žárský, V.; Eme, L.; Vlček, Čestmír; Harding, T.; Lang, B.F.; Eliáš, M.; Doležal, P.; Roger, A. J.

    2015-01-01

    Roč. 112, č. 33 (2015), s. 10239-10246 ISSN 0027-8424 R&D Projects: GA ČR GA13-24983S; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:GA ČR GA13-29423S; GA MŠk(CZ) CZ.1.05/1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : mitochondria * Min proteins * MinCDE * mitochondrial fission * mitochondrial division Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.423, year: 2015

  3. Odynophagia following retained bee stinger

    Directory of Open Access Journals (Sweden)

    S Viswanathan

    2012-01-01

    Full Text Available Nearly half of Hymenoptera stings affect the head and neck region of victims, but reports on oropharyngeal bee stings are very few. We describe the case of a patient with odynophagia and suffocation in mass envenomation. He had a retained bee stinger whose removal was delayed for more than 24 hours following the sting, due to persisting angioedema. Odynophagia receded after removal of the stinger and treatment with paracetamol, steroids and metronidazole. The patient also developed rhabdomyolysis, renal failure and hepatitis that were treated with conservative therapy. Oropharyngeal stings can simulate symptoms of persisting angioedema in victims of mass envenomation.

  4. Resurrecting ancestral genes in bacteria to interpret ancient biosignatures

    Science.gov (United States)

    Kacar, Betul; Guy, Lionel; Smith, Eric; Baross, John

    2017-11-01

    Two datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physico-chemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its approximately 3.8 billion years of history on the Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behaviour of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can downselect to a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can one use modern life to reconstruct ancestral behaviours? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the laboratory to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and then to link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first step beyond single-molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the

  5. Computational analysis and functional expression of ancestral copepod luciferase.

    Science.gov (United States)

    Takenaka, Yasuhiro; Noda-Ogura, Akiko; Imanishi, Tadashi; Yamaguchi, Atsushi; Gojobori, Takashi; Shigeri, Yasushi

    2013-10-10

    We recently reported the cDNA sequences of 11 copepod luciferases from the superfamily Augaptiloidea in the order Calanoida. They were classified into two groups, Metridinidae and Heterorhabdidae/Lucicutiidae families, by phylogenetic analyses. To elucidate the evolutionary processes, we have now further isolated 12 copepod luciferases from Augaptiloidea species (Metridia asymmetrica, Metridia curticauda, Pleuromamma scutullata, Pleuromamma xiphias, Lucicutia ovaliformis and Heterorhabdus tanneri). Codon-based synonymous/nonsynonymous tests of positive selection for 25 identified copepod luciferases suggested that positive Darwinian selection operated in the evolution of Heterorhabdidae luciferases, whereas two types of Metridinidae luciferases had diversified via neutral mechanism. By in silico analysis of the decoded amino acid sequences of 25 copepod luciferases, we inferred two protein sequences as ancestral copepod luciferases. They were expressed in HEK293 cells where they exhibited notable luciferase activity both in intracellular lysates and cultured media, indicating that the luciferase activity was established before evolutionary diversification of these copepod species. © 2013.

  6. Accelerated evolution of mitochondrial but not nuclear genomes of Hymenoptera: new evidence from crabronid wasps.

    Directory of Open Access Journals (Sweden)

    Martin Kaltenpoth

    Full Text Available Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae, and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase. The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes. Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of

  7. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity

    Science.gov (United States)

    2013-01-01

    Background Ancestral environmental exposures to a variety of environmental factors and toxicants have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. The present work examined the potential transgenerational actions of the insecticide dichlorodiphenyltrichloroethane (DDT) on obesity and associated disease. Methods Outbred gestating female rats were transiently exposed to a vehicle control or DDT and the F1 generation offspring bred to generate the F2 generation and F2 generation bred to generate the F3 generation. The F1 and F3 generation control and DDT lineage rats were aged and various pathologies investigated. The F3 generation male sperm were collected to investigate methylation between the control and DDT lineage male sperm. Results The F1 generation offspring (directly exposed as a fetus) derived from the F0 generation exposed gestating female rats were not found to develop obesity. The F1 generation DDT lineage animals did develop kidney disease, prostate disease, ovary disease and tumor development as adults. Interestingly, the F3 generation (great grand-offspring) had over 50% of males and females develop obesity. Several transgenerational diseases previously shown to be associated with metabolic syndrome and obesity were observed in the testis, ovary and kidney. The transgenerational transmission of disease was through both female (egg) and male (sperm) germlines. F3 generation sperm epimutations, differential DNA methylation regions (DMR), induced by DDT were identified. A number of the genes associated with the DMR have previously been shown to be associated with obesity. Conclusions Observations indicate ancestral exposure to DDT can promote obesity and associated disease transgenerationally. The etiology of disease such as obesity may be in part due to environmentally induced epigenetic transgenerational inheritance. PMID:24228800

  8. Palaeohistological Evidence for Ancestral High Metabolic Rate in Archosaurs.

    Science.gov (United States)

    Legendre, Lucas J; Guénard, Guillaume; Botha-Brink, Jennifer; Cubo, Jorge

    2016-11-01

    Metabolic heat production in archosaurs has played an important role in their evolutionary radiation during the Mesozoic, and their ancestral metabolic condition has long been a matter of debate in systematics and palaeontology. The study of fossil bone histology provides crucial information on bone growth rate, which has been used to indirectly investigate the evolution of thermometabolism in archosaurs. However, no quantitative estimation of metabolic rate has ever been performed on fossils using bone histological features. Moreover, to date, no inference model has included phylogenetic information in the form of predictive variables. Here we performed statistical predictive modeling using the new method of phylogenetic eigenvector maps on a set of bone histological features for a sample of extant and extinct vertebrates, to estimate metabolic rates of fossil archosauromorphs. This modeling procedure serves as a case study for eigenvector-based predictive modeling in a phylogenetic context, as well as an investigation of the poorly known evolutionary patterns of metabolic rate in archosaurs. Our results show that Mesozoic theropod dinosaurs exhibit metabolic rates very close to those found in modern birds, that archosaurs share a higher ancestral metabolic rate than that of extant ectotherms, and that this derived high metabolic rate was acquired at a much more inclusive level of the phylogenetic tree, among non-archosaurian archosauromorphs. These results also highlight the difficulties of assigning a given heat production strategy (i.e., endothermy, ectothermy) to an estimated metabolic rate value, and confirm findings of previous studies that the definition of the endotherm/ectotherm dichotomy may be ambiguous. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-09-01

    Full Text Available Abtract Background The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum are distinguished by the presence of a tertiary plastid derived from a diatom endosymbiont. The diatom is fully integrated with the host cell cycle and is so altered in structure as to be difficult to recognize it as a diatom, and yet it retains a number of features normally lost in tertiary and secondary endosymbionts, most notably mitochondria. The dinoflagellate host is also reported to retain mitochondrion-like structures, making these cells unique in retaining two evolutionarily distinct mitochondria. This redundancy raises the question of whether the organelles share any functions in common or have distributed functions between them. Results We show that both host and endosymbiont mitochondrial genomes encode genes for electron transport proteins. We have characterized cytochrome c oxidase 1 (cox1, cytochrome oxidase 2 (cox2, cytochrome oxidase 3 (cox3, cytochrome b (cob, and large subunit of ribosomal RNA (LSUrRNA of endosymbiont mitochondrial ancestry, and cox1 and cob of host mitochondrial ancestry. We show that all genes are transcribed and that those ascribed to the host mitochondrial genome are extensively edited at the RNA level, as expected for a dinoflagellate mitochondrion-encoded gene. We also found evidence for extensive recombination in the host mitochondrial genes and that recombination products are also transcribed, as expected for a dinoflagellate. Conclusion Durinskia baltica and K. foliaceum retain two mitochondria from evolutionarily distinct lineages, and the functions of these organelles are at least partially overlapping, since both express genes for proteins in electron transport.

  10. Estimation of the ancestral effective population sizes of African great apes under different selection regimes.

    Science.gov (United States)

    Schrago, Carlos G

    2014-08-01

    Reliable estimates of ancestral effective population sizes are necessary to unveil the population-level phenomena that shaped the phylogeny and molecular evolution of the African great apes. Although several methods have previously been applied to infer ancestral effective population sizes, an analysis of the influence of the selective regime on the estimates of ancestral demography has not been thoroughly conducted. In this study, three independent data sets under different selective regimes were used were composed to tackle this issue. The results showed that selection had a significant impact on the estimates of ancestral effective population sizes of the African great apes. The inference of the ancestral demography of African great apes was affected by the selection regime. The effects, however, were not homogeneous along the ancestral populations of great apes. The effective population size of the ancestor of humans and chimpanzees was more impacted by the selection regime when compared to the same parameter in the ancestor of humans, chimpanzees and gorillas. Because the selection regime influenced the estimates of ancestral effective population size, it is reasonable to assume that a portion of the discrepancy found in previous studies that inferred the ancestral effective population size may be attributable to the differential action of selection on the genes sampled.

  11. 9 CFR 441.10 - Retained water.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Retained water. 441.10 Section 441.10... STANDARDS: RAW PRODUCTS § 441.10 Retained water. (a) Raw livestock and poultry carcasses and parts will not be permitted to retain water resulting from post-evisceration processing unless the establishment...

  12. Inference of Ancestral Recombination Graphs through Topological Data Analysis

    Science.gov (United States)

    Cámara, Pablo G.; Levine, Arnold J.; Rabadán, Raúl

    2016-01-01

    The recent explosion of genomic data has underscored the need for interpretable and comprehensive analyses that can capture complex phylogenetic relationships within and across species. Recombination, reassortment and horizontal gene transfer constitute examples of pervasive biological phenomena that cannot be captured by tree-like representations. Starting from hundreds of genomes, we are interested in the reconstruction of potential evolutionary histories leading to the observed data. Ancestral recombination graphs represent potential histories that explicitly accommodate recombination and mutation events across orthologous genomes. However, they are computationally costly to reconstruct, usually being infeasible for more than few tens of genomes. Recently, Topological Data Analysis (TDA) methods have been proposed as robust and scalable methods that can capture the genetic scale and frequency of recombination. We build upon previous TDA developments for detecting and quantifying recombination, and present a novel framework that can be applied to hundreds of genomes and can be interpreted in terms of minimal histories of mutation and recombination events, quantifying the scales and identifying the genomic locations of recombinations. We implement this framework in a software package, called TARGet, and apply it to several examples, including small migration between different populations, human recombination, and horizontal evolution in finches inhabiting the Galápagos Islands. PMID:27532298

  13. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  14. Ancestral gene reconstruction and synthesis of ancient rhodopsins in the laboratory.

    Science.gov (United States)

    Chang, Belinda S W

    2003-08-01

    Laboratory synthesis of ancestral proteins offers an intriguing opportunity to study the past directly. The development of Bayesian methods to infer ancestral sequences, combined with advances in models of molecular evolution, and synthetic gene technology make this an increasingly promising approach in evolutionary studies of molecular function. Visual pigments form the first step in the biochemical cascade of events in the retina in all animals known to possess visual capabilities. In vertebrates, the necessity of spanning a dynamic range of light intensities of many orders of magnitude has given rise to two different types of photoreceptors, rods specialized for dim-light conditions, and cones for daylight and color vision. These photoreceptors contain different types of visual pigment genes. Reviewed here are methods of inferring ancestral sequences, chemical synthesis of artificial ancestral genes in the laboratory, and applications to the evolution of vertebrate visual systems and the experimental recreation of an archosaur rod visual pigment. The ancestral archosaurs gave rise to several notable lineages of diapsid reptiles, including the birds and the dinosaurs, and would have existed over 200 MYA. What little is known of their physiology comes from fossil remains, and inference based on the biology of their living descendants. Despite its age, an ancestral archosaur pigment was successfully recreated in the lab, and showed interesting properties of its wavelength sensitivity that may have implications for the visual capabilities of the ancestral archosaurs in dim light.

  15. Characterization of Reconstructed Ancestral Proteins Suggests a Change in Temperature of the Ancient Biosphere.

    Science.gov (United States)

    Akanuma, Satoshi

    2017-08-06

    Understanding the evolution of ancestral life, and especially the ability of some organisms to flourish in the variable environments experienced in Earth's early biosphere, requires knowledge of the characteristics and the environment of these ancestral organisms. Information about early life and environmental conditions has been obtained from fossil records and geological surveys. Recent advances in phylogenetic analysis, and an increasing number of protein sequences available in public databases, have made it possible to infer ancestral protein sequences possessed by ancient organisms. However, the in silico studies that assess the ancestral base content of ribosomal RNAs, the frequency of each amino acid in ancestral proteins, and estimate the environmental temperatures of ancient organisms, show conflicting results. The characterization of ancestral proteins reconstructed in vitro suggests that ancient organisms had very thermally stable proteins, and therefore were thermophilic or hyperthermophilic. Experimental data supports the idea that only thermophilic ancestors survived the catastrophic increase in temperature of the biosphere that was likely associated with meteorite impacts during the early history of Earth. In addition, by expanding the timescale and including more ancestral proteins for reconstruction, it appears as though the Earth's surface temperature gradually decreased over time, from Archean to present.

  16. The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome

    Science.gov (United States)

    Nedelcu, Aurora M.; Lee, Robert W.; Lemieux, Claude; Gray, Michael W.; Burger, Gertraud

    2000-01-01

    Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced–derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced–derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF204057.] PMID:10854413

  17. Retained sensitivity to cytotoxic pyrimidine nucleoside analogs in thymidine kinase 2 deficient human fibroblasts

    OpenAIRE

    Bjerke, Mia; Solaroli, Nicola; Lesko, Nicole; Balzarini, Jan; Johansson, Magnus; Karlsson, Anna

    2010-01-01

    Thymidine kinase 2 (TK2) is a mitochondrial deoxyribonucleoside kinase that phosphorylates several nucleoside analogs used in anti-viral and anti-cancer therapy. A fibroblast cell line with decreased TK2 activity was investigated in order to obtain insights in the effects of TK2 deficiency on nucleotide metabolism. The role of TK2 for the sensitivity against cytotoxic nucleoside analogs was also investigated. The TK2 deficient cells retained their sensitivity against all pyrimidine nucleoside...

  18. Federal Aviation Administration retained savings program proposal

    International Nuclear Information System (INIS)

    Hostick, D.J.; Larson, L.L.; Hostick, C.J.

    1998-03-01

    Federal legislation allows federal agencies to retain up to 50% of the savings associated with implementing energy efficiency and water conservation measures and practices. Given budget pressures to reduce expenditures, the use of retained savings to fund additional projects represents a source of funds outside of the traditional budget cycle. The Southwest Region Federal Aviation Administration (FAA) has tasked Pacific Northwest National Laboratory (PNNL) to develop a model retained savings program for Southwest Region FAA use and as a prototype for consideration by the FAA. PNNL recommends the following steps be taken in developing a Southwest Region FAA retained savings program: Establish a retained savings mechanism. Determine the level at which the retained savings should be consolidated into a fund. The preliminary recommendation is to establish a revolving efficiency loan fund at the regional level. Such a mechanism allows some consolidation of savings to fund larger projects, while maintaining a sense of facility ownership in that the funds will remain within the region

  19. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes

    Science.gov (United States)

    Schirtzinger, Erin E.; Tavares, Erika S.; Gonzales, Lauren A.; Eberhard, Jessica R.; Miyaki, Cristina Y.; Sanchez, Juan J.; Hernandez, Alexis; Müeller, Heinrich; Graves, Gary R.; Fleischer, Robert C.; Wright, Timothy F.

    2012-01-01

    Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0–10.9% with the differences occurring mainly between 51 and 225 nucleotides 3′ of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. PMID:22543055

  20. Abnormal Retained Earnings Around The World

    OpenAIRE

    Alves, Paulo; Silva, Paulo

    2017-01-01

    Using a firm-level survey database covering 50 countries we evaluate firms´ abnormal retained earnings. The results of our work indicate that firms located in emerging markets retain more earnings than firms from developed countries. On the other hand, firms located on common law based countries retain earnings above the expected and higher than firms placed on civil law based countries. A possible explanation, according to our results, can be seen in the economic growth that these countries ...

  1. The Microcephalin Ancestral Allele in a Neanderthal Individual

    Science.gov (United States)

    Lari, Martina; Rizzi, Ermanno; Milani, Lucio; Corti, Giorgio; Balsamo, Carlotta; Vai, Stefania; Catalano, Giulio; Pilli, Elena; Longo, Laura; Condemi, Silvana; Giunti, Paolo; Hänni, Catherine; De Bellis, Gianluca; Orlando, Ludovic; Barbujani, Guido; Caramelli, David

    2010-01-01

    Background The high frequency (around 0.70 worlwide) and the relatively young age (between 14,000 and 62,000 years) of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1) locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. Methodology/Principal Findings Here we report the first PCR amplification and high- throughput sequencing of nuclear DNA at the microcephalin (MCPH1) locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy). We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. Conclusions/Significance The MCPH1 genotype of the Monti Lessini (MLS) Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA. PMID:20498832

  2. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat

    Directory of Open Access Journals (Sweden)

    Reem Joukhadar

    2017-12-01

    Full Text Available Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to

  3. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat.

    Science.gov (United States)

    Joukhadar, Reem; Daetwyler, Hans D; Bansal, Urmil K; Gendall, Anthony R; Hayden, Matthew J

    2017-01-01

    Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT) germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to assist with

  4. The Korarchaeota: Archaeal orphans representing an ancestral lineage of life

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, James G.; Kunin, Victor; Anderson, Iain; Barry, Kerrie; Goltsman, Eugene; Lapidus, Alla; Hedlund, Brian; Hugenholtz, Phil; Kyrpides, Nikos; Graham, David; Keller, Martin; Wanner, Gerhard; Richardson, Paul; Stetter, Karl O.

    2007-05-01

    Based on conserved cellular properties, all life on Earth can be grouped into different phyla which belong to the primary domains Bacteria, Archaea, and Eukarya. However, tracing back their evolutionary relationships has been impeded by horizontal gene transfer and gene loss. Within the Archaea, the kingdoms Crenarchaeota and Euryarchaeota exhibit a profound divergence. In order to elucidate the evolution of these two major kingdoms, representatives of more deeply diverged lineages would be required. Based on their environmental small subunit ribosomal (ss RNA) sequences, the Korarchaeota had been originally suggested to have an ancestral relationship to all known Archaea although this assessment has been refuted. Here we describe the cultivation and initial characterization of the first member of the Korarchaeota, highly unusual, ultrathin filamentous cells about 0.16 {micro}m in diameter. A complete genome sequence obtained from enrichment cultures revealed an unprecedented combination of signature genes which were thought to be characteristic of either the Crenarchaeota, Euryarchaeota, or Eukarya. Cell division appears to be mediated through a FtsZ-dependent mechanism which is highly conserved throughout the Bacteria and Euryarchaeota. An rpb8 subunit of the DNA-dependent RNA polymerase was identified which is absent from other Archaea and has been described as a eukaryotic signature gene. In addition, the representative organism possesses a ribosome structure typical for members of the Crenarchaeota. Based on its gene complement, this lineage likely diverged near the separation of the two major kingdoms of Archaea. Further investigations of these unique organisms may shed additional light onto the evolution of extant life.

  5. The microcephalin ancestral allele in a Neanderthal individual.

    Directory of Open Access Journals (Sweden)

    Martina Lari

    Full Text Available BACKGROUND: The high frequency (around 0.70 worldwide and the relatively young age (between 14,000 and 62,000 years of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1 locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the first PCR amplification and high-throughput sequencing of nuclear DNA at the microcephalin (MCPH1 locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy. We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. CONCLUSIONS/SIGNIFICANCE: The MCPH1 genotype of the Monti Lessini (MLS Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.

  6. Reversible infantile mitochondrial diseases.

    Science.gov (United States)

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  7. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt genome could provide clues for the understanding of the evolution of mt genomes in plant. METHODS: Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method. CONCLUSIONS: This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs cover 71,783 bp (31.0% of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1% of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot

  8. Phylogenetic analysis of glycerol 3-phosphate acyltransferases in opisthokonts reveals unexpected ancestral complexity and novel modern biosynthetic components.

    Directory of Open Access Journals (Sweden)

    Heather C Smart

    Full Text Available Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT, have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of 'fungal' orthologs in the basal taxa of the holozoa and 'animal' orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens.

  9. WARACS: Wrappers to Automate the Reconstruction of Ancestral Character States1

    Science.gov (United States)

    Gruenstaeudl, Michael

    2016-01-01

    Premise of the study: Reconstructions of ancestral character states are among the most widely used analyses for evaluating the morphological, cytological, or ecological evolution of an organismic lineage. The software application Mesquite remains the most popular application for such reconstructions among plant scientists, even though its support for automating complex analyses is limited. A software tool is needed that automates the reconstruction and visualization of ancestral character states with Mesquite and similar applications. Methods and Results: A set of command line–based Python scripts was developed that (a) communicates standardized input to and output from the software applications Mesquite, BayesTraits, and TreeGraph2; (b) automates the process of ancestral character state reconstruction; and (c) facilitates the visualization of reconstruction results. Conclusions: WARACS provides a simple tool that streamlines the reconstruction and visualization of ancestral character states over a wide array of parameters, including tree distribution, character state, and optimality criterion. PMID:26949580

  10. Rapid maximum likelihood ancestral state reconstruction of continuous characters: A rerooting-free algorithm.

    Science.gov (United States)

    Goolsby, Eric W

    2017-04-01

    Ancestral state reconstruction is a method used to study the evolutionary trajectories of quantitative characters on phylogenies. Although efficient methods for univariate ancestral state reconstruction under a Brownian motion model have been described for at least 25 years, to date no generalization has been described to allow more complex evolutionary models, such as multivariate trait evolution, non-Brownian models, missing data, and within-species variation. Furthermore, even for simple univariate Brownian motion models, most phylogenetic comparative R packages compute ancestral states via inefficient tree rerooting and full tree traversals at each tree node, making ancestral state reconstruction extremely time-consuming for large phylogenies. Here, a computationally efficient method for fast maximum likelihood ancestral state reconstruction of continuous characters is described. The algorithm has linear complexity relative to the number of species and outperforms the fastest existing R implementations by several orders of magnitude. The described algorithm is capable of performing ancestral state reconstruction on a 1,000,000-species phylogeny in fewer than 2 s using a standard laptop, whereas the next fastest R implementation would take several days to complete. The method is generalizable to more complex evolutionary models, such as phylogenetic regression, within-species variation, non-Brownian evolutionary models, and multivariate trait evolution. Because this method enables fast repeated computations on phylogenies of virtually any size, implementation of the described algorithm can drastically alleviate the computational burden of many otherwise prohibitively time-consuming tasks requiring reconstruction of ancestral states, such as phylogenetic imputation of missing data, bootstrapping procedures, Expectation-Maximization algorithms, and Bayesian estimation. The described ancestral state reconstruction algorithm is implemented in the Rphylopars

  11. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Directory of Open Access Journals (Sweden)

    Shigeki Nakagome

    Full Text Available Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA and matrilineal mitochondrial DNA (mtDNA. Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA or more than 14 times (mtDNA larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  12. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Science.gov (United States)

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  13. Reoccurrence of retained placenta at vaginal delivery

    DEFF Research Database (Denmark)

    Nikolajsen, Sys; Løkkegaard, Ellen Christine Leth; Bergholt, Thomas

    2013-01-01

    To estimate the prevalence and validate the diagnosis of retained placenta in nulliparous women and the risk of reoccurrence at subsequent vaginal delivery.......To estimate the prevalence and validate the diagnosis of retained placenta in nulliparous women and the risk of reoccurrence at subsequent vaginal delivery....

  14. Unexpected complications of bonded mandibular lingual retainers.

    NARCIS (Netherlands)

    Katsaros, C.; Livas, C.; Renkema, A.M.

    2007-01-01

    INTRODUCTION: The flexible spiral wire (FSW) retainer is the most frequently used type of fixed retainer bonded on all 6 anterior teeth. Our aim in this article was to demonstrate unexpected posttreatment changes in the labiolingual position of the mandibular anterior teeth associated with the use

  15. 76 FR 69126 - Graduated Retained Interests

    Science.gov (United States)

    2011-11-08

    ... in trust or otherwise) includible in the grantor's gross estate if the grantor has retained the use..., or for a period that does not in fact end before the grantor's death. The final regulations will... trust corpus of a grantor retained annuity or unitrust trust (GRT) that is includible in the grantor's...

  16. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J.

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  17. Postpartum MR diagnosis of retained placenta accreta

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yumiko Oishi; Itai, Yuji [Department of Radiology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575, Tsukuba, Ibaraki (Japan); Shigemitsu, Sadahiko [Department of Obstetrics and Gynecology, Ryugasaki Saiseikai General Hospital, Ryagasaki (Japan); Ichikawa, Yoshihito; Sohda, Satoshi; Yoshikawa, Hiroyuki [Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575, Tsukuba, Ibaraki (Japan)

    2004-06-01

    Retained placenta accreta can cause catastrophic postpartum hemorrhage. This study aims to determine whether MR imaging can differentiate retained placenta accreta from postpartum hemorrhage caused by other conditions. Fourteen cases suspicious for retained placenta were examined with MR imaging. Signal intensity, the enhancing pattern of uterine contents, and flow voids within the myometrium were retrospectively studied. As hysterectomy was performed in only two cases, final diagnosis was based on clinical outcome and analysis of uterine contents. Final diagnoses were retained placenta accreta in seven cases, retained normally attached placenta in four, hematoma in two, and placental site trophoblastic tumor (PSTT) in one. All seven cases with placenta accreta had a very hyperintense area on T2-weighted images, showing transient early enhancement. None demonstrated delayed strong enhancement around the hyperintense area. In two cases with retained normally attached placenta and in both with hematomas, there were no hyperintense areas on T2-weighted images. Of these, only one showed transient early enhancement. Flow voids were observed in four cases with placenta accreta, one with normally attached placenta, and the case with PSTT. A markedly hyperintense area on T2-weighted images and transient early enhancement without delayed strong enhancement between the mass and the myometrium can indicate retained placenta accreta. (orig.)

  18. Postpartum MR diagnosis of retained placenta accreta

    International Nuclear Information System (INIS)

    Tanaka, Yumiko Oishi; Itai, Yuji; Shigemitsu, Sadahiko; Ichikawa, Yoshihito; Sohda, Satoshi; Yoshikawa, Hiroyuki

    2004-01-01

    Retained placenta accreta can cause catastrophic postpartum hemorrhage. This study aims to determine whether MR imaging can differentiate retained placenta accreta from postpartum hemorrhage caused by other conditions. Fourteen cases suspicious for retained placenta were examined with MR imaging. Signal intensity, the enhancing pattern of uterine contents, and flow voids within the myometrium were retrospectively studied. As hysterectomy was performed in only two cases, final diagnosis was based on clinical outcome and analysis of uterine contents. Final diagnoses were retained placenta accreta in seven cases, retained normally attached placenta in four, hematoma in two, and placental site trophoblastic tumor (PSTT) in one. All seven cases with placenta accreta had a very hyperintense area on T2-weighted images, showing transient early enhancement. None demonstrated delayed strong enhancement around the hyperintense area. In two cases with retained normally attached placenta and in both with hematomas, there were no hyperintense areas on T2-weighted images. Of these, only one showed transient early enhancement. Flow voids were observed in four cases with placenta accreta, one with normally attached placenta, and the case with PSTT. A markedly hyperintense area on T2-weighted images and transient early enhancement without delayed strong enhancement between the mass and the myometrium can indicate retained placenta accreta. (orig.)

  19. Floating retained root lesion mimicking apical periodontitis.

    Science.gov (United States)

    Chung, Ming-Pang; Chen, Chih-Ping; Shieh, Yi-Shing

    2009-10-01

    A case of a retained root tip simulating apical periodontitis on radiographic examination is described. The retained root tip, originating from the left lower first molar, floated under the left lower second premolar apical region mimicking apical periodontitis. It appeared as an ill-defined periapical radiolucency containing a smaller radiodense mass on radiograph. The differential diagnosis included focal sclerosing osteomyelitis (condensing osteitis) and ossifying fibroma. Upon exicisional biopsy, a retained root associated with granulation tissue was found. After 1-year follow-up, the patient was asymptomatic and the periradicular lesion was healing. Meanwhile, the associated tooth showed a normal response to stimulation testing.

  20. Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologs in trypanosomes

    Czech Academy of Sciences Publication Activity Database

    Long, Shaojun; Jirků, Milan; Mach, J.; Ginger, M. L.; Sutak, R.; Richardson, D.; Tachezy, J.; Lukeš, Julius

    2008-01-01

    Roč. 69, č. 1 (2008), s. 94-109 ISSN 0950-382X R&D Projects: GA AV ČR IAA500960705; GA MŠk LC07032; GA MŠk 2B06129; GA ČR GA204/06/1558 Institutional research plan: CEZ:AV0Z60220518 Keywords : frataxin * mitochondrion * Trypanosoma * Fe-S clusters * Trichomonas Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.213, year: 2008

  1. Mitochondrial shaping cuts.

    Science.gov (United States)

    Escobar-Henriques, Mafalda; Langer, Thomas

    2006-01-01

    A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.

  2. New insights into the Lake Chad Basin population structure revealed by high-throughput genotyping of mitochondrial DNA coding SNPs.

    Directory of Open Access Journals (Sweden)

    María Cerezo

    Full Text Available BACKGROUND: Located in the Sudan belt, the Chad Basin forms a remarkable ecosystem, where several unique agricultural and pastoral techniques have been developed. Both from an archaeological and a genetic point of view, this region has been interpreted to be the center of a bidirectional corridor connecting West and East Africa, as well as a meeting point for populations coming from North Africa through the Saharan desert. METHODOLOGY/PRINCIPAL FINDINGS: Samples from twelve ethnic groups from the Chad Basin (n = 542 have been high-throughput genotyped for 230 coding region mitochondrial DNA (mtDNA Single Nucleotide Polymorphisms (mtSNPs using Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF mass spectrometry. This set of mtSNPs allowed for much better phylogenetic resolution than previous studies of this geographic region, enabling new insights into its population history. Notable haplogroup (hg heterogeneity has been observed in the Chad Basin mirroring the different demographic histories of these ethnic groups. As estimated using a Bayesian framework, nomadic populations showed negative growth which was not always correlated to their estimated effective population sizes. Nomads also showed lower diversity values than sedentary groups. CONCLUSIONS/SIGNIFICANCE: Compared to sedentary population, nomads showed signals of stronger genetic drift occurring in their ancestral populations. These populations, however, retained more haplotype diversity in their hypervariable segments I (HVS-I, but not their mtSNPs, suggesting a more ancestral ethnogenesis. Whereas the nomadic population showed a higher Mediterranean influence signaled mainly by sub-lineages of M1, R0, U6, and U5, the other populations showed a more consistent sub-Saharan pattern. Although lifestyle may have an influence on diversity patterns and hg composition, analysis of molecular variance has not identified these differences. The present study indicates that

  3. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication.

    Science.gov (United States)

    Holmes, J Bradley; Akman, Gokhan; Wood, Stuart R; Sakhuja, Kiran; Cerritelli, Susana M; Moss, Chloe; Bowmaker, Mark R; Jacobs, Howard T; Crouch, Robert J; Holt, Ian J

    2015-07-28

    Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.

  4. Ancestral effect on HOMA-IR levels quantitated in an American population of Mexican origin.

    Science.gov (United States)

    Qu, Hui-Qi; Li, Quan; Lu, Yang; Hanis, Craig L; Fisher-Hoch, Susan P; McCormick, Joseph B

    2012-12-01

    An elevated insulin resistance index (homeostasis model assessment of insulin resistance [HOMA-IR]) is more commonly seen in the Mexican American population than in European populations. We report quantitative ancestral effects within a Mexican American population, and we correlate ancestral components with HOMA-IR. We performed ancestral analysis in 1,551 participants of the Cameron County Hispanic Cohort by genotyping 103 ancestry-informative markers (AIMs). These AIMs allow determination of the percentage (0-100%) ancestry from three major continental populations, i.e., European, African, and Amerindian. We observed that predominantly Amerindian ancestral components were associated with increased HOMA-IR (β = 0.124, P = 1.64 × 10(-7)). The correlation was more significant in males (Amerindian β = 0.165, P = 5.08 × 10(-7)) than in females (Amerindian β = 0.079, P = 0.019). This unique study design demonstrates how genomic markers for quantitative ancestral information can be used in admixed populations to predict phenotypic traits such as insulin resistance.

  5. Extensive gene rearrangements in the mitochondrial genomes of two egg parasitoids, Trichogramma japonicum and Trichogramma ostriniae (Hymenoptera: Chalcidoidea: Trichogrammatidae).

    Science.gov (United States)

    Chen, Long; Chen, Peng-Yan; Xue, Xiao-Feng; Hua, Hai-Qing; Li, Yuan-Xi; Zhang, Fan; Wei, Shu-Jun

    2018-05-04

    Animal mitochondrial genomes usually exhibit conserved gene arrangement across major lineages, while those in the Hymenoptera are known to possess frequent rearrangements, as are those of several other orders of insects. Here, we sequenced two complete mitochondrial genomes of Trichogramma japonicum and Trichogramma ostriniae (Hymenoptera: Chalcidoidea: Trichogrammatidae). In total, 37 mitochondrial genes were identified in both species. The same gene arrangement pattern was found in the two species, with extensive gene rearrangement compared with the ancestral insect mitochondrial genome. Most tRNA genes and all protein-coding genes were encoded on the minority strand. In total, 15 tRNA genes and seven protein-coding genes were rearranged. The rearrangements of cox1 and nad2 as well as most tRNA genes were novel. Phylogenetic analysis based on nucleotide sequences of protein-coding genes and on gene arrangement patterns produced identical topologies that support the relationship of (Agaonidae + Pteromalidae) + Trichogrammatidae in Chalcidoidea. CREx analysis revealed eight rearrangement operations occurred from presumed ancestral gene order of Chalcidoidea to form the derived gene order of Trichogramma. Our study shows that gene rearrangement information in Chalcidoidea can potentially contribute to the phylogeny of Chalcidoidea when more mitochondrial genome sequences are available.

  6. Social capital and health: evidence that ancestral trust promotes health among children of immigrants.

    Science.gov (United States)

    Ljunge, Martin

    2014-12-01

    This paper presents evidence that generalized trust promotes health. Children of immigrants in a broad set of European countries with ancestry from across the world are studied. Individuals are examined within country of residence using variation in trust across countries of ancestry. The approach addresses reverse causality and concerns that the trust measure picks up institutional factors in the individual's contextual setting. There is a significant positive estimate of ancestral trust in explaining self-assessed health. The finding is robust to accounting for individual, parental, and extensive ancestral country characteristics. Individuals with higher ancestral trust are also less likely to be hampered by health problems in their daily life, providing evidence of trust influencing real life outcomes. Individuals with high trust feel and act healthier, enabling a more productive life.

  7. On the Accuracy of Ancestral Sequence Reconstruction for Ultrametric Trees with Parsimony.

    Science.gov (United States)

    Herbst, Lina; Fischer, Mareike

    2018-04-01

    We examine a mathematical question concerning the reconstruction accuracy of the Fitch algorithm for reconstructing the ancestral sequence of the most recent common ancestor given a phylogenetic tree and sequence data for all taxa under consideration. In particular, for the symmetric four-state substitution model which is also known as Jukes-Cantor model, we answer affirmatively a conjecture of Li, Steel and Zhang which states that for any ultrametric phylogenetic tree and a symmetric model, the Fitch parsimony method using all terminal taxa is more accurate, or at least as accurate, for ancestral state reconstruction than using any particular terminal taxon or any particular pair of taxa. This conjecture had so far only been answered for two-state data by Fischer and Thatte. Here, we focus on answering the biologically more relevant case with four states, which corresponds to ancestral sequence reconstruction from DNA or RNA data.

  8. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs

    International Nuclear Information System (INIS)

    Ma, Jing; Chen, Xi; Liu, Yanan; Xie, Qunhui; Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan; Zhao, Bin; Tang, Naijun

    2015-01-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8–14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue. - Highlights: • Ancestral TCDD exposure induces epigenetic transgenerational inheritance. • Ancestral TCDD exposure affects methylation status in ICR and DMR2 region of Igf2. • DNMTs play a role in TCDD induced epigenetic transgenerational changes of Igf2.

  9. Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties.

    Science.gov (United States)

    Hobbs, Joanne K; Prentice, Erica J; Groussin, Mathieu; Arcus, Vickery L

    2015-10-01

    Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.

  10. Asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size.

    Science.gov (United States)

    Chen, Hua; Chen, Kun

    2013-07-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.

  11. Environmental enrichment mitigates the impact of ancestral stress on motor skill and corticospinal tract plasticity.

    Science.gov (United States)

    McCreary, J Keiko; Erickson, Zachary T; Metz, Gerlinde A S

    2016-10-06

    An adverse fetal environment in utero has been associated with long-term alterations in brain structure and function, and a higher risk of neurological disorders in later life. A common consequence of early adverse experience is impaired motor system function. A causal relationship for stress-associated impairments and a suitable therapy, however, have not been determined yet. To investigate the impact of ancestral stress on corticospinal tract (CST) morphology and fine motor performance in rats, and to determine if adverse programming by ancestral stress can be mitigated by environmental enrichment therapy in rats. The study examined F3 offspring generated by three lineages; one with prenatal stress only in the F1 generation, one with compounding effects of multigenerational prenatal stress, and a non-stress control lineage. F3 offspring from each lineage were injected with biotinylated dextran amine (BDA) into the motor cortex for anterograde tracing of the CST. Examination of the CST revealed reduced axonal density in the ancestrally stressed lineages. These anatomical changes were associated with significant impairments in skilled walking, as indicated by reduced foot placement accuracy and disturbed inter-limb coordination. Therapeutic intervention by environmental enrichment reduced the neuromorphological consequences of ancestral stress and restored skilled walking ability. The data suggest a causal relationship between stress-induced abnormal CST function and loss of fine motor performance. Thus, ancestral stress may be a determinant of motor system development and motor skill. Environmental enrichment may represent an effective intervention for the adverse programming by ancestral stress and trauma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jing; Chen, Xi; Liu, Yanan [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China); Xie, Qunhui [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China); Zhao, Bin, E-mail: binzhao@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Tang, Naijun, E-mail: tangnaijun@tijmu.edu.cn [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China)

    2015-12-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8–14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue. - Highlights: • Ancestral TCDD exposure induces epigenetic transgenerational inheritance. • Ancestral TCDD exposure affects methylation status in ICR and DMR2 region of Igf2. • DNMTs play a role in TCDD induced epigenetic transgenerational changes of Igf2.

