WorldWideScience

Sample records for resveratrol inhibits tumorigenesis

  1. ODAM Expression Inhibits Human Breast Cancer Tumorigenesis

    Science.gov (United States)

    Kestler, Daniel P.; Foster, James S.; Bruker, Charles T.; Prenshaw, John W.; Kennel, Stephen J.; Wall, Jonathan S.; Weiss, Deborah T.; Solomon, Alan

    2011-01-01

    We have posited that Odontogenic Ameloblast Associated Protein (ODAM) serves as a novel prognostic biomarker in breast cancer and now have investigated its potential role in regulating tumor growth and metastasis. Human breast cancer MDA-MB-231 cells were transfected with a recombinant ODAM plasmid construct (or, as a control, the plasmid vector alone). ODAM expression increased adhesion and apoptosis of the transfected MDA-MB-231 cells and suppressed their growth rate, migratory activity, and capability to invade extracellular matrix-coated membranes. Implantation of such cells into mouse mammary fat pads resulted in significantly smaller tumors than occurred in animals that received control cells; furthermore, ODAM-expressing cells, when injected intravenously into mice, failed to metastasize, whereas the control-transfected counterparts produced extensive lung lesions. Our finding that induction of ODAM expression in human breast cancer cells markedly inhibited their neoplastic properties provides further evidence for the regulatory role of this molecule in tumorigenesis and, consequently, is of potential clinical import. PMID:21603257

  2. Effective inhibition of MERS-CoV infection by resveratrol.

    Science.gov (United States)

    Lin, Shih-Chao; Ho, Chi-Tang; Chuo, Wen-Ho; Li, Shiming; Wang, Tony T; Lin, Chi-Chen

    2017-02-13

    Middle East Respiratory Syndrome coronavirus (MERS-CoV) is an emerging viral pathogen that causes severe morbidity and mortality. Up to date, there is no approved or licensed vaccine or antiviral medicines can be used to treat MERS-CoV-infected patients. Here, we analyzed the antiviral activities of resveratrol, a natural compound found in grape seeds and skin and in red wine, against MERS-CoV infection. We performed MTT and neutral red uptake assays to assess the survival rates of MERS-infected Vero E6 cells. In addition, quantitative PCR, western blotting, and immunofluorescent assays determined the intracellular viral RNA and protein expression. For viral productivity, we utilized plaque assays to confirm the antiviral properties of resveratrol against MERS-CoV. Resveratrol significantly inhibited MERS-CoV infection and prolonged cellular survival after virus infection. We also found that the expression of nucleocapsid (N) protein essential for MERS-CoV replication was decreased after resveratrol treatment. Furthermore, resveratrol down-regulated the apoptosis induced by MERS-CoV in vitro. By consecutive administration of resveratrol, we were able to reduce the concentration of resveratrol while achieving inhibitory effectiveness against MERS-CoV. In this study, we first demonstrated that resveratrol is a potent anti-MERS agent in vitro. We perceive that resveratrol can be a potential antiviral agent against MERS-CoV infection in the near future.

  3. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition

    Science.gov (United States)

    Park, Dohyun; Jeong, Heeyoon; Lee, Mi Nam; Koh, Ara; Kwon, Ohman; Yang, Yong Ryoul; Noh, Jungeun; Suh, Pann-Ghill; Park, Hwangseo; Ryu, Sung Ho

    2016-01-01

    Resveratrol (RSV) is a natural polyphenol that has a beneficial effect on health, and resveratrol-induced autophagy has been suggested to be a key process in mediating many beneficial effects of resveratrol, such as reduction of inflammation and induction of cancer cell death. Although various resveratrol targets have been suggested, the molecule that mediates resveratrol-induced autophagy remains unknown. Here, we demonstrate that resveratrol induces autophagy by directly inhibiting the mTOR-ULK1 pathway. We found that inhibition of mTOR activity and presence of ULK1 are required for autophagy induction by resveratrol. In line with this mTOR dependency, we found that resveratrol suppresses the viability of MCF7 cells but not of SW620 cells, which are mTOR inhibitor sensitive and insensitive cancer cells, respectively. We also found that resveratrol-induced cancer cell suppression occurred ULK1 dependently. For the mechanism of action of resveratrol on mTOR inhibition, we demonstrate that resveratrol directly inhibits mTOR. We found that resveratrol inhibits mTOR by docking onto the ATP-binding pocket of mTOR (i.e., it competes with ATP). We propose mTOR as a novel direct target of resveratrol, and inhibition of mTOR is necessary for autophagy induction. PMID:26902888

  4. Resveratrol Inhibited Non-small Cell Lung Cancer Through Inhibiting STAT-3 Signaling.

    Science.gov (United States)

    Li, Xin; Wang, Dan; Zhao, Qing Chun; Shi, Tao; Chen, Jun

    2016-11-01

    Resveratrol has demonstrated many beneficial effects against cancers; however, the mechanism remains unclear. Non-small cell lung cancer accounts for 80% of lung cancers. The present study was designed to observe the effects and related mechanisms of resveratrol on non-small cell lung cancer in in vitro A549 cells. The anticancer effects of resveratrol were analyzed on cell viability, migration and invasion, proliferation and apoptosis. Cell viability was determined by sulphorhodamine B assays. Cell proliferation and apoptosis were determined by flow cytometry and migration and invasion by transwell chamber analysis. Expression of STAT-3 was examined by real-time polymerase chain reaction and western blot. Overexpressing vector of STAT-3 was also constructed and transfected into A549 cells to observe the effects of resveratrol on STAT-3 signaling. The results showed that resveratrol displayed a dose-dependent and time-dependent cytotoxicity action on A549 cell viability. Resveratrol also inhibited proliferation, migration and invasion and promoted apoptosis in a time-dependent manner from 0-72 hours. Further study showed that resveratrol inhibited the messenger RNA and protein expression of STAT-3, and overexpressed STAT-3 abolished the effects of resveratrol on proliferation, apoptosis, migration and invasion totally or in part. These results suggest that the anticancer effects of resveratrol are mediated by STAT-3 signaling. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  5. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Xie, Ji-Sheng [Youjiang Medical College for Nationalities, Guangxi 533000 (China); Meng, Xin; Guan, Yifu [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Wang, Hua-Qin, E-mail: wanghq_doctor@hotmail.com [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China)

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2{alpha} (eIF2{alpha}), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2{alpha} inhibitor, or overexpression of dominant negative mutants of PERK or eIF2{alpha}, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2{alpha} branch of UPR in RES-induced inhibition of cell proliferation.

  6. Resveratrol

    DEFF Research Database (Denmark)

    Vang, Ole

    2015-01-01

    Testing the biological activities of a dietary compound like resveratrol presents various challenges, which are highlighted in this commentary, with some suggested direction for future research, focusing on five challenges: (1) many different cellular effects are observed for resveratrol......, but it is not known whether they arise from one point of action (or a few) or whether resveratrol is non-specific in its action; (2) the health-promotion effect of dietary resveratrol is likely a combinatory effect of various bioactive components in the mixture (diet); (3) the known cell biological response...... to resveratrol is presently based on exposure to short-term high levels, and better in vitro analyses have to be developed; (4) the actual level of resveratrol and resveratrol metabolites present in vitro and in vivo during experiments may be over- and underestimated, respectively, because resveratrol...

  7. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction

    Energy Technology Data Exchange (ETDEWEB)

    Jin, So Hee; Yang