  13. Epilepsy and Mitochondrial Dysfunction

    Directory of Open Access Journals (Sweden)

    Russell P. Saneto DO, PhD

    2017-10-01

    Full Text Available Epilepsy is a common manifestation of mitochondrial disease. In a large cohort of children and adolescents with mitochondrial disease (n = 180, over 48% of patients developed seizures. The majority (68% of patients were younger than 3 years and medically intractable (90%. The electroencephalographic pattern of multiregional epileptiform discharges over the left and right hemisphere with background slowing occurred in 62%. The epilepsy syndrome, infantile spasms, was seen in 17%. Polymerase γ mutations were the most common genetic etiology of seizures, representing Alpers-Huttenlocher syndrome (14%. The severity of disease in those patients with epilepsy was significant, as 13% of patients experienced early death. Simply the loss of energy production cannot explain the development of seizures or all patients with mitochondrial dysfunction would have epilepsy. Until the various aspects of mitochondrial physiology that are involved in proper brain development are understood, epilepsy and its treatment will remain unsatisfactory.

  14. Which came first: The lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states.

    Science.gov (United States)

    Wright, April M; Lyons, Kathleen M; Brandley, Matthew C; Hillis, David M

    2015-09-01

    Changes in parity mode between egg-laying (oviparity) and live-bearing (viviparity) have occurred repeatedly throughout vertebrate evolution. Oviparity is the ancestral amniote state, and viviparity has evolved many times independently within amniotes (especially in lizards and snakes), with possibly a few reversions to oviparity. In amniotes, the shelled egg is considered a complex structure that is unlikely to re-evolve if lost (i.e., it is an example of Dollo's Principle). However, a recent ancestral state reconstruction analysis concluded that viviparity was the ancestral state of squamate reptiles (lizards and snakes), and that oviparity re-evolved from viviparity many times throughout the evolutionary history of squamates. Here, we re-evaluate support for this provocative conclusion by testing the sensitivity of the analysis to model assumptions and estimates of squamate phylogeny. We found that the models and methods used for parity mode reconstruction are highly sensitive to the specific estimate of phylogeny used, and that the point estimate of phylogeny used to suggest that viviparity is the root state of the squamate tree is far from an optimal phylogenetic solution. The ancestral state reconstructions are also highly sensitive to model choice and specific values of model parameters. A method that is designed to account for biases in taxon sampling actually accentuates, rather than lessens, those biases with respect to ancestral state reconstructions. In contrast to recent conclusions from the same data set, we find that ancestral state reconstruction analyses provide highly equivocal support for the number and direction of transitions between oviparity and viviparity in squamates. Moreover, the reconstructions of ancestral parity state are highly dependent on the assumptions of each model. We conclude that the common ancestor of squamates was oviparous, and subsequent evolutionary transitions to viviparity were common, but reversals to oviparity were

  15. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  16. Mitochondrial signaling in health and disease

    National Research Council Canada - National Science Library

    Orrenius, Sten; Packer, Lester; Cadenas, Enrique

    2012-01-01

    .... The text covers themes essential for the maintenance of mitochondrial activity, including electron transport and energy production, mitochondrial biogenesis and dynamics, mitochondrial signaling...

  17. Evaluation of Causes of Retaining Wall Failure

    Directory of Open Access Journals (Sweden)

    Mu'azu Mohammed ABDULLAHI

    2009-07-01

    Full Text Available Retaining structures are vital geotechnical structure, because the topography of the earth surface is a combination of plain, sloppy and undulating terrain. The retaining wall resists thrust of a bank of earth as well as providing soil stability of a change of ground elevation. Earth pressures on retaining wall are designed from theories of Soil Mechanics, but unfortunately the engineers using them do not always realize the significance of the assumption in their development. This is usually accompanied by with failure and partial failures because of designed based on rules and formulae that fit only limited conditions. In addition there are also problems of using bad backfill materials without taking precautionary measures against built–up of hydrostatic pressure by provision of drainage and also poor workmanship.

  18. Divergent Patterns of Mitochondrial and Nuclear Ancestry Are Associated with the Risk for Preterm Birth.

    Science.gov (United States)

    Crawford, Nicholas; Prendergast, D'Arcy; Oehlert, John W; Shaw, Gary M; Stevenson, David K; Rappaport, Nadav; Sirota, Marina; Tishkoff, Sarah A; Sondheimer, Neal

    2018-03-01

    To examine linkages between mitochondrial genetics and preterm birth by assessing the risk for preterm birth associated with the inheritance of nuclear haplotypes that are ancestrally distinct from mitochondrial haplogroup. Genome-wide genotyping studies of cohorts of preterm and term individuals were evaluated. We determined the mitochondrial haplogroup and nuclear ancestry for individuals and developed a scoring for the degree to which mitochondrial ancestry is divergent from nuclear ancestry. Infants with higher degrees of divergent mitochondrial ancestry were at increased risk for preterm birth (0.124 for preterm vs 0.105 for term infants; Pancestry correlated with earlier delivery within the primary study population, but this finding was not replicated in secondary cohorts born preterm. Individuals with divergent patterns of mitochondrial and nuclear ancestry are at increased risk for preterm birth. These findings may in part explain the higher rates of preterm birth in African Americans and in individuals with a matrilineal family history of preterm birth. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    Science.gov (United States)

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.

  20. Retained gas sampler interim safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pasamehmetoglu, K.O.; Miller, W.O.; Unal, C.; Fujita, R.K.

    1995-01-13

    This safety assessment addresses the proposed action to install, operate, and remove a Retained Gas Sampler (RGS) in Tank 101-SY at Hanford. Purpose of the RGS is to help characterize the gas species retained in the tank waste; the information will be used to refine models that predict the gas-producing behavior of the waste tank. The RGS will take samples of the tank from top to bottom; these samples will be analyzed for gas constituents. The proposed action is required as part of an evaluation of mitigation concepts for eliminating episodic gas releases that result in high hydrogen concentrations in the tank dome space.

  1. Migration of innumerable chronically retained acupuncture needles

    Directory of Open Access Journals (Sweden)

    Frances Lazarow, MD

    2017-09-01

    Full Text Available We present a case of a 50-year-old female with a 2-day history of back and abdominal pain who was discovered to have innumerable chronically retained acupuncture needles, which had migrated throughout her abdomen and pelvis. Although many of these needles were in precarious positions, including the epidural space, renal parenchyma, small bowel, and vasculature, there was no evidence for acute injury. We also briefly discuss evidence for the magnetic resonance imaging compatibility of acupuncture needles. Although a rare complication, given the high frequency of acupuncture therapy in the United States, physicians must be aware of the potential for retained and migrated needles.

  2. Retained gas sampler interim safety assessment

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Miller, W.O.; Unal, C.; Fujita, R.K.

    1995-01-01

    This safety assessment addresses the proposed action to install, operate, and remove a Retained Gas Sampler (RGS) in Tank 101-SY at Hanford. Purpose of the RGS is to help characterize the gas species retained in the tank waste; the information will be used to refine models that predict the gas-producing behavior of the waste tank. The RGS will take samples of the tank from top to bottom; these samples will be analyzed for gas constituents. The proposed action is required as part of an evaluation of mitigation concepts for eliminating episodic gas releases that result in high hydrogen concentrations in the tank dome space

  3. Large Scale Testing of Drystone Retaining Structures

    OpenAIRE

    Mundell, Chris

    2009-01-01

    Drystone walls have been used extensively around the world as earth retaining structures wherever suitable stone is found. Commonly about 0.6m thick (irrespective of height), there are about 9000km of drystone retaining walls on the UK road network alone, mostly built in the 19th and early 20th centuries, with an estimated replacement value in excess of £1 billion[1]. Drystone wall design is traditionally empirical, based on local knowledge of what has worked in the past. Methods vary from re...

  4. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha

    Directory of Open Access Journals (Sweden)

    Baumann Paul

    2004-08-01

    Full Text Available Abstract Background With some exceptions, mitochondria within the class Insecta have the same gene content, and generally, a similar gene order allowing the proposal of an ancestral gene order. The principal exceptions are several orders within the Hemipteroid assemblage including the order Thysanoptera, a sister group of the order Hemiptera. Within the Hemiptera, there are available a number of completely sequenced mitochondrial genomes that have a gene order similar to that of the proposed ancestor. None, however, are available from the suborder Sternorryncha that includes whiteflies, psyllids and aphids. Results We have determined the complete nucleotide sequence of the mitochondrial genomes of six species of whiteflies, one psyllid and one aphid. Two species of whiteflies, one psyllid and one aphid have mitochondrial genomes with a gene order very similar to that of the proposed insect ancestor. The remaining four species of whiteflies had variations in the gene order. In all cases, there was the excision of a DNA fragment encoding for cytochrome oxidase subunit III(COIII-tRNAgly-NADH dehydrogenase subunit 3(ND3-tRNAala-tRNAarg-tRNAasn from the ancestral position between genes for ATP synthase subunit 6 and NADH dehydrogenase subunit 5. Based on the position in which all or part of this fragment was inserted, the mitochondria could be subdivided into four different gene arrangement types. PCR amplification spanning from COIII to genes outside the inserted region and sequence determination of the resulting fragments, indicated that different whitefly species could be placed into one of these arrangement types. A phylogenetic analysis of 19 whitefly species based on genes for mitochondrial cytochrome b, NADH dehydrogenase subunit 1, and 16S ribosomal DNA as well as cospeciating endosymbiont 16S and 23S ribosomal DNA indicated a clustering of species that corresponded to the gene arrangement types. Conclusions In whiteflies, the region of the

  5. Retained Gas Sampler Calibration and Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    CRAWFORD, B.A.

    2000-01-05

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis.

  6. Placemaking: Attracting and Retaining Today's Students

    Science.gov (United States)

    Knight, Brent

    2016-01-01

    Research suggests that the appearance of a college campus--both inside and out--is a significant criterion in college selection. As community colleges are finding it increasingly important to attract and retain students, placemaking is becoming an effective and efficient platform to support recruitment and retention. Placemaking is imagining and…

  7. Health matters in hiring and retaining personnel

    NARCIS (Netherlands)

    Houtman, I.L.D.

    2014-01-01

    Health is the most important issue when an employer is deciding whether to hire a worker, according to a new study from the Netherlands. The research looked at the results of a ‘vignette’ study on employer preferences when hiring or retaining personnel. It also showed that when an employer is

  8. Retained Gas Sampler Calibration and Simulant Tests

    International Nuclear Information System (INIS)

    CRAWFORD, B.A.

    2000-01-01

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis

  9. [Conventional retaining of removable partial dentures

    NARCIS (Netherlands)

    Keltjens, H.M.A.M.; Witter, D.J.; Creugers, N.H.J.

    2009-01-01

    Mechanical and biological criteria have to be met in retaining the metal frame of a removable partial denture. Additionally, a removable partial denture is part of the occlusal interface by the clasps and the denture teeth. With respect to mechanical aspects, all rigid parts of the removable partial

  10. A skull might lie: modelling ancestral ranges and diet from genes and shape of tree squirrels

    Czech Academy of Sciences Publication Activity Database

    Pečnerová, Patrícia; Moravec, Jiří C.; Martínková, Natália

    2015-01-01

    Roč. 64, č. 6 (2015), s. 1074-1088 ISSN 1063-5157 EU Projects: European Commission(XE) CZ.1.07/2.4.00/17.0138 Institutional support: RVO:68081766 Keywords : Sciurini * multilocus phylogeny * geometric morphometry * speciation * ancestral range reconstruction * diet modelling Subject RIV: EG - Zoology Impact factor: 8.225, year: 2015

  11. Language Shift and Maintenance in Multilingual Mauritius: The Case of Indian Ancestral Languages

    Science.gov (United States)

    Bissoonauth, Anu

    2011-01-01

    This paper reports on a research study conducted in Mauritius between June and July 2009. The aim of this research was to investigate the use of Indian ancestral languages in the domestic domain by the younger generations. The data were collected in the field by means of a questionnaire and interviews from a quota sample of secondary school…

  12. Inferring ancestral distribution area and survival vegetation of Caragana (Fabaceae) in Tertiary

    Science.gov (United States)

    Mingli Zhang; Juanjuan Xue; Qiang Zhang; Stewart C. Sanderson

    2015-01-01

    Caragana, a leguminous genus mainly restricted to temperate Central and East Asia, occurs in arid, semiarid, and humid belts, and has forest, grassland, and desert ecotypes. Based on the previous molecular phylogenetic tree and dating, biogeographical analyses of extant species area and ecotype were conducted by means of four ancestral optimization approaches: S-DIVA,...

  13. The structured ancestral selection graph and the many-demes limit.

    Science.gov (United States)

    Slade, Paul F; Wakeley, John

    2005-02-01

    We show that the unstructured ancestral selection graph applies to part of the history of a sample from a population structured by restricted migration among subpopulations, or demes. The result holds in the limit as the number of demes tends to infinity with proportionately weak selection, and we have also made the assumptions of island-type migration and that demes are equivalent in size. After an instantaneous sample-size adjustment, this structured ancestral selection graph converges to an unstructured ancestral selection graph with a mutation parameter that depends inversely on the migration rate. In contrast, the selection parameter for the population is independent of the migration rate and is identical to the selection parameter in an unstructured population. We show analytically that estimators of the migration rate, based on pairwise sequence differences, derived under the assumption of neutrality should perform equally well in the presence of weak selection. We also modify an algorithm for simulating genealogies conditional on the frequencies of two selected alleles in a sample. This permits efficient simulation of stronger selection than was previously possible. Using this new algorithm, we simulate gene genealogies under the many-demes ancestral selection graph and identify some situations in which migration has a strong effect on the time to the most recent common ancestor of the sample. We find that a similar effect also increases the sensitivity of the genealogy to selection.

  14. Indigenous ancestral sayings contribute to modern conservation partnerships: examples using Phormium tenax.

    Science.gov (United States)

    Wehi, Priscilla M

    2009-01-01

    Traditional ecological knowledge (TEK) is central to indigenous worldviews and practices and is one of the most important contributions that indigenous people can bring to conservation management partnerships. However, researchers and managers may have difficulty accessing such knowledge, particularly where knowledge transmission has been damaged. A new methodological approach analyzes ancestral sayings from Maori oral traditions for ecological information about Phormium tenax, a plant with high cultural value that is a dominant component in many threatened wetland systems, and frequently used in restoration plantings in New Zealand. Maori ancestral sayings record an association with nectar-feeding native parrots that has only rarely been reported, as well as indications of important environmental parameters (rainfall and drought) for this species. These sayings provide evidence of indigenous management that has not been reported from interviews with elders, including evidence of fire use to create Phormium cultivations. TEK in Maori ancestral sayings imply landscape-scale processes in comparison to intensive, small-scale management methods often reported in interviews. TEK in ancestral sayings can be used to generate new scientific hypotheses, negotiate collaborative pathways, and identify ecological management strategies that support biodiversity retention. TEK can inform restoration ecology, historical ecology, and conservation management of species and ecosystems, especially where data from pollen records and archaeological artifacts are incomplete.

  15. Retained sensitivity to cytotoxic pyrimidine nucleoside analogs in thymidine kinase 2 deficient human fibroblasts.

    Science.gov (United States)

    Bjerke, Mia; Solaroli, Nicola; Lesko, Nicole; Balzarini, Jan; Johansson, Magnus; Karlsson, Anna

    2010-01-01

    Thymidine kinase 2 (TK2) is a mitochondrial deoxyribonucleoside kinase that phosphorylates several nucleoside analogs used in anti-viral and anti-cancer therapy. A fibroblast cell line with decreased TK2 activity was investigated in order to obtain insights in the effects of TK2 deficiency on nucleotide metabolism. The role of TK2 for the sensitivity against cytotoxic nucleoside analogs was also investigated. The TK2 deficient cells retained their sensitivity against all pyrimidine nucleoside analogs tested. This study suggests that nucleoside analog phosphorylation mediated by TK2 may be less important, compared to other deoxyribonucleoside kinases, for the cytotoxic effects of these compounds.

  16. Invasion of Ancestral Mammals into Dim-light Environments Inferred from Adaptive Evolution of the Phototransduction Genes.

    Science.gov (United States)

    Wu, Yonghua; Wang, Haifeng; Hadly, Elizabeth A

    2017-04-20

    Nocturnality is a key evolutionary innovation of mammals that enables mammals to occupy relatively empty nocturnal niches. Invasion of ancestral mammals into nocturnality has long been inferred from the phylogenetic relationships of crown Mammalia, which is primarily nocturnal, and crown Reptilia, which is primarily diurnal, although molecular evidence for this is lacking. Here we used phylogenetic analyses of the vision genes involved in the phototransduction pathway to predict the diel activity patterns of ancestral mammals and reptiles. Our results demonstrated that the common ancestor of the extant Mammalia was dominated by positive selection for dim-light vision, supporting the predominate nocturnality of the ancestral mammals. Further analyses showed that the nocturnality of the ancestral mammals was probably derived from the predominate diurnality of the ancestral amniotes, which featured strong positive selection for bright-light vision. Like the ancestral amniotes, the common ancestor of the extant reptiles and various taxa in Squamata, one of the main competitors of the temporal niches of the ancestral mammals, were found to be predominate diurnality as well. Despite this relatively apparent temporal niche partitioning between ancestral mammals and the relevant reptiles, our results suggested partial overlap of their temporal niches during crepuscular periods.

  17. Mitochondrial dysfunction in obesity.

    Science.gov (United States)

    de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza

    2018-01-01

    Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Multifunctional Mitochondrial AAA Proteases.

    Science.gov (United States)

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  19. Reconstruction of Ancestral Genomes in Presence of Gene Gain and Loss.

    Science.gov (United States)

    Avdeyev, Pavel; Jiang, Shuai; Aganezov, Sergey; Hu, Fei; Alekseyev, Max A

    2016-03-01

    Since most dramatic genomic changes are caused by genome rearrangements as well as gene duplications and gain/loss events, it becomes crucial to understand their mechanisms and reconstruct ancestral genomes of the given genomes. This problem was shown to be NP-complete even in the "simplest" case of three genomes, thus calling for heuristic rather than exact algorithmic solutions. At the same time, a larger number of input genomes may actually simplify the problem in practice as it was earlier illustrated with MGRA, a state-of-the-art software tool for reconstruction of ancestral genomes of multiple genomes. One of the key obstacles for MGRA and other similar tools is presence of breakpoint reuses when the same breakpoint region is broken by several different genome rearrangements in the course of evolution. Furthermore, such tools are often limited to genomes composed of the same genes with each gene present in a single copy in every genome. This limitation makes these tools inapplicable for many biological datasets and degrades the resolution of ancestral reconstructions in diverse datasets. We address these deficiencies by extending the MGRA algorithm to genomes with unequal gene contents. The developed next-generation tool MGRA2 can handle gene gain/loss events and shares the ability of MGRA to reconstruct ancestral genomes uniquely in the case of limited breakpoint reuse. Furthermore, MGRA2 employs a number of novel heuristics to cope with higher breakpoint reuse and process datasets inaccessible for MGRA. In practical experiments, MGRA2 shows superior performance for simulated and real genomes as compared to other ancestral genome reconstruction tools.

  20. Mitochondrial diversity and phylogeography of Acrossocheilus paradoxus (Teleostei: Cyprinidae).

    Science.gov (United States)

    Ju, Yu-Min; Hsu, Kui-Ching; Yang, Jin-Quan; Wu, Jui-Hsien; Li, Shan; Wang, Wei-Kuang; Ding, Fang; Li, Jun; Lin, Hung-Du

    2018-01-31

    Mitochondrial DNA cytochrome b sequences (1141 bp) in 229 specimens of Acrossocheilus paradoxus from 26 populations were identified as four lineages. The pairwise genetic distances among these four lineages ranged from 1.57 to 2.37% (mean= 2.00%). Statistical dispersal-vicariance analysis suggests that the ancestral populations were distributed over mainland China and Northern and Western Taiwan. Approximate Bayesian computation approaches show that the three lineages in Taiwan originated from the lineage in mainland China through three colonization routes during two glaciations. The results indicated that during the glaciation and inter-glacial periods, the Taiwan Strait was exposed and sank, which contributed to the dispersion and differentiation of populations. Furthermore, the populations of A. paradoxus colonized Taiwan through a land bridge to the north of the Formosa Bank, and the Miaoli Plateau in Taiwan was an important barrier that limited gene exchange between populations on both the sides.

  1. Abdominal retained surgical sponges: CT appearance

    Energy Technology Data Exchange (ETDEWEB)

    Kalovidouris, A.; Kehagias, D.; Moulopoulos, L.; Gouliamos, A.; Pentea, S.; Vlahos, L. [Department of Radiology, University of Athens (Greece)

    1999-09-01

    Retention of surgical sponges is rare. They cause either an aseptic reaction without significant symptoms or an exudative reaction which results in early but nonspecific symptoms. Computed tomography is very useful for recognition of retained sponges. The appearance of retained sponges is widely variable. Air trapping into a surgical sponge results in the spongiform pattern which is characteristic but unfortunately uncommon. A low-density, high-density, or complex mass is found in the majority of cases, but these patterns are not specific. Sometimes, a thin high-density capsule may be seen. Rim or internal calcification is a rare finding. Finally, a radiopaque marker is not a reliable sign. Differentiation from abscess and hematoma is sometimes difficult. (orig.) With 11 figs., 12 refs.

  2. Abdominal retained surgical sponges: CT appearance

    International Nuclear Information System (INIS)

    Kalovidouris, A.; Kehagias, D.; Moulopoulos, L.; Gouliamos, A.; Pentea, S.; Vlahos, L.

    1999-01-01

    Retention of surgical sponges is rare. They cause either an aseptic reaction without significant symptoms or an exudative reaction which results in early but nonspecific symptoms. Computed tomography is very useful for recognition of retained sponges. The appearance of retained sponges is widely variable. Air trapping into a surgical sponge results in the spongiform pattern which is characteristic but unfortunately uncommon. A low-density, high-density, or complex mass is found in the majority of cases, but these patterns are not specific. Sometimes, a thin high-density capsule may be seen. Rim or internal calcification is a rare finding. Finally, a radiopaque marker is not a reliable sign. Differentiation from abscess and hematoma is sometimes difficult. (orig.)

  3. Tooth Retained Implant: No More an Oxymoron

    Directory of Open Access Journals (Sweden)

    Divya Bhat

    2011-03-01

    Full Text Available Introduction: Periodontally af-fected teeth are treated in one of the two ways. (1 Tooth retention after periodontal surgery, in which the degree of regeneration achieved is unpredictable. (2 Tooth extrac-tion and implant placement. Implants have an osseointegrated surface which does not provide adequate shock absorption. Regeneration can be achieved by resecting the crown of the affected tooth and submerging the root. This technique has not had a clinical application so far as the tooth becomes difficult to restore. Placing an implant within the root can make the retained root restorable. At the same time, as the implant is placed within the root surface it achieves a periodontal integration which dampens occlusal forces better than osseointegration. Therefore, such a “tooth retained implant” may serve as an additional treatment option with significant benefits over tooth retention and implant placement alone. The hypothesis: Implants placed within retained roots have shown cementum deposition and attachment of periodontal ligament fibers over their surface. This periodontal attachment may be able to dam-pen forces better than in an osseointegrated implant. Moreover, since an implant is being placed, the crown of the tooth can be resected and submerged. This prevents epithelial migration, allows for the periodontal ligament cells to populate the wound and favors regeneration.Evaluation of the hypothesis: The technique of placing implants within cavities prepared in the root and then submerging them are simple for any practitioner placing implants routinely.

  4. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Science.gov (United States)

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests

  5. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  6. Kansal′s Retainer: A Removable, Tooth-Borne Orthodontic Retainer

    Directory of Open Access Journals (Sweden)

    Sudhanshu Kansal

    2013-01-01

    Full Text Available Adequate retention of a finished orthodontic patient can be the difference between a successful or an unsuccessful treatment. The acrylic portion of the conventional Hawley′s appliance causes a reduced compliance in many orthodontic patients. In an attempt to overcome the drawbacks of the previously used orthodontic retainers a tooth-borne orthodontic retainer was designed, also called the ′Kansal′s retainer′ (Patent pending.

  7. Inferring kangaroo phylogeny from incongruent nuclear and mitochondrial genes.

    Directory of Open Access Journals (Sweden)

    Matthew J Phillips

    Full Text Available The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus and M. (Osphranter, as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus. A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby within M. (Osphranter rather than as expected, with M. (Notamacropus. Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression.

  8. The mitochondrial genome of Frankliniella intonsa: insights into the evolution of mitochondrial genomes at lower taxonomic levels in Thysanoptera.

    Science.gov (United States)

    Yan, Dankan; Tang, Yunxia; Hu, Min; Liu, Fengquan; Zhang, Dongfang; Fan, Jiaqin

    2014-10-01

    Thrips is an ideal group for studying the evolution of mitochondrial (mt) genomes in the genus and family due to independent rearrangements within this order. The complete sequence of the mitochondrial DNA (mtDNA) of the flower thrips Frankliniella intonsa has been completed and annotated in this study. The circular genome is 15,215bp in length with an A+T content of 75.9% and contains the typical 37 genes and it has triplicate putative control regions. Nucleotide composition is A+T biased, and the majority of the protein-coding genes present opposite CG skew which is reflected by the nucleotide composition, codon and amino acid usage. Although the known thrips have massive gene rearrangements, it showed no reversal of strand asymmetry. Gene rearrangements have been found in the lower taxonomic levels of thrips. Three tRNA genes were translocated in the genus Frankliniella and eight tRNA genes in the family Thripidae. Although the gene arrangements of mt genomes of all three thrips species differ massively from the ancestral insect, they are all very similar to each other, indicating that there was a large rearrangement somewhere before the most recent common ancestor of these three species and very little genomic evolution or rearrangements after then. The extremely similar sequences among the CRs suggest that they are ongoing concerted evolution. Analyses of the up and downstream sequence of CRs reveal that the CR2 is actually the ancestral CR. The three CRs are in the same spot in each of the three thrips mt genomes which have the identical inverted genes. These characteristics might be obtained from the most recent common ancestor of this three thrips. Above observations suggest that the mt genomes of the three thrips keep a single massive rearrangement from the common ancestor and have low evolutionary rates among them. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    Science.gov (United States)

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mitochondrial Dysfunction in Gliomas

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Anni, H.; Dráber, Pavel

    2013-01-01

    Roč. 20, č. 3 (2013), s. 216-227 ISSN 1071-9091 R&D Projects: GA MŠk LH12050 Institutional support: RVO:68378050 Keywords : gliomas * mitochondrial dysfunction * microtubule proteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.883, year: 2013

  11. Mitochondrial dysfunction in epilepsy

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava; Kunz, W.S.

    2012-01-01

    Roč. 12, č. 1 (2012), s. 35-40 ISSN 1567-7249 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR GA309/08/0292 Institutional research plan: CEZ:AV0Z50110509 Keywords : epilepsy * mitochondrial dysfunction * neurodegeneration Subject RIV: FH - Neurology Impact factor: 4.025, year: 2012

  12. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  13. Expression, purification and crystallization of the ancestral androgen receptor-DHT complex.

    Science.gov (United States)

    Colucci, Jennifer K; Ortlund, Eric A

    2013-09-01

    Steroid receptors (SRs) are a closely related family of ligand-dependent nuclear receptors that mediate the transcription of genes critical for development, reproduction and immunity. SR dysregulation has been implicated in cancer, inflammatory diseases and metabolic disorders. SRs bind their cognate hormone ligand with exquisite specificity, offering a unique system to study the evolution of molecular recognition. The SR family evolved from an estrogen-sensitive ancestor and diverged to become sensitive to progestagens, corticoids and, most recently, androgens. To understand the structural mechanisms driving the evolution of androgen responsiveness, the ancestral androgen receptor (ancAR1) was crystallized in complex with 5α-dihydrotestosterone (DHT) and a fragment of the transcriptional mediator/intermediary factor 2 (Tif2). Crystals diffracted to 2.1 Å resolution and the resulting structure will permit a direct comparison with its progestagen-sensitive ancestor, ancestral steroid receptor 2 (AncSR2).

  14. Inference of the ancestral vertebrate phenotype through vestiges of the whole-genome duplications.

    Science.gov (United States)

    Onimaru, Koh; Kuraku, Shigehiro

    2018-03-16

    Inferring the phenotype of the last common ancestor of living vertebrates is a challenging problem because of several unresolvable factors. They include the lack of reliable out-groups of living vertebrates, poor information about less fossilizable organs and specialized traits of phylogenetically important species, such as lampreys and hagfishes (e.g. secondary loss of vertebrae in adult hagfishes). These factors undermine the reliability of ancestral reconstruction by traditional character mapping approaches based on maximum parsimony. In this article, we formulate an approach to hypothesizing ancestral vertebrate phenotypes using information from the phylogenetic and functional properties of genes duplicated by genome expansions in early vertebrate evolution. We named the conjecture as 'chronological reconstruction of ohnolog functions (CHROF)'. This CHROF conjecture raises the possibility that the last common ancestor of living vertebrates may have had more complex traits than currently thought.

  15. Ancestral genes can control the ability of horizontally acquired loci to confer new traits.

    Directory of Open Access Journals (Sweden)

    H Deborah Chen

    2011-07-01

    Full Text Available Horizontally acquired genes typically function as autonomous units conferring new abilities when introduced into different species. However, we reasoned that proteins preexisting in an organism might constrain the functionality of a horizontally acquired gene product if it operates on an ancestral pathway. Here, we determine how the horizontally acquired pmrD gene product activates the ancestral PmrA/PmrB two-component system in Salmonella enterica but not in the closely related bacterium Escherichia coli. The Salmonella PmrD protein binds to the phosphorylated PmrA protein (PmrA-P, protecting it from dephosphorylation by the PmrB protein. This results in transcription of PmrA-dependent genes, including those conferring polymyxin B resistance. We now report that the E. coli PmrD protein can activate the PmrA/PmrB system in Salmonella even though it cannot do it in E. coli, suggesting that these two species differ in an additional component controlling PmrA-P levels. We establish that the E. coli PmrB displays higher phosphatase activity towards PmrA-P than the Salmonella PmrB, and we identified a PmrB subdomain responsible for this property. Replacement of the E. coli pmrB gene with the Salmonella homolog was sufficient to render E. coli resistant to polymyxin B under PmrD-inducing conditions. Our findings provide a singular example whereby quantitative differences in the biochemical activities of orthologous ancestral proteins dictate the ability of a horizontally acquired gene product to confer species-specific traits. And they suggest that horizontally acquired genes can potentiate selection at ancestral loci.

  16. Temperature-dependent respiration-growth relations in ancestral maize cultivars

    Science.gov (United States)

    Bruce N. Smith; Jillian L. Walker; Rebekka L. Stone; Angela R. Jones; Lee D. Hansen

    2001-01-01

    Shoots from 4- to 6-day old seedlings of seven ancestral or old cultivars of Zea mays L. were placed in a calorimeter. Dark metabolic heat rate (q) and CO2 production rate (RCO2) were measured at nine temperatures (5, 10, 15, 20, 25, 30, 35, 40, and 45 °C). Temperature dependencies of q and RCO2 were used to model response of both growth and substrate carbon conversion...

  17. Ancestral diet leads to dynamic transgenerational plasticity for five generations in Drosophila melanogaster

    OpenAIRE

    Mikheyev, Alexander; Emborski, Carmen

    2018-01-01

    Ancestral exposures can influence phenotypic expression in subsequent generations, which influence diverse biological processes ranging from phenotypic plasticity to obesity. Currently, most transgenerational studies work under the assumption of transgenerational response stability and reproducibility through time and across exposure differences, relying on short-term (i.e. 2-3 generations) single-exposure experiments. Yet, little evidence exists in the literature to validate this assumption,...

  18. Perianth evolution in Ranunculaceae: are petals ancestral in the family?

    OpenAIRE

    Nadot S.; Sauquet H.; Damerval C.; Jabbour F.; Domenech B.

    2016-01-01

    Progress has been made recently towards the elucidation of phylogenetic relationships among subfamilies and tribes of the Ranunculaceae – the most recent hypothesis was published in 2016 by our team. Although relationships among the 10 tribes of the subfamily Ranunculoideae remain incompletely supported, this hypothesis provides an interesting framework to address the key issue of the ancestral vs. derived nature of a differentiated perianth within the family, and at the level of Ranunculales...

  19. Lack of Social Support Raises Stress Vulnerability in Rats with a History of Ancestral Stress.

    Science.gov (United States)

    Faraji, Jamshid; Soltanpour, Nabiollah; Lotfi, Hamid; Moeeini, Reza; Moharreri, Ali-Reza; Roudaki, Shabnam; Hosseini, S Abedin; Olson, David M; Abdollahi, Ali-Akbar; Soltanpour, Nasrin; Mohajerani, Majid H; Metz, Gerlinde A S

    2017-07-13

    Stress is a primary risk factor for psychiatric disorders. However, it is not fully understood why some stressed individuals are more vulnerable to psychiatric disorders than others. Here, we investigated whether multigenerational ancestral stress produces phenotypes that are sensitive to depression-like symptoms in rats. We also examined whether social isolation reveals potentially latent sensitivity to depression-like behaviours. F4 female rats born to a lineage of stressed mothers (F0-F3) received stress in adulthood while housed in pairs or alone. Social isolation during stress induced cognitive and psychomotor retardation only in rats exposed to ancestral stress. Social isolation also hampered the resilience of the hypothalamic-pituitary-adrenal axis to chronic stress and reduced hippocampal volume and brain-derived neurotrophic factor (BDNF) expression. Thus, synergy between social isolation and stress may unmask a latent history of ancestral stress, and raises vulnerability to mental health conditions. The findings support the notion that social support critically promotes stress coping and resilience.

  20. Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity.

    Science.gov (United States)

    King, Benedict; Lee, Michael S Y

    2015-05-01

    Virtually all models for reconstructing ancestral states for discrete characters make the crucial assumption that the trait of interest evolves at a uniform rate across the entire tree. However, this assumption is unlikely to hold in many situations, particularly as ancestral state reconstructions are being performed on increasingly large phylogenies. Here, we show how failure to account for such variable evolutionary rates can cause highly anomalous (and likely incorrect) results, while three methods that accommodate rate variability yield the opposite, more plausible, and more robust reconstructions. The random local clock method, implemented in BEAST, estimates the position and magnitude of rate changes on the tree; split BiSSE estimates separate rate parameters for pre-specified clades; and the hidden rates model partitions each character state into a number of rate categories. Simulations show the inadequacy of traditional models when characters evolve with both asymmetry (different rates of change between states within a character) and heterotachy (different rates of character evolution across different clades). The importance of accounting for rate heterogeneity in ancestral state reconstruction is highlighted empirically with a new analysis of the evolution of viviparity in squamate reptiles, which reveal a predominance of forward (oviparous-viviparous) transitions and very few reversals. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Preliminary appraisal of ground water in and near the ancestral Missouri River Valley, northeastern Montana

    Science.gov (United States)

    Levings, G.W.

    1986-01-01

    A preliminary appraisal was conducted in and near the ancestral Missouri River valley in northeastern Montana to describe the groundwater resources and to establish a data base for the area. The data base then could be used for future evaluation of possible changes in water levels or water quality. In this area, consolidated aquifers are the Upper Cretaceous Fox Hills-lower Hell Creek aquifer and the overlying Paleocene Fort Union Formation. Unconsolidated aquifers are Pleistocene terrace gravel and glacial deposits and Holocene alluvial deposits. Aquifers are recharged by precipitation, infiltration of streamflow, and possibly leakage from lakes and potholes. Groundwater moves from topographically higher areas to the ancestral valley, then along the ancestral valley to the southwest. Water is discharged from aquifers by evapotranspiration, springs and seeps, movement directly into streams and lakes, and from pumping wells. Average well yields are greatest for irrigation wells completed in outwash gravel (886 gallons/min). Eighteen wells were completed in various aquifers to monitor potential long-term changes in water levels and water quality. Measured water levels declined about 2 ft. or less during the study (1982-85). Chemical analysis of groundwater samples indicated that concentrations of some dissolved constituents exceeded U.S. Environmental Protection Agency standards for drinking water. (USGS)

  2. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product.

    Science.gov (United States)

    Chen, H Deborah; Jewett, Mollie W; Groisman, Eduardo A

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.

  3. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat

    Directory of Open Access Journals (Sweden)

    Ross eGillette

    2015-03-01

    Full Text Available Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area, lateral hypothalamus, and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the medial preoptic area. Epigenetic related genes were affected by stress in the ventromedial hypothalamus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the lateral hypothalamus showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.

  4. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat.

    Science.gov (United States)

    Gillette, Ross; Miller-Crews, Isaac; Skinner, Michael K; Crews, David

    2015-01-01

    Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides, and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area (mPOA), lateral hypothalamus (LH), and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the mPOA. Epigenetic related genes were affected by stress in the ventromedial nucleus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the LH showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.

  5. Ancestral informative marker selection and population structure visualization using sparse Laplacian eigenfunctions.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available Identification of a small panel of population structure informative markers can reduce genotyping cost and is useful in various applications, such as ancestry inference in association mapping, forensics and evolutionary theory in population genetics. Traditional methods to ascertain ancestral informative markers usually require the prior knowledge of individual ancestry and have difficulty for admixed populations. Recently Principal Components Analysis (PCA has been employed with success to select SNPs which are highly correlated with top significant principal components (PCs without use of individual ancestral information. The approach is also applicable to admixed populations. Here we propose a novel approach based on our recent result on summarizing population structure by graph laplacian eigenfunctions, which differs from PCA in that it is geometric and robust to outliers. Our approach also takes advantage of the priori sparseness of informative markers in the genome. Through simulation of a ring population and the real global population sample HGDP of 650K SNPs genotyped in 940 unrelated individuals, we validate the proposed algorithm at selecting most informative markers, a small fraction of which can recover the similar underlying population structure efficiently. Employing a standard Support Vector Machine (SVM to predict individuals' continental memberships on HGDP dataset of seven continents, we demonstrate that the selected SNPs by our method are more informative but less redundant than those selected by PCA. Our algorithm is a promising tool in genome-wide association studies and population genetics, facilitating the selection of structure informative markers, efficient detection of population substructure and ancestral inference.

  6. Pollination and reproduction of an invasive plant inside and outside its ancestral range

    Science.gov (United States)

    Petanidou, Theodora; Price, Mary V.; Bronstein, Judith L.; Kantsa, Aphrodite; Tscheulin, Thomas; Kariyat, Rupesh; Krigas, Nikos; Mescher, Mark C.; De Moraes, Consuelo M.; Waser, Nickolas M.

    2018-05-01

    Comparing traits of invasive species within and beyond their ancestral range may improve our understanding of processes that promote aggressive spread. Solanum elaeagnifolium (silverleaf nightshade) is a noxious weed in its ancestral range in North America and is invasive on other continents. We compared investment in flowers and ovules, pollination success, and fruit and seed set in populations from Arizona, USA ("AZ") and Greece ("GR"). In both countries, the populations we sampled varied in size and types of present-day disturbance. Stature of plants increased with population size in AZ samples whereas GR plants were uniformly tall. Taller plants produced more flowers, and GR plants produced more flowers for a given stature and allocated more ovules per flower. Similar functional groups of native bees pollinated in AZ and GR populations, but visits to flowers decreased with population size and we observed no visits in the largest GR populations. As a result, plants in large GR populations were pollen-limited, and estimates of fecundity were lower on average in GR populations despite the larger allocation to flowers and ovules. These differences between plants in our AZ and GR populations suggest promising directions for further study. It would be useful to sample S. elaeagnifolium in Mediterranean climates within the ancestral range (e.g., in California, USA), to study asexual spread via rhizomes, and to use common gardens and genetic studies to explore the basis of variation in allocation patterns and of relationships between visitation and fruit set.

  7. Retained Surgical Foreign Bodies after Surgery

    Directory of Open Access Journals (Sweden)

    Valon A. Zejnullahu

    2017-01-01

    Full Text Available The problem of retained surgical bodies (RSB after surgery is an issue for surgeons, hospitals and the entire medical team. They have potentially harmful consequences for the patient as they can be life threatening and usually, a further operation is necessary. The incidence of RSB is between 0.3 to 1.0 per 1,000 abdominal operations, and they occur due to a lack of organisation and communication between surgical staff during the process. Typically, the RSB are surgical sponges and instruments located in the abdomen, retroperitoneum and pelvis.

  8. Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence

    Energy Technology Data Exchange (ETDEWEB)

    Ruvolo, M.; Disotell, T.R.; Allard, M.W. (Harvard Univ., Cambridge, MA (United States)); Brown, W.M. (Univ. of Michigan, Ann Arbor (United States)); Honeycutt, R.L. (Texas A and M Univ., College Station (United States))

    1991-02-15

    Mitochondrial DNA sequences encoding the cytochrome oxidase subunit II gene have been determined for five primate species, siamang (Hylobates syndactylus), lowland gorilla (Gorilla gorilla), pygmy chimpanzee (Pan paniscus), crab-eating macaque (Macaca fascicularis), and green monkey (Cercopithecus aethiops), and compared with published sequences of other primate and nonprimate species. Comparisons of cytochrome oxidase subunit II gene sequences provide clear-cut evidence from the mitochondrial genome for the separation of the African ape trichotomy into two evolutionary lineages, one leading to gorillas and the other to humans and chimpanzees. Several different tree-building methods support this same phylogenetic tree topology. The comparisons also yield trees in which a substantial length separates the divergence point of gorillas from that of humans and chimpanzees, suggesting that the lineage most immediately ancestral to humans and chimpanzees may have been in existence for a relatively long time.

  9. Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence

    International Nuclear Information System (INIS)

    Ruvolo, M.; Disotell, T.R.; Allard, M.W.; Brown, W.M.; Honeycutt, R.L.

    1991-01-01

    Mitochondrial DNA sequences encoding the cytochrome oxidase subunit II gene have been determined for five primate species, siamang (Hylobates syndactylus), lowland gorilla (Gorilla gorilla), pygmy chimpanzee (Pan paniscus), crab-eating macaque (Macaca fascicularis), and green monkey (Cercopithecus aethiops), and compared with published sequences of other primate and nonprimate species. Comparisons of cytochrome oxidase subunit II gene sequences provide clear-cut evidence from the mitochondrial genome for the separation of the African ape trichotomy into two evolutionary lineages, one leading to gorillas and the other to humans and chimpanzees. Several different tree-building methods support this same phylogenetic tree topology. The comparisons also yield trees in which a substantial length separates the divergence point of gorillas from that of humans and chimpanzees, suggesting that the lineage most immediately ancestral to humans and chimpanzees may have been in existence for a relatively long time

  10. The Analysis Stability of Anchor Retaining Wall

    International Nuclear Information System (INIS)

    Benamara, F. Z.; Belabed, L

    2011-01-01

    The construction of anchored retaining walls reach every day in the field of Civil Engineering especially in public works. Their dimensioning and stability are the axes of research for geotechnical. The rule is to reduce the active forces of the slide and increase the effective normal stress on the rupture surface. So that, we anchored tied-back (constituted by steel cables) in the stable ground located under the failure surface and we apply at the top a traction force. This effort can be distributed over the ground surface by means of small plates or massive reinforced concrete. The study of the stability of anchored retaining wall was also performed by using software GEO4. Many cases can be solved using analytical solutions available in the group GEO4 program, but for our standard model solution studied analytically proved unsatisfactory so we used a numerical analysis based on the method of finite element in this program. The results obtained by numerical study were interpreted to identify the precision numerical predictions. Moreover these methods were useful and economics in the realization of reinforced slopes by tied-buck. (author)

  11. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  12. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  13. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals.

    Science.gov (United States)

    Popova, Olga V; Mikhailov, Kirill V; Nikitin, Mikhail A; Logacheva, Maria D; Penin, Aleksey A; Muntyan, Maria S; Kedrova, Olga S; Petrov, Nikolai B; Panchin, Yuri V; Aleoshin, Vladimir V

    2016-01-01

    Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.

  14. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals.

    Directory of Open Access Journals (Sweden)

    Olga V Popova

    Full Text Available Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida and Pycnophyes kielensis (Allomalorhagida. Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even

  15. MITOCHONDRIAL NEUROGASTROINTESTINAL ENCEPHALOMYOPATHY (MNGIE

    Directory of Open Access Journals (Sweden)

    P. Ayatollahi

    2006-06-01

    Full Text Available Mitochondrial neurogastrointestinal encephalo-myopathy (MNGIE is a rare autosomal recessive disease caused by thymidine phosphorylase (TP gene mutation. Here we report a patient with MNGIE in whom sensorimotor polyneuropathy was the first presenting symptom and had a fluctuating course. This 26-year-old female patient developed acute-onset demyelinating polyneuropathy from the age of 6 with two relapses later on. In addition, she had gastrointestinal symptoms (diarrhea, recurrent abdominal pain, progressive weight loss and ophthalmoparesis. Brain magnetic resonance imaging showed white matter abnormalities, and muscle biopsy showed ragged red fibers. This constellation of clinical and laboratory findings raised the diagnosis of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE. This report highlights the uncommon clinical characteristics of this rare disease.

  16. The mitochondrial uncoupling proteins

    OpenAIRE

    Ledesma, Amalia; de Lacoba, Mario García; Rial, Eduardo

    2002-01-01

    The uncoupling proteins (UCPs) are transporters, present in the mitochondrial inner membrane, that mediate a regulated discharge of the proton gradient that is generated by the respiratory chain. This energy-dissipatory mechanism can serve functions such as thermogenesis, maintenance of the redox balance, or reduction in the production of reactive oxygen species. Some UCP homologs may not act as true uncouplers, however, and their activity has yet to be defined. The UCPs are integral membrane...

  17. The mitochondrial genome of the ascalaphid owlfly Libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid insects

    Science.gov (United States)

    2011-01-01

    Background The insect order Neuroptera encompasses more than 5,700 described species. To date, only three neuropteran mitochondrial genomes have been fully and one partly sequenced. Current knowledge on neuropteran mitochondrial genomes is limited, and new data are strongly required. In the present work, the mitochondrial genome of the ascalaphid owlfly Libelloides macaronius is described and compared with the known neuropterid mitochondrial genomes: Megaloptera, Neuroptera and Raphidioptera. These analyses are further extended to other endopterygotan orders. Results The mitochondrial genome of L. macaronius is a circular molecule 15,890 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. The gene order of this newly sequenced genome is unique among Neuroptera and differs from the ancestral type of insects in the translocation of trnC. The L. macaronius genome shows the lowest A+T content (74.50%) among known neuropterid genomes. Protein-coding genes possess the typical mitochondrial start codons, except for cox1, which has an unusual ACG. Comparisons among endopterygotan mitochondrial genomes showed that A+T content and AT/GC-skews exhibit a broad range of variation among 84 analyzed taxa. Comparative analyses showed that neuropterid mitochondrial protein-coding genes experienced complex evolutionary histories, involving features ranging from codon usage to rate of substitution, that make them potential markers for population genetics/phylogenetics studies at different taxonomic ranks. The 22 tRNAs show variable substitution patterns in Neuropterida, with higher sequence conservation in genes located on the α strand. Inferred secondary structures for neuropterid rrnS and rrnL genes largely agree with those known for other insects. For the first time, a model is provided for domain I of an insect rrnL. The control region in Neuropterida, as in other insects, is fast-evolving genomic region, characterized by AT

  18. The ancestral chromosomes of Dromiciops gliroides (Microbiotheridae), and its bearings on the karyotypic evolution of American marsupials

    OpenAIRE

    Su?rez-Villota, Elkin Y.; Haro, Ronie E.; Vargas, Rodrigo A.; Gallardo, Milton H.

    2016-01-01

    Background The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is reminecent of ancestrality, its interstitial traces of past putative fusions and heterochromatin banding patterns were studied and added to available marsupials? cytogenetic data. Fluorescent in situ hybridization (FISH) and self-genomic in situ hybridization (self-GIS...

  19. Evidence that the ancestral haplotype in Australian hemochromatosis patients may be associated with a common mutation in the gene.

    OpenAIRE

    Crawford, D H; Powell, L W; Leggett, B A; Francis, J S; Fletcher, L M; Webb, S I; Halliday, J W; Jazwinska, E C

    1995-01-01

    Hemochromatosis (HC) is a common inherited disorder of iron metabolism for which neither the gene nor biochemical defect have yet been identified. The aim of this study was to look for clinical evidence that the predominant ancestral haplotype in Australian patients is associated with a common mutation in the gene. We compared indices of iron metabolism and storage in three groups of HC patients categorized according to the presence of the ancestral haplotype (i.e., patients with two copies, ...

  20. Comparative analysis of the mitochondrial genomes in gastropods

    International Nuclear Information System (INIS)

    Arquez, Moises; Uribe, Juan Esteban; Castro, Lyda Raquel

    2012-01-01

    In this work we presented a comparative analysis of the mitochondrial genomes in gastropods. Nucleotide and amino acids composition was calculated and a comparative visual analysis of the start and termination codons was performed. The organization of the genome was compared calculating the number of intergenic sequences, the location of the genes and the number of reorganized genes (breakpoints) in comparison with the sequence that is presumed to be ancestral for the group. In order to calculate variations in the rates of molecular evolution within the group, the relative rate test was performed. In spite of the differences in the size of the genomes, the amino acids number is conserved. The nucleotide and amino acid composition is similar between Vetigastropoda, Ceanogastropoda and Neritimorpha in comparison to Heterobranchia and Patellogastropoda. The mitochondrial genomes of the group are very compact with few intergenic sequences, the only exception is the genome of Patellogastropoda with 26,828 bp. Start codons of the Heterobranchia and Patellogastropoda are very variable and there is also an increase in genome rearrangements for these two groups. Generally, the hypothesis of constant rates of molecular evolution between the groups is rejected, except when the genomes of Caenogastropoda and Vetigastropoda are compared.

  1. The evolution of the mitochondrial genetic code in arthropods revisited.

    Science.gov (United States)

    Abascal, Federico; Posada, David; Zardoya, Rafael

    2012-04-01

    A variant of the invertebrate mitochondrial genetic code was previously identified in arthropods (Abascal et al. 2006a, PLoS Biol 4:e127) in which, instead of translating the AGG codon as serine, as in other invertebrates, some arthropods translate AGG as lysine. Here, we revisit the evolution of the genetic code in arthropods taking into account that (1) the number of arthropod mitochondrial genomes sequenced has triplicated since the original findings were published; (2) the phylogeny of arthropods has been recently resolved with confidence for many groups; and (3) sophisticated probabilistic methods can be applied to analyze the evolution of the genetic code in arthropod mitochondria. According to our analyses, evolutionary shifts in the genetic code have been more common than previously inferred, with many taxonomic groups displaying two alternative codes. Ancestral character-state reconstruction using probabilistic methods confirmed that the arthropod ancestor most likely translated AGG as lysine. Point mutations at tRNA-Lys and tRNA-Ser correlated with the meaning of the AGG codon. In addition, we identified three variables (GC content, number of AGG codons, and taxonomic information) that best explain the use of each of the two alternative genetic codes.

  2. MITOCHONDRIAL BKCa CHANNEL

    Directory of Open Access Journals (Sweden)

    Enrique eBalderas

    2015-03-01

    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  3. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  4. Evidence that the ancestral haplotype in Australian hemochromatosis patients may be associated with a common mutation in the gene

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.H.G.; Powell, L.W.; Leggett, B.A. [Univ. of Queensland (Australia)] [and others

    1995-08-01

    Hemochromatosis (HC) is a common inherited disorder of iron metabolism for which neither the gene nor biochemical defect have yet been identified. The aim of this study was to look for clinical evidence that the predominant ancestral haplotype in Australian patients is associated with a common mutation in the gene. We compared indices of iron metabolism and storage in three groups of HC patients categorized according to the presence of the ancestral haplotype (i.e., patients with two copies, one copy, and no copies of the ancestral haplotype). We also examined iron indices in two groups of HC heterozygotes (those with the ancestral haplotype and those without) and in age-matched controls. These analyses indicate that (i) HC patients with two copies of the ancestral haplotype show significantly more severe expression of the disorder than those with one copy or those without, (ii) HC heterozygotes have partial clinical expression, which may be influenced by the presence of the ancestral haplotype in females but not in males, and (iii) the high population frequency of the HC gene may be the result of the selective advantage conferred by protecting heterozygotes against iron deficiency. 18 refs., 3 tabs.

  5. Mitochondrial functionality in female reproduction

    Directory of Open Access Journals (Sweden)

    Łukasz Gąsior

    2017-01-01

    Full Text Available In most animal species female germ cells are the source of mitochondrial genome for the whole body of individuals. As a source of mitochondrial DNA for future generations the mitochondria in the female germ line undergo dynamic quantitative and qualitative changes. In addition to maintaining the intact template of mitochondrial genome from one generation to another, mitochondrial role in oocytes is much more complex and pleiotropic. The quality of mitochondria determines the ability of meiotic divisions, fertilization ability, and activation after fertilization or sustaining development of a new embryo. The presence of normal number of functional mitochondria is also crucial for proper implantation and pregnancy maintaining. This article addresses issues of mitochondrial role and function in mammalian oocyte and presents new approaches in studies of mitochondrial function in female germ cells.

  6. Molecular basis for mitochondrial signaling

    CERN Document Server

    2017-01-01

    This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more re...

  7. Transabdominal Migration of Retained Surgical Sponge

    Directory of Open Access Journals (Sweden)

    Ali Guner

    2012-01-01

    Full Text Available Retained surgical sponge (RSS is a rare surgical complication. The RSSs are mostly located intra-abdominally but they can also be left in the thorax, spine, extremity, cranium, and breast. RSS is often difficult to diagnose because of the nonspecific clinical symptoms and radiologic findings. Clinically, RSS may present as an exudative reaction in the early postoperative period or may also cause an aseptic fibrous tissue response. A foreign body may remain asymptomatically silent for a long time, and it may later present with obstruction, fistulization, or mass formation. In this report, we present a case in which an RSS has migrated through the abdominal wall and caused an anterior abdominal wall abscess.

  8. Delayed inflammation associated with retained perfluorocarbon liquid

    Directory of Open Access Journals (Sweden)

    S Pradeep

    2011-01-01

    Full Text Available A 55-year-old woman, with history of cataract surgery 1 year back, presented with features of ocular inflammation for last 3 months. She had no history of any other intraocular surgery. On examination, anterior segment showed frothy material in the inferior angle with moderate anterior chamber reaction (cells+/flare+ and sulcus intraocular lens with large posterior capsule rent. Fundoscopy showed multiple, small to medium-sized transparent bubbles of perfluorocarbon liquid (PFCL with membranes in the vitreous cavity. Ultrasonography confirmed the presence of PFCL in the vitreous cavity. Pars plana vitrectomy with anterior chamber wash was done which led to good visual recovery. To conclude, retained PFCL can cause late onset fibrinous inflammation after a quiescent period but surgical intervention may lead to good visual outcome.

  9. Nuclear fuel element nut retainer cup

    International Nuclear Information System (INIS)

    Walton, L.A.

    1977-01-01

    A typical embodiment has an end fitting for a nuclear reactor fuel element that is joined to the control rod guide tubes by means of a nut plate assembly. The nut plate assembly has an array of nuts, each engaging the respective threaded end of the control rod guide tubes. The nuts, moreover, are retained on the plate during handling and before fuel element assembly by means of hollow cylindrical locking cups that are brazed to the plate and loosely circumscribe the individual enclosed nuts. After the nuts are threaded onto the respective guide tube ends, the locking cups are partially deformed to prevent one or more of the nuts from working loose during reactor operation. The locking cups also prevent loose or broken end fitting parts from becoming entrained in the reactor coolant

  10. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    Science.gov (United States)

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  11. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  12. A functional test of Neandertal and modern human mitochondrial targeting sequences

    Energy Technology Data Exchange (ETDEWEB)

    Gralle, Matthias, E-mail: gralle@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, 21941-590 Rio de Janeiro (Brazil); Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig (Germany); Schaefer, Ingo; Seibel, Peter [Department of Molecular Cell Therapy, Leipzig University, Deutscher Platz 5, 04103 Leipzig (Germany); Paeaebo, Svante [Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig (Germany)

    2010-11-26

    Research highlights: {yields} Two mutations in mitochondrial targeting peptides occurred during human evolution, possibly after Neandertals split off from modern human lineage. {yields} The ancestral and modern human versions of these two targeting peptides were tested functionally for their effects on localization and cleavage rate. {yields} In spite of recent evolution, and to the contrary of other mutations in targeting peptides, these mutations had no visible effects. -- Abstract: Targeting of nuclear-encoded proteins to different organelles, such as mitochondria, is a process that can result in the redeployment of proteins to new intracellular destinations during evolution. With the sequencing of the Neandertal genome, it has become possible to identify amino acid substitutions that occurred on the modern human lineage since its separation from the Neandertal lineage. Here we analyze the function of two substitutions in mitochondrial targeting sequences that occurred and rose to high frequency recently during recent human evolution. The ancestral and modern versions of the two targeting sequences do not differ in the efficiency with which they direct a protein to the mitochondria, an observation compatible with the neutral theory of molecular evolution.

  13. A functional test of Neandertal and modern human mitochondrial targeting sequences

    International Nuclear Information System (INIS)

    Gralle, Matthias; Schaefer, Ingo; Seibel, Peter; Paeaebo, Svante

    2010-01-01

    Research highlights: → Two mutations in mitochondrial targeting peptides occurred during human evolution, possibly after Neandertals split off from modern human lineage. → The ancestral and modern human versions of these two targeting peptides were tested functionally for their effects on localization and cleavage rate. → In spite of recent evolution, and to the contrary of other mutations in targeting peptides, these mutations had no visible effects. -- Abstract: Targeting of nuclear-encoded proteins to different organelles, such as mitochondria, is a process that can result in the redeployment of proteins to new intracellular destinations during evolution. With the sequencing of the Neandertal genome, it has become possible to identify amino acid substitutions that occurred on the modern human lineage since its separation from the Neandertal lineage. Here we analyze the function of two substitutions in mitochondrial targeting sequences that occurred and rose to high frequency recently during recent human evolution. The ancestral and modern versions of the two targeting sequences do not differ in the efficiency with which they direct a protein to the mitochondria, an observation compatible with the neutral theory of molecular evolution.

  14. 18 CFR 367.2160 - Account 216, Unappropriated retained earnings.

    Science.gov (United States)

    2010-04-01

    ..., Unappropriated retained earnings. 367.2160 Section 367.2160 Conservation of Power and Water Resources FEDERAL... retained earnings. This account must include the balances, either debit or credit, of unappropriated retained earnings arising from earnings of the service company. This account must not include any amounts...

  15. 17 CFR 256.215 - Appropriated retained earnings.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Appropriated retained earnings... UTILITY HOLDING COMPANY ACT OF 1935 Liabilities and Other Credit Accounts § 256.215 Appropriated retained earnings. This account shall include the amount of retained earnings which has been appropriated or set...

  16. 18 CFR 367.2150 - Account 215, Appropriated retained earnings.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 215, Appropriated retained earnings. 367.2150 Section 367.2150 Conservation of Power and Water Resources FEDERAL... retained earnings. This account must include the amount of retained earnings that has been appropriated or...

  17. Soil Retaining Structures : Development of models for structural analysis

    NARCIS (Netherlands)

    Bakker, K.J.

    2000-01-01

    The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these

  18. 31 CFR 203.16 - Retainer and investor depositaries.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Retainer and investor depositaries... TREASURY TAX AND LOAN PROGRAM PATAX § 203.16 Retainer and investor depositaries. (a) Credit to TIP main account balance. On the business day that the TSC receives an AOC from a retainer or investor depositary...

  19. The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei and a comparison of mitochondrial gene rearrangements in Arachnida

    Directory of Open Access Journals (Sweden)

    Braband Anke

    2007-10-01

    Full Text Available Abstract Background Mitochondrial genomes are widely utilized for phylogenetic and population genetic analyses among animals. In addition to sequence data the mitochondrial gene order and RNA secondary structure data are used in phylogenetic analyses. Arachnid phylogeny is still highly debated and there is a lack of sufficient sequence data for many taxa. Ricinulei (hooded tickspiders are a morphologically distinct clade of arachnids with uncertain phylogenetic affinities. Results The first complete mitochondrial DNA genome of a member of the Ricinulei, Pseudocellus pearsei (Arachnida: Ricinulei was sequenced using a PCR-based approach. The mitochondrial genome is a typical circular duplex DNA molecule with a size of 15,099 bp, showing the complete set of genes usually present in bilaterian mitochondrial genomes. Five tRNA genes (trnW, trnY, trnN, trnL(CUN, trnV show different relative positions compared to other Chelicerata (e.g. Limulus polyphemus, Ixodes spp.. We propose that two events led to this derived gene order: (1 a tandem duplication followed by random deletion and (2 an independent translocation of trnN. Most of the inferred tRNA secondary structures show the common cloverleaf pattern except tRNA-Glu where the TψC-arm is missing. In phylogenetic analyses (maximum likelihood, maximum parsimony, Bayesian inference using concatenated amino acid and nucleotide sequences of protein-coding genes the basal relationships of arachnid orders remain unresolved. Conclusion Phylogenetic analyses (ML, MP, BI of arachnid mitochondrial genomes fail to resolve interordinal relationships of Arachnida and remain in a preliminary stage because there is still a lack of mitogenomic data from important taxa such as Opiliones and Pseudoscorpiones. Gene order varies considerably within Arachnida – only eight out of 23 species have retained the putative arthropod ground pattern. Some gene order changes are valuable characters in phylogenetic analysis of

  20. Evolution of sexes from an ancestral mating-type specification pathway.

    Directory of Open Access Journals (Sweden)

    Sa Geng

    2014-07-01

    Full Text Available Male and female sexes have evolved repeatedly in eukaryotes but the origins of dimorphic sexes and their relationship to mating types in unicellular species are not understood. Volvocine algae include isogamous species such as Chlamydomonas reinhardtii, with two equal-sized mating types, and oogamous multicellular species such as Volvox carteri with sperm-producing males and egg-producing females. Theoretical work predicts genetic linkage of a gamete cell-size regulatory gene(s to an ancestral mating-type locus as a possible step in the evolution of dimorphic gametes, but this idea has not been tested. Here we show that, contrary to predictions, a single conserved mating locus (MT gene in volvocine algae-MID, which encodes a RWP-RK domain transcription factor-evolved from its ancestral role in C. reinhardtii as a mating-type specifier, to become a determinant of sperm and egg development in V. carteri. Transgenic female V. carteri expressing male MID produced functional sperm packets during sexual development. Transgenic male V. carteri with RNA interference (RNAi-mediated knockdowns of VcMID produced functional eggs, or self-fertile hermaphrodites. Post-transcriptional controls were found to regulate cell-type-limited expression and nuclear localization of VcMid protein that restricted its activity to nuclei of developing male germ cells and sperm. Crosses with sex-reversed strains uncoupled sex determination from sex chromosome identity and revealed gender-specific roles for male and female mating locus genes in sexual development, gamete fitness and reproductive success. Our data show genetic continuity between the mating-type specification and sex determination pathways of volvocine algae, and reveal evidence for gender-specific adaptations in the male and female mating locus haplotypes of Volvox. These findings will enable a deeper understanding of how a master regulator of mating-type determination in an ancestral unicellular species was

  1. What was the ancestral sex-determining mechanism in amniote vertebrates?

    Science.gov (United States)

    Johnson Pokorná, Martina; Kratochvíl, Lukáš

    2016-02-01

    Amniote vertebrates, the group consisting of mammals and reptiles including birds, possess various mechanisms of sex determination. Under environmental sex determination (ESD), the sex of individuals depends on the environmental conditions occurring during their development and therefore there are no sexual differences present in their genotypes. Alternatively, through the mode of genotypic sex determination (GSD), sex is determined by a sex-specific genotype, i.e. by the combination of sex chromosomes at various stages of differentiation at conception. As well as influencing sex determination, sex-specific parts of genomes may, and often do, develop specific reproductive or ecological roles in their bearers. Accordingly, an individual with a mismatch between phenotypic (gonadal) and genotypic sex, for example an individual sex-reversed by environmental effects, should have a lower fitness due to the lack of specialized, sex-specific parts of their genome. In this case, evolutionary transitions from GSD to ESD should be less likely than transitions in the opposite direction. This prediction contrasts with the view that GSD was the ancestral sex-determining mechanism for amniote vertebrates. Ancestral GSD would require several transitions from GSD to ESD associated with an independent dedifferentiation of sex chromosomes, at least in the ancestors of crocodiles, turtles, and lepidosaurs (tuataras and squamate reptiles). In this review, we argue that the alternative theory postulating ESD as ancestral in amniotes is more parsimonious and is largely concordant with the theoretical expectations and current knowledge of the phylogenetic distribution and homology of sex-determining mechanisms. © 2014 Cambridge Philosophical Society.

  2. Analysis of ancestral and functionally relevant CD5 variants in systemic lupus erythematosus patients.

    Directory of Open Access Journals (Sweden)

    Maria Carmen Cenit

    Full Text Available CD5 plays a crucial role in autoimmunity and is a well-established genetic risk factor of developing RA. Recently, evidence of positive selection has been provided for the CD5 Pro224-Val471 haplotype in East Asian populations. The aim of the present work was to further analyze the functional relevance of non-synonymous CD5 polymorphisms conforming the ancestral and the newly derived haplotypes (Pro224-Ala471 and Pro224-Val471, respectively as well as to investigate the potential role of CD5 on the development of SLE and/or SLE nephritis.The CD5 SNPs rs2241002 (C/T; Pro224Leu and rs2229177 (C/T; Ala471Val were genotyped using TaqMan allelic discrimination assays in a total of 1,324 controls and 681 SLE patients of Spanish origin. In vitro analysis of CD3-mediated T cell proliferative and cytokine response profiles of healthy volunteers homozygous for the above mentioned CD5 haplotypes were also analyzed.T-cell proliferation and cytokine release were significantly increased showing a bias towards to a Th2 profile after CD3 cross-linking of peripheral mononuclear cells from healthy individuals homozygous for the ancestral Pro224-Ala471 (CC haplotype, compared to the more recently derived Pro224-Val471 (CT. The same allelic combination was statistically associated with Lupus nephritis.The ancestral Ala471 CD5 allele confers lymphocyte hyper-responsiveness to TCR/CD3 cross-linking and is associated with nephritis in SLE patients.

  3. The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene.

    Science.gov (United States)

    Pharo, Elizabeth A; De Leo, Alison A; Renfree, Marilyn B; Thomson, Peter C; Lefèvre, Christophe M; Nicholas, Kevin R

    2012-06-08

    The marsupial early lactation protein (ELP) gene is expressed in the mammary gland and the protein is secreted into milk during early lactation (Phase 2A). Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine colostrum trypsin inhibitor (CTI) protein. Although ELP and CTI both have a single bovine pancreatic trypsin inhibitor (BPTI)-Kunitz domain and are secreted only during the early lactation phases, their evolutionary history is yet to be investigated. Tammar ELP was isolated from a genomic library and the fat-tailed dunnart and Southern koala ELP genes cloned from genomic DNA. The tammar ELP gene was expressed only in the mammary gland during late pregnancy (Phase 1) and early lactation (Phase 2A). The opossum and fat-tailed dunnart ELP and cow CTI transcripts were cloned from RNA isolated from the mammary gland and dog CTI from cells in colostrum. The putative mature ELP and CTI peptides shared 44.6%-62.2% similarity. In silico analyses identified the ELP and CTI genes in the other species examined and provided compelling evidence that they evolved from a common ancestral gene. In addition, whilst the eutherian CTI gene was conserved in the Laurasiatherian orders Carnivora and Cetartiodactyla, it had become a pseudogene in others. These data suggest that bovine CTI may be the ancestral gene of the Artiodactyla-specific, rapidly evolving chromosome 13 pancreatic trypsin inhibitor (PTI), spleen trypsin inhibitor (STI) and the five placenta-specific trophoblast Kunitz domain protein (TKDP1-5) genes. Marsupial ELP and eutherian CTI evolved from an ancestral therian mammal gene before the divergence of marsupials and eutherians between 130 and 160 million years ago. The retention of the ELP gene in marsupials suggests that this early lactation-specific milk protein may have an important role in the immunologically naïve young of these species.

  4. The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene

    Directory of Open Access Journals (Sweden)

    Pharo Elizabeth A

    2012-06-01

    Full Text Available Abstract Background The marsupial early lactation protein (ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation (Phase 2A. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine colostrum trypsin inhibitor (CTI protein. Although ELP and CTI both have a single bovine pancreatic trypsin inhibitor (BPTI-Kunitz domain and are secreted only during the early lactation phases, their evolutionary history is yet to be investigated. Results Tammar ELP was isolated from a genomic library and the fat-tailed dunnart and Southern koala ELP genes cloned from genomic DNA. The tammar ELP gene was expressed only in the mammary gland during late pregnancy (Phase 1 and early lactation (Phase 2A. The opossum and fat-tailed dunnart ELP and cow CTI transcripts were cloned from RNA isolated from the mammary gland and dog CTI from cells in colostrum. The putative mature ELP and CTI peptides shared 44.6%-62.2% similarity. In silico analyses identified the ELP and CTI genes in the other species examined and provided compelling evidence that they evolved from a common ancestral gene. In addition, whilst the eutherian CTI gene was conserved in the Laurasiatherian orders Carnivora and Cetartiodactyla, it had become a pseudogene in others. These data suggest that bovine CTI may be the ancestral gene of the Artiodactyla-specific, rapidly evolving chromosome 13 pancreatic trypsin inhibitor (PTI, spleen trypsin inhibitor (STI and the five placenta-specific trophoblast Kunitz domain protein (TKDP1-5 genes. Conclusions Marsupial ELP and eutherian CTI evolved from an ancestral therian mammal gene before the divergence of marsupials and eutherians between 130 and 160 million years ago. The retention of the ELP gene in marsupials suggests that this early lactation-specific milk protein may have an important role in the immunologically naïve young of these species.

  5. Sustainability of ancestral methods of agricultural production in Perú: ¿keep or replace?

    Directory of Open Access Journals (Sweden)

    Dani Eduardo Vargas Huanca

    2016-09-01

    Full Text Available Based on the success of some Andean products such as quinoa, potatoes or maca in international food trade and the growing environmental degradation facing developing countries, resulting from intensive exploitation activities; Our research seeks to show the trend that is assumed from the academic / scientific community and public officials in the food sector in Peru, against the need to maintain sustainable various ancestral modes of agricultural production (case quinoa, for it analyze quantitative and qualitative obtained from public institutions and Peruvian universities.

  6. RETAINED STONE PIECE IN ANTERIOR CHAMBER

    Directory of Open Access Journals (Sweden)

    ZvornicaninJasmin, Nadarevic-VodencarevicAmra

    2015-04-01

    Full Text Available ABSTRACT We read with interest the article by Surekha et al. regarding the retained stone piece in anterior chamber. Similar to the results of previous studies, the authors found that delayed intraocular foreign body (IOFB management can result in good visual outcome without an apparent increased risk of endophthalmitis or other deleterious side effects. However, the authors failed to explain the exact reason for the diminution of vision in patients left eye. It is unclear what the uncorrected visual acuity was and what kind of correction was used, more precisely type and amount of cylinder, given the presence of the corneal opacity. Since the size of the IOFB is approximately 4x4x1mm, significant irido-corneal angle changes resulting in intraocular pressure raise and optic nerve head damage can be expected. Traumatic glaucoma following open globe injury can occur in 2.7 to 19% of cases, with several risk factors associated with glaucoma development (advanced age, poor visual acuity at presentation,perforating rather than penetrating ocular injury,lens injury, presence of vitreous hemorrhage and presence of an IOFB. Earlier reportsof latetraumaticoptic neuropathy onset, even after several years, indicate that this possibility cannot be completely ruled out too. Therefore, repeated intraocular pressure measurements, gonioscopy, pupillary reaction assessment, together with through posterior segment examination including visual field and optical coherence tomography examinations can be useful in determining the possible optic nerve damage as one of the possible reasons for visual acuity reduction. The authors did not suggest any operative treatment at this time. However, it should bear in mind that the inert anterior chamber IOFB could be a risk factor for non-infectious endophthalmitis development even after many years. Also, long term retained anterior chamber foreign body leads to permanent endothelial cell loss and can even result in a corneal

  7. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  8. Keeping it simple: flowering plants tend to retain, and revert to, simple leaves.

    Science.gov (United States)

    Geeta, R; Dávalos, Liliana M; Levy, André; Bohs, Lynn; Lavin, Mathew; Mummenhoff, Klaus; Sinha, Neelima; Wojciechowski, Martin F

    2012-01-01

    • A wide range of factors (developmental, physiological, ecological) with unpredictable interactions control variation in leaf form. Here, we examined the distribution of leaf morphologies (simple and complex forms) across angiosperms in a phylogenetic context to detect patterns in the directions of changes in leaf shape. • Seven datasets (diverse angiosperms and six nested clades, Sapindales, Apiales, Papaveraceae, Fabaceae, Lepidium, Solanum) were analysed using maximum likelihood and parsimony methods to estimate asymmetries in rates of change among character states. • Simple leaves are most frequent among angiosperm lineages today, were inferred to be ancestral in angiosperms and tended to be retained in evolution (stasis). Complex leaves slowly originated ('gains') and quickly reverted to simple leaves ('losses') multiple times, with a significantly greater rate of losses than gains. Lobed leaves may be a labile intermediate step between different forms. The nested clades showed mixed trends; Solanum, like the angiosperms in general, had higher rates of losses than gains, but the other clades had higher rates of gains than losses. • The angiosperm-wide pattern could be taken as a null model to test leaf evolution patterns in particular clades, in which patterns of variation suggest clade-specific processes that have yet to be investigated fully. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  9. Understanding mitochondrial myopathies: a review

    Directory of Open Access Journals (Sweden)

    Abhimanyu S. Ahuja

    2018-05-01

    Full Text Available Mitochondria are small, energy-producing structures vital to the energy needs of the body. Genetic mutations cause mitochondria to fail to produce the energy needed by cells and organs which can cause severe disease and death. These genetic mutations are likely to be in the mitochondrial DNA (mtDNA, or possibly in the nuclear DNA (nDNA. The goal of this review is to assess the current understanding of mitochondrial diseases. This review focuses on the pathology, causes, risk factors, symptoms, prevalence data, symptomatic treatments, and new research aimed at possible preventions and/or treatments of mitochondrial diseases. Mitochondrial myopathies are mitochondrial diseases that cause prominent muscular symptoms such as muscle weakness and usually present with a multitude of symptoms and can affect virtually all organ systems. There is no cure for these diseases as of today. Treatment is generally supportive and emphasizes symptom management. Mitochondrial diseases occur infrequently and hence research funding levels tend to be low in comparison with more common diseases. On the positive side, quite a few genetic defects responsible for mitochondrial diseases have been identified, which are in turn being used to investigate potential treatments. Speech therapy, physical therapy, and respiratory therapy have been used in mitochondrial diseases with variable results. These therapies are not curative and at best help with maintaining a patient’s current abilities to move and function.

  10. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  11. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  12. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  13. Endocrine disorders in mitochondrial disease.

    Science.gov (United States)

    Schaefer, Andrew M; Walker, Mark; Turnbull, Douglass M; Taylor, Robert W

    2013-10-15

    Endocrine dysfunction in mitochondrial disease is commonplace, but predominantly restricted to disease of the endocrine pancreas resulting in diabetes mellitus. Other endocrine manifestations occur, but are relatively rare by comparison. In mitochondrial disease, neuromuscular symptoms often dominate the clinical phenotype, but it is of paramount importance to appreciate the multi-system nature of the disease, of which endocrine dysfunction may be a part. The numerous phenotypes attributable to pathogenic mutations in both the mitochondrial (mtDNA) and nuclear DNA creates a complex and heterogeneous catalogue of disease which can be difficult to navigate for novices and experts alike. In this article we provide an overview of the endocrine disorders associated with mitochondrial disease, the way in which the underlying mitochondrial disorder influences the clinical presentation, and how these factors influence subsequent management. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family.

    Science.gov (United States)

    Illa, Eudald; Sargent, Daniel J; Lopez Girona, Elena; Bushakra, Jill; Cestaro, Alessandro; Crowhurst, Ross; Pindo, Massimo; Cabrera, Antonio; van der Knaap, Esther; Iezzoni, Amy; Gardiner, Susan; Velasco, Riccardo; Arús, Pere; Chagné, David; Troggio, Michela

    2011-01-12

    Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae.

  15. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family

    Directory of Open Access Journals (Sweden)

    Velasco Riccardo

    2011-01-01

    Full Text Available Abstract Background Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. Results We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. Conclusions A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae.

  16. Ancestral state reconstruction infers phytopathogenic origins of sooty blotch and flyspeck fungi on apple.

    Science.gov (United States)

    Ismail, Siti Izera; Batzer, Jean Carlson; Harrington, Thomas C; Crous, Pedro W; Lavrov, Dennis V; Li, Huanyu; Gleason, Mark L

    2016-01-01

    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi. © 2016 by The Mycological Society of America.

  17. Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex.

    Directory of Open Access Journals (Sweden)

    Katherine Belov

    2006-03-01

    Full Text Available The first sequenced marsupial genome promises to reveal unparalleled insights into mammalian evolution. We have used the Monodelphis domestica (gray short-tailed opossum sequence to construct the first map of a marsupial major histocompatibility complex (MHC. The MHC is the most gene-dense region of the mammalian genome and is critical to immunity and reproductive success. The marsupial MHC bridges the phylogenetic gap between the complex MHC of eutherian mammals and the minimal essential MHC of birds. Here we show that the opossum MHC is gene dense and complex, as in humans, but shares more organizational features with non-mammals. The Class I genes have amplified within the Class II region, resulting in a unique Class I/II region. We present a model of the organization of the MHC in ancestral mammals and its elaboration during mammalian evolution. The opossum genome, together with other extant genomes, reveals the existence of an ancestral "immune supercomplex" that contained genes of both types of natural killer receptors together with antigen processing genes and MHC genes.

  18. Evidence for Ancestral Programming of Resilience in a Two-Hit Stress Model

    Directory of Open Access Journals (Sweden)

    Jamshid Faraji

    2017-05-01

    Full Text Available In a continuously stressful environment, the effects of recurrent prenatal stress (PS may accumulate across generations and alter stress vulnerability and resilience. Here, we report in female rats that a family history of recurrent ancestral PS facilitates certain aspects of movement performance, and that these benefits are abolished by the experience of a second hit, induced by a silent ischemia during adulthood. Female F4-generation rats with and without a family history of cumulative multigenerational PS (MPS were tested for skilled motor function before and after the induction of a minor ischemic insult by endothelin-1 infusion into the primary motor cortex. MPS resulted in improved skilled motor abilities and blunted hypothalamic-pituitary-adrenal (HPA axis function compared to non-stressed rats. Deep sequencing revealed downregulation of miR-708 in MPS rats along with upregulation of its predicted target genes Mapk10 and Rasd2. Through miR-708 stress may regulate mitogen-activated protein kinase (MAPK pathway activity. Hair trace elemental analysis revealed an increased Na/K ratio, which suggests a chronic shift in adrenal gland function. The ischemic lesion activated the HPA axis in MPS rats only; the lesion, however, abolished the advantage of MPS in skilled reaching. The findings indicate that MPS generates adaptive flexibility in movement, which is challenged by a second stressor, such as a neuropathological condition. Thus, a second “hit” by a stressor may limit behavioral flexibility and neural plasticity associated with ancestral stress.

  19. Bearing the unbearable: ancestral transmission through dreams and moving metaphors in the analtyic field.

    Science.gov (United States)

    Pickering, Judith

    2012-11-01

    This paper explores how untold and unresolved intergenerational trauma may be transmitted through unconscious channels of communication, manifesting in the dreams of descendants. Unwitting carriers for that which was too horrific for their ancestors to bear, descendants may enter analysis through an unconscious need to uncover past secrets, piece together ancestral histories before the keys to comprehending their terrible inheritance die with their forebears. They seek the relational containment of the analytic relationship to provide psychological conditions to bear the unbearable, know the unknowable, speak the unspeakable and redeem the unredeemable. In the case of 'Rachael', initial dreams gave rise to what Hobson (1984) called 'moving metaphors of self' in the analytic field. Dream imagery, projective and introjective processes in the transference-countertransference dynamics gradually revealed an unknown ancestral history. I clarify the back and forth process from dream to waking dream thoughts to moving metaphors and differentiate the moving metaphor from a living symbol. I argue that the containment of the analytic relationship nested within the security of the analytic space is a necessary precondition for such healing processes to occur. © 2012, The Society of Analytical Psychology.

  20. Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats.

    Science.gov (United States)

    Gillette, Ross; Miller-Crews, Isaac; Nilsson, Eric E; Skinner, Michael K; Gore, Andrea C; Crews, David

    2014-10-01

    How an individual responds to the environment depends upon both personal life history as well as inherited genetic and epigenetic factors from ancestors. Using a 2-hit, 3 generations apart model, we tested how F3 descendants of rats given in utero exposure to the environmental endocrine-disrupting chemical (EDC) vinclozolin reacted to stress during adolescence in their own lives, focusing on sexually dimorphic phenotypic outcomes. In adulthood, male and female F3 vinclozolin- or vehicle-lineage rats, stressed or nonstressed, were behaviorally characterized on a battery of tests and then euthanized. Serum was used for hormone assays, and brains were used for quantitative PCR and transcriptome analyses. Results showed that the effects of ancestral exposure to vinclozolin converged with stress experienced during adolescence in a sexually dimorphic manner. Debilitating effects were seen at all levels of the phenotype, including physiology, behavior, brain metabolism, gene expression, and genome-wide transcriptome modifications in specific brain nuclei. Additionally, females were significantly more vulnerable than males to transgenerational effects of vinclozolin on anxiety but not sociality tests. This fundamental transformation occurs in a manner not predicted by the ancestral exposure or the proximate effects of stress during adolescence, an interaction we refer to as synchronicity.

  1. Phylogenetic signal from rearrangements in 18 Anopheles species by joint scaffolding extant and ancestral genomes.

    Science.gov (United States)

    Anselmetti, Yoann; Duchemin, Wandrille; Tannier, Eric; Chauve, Cedric; Bérard, Sèverine

    2018-05-09

    Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions. We present a computational method, ADSEQ, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats. ADSEQ provides simultaneously improved assemblies and ancestral genomes, with statistical supports on all local features. Compared to previous comparative methods, it runs in polynomial time, it samples solutions in a probabilistic space, and it can handle a significantly larger gene complement from the considered extant genomes, with complex histories including gene duplications and losses. We use ADSEQ to provide improved assemblies and a genome history made of duplications, losses, gene translocations, rearrangements, of 18 complete Anopheles genomes, including several important malaria vectors. We also provide additional support for a differentiated mode of evolution of the sex chromosome and of the autosomes in these mosquito genomes. We demonstrate the method's ability to improve extant assemblies accurately through a procedure simulating realistic assembly fragmentation. We study a debated issue regarding the phylogeny of the Gambiae complex group of Anopheles genomes in the light of the evolution of chromosomal rearrangements, suggesting that the phylogenetic signal they carry can differ from the phylogenetic signal carried by gene sequences, more prone to introgression.

  2. A branch-heterogeneous model of protein evolution for efficient inference of ancestral sequences.

    Science.gov (United States)

    Groussin, M; Boussau, B; Gouy, M

    2013-07-01

    Most models of nucleotide or amino acid substitution used in phylogenetic studies assume that the evolutionary process has been homogeneous across lineages and that composition of nucleotides or amino acids has remained the same throughout the tree. These oversimplified assumptions are refuted by the observation that compositional variability characterizes extant biological sequences. Branch-heterogeneous models of protein evolution that account for compositional variability have been developed, but are not yet in common use because of the large number of parameters required, leading to high computational costs and potential overparameterization. Here, we present a new branch-nonhomogeneous and nonstationary model of protein evolution that captures more accurately the high complexity of sequence evolution. This model, henceforth called Correspondence and likelihood analysis (COaLA), makes use of a correspondence analysis to reduce the number of parameters to be optimized through maximum likelihood, focusing on most of the compositional variation observed in the data. The model was thoroughly tested on both simulated and biological data sets to show its high performance in terms of data fitting and CPU time. COaLA efficiently estimates ancestral amino acid frequencies and sequences, making it relevant for studies aiming at reconstructing and resurrecting ancestral amino acid sequences. Finally, we applied COaLA on a concatenate of universal amino acid sequences to confirm previous results obtained with a nonhomogeneous Bayesian model regarding the early pattern of adaptation to optimal growth temperature, supporting the mesophilic nature of the Last Universal Common Ancestor.

  3. A phylogenetic Kalman filter for ancestral trait reconstruction using molecular data.

    Science.gov (United States)

    Lartillot, Nicolas

    2014-02-15

    Correlation between life history or ecological traits and genomic features such as nucleotide or amino acid composition can be used for reconstructing the evolutionary history of the traits of interest along phylogenies. Thus far, however, such ancestral reconstructions have been done using simple linear regression approaches that do not account for phylogenetic inertia. These reconstructions could instead be seen as a genuine comparative regression problem, such as formalized by classical generalized least-square comparative methods, in which the trait of interest and the molecular predictor are represented as correlated Brownian characters coevolving along the phylogeny. Here, a Bayesian sampler is introduced, representing an alternative and more efficient algorithmic solution to this comparative regression problem, compared with currently existing generalized least-square approaches. Technically, ancestral trait reconstruction based on a molecular predictor is shown to be formally equivalent to a phylogenetic Kalman filter problem, for which backward and forward recursions are developed and implemented in the context of a Markov chain Monte Carlo sampler. The comparative regression method results in more accurate reconstructions and a more faithful representation of uncertainty, compared with simple linear regression. Application to the reconstruction of the evolution of optimal growth temperature in Archaea, using GC composition in ribosomal RNA stems and amino acid composition of a sample of protein-coding genes, confirms previous findings, in particular, pointing to a hyperthermophilic ancestor for the kingdom. The program is freely available at www.phylobayes.org.

  4. Mitochondrial and nuclear DNA reveals reticulate evolution in hares (Lepus spp., Lagomorpha, Mammalia from Ethiopia.

    Directory of Open Access Journals (Sweden)

    Zelalem Tolesa

    Full Text Available For hares (Lepus spp., Leporidae, Lagomorpha, Mammalia from Ethiopia no conclusive molecular phylogenetic data are available. To provide a first molecular phylogenetic model for the Abyssinian Hare (Lepus habessinicus, the Ethiopian Hare (L. fagani, and the Ethiopian Highland Hare (L. starcki and their evolutionary relationships to hares from Africa, Eurasia, and North America, we phylogenetically analysed mitochondrial ATPase subunit 6 (ATP6; n = 153 / 416bp and nuclear transferrin (TF; n = 155 / 434bp sequences of phenotypically determined individuals. For the hares from Ethiopia, genotype composition at twelve microsatellite loci (n = 107 was used to explore both interspecific gene pool separation and levels of current hybridization, as has been observed in some other Lepus species. For phylogenetic analyses ATP6 and TF sequences of Lepus species from South and North Africa (L. capensis, L. saxatilis, the Anatolian peninsula and Europe (L. europaeus, L. timidus were also produced and additional TF sequences of 18 Lepus species retrieved from GenBank were included as well. Median joining networks, neighbour joining, maximum likelihood analyses, as well as Bayesian inference resulted in similar models of evolution of the three species from Ethiopia for the ATP6 and TF sequences, respectively. The Ethiopian species are, however, not monophyletic, with signatures of contemporary uni- and bidirectional mitochondrial introgression and/ or shared ancestral polymorphism. Lepus habessinicus carries mtDNA distinct from South African L. capensis and North African L. capensis sensu lato; that finding is not in line with earlier suggestions of its conspecificity with L. capensis. Lepus starcki has mtDNA distinct from L. capensis and L. europaeus, which is not in line with earlier suggestions to include it either in L. capensis or L. europaeus. Lepus fagani shares mitochondrial haplotypes with the other two species from Ethiopia, despite its distinct

  5. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    Science.gov (United States)

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  6. Periodontal implication of bonded and removable retainers: A comparative study

    Directory of Open Access Journals (Sweden)

    Sonali Mondal

    2017-09-01

    Full Text Available The purpose of this study is to compare the periodontal health of the lower anterior teeth retained with the use of removable and fixed retainers. Fifty four cases receiving comprehensive orthodontic treatment in between 10 to 30 years were randomly selected and divided into 2 groups of 27 each. One group was given removable retainers and other was given fixed retainers. The periodontal status of the patients was accessed with bleeding on probing index, Plaque index and Calculus index. The mean plaque index in case of removable retainers at 1st, 3rd and 6th month were 0.5, 1.0 and 1.7 where as in case of fixed retainers that were 1.8, 3.0 and 4.5. The mean dental calculus index in case of removable retainers at 1st, 3rd and 6th month were 0.0, 0.1 and 0.1 where as in case of fixed retainers that were 0.1, 0.9 and 1.8. In conclusion, removable retainers are superior in oral hygiene maintenance, yet the use of fixed retainers cannot be denied.

  7. Attracting and retaining doctors in rural Nepal.

    Science.gov (United States)

    Shankar, P R

    2010-01-01

    In Nepal, a number of private sector medical schools have opened recently; although sufficient numbers of doctors are graduating there continues to be a doctor shortage in rural areas. This article analysed the rural doctor shortage in Nepal and reviewed the international literature for strategies that may be suitable for use in Nepal. Original research articles, reviews, magazine articles and project reports dealing with Nepal and other developing countries during the period 1995 to 2010 were sourced via Google, Google Scholar and Pubmed. Full text access was obtained via WHO's HINARI database. The health workforce in Nepal is unevenly distributed resulting in doctor shortages in rural areas. The recent introduction of mandatory rural service for scholarship students was aimed to reduce the loss of medical graduates to developed nations. High tuition fees in private medical schools and low Government wages prevent recent graduates from taking up rural positions, and those who do face many challenges. Potential corrective strategies include community-based medical education, selecting rural-background medical students, and providing a partial or complete tuition fee waiver for medical students who commit to rural service. Traditional healers and paramedical staff can also be trained for and authorized to provide rural health care. A range of strategies developed elsewhere could be used in Nepal, especially community-oriented medical education that involves rural doctors in training medical students. The reimbursement of tuition fees, assistance with relocation, and provision of opportunities for academic and professional advancement for rural doctors should also be considered. Government investment in improving working conditions in rural Nepal would assist rural communities to attract and retain doctors.

  8. Redistribution of retained particles. Effect of hyperpnea

    International Nuclear Information System (INIS)

    Valberg, P.A.; Wolff, R.K.; Mauderly, J.L.

    1985-01-01

    The effect of postexposure hyperpnea on clearance of particles deposited in the lungs of adult male beagle dogs was examined. Sedated dogs inhaled an insoluble 67 Gg 2 O 3 (T 1/2 . 78 h) aerosol (0.12 micron AMD) for one half hour on three separate occasions. Following aerosol exposures 1 and 2, dogs were assigned to either an eupneic (EUP) or hyperpneic (HYP) group and clearance was followed noninvasively for 9 days by whole body counting and gamma camera analysis. After exposure 2, EUP and HYP assignments were interchanged so that each dog was studied under both conditions. Hyperpnea was induced by housing dogs in an atmosphere of 7% CO 2 in air, 6 h per day. Carbon dioxide inhalation increased VE a factor of 3.7 +/- 0.9 (SD). The authors found that pulmonary clearance was retarded by CO 2 -stimulated hyperpnea in 7 of 8 dogs. Following aerosol exposure 3, dogs were divided between EUP and HYP and subsequently were killed in pairs at 3 h, 1 day, 3 days, and 7 days. Distribution of activity in body organs was examined, and translocation to the hilar lymph nodes was followed. Both retention distribution and removal of activity by saline lavage were measured in postmortem lungs. The percentage of lavaged activity associated with pulmonary macrophages increased from 44% at 3 h after exposure to 91% at 4 and 7 days after exposure. Examination of dried lung slices by autoradiography showed clearance of particles from airways and formation of a more punctate distribution in the retained activity at increasing times after exposure. Distinctive differences between HYP and EUP dogs were not seen

  9. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2015-01-01

    adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures....... In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance...

  10. Estimating Divergence Time and Ancestral Effective Population Size of Bornean and Sumatran Orangutan Subspecies Using a Coalescent Hidden Markov Model

    DEFF Research Database (Denmark)

    Mailund, Thomas; Dutheil, Julien; Hobolth, Asger

    2011-01-01

    event has occurred to split them apart. The size of these segments of constant divergence depends on the recombination rate, but also on the speciation time, the effective population size of the ancestral population, as well as demographic effects and selection. Thus, inference of these parameters may......, and the ancestral effective population size. The model is efficient enough to allow inference on whole-genome data sets. We first investigate the power and consistency of the model with coalescent simulations and then apply it to the whole-genome sequences of the two orangutan sub-species, Bornean (P. p. pygmaeus......) and Sumatran (P. p. abelii) orangutans from the Orangutan Genome Project. We estimate the speciation time between the two sub-species to be thousand years ago and the effective population size of the ancestral orangutan species to be , consistent with recent results based on smaller data sets. We also report...

  11. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  12. Reliability-based design of a retaining wall

    OpenAIRE

    Kim, John Sang

    1995-01-01

    A retaining wall is subject to various limit states such as sliding, overturning and bearing capacity, and it can fail by anyone of them. Since a great deal of uncertainty is involved in the analysis of the limit states~ the use of detenninistic conventional safety factors may produce a misleading result. The main objective of this study is to develop a procedure for the optimum design of a retaining wall by using the reliability theory. Typical gravity retaining walls with fou...

  13. Effectiveness of Horizontal Rebar on Concrete Block Retaining Wall Strength

    OpenAIRE

    Krishpersad Manohar; Rikhi Ramkissoon

    2016-01-01

    The effectiveness of including a horizontal rebar compared to only a vertical rebar in concrete filled core interlocking concrete block retaining wall sections was investigated with respect to the horizontal retaining force. Experimental results for three specimens of interlocking blocks with vertical rebar and concrete filled cores showed an average horizontal retaining force of 24546 N ± 5.7% at an average wall deflection of 13.3 mm. Experimental results for three wall specimens of interloc...

  14. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  15. Effects of ancestral x irradiation followed by random mating on body weight of rats

    International Nuclear Information System (INIS)

    Gianola, D.; Chapman, A.B.; Rutledge, J.J.

    1977-01-01

    Effects of nine generations of 450R per generation of ancestral spermatogonial x irradiation of inbred rats on body weight were examined. After six generations of random mating (avoiding inbreeding) following the termination of irradiation, descendants of irradiated males (R) were significantly lighter than their controls (C) at 3 and 6 weeks, but not at 10 weeks of age. However, differences in growth between R and C populations were small. Among-litter and within-litter variance estimates were generally larger in the R lines than in the C lines, suggesting that selection responses would be greater in R than in C lines. In conjunction with previous evidence--obtained during the irradiation phase of the experiment--this suggested that more rapid response to selection for 6-week body weight, in particular, might accrue in the R lines

  16. Where did the chili get its spice? Biogeography of capsaicinoid production in ancestral wild chili species.

    Science.gov (United States)

    Tewksbury, Joshua J; Manchego, Carlos; Haak, David C; Levey, Douglas J

    2006-03-01

    The biogeography of pungency in three species of wild chili in the chaco and surrounding highland habitats of southeastern Bolivia is described. We report that Capsicum chacoense, C. baccatum, and C. eximium are polymorphic for production of capsaicin and its analogs, such that completely pungent and completely nonpungent individuals co-occur in some populations. In C. chacoense, the density of plants and the proportion of pungent plants increased with elevation. Above 900 m, all individuals in all populations except two were pungent; nonpungent individuals in at least one of the two polymorphic populations were likely a result of spreading by humans. The occurrence of pungent and nonpungent individuals in three species of ancestral Capsicum and the geographic variation of pungency within species suggest that production of capsaicin and its analogs entails both costs and benefits, which shift from one locality to another. Determining the selection pressures behind such shifts is necessary to understand the evolution of pungency in chilies.

  17. Novel ancestral Dysferlin splicing mutation which migrated from the Iberian peninsula to South America.

    Science.gov (United States)

    Vernengo, Luis; Oliveira, Jorge; Krahn, Martin; Vieira, Emilia; Santos, Rosário; Carrasco, Luisa; Negrão, Luís; Panuncio, Ana; Leturcq, France; Labelle, Veronique; Bronze-da-Rocha, Elsa; Mesa, Rosario; Pizzarossa, Carlos; Lévy, Nicolas; Rodriguez, Maria-Mirta

    2011-05-01

    Primary dysferlinopathies are a group of recessive heterogeneous muscular dystrophies. The most common clinical presentations are Miyoshi myopathy and LGMD2B. Additional presentations range from isolated hyperCKemia to severe functional disability. Symptomatology begins in the posterior muscle compartment of the calf and its clinical course progresses slowly in Miyoshi myopathy whereas LGMD2B involves predominantly the proximal muscles of the lower limbs. The age of onset ranges from 13 to 60years in Caucasians. We present five patients that carry a novel mutation in the exon12/intron12 boundary: c.1180_1180+7delAGTGCGTG (r.1054_1284del). We provide evidence of a founder effect due to a common ancestral origin of this mutation, detected in heterozygosity in four patients and in homozygosity in one patient. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Loop Replacement Enhances the Ancestral Antibacterial Function of a Bifunctional Scorpion Toxin

    Directory of Open Access Journals (Sweden)

    Shangfei Zhang

    2018-06-01

    Full Text Available On the basis of the evolutionary relationship between scorpion toxins targeting K+ channels (KTxs and antibacterial defensins (Zhu S., Peigneur S., Gao B., Umetsu Y., Ohki S., Tytgat J. Experimental conversion of a defensin into a neurotoxin: Implications for origin of toxic function. Mol. Biol. Evol. 2014, 31, 546–559, we performed protein engineering experiments to modify a bifunctional KTx (i.e., weak inhibitory activities on both K+ channels and bacteria via substituting its carboxyl loop with the structurally equivalent loop of contemporary defensins. As expected, the engineered peptide (named MeuTXKα3-KFGGI remarkably improved the antibacterial activity, particularly on some Gram-positive bacteria, including several antibiotic-resistant opportunistic pathogens. Compared with the unmodified toxin, its antibacterial spectrum also enlarged. Our work provides a new method to enhance the antibacterial activity of bifunctional scorpion venom peptides, which might be useful in engineering other proteins with an ancestral activity.

  19. Did warfare among ancestral hunter-gatherers affect the evolution of human social behaviors?

    Science.gov (United States)

    Bowles, Samuel

    2009-06-05

    Since Darwin, intergroup hostilities have figured prominently in explanations of the evolution of human social behavior. Yet whether ancestral humans were largely "peaceful" or "warlike" remains controversial. I ask a more precise question: If more cooperative groups were more likely to prevail in conflicts with other groups, was the level of intergroup violence sufficient to influence the evolution of human social behavior? Using a model of the evolutionary impact of between-group competition and a new data set that combines archaeological evidence on causes of death during the Late Pleistocene and early Holocene with ethnographic and historical reports on hunter-gatherer populations, I find that the estimated level of mortality in intergroup conflicts would have had substantial effects, allowing the proliferation of group-beneficial behaviors that were quite costly to the individual altruist.

  20. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor

    Science.gov (United States)

    Baldwin, Maude W.; Toda, Yasuka; Nakagita, Tomoya; O'Connell, Mary J.; Klasing, Kirk C.; Misaka, Takumi; Edwards, Scott V.; Liberles, Stephen D.

    2015-01-01

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species. PMID:25146290

  1. Sensory biology. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor.

    Science.gov (United States)

    Baldwin, Maude W; Toda, Yasuka; Nakagita, Tomoya; O'Connell, Mary J; Klasing, Kirk C; Misaka, Takumi; Edwards, Scott V; Liberles, Stephen D

    2014-08-22

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species. Copyright © 2014, American Association for the Advancement of Science.

  2. Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    Science.gov (United States)

    Lehmann, Tobias; Hess, Martin; Melzer, Roland R

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes.

  3. Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    Directory of Open Access Journals (Sweden)

    Tobias Lehmann

    Full Text Available The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora and Limulus polyphemus (Xiphosura. This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes.

  4. Wiring a Periscope – Ocelli, Retinula Axons, Visual Neuropils and the Ancestrality of Sea Spiders

    Science.gov (United States)

    Lehmann, Tobias; Heß, Martin; Melzer, Roland R.

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a ‘periscope’ or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon “pseudoinverted” retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have ‘looked’ like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes. PMID:22279594

  5. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals.

    Science.gov (United States)

    Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R

    2009-01-01

    Using a milk-cell cDNA sequencing approach we characterised milk-protein sequences from two monotreme species, platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus) and found a full set of caseins and casein variants. The genomic organisation of the platypus casein locus is compared with other mammalian genomes, including the marsupial opossum and several eutherians. Physical linkage of casein genes has been seen in the casein loci of all mammalian genomes examined and we confirm that this is also observed in platypus. However, we show that a recent duplication of beta-casein occurred in the monotreme lineage, as opposed to more ancient duplications of alpha-casein in the eutherian lineage, while marsupials possess only single copies of alpha- and beta-caseins. Despite this variability, the close proximity of the main alpha- and beta-casein genes in an inverted tail-tail orientation and the relative orientation of the more distant kappa-casein genes are similar in all mammalian genome sequences so far available. Overall, the conservation of the genomic organisation of the caseins indicates the early, pre-monotreme development of the fundamental role of caseins during lactation. In contrast, the lineage-specific gene duplications that have occurred within the casein locus of monotremes and eutherians but not marsupials, which may have lost part of the ancestral casein locus, emphasises the independent selection on milk provision strategies to the young, most likely linked to different developmental strategies. The monotremes therefore provide insight into the ancestral drivers for lactation and how these have adapted in different lineages.

  6. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes

    Science.gov (United States)

    Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.

    2011-01-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624

  7. Ancestral Variations of the PCDHG Gene Cluster Predispose to Dyslexia in a Multiplex Family

    Directory of Open Access Journals (Sweden)

    Teesta Naskar

    2018-02-01

    Full Text Available Dyslexia is a heritable neurodevelopmental disorder characterized by difficulties in reading and writing. In this study, we describe the identification of a set of 17 polymorphisms located across 1.9 Mb region on chromosome 5q31.3, encompassing genes of the PCDHG cluster, TAF7, PCDH1 and ARHGAP26, dominantly inherited with dyslexia in a multi-incident family. Strikingly, the non-risk form of seven variations of the PCDHG cluster, are preponderant in the human lineage, while risk alleles are ancestral and conserved across Neanderthals to non-human primates. Four of these seven ancestral variations (c.460A > C [p.Ile154Leu], c.541G > A [p.Ala181Thr], c.2036G > C [p.Arg679Pro] and c.2059A > G [p.Lys687Glu] result in amino acid alterations. p.Ile154Leu and p.Ala181Thr are present at EC2: EC3 interacting interface of γA3-PCDH and γA4-PCDH respectively might affect trans-homophilic interaction and hence neuronal connectivity. p.Arg679Pro and p.Lys687Glu are present within the linker region connecting trans-membrane to extracellular domain. Sequence analysis indicated the importance of p.Ile154, p.Arg679 and p.Lys687 in maintaining class specificity. Thus the observed association of PCDHG genes encoding neural adhesion proteins reinforces the hypothesis of aberrant neuronal connectivity in the pathophysiology of dyslexia. Additionally, the striking conservation of the identified variants indicates a role of PCDHG in the evolution of highly specialized cognitive skills critical to reading.

  8. Metamorphosis Is Ancestral for Crown Euarthropods, and Evolved in the Cambrian or Earlier.

    Science.gov (United States)

    Wolfe, Joanna M

    2017-09-01

    Macroevolutionary developmental biology employs fossilized ontogenetic data and phylogenetic comparative methods to probe the evolution of development at ancient nodes. Despite the prevalence of ecologically differentiated larval forms in marine invertebrates, it has been frequently presumed that the ancestors of arthropods were direct developers, and that metamorphosis may not have evolved until the Ordovician or later. Using fossils and new dated phylogenies, I infer that metamorphosis was likely ancestral for crown arthropods, contradicting this assumption. Based on a published morphological dataset encompassing 217 exceptionally preserved fossil and 96 extant taxa, fossils were directly incorporated into both the topology and age estimates, as in "tip dating" analyses. Using data from post-embryonic fossils representing 25 species throughout stem and crown arthropod lineages (as well as most of the 96 extant taxa), characters for metamorphosis were assigned based on inferred ecological changes in development (e.g., changes in habitat and adaptive landscape). Under all phylogenetic hypotheses, metamorphosis was supported as most likely ancestral to both ecdysozoans and euarthropods. Care must be taken to account for potential drastic post-embryonic morphological changes in evolutionary analyses. Many stem group euarthrpods may have had ecologically differentiated larval stages that did not preserve in the fossil record. Moreover, a complex life cycle and planktonic ecology may have evolved in the Ediacaran or earlier, and may have typified the pre-Cambrian explosion "wormworld" prior to the origin of crown group euarthropods. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Inferring genome-wide patterns of admixture in Qataris using fifty-five ancestral populations

    Directory of Open Access Journals (Sweden)

    Omberg Larsson

    2012-06-01

    Full Text Available Abstract Background Populations of the Arabian Peninsula have a complex genetic structure that reflects waves of migrations including the earliest human migrations from Africa and eastern Asia, migrations along ancient civilization trading routes and colonization history of recent centuries. Results Here, we present a study of genome-wide admixture in this region, using 156 genotyped individuals from Qatar, a country located at the crossroads of these migration patterns. Since haplotypes of these individuals could have originated from many different populations across the world, we have developed a machine learning method "SupportMix" to infer loci-specific genomic ancestry when simultaneously analyzing many possible ancestral populations. Simulations show that SupportMix is not only more accurate than other popular admixture discovery tools but is the first admixture inference method that can efficiently scale for simultaneous analysis of 50-100 putative ancestral populations while being independent of prior demographic information. Conclusions By simultaneously using the 55 world populations from the Human Genome Diversity Panel, SupportMix was able to extract the fine-scale ancestry of the Qatar population, providing many new observations concerning the ancestry of the region. For example, as well as recapitulating the three major sub-populations in Qatar, composed of mainly Arabic, Persian, and African ancestry, SupportMix additionally identifies the specific ancestry of the Persian group to populations sampled in Greater Persia rather than from China and the ancestry of the African group to sub-Saharan origin and not Southern African Bantu origin as previously thought.

  10. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  11. Mitochondrial contribution to lipofuscin formation

    Directory of Open Access Journals (Sweden)

    Jeannette König

    2017-04-01

    Moreover, we observed that Lon protease downregulation is linked to a higher lipofuscinogenesis whereas the application of the mitochondrial-targeted antioxidant mitoTEMPO is able to prevent the accumulation of this protein aggregate.

  12. Mitochondrial PKA mediates sperm motility.

    Science.gov (United States)

    Mizrahi, Rashel; Breitbart, Haim

    2014-12-01

    Mitochondria are the major source of ATP to power sperm motility. Phosphorylation of mitochondrial proteins has been proposed as a major regulatory mechanism for mitochondrial bioenergetics. Sperm motility was measured by a computer-assisted analyzer, protein detection by western blotting, membrane potential by tetramethylrhodamine, cellular ATP by luciferase assay and localization of PKA by immuno-electron microscopy. Bicarbonate is essential for the creation of mitochondrial electro-chemical gradient, ATP synthesis and sperm motility. Bicarbonate stimulates PKA-dependent phosphorylation of two 60kDa proteins identified as Tektin and glucose-6-phosphate isomerase. This phosphorylation was inhibited by respiration inhibition and phosphorylation could be restored by glucose in the presence of bicarbonate. However, this effect of glucose cannot be seen when the mitochondrial ATP/ADP exchanger was inhibited indicating that glycolytic-produced ATP is transported into the mitochondria and allows PKA-dependent protein phosphorylation inside the mitochondria. Bicarbonate activates mitochondrial soluble adenylyl cyclase (sAC) which catalyzes cAMP production leading to the activation of mitochondrial PKA. Glucose can overcome the lack of ATP in the absence of bicarbonate but it cannot affect the mitochondrial sAC/PKA system, therefore the PKA-dependent phosphorylation of the 60kDa proteins does not occur in the absence of bicarbonate. Production of CO2 in Krebs cycle, which is converted to bicarbonate is essential for sAC/PKA activation leading to mitochondrial membrane potential creation and ATP synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  14. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2013-01-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  15. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Salvato, Fernanda; Havelund, Jesper Foged; Chen, Mingjie

    2014-01-01

    Mitochondria are called the powerhouses of the cell. To better understand the role of mitochondria in maintaining and regulating metabolism in storage tissues, highly purified mitochondria were isolated from dormant potato tubers (Solanum tuberosum 'Folva') and their proteome investigated. Proteins...... manner using normalized spectral counts including as many as 5-fold more "extreme" proteins (low mass, high isoelectric point, hydrophobic) than previous mitochondrial proteome studies. We estimate that this compendium of proteins represents a high coverage of the potato tuber mitochondrial proteome...

  16. Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation.

    Science.gov (United States)

    Agrimi, Gennaro; Mena, Maria C; Izumi, Kazuki; Pisano, Isabella; Germinario, Lucrezia; Fukuzaki, Hisashi; Palmieri, Luigi; Blank, Lars M; Kitagaki, Hiroshi

    2014-03-01

    Although the decrease in pyruvate secretion by brewer's yeasts during fermentation has long been desired in the alcohol beverage industry, rather little is known about the regulation of pyruvate accumulation. In former studies, we developed a pyruvate under-secreting sake yeast by isolating a strain (TCR7) tolerant to ethyl α-transcyanocinnamate, an inhibitor of pyruvate transport into mitochondria. To obtain insights into pyruvate metabolism, in this study, we investigated the mitochondrial activity of TCR7 by oxigraphy and (13) C-metabolic flux analysis during aerobic growth. While mitochondrial pyruvate oxidation was higher, glycerol production was decreased in TCR7 compared with the reference. These results indicate that mitochondrial activity is elevated in the TCR7 strain with the consequence of decreased pyruvate accumulation. Surprisingly, mitochondrial activity is much higher in the sake yeast compared with CEN.PK 113-7D, the reference strain in metabolic engineering. When shifted from aerobic to anaerobic conditions, sake yeast retains a branched mitochondrial structure for a longer time than laboratory strains. The regulation of mitochondrial activity can become a completely novel approach to manipulate the metabolic profile during fermentation of brewer's yeasts. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Mitochondrial DNA plays an equal role in influencing female and male longevity in centenarians.

    Science.gov (United States)

    He, Yong-Han; Lu, Xiang; Tian, Jiao-Yang; Yan, Dong-Jing; Li, Yu-Chun; Lin, Rong; Perry, Benjamin; Chen, Xiao-Qiong; Yu, Qin; Cai, Wang-Wei; Kong, Qing-Peng

    2016-10-01

    The mitochondrion is a double membrane-bound organelle which plays important functional roles in aging and many other complex phenotypes. Transmission of the mitochondrial genome in the matrilineal line causes the evolutionary selection sieve only in females. Theoretically, beneficial or neutral variations are more likely to accumulate and be retained in the female mitochondrial genome during evolution, which may be an initial trigger of gender dimorphism in aging. The asymmetry of evolutionary processes between gender could lead to males and females aging in different ways. If so, gender specific variation loads could be an evolutionary result of maternal heritage of mitochondrial genomes, especially in centenarians who live to an extreme age and are considered as good models for healthy aging. Here, we tested whether the mitochondrial variation loads were associated with altered aging patterns by investigating the mtDNA haplogroup distribution and genetic diversity between female and male centenarians. We found no evidence of differences in aging patterns between genders in centenarians. Our results indicate that the evolutionary consequence of gender dimorphism in mitochondrial genomes is not a factor in the altered aging patterns in human, and that mitochondrial DNA contributes equally to longevity in males and females. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  19. Melatonin and human mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    Reza Sharafati-Chaleshtori

    2017-01-01

    Full Text Available Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function.

  20. Mitochondrial Metabolism in Aging Heart

    Science.gov (United States)

    Lesnefsky, Edward J.; Chen, Qun; Hoppel, Charles L.

    2016-01-01

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area there is an approximate 50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  1. 17 CFR 256.216 - Unappropriated retained earnings.

    Science.gov (United States)

    2010-04-01

    ... retained earnings. This account shall include the balance, either debit or credit, arising from earnings... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Unappropriated retained earnings. 256.216 Section 256.216 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION...

  2. Economic and reproductive consequences of retained placenta in dairy cattle.

    NARCIS (Netherlands)

    Joosten, I.; Stelwagen, J.; Dijkhuizen, A.A.

    1988-01-01

    The financial losses due to retained placenta in Dutch dairy cattle were estimated by using two different methods of calculation. A data-set containing the birth records of 160,188 Meuse-Rhine-Yssel cows provided data on the reproductive performance of cows with and without retained placenta. The

  3. The challenge of retaining customers acquired with free trials

    NARCIS (Netherlands)

    Datta, H.; Foubert, B.; van Heerde, H.J.

    Many service firms acquire customers by offering free-trial promotions. A crucial challenge is to retain customers acquired with these free trials. To address this challenge, firms need to understand how free-trial customers differ from regular customers in terms of their decision making to retain

  4. The use of implants as retainers for removable partial dentures.

    Science.gov (United States)

    Zinner, Ira D; Markovits, Stanley; Jansen, Curtis E; Reid, Patrick E; Shapiro, Herbert J

    2010-01-01

    There has been little presented in the literature regarding the use of implant bodies as retainers for removable partial dentures. However, these fixtures can be a useful asset for restorative dentists, as they can be used when there is insufficient bone for a fixed prosthesis or as retainers for a provisional appliance until additional dental treatment is possible.

  5. Induced pluripotent stem cells with a pathological mitochondrial DNA deletion

    Science.gov (United States)

    Cherry, Anne B. C.; Gagne, Katelyn E.; McLoughlin, Erin M.; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D.; Zhang, Jin; Zon, Rebecca L.; Ince, Tan A.; Neufeld, Ellis J.; Lerou, Paul H.; Fleming, Mark D.; Daley, George Q.; Agarwal, Suneet

    2013-01-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. PMID:23400930

  6. The ADP/ATP Carrier and Its Relationship to Oxidative Phosphorylation in Ancestral Protist Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Gnipová, Anna; Šubrtová, Karolína; Panicucci, Brian; Horváth, A.; Lukeš, Julius; Zíková, Alena

    2015-01-01

    Roč. 14, č. 3 (2015), s. 297-310 ISSN 1535-9778 R&D Projects: GA MŠk LL1205; GA ČR GAP302/12/2513 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : cytochrome c-oxidase * structural basis * mitochondrial ATP synthase Subject RIV: EE - Microbiology, Virology Impact factor: 2.946, year: 2015

  7. Abundant mtDNA diversity and ancestral admixture in Colombian criollo cattle (Bos taurus).

    OpenAIRE

    Carvajal-Carmona, Luis G; Bermudez, Nelson; Olivera-Angel, Martha; Estrada, Luzardo; Ossa, Jorge; Bedoya, Gabriel; Ruiz-Linares, Andrés

    2003-01-01

    Various cattle populations in the Americas (known as criollo breeds) have an origin in some of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). These cattle constitute a potentially important genetic reserve as they are well adapted to local environments and show considerable variation in phenotype. To examine the genetic ancestry and diversity of Colombian criollo we obtained mitochondrial DNA control region sequence information for 110 ...

  8. The mechanistic basis of hemoglobin adaptation in the high-flying barheaded goose: insights from ancestral protein resurrection

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Kumar, Amit; Moriyama, Hideaki

    2016-01-01

    the functional effects of causative mutations on the genetic background in which they actually occurred during evolution (i.e., in the BHG ancestor). An alternative ‘vertical’ approach is to reconstruct and resurrect ancestral proteins to test the effects of historical mutations on the genetic background...

  9. ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Ye, Jia; Li, Songgang

    2005-01-01

    in comparison to their ancestral sequences. Tested on the japonica rice genome, ReAS was able to reconstruct all of the high copy sequences in the Repbase repository of known TEs, and increase the effectiveness of RepeatMasker in identifying TEs from genome sequences. Udgivelsesdato: 2005-Sep...

  10. Molecular mechanisms of extensive mitochondrial gene rearrangementin plethodontid salamanders

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rachel Lockridge; Boore, Jeffrey L.

    2005-06-01

    Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light strand replication and the nearby tRNA genes or the regions flanking the origin of heavy strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and non-tandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mtDNAs, up to 25 percent of the total length is composed of tandem duplications of non-coding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intra-molecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.

  11. Influence of Maternal Aging on Mitochondrial Heterogeneity, Inheritance, and Function in Oocytes and Preimplantation Embryos

    Directory of Open Access Journals (Sweden)

    Dori C. Woods

    2018-05-01

    Full Text Available Contrasting the equal contribution of nuclear genetic material from maternal and paternal sources to offspring, passage of mitochondria, and thus mitochondrial DNA (mtDNA, is uniparental through the egg. Since mitochondria in eggs are ancestral to all somatic mitochondria of the next generation and to all cells of future generations, oocytes must prepare for the high energetic demands of maturation, fertilization and embryogenesis while simultaneously ensuring that their mitochondrial genomes are inherited in an undamaged state. Although significant effort has been made to understand how the mtDNA bottleneck and purifying selection act coordinately to prevent silent and unchecked spreading of invisible mtDNA mutations through the female germ line across successive generations, it is unknown if and how somatic cells of the immediate next generation are spared from inheritance of detrimental mtDNA molecules. Here, we review unique aspects of mitochondrial activity and segregation in eggs and early embryos, and how these events play into embryonic developmental competency in the face of advancing maternal age.

  12. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants.

    Science.gov (United States)

    Liu, Yang; Wang, Bin; Cui, Peng; Li, Libo; Xue, Jia-Yu; Yu, Jun; Qiu, Yin-Long

    2012-01-01

    Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.

  13. A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine

    Science.gov (United States)

    Wallace, Douglas C.

    2005-01-01

    Life is the interplay between structure and energy, yet the role of energy deficiency in human disease has been poorly explored by modern medicine. Since the mitochondria use oxidative phosphorylation (OXPHOS) to convert dietary calories into usable energy, generating reactive oxygen species (ROS) as a toxic by-product, I hypothesize that mitochondrial dysfunction plays a central role in a wide range of age-related disorders and various forms of cancer. Because mitochondrial DNA (mtDNA) is present in thousands of copies per cell and encodes essential genes for energy production, I propose that the delayed-onset and progressive course of the age-related diseases results from the accumulation of somatic mutations in the mtDNAs of post-mitotic tissues. The tissue-specific manifestations of these diseases may result from the varying energetic roles and needs of the different tissues. The variation in the individual and regional predisposition to degenerative diseases and cancer may result from the interaction of modern dietary caloric intake and ancient mitochondrial genetic polymorphisms. Therefore the mitochondria provide a direct link between our environment and our genes and the mtDNA variants that permitted our forbears to energetically adapt to their ancestral homes are influencing our health today. PMID:16285865

  14. A mitochondrial analysis reveals distinct founder effect signatures in Canarian and Balearic goats.

    Science.gov (United States)

    Ferrando, A; Manunza, A; Jordana, J; Capote, J; Pons, A; Pais, J; Delgado, T; Atoche, P; Cabrera, B; Martínez, A; Landi, V; Delgado, J V; Argüello, A; Vidal, O; Lalueza-Fox, C; Ramírez, O; Amills, M

    2015-08-01

    In the course of human migrations, domestic animals often have been translocated to islands with the aim of assuring food availability. These founder events are expected to leave a genetic footprint that may be recognised nowadays. Herewith, we have examined the mitochondrial diversity of goat populations living in the Canarian and Balearic archipelagos. Median-joining network analysis produced very distinct network topologies for these two populations. Indeed, a majority of Canarian goats shared a single ancestral haplotype that segregated in all sampled islands, suggesting a single founder effect followed by a stepping-stone pattern of diffusion. This haplotype also was present in samples collected from archaeological assemblies at Gran Canaria and Lanzarote, making evident its widespread distribution in ancient times. In stark contrast, goats from Majorca and Ibiza did not share any mitochondrial haplotypes, indicating the occurrence of two independent founder events. Furthermore, in Majorcan goats, we detected the segregation of the mitochondrial G haplogroup that has only been identified in goats from Egypt, Iran and Turkey. This finding suggests the translocation of Asian and/or African goats to Majorca, possibly as a consequence of the Phoenician and Carthaginian colonisations of this island. © 2015 Stichting International Foundation for Animal Genetics.

  15. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome

    Science.gov (United States)

    2017-01-01

    Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology. PMID:28680532

  16. Lactate dehydrogenase is not a mitochondrial enzyme in human and mouse vastus lateralis muscle

    DEFF Research Database (Denmark)

    Rasmussen, Hans N; van Hall, Gerrit; Rasmussen, Ulla F

    2002-01-01

    The presence of lactate dehydrogenase in skeletal muscle mitochondria was investigated to clarify whether lactate is a possible substrate for mitochondrial respiration. Mitochondria were prepared from 100 mg samples of human and mouse vastus lateralis muscle. All fractions from the preparation...... procedure were assayed for marker enzymes and lactate dehydrogenase (LDH). The mitochondrial fraction contained no LDH activity (detection limit approximately 0.05 % of the tissue activity) and the distribution of LDH activity among the fractions paralleled that of pyruvate kinase, i.e. LDH was fractionated...... as a cytoplasmic enzyme. Respiratory experiments with the mitochondrial fraction also indicated the absence of LDH. Lactate did not cause respiration, nor did it affect the respiration of pyruvate + malate. The major part of the native cytochrome c was retained in the isolated mitochondria, which, furthermore...

  17. Chromosome evolution in kangaroos (Marsupialia: Macropodidae): cross species chromosome painting between the tammar wallaby and rock wallaby spp. with the 2n = 22 ancestral macropodid karyotype.

    Science.gov (United States)

    O'Neill, R J; Eldridge, M D; Toder, R; Ferguson-Smith, M A; O'Brien, P C; Graves, J A

    1999-06-01

    Marsupial mammals show extraordinary karyotype stability, with 2n = 14 considered ancestral. However, macropodid marsupials (kangaroos and wallabies) exhibit a considerable variety of karyotypes, with a hypothesised ancestral karyotype of 2n = 22. Speciation and karyotypic diversity in rock wallabies (Petrogale) is exceptional. We used cross species chromosome painting to examine the chromosome evolution between the tammar wallaby (2n = 16) and three 2n = 22 rock wallaby species groups with the putative ancestral karyotype. Hybridization of chromosome paints prepared from flow sorted chromosomes of the tammar wallaby to Petrogale spp., showed that this ancestral karyotype is largely conserved among 2n = 22 rock wallaby species, and confirmed the identity of ancestral chromosomes which fused to produce the bi-armed chromosomes of the 2n = 16 tammar wallaby. These results illustrate the fission-fusion process of karyotype evolution characteristic of the kangaroo group.

  18. Creation of Functional Viruses from Non-Functional cDNA Clones Obtained from an RNA Virus Population by the Use of Ancestral Reconstruction

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Dräger, Carolin

    2015-01-01

    necessarily be the descendant of a functional ancestor, we hypothesized that it should be possible to produce functional clones by reconstructing ancestral sequences. To test this we used phylogenetic methods to infer two ancestral sequences, which were then reconstructed as cDNA clones. Viruses rescued from...... the reconstructed cDNAs were tested in cell culture and pigs. Both reconstructed ancestral genomes proved functional, and displayed distinct phenotypes in vitro and in vivo. We suggest that reconstruction of ancestral viruses is a useful tool for experimental and computational investigations of virulence and viral...... evolution. Importantly, ancestral reconstruction can be done even on the basis of a set of sequences that all correspond to non-functional variants....

  19. Immunolocalization of an alternative respiratory chain in Antonospora (Paranosema) locustae spores: mitosomes retain their role in microsporidial energy metabolism.

    Science.gov (United States)

    Dolgikh, Viacheslav V; Senderskiy, Igor V; Pavlova, Olga A; Naumov, Anton M; Beznoussenko, Galina V

    2011-04-01

    Microsporidia are a group of fungus-related intracellular parasites with severely reduced metabolic machinery. They lack canonical mitochondria, a Krebs cycle, and a respiratory chain but possess genes encoding glycolysis enzymes, a glycerol phosphate shuttle, and ATP/ADP carriers to import host ATP. The recent finding of alternative oxidase genes in two clades suggests that microsporidial mitosomes may retain an alternative respiratory pathway. We expressed the fragments of mitochondrial chaperone Hsp70 (mitHsp70), mitochondrial glycerol-3-phosphate dehydrogenase (mitG3PDH), and alternative oxidase (AOX) from the microsporidium Antonospora (Paranosema) locustae in Escherichia coli. Immunoblotting with antibodies against recombinant polypeptides demonstrated specific accumulation of both metabolic enzymes in A. locustae spores. At the same time comparable amounts of mitochondrial Hsp70 were found in spores and in stages of intracellular development as well. Immunoelectron microscopy of ultrathin cryosections of spores confirmed mitosomal localization of the studied proteins. Small amounts of enzymes of an alternative respiratory chain in merogonial and early sporogonial stages, alongside their accumulation in mature spores, suggest conspicuous changes in components and functions of mitosomes during the life cycle of microsporidia and the important role of these organelles in parasite energy metabolism, at least at the final stages of sporogenesis.

  20. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  1. Complete mitochondrial genome of yellow meal worm (Tenebrio molitor).

    Science.gov (United States)

    Liu, Li-Na; Wang, Cheng-Ye

    2014-11-18

    The yellow meal worm (Tenebrio molitor L.) is an important resource insect typically used as animal feed additive. It is also widely used for biological research. The first complete mitochondrial genome of T. molitor was determined for the first time by long PCR and conserved primer walking approaches. The results showed that the entire mitogenome of T. molitor was 15 785 bp long, with 72.35% A+T content [deposited in GenBank with accession number KF418153]. The gene order and orientation were the same as the most common type suggested as ancestral for insects. Two protein-coding genes used atypical start codons (CTA in ND2 and AAT in COX1), and the remaining 11 protein-coding genes started with a typical insect initiation codon ATN. All tRNAs showed standard clover-leaf structure, except for tRNA(Ser) (AGN), which lacked a dihydrouridine (DHU) arm. The newly added T. molitor mitogenome could provide information for future studies on yellow meal worm.

  2. The mitochondrial genome of the entomophagous endoparasite Xenosvesparum (Insecta: Strepsiptera)

    Energy Technology Data Exchange (ETDEWEB)

    Carapelli, Antonio; Vannini, Laura; Nardi, Francesco; Boore,Jeffrey L.; Beani, Laura; Dallai, Romano; Frati, Francesco

    2005-12-01

    In this study, the nearly complete sequence (14,519 bp) of the mitochondrial DNA (mtDNA) of the entomophagous endoparasite Xenos vesparum (Insecta: Strepsiptera) is described. All protein coding genes (PCGs) are in the arrangement known to be ancestral for insects, but three tRNA genes (trnA, trnS(gcu), and trnL(uag)) have transposed to derived positions and there are three tandem copies of trnH, each of which is potentially functional. All of these rearrangements except for that of trnL(uag) is within the short span between nad3 and nad4 and there are numerous blocks of unassignable sequence in this region, perhaps as remnants of larger scale predisposing rearrangements. X. vesparum mtDNA nucleotide composition is strongly biased toward As and Ts, as is typical for insect mtDNAs. There is also significant strand skew in the distribution of these nucleotides, with the J-strand being richer in A than T and in C than G, and the N-strand showing an opposite skew for complementary pairs of nucleotides. The hypothetical secondary structure of the 16S rRNA has also been reconstructed, obtaining a structural model similar to that of other insects.

  3. Analysis on the reconstruction accuracy of the Fitch method for inferring ancestral states

    Directory of Open Access Journals (Sweden)

    Grünewald Stefan

    2011-01-01

    Full Text Available Abstract Background As one of the most widely used parsimony methods for ancestral reconstruction, the Fitch method minimizes the total number of hypothetical substitutions along all branches of a tree to explain the evolution of a character. Due to the extensive usage of this method, it has become a scientific endeavor in recent years to study the reconstruction accuracies of the Fitch method. However, most studies are restricted to 2-state evolutionary models and a study for higher-state models is needed since DNA sequences take the format of 4-state series and protein sequences even have 20 states. Results In this paper, the ambiguous and unambiguous reconstruction accuracy of the Fitch method are studied for N-state evolutionary models. Given an arbitrary phylogenetic tree, a recurrence system is first presented to calculate iteratively the two accuracies. As complete binary tree and comb-shaped tree are the two extremal evolutionary tree topologies according to balance, we focus on the reconstruction accuracies on these two topologies and analyze their asymptotic properties. Then, 1000 Yule trees with 1024 leaves are generated and analyzed to simulate real evolutionary scenarios. It is known that more taxa not necessarily increase the reconstruction accuracies under 2-state models. The result under N-state models is also tested. Conclusions In a large tree with many leaves, the reconstruction accuracies of using all taxa are sometimes less than those of using a leaf subset under N-state models. For complete binary trees, there always exists an equilibrium interval [a, b] of conservation probability, in which the limiting ambiguous reconstruction accuracy equals to the probability of randomly picking a state. The value b decreases with the increase of the number of states, and it seems to converge. When the conservation probability is greater than b, the reconstruction accuracies of the Fitch method increase rapidly. The reconstruction

  4. An unrecognized foreign body retained in the calcaneus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ro Woon; Choi, Soo Jung; Hwang, Jae Kwang; Ahn, Jae Hong; Kang, Chae Hoon; Shin, Dong Rock [Gangneung Asan Hospital, College of Medicine, University of Ulsan, Gangneung (Korea, Republic of)

    2017-06-15

    We describe a case of an unrecognized foreign body retained in the calcaneus. The patient denied any history of trauma. The skin overlying the calcaneus was intact with no local signs of inflammation. The retained foreign body was not observed on the radiograph of the calcaneus. Magnetic Resonance Imaging showed a tubular low signal intensity lesion in the calcaneal body, surrounded by strongly enhanced soft tissue and bone marrow edema caused by a foreign body reaction. A foreign body retained in the calcaneus was suspected on the basis of these findings. Surgical exploration and curettage was performed, and a rod shaped wooden fragment was found.

  5. Mitochondrial quality control pathways as determinants of metabolic health

    NARCIS (Netherlands)

    Held, Ntsiki M.; Houtkooper, Riekelt H.

    2015-01-01

    Mitochondrial function is key for maintaining cellular health, while mitochondrial failure is associated with various pathologies, including inherited metabolic disorders and age-related diseases. In order to maintain mitochondrial quality, several pathways of mitochondrial quality control have

  6. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    International Nuclear Information System (INIS)

    Palmeira, Carlos M.; Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-01-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes

  7. Prospects for therapeutic mitochondrial transplantation.

    Science.gov (United States)

    Gollihue, Jenna L; Rabchevsky, Alexander G

    2017-07-01

    Mitochondrial dysfunction has been implicated in a multitude of diseases and pathological conditions- the organelles that are essential for life can also be major players in contributing to cell death and disease. Because mitochondria are so well established in our existence, being present in all cell types except for red blood cells and having the responsibility of providing most of our energy needs for survival, then dysfunctional mitochondria can elicit devastating cellular pathologies that can be widespread across the entire organism. As such, the field of "mitochondrial medicine" is emerging in which disease states are being targeted therapeutically at the level of the mitochondrion, including specific antioxidants, bioenergetic substrate additions, and membrane uncoupling agents. New and compelling research investigating novel techniques for mitochondrial transplantation to replace damaged or dysfunctional mitochondria with exogenous healthy mitochondria has shown promising results, including tissue sparing accompanied by increased energy production and decreased oxidative damage. Various experimental techniques have been attempted and each has been challenged to accomplish successful transplantation. The purpose of this review is to present the history of mitochondrial transplantation, the different techniques used for both in vitro and in vivo delivery, along with caveats and pitfalls that have been discovered along the way. Results from such pioneering studies are promising and could be the next big wave of "mitochondrial medicine" once technical hurdles are overcome. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  8. Decrypting the mitochondrial gene pool of modern Panamanians.

    Directory of Open Access Journals (Sweden)

    Ugo A Perego

    Full Text Available The Isthmus of Panama--the narrow neck of land connecting the northern and southern American landmasses--was an obligatory corridor for the Paleo-Indians as they moved into South America. Archaeological evidence suggests an unbroken link between modern natives and their Paleo-Indian ancestors in some areas of Panama, even if the surviving indigenous groups account for only 12.3% of the total population. To evaluate if modern Panamanians have retained a larger fraction of the native pre-Columbian gene pool in their maternally-inherited mitochondrial genome, DNA samples and historical records were collected from more than 1500 volunteer participants living in the nine provinces and four indigenous territories of the Republic. Due to recent gene-flow, we detected ~14% African mitochondrial lineages, confirming the demographic impact of the Atlantic slave trade and subsequent African immigration into Panama from Caribbean islands, and a small European (~2% component, indicating only a minor influence of colonialism on the maternal side. The majority (~83% of Panamanian mtDNAs clustered into native pan-American lineages, mostly represented by haplogroup A2 (51%. These findings reveal an overwhelming native maternal legacy in today's Panama, which is in contrast with the overall concept of personal identity shared by many Panamanians. Moreover, the A2 sub-clades A2ad and A2af (with the previously named 6 bp Huetar deletion, when analyzed at the maximum level of resolution (26 entire mitochondrial genomes, confirm the major role of the Pacific coastal path in the peopling of North, Central and South America, and testify to the antiquity of native mitochondrial genomes in Panama.

  9. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  10. Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revisit of the Metaseiulus occidentalis mitochondrial genome.

    Science.gov (United States)

    Dermauw, Wannes; Vanholme, Bartel; Tirry, Luc; Van Leeuwen, Thomas

    2010-04-01

    In this study we sequenced and analysed the complete mitochondrial (mt) genome of the Chilean predatory mite Phytoseiulus persimilis Athias-Henriot (Chelicerata: Acari: Mesostigmata: Phytoseiidae: Amblyseiinae). The 16 199 bp genome (79.8% AT) contains the standard set of 13 protein-coding and 24 RNA genes. Compared with the ancestral arthropod mtDNA pattern, the gene order is extremely reshuffled (35 genes changed position) and represents a novel arrangement within the arthropods. This is probably related to the presence of several large noncoding regions in the genome. In contrast with the mt genome of the closely related species Metaseiulus occidentalis (Phytoseiidae: Typhlodrominae) - which was reported to be unusually large (24 961 bp), to lack nad6 and nad3 protein-coding genes, and to contain 22 tRNAs without T-arms - the genome of P. persimilis has all the features of a standard metazoan mt genome. Consequently, we performed additional experiments on the M. occidentalis mt genome. Our preliminary restriction digests and Southern hybridization data revealed that this genome is smaller than previously reported. In addition, we cloned nad3 in M. occidentalis and positioned this gene between nad4L and 12S-rRNA on the mt genome. Finally, we report that at least 15 of the 22 tRNAs in the M. occidentalis mt genome can be folded into canonical cloverleaf structures similar to their counterparts in P. persimilis.

  11. Assessment of Soil Arching Factor for Retaining Wall Pile Foundations

    Science.gov (United States)

    2017-03-31

    Despite the prevalence of the soldier piles retaining wall systems as temporary and even permanent shoring systems along state highways, relatively little is known on the effect of the foreslope bench width and the slope inclination on the arching ca...

  12. Percutaneous Retrieval of a Retained Jackson-Pratt Drain Fragment

    International Nuclear Information System (INIS)

    Namyslowski, Jan; Halin, Neil J.; Greenfield, Alan J.

    1996-01-01

    A retained intraabdominal Jackson-Pratt drain fragment was percutaneously retrieved using an inflated angioplasty balloon that had been maneuvered inside of the drain lumen over a hydrophilic-coated steerable guidewire

  13. Myomectomy for Retained Placenta Due to Incarcerated Fibroid Mass

    African Journals Online (AJOL)

    and life threatening complication. We present a patient who had mid-trimester miscarriage, complicated by retained ... the couple gave consent for the termination of the pregnancy. .... In conclusion, it is pertinent to note that uterine fibroid in.

  14. Gossypiboma – the retained surgical swab: An enduring clinical ...

    African Journals Online (AJOL)

    Retained abdominal swabs remain a difficult problem. This review ... and continues to date, despite advances .... difficult problem to eradicate even though .... to complete multiple emergency surgeries with no rest is great, ... The position.

  15. Probabilistic safety analysis of earth retaining structures during earthquakes

    Science.gov (United States)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  16. Retained Foreign Bodies: A Serious Threat in the Indian Operation ...

    African Journals Online (AJOL)

    hanumantp

    report cases of RFBs. Keywords: Medical negligence, Radiography, Retained foreign bodies. Review Article ... different technology used to reduce medical errors was included in this review. ..... body mimicking a spinal mass. Eur Spine J 2006 ...

  17. Retaining professional nurses in South Africa: Nurse managers ...

    African Journals Online (AJOL)

    Retaining professional nurses in South Africa: Nurse managers' perspectives. ... This implies that creating a favourable environment in the workplace situation ... Unsafe working environments and a lack of resources threaten the safety and ...

  18. Knowledge and attitude of dentists toward implant retained ...

    African Journals Online (AJOL)

    2014-09-13

    Sep 13, 2014 ... and 80% of GDP used SRR in <50% and <25% of their implant practice respectively. ..... micro‑gap formation resulting in plaque accumulation and .... opening in screw‑or cement‑retained implant fixed partial denture designs.

  19. Mitochondrial role in cell aging

    Science.gov (United States)

    Miquel, J.; Fleming, J.; Economos, A. C.; Johnson, J. E., Jr.

    1980-01-01

    The experimental studies on the mitochondria of insect and mammalian cells are examined with a view to an analysis of intrinsic mitochondrial senescence, and its relation to the age-related changes in other cell organelles. The fine structural and biochemical data support the concept that the mitochondria of fixed postmitotic cells may be the site of intrinsic aging because of the attack by free radicals and lipid peroxides originating in the organelles as a by-product of oxygen reduction during respiration. Although the cells have numerous mechanisms for counteracting lipid peroxidation injury, there is a slippage in the antioxidant protection. Intrinsic mitochondrial aging could thus be considered as a specific manifestation of oxygen toxicity. It is proposed that free radical injury renders an increasing number of the mitochondria unable to divide, probably because of damage to the lipids of the inner membrane and to mitochondrial DNA.

  20. Redox Regulation of Mitochondrial Function

    Science.gov (United States)

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  1. Characterization of the mitochondrial genome of the montane grasshopper, Qinlingacris elaeodes (Orthoptera: Catantopidae).

    Science.gov (United States)

    Li, Ran; Jiang, Guo-Fang; Liang, Ai-Ping; Zhong, Xin-Tong; Liu, Ying

    2016-05-01

    Qinlingacris elaeodes is the dominant grasshopper at an altitude of 3000 meters and above, and is a representative species of the genus Qinlingacris endemic to China. The sequenced mitochondrial genome of this grasshopper is 14,818 bp in length, including 13 protein-coding genes (ND1-6, COI-III, ATP6, ATP8, ND4L, CTYB), 21 transfer RNAs, and 2 ribosomal RNAs (12S and 16S). The orientation and gene order of these genes are identical to those found in the putative ancestral insect mitogenome. The 13 PCGs start with a typical ATN codon as their start codons. The usual TAA and TAG termination codons are found for 12 PCGs. However, the ND5 gene has an incomplete termination codon (T).

  2. The evolution of brachiation in ateline primates, ancestral character states and history.

    Science.gov (United States)

    Jones, Andrea L

    2008-10-01

    This study examines how brachiation locomotion evolved in ateline primates using recently-developed molecular phylogenies and character reconstruction algorithms, and a newly-collected dataset including the fossils Protopithecus, Caipora, and Cebupithecia. Fossils are added to two platyrrhine molecular phylogenies to create several phylogenetic scenarios. A generalized least squares algorithm reconstructs ateline and atelin ancestral character states for 17 characters that differentiate between ateline brachiators and nonbrachiators. Histories of these characters are mapped out on these phylogenies, producing two scenarios of ateline brachiation evolution that have four commonalities: First, many characters change towards the Ateles condition on the ateline stem lineage before Alouatta splits off from the atelins, suggesting that an ateline energy-maximizing strategy began before the atelines diversified. Second, the ateline last common ancestor is always reconstructed as an agile quadruped, usually with suspensory abilities. It is never exactly like Alouatta and many characters reverse and change towards the Alouatta condition after Alouatta separates from the atelins. Third, most characters undergo homoplastic change in all ateline lineages, especially on the Ateles and Brachyteles terminal branches. Fourth, ateline character evolution probably went through a hindlimb suspension with tail-bracing phase. The atelines most likely diversified via a quick adaptive radiation, with bursts of punctuated change occurring in their postcranial skeletons, due to changing climatic conditions, which may have caused competition among the atelines and between atelines and pitheciines.

  3. Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes.

    Directory of Open Access Journals (Sweden)

    Vincent J Lynch

    2009-01-01

    Full Text Available While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion--such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these--is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox "paralogon" and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.

  4. Detection of Weakly Conserved Ancestral Mammalian RegulatorySequences by Primate Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian-fei; Prabhakar, Shyam; Chanan, Sumita; Cheng,Jan-Fang; Rubin, Edward M.; Boffelli, Dario

    2006-06-01

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detectcryptic functional elements, which are too weakly conserved among mammalsto distinguish from nonfunctional DNA. To address this problem, weexplored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  5. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds

    Science.gov (United States)

    Griffin, Christopher T.; Nesbitt, Sterling J.

    2016-12-01

    Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.

  6. Fixation Probability in a Two-Locus Model by the Ancestral Recombination–Selection Graph

    Science.gov (United States)

    Lessard, Sabin; Kermany, Amir R.

    2012-01-01

    We use the ancestral influence graph (AIG) for a two-locus, two-allele selection model in the limit of a large population size to obtain an analytic approximation for the probability of ultimate fixation of a single mutant allele A. We assume that this new mutant is introduced at a given locus into a finite population in which a previous mutant allele B is already segregating with a wild type at another linked locus. We deduce that the fixation probability increases as the recombination rate increases if allele A is either in positive epistatic interaction with B and allele B is beneficial or in no epistatic interaction with B and then allele A itself is beneficial. This holds at least as long as the recombination fraction and the selection intensity are small enough and the population size is large enough. In particular this confirms the Hill–Robertson effect, which predicts that recombination renders more likely the ultimate fixation of beneficial mutants at different loci in a population in the presence of random genetic drift even in the absence of epistasis. More importantly, we show that this is true from weak negative epistasis to positive epistasis, at least under weak selection. In the case of deleterious mutants, the fixation probability decreases as the recombination rate increases. This supports Muller’s ratchet mechanism to explain the accumulation of deleterious mutants in a population lacking recombination. PMID:22095080

  7. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    Directory of Open Access Journals (Sweden)

    Xiaorui Chen

    2017-10-01

    Full Text Available Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle.

  8. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    Science.gov (United States)

    Chen, Xiaorui; Hitchings, Matthew D.; Mendoza, José E.; Balanza, Virginia; Facey, Paul D.; Dyson, Paul J.; Bielza, Pablo; Del Sol, Ricardo

    2017-01-01

    Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis) from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle. PMID:29067021

  9. Phylogenetic uncertainty can bias the number of evolutionary transitions estimated from ancestral state reconstruction methods.

    Science.gov (United States)

    Duchêne, Sebastian; Lanfear, Robert

    2015-09-01

    Ancestral state reconstruction (ASR) is a popular method for exploring the evolutionary history of traits that leave little or no trace in the fossil record. For example, it has been used to test hypotheses about the number of evolutionary origins of key life-history traits such as oviparity, or key morphological structures such as wings. Many studies that use ASR have suggested that the number of evolutionary origins of such traits is higher than was previously thought. The scope of such inferences is increasing rapidly, facilitated by the construction of very large phylogenies and life-history databases. In this paper, we use simulations to show that the number of evolutionary origins of a trait tends to be overestimated when the phylogeny is not perfect. In some cases, the estimated number of transitions can be several fold higher than the true value. Furthermore, we show that the bias is not always corrected by standard approaches to account for phylogenetic uncertainty, such as repeating the analysis on a large collection of possible trees. These findings have important implications for studies that seek to estimate the number of origins of a trait, particularly those that use large phylogenies that are associated with considerable uncertainty. We discuss the implications of this bias, and methods to ameliorate it. © 2015 Wiley Periodicals, Inc.

  10. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia.

    Science.gov (United States)

    Hoang, Phuong T N; Schubert, Ingo

    2017-12-01

    The monophyletic duckweeds comprising five genera within the monocot order Alismatales are neotenic, free-floating, aquatic organisms with fast vegetative propagation. Some species are considered for efficient biomass production, for life stock feeding, and for (simultaneous) wastewater phytoremediation. The ancestral genus Spirodela consists of only two species, Spirodela polyrhiza and Spirodela intermedia, both with a similar small genome (~160 Mbp/1C). Reference genome drafts and a physical map of 96 BACs on the 20 chromosome pairs of S. polyrhiza strain 7498 are available and provide useful tools for further evolutionary studies within and between duckweed genera. Here we applied sequential comparative multicolor fluorescence in situ hybridization (mcFISH) to address homeologous chromosomes in S. intermedia (2n = 36), to detect chromosome rearrangements between both species and to elucidate the mechanisms which may have led to the chromosome number alteration after their evolutionary separation. Ten chromosome pairs proved to be conserved between S. polyrhiza and S. intermedia, the remaining ones experienced, depending on the assumed direction of evolution, translocations, inversion, and fissions, respectively. These results represent a first step to unravel karyotype evolution among duckweeds and are anchor points for future genome assembly of S. intermedia.

  11. Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes.

    Science.gov (United States)

    Huang, Ruiqi; O'Donnell, Andrew J; Barboline, Jessica J; Barkman, Todd J

    2016-09-20

    Convergent evolution is a process that has occurred throughout the tree of life, but the historical genetic and biochemical context promoting the repeated independent origins of a trait is rarely understood. The well-known stimulant caffeine, and its xanthine alkaloid precursors, has evolved multiple times in flowering plant history for various roles in plant defense and pollination. We have shown that convergent caffeine production, surprisingly, has evolved by two previously unknown biochemical pathways in chocolate, citrus, and guaraná plants using either caffeine synthase- or xanthine methyltransferase-like enzymes. However, the pathway and enzyme lineage used by any given plant species is not predictable from phylogenetic relatedness alone. Ancestral sequence resurrection reveals that this convergence was facilitated by co-option of genes maintained over 100 million y for alternative biochemical roles. The ancient enzymes of the Citrus lineage were exapted for reactions currently used for various steps of caffeine biosynthesis and required very few mutations to acquire modern-day enzymatic characteristics, allowing for the evolution of a complete pathway. Future studies aimed at manipulating caffeine content of plants will require the use of different approaches given the metabolic and genetic diversity revealed by this study.

  12. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    Science.gov (United States)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  13. Genetics of mitochondrial dysfunction and infertility.

    Science.gov (United States)

    Demain, L A M; Conway, G S; Newman, W G

    2017-02-01

    Increasingly, mitochondria are being recognized as having an important role in fertility. Indeed in assisted reproductive technologies mitochondrial function is a key indicator of sperm and oocyte quality. Here, we review the literature regarding mitochondrial genetics and infertility. In many multisystem disorders caused by mitochondrial dysfunction death occurs prior to sexual maturity, or the clinical features are so severe that infertility may be underreported. Interestingly, many of the genes linked to mitochondrial dysfunction and infertility have roles in the maintenance of mitochondrial DNA or in mitochondrial translation. Studies on populations with genetically uncharacterized infertility have highlighted an association with mitochondrial DNA deletions, whether this is causative or indicative of poor functioning mitochondria requires further examination. Studies on the impact of mitochondrial DNA variants present conflicting data but highlight POLG as a particularly interesting candidate gene for both male and female infertility. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Mitochondrial DNA and Cancer Epidemiology Workshop

    Science.gov (United States)

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  15. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage

    OpenAIRE

    Bachmann, Rosilla F.; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K.

    2009-01-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially media...

  16. Implant retention systems for implant-retained overdentures.

    Science.gov (United States)

    Laverty, D P; Green, D; Marrison, D; Addy, L; Thomas, M B M

    2017-03-10

    Implant retained overdentures are being increasingly utilised in both general and specialist practice to rehabilitate patients with missing teeth, particularly those that are edentate. This article aims to inform the reader of a variety of retention systems that are available to retain an implant overdenture and to understand how these systems work, their advantages and disadvantages and to outline some of the clinical and treatment planning considerations involved in selecting the most appropriate retention system for patients.

  17. Recruiting and Retaining Army Nurses: An Annotated Bibliography

    OpenAIRE

    Roberts, Benjamin J.; Kocher, Kathryn M.

    1988-01-01

    This listing of annotated references includes studies dealing with the labor market behavior of registered nurses. References describing both the military and the civilian working environments for RNs are contained in the bibliography. Because the Army must recruit and retain nurses in the context of the national labor market for nurses, a broad perspective was maintained in selecting publication. Studies dealing with the factors influential in attracting and retaining Army Active Duty and Re...

  18. ORGANIZING, TRAINING, AND RETAINING INTELLIGENCE PROFESSIONALS FOR CYBER OPERATIONS

    Science.gov (United States)

    2016-02-13

    in Education,” Preventing School Failure 57(3), (2013): 162-170. Wall , Andru, “Demystifying the Title 10-Title 50 Debate,” Harvard Law School...AIR WAR COLLEGE AIR UNIVERSITY ORGANIZING, TRAINING, AND RETAINING INTELLIGENCE PROFESSIONALS FOR CYBER OPERATIONS by Melissa A...to adequately organize, train and retain cyber expertise. This is especially true within Air Force intelligence, a critical component of the

  19. Attachment retained overdentures: a report on their maintenance requirements.

    Science.gov (United States)

    Shaw, M J

    1984-07-01

    Twenty-three patients who received attachment retained overdentures between 1964 and 1977 are reviewed. One third of the patients examined had carious abutment teeth, oral hygiene was poor, and periodontal disease prevalent. Overdentures opposed by natural teeth required more extensive prosthetic maintenance than overdentures opposed by a conventional complete denture. Three quarters of the teeth retaining the prostheses were functioning adequately after a mean period of 7 years.

  20. Total rewards that retain: A study of demographic preferences

    OpenAIRE

    Monica Pregnolato; Mark H.R. Bussin; Anton F. Schlechter

    2017-01-01

    Orientation: Changing workplace demographics and a dearth of employees with scarce skills have forced employers to better understand the various factors that retain talented employees. Research purpose: In this empirical study, the reward preferences and ideal combination of total reward elements (based on an estimation of their relative importance) that retain employees from various demographic groups, including employees of different race, gender and age groups, were investigated. M...

  1. Accuracy of Genomic Prediction in Synthetic Populations Depending on the Number of Parents, Relatedness, and Ancestral Linkage Disequilibrium.

    Science.gov (United States)

    Schopp, Pascal; Müller, Dominik; Technow, Frank; Melchinger, Albrecht E

    2017-01-01

    Synthetics play an important role in quantitative genetic research and plant breeding, but few studies have investigated the application of genomic prediction (GP) to these populations. Synthetics are generated by intermating a small number of parents ([Formula: see text] and thereby possess unique genetic properties, which make them especially suited for systematic investigations of factors contributing to the accuracy of GP. We generated synthetics in silico from [Formula: see text]2 to 32 maize (Zea mays L.) lines taken from an ancestral population with either short- or long-range linkage disequilibrium (LD). In eight scenarios differing in relatedness of the training and prediction sets and in the types of data used to calculate the relationship matrix (QTL, SNPs, tag markers, and pedigree), we investigated the prediction accuracy (PA) of Genomic best linear unbiased prediction (GBLUP) and analyzed contributions from pedigree relationships captured by SNP markers, as well as from cosegregation and ancestral LD between QTL and SNPs. The effects of training set size [Formula: see text] and marker density were also studied. Sampling few parents ([Formula: see text]) generates substantial sample LD that carries over into synthetics through cosegregation of alleles at linked loci. For fixed [Formula: see text], [Formula: see text] influences PA most strongly. If the training and prediction set are related, using [Formula: see text] parents yields high PA regardless of ancestral LD because SNPs capture pedigree relationships and Mendelian sampling through cosegregation. As [Formula: see text] increases, ancestral LD contributes more information, while other factors contribute less due to lower frequencies of closely related individuals. For unrelated prediction sets, only ancestral LD contributes information and accuracies were poor and highly variable for [Formula: see text] due to large sample LD. For large [Formula: see text], achieving moderate accuracy requires

  2. Mitochondrial quality control in cardiac diseases.

    Directory of Open Access Journals (Sweden)

    Juliane Campos

    2016-10-01

    Full Text Available Disruption of mitochondrial homeostasis is a hallmark of cardiac diseases. Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for cardiomyocyte survival. In this review, we discuss the most recent findings on the central role of mitochondrial quality control processes including regulation of mitochondrial redox balance, aldehyde metabolism, proteostasis, dynamics and clearance in cardiac diseases, highlighting their potential as therapeutic targets.

  3. Mitochondrial fusion through membrane automata.

    Science.gov (United States)

    Giannakis, Konstantinos; Andronikos, Theodore

    2015-01-01

    Studies have shown that malfunctions in mitochondrial processes can be blamed for diseases. However, the mechanism behind these operations is yet not sufficiently clear. In this work we present a novel approach to describe a biomolecular model for mitochondrial fusion using notions from the membrane computing. We use a case study defined in BioAmbient calculus and we show how to translate it in terms of a P automata variant. We combine brane calculi with (mem)brane automata to produce a new scheme capable of describing simple, realistic models. We propose the further use of similar methods and the test of other biomolecular models with the same behaviour.

  4. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  5. Mitochondrial Energy and Redox Signaling in Plants

    Science.gov (United States)

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  6. Mitochondrial mutations drive prostate cancer aggression

    DEFF Research Database (Denmark)

    Hopkins, Julia F.; Sabelnykova, Veronica Y.; Weischenfeldt, Joachim

    2017-01-01

    Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer...... in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer....

  7. Analysis of Different Positions of Fiber-Reinforced Composite Retainers versus Multistrand Wire Retainers Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Arezoo Jahanbin

    2014-01-01

    Full Text Available Background. The aim of this study was to evaluate root displacement of the lower incisors fixed with FRC in different positions versus FSW retainers using the finite element method. Materials and Methods. 3D finite element models were designed for a mandibular anterior segment: Model 1: flexible spiral wire bonded to the lingual teeth surfaces, Model 2: FRC bonded to the upper third of lingual teeth surfaces, and Model 3: FRC bonded to the middle third. FE analysis was performed for three models and then tooth displacements were evaluated. Results. In contrast to lateral incisors and canines, the FSW retainer caused the central teeth to move more than the teeth bonded with FRC in both loadings. Comparison between Models 2 and 3 (in vertical loading showed that FRC retainers that bonded at the upper third of lingual teeth surfaces made central and canine teeth move less than FRC retainers bonded at the middle third; however, for lateral teeth it was the opposite. Conclusion. FRC retainers bonded at the upper third of lingual teeth surfaces make central and canine teeth move less than FRC retainers bonded at the middle third in vertical loading; however, for lateral teeth it was the opposite.

  8. Mitochondrial glutamate carriers from Drosophila melanogaster: biochemical, evolutionary and modeling studies.

    Science.gov (United States)

    Lunetti, Paola; Cappello, Anna Rita; Marsano, René Massimiliano; Pierri, Ciro Leonardo; Carrisi, Chiara; Martello, Emanuela; Caggese, Corrado; Dolce, Vincenza; Capobianco, Loredana

    2013-10-01

    The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata. © 2013.

  9. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    Directory of Open Access Journals (Sweden)

    Lippold Sebastian

    2011-11-01

    Full Text Available Abstract Background DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region were investigated for larger sample sets. Results In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73% already existed before the beginning of domestication about 5,000 years ago. Conclusions Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the

  10. Identification of the ancestral haplotype for apolipoprotein B suggests an African origin of Homo sapiens sapiens and traces their subsequent migration to Europe and the Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Rapacz, J.; Hasler-Rapacz, J.O. (Univ. of Wisconsin, Madison (United States)); Chen, L.; Wu, Mingjiuan; Schumaker, V.N. (Univ. of California, Los Angeles (United States)); Butler-Brunner, E.; Butler, R. (Swiss Red Cross Blood Transfusion Service, Bern (Switzerland))

    1991-02-15

    The probable ancestral haplotype for human apolipoprotein B (apoB) has been identified through immunological analysis of chimpanzee and gorilla serum and sequence analysis of their DNA. Moreover, the frequency of this ancestral apoB haplotype among different human populations provides strong support for the African origin of Homo sapiens sapiens and their subsequent migration from Africa to Europe and to the Pacific. The approach used here for the identification of the ancestral human apoB haplotype is likely to be applicable to many other genes.

  11. Identification of the ancestral haplotype for apolipoprotein B suggests an African origin of Homo sapiens sapiens and traces their subsequent migration to Europe and the Pacific

    International Nuclear Information System (INIS)

    Rapacz, J.; Hasler-Rapacz, J.O.; Chen, L.; Wu, Mingjiuan; Schumaker, V.N.; Butler-Brunner, E.; Butler, R.

    1991-01-01

    The probable ancestral haplotype for human apolipoprotein B (apoB) has been identified through immunological analysis of chimpanzee and gorilla serum and sequence analysis of their DNA. Moreover, the frequency of this ancestral apoB haplotype among different human populations provides strong support for the African origin of Homo sapiens sapiens and their subsequent migration from Africa to Europe and to the Pacific. The approach used here for the identification of the ancestral human apoB haplotype is likely to be applicable to many other genes

  12. Effect of the assignment of ancestral CpG state on the estimation of nucleotide substitution rates in mammals

    Directory of Open Access Journals (Sweden)

    Keightley Peter D

    2008-09-01

    Full Text Available Abstract Background Molecular evolutionary studies in mammals often estimate nucleotide substitution rates within and outside CpG dinucleotides separately. Frequently, in alignments of two sequences, the division of sites into CpG and non-CpG classes is based simply on the presence or absence of a CpG dinucleotide in either sequence, a procedure that we refer to as CpG/non-CpG assignment. Although it likely that this procedure is biased, it is generally assumed that the bias is negligible if species are very closely related. Results Using simulations of DNA sequence evolution we show that assignment of the ancestral CpG state based on the simple presence/absence of the CpG dinucleotide can seriously bias estimates of the substitution rate, because many true non-CpG changes are misassigned as CpG. Paradoxically, this bias is most severe between closely related species, because a minimum of two substitutions are required to misassign a true ancestral CpG site as non-CpG whereas only a single substitution is required to misassign a true ancestral non-CpG site as CpG in a two branch tree. We also show that CpG misassignment bias differentially affects fourfold degenerate and noncoding sites due to differences in base composition such that fourfold degenerate sites can appear to be evolving more slowly than noncoding sites. We demonstrate that the effects predicted by our simulations occur in a real evolutionary setting by comparing substitution rates estimated from human-chimp coding and intronic sequence using CpG/non-CpG assignment with estimates derived from a method that is largely free from bias. Conclusion Our study demonstrates that a common method of assigning sites into CpG and non CpG classes in pairwise alignments is seriously biased and recommends against the adoption of ad hoc methods of ancestral state assignment.

  13. Effectiveness of ancestral irradiation on the direct and correlated responses to selection for body weight in rats

    International Nuclear Information System (INIS)

    Gianola, D.

    1975-01-01

    The effects of ancestral irradiation of rat spermatogonia (a cumulative total of 4050 r of x-rays) were studied in a highly inbred line of rats to explore the feasibility of using irradiation to enhance the effectiveness of selection. Six generations after irradiation was terminated, a selection experiment for body weight at six weeks of age was started in both ancestrally irradiated and non-irradiated populations. There were two non-contemporaneous replicates in each of the populations. Within each of the ancestral treatment-replicate combinations one line was selected for high, one for low body weight at six weeks of age, and a third line was maintained by random selection. In each line, avoidance of mating of animals with grandparents in common was attempted. Data on the first ten progeny generations of selection were included in this study. Five types of covariances among relatives were used to estimate causal components of variance for five different genetic models within the ''non-irradiated'' and ''irradiated'' randomly selected models. The parameters in the genetic models were estimated by generalized least-squares. This analysis suggested that a genetic model including direct genetic and maternal genetic effects was adequate to describe the body weights at 3, 6 and 10 weeks of age and the weight gains between these ages. Ancestral irradiation seemed to have enhanced the maternal genetic variance and the covariance between the direct genetic and the maternal genetic effects. On the basis of the above analysis, it was deduced that mass selection should have been more effective in the descendants of irradiated males than in those of the non-irradiated males as a consequence of greater phenotypic variability in their progeny and an enhancement in the regression of the genetic value on the selection criterion

  14. Genotype-based ancestral background consistently predicts efficacy and side effects across treatments in CATIE and STAR*D.

    Directory of Open Access Journals (Sweden)

    Daniel E Adkins

    Full Text Available Only a subset of patients will typically respond to any given prescribed drug. The time it takes clinicians to declare a treatment ineffective leaves the patient in an impaired state and at unnecessary risk for adverse drug effects. Thus, diagnostic tests robustly predicting the most effective and safe medication for each patient prior to starting pharmacotherapy would have tremendous clinical value. In this article, we evaluated the use of genetic markers to estimate ancestry as a predictive component of such diagnostic tests. We first estimated each patient's unique mosaic of ancestral backgrounds using genome-wide SNP data collected in the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE (n = 765 and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D (n = 1892. Next, we performed multiple regression analyses to estimate the predictive power of these ancestral dimensions. For 136/89 treatment-outcome combinations tested in CATIE/STAR*D, results indicated 1.67/1.84 times higher median test statistics than expected under the null hypothesis assuming no predictive power (p<0.01, both samples. Thus, ancestry showed robust and pervasive correlations with drug efficacy and side effects in both CATIE and STAR*D. Comparison of the marginal predictive power of MDS ancestral dimensions and self-reported race indicated significant improvements to model fit with the inclusion of MDS dimensions, but mixed evidence for self-reported race. Knowledge of each patient's unique mosaic of ancestral backgrounds provides a potent immediate starting point for developing algorithms identifying the most effective and safe medication for a wide variety of drug-treatment response combinations. As relatively few new psychiatric drugs are currently under development, such personalized medicine offers a promising approach toward optimizing pharmacotherapy for psychiatric conditions.

  15. Effects of ancestral populations on entrepreneurial founding and failure: private liquor stores in Alberta, 1994--2003

    OpenAIRE

    Glen Dowell; Robert J. David

    2011-01-01

    Until 1993, all liquor stores in the Canadian province of Alberta were government owned and run. In the fall of 1993, the provincial government exited liquor retailing, all government stores were shut down, and entrepreneurs were allowed to open private liquor stores. In this article, we take advantage of this abrupt regulatory change in the Alberta liquor-retailing industry to address two related issues that have received little empirical attention. First, we investigate how an ancestral pop...

  16. Peripartal leukogram in cows with and without retained placenta

    Directory of Open Access Journals (Sweden)

    Lužajić Tijana

    2014-01-01

    Full Text Available The aim of this study was to investigate whether prepartal leukogram in cows with retained placenta could indicate the presence of subclinical systemic inflammatory response before the onset of disease. After calving, sixteen highly pregnant Holstein cows, aged 3 to 9 years, without clinical signs of the disease prior to calving were divided into two groups: the first group (n=9 were animals without retained placenta, or any visible inflammation after birth; the second group (n=7 were cows with retained placenta. Blood was sampled three times before parturition, at intervals of one week, and once 24 hours after birth. The number of total leukocytes, segmented and non segmented neutrophilic granulocytes (NG, lymphocytes and monocytes were determined by standard laboratory techniques. The results have shown that in the group of cows with retained placenta the number of mature neutrophils was slightly elevated in the third, second and last week before calving, and equal number of non segmented neutrophils in regard to the group with no retention. The results have also shown that, in both groups of cows, 24 hours after calving, the number of total leukocytes and the number of segmented neutrophils decreased, but the number of the non segmented neutrophils increased. Based on this, we can conclude that cows with retained placenta had no systemic inflammatory response during three weeks prepartal period, but 24 hours after calving, systemic inflammatory response was documented in all the cows. Moreover, the intensity of inflammatory response in cows with retained placenta was not more pronounced in comparison to cows without retained placenta. [Projekat Ministarstva nauke Republike Srbije, br. 175061

  17. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  18. Renal disease and mitochondrial genetics.

    Science.gov (United States)

    Rötig, Agnès

    2003-01-01

    Respiratory chain (RC) deficiencies have long been regarded as neuromuscular diseases mainly originating from mutations in the mitochondrial DNA. Oxidative phosphorylation, i.e. adenosine triphosphate (ATP) synthesis-coupled electron transfer from substrate to oxygen through the RC, does not occur only in the neuromuscular system. Therefore, a RC deficiency can theoretically give rise to any symptom, in any organ or tissue, at any age and with any mode of inheritance, owing to the dual genetic origin of RC enzymes (nuclear DNA and mitochondrial DNA). Mitochondrial diseases can give rise to various syndromes or association, namely, neurologic and neuromuscular diseases, cardiac, renal, hepatic, hematological and endocrin or dermatological presentations. The most frequent renal symptom is proximal tubular dysfunction with a more or less complete de Toni-Debre-Fanconi Syndrome. A few patients have been reported with tubular acidosis, Bartter Syndrome, chronic tubulointerstitial nephritis or nephrotic syndrome. The diagnosis of a RC deficiency is difficult when only renal symptoms are present, but should be easier when another, seemingly unrelated symptom is observed. Metabolic screening for abnormal oxidoreduction status in plasma, including lactate/pyruvate and ketone body molar ratios, can help to identify patients for further investigations. These include the measurement of oxygen consumption by mitochondria and the assessment of mitochondrial respiratory enzyme activities by spectrophotometric studies. Any mode of inheritance can be observed: sporadic, autosomal dominant or recessive, or maternal inheritance.

  19. The ancestral chromosomes of Dromiciops gliroides (Microbiotheridae), and its bearings on the karyotypic evolution of American marsupials.

    Science.gov (United States)

    Suárez-Villota, Elkin Y; Haro, Ronie E; Vargas, Rodrigo A; Gallardo, Milton H

    2016-01-01

    The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is reminecent of ancestrality, its interstitial traces of past putative fusions and heterochromatin banding patterns were studied and added to available marsupials' cytogenetic data. Fluorescent in situ hybridization (FISH) and self-genomic in situ hybridization (self-GISH) were used to detect telomeric and repetitive sequences, respectively. These were complemented with C-, fluorescent banding, and centromere immunodetection over mitotic spreads. The presence of interstitial telomeric sequences (ITS) and diploid numbers were reconstructed and mapped onto the marsupial phylogenetic tree. No interstitial, fluorescent signals, but clearly stained telomeric regions were detected by FISH and self-GISH. Heterochromatin distribution was sparse in the telomeric/subtelomeric regions of large submetacentric chromosomes. Large AT-rich blocks were detected in the long arm of four submetacentrics and CG-rich block in the telomeric regions of all chromosomes. The ancestral reconstructions both ITS presence and diploid numbers suggested that ITS are unrelated to fusion events. Although the lack of interstitial signals in D. gliroides' karyotype does not prove absence of past fusions, our data suggests its non-rearranged plesiomorphic condition.

  20. Emergence, Retention and Selection: A Trilogy of Origination for Functional De Novo Proteins from Ancestral LncRNAs in Primates.

    Directory of Open Access Journals (Sweden)

    Jia-Yu Chen

    2015-07-01

    Full Text Available While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.

  1. When ancestral heritage is a source of discomfort: culture, pre-object relatedness, and self-alienation.

    Science.gov (United States)

    Kradin, Richard L

    2012-04-01

    The ancestral claims on an individual can evoke mental conflict when they involve separating from an ethnic group whose beliefs and customs are devalued by the dominant culture. However, these claims are engraved on the psyche early in development by caretakers to the level of pre-object relatedness, where contents and affect tones are implicit and may be unavailable for later psychoanalytical interventions. In addition, as the anthropologist Clifford Geertz notes, one's culture of origin precedes the development of psyche and creates its own set of claims that must be renegotiated when one encounters a different domain of cultural symbols, a confrontation that can produce psychological dissonance and self-alienation. In this paper, three cases are examined in which mental conflicts were evoked by attempts at divesting ancestral claims in response to conscious efforts to assimilate into the dominant culture. These patients suffered from separation guilt and unstable self-esteem and reported dream imagery suggesting psychological imbalance. The requirement to carefully delineate the ancestral claims on psyche as well as those contents and affects that may not be accessible to therapeutic intervention is emphasized, and the importance of compromise and acceptance with respect to the psychological demands of the unconscious are considered. 2012, The Society of Analytical Psychology.

  2. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria.

    Directory of Open Access Journals (Sweden)

    Roxane Chiori

    Full Text Available BACKGROUND: The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE: Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.

  3. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    International Nuclear Information System (INIS)

    Inui, Ken; Sagane, Yoshimasa; Miyata, Keita; Miyashita, Shin-Ichiro; Suzuki, Tomonori; Shikamori, Yasuyuki; Ohyama, Tohru; Niwa, Koichi; Watanabe, Toshihiro

    2012-01-01

    Highlights: ► BoNT and NTNHA proteins share a similar protein architecture. ► NTNHA and BoNT were both identified as zinc-binding proteins. ► NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. ► Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X 35 -D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  4. Allelic lineages of the ficolin genes (FCNs are passed from ancestral to descendant primates.

    Directory of Open Access Journals (Sweden)

    Tina Hummelshøj

    Full Text Available The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. We found that the exon organisation of the FCN genes was very similar between all the non-human primates and the human FCN genes. Several variations in the FCN genes were found in more than one primate specie suggesting that they were carried from one species to another including humans. The amino acid diversity of the ficolins among human and non-human primate species was estimated by calculating the Shannon entropy revealing that all three proteins are generally highly conserved. Ficolin-1 and ficolin-2 showed the highest diversity, whereas ficolin-3 was more conserved. Ficolin-2 and ficolin-3 were present in non-human primate sera with the same characteristic oligomeric structures as seen in human serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species.

  5. COMPONENTES NUTRICIONALES Y ANTIOXIDANTES DE DOS ESPECIES DE GUAJE (Leucaena spp.: UN RECURSO ANCESTRAL SUBUTILIZADO

    Directory of Open Access Journals (Sweden)

    Nallely Román-Cortés

    2014-01-01

    Full Text Available El guaje ( Leucaena spp. es una planta de vaina y semillas comestibles, un recurso ancestral subutilizado por los pueblos mesoamericanos. El valor nutricional y nutracéutico del guaje se desconoce pese a su consumo vigente en las poblaciones rurales. El objetivo de este trabajo fue evaluar el contenido de minerales, compo - nentes nutricionales y antioxidantes para contribuir a la revalorización alimentaria del guaje rojo ( L. esculenta Benth. y verde ( L. leucocephala Lam.. Los contenidos de antocianinas, flavonoides, fenoles totales, taninos y actividad antioxidante se cuantificaron, así como la composición proximal y mineral. Las semillas de guaje rojo superaron a las de guaje verde en los contenidos de N, Mg, Mn, P y Zn; en contraste, las semillas de guaje verde presentaron niveles mayores de Na y de Fe. El contenido de fibra cruda fue 10.55 y 10.07 % en guaje rojo y verde, respectivamente, mientras que el de proteína fue 33.12 % en guaje rojo y 31.7 % en el verde. El alto contenido de compuestos fenólicos fue mayor en las semillas frescas de guaje rojo (1,088.70 mg equivalentes de ácido gálico [EAG]·100 g -1 p. f. que en las verdes (969.09 mg EAG·100 g -1 p. f., pero las últimas presen - taron mayor cantidad de taninos. La elevada actividad secuestradora de radicales libres (97.22 a 98.11 % obtenida por el método ABTS ( á cido 2,2’-azino-bis(3-etilben-zotiazolin-6-sulfónico, puede estar asociada al contenido de compuestos fenólicos. En conclusión, las semillas de guaje podrían considerarse un alimento funcional, principalmente las de guaje rojo debido a su calidad nutricional y mayor actividad antioxidante.

  6. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate?

    Science.gov (United States)

    Holland, L. Z.; Holland, N. D.

    2001-01-01

    Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.

  7. Functions of two distinct prolactin-releasing peptides evolved from a common ancestral gene

    Directory of Open Access Journals (Sweden)

    Tetsuya eTachibana

    2014-11-01

    Full Text Available Prolactin-releasing peptide (PrRP is one of the RF-amide peptides and was originally identified in the bovine hypothalamus as a stimulator of prolactin (PRL release. Independently, another RF-amide peptide was found in Japanese crucian carp and named Carassius RFa (C-RFa, which shows high homology to PrRP and stimulates PRL secretion in teleost fish. Therefore, C-RFa has been recognized as fish PrRP. However, recent work has revealed that PrRP and C-RFa in non-mammalian vertebrates are encoded by separate genes originated through duplication of an ancestral gene. Indeed, both PrRP and C-RFa are suggested to exist in teleost, amphibian, reptile, and avian species. Therefore, we propose that non-mammalian PrRP (C-RFa be renamed PrRP2. Despite a common evolutionary origin, PrRP2 appears to be a physiological regulator of PRL, whereas this is not a consistent role for PrRP itself. Further work revealed that the biological functions of PrRP and PrRP2 are not limited solely to PRL release, because they are also neuromodulators of several hypothalamus-pituitary axes and are involved in some brain circuits related to the regulation of food intake, stress, and cardiovascular functions. However, these actions appear to be different among vertebrates. For example, central injection of PrRP inhibits feeding behavior in rodents and teleosts while it stimulates it in chicks. Therefore, both PrRP and PrRP2 have acquired diverse actions through evolution. In this review, we integrate the burgeoning information of structures, expression profiles, and multiple biological actions of PrRP in higher vertebrates, as well as those of PrRP2 in non-mammals.

  8. CHAAJ (JUEGO DE PELOTA MESOAMERICANO: UN jUEGO ANCESTRAL ENTRE EMERGENCIAS CULTURALES

    Directory of Open Access Journals (Sweden)

    Jairzinho Francisco Panqueba Cifuentes

    2012-06-01

    Full Text Available Los juegos de pelota mesoamericanos son manifestaciones corporales que han sido exploradasprincipalmente desde perspectivas arqueológicas e históricas, pero también han sido retomadosdesde distintas iniciativas para ponerlos en práctica. Desde la frontera entre Estados Unidos conMéxico, pasando por distintos Estados del país “azteca”, son practicadas diferentes modalidades deeste juego. Sin embargo, decir que el chaaj en Mesoamérica es hoy en día una alternativa recreativay deportiva, es quedarse corto respecto a su ya demostrado potencial. La sacralidad manifestada através de los movimientos corporales está ofreciendo opciones de innovación en varios espacios de lassociedades actuales. En su dimensión ceremonial, revela una comunicación ancestral muy actual. Allíse ponen en juego los códices, las interpretaciones arqueológicas y los conocimientos territoriales depersonas sabedoras de las comunidades. En su dimensión lúdica, el juego reúne elementos culturales,deportivos y pedagógicos. Ha sido una práctica corporal, técnica y motora ejecutada constantementeen algunas regiones mexicanas y guatemaltecas. No obstante su antigüedad, en los últimos años seviene registrando una promoción inusitada, en medio de los actuales tiempos de cambio que fueronanunciados desde tiempos inmemoriales por los sabedores y las sabedoras mayas.

  9. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Ken [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Sagane, Yoshimasa [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Miyata, Keita [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Miyashita, Shin-Ichiro [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Suzuki, Tomonori [Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Shikamori, Yasuyuki [Agilent Technologies International Japan, Ltd. Takaura-cho 9-1, Hachioji-shi, Tokyo 192-0033 (Japan); Ohyama, Tohru; Niwa, Koichi [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Watanabe, Toshihiro, E-mail: t-watana@bioindustry.nodai.ac.jp [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer BoNT and NTNHA proteins share a similar protein architecture. Black-Right-Pointing-Pointer NTNHA and BoNT were both identified as zinc-binding proteins. Black-Right-Pointing-Pointer NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. Black-Right-Pointing-Pointer Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X{sub 35}-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  10. The vomeronasal complex of nocturnal strepsirhines and implications for the ancestral condition in primates.

    Science.gov (United States)

    Garrett, Eva C; Dennis, John C; Bhatnagar, Kunwar P; Durham, Emily L; Burrows, Anne M; Bonar, Christopher J; Steckler, Natalie K; Morrison, Edward E; Smith, Timothy D

    2013-12-01

    This study investigates the vomeronasal organ in extant nocturnal strepsirhines as a model for ancestral primates. Cadaveric samples from 10 strepsirhine species, ranging from fetal to adult ages, were studied histologically. Dimensions of structures in the vomeronasal complex, such as the vomeronasal neuroepithelium (VNNE) and vomeronasal cartilage (VNC) were measured in serial sections and selected specimens were studied immunohistochemically to determine physiological aspects of the vomeronasal sensory neurons (VSNs). Osteological features corresponding to vomeronasal structures were studied histologically and related to 3-D CT reconstructions. The VNC consistently rests in a depression on the palatal portion of the maxilla, which we refer to as the vomeronasal groove (VNG). Most age comparisons indicate that in adults VNNE is about twice the length compared with perinatal animals. In VNNE volume, adults are 2- to 3-fold larger compared with perinatal specimens. Across ages, a strong linear relationship exists between VNNE dimensions and body length, mass, and midfacial length. Results indicate that the VNNE of nocturnal strepsirhines is neurogenic postnatally based on GAP43 expression. In addition, based on Olfactory Marker Protein expression, terminally differentiated VSNs are present in the VNNE. Therefore, nocturnal strepsirhines have basic similarities to rodents in growth and maturational characteristics of VSNs. These results indicate that a functional vomeronasal system is likely present in all nocturnal strepsirhines. Finally, given that osteological features such as the VNG are visible on midfacial bones, primate fossils can be assessed to determine whether primate ancestors possessed a vomeronasal complex morphologically similar to that of modern nocturnal strepsirhines. Copyright © 2013 Wiley Periodicals, Inc.

  11. Mitochondrial function, ornamentation, and immunocompetence.

    Science.gov (United States)

    Koch, Rebecca E; Josefson, Chloe C; Hill, Geoffrey E

    2017-08-01

    Understanding the mechanisms that link ornamental displays and individual condition is key to understanding the evolution and function of ornaments. Immune function is an aspect of individual quality that is often associated with the expression of ornamentation, but a general explanation for why the expression of some ornaments seems to be consistently linked to immunocompetence remains elusive. We propose that condition-dependent ornaments may be linked to key aspects of immunocompetence through co-dependence on mitochondrial function. Mitochondrial involvement in immune function is rarely considered outside of the biomedical literature, but the role of mitochondria as the primary energy producers of the cell and the centres of biosynthesis, the oxidative stress response, and cellular signalling place them at the hub of a variety of immune pathways. A promising new mechanistic explanation for correlations between a wide range of ornamental traits and the properties of individual quality is that mitochondrial function may be the 'shared pathway' responsible for links between ornament production and individual condition. Herein, we first review the role of mitochondria as both signal transducers and metabolic regulators of immune function. We then describe connections between hormonal pathways and mitochondria, with implications for both immune function and the expression of ornamentation. Finally, we explore the possibility that ornament expression may link directly to mitochondrial function. Considering condition-dependent traits within the framework of mitochondrial function has the potential to unify central tenets within the study of sexual selection, eco-immunology, oxidative stress ecology, stress and reproductive hormone biology, and animal physiology. © 2016 Cambridge Philosophical Society.

  12. Mitochondrial rejuvenation after induced pluripotency.

    Directory of Open Access Journals (Sweden)

    Steven T Suhr

    2010-11-01

    Full Text Available As stem cells of the early embryo mature and differentiate into all tissues, the mitochondrial complement undergoes dramatic functional improvement. Mitochondrial activity is low to minimize generation of DNA-damaging reactive oxygen species during pre-implantation development and increases following implantation and differentiation to meet higher metabolic demands. It has recently been reported that when the stem cell type known as induced pluripotent stem cells (IPSCs are re-differentiated for several weeks in vitro, the mitochondrial complement progressively re-acquires properties approximating input fibroblasts, suggesting that despite the observation that IPSC conversion "resets" some parameters of cellular aging such as telomere length, it may have little impact on other age-affected cellular systems such as mitochondria in IPSC-derived cells.We have examined the properties of mitochondria in two fibroblast lines, corresponding IPSCs, and fibroblasts re-derived from IPSCs using biochemical methods and electron microscopy, and found a dramatic improvement in the quality and function of the mitochondrial complement of the re-derived fibroblasts compared to input fibroblasts. This observation likely stems from two aspects of our experimental design: 1 that the input cell lines used were of advanced cellular age and contained an inefficient mitochondrial complement, and 2 the re-derived fibroblasts were produced using an extensive differentiation regimen that may more closely mimic the degree of growth and maturation found in a developing mammal.These results - coupled with earlier data from our laboratory - suggest that IPSC conversion not only resets the "biological clock", but can also rejuvenate the energetic capacity of derived cells.

  13. Seismic analysis for translational failure of landfills with retaining walls.

    Science.gov (United States)

    Feng, Shi-Jin; Gao, Li-Ya

    2010-11-01

    In the seismic impact zone, seismic force can be a major triggering mechanism for translational failures of landfills. The scope of this paper is to develop a three-part wedge method for seismic analysis of translational failures of landfills with retaining walls. The approximate solution of the factor of safety can be calculated. Unlike previous conventional limit equilibrium methods, the new method is capable of revealing the effects of both the solid waste shear strength and the retaining wall on the translational failures of landfills during earthquake. Parameter studies of the developed method show that the factor of safety decreases with the increase of the seismic coefficient, while it increases quickly with the increase of the minimum friction angle beneath waste mass for various horizontal seismic coefficients. Increasing the minimum friction angle beneath the waste mass appears to be more effective than any other parameters for increasing the factor of safety under the considered condition. Thus, selecting liner materials with higher friction angle will considerably reduce the potential for translational failures of landfills during earthquake. The factor of safety gradually increases with the increase of the height of retaining wall for various horizontal seismic coefficients. A higher retaining wall is beneficial to the seismic stability of the landfill. Simply ignoring the retaining wall will lead to serious underestimation of the factor of safety. Besides, the approximate solution of the yield acceleration coefficient of the landfill is also presented based on the calculated method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. The stability of gabion walls for earth retaining structures

    Directory of Open Access Journals (Sweden)

    Mahyuddin Ramli

    2013-12-01

    Full Text Available The stability of earth retaining structures in flood prone areas has become a serious problem in many countries. The two most basic causes of failure arising from flooding are scouring and erosion of the foundation of the superstructure. Hence, a number of structures like bridges employ scour-arresting devices, e.g., gabions to acting on the piers and abutments during flooding. Research was therefore undertaken to improve gabion resistance against lateral movement by means of an interlocking configuration instead of the conventional stack-and-pair system. This involved simulating lateral thrusts against two dimensionally identical retaining wall systems configured according to the rectangular and hexagonal gabion type. The evolution of deformation observed suggested that the interlocking design exhibits better structural integrity than the conventional box gabion-based wall in resisting lateral movement and therefore warrants consideration for use as an appropriate scour-arresting device for earth retaining structures.

  15. Lead poisoning from retained bullets: pathogenesis, diagnosis, and management

    International Nuclear Information System (INIS)

    Linden, M.A.; Manton, W.I.; Stewart, R.M.; Thal, E.R.; Feit, H.

    1982-01-01

    Lead intoxication (plumbism) from retained bullets has rarely been reported but may be fatal if unrecognized. Bullets lodged within joint spaces or pseudocysts are more likely to develop this complication, although patients with retained missiles in other locations may also be at risk. Subtle findings such as the occurrence of unexplained anemia, abdominal colic, nephropathy, or neurologic deterioration in patients with retained missiles may suggest consideration of plumbism. An intercurrent metabolic stress such as infection, endocrinopathy, or alcoholism may be a precipitating factor. Among the various diagnostic studies available, mass spectrometric stable isotope dilution analysis may be the most reliable. It is important to employ chelation therapy prior to any operative intervention. This will reduce the mobilization of lead from bone during or following the surgical procedure

  16. Dust retaining properties of leaves of some tree species

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, M I

    1960-05-01

    A study was made in Tashkent, Russia of the dust-retaining power of leaves of several tree species. Investigations were made in a park where these tree species were growing in close proximity, exposed to the effects of dust from the main city street and from the highway passing through the park. Observations on the dust-retaining power of leaves were made mostly during the summer and fall months. The dust-retaining power of leaves of different tree species varied with the dust concentration in the air. In the summer and fall when rains are scarce a steady accumulation of dust was observed on the surface of the leaves. 1 table.

  17. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites

    KAUST Repository

    Flegontov, Pavel

    2015-02-06

    Four respiratory complexes and ATP-synthase represent central functional units in mitochondria. In some mitochondria and derived anaerobic organelles, a few or all of these respiratory complexes have been lost during evolution. We show that the respiratory chain of Chromera velia, a phototrophic relative of parasitic apicomplexans, lacks complexes I and III, making it a uniquely reduced aerobic mitochondrion. In Chromera, putative lactate:cytochrome c oxidoreductases are predicted to transfer electrons from lactate to cytochrome c, rendering complex III unnecessary. The mitochondrial genome of Chromera has the smallest known protein-coding capacity of all mitochondria, encoding just cox1 and cox3 on heterogeneous linear molecules. In contrast, another photosynthetic relative of apicomplexans, Vitrella brassicaformis, retains the same set of genes as apicomplexans and dinoflagellates (cox1, cox3, and cob). © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites

    KAUST Repository

    Flegontov, Pavel; Michá lek, Jan; Janouškovec, Jan; Lai, De Hua; Jirků, Milan; Hajdušková , Eva; Tomčala, Aleš; Otto, Thomas D.; Keeling, Patrick J.; Pain, Arnab; Oborní k, Miroslav; Lukeš, J.

    2015-01-01

    Four respiratory complexes and ATP-synthase represent central functional units in mitochondria. In some mitochondria and derived anaerobic organelles, a few or all of these respiratory complexes have been lost during evolution. We show that the respiratory chain of Chromera velia, a phototrophic relative of parasitic apicomplexans, lacks complexes I and III, making it a uniquely reduced aerobic mitochondrion. In Chromera, putative lactate:cytochrome c oxidoreductases are predicted to transfer electrons from lactate to cytochrome c, rendering complex III unnecessary. The mitochondrial genome of Chromera has the smallest known protein-coding capacity of all mitochondria, encoding just cox1 and cox3 on heterogeneous linear molecules. In contrast, another photosynthetic relative of apicomplexans, Vitrella brassicaformis, retains the same set of genes as apicomplexans and dinoflagellates (cox1, cox3, and cob). © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Complete tribal sampling reveals basal split in Muscidae (Diptera), confirms saprophagy as ancestral feeding mode, and reveals an evolutionary correlation between instar numbers and carnivory

    DEFF Research Database (Denmark)

    Kutty, Sujatha Narayanan; Pont, Adrian C.; Meier, Rudolf

    2014-01-01

    split within this family. The ancestral larval feeding habit is reconstructed to be saprophagy with more specialised coprophagous saprophagy, phytophagy, and carnivory evolving multiple times from saprophagous ancestors. The origins of carnivory in larvae are significantly correlated with a reduction...

  20. A Two-Pronged Approach to Retaining Millennial Nurses.

    Science.gov (United States)

    Koppel, Jenna; Deline, Marisa; Virkstis, Katherine

    2017-12-01

    Despite increased staff engagement and improved new hire on-boarding, organizations struggle to retain millennial nurses. One dominant trait is shared by organizations that have successfully reduced turnover for this group: investment in select strategies that cement loyalty to the organization. In this article, the authors describe 2 strategies for retaining early-tenure millennial nurses. In the 1st article of this series, the authors described why nursing leaders must supplement their organization's current investments in engagement with strategies targeted at millennials in their 1st 3 years. This 2nd part of the series will outline these strategies.

  1. The cyclops lesion after bicruciate-retaining total knee replacement

    Directory of Open Access Journals (Sweden)

    Mark A. Klaassen, MD, FACS

    2017-12-01

    Full Text Available The cyclops lesion is a localized anterior arthrofibrosis most commonly seen following anterior cruciate ligament reconstruction. The lesion forms at the anterior cruciate ligament insertion creating a painful extension block between femoral intercondylar notch and tibial plateau. We present 2 cases (3 knees in which cyclops lesions appeared atypically following bicruciate-retaining total knee replacement. Two lesions occurred in a single patient following bilateral knee replacement. One lesion occurred in an active sportswoman. All 3 resolved following arthroscopic debridement. We describe the presentation of this unusual complication and suggest keys to its diagnosis, treatment, and prevention. Keywords: Cyclops lesion, Bicruciate-retaining, Total knee arthroplasty, Extension deficit

  2. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2007-05-01

    Full Text Available Abstract Background The Streptophyta comprises all land plants and six groups of charophycean green algae. The scaly biflagellate Mesostigma viride (Mesostigmatales and the sarcinoid Chlorokybus atmophyticus (Chlorokybales represent the earliest diverging lineages of this phylum. In trees based on chloroplast genome data, these two charophycean green algae are nested in the same clade. To validate this relationship and gain insight into the ancestral state of the mitochondrial genome in the Charophyceae, we sequenced the mitochondrial DNA (mtDNA of Chlorokybus and compared this genome sequence with those of three other charophycean green algae and the bryophytes Marchantia polymorpha and Physcomitrella patens. Results The Chlorokybus genome differs radically from its 42,424-bp Mesostigma counterpart in size, gene order, intron content and density of repeated elements. At 201,763-bp, it is the largest mtDNA yet reported for a green alga. The 70 conserved genes represent 41.4% of the genome sequence and include nad10 and trnL(gag, two genes reported for the first time in a streptophyte mtDNA. At the gene order level, the Chlorokybus genome shares with its Chara, Chaetosphaeridium and bryophyte homologues eight to ten gene clusters including about 20 genes. Notably, some of these clusters exhibit gene linkages not previously found outside the Streptophyta, suggesting that they originated early during streptophyte evolution. In addition to six group I and 14 group II introns, short repeated sequences accounting for 7.5% of the genome were identified. Mitochondrial trees were unable to resolve the correct position of Mesostigma, due to analytical problems arising from accelerated sequence evolution in this lineage. Conclusion The Chlorokybus and Mesostigma mtDNAs exemplify the marked fluidity of the mitochondrial genome in charophycean green algae. The notion that the mitochondrial genome was constrained to remain compact during charophycean

  3. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Science.gov (United States)

    Butzin, Nicholas C; Lapierre, Pascal; Green, Anna G; Swithers, Kristen S; Gogarten, J Peter; Noll, Kenneth M

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  4. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Directory of Open Access Journals (Sweden)

    Nicholas C Butzin

    Full Text Available The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS. These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  5. A Common Ancestral Mutation in CRYBB3 Identified in Multiple Consanguineous Families with Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Jiao

    report a common ancestral mutation in CRYBB3 associated with autosomal recessive congenital cataracts identified in four familial cases of Pakistani origin.

  6. Mitochondrial control of cell death induced by hyperosmotic stress.

    Science.gov (United States)

    Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.

  7. Human skeletal muscle mitochondrial capacity.

    Science.gov (United States)

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.

  8. Mitochondrial disorders in congenital myopathies

    Directory of Open Access Journals (Sweden)

    D. A. Kharlamov

    2014-01-01

    Full Text Available The literature review gives data on the role of mitochondrial disorders in the pathogenesis of congenital myopathies: congenital muscular dystrophies and congenital structural myopathies. It describes changes in congenital muscular dystrophies with type VI collagen, in myodystrophy with giant mitochondria, in congenital central core myopathies, myotubular myopathy, etc. Clinical and experimental findings are presented. Approaches to therapy for energy disorders in congenital myopathies are depicted.

  9. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  10. Management of retained encrusted urethral catheter with extracorporeal shockwave lithotripsy

    Directory of Open Access Journals (Sweden)

    Sameh Anwar Kunzman

    2002-01-01

    Full Text Available We report a case of non-deflating heavily encrusted Foley catheter successfully removed by extracorporeal shockwave lithotripsy (ESWL. To our knowledge this is the first case of using ESWL to remove encrusted foley catheter retained in the bladder.

  11. A Market-Driven Approach to Retaining Talent.

    Science.gov (United States)

    Cappelli, Peter

    2000-01-01

    Employee retention must be rethought in a free-agent market. Compensation can shape who leaves and stays. Job design and customization can tailor jobs to employee needs. Encouraging social ties among colleagues and selecting appealing locations for workplaces are other ways to retain talented workers. (SK)

  12. Good Laboratory Practice. Part 2. Recording and Retaining Raw Data

    Science.gov (United States)

    Wedlich, Richard C.; Libera, Agata E.; Pires, Amanda; Tellarini, Cassandra

    2013-01-01

    A clear understanding of how "raw data" is defined, recorded, and retained in the laboratory record is essential to the chemist employed in the laboratory compliant with the Good Laboratory Practices regulations. This article is intended to provide an understanding by drawing upon examples taken from the modern pharmaceutical analysis…

  13. 40 CFR 98.227 - Records that must be retained.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Records that must be retained. 98.227 Section 98.227 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... significant changes to process. (b) Documentation of how process knowledge was used to estimate abatement...

  14. 40 CFR 98.57 - Records that must be retained.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Records that must be retained. 98.57 Section 98.57 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...) Documentation of how process knowledge was used to estimate abatement technology destruction efficiency. (f...

  15. INTRODUCTION The incidence of retained placenta varies greatly ...

    African Journals Online (AJOL)

    balance between the post-partum haemorrhage risk of leaving the placenta in ... Conclusion: Retained placenta still remains a potentially life threatening condition in ... obstetric services by high skilled health care providers in ensuring a properly conducted .... of the preterm placenta may require more uterine work and time ...

  16. A survey of failed post-retained restorations

    DEFF Research Database (Denmark)

    Peutzfeldt, A; Sahafi, A; Asmussen, E

    2008-01-01

    Survival of endodontically treated, post-restored teeth depends on a multitude of factors, all of which are practically impossible to include in a randomized, controlled clinical study. The purpose of this survey was to characterize and analyze reported failures of post-retained restorations...

  17. Retained portion of latex glove during femoral nailing. Case report.

    Science.gov (United States)

    Sadat-Ali, M; Marwah, S; al-Habdan, I

    1996-11-01

    A case of retained glove during Kuntscher intramedullary nailing is described. An abscess around the glove could have lead to osteomyelitis. One need to be cautious feeling the top end of the nail while femoral nailing to avoid such a complication.

  18. 15 CFR 762.2 - Records to be retained.

    Science.gov (United States)

    2010-01-01

    ..., Statement by Ultimate Consignee and Purchaser; (17) § 748.13, Delivery Verification (DV); (18) § 748.2(c... to be retained; (38) § 764.2, Violations; (39) § 764.5, Voluntary self-disclosure; and (40) § 766.10...

  19. 13 CFR 120.1707 - Seller's retained Loan Interest.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Seller's retained Loan Interest. 120.1707 Section 120.1707 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Establishment of SBA Secondary Market Guarantee Program for First Lien Position 504 Loan Pools § 120.1707 Seller...

  20. Vesicovaginal fistula, bladder calculus, retained foreign body or all ...

    African Journals Online (AJOL)

    L. Paik

    Vesicovaginal fistula, bladder calculus, retained foreign body or all of the above? The unusual presentation of a female with total urinary incontinence. L. Paika, S. Smitb,∗. , H. van Heerdenb, K. du Toitb,. A. van der Merweb, C. Heynsb a Department of Urology, Michigan State University College of Osteopathic Medicine, ...

  1. Management of Retained Genital Piercings: A Case Report and Review

    Directory of Open Access Journals (Sweden)

    Laura J. Moulton

    2017-01-01

    Full Text Available The prevalence of genital piercing among women is increasing. As the popularity increases, the number of complications from infection, injury, and retained jewelry is likely to rise. Techniques to remove embedded jewelry are not well described in the literature. The purpose of this report was to describe a case of a patient with a retained clitoral glans piercing, discuss a simple technique for outpatient removal, and review current evidence regarding associated risks of clitoral piercings. A 24-year-old female presented to the emergency department with an embedded clitoral glans piercing. Local anesthetic was injected into the periclitoral skin and a small superficial vertical incision was made to remove the ball of the retained barbell safely. In conclusion, among patients with retained genital piercing, outpatient removal of embedded jewelry is feasible. While the practice of female genital piercing is not regulated, piercing of the glans of the clitoris is associated with increased injury to the nerves and blood supply of the clitoris structures leading to future fibrosis and diminished function compared to piercing of the clitoral hood.

  2. Management of Retained Genital Piercings: A Case Report and Review.

    Science.gov (United States)

    Moulton, Laura J; Jernigan, Amelia M

    2017-01-01

    The prevalence of genital piercing among women is increasing. As the popularity increases, the number of complications from infection, injury, and retained jewelry is likely to rise. Techniques to remove embedded jewelry are not well described in the literature. The purpose of this report was to describe a case of a patient with a retained clitoral glans piercing, discuss a simple technique for outpatient removal, and review current evidence regarding associated risks of clitoral piercings. A 24-year-old female presented to the emergency department with an embedded clitoral glans piercing. Local anesthetic was injected into the periclitoral skin and a small superficial vertical incision was made to remove the ball of the retained barbell safely. In conclusion, among patients with retained genital piercing, outpatient removal of embedded jewelry is feasible. While the practice of female genital piercing is not regulated, piercing of the glans of the clitoris is associated with increased injury to the nerves and blood supply of the clitoris structures leading to future fibrosis and diminished function compared to piercing of the clitoral hood.

  3. Diffraction study of the retained austenite content in TRIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Gnaeupel-Herold, T., E-mail: tg-h@nist.gov [NIST Center for Neuron Research, 100 Bureau Dr., Gaithersburg MD 20899-6102 (United States); University of Maryland, Department of Material Science and Engineering., College Park MD 20742-2142 (United States); Creuziger, A., E-mail: adam.creuziger@nist.gov [NIST Metallurgy Division, 100 Bureau Dr., Gaithersburg MD 20899-8553 (United States); Kent State University, Kent, OH 44242 (United States)

    2011-04-25

    Research highlights: {yields} Novel orientation averaging scheme for retained austenite content measurement. {yields} assumption of random grain orientation generally not justified. {yields} Averaging scheme allows to disregard texture. {yields} unlike Rietveld method, averaging method does not orientation density function. {yields} Two independent (hkl) are necessary for retained austenite content. - Abstract: The results of a study of using neutron diffraction for determining the retained austenite content of TRIP steels are presented. The study covers a wide area of materials, deformation modes (uniaxial, biaxial and plane strain), strains, and the retained austenite content as a result of these variables. It was determined using basic principles of statistics that a minimum of two reflections (hkl) for each phase is necessary to calculate a phase mass fraction and the associated standard deviation. Texture from processing the steel is the largest source of uncertainty. Through the method of complete orientation averaging described in this paper, the texture effect and with it the standard deviation of the austenite mass fraction can be substantially reduced, regardless of the type or severity of the texture.

  4. Retained Foreign Bodies: A Serious Threat in the Indian Operation ...

    African Journals Online (AJOL)

    Proper communication among the personnel participating in surgery aimed at preventing this medical negligence would help in mitigating such errors. Finally, the surgeon should not only follow the standard recommended procedure, but also report cases of RFBs. Keywords: Medical negligence, Radiography, Retained ...

  5. Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation.

    Science.gov (United States)

    Soloveychik, Maria; Xu, Mengshu; Zaslaver, Olga; Lee, Kwanyin; Narula, Ashrut; Jiang, River; Rosebrock, Adam P; Caudy, Amy A; Meneghini, Marc D

    2016-11-29

    Histone demethylation by Jumonji-family proteins is coupled with the decarboxylation of α-ketoglutarate (αKG) to yield succinate, prompting hypotheses that their activities are responsive to levels of these metabolites in the cell. Consistent with this paradigm we show here that the Saccharomyces cerevisiae Jumonji demethylase Jhd2 opposes the accumulation of H3K4me3 in fermenting cells only when they are nutritionally manipulated to contain an elevated αKG/succinate ratio. We also find that Jhd2 opposes H3K4me3 in respiratory cells that do not exhibit such an elevated αKG/succinate ratio. While jhd2∆ caused only limited gene expression defects in fermenting cells, transcript profiling and physiological measurements show that JHD2 restricts mitochondrial respiratory capacity in cells grown in non-fermentable carbon in an H3K4me-dependent manner. In association with these phenotypes, we find that JHD2 limits yeast proliferative capacity under physiologically challenging conditions as measured by both replicative lifespan and colony growth on non-fermentable carbon. JHD2's impact on nutrient response may reflect an ancestral role of its gene family in mediating mitochondrial regulation.

  6. The first two mitochondrial genomes from Taeniopterygidae (Insecta: Plecoptera): Structural features and phylogenetic implications.

    Science.gov (United States)

    Chen, Zhi-Teng; Du, Yu-Zhou

    2018-05-01

    The complete mitochondrial genomes (mitogenomes) of Taeniopteryx ugola and Doddsia occidentalis (Plecoptera: Taeniopterygidae) were firstly sequenced from the family Taeniopterygidae. The 15,353-bp long mitogenome of T. ugola and the 16,020-bp long mitogenome of D. occidentalis each contained 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and a control region (CR). The mitochondrial gene arrangement of the two taeniopterygids and other stoneflies was identical with the putative ancestral mitogenome of Drosophila yakuba. Most PCGs used standard ATN start codons and TAN termination codons. Twenty-one of the 22 tRNAs in each mitogenome could fold into the cloverleaf secondary structures, while the dihydrouridine (DHU) arm of trnSer (AGN) was reduced or absent. Stem-loop (SL) structures, poly-T stretch, poly-[AT] n stretch and tandem repeats were found in the CRs of the two mitogenomes. The phylogenetic analyses using Bayesian inference (BI) and maximum likelihood methods (ML) generated identical results, both supporting the monophyly of all stonefly families and the two infraorders, Systellognatha and Euholognatha. Taeniopterygidae was grouped with another two families from Euholognatha. The relationships within Plecoptera were recovered as (((Perlidae+Peltoperlidae)+((Pteronarcyidae+Chloroperlidae)+Styloperlidae))+((Capniidae+Taeniopterygidae)+Nemouridae))+Gripopterygidae. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The origins of African Plasmodium vivax; insights from mitochondrial genome sequencing.

    Directory of Open Access Journals (Sweden)

    Richard Culleton

    Full Text Available Plasmodium vivax, the second most prevalent of the human malaria parasites, is estimated to affect 75 million people annually. It is very rare, however, in west and central Africa, due to the high prevalence of the Duffy negative phenotype in the human population. Due to its rarity in Africa, previous studies on the phylogeny of world-wide P. vivax have suffered from insufficient samples of African parasites. Here we compare the mitochondrial sequence diversity of parasites from Africa with those from other areas of the world, in order to investigate the origin of present-day African P. vivax. Mitochondrial genome sequencing revealed relatively little polymorphism within the African population compared to parasites from the rest of the world. This, combined with sequence similarity with parasites from India, suggests that the present day African P. vivax population in humans may have been introduced relatively recently from the Indian subcontinent. Haplotype network analysis also raises the possibility that parasites currently found in Africa and South America may be the closest extant relatives of the ancestors of the current world population. Lines of evidence are adduced that this ancestral population may be from an ancient stock of P. vivax in Africa.

  8. The Evolution of Host Mitochondrial Association and its Impact on Toxoplasma gondii Infection

    Science.gov (United States)

    English, Elizabeth D.

    The association of intracellular pathogens with host mitochondria has been observed across taxa, from bacterial pathogens, such as Legionella pneumophila and Chlamydia trachomati, to the eukaryotic pathogen Toxoplasma gondii. However the functional impact of host mitochondrial association (HMA) remains difficult to assess in most of these species because in many cases the genes responsible for this phenomenon have not yet been identified. The recent discovery of the T. gondii gene responsible for HMA, Mitochondrial Association Factor 1 ( MAF1) has provided us with the tools to begin to understand the evolution and impact of HMA. Here we use multispecies sequence analysis to determine that the MAF1 locus is tandemly duplicated and diversified in both T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative Neospora caninum. Using cross-species complementation we find that T. gondii and H. hammondi harbor copies of MAF1 able to mediate HMA, while N. caninum does not. We have begun mutational analysis using naturally occurring HMA+ and HMA- paralogs of MAF1 in order to determine the portions of MAF1 protein necessary for HMA. Additionally, we have identified the first in vivo phenotypes associated with HMA using multiple mouse models, for both acute and chronic infection. Taken together these data indicate that HMA likely evolved via neofunctionalization of a duplicated ancestral MAF1 gene, and that the neofunctionalized, HMA competent copy of MAF1 provides a selective advantage.

  9. Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation

    Science.gov (United States)

    Soloveychik, Maria; Xu, Mengshu; Zaslaver, Olga; Lee, Kwanyin; Narula, Ashrut; Jiang, River; Rosebrock, Adam P.; Caudy, Amy A.; Meneghini, Marc D.

    2016-01-01

    Histone demethylation by Jumonji-family proteins is coupled with the decarboxylation of α-ketoglutarate (αKG) to yield succinate, prompting hypotheses that their activities are responsive to levels of these metabolites in the cell. Consistent with this paradigm we show here that the Saccharomyces cerevisiae Jumonji demethylase Jhd2 opposes the accumulation of H3K4me3 in fermenting cells only when they are nutritionally manipulated to contain an elevated αKG/succinate ratio. We also find that Jhd2 opposes H3K4me3 in respiratory cells that do not exhibit such an elevated αKG/succinate ratio. While jhd2∆ caused only limited gene expression defects in fermenting cells, transcript profiling and physiological measurements show that JHD2 restricts mitochondrial respiratory capacity in cells grown in non-fermentable carbon in an H3K4me-dependent manner. In association with these phenotypes, we find that JHD2 limits yeast proliferative capacity under physiologically challenging conditions as measured by both replicative lifespan and colony growth on non-fermentable carbon. JHD2’s impact on nutrient response may reflect an ancestral role of its gene family in mediating mitochondrial regulation. PMID:27897198

  10. Mitochondrial Drugs for Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Xiongwei Zhu

    2009-12-01

    Full Text Available Therapeutic strategies for Alzheimer disease (AD have yet to offer a diseasemodifying effect to stop the debilitating progression of neurodegeneration and cognitive decline. Rather, treatments thus far are limited to agents that slow disease progression without halting it, and although much work towards a cure is underway, a greater understanding of disease etiology is certainly necessary for any such achievement. Mitochondria, as the centers of cellular metabolic activity and the primary generators of reactive oxidative species in the cell, received particular attention especially given that mitochondrial defects are known to contribute to cellular damage. Furthermore, as oxidative stress has come to the forefront of AD as a causal theory, and as mitochondrial damage is known to precede much of the hallmark pathologies of AD, it seems increasingly apparent that this metabolic organelle is ultimately responsible for much, if not all of disease pathogenesis. In this review, we review the role of neuronal mitochondria in the pathogenesis of AD and critically assess treatment strategies that utilize this upstream access point as a method for disease prevention. We suspect that, with a revived focus on mitochondrial repair and protection, an effective and realistic therapeutic agent can be successfully developed.

  11. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  12. Return of the mitochondrial DNA : Case study of mitochondrial genome evolution in the genus Fusarium

    NARCIS (Netherlands)

    Brankovics, Balázs

    2018-01-01

    Mitochondrial DNA played a prominent role in the fields of population genetics, systematics and evolutionary biology, due to its favorable characteristics, such as, uniparental inheritance, fast evolution and easy accessibility. However, the mitochondrial sequences have been mostly neglected in

  13. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    Science.gov (United States)

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  14. Mitochondrial Stress Signaling Promotes Cellular Adaptations

    Directory of Open Access Journals (Sweden)

    Jayne Alexandra Barbour

    2014-01-01

    Full Text Available Mitochondrial dysfunction has been implicated in the aetiology of many complex diseases, as well as the ageing process. Much of the research on mitochondrial dysfunction has focused on how mitochondrial damage may potentiate pathological phenotypes. The purpose of this review is to draw attention to the less well-studied mechanisms by which the cell adapts to mitochondrial perturbations. This involves communication of stress to the cell and successful induction of quality control responses, which include mitophagy, unfolded protein response, upregulation of antioxidant and DNA repair enzymes, morphological changes, and if all else fails apoptosis. The mitochondrion is an inherently stressful environment and we speculate that dysregulation of stress signaling or an inability to switch on these adaptations during times of mitochondrial stress may underpin mitochondrial dysfunction and hence amount to pathological states over time.

  15. Reestablishment of the Ancestral Cascades Arc in Western Nevada and Eastern California by Rollback of the Shallow Farallon Slab

    Science.gov (United States)

    Henry, C. D.; Cousens, B.; John, D. A.; Colgan, J. P.

    2009-12-01

    The character and even existence of an ancestral Tertiary Cascades arc in western Nevada and eastern California south of the modern arc are controversial. Based on extensive published and new data on the regional distribution, timing, style, and composition of magmatism, we conclude that an ancestral arc was established by WSW migration of magmatism into western NV and the northeastern Sierra Nevada in the Oligocene and Miocene as a result of progressive rollback of the shallow subducted slab. Magma migration started with the well-known southward sweep through NE NV and NW UT between ~46 and 36 Ma. By ~30 Ma, migration of the leading edge and central belt of activity was much more WSW, especially after removing younger ~E-W extension. Locally sourced, initially dispersed and small volume, intermediate to mafic lavas erupted in western NV and northeastern CA by ~30 Ma and the eastern Sierra Nevada by ~28 Ma, contemporaneous with the much more voluminous ignimbrite flare-up in central NV. As migration continued, the ignimbrite flare-up tapered off. A voluminous, NNW-trending, dominantly effusive volcanic belt developed by ~22-18 Ma in western NV and was continuous from the Bodie Hills (CA/NV) to the Warner Range (northeast CA) by ~16-15 Ma. The volcanic belt was dominated by intermediate to mafic magmas compositionally similar to those of the modern south Cascades arc but reflecting melting of an old, subduction-modified lithosphere (Cousens et al. 2008; Geosphere). Extensive middle Miocene bimodal rocks related to the Yellowstone hotspot cover these rocks in NW NV, NE CA, and SE OR, but 30-23 Ma, intermediate to mafic and lesser silicic rocks are voluminous wherever older rocks are exposed below the middle Miocene rocks. Between ~25 Ma and the present, magmatism migrated WSW at an average rate of ~8 km/Ma but was at least partly stepwise, as exemplified by an ~50 km westward step at 2 Ma in the Lassen area (Guffanti et al. 1990, JGR). The magmatic belt was as much

  16. Founder haplotype analysis of Fanconi anemia in the Korean population finds common ancestral haplotypes for a FANCG variant.

    Science.gov (United States)

    Park, Joonhong; Kim, Myungshin; Jang, Woori; Chae, Hyojin; Kim, Yonggoo; Chung, Nack-Gyun; Lee, Jae-Wook; Cho, Bin; Jeong, Dae-Chul; Park, In Yang; Park, Mi Sun

    2015-05-01

    A common ancestral haplotype is strongly suggested in the Korean and Japanese patients with Fanconi anemia (FA), because common mutations have been frequently found: c.2546delC and c.3720_3724delAAACA of FANCA; c.307+1G>C, c.1066C>T, and c.1589_1591delATA of FANCG. Our aim in this study was to investigate the origin of these common mutations of FANCA and FANCG. We genotyped 13 FA patients consisting of five FA-A patients and eight FA-G patients from the Korean FA population. Microsatellite markers used for haplotype analysis included four CA repeat markers which are closely linked with FANCA and eight CA repeat markers which are contiguous with FANCG. As a result, Korean FA-A patients carrying c.2546delC or c.3720_3724delAAACA did not share the same haplotypes. However, three unique haplotypes carrying c.307+1G>C, c.1066C > T, or c.1589_1591delATA, that consisted of eight polymorphic loci covering a flanking region were strongly associated with Korean FA-G, consistent with founder haplotypes reported previously in the Japanese FA-G population. Our finding confirmed the common ancestral haplotypes on the origins of the East Asian FA-G patients, which will improve our understanding of the molecular population genetics of FA-G. To the best of our knowledge, this is the first report on the association between disease-linked mutations and common ancestral haplotypes in the Korean FA population. © 2015 John Wiley & Sons Ltd/University College London.

  17. Human Genetic Ancestral Composition Correlates with the Origin of Mycobacterium leprae Strains in a Leprosy Endemic Population.

    Directory of Open Access Journals (Sweden)

    Nora Cardona-Castro

    Full Text Available Recent reports have suggested that leprosy originated in Africa, extended to Asia and Europe, and arrived in the Americas during European colonization and the African slave trade. Due to colonization, the contemporary Colombian population is an admixture of Native-American, European and African ancestries. Because microorganisms are known to accompany humans during migrations, patterns of human migration can be traced by examining genomic changes in associated microbes. The current study analyzed 118 leprosy cases and 116 unrelated controls from two Colombian regions endemic for leprosy (Atlantic and Andean in order to determine possible associations of leprosy with patient ancestral background (determined using 36 ancestry informative markers, Mycobacterium leprae genotype and/or patient geographical origin. We found significant differences between ancestral genetic composition. European components were predominant in Andean populations. In contrast, African components were higher in the Atlantic region. M. leprae genotypes were then analyzed for cluster associations and compared with the ancestral composition of leprosy patients. Two M. leprae principal clusters were found: haplotypes C54 and T45. Haplotype C54 associated with African origin and was more frequent in patients from the Atlantic region with a high African component. In contrast, haplotype T45 associated with European origin and was more frequent in Andean patients with a higher European component. These results suggest that the human and M. leprae genomes have co-existed since the African and European origins of the disease, with leprosy ultimately arriving in Colombia during colonization. Distinct M. leprae strains followed European and African settlement in the country and can be detected in contemporary Colombian populations.

  18. Allo-allo-triploid Sphagnum × falcatulum: single individuals contain most of the Holantarctic diversity for ancestrally indicative markers.

    Science.gov (United States)

    Karlin, Eric F; Smouse, Peter E

    2017-08-01

    Allopolyploids exhibit both different levels and different patterns of genetic variation than are typical of diploids. However, scant attention has been given to the partitioning of allelic information and diversity in allopolyploids, particularly that among homeologous monoploid components of the hologenome. Sphagnum × falcatulum is a double allopolyploid peat moss that spans a considerable portion of the Holantarctic. With monoploid genomes from three ancestral species, this organism exhibits a complex evolutionary history involving serial inter-subgeneric allopolyploidizations. Studying populations from three disjunct regions [South Island (New Zealand); Tierra de Fuego archipelago (Chile, Argentina); Tasmania (Australia)], allelic information for five highly stable microsatellite markers that differed among the three (ancestral) monoploid genomes was examined. Using Shannon information and diversity measures, the holoploid information, as well as the information within and among the three component monoploid genomes, was partitioned into separate components for individuals within and among populations and regions, and those information components were then converted into corresponding diversity measures. The majority (76 %) of alleles detected across these five markers are most likely to have been captured by hybridization, but the information within each of the three monoploid genomes varied, suggesting a history of recurrent allopolyploidization between ancestral species containing different levels of genetic diversity. Information within individuals, equivalent to the information among monoploid genomes (for this dataset), was relatively stable, and represented 83 % of the grand total information across the Holantarctic, with both inter-regional and inter-population diversification each accounting for about 5 % of the total information. Sphagnum × falcatulum probably inherited the great majority of its genetic diversity at these markers by reticulation

  19. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme.

    Directory of Open Access Journals (Sweden)

    Maritrini Colón

    Full Text Available BACKGROUND: Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. PRINCIPAL FINDINGS: Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs. This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1, while catabolic substrates are accumulated in the cytosol (Bat2. Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. CONCLUSIONS: Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the

  20. Human Genetic Ancestral Composition Correlates with the Origin of Mycobacterium leprae Strains in a Leprosy Endemic Population.

    Science.gov (United States)

    Cardona-Castro, Nora; Cortés, Edwin; Beltrán, Camilo; Romero, Marcela; Badel-Mogollón, Jaime E; Bedoya, Gabriel

    2015-01-01

    Recent reports have suggested that leprosy originated in Africa, extended to Asia and Europe, and arrived in the Americas during European colonization and the African slave trade. Due to colonization, the contemporary Colombian population is an admixture of Native-American, European and African ancestries. Because microorganisms are known to accompany humans during migrations, patterns of human migration can be traced by examining genomic changes in associated microbes. The current study analyzed 118 leprosy cases and 116 unrelated controls from two Colombian regions endemic for leprosy (Atlantic and Andean) in order to determine possible associations of leprosy with patient ancestral background (determined using 36 ancestry informative markers), Mycobacterium leprae genotype and/or patient geographical origin. We found significant differences between ancestral genetic composition. European components were predominant in Andean populations. In contrast, African components were higher in the Atlantic region. M. leprae genotypes were then analyzed for cluster associations and compared with the ancestral composition of leprosy patients. Two M. leprae principal clusters were found: haplotypes C54 and T45. Haplotype C54 associated with African origin and was more frequent in patients from the Atlantic region with a high African component. In contrast, haplotype T45 associated with European origin and was more frequent in Andean patients with a higher European component. These results suggest that the human and M. leprae genomes have co-existed since the African and European origins of the disease, with leprosy ultimately arriving in Colombia during colonization. Distinct M. leprae strains followed European and African settlement in the country and can be detected in contemporary Colombian populations.

  1. Reconstructed ancestral enzymes reveal that negative selection drove the evolution of substrate specificity in ADP-dependent kinases.

    Science.gov (United States)

    Castro-Fernandez, Víctor; Herrera-Morande, Alejandra; Zamora, Ricardo; Merino, Felipe; Gonzalez-Ordenes, Felipe; Padilla-Salinas, Felipe; Pereira, Humberto M; Brandão-Neto, Jose; Garratt, Richard C; Guixe, Victoria

    2017-09-22

    One central goal in molecular evolution is to pinpoint the mechanisms and evolutionary forces that cause an enzyme to change its substrate specificity; however, these processes remain largely unexplored. Using the glycolytic ADP-dependent kinases of archaea, including the orders Thermococcales , Methanosarcinales , and Methanococcales , as a model and employing an approach involving paleoenzymology, evolutionary statistics, and protein structural analysis, we could track changes in substrate specificity during ADP-dependent kinase evolution along with the structural determinants of these changes. To do so, we studied five key resurrected ancestral enzymes as well as their extant counterparts. We found that a major shift in function from a bifunctional ancestor that could phosphorylate either glucose or fructose 6-phosphate (fructose-6-P) as a substrate to a fructose 6-P-specific enzyme was started by a single amino acid substitution resulting in negative selection with a ground-state mode against glucose and a subsequent 1,600-fold change in specificity of the ancestral protein. This change rendered the residual phosphorylation of glucose a promiscuous and physiologically irrelevant activity, highlighting how promiscuity may be an evolutionary vestige of ancestral enzyme activities, which have been eliminated over time. We also could reconstruct the evolutionary history of substrate utilization by using an evolutionary model of discrete binary characters, indicating that substrate uses can be discretely lost or acquired during enzyme evolution. These findings exemplify how negative selection and subtle enzyme changes can lead to major evolutionary shifts in function, which can subsequently generate important adaptive advantages, for example, in improving glycolytic efficiency in Thermococcales . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors.

    Science.gov (United States)

    Sebastian, Anthony; Frassetto, Lynda A; Sellmeyer, Deborah E; Merriam, Renée L; Morris, R Curtis

    2002-12-01

    Natural selection has had diet resulting from the inventions of agriculture and animal husbandry. The objective was to estimate the net systemic load of acid (net endogenous acid production; NEAP) from retrojected ancestral preagricultural diets and to compare it with that of contemporary diets, which are characterized by an imbalance of nutrient precursors of hydrogen and bicarbonate ions that induces a lifelong, low-grade, pathogenically significant systemic metabolic acidosis. Using established computational methods, we computed NEAP for a large number of retrojected ancestral preagricultural diets and compared them with computed and measured values for typical American diets. The mean (+/- SD) NEAP for 159 retrojected preagricultural diets was -88 +/- 82 mEq/d; 87% were net base-producing. The computational model predicted NEAP for the average American diet (as recorded in the third National Health and Nutrition Examination Survey) as 48 mEq/d, within a few percentage points of published measured values for free-living Americans; the model, therefore, was not biased toward generating negative NEAP values. The historical shift from negative to positive NEAP was accounted for by the displacement of high-bicarbonate-yielding plant foods in the ancestral diet by cereal grains and energy-dense, nutrient-poor foods in the contemporary diet-neither of which are net base-producing. The findings suggest that diet-induced metabolic acidosis and its sequelae in humans eating contemporary diets reflect a mismatch between the nutrient composition of the diet and genetically determined nutritional requirements for optimal systemic acid-base status.

  3. Mitochondrial DNA mutations in human tumor cells

    OpenAIRE

    LI, HUI; HONG, ZE-HUI

    2012-01-01

    Mitochondria play significant roles in cellular energy metabolism, free radical generation and apoptosis. The dysfunction of mitochondria is correlated with the origin and progression of tumors; thus, mutations in the mitochondrial genome that affect mitochondrial function may be one of the causal factors of tumorigenesis. Although the role of mitochondrial DNA (mtDNA) mutations in carcinogenesis has been investigated extensively by various approaches, the conclusions remain controversial to ...

  4. Habitual physical activity in mitochondrial disease.

    Directory of Open Access Journals (Sweden)

    Shehnaz Apabhai

    Full Text Available Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype.Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI.Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001. 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001 and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001. After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s = -0.49; 95% CI -0.33, -0.63, P<0.01. There were no systematic differences in physical activity between different genotypes mitochondrial disease.These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  5. Mitochondrial Diseases: Clinical Features- Management of Patients

    Directory of Open Access Journals (Sweden)

    Filiz Koc

    2003-02-01

    Full Text Available Mitochondria are unique organells which their own DNA in cells. Human mitochondrial DNA is circular, double-stranded molecule and small. Because all mitochondria are contributed by the ovum during the formation of the zygote, the mitochondrial genom is transmitted by maternal inheritance. Multisystem disorders such as deafness, cardiomyopathy, miyopathy can be seen in mitochondrial diseases. [Archives Medical Review Journal 2003; 12(0.100: 14-31

  6. Habitual physical activity in mitochondrial disease.

    Science.gov (United States)

    Apabhai, Shehnaz; Gorman, Grainne S; Sutton, Laura; Elson, Joanna L; Plötz, Thomas; Turnbull, Douglass M; Trenell, Michael I

    2011-01-01

    Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype. Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI. Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001). 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001) and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001). After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s) = -0.49; 95% CI -0.33, -0.63, Pphysical activity between different genotypes mitochondrial disease. These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  7. Piracetam improves mitochondrial dysfunction following oxidative stress

    OpenAIRE

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging.Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction fol...

  8. Mitochondrial Dynamics in Cardiovascular Health and Disease

    OpenAIRE

    Ong, Sang-Bing; Hall, Andrew R.; Hausenloy, Derek J.

    2013-01-01

    Significance: Mitochondria are dynamic organelles capable of changing their shape and distribution by undergoing either fission or fusion. Changes in mitochondrial dynamics, which is under the control of specific mitochondrial fission and fusion proteins, have been implicated in cell division, embryonic development, apoptosis, autophagy, and metabolism. Although the machinery for modulating mitochondrial dynamics is present in the cardiovascular system, its function there has only recently be...

  9. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    Science.gov (United States)

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  10. Summary report on the design of the retained gas sampler system (retained gas sampler, extruder and extractor)

    International Nuclear Information System (INIS)

    Wootan, D.W.; Bolden, R.C.; Bridges, A.E.; Cannon, N.S.; Chastain, S.A.; Hey, B.E.; Knight, R.C.; Linschooten, C.G.; Pitner, A.L.; Webb, B.J.

    1994-01-01

    This document summarizes work performs in Fiscal Year 1994 to develop the three main components of Retained Gas Sampler System (RGSS). These primary components are the Retained Gas Sampler (RGS), the Retained Gas Extruder (RGE), and the Retained Gas Extractor (RGEx). The RGS is based on the Westinghouse Hanford Company (WHC) Universal Sampler design, and includes modifications to reduce gas leakage. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. Significant progress has been made in developing the RGSS. The RGSS is being developed by WHC to extract a representative waste sample from a Flammable Gas Watch List Tanks and to measure both the amount and composition of free and open-quotes boundclose quotes gases. Sudden releases of flammable gas mixtures are a safety concern for normal waste storage operations and eventual waste retrieval. Flow visualization testing was used to identify important fluid dynamic issues related to the sampling process. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. The safety analysis for the RGSS is being performed by Los Alamos National Laboratory and is more than sixty percent (60%) complete

  11. Abundant mtDNA diversity and ancestral admixture in Colombian criollo cattle (Bos taurus).

    Science.gov (United States)

    Carvajal-Carmona, Luis G; Bermudez, Nelson; Olivera-Angel, Martha; Estrada, Luzardo; Ossa, Jorge; Bedoya, Gabriel; Ruiz-Linares, Andrés

    2003-11-01

    Various cattle populations in the Americas (known as criollo breeds) have an origin in some of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). These cattle constitute a potentially important genetic reserve as they are well adapted to local environments and show considerable variation in phenotype. To examine the genetic ancestry and diversity of Colombian criollo we obtained mitochondrial DNA control region sequence information for 110 individuals from seven breeds. Old World haplogroup T3 is the most commonly observed CR lineage in criollo (0.65), in agreement with a mostly European ancestry for these cattle. However, criollo also shows considerable frequencies of haplogroups T2 (0.9) and T1 (0.26), with T1 lineages in criollo being more diverse than those reported for West Africa. The distribution and diversity of Old World lineages suggest some North African ancestry for criollo, probably as a result of the Arab occupation of Iberia prior to the European migration to the New World. The mtDNA diversity of criollo is higher than that reported for European and African cattle and is consistent with a differentiated ancestry for some criollo breeds.

  12. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.

    Science.gov (United States)

    Caspeta, Luis; Nielsen, Jens

    2015-07-21

    A major challenge for the production of ethanol from biomass-derived feedstocks is to develop yeasts that can sustain growth under the variety of inhibitory conditions present in the production process, e.g., high osmolality, high ethanol titers, and/or elevated temperatures (≥ 40 °C). Using adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40 °C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses. Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3 °C, whereas they showed a growth trade-off at temperatures below 34 °C. Computational analysis of the physical properties of proteins showed that the lethal temperature for yeast is around 49 °C, as a large fraction of the yeast proteins denature above this temperature. Our analysis also indicated that the number of functions involved in controlling the growth rate decreased in the thermotolerant strains compared with the number in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures. In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance to inhibitory conditions found in industrial ethanol production processes. Yeast thermotolerance can significantly reduce the production costs of biomass

  13. Breadth of T cell responses after immunization with adenovirus vectors encoding ancestral antigens or polyvalent papillomavirus antigens

    DEFF Research Database (Denmark)

    Ragonnaud, Emeline; Pedersen, Anders Gorm; Holst, Peter Johannes

    2017-01-01

    to the other PV proteins. The PV sequences were fused to a T cell adjuvant, the murine invariant chain and encoded in a recombinant adenoviral vector which was administered to naïve outbred mice. By measuring T cell responses induced by these different vaccines and towards peptide pools representing 3...... circulating strains and a putative ancestor of oncogenic HPVs, we showed that the ancestral vaccine antigen has to be approximately 90% identical to the circulating PVs before a marked drop of ~90% mean CD8+ T cell responses ensues. Interestingly, the combination of two or three type-specific PV vaccines did...

  14. Mitochondrial DNA: A Blind Spot in Neuroepigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana; Chen, Hu

    2012-04-01

    Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and the functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here we summarize for the first time evidence supporting the existence of these mechanisms and we propose the term "mitochondrial epigenetics" to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics - a gap that we expect to close in the near future.

  15. Role of polyhydroxybutyrate in mitochondrial calcium uptake

    Science.gov (United States)

    Smithen, Matthew; Elustondo, Pia A.; Winkfein, Robert; Zakharian, Eleonora; Abramov, Andrey Y.; Pavlov, Evgeny

    2013-01-01

    Polyhydroxybutyrate (PHB) is a biological polymer which belongs to the class of polyesters and is ubiquitously present in all living organisms. Mammalian mitochondrial membranes contain PHB consisting of up to 120 hydroxybutyrate residues. Roles played by PHB in mammalian mitochondria remain obscure. It was previously demonstrated that PHB of the size similar to one found in mitochondria mediates calcium transport in lipid bilayer membranes. We hypothesized that the presence of PHB in mitochondrial membrane might play a significant role in mitochondrial calcium transport. To test this, we investigated how the induction of PHB hydrolysis affects mitochondrial calcium transport. Mitochondrial PHB was altered enzymatically by targeted expression of bacterial PHB hydrolyzing enzyme (PhaZ7) in mitochondria of mammalian cultured cells. The expression of PhaZ7 induced changes in mitochondrial metabolism resulting in decreased mitochondrial membrane potential in HepG2 but not in U87 and HeLa cells. Furthermore, it significantly inhibited mitochondrial calcium uptake in intact HepG2, U87 and HeLa cells stimulated by the ATP or by the application of increased concentrations of calcium to the digitonin permeabilized cells. Calcium uptake in PhaZ7 expressing cells was restored by mimicking calcium uniporter properties with natural electrogenic calcium ionophore - ferutinin. We propose that PHB is a previously unrecognized important component of the mitochondrial calcium uptake system. PMID:23702223

  16. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  17. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS mediated cardiomyocyte hypertrophy

    NARCIS (Netherlands)

    Tigchelaar, Wardit; Yu, Hongjuan; De Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Sillje, Herman H W

    2015-01-01

    Recently, a genetic variant in the mitochondrial exo/endo nuclease EXOG, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and

  18. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  19. The Odyssey of the Ancestral Escherich Strain through Culture Collections: an Example of Allopatric Diversification.

    Science.gov (United States)

    Desroches, M; Royer, G; Roche, D; Mercier-Darty, M; Vallenet, D; Médigue, C; Bastard, K; Rodriguez, C; Clermont, O; Denamur, E; Decousser, J-W

    2018-01-01

    More than a century ago, Theodor Escherich isolated the bacterium that was to become Escherichia coli , one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding gene rpoS . These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. IMPORTANCE Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to

  20. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats.

    Science.gov (United States)

    Corman, Victor Max; Baldwin, Heather J; Tateno, Adriana Fumie; Zerbinati, Rodrigo Melim; Annan, Augustina; Owusu, Michael; Nkrumah, Evans Ewald; Maganga, Gael Darren; Oppong, Samuel; Adu-Sarkodie, Yaw; Vallo, Peter; da Silva Filho, Luiz Vicente Ribeiro Ferreira; Leroy, Eric M; Thiel, Volker; van der Hoek, Lia; Poon, Leo L M; Tschapka, Marco; Drosten, Christian; Drexler, Jan Felix

    2015-12-01

    We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3' end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a

  1. Upregulation of mitochondrial NAD+ levels impairs the clonogenicity of SSEA1+ glioblastoma tumor-initiating cells.

    Science.gov (United States)

    Son, Myung Jin; Ryu, Jae-Sung; Kim, Jae Yun; Kwon, Youjeong; Chung, Kyung-Sook; Mun, Seon Ju; Cho, Yee Sook

    2017-06-09

    Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD + ) metabolism. However, the functional role of NAD + metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD + levels affect the characteristics of glioma-driven SSEA1 + TICs, including clonogenic growth potential. An increase in the mitochondrial NAD + levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD + levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors.

  2. Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily.

    Science.gov (United States)

    Kang, Ji Hyoun; Schartl, Manfred; Walter, Ronald B; Meyer, Axel

    2013-01-29

    Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword - hence their common name "swordtails". Longer swords are preferred by females from both sworded and - surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely

  3. Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily

    Directory of Open Access Journals (Sweden)

    Kang Ji Hyoun

    2013-01-01

    Full Text Available Abstract Background Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword – hence their common name “swordtails”. Longer swords are preferred by females from both sworded and – surprisingly also, non-sworded (platyfish species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus. We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. Results We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually

  4. Complete endoscopic management of a retained bullet in the bladder.

    Science.gov (United States)

    Friedman, Ariella A; Trinh, Quoc-Dien; Kaul, Sanjeev; Bhandari, Akshay

    2013-01-01

    A 25-year-old male gunshot victim presented at our institution with gross hematuria following Foley catheter insertion. Computed tomography and cystogram did not show a bladder perforation, but were notable for a left ischial fracture and the presence of a bullet within the bladder. After failed attempts at retrieving the bullet with a resectoscope and loop, as well as a cystoscope and stone crusher, a 26 French nephroscope was inserted transurethrally, and the bullet was successfully engaged and removed using a Perc NCircle (Cook Medical, Bloomington, IN) grasper. The extra-peritoneal injury was managed conservatively with catheter drainage. To our knowledge, this represents the first case of successful transurethral management of a retained intravesical bullet. Such an approach may benefit patients with retained intravesical bullets or other challenging intravesical foreign bodies and may be helpful in select circumstances to spare patients from more extensive surgeries.

  5. CT and sonographic diagnosis of retained surgical sponge

    International Nuclear Information System (INIS)

    Matsumoto, Syunro; Aikawa, Hisayuki; Miyake, Hidetoshi; Mori, Hiromu; Maeda, Tohru; Nishimura, Hiro; Monzen, Yoshio; Ashizawa, Akira; Isomoto, Ichiro.

    1990-01-01

    Seven cases of pathologically proven retained surgical sponge were reviewed and classified into four types, depending on CT and US findings. CT showed a mass with tiny gas bubbles, and sonogram showed an echogenic area with strong posterior shadow (Type I). CT showed an irregular high density mass with no gas bubble, and sonogram showed an echogenic area with strong posterior shadow (Type II). CT showed a low density mass with irregular internal high density areas, and somogram showed a cystic mass with zigzag internal components (Type III). CT showed an eliptic high density mass with low density area internally. Judging from the experiment and operative findings, these patterns were decided by the number and status of the gauze, volume of the exudate and hematoma, and status of the granulation. The author concludes that these characteristic CT and US findings, together with a history of surgery, permit the correct diagnosis of retained surgical sponge. (author)

  6. Illusory Speed is Retained in Memory during Invisible Motion

    Directory of Open Access Journals (Sweden)

    Luca Battaglini

    2013-05-01

    Full Text Available The brain can retain speed information in early visual short-term memory in an astonishingly precise manner. We investigated whether this (early visual memory system is active during the extrapolation of occluded motion and whether it reflects speed misperception due to contrast and size. Experiments 1A and 2A showed that reducing target contrast or increasing its size led to an illusory speed underestimation. Experiments 1B, 2B, and 3 showed that this illusory phenomenon is reflected in the memory of speed during occluded motion, independent of the range of visible speeds, of the length of the visible trajectory or the invisible trajectory, and of the type of task. These results suggest that illusory speed is retained in memory during invisible motion.

  7. Functional design criteria for the retained gas sampler system

    International Nuclear Information System (INIS)

    Wootan, D.W.

    1995-01-01

    A Retained Gas Sampler System (RGSS) is being developed to capture and analyze waste samples from Hanford Flammable Gas Watch List Tanks to determine both the quantity and composition of gases retained in the waste. The RGSS consists of three main components: the Sampler, Extractor, and Extruder. This report describes the functional criteria for the design of the RGSS components. The RGSS Sampler is based on the WHC Universal Sampler design with modifications to eliminate gas leakage. The primary function of the Sampler is to capture a representative waste sample from a tank and transport the sample with minimal loss of gas content from the tank to the laboratory. The function of the Extruder is to transfer the waste sample from the Sampler to the Extractor. The function of the Extractor is to separate the gases from the liquids and solids, measure the relative volume of gas to determine the void fraction, and remove and analyze the gas constituents

  8. Early Decomposition of Retained Heavy Silicone Oil Droplets

    Directory of Open Access Journals (Sweden)

    Touka Banaee

    2012-01-01

    Full Text Available Purpose: To report a case of early decomposition of retained heavy silicone oil droplets. Case Report: The single highly myopic eye of a 16-year-old boy with history of scleral buckling and buckle revision developed redetachment due to inferior retinal dialysis. The patient underwent pars plana vitrectomy and injection of heavy silicone oil. Early emulsification of the silicone oil was observed following surgery, which was removed 4 weeks later in another operation. Retained heavy silicone droplets lost their heavier- than-water specific gravity within 2 months together with extensive iris depigmentation, and release of pigment granules into the anterior chamber and vitreous cavity. Conclusion: This case report demonstrates that heavy silicone oil droplets can undergo in vivo chemical decomposition with possible toxic effects on ocular tissues.

  9. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    Science.gov (United States)

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  10. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  11. A study of the carbon distribution in retained austenite

    International Nuclear Information System (INIS)

    Scott, C.P.; Drillet, J.

    2007-01-01

    Cold-rolled and annealed transformation-induced plasticity (TRIP) steels were overaged to modify the carbon concentrations (C γ ) in retained austenite. Experimental C γ values were directly obtained by electron energy loss spectroscopy and compared with data derived from X-ray diffraction measurements of the austenite lattice parameter (a γ ). In this way, we evaluated the different expressions available in the literature relating C γ to a γ

  12. The cyclops lesion after bicruciate-retaining total knee replacement

    OpenAIRE

    Klaassen, Mark A.; Aikins, Jerry L.

    2017-01-01

    The cyclops lesion is a localized anterior arthrofibrosis most commonly seen following anterior cruciate ligament reconstruction. The lesion forms at the anterior cruciate ligament insertion creating a painful extension block between femoral intercondylar notch and tibial plateau. We present 2 cases (3 knees) in which cyclops lesions appeared atypically following bicruciate-retaining total knee replacement. Two lesions occurred in a single patient following bilateral knee replacement. One les...

  13. Macroeconomic effects of zero corporate income tax on retained earnings

    OpenAIRE

    Jaan Masso; Jaanika Meriküll

    2011-01-01

    International tax competition had led to a lowering of corporate tax rates worldwide. Estonia was the first country to reduce the tax rate on retained earnings to zero, while distributed profits remained taxed at the pre-reform level. This paper seeks to analyse the effects of this unique tax reform implemented in year 2000. We apply a neoclassical exogenous growth general equilibrium model with an extension for endogenous corporate finance. Our findings indicate that the reform had a strong ...

  14. Removal of Retained Lead Shot Through Laparoscopic Appendectomy

    Science.gov (United States)

    Lloyd, D. M.

    2003-01-01

    We describe a patient presenting with lead shot in his appendix. A plain radiograph of his lumbar spine was performed for back pain, and an incidental finding of lead shot retained within the appendix was seen. Lead shot in the appendix is associated with appendicitis, and 2 cases have been reported of lead intoxication. We suggest that an elective laparoscopic appendectomy should be offered to patients as a possible management option. PMID:12856854

  15. Intravitreal Phacoemulsification Using Torsional Handpiece for Retained Lens Fragments

    OpenAIRE

    Kumar, Vinod; Takkar, Brijesh

    2016-01-01

    Purpose: To evaluate the results of intravitreal phacoemulsification with torsional hand piece in eyes with posteriorly dislocated lens fragments. Methods: In this prospective, interventional case series, 15 eyes with retained lens fragments following phacoemulsification were included. All patients underwent standard three-port pars plana vitrectomy and intravitreal phacoemulsification using sleeveless, torsional hand piece (OZiL™, Alcon's Infiniti Vision System). Patients were followed up...

  16. The stability of gabion walls for earth retaining structures

    OpenAIRE

    Mahyuddin Ramli; T.J.r. Karasu; Eethar Thanon Dawood

    2013-01-01

    The stability of earth retaining structures in flood prone areas has become a serious problem in many countries. The two most basic causes of failure arising from flooding are scouring and erosion of the foundation of the superstructure. Hence, a number of structures like bridges employ scour-arresting devices, e.g., gabions to acting on the piers and abutments during flooding. Research was therefore undertaken to improve gabion resistance against lateral movement by means of an interlocking ...

  17. Implant-Retained Auricular Prosthesis: A Case Report

    OpenAIRE

    Ozturk, A. Nilgun; Usumez, Aslihan; Tosun, Zekeriya

    2010-01-01

    Extraoral implant retained prosthesis have been proven to be a predictable treatment option for maxillofacial rehabilitation. This case report describes the clinical and laboratory procedures for fabricating an auricular prosthesis. In this case report, an auricular prosthesis was fabricated for a patient who lost the left and right external ear in an electrical burn. Extraoral implants and bar-and-clip retention for the proper connection of the auricular prosthesis to implant were used. This...

  18. An integrated framework for transmission cost allocation retaining efficiency concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.W. Marangon [Escola Federal de Engenharia de Itajuba, MG (Brazil); Gorenstin, B G; Vieira Filho, X [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Chipp, H J; Alvarenga Filho, S [ELETROBRAS, Rio de Janeiro, RJ (Brazil); Hirota, M [Companhia Energetica de Sao Paulo (CESP), SP (Brazil); Pereira, M V.F. [Power System Research, Inc., Rio de Janeiro, RJ (Brazil)

    1994-12-31

    This paper describes a methodology for allocating transmission costs among utilities and wheeling agents. The proposed approach is based on the extension of marginal cost theory to take into account discrete component sizes and economy of scale, while retaining desirable economic properties such as revenue reconciliation and incentives for all participants to remain in the pool. The methodology is illustrated in case studies with the Brazilian system. (author) 21 refs., 1 fig., 3 tabs.

  19. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance : Transgenic TK2, mtDNA, and Antiretrovirals

    OpenAIRE

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK...

  20. Retainment of r-process material in dwarf galaxies

    Science.gov (United States)

    Beniamini, Paz; Dvorkin, Irina; Silk, Joe

    2018-04-01

    The synthesis of r-process elements is known to involve extremely energetic explosions. At the same time, recent observations find significant r-process enrichment even in extremely small ultra-faint dwarf (UFD) galaxies. This raises the question of retainment of those elements within their hosts. We estimate the retainment fraction and find that it is large ˜0.9, unless the r-process event is very energetic (≳ 1052erg) and / or the host has lost a large fraction of its gas prior to the event. We estimate the r-process mass per event and rate as implied by abundances in UFDs, taking into account imperfect retainment and different models of UFD evolution. The results are consistent with previous estimates (Beniamini et al. 2016b) and with the constraints from the recently detected macronova accompanying a neutron star merger (GW170817). We also estimate the distribution of abundances predicted by these models. We find that ˜0.07 of UFDs should have r-process enrichment. The results are consistent with both the mean values and the fluctuations of [Eu/Fe] in galactic metal poor stars, supporting the possibility that UFDs are the main 'building blocks' of the galactic halo population.

  1. animal trial on imaging appearances of abdominally retained gauze

    International Nuclear Information System (INIS)

    Wang Longxia; An Ningyu; Yin Hui; Wang Xiangdong; Li Jia; Bai Ying

    2000-01-01

    Objective: To evaluate the imaging appearances of abdominally retained crumpled gauze with US, CT and MRI and the changes with time. Methods: Eight rabbits were operated and crumpled gauze was put into in their abdominal cavity. US , plain and enhanced CT and MRI scan were performed on the day of operation, and 1 to 7 weeks after operation. The imaging appearances were compared with operation findings. Pathologic examination was done simultaneously. Results: Abdominally retained crumpled gauze was instantly adhesive with omentum and neighboring intestines tightly. Fibro-connective tissue membrane was produced at the adhesion site gradually, spreading out to enclose the crumpled gauze. The enclosure was finished completely in 3 to 4 weeks. Thickened membrane also invaded into the spaces within the gauze. The crumpled gauze was eventually infected. These changes could be revealed on US, CT or MRI scans. The US appearance exhibited a hyper echoic arc zone with broad clean acoustic shadow behind. It appeared as a soft tissue mass to CT and MRI scans. In early stage CT scan could easily show the gas within the crumpled gauze. CT and MRI enhanced scans showed only the enhanced membrane and no enhancement of the crumpled gauze. Conclusion: US, CT and MRI have quite characteristic appearances of the abdominally retained crumpled gauze, especially when combined imaging techniques were employed, which can lead to a correct diagnosis together with a history of operation

  2. The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium

    Directory of Open Access Journals (Sweden)

    Berendonk Thomas U

    2011-05-01

    Full Text Available Abstract Background Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between Paramecium tetraurelia and all studied Tetrahymena species. This raises the question of whether the high mitochondrial G+C content observed in P. tetraurelia is a characteristic property of Paramecium mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of Paramecium caudatum and compared the gene content and sequence properties to the closely related P. tetraurelia. Results The guanine + cytosine content of the P. caudatum mitochondrial genome was significantly lower than that of P. tetraurelia (22.4% vs. 41.2%. This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within P. caudatum clearly A/T ending codons dominated, whereas for P. tetraurelia the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus Paramecium resembles that of P. caudatum and that the shift observed in P. tetraurelia is restricted to the P. aurelia species complex. Conclusions Surprisingly, the codon usage bias in the P. caudatum mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related T. pyriformis and other single-celled eukaryotes such as Chlamydomonas, than to the closely related P. tetraurelia. These differences in base composition and codon usage bias were, however, not reflected in the amino

  3. 18 CFR 367.4360 - Account 436, Appropriations of retained earnings.

    Science.gov (United States)

    2010-04-01

    ..., Appropriations of retained earnings. 367.4360 Section 367.4360 Conservation of Power and Water Resources FEDERAL... NATURAL GAS ACT Retained Earnings Accounts § 367.4360 Account 436, Appropriations of retained earnings. This account must include appropriations of retained earnings as follows: (a) Appropriations required...

  4. Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation

    International Nuclear Information System (INIS)

    Pascale, E.; Valle, E.; Furano, A.V.

    1990-01-01

    Each mammalian genus examined so far contains 50,000-100,000 members of an L1 (LINE 1) family of long interspersed repeated DNA elements. Current knowledge on the evolution of L1 families presents a paradox because, although L1 families have been in mammalian genomes since before the mammalian radiation ∼80 million years ago, most members of the L1 families are only a few million years old. Accordingly it has been suggested either that the extensive amplification that characterizes present-day L1 families did not occur in the past or that old members were removed as new one were generated. However, the authors show here that an ancestral rodent L1 family was extensively amplified ∼10 million years ago and that the relics of this amplification have persisted in modern murine genomes. This amplification occurred just before the divergence of modern murine genera from their common ancestor and identifies the murine node in the lineage of modern muroid rodents The results suggest that repeated amplification of L1 elements is a feature of the evaluation of mammalian genomes and that ancestral amplification events could provide a useful tool for determining mammalian lineages

  5. The ghost of Afrikaner identity in Ancestral voices, Leap year and The long silence of Mario Salviati (Etienne van Heerden

    Directory of Open Access Journals (Sweden)

    Mariëtte van Graan

    2017-04-01

    Full Text Available Ghost characters are a characteristic of the novels of Etienne van Heerden, but little research has been done concerning the nature and function of these ghost characters. In this article I discuss Van Heerden’s use of ghost characters diachronically with reference to the novels Ancestral voices (1986, Leap year (1993 and The long silence of Mario Salviati (2000. In order to clarify the nature of these ghosts, I use the so-called science of the paranormal as a framework. The ghosts in the three novels will be classified accordingly, and then discussed within the context of the novels in which they appear. In this way, I shall show how the ghost characters in these novels can be read as a constantly changing embodiment of Afrikaner identity (a central theme in Van Heerden’s oeuvre. Van Heerden’s Afrikaner changes with the times: in Ancestral voices the ghost characters form a collective that represents a fragmented image of the stereotypical, archaic male Afrikaner identity; in Leap year a liminal character is written in a liminal time to embody a liminal Afrikaner identity; and in The long silence of Mario Salviati Van Heerden moves away from the exclusive Afrikaner identity to a broader South African identity by using ghost characters from very different backgrounds and origins. In conclusion I shall compare these identities and the historical contexts of these novels in order to show the function of Van Heerden’s ghost characters as constant rewritings of South African identities.

  6. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens

    Science.gov (United States)

    Chater, Caspar C.; Kamisugi, Yasuko

    2016-01-01

    The patterning of stomata plays a vital role in plant development and has emerged as a paradigm for the role of peptide signals in the spatial control of cellular differentiation. Research in Arabidopsis has identified a series of epidermal patterning factors (EPFs), which interact with an array of membrane-localised receptors and associated proteins (encoded by ERECTA and TMM genes) to control stomatal density and distribution. However, although it is well-established that stomata arose very early in the evolution of land plants, until now it has been unclear whether the established angiosperm stomatal patterning system represented by the EPF/TMM/ERECTA module reflects a conserved, universal mechanism in the plant kingdom. Here, we use molecular genetics to show that the moss Physcomitrella patens has conserved homologues of angiosperm EPF, TMM and at least one ERECTA gene that function together to permit the correct patterning of stomata and that, moreover, elements of the module retain function when transferred to Arabidopsis. Our data characterise the stomatal patterning system in an evolutionarily distinct branch of plants and support the hypothesis that the EPF/TMM/ERECTA module represents an ancient patterning system. PMID:27407102

  7. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  8. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  9. Deconstructing Mitochondrial Dysfunction in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Vega García-Escudero

    2013-01-01

    Full Text Available There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.

  10. Mitochondrial encephalomyopathy (MELAS) with mental disorder

    International Nuclear Information System (INIS)

    Suzuki, T.; Koizumi, J.; Shiraishi, H.; Ofuku, K.; Sasaki, M.; Hori, T.; Ishikawa, N.; Anno, I.; Ohkoshi, N.

    1990-01-01

    A case of mitochondrial encephalomyopathy (MELAS) with mental disorder is reported. The SPECT study using 123 I-iodoamphetamine (IMP) and MRI study revealed abnormality in the left parieto-occipital areas without abnormality in the brain CT or brain scintigram. These findings suggest a localized dysfunction of the brain capillary endothelium in association with the cerebral involvement of mitochondrial encephalomyopathy. (orig.)

  11. Emerging Therapeutic Approaches to Mitochondrial Diseases

    Science.gov (United States)

    Wenz, Tina; Williams, Sion L.; Bacman, Sandra R.; Moraes, Carlos T.

    2010-01-01

    Mitochondrial diseases are very heterogeneous and can affect different tissues and organs. Moreover, they can be caused by genetic defects in either nuclear or mitochondrial DNA as well as by environmental factors. All of these factors have made the development of therapies difficult. In this review article, we will discuss emerging approaches to…

  12. Mitochondrial epigenetics : an overlooked layer of regulation?

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; Rots, Marianne G.

    Despite decades of research, mitochondrial epigenetics remains a controversial notion. Recent findings, however, indicate that dysfunctional mitochondrial DNA (mtDNA) methylation could underlie aging and disease. Unraveling such a level of regulation will be essential in the understanding of and in

  13. Mitochondrial dynamics in mammalian health and disease.

    Science.gov (United States)

    Liesa, Marc; Palacín, Manuel; Zorzano, Antonio

    2009-07-01

    The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.

  14. Mitochondrial dysfunction and human immunodeficiency virus ...

    African Journals Online (AJOL)

    Human immunodeficiency virus (HIV) infection and the pharmacological treatment thereof have both been shown to affect mitochondrial function in a number of tissues, and each may cause specific organ pathology through specific mitochondrial pathways. HIV has been shown to kill various tissue cells by activation of ...

  15. Mitochondrial Mutations in Subjects with Psychiatric Disorders

    NARCIS (Netherlands)

    V. Sequeira (Vasco); S.M. Rollins; C. Magnan (Christophe); M. van Oven (Mannis); P. Baldi (Pierre); R.M. Myers (Richard M.); J.D. Barchas (Jack D.); A.F. Schatzberg (Alan F); S.J. Watson (Stanley J); H. Akil (Huda); W.E. Bunney (William E.); M.P. Vawter (Marquis)

    2015-01-01

    textabstractA considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear

  16. Mitochondrial mutations and polymorphisms in psychiatric disorders

    NARCIS (Netherlands)

    V. Sequeira (Vasco); M.V. Martin (Maureen); S.M. Rollins; E.A. Moon (Emily); W.E. Bunney (William E); F. MacCiardi (Fabio); S. Lupoli (Sara); G.D. Smith; J. Kelsoe (John); C.N. Magnan (Christophe); M. van Oven (Mannis); P. Baldi (Pierre); D.C. Wallace; M.P. Vawter (Marquis)

    2012-01-01

    textabstractMitochondrial deficiencies with unknown causes have been observed in schizophrenia (SZ) and bipolar disorder (BD) in imaging and postmortem studies. Polymorphisms and somatic mutations in mitochondrial DNA (mtDNA) were investigated as potential causes with next generation sequencing of

  17. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  18. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  19. Loss of Mitochondrial Function Impairs Lysosomes.

    Science.gov (United States)

    Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc

    2016-05-06

    Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Sleep disorders associated with primary mitochondrial diseases.

    Science.gov (United States)

    Ramezani, Ryan J; Stacpoole, Peter W

    2014-11-15

    Primary mitochondrial diseases are caused by heritable or spontaneous mutations in nuclear DNA or mitochondrial DNA. Such pathological mutations are relatively common in humans and may lead to neurological and neuromuscular complication that could compromise normal sleep behavior. To gain insight into the potential impact of primary mitochondrial disease and sleep pathology, we reviewed the relevant English language literature in which abnormal sleep was reported in association with a mitochondrial disease. We examined publication reported in Web of Science and PubMed from February 1976 through January 2014, and identified 54 patients with a proven or suspected primary mitochondrial disorder who were evaluated for sleep disturbances. Both nuclear DNA and mitochondrial DNA mutations were associated with abnormal sleep patterns. Most subjects who underwent polysomnography had central sleep apnea, and only 5 patients had obstructive sleep apnea. Twenty-four patients showed decreased ventilatory drive in response to hypoxia and/ or hyperapnea that was not considered due to weakness of the intrinsic muscles of respiration. Sleep pathology may be an underreported complication of primary mitochondrial diseases. The probable underlying mechanism is cellular energy failure causing both central neurological and peripheral neuromuscular degenerative changes that commonly present as central sleep apnea and poor ventilatory response to hyperapnea. Increased recognition of the genetics and clinical manifestations of mitochondrial diseases by sleep researchers and clinicians is important in the evaluation and treatment of all patients with sleep disturbances. Prospective population-based studies are required to determine the true prevalence of mitochondrial energy failure in subjects with sleep disorders, and conversely, of individuals with primary mitochondrial diseases and sleep pathology. © 2014 American Academy of Sleep Medicine.

  1. Mitochondrial Genome Diversity of Native Americans Supports a Single Early Entry of Founder Populations into America

    Science.gov (United States)

    Silva Jr., Wilson A.; Bonatto, Sandro L.; Holanda, Adriano J.; Ribeiro-dos-Santos, Andrea K.; Paixão, Beatriz M.; Goldman, Gustavo H.; Abe-Sandes, Kiyoko; Rodriguez-Delfin, Luis; Barbosa, Marcela; Paçó-Larson, Maria Luiza; Petzl-Erler, Maria Luiza; Valente, Valeria; Santos, Sidney E. B.; Zago, Marco A.

    2002-01-01

    There is general agreement that the Native American founder populations migrated from Asia into America through Beringia sometime during the Pleistocene, but the hypotheses concerning the ages and the number of these migrations and the size of the ancestral populations are surrounded by controversy. DNA sequence variations of several regions of the genome of Native Americans, especially in the mitochondrial DNA (mtDNA) control region, have been studied as a tool to help answer these questions. However, the small number of nucleotides studied and the nonclocklike rate of mtDNA control-region evolution impose several limitations to these results. Here we provide the sequence analysis of a continuous region of 8.8 kb of the mtDNA outside the D-loop for 40 individuals, 30 of whom are Native Americans whose mtDNA belongs to the four founder haplogroups. Haplogroups A, B, and C form monophyletic clades, but the five haplogroup D sequences have unstable positions and usually do not group together. The high degree of similarity in the nucleotide diversity and time of differentiation (i.e., ∼21,000 years before present) of these four haplogroups support a common origin for these sequences and suggest that the populations who harbor them may also have a common history. Additional evidence supports the idea that this age of differentiation coincides with the process of colonization of the New World and supports the hypothesis of a single and early entry of the ancestral Asian population into the Americas. PMID:12022039

  2. Conflicting evolutionary patterns due to mitochondrial introgression and multilocus phylogeography of the Patagonian freshwater crab Aegla neuquensis.

    Directory of Open Access Journals (Sweden)

    Brian R Barber

    Full Text Available BACKGROUND: Multiple loci and population genetic methods were employed to study the phylogeographic history of the Patagonian freshwater crab Aegla neuquensis (Aeglidae: Decopoda. This taxon occurs in two large river systems in the Patagonian Steppe, from the foothills of the Andes Mountains east to the Atlantic Ocean. METHODOLOGY/PRINCIPAL FINDINGS: A nuclear phylogeny and multilocus nested clade phylogeographic analysis detected a fragmentation event between the Negro and Chico-Chubut river systems. This event occurred approximately 137 thousand years ago. An isolation-with-migration analysis and maximum-likelihood estimates of gene flow showed asymmetrical exchange of genetic material between these two river systems exclusively in their headwaters. We used information theory to determine the best-fit demographic history between these two river systems under an isolation-with-migration model. The best-fit model suggests that the Negro and the ancestral populations have the same effective population sizes; whereas the Chico-Chubut population is smaller and shows that gene flow from the Chico-Chubut into the Negro is four times higher than in the reverse direction. Much of the Chico-Chubut system appears to have only been recently colonized while the Negro populations appear to have been in place for most of the evolutionary history of this taxon. CONCLUSIONS/SIGNIFICANCE: Due to mitochondrial introgression, three nuclear loci provided different phylogeographic resolution than the three mitochondrial genes for an ancient fragmentation event observed in the nuclear phylogeny. However, the mitochondrial locus provided greater resolution on more recent evolutionary events. Our study, therefore, demonstrates the need to include both nuclear and mitochondrial loci for a more complete understanding of evolutionary histories and associated phylogeographic events. Our results suggest that gene flow between these systems, before and after fragmentation

  3. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants.

    Science.gov (United States)

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-11-01

    MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is

  4. Crystallography of lath martensite and stabilization of retained austenite

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya. M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200/sup 0/C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different (111) variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample.

  5. Crystallography of lath martensite and stabilization of retained austenite

    International Nuclear Information System (INIS)

    Sarikaya, M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200 0 C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different [111] variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample

  6. Spherical powder for retaining thermosetting acrylic resin veneers.

    Science.gov (United States)

    Tanaka, T; Atsuta, M; Uchiyama, Y; Nakabayashi, N; Masuhara, E

    1978-03-01

    1. Nine different sizes of spherical powder were prepared, and their effectiveness as retentive devices was evaluated against those available commercially. 2. Smaller-diameter spherical powder (No. 5) gave the best results of all retaining devices tested. 3. The physical properties of the resins play an important role in the retentive strength with No. 5 retention beads. The retentive strength was reduced when brittle resin was used. 4. The retentive strength of the resin veneer was greatly affected by the angle of stress at the incisal resin. The retentive strength increased as the angle between the longitudinal axis of the specimen and the direction of stress decreased.

  7. Total rewards that retain: A study of demographic preferences

    Directory of Open Access Journals (Sweden)

    Monica Pregnolato

    2017-01-01

    Full Text Available Orientation: Changing workplace demographics and a dearth of employees with scarce skills have forced employers to better understand the various factors that retain talented employees. Research purpose: In this empirical study, the reward preferences and ideal combination of total reward elements (based on an estimation of their relative importance that retain employees from various demographic groups, including employees of different race, gender and age groups, were investigated. Motivation for study: Organisations are competing for talented employees and to benefit from the value these individuals add, it is required of them to stay at the respective businesses. Previous studies have indicated that employees who are offered a reward package that is aligned to their personal preferences are prone to stay longer at the organisation and to be more engaged at work. However, new and novel ways need to be found to identify the reward preferences of employees. Research design, approach and method: A quantitative approach and descriptive research design was employed to estimate the individual reward preferences and identify an ideal mix of total reward elements that retain different cohorts of employees. Three questionnaires were distributed, including a Remuneration Managers Questionnaire (n = 7, a Remuneration Preference Questionnaire (n = 368 and a Choice-based Conjoint Task Questionnaire (n = 368. The latter two questionnaires were distributed as an online questionnaire to South African businesses and consisted of eight choice-based conjoint tasks, as well as a field survey. Main findings: The results of the choice-based conjoint analysis revealed that all respondents considered financial rewards (Benefits, Performance and Recognition, Remuneration, Career, in that order as relatively speaking, the most important components in their total rewards package that would lead to their retention. For most demographic groups, the remaining three places

  8. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    Science.gov (United States)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  9. Phylogenetic relationships and divergence dates of softshell turtles (Testudines: Trionychidae) inferred from complete mitochondrial genomes.

    Science.gov (United States)

    Li, H; Liu, J; Xiong, L; Zhang, H; Zhou, H; Yin, H; Jing, W; Li, J; Shi, Q; Wang, Y; Liu, J; Nie, L

    2017-05-01

    The softshell turtles (Trionychidae) are one of the most widely distributed reptile groups in the world, and fossils have been found on all continents except Antarctica. The phylogenetic relationships among members of this group have been previously studied; however, disagreements regarding its taxonomy, its phylogeography and divergence times are still poorly understood as well. Here, we present a comprehensive mitogenomic study of softshell turtles. We sequenced the complete mitochondrial genomes of 10 softshell turtles, in addition to the GenBank sequence of Dogania subplana, Lissemys punctata, Trionyx triunguis, which cover all extant genera within Trionychidae except for Cyclanorbis and Cycloderma. These data were combined with other mitogenomes of turtles for phylogenetic analyses. Divergence time calibration and ancestral reconstruction were calculated using BEAST and RASP software, respectively. Our phylogenetic analyses indicate that Trionychidae is the sister taxon of Carettochelyidae, and support the monophyly of Trionychinae and Cyclanorbinae, which is consistent with morphological data and molecular analysis. Our phylogenetic analyses have established a sister taxon relationship between the Asian Rafetus and the Asian Palea + Pelodiscus + Dogania + Nilssonia + Amyda, whereas a previous study grouped the Asian Rafetus with the American Apalone. The results of divergence time estimates and area ancestral reconstruction show that extant Trionychidae originated in Asia at around 108 million years ago (MA), and radiations mainly occurred during two warm periods, namely Late Cretaceous-Early Eocene and Oligocene. By combining the estimated divergence time and the reconstructed ancestral area of softshell turtles, we determined that the dispersal of softshell turtles out of Asia may have taken three routes. Furthermore, the times of dispersal seem to be in agreement with the time of the India-Asia collision and opening of the Bering Strait, which

  10. Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes

    Directory of Open Access Journals (Sweden)

    Grewe Felix

    2013-01-01

    Full Text Available Abstract Background Plastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic. Results In order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales, Ophioglossum californicum (Ophioglossales, and Psilotum nudum (Psilotales. A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida. Conclusions Although molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic

  11. Anesthetic Management of Mitochondrial Encephalopathy With Lactic Acidosis and Stroke-Like Episodes (MELAS Syndrome) in a High-Risk Pregnancy: A Case Report.

    Science.gov (United States)

    Bell, Josh D; Higgie, Kushlin; Joshi, Mital; Rucker, Joshua; Farzi, Sahar; Siddiqui, Naveed

    2017-07-15

    MELAS syndrome (mitochondrial encephalopathy, lactic acidosis, and stroke-like symptoms) is a rare and complex mitochondrial disorder. We present the in-hospital course of a 36-year-old gravida 2, para 0 with MELAS syndrome and severe preeclampsia, complicated by hyponatremia, hyperkalemia, and diabetes. A retained placenta with postpartum hemorrhage required urgent instrumental delivery under spinal anesthesia, transfusion, and intensive care unit admission for pulmonary edema, effusions, and atelectasis. Postpartum endometritis and sepsis also were encountered. This is to our knowledge the first case report of obstetric complications in MELAS syndrome and highlights the salient metabolic sequelae of this syndrome.

  12. Selective Mitochondrial Uptake of MKT-077 Can Suppress Medullary Thyroid Carcinoma Cell Survival and

    Directory of Open Access Journals (Sweden)

    Dmytro Starenki

    2015-12-01

    Full Text Available BackgroundMedullary thyroid carcinoma (MTC is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET proto-oncogene. Not all patients with progressive MTC respond to current therapy inhibiting RET, demanding additional therapeutic strategies. We recently demonstrated that disrupting mitochondrial metabolism using a mitochondria-targeted agent or by depleting a mitochondrial chaperone effectively suppressed human MTC cells in culture and in mouse xenografts by inducing apoptosis and RET downregulation. These observations led us to hypothesize that mitochondria are potential therapeutic targets for MTC. This study further tests this hypothesis using1-ethyl-2-[[3-ethyl-5-(3-methylbenzothiazolin-2-yliden]-4-oxothiazolidin-2-ylidenemethyl] pyridinium chloride (MKT-077, a water-soluble rhodocyanine dye analogue, which can selectively accumulate in mitochondria.MethodsThe effects of MKT-077 on cell proliferation, survival, expression of RET and tumor protein 53 (TP53, and mitochondrial activity were determined in the human MTC lines in culture and in mouse xenografts.ResultsMKT-077 induced cell cycle arrest in TT and MZ-CRC-1. Intriguingly, MKT-077 also induced RET downregulation and strong cell death responses in TT cells, but not in MZ-CRC-1 cells. This discrepancy was mainly due to the difference between the capacities of these cell lines to retain MKT-077 in mitochondria. The cytotoxicity of MKT-077 in TT cells was mainly attributed to oxidative stress while being independent of TP53. MKT-077 also effectively suppressed tumor growth of TT xenografts.ConclusionMKT-077 can suppress cell survival of certain MTC subtypes by accumulating in mitochondria and interfering with mitochondrial activity although it can also suppress cell proliferation via other mechanisms. These results consistently support the hypothesis that mitochondrial targeting has therapeutic potential for MTC.

  13. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; Baeshen, Mohammed N; Sabir, Meshaal J; Baeshen, Nabih A; Jansen, Robert K

    2014-05-28

    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution

  14. A comparative study of nemertean complete mitochondrial genomes, including two new ones for Nectonemertes cf. mirabilis and Zygeupolia rubens, may elucidate the fundamental pattern for the phylum Nemertea

    Directory of Open Access Journals (Sweden)

    Chen Hai-Xia

    2012-04-01

    Bilateria and some lophotrochozoans suggests that the nemertean ancestral mitochondrial gene order most closely resembles the heteronemertean type. Phylogenetic analysis proposes a sister-group relationship between Hetero- and Hoplonemertea, which supports one of two recent alternative hypotheses of nemertean phylogeny.

  15. The expanding phenotype of mitochondrial myopathy.

    Science.gov (United States)

    DiMauro, Salvatore; Gurgel-Giannetti, Juliana

    2005-10-01

    Our understanding of mitochondrial diseases (defined restrictively as defects in the mitochondrial respiratory chain) continues to progress apace. In this review we provide an update of information regarding disorders that predominantly or exclusively affect skeletal muscle. Most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency, and mutations in genes that control mitochondrial DNA (mtDNA) abundance and structure such as POLG and TK2. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with altered lipid composition of the inner mitochondrial membrane, but a putative secondary impairment of the respiratory chain remains to be documented. Concerning the 'other genome', the role played by mutations in protein encoding genes of mtDNA in causing isolated myopathies has been confirmed. It has also been confirmed that mutations in tRNA genes of mtDNA can cause predominantly myopathic syndromes and - contrary to conventional wisdom - these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, myalgia, cramps, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  16. Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein

    Directory of Open Access Journals (Sweden)

    Daniel Gonzalez

    2014-01-01

    Full Text Available Stable and soluble proteins are ideal candidates for functional and structural studies. Unfortunately, some proteins or enzymes can be difficult to isolate, being sometimes poorly expressed in heterologous systems, insoluble and/or unstable. Numerous methods have been developed to address these issues, from the screening of various expression systems to the modification of the target protein itself. Here we use a hydrophobic, aggregation-prone, phosphate-binding protein (HPBP as a case study. We describe a simple and fast method that selectively uses ancestral mutations to generate a soluble, stable and functional variant of the target protein, here named sHPBP. This variant is highly expressed in Escherichia coli, is easily purified and its structure was solved at much higher resolution than its wild-type progenitor (1.3 versus 1.9 Å, respectively.

  17. EREM: Parameter Estimation and Ancestral Reconstruction by Expectation-Maximization Algorithm for a Probabilistic Model of Genomic Binary Characters Evolution

    Directory of Open Access Journals (Sweden)

    Liran Carmel

    2010-01-01

    Full Text Available Evolutionary binary characters are features of species or genes, indicating the absence (value zero or presence (value one of some property. Examples include eukaryotic gene architecture (the presence or absence of an intron in a particular locus, gene content, and morphological characters. In many studies, the acquisition of such binary characters is assumed to represent a rare evolutionary event, and consequently, their evolution is analyzed using various flavors of parsimony. However, when gain and loss of the character are not rare enough, a probabilistic analysis becomes essential. Here, we present a comprehensive probabilistic model to describe the evolution of binary characters on a bifurcating phylogenetic tree. A fast software tool, EREM, is provided, using maximum likelihood to estimate the parameters of the model and to reconstruct ancestral states (presence and absence in internal nodes and events (gain and loss events along branches.

  18. EREM: Parameter Estimation and Ancestral Reconstruction by Expectation-Maximization Algorithm for a Probabilistic Model of Genomic Binary Characters Evolution.

    Science.gov (United States)

    Carmel, Liran; Wolf, Yuri I; Rogozin, Igor B; Koonin, Eugene V

    2010-01-01

    Evolutionary binary characters are features of species or genes, indicating the absence (value zero) or presence (value one) of some property. Examples include eukaryotic gene architecture (the presence or absence of an intron in a particular locus), gene content, and morphological characters. In many studies, the acquisition of such binary characters is assumed to represent a rare evolutionary event, and consequently, their evolution is analyzed using various flavors of parsimony. However, when gain and loss of the character are not rare enough, a probabilistic analysis becomes essential. Here, we present a comprehensive probabilistic model to describe the evolution of binary characters on a bifurcating phylogenetic tree. A fast software tool, EREM, is provided, using maximum likelihood to estimate the parameters of the model and to reconstruct ancestral states (presence and absence in internal nodes) and events (gain and loss events along branches).

  19. Mitochondrial base excision repair assays

    DEFF Research Database (Denmark)

    Maynard, Scott; de Souza-Pinto, Nadja C; Scheibye-Knudsen, Morten

    2010-01-01

    The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur....... Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA...... glycosylases, AP endonuclease, DNA polymerase (POLgamma in mitochondria) and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene...

  20. Parkin suppresses Drp1-independent mitochondrial division

    International Nuclear Information System (INIS)

    Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi

    2016-01-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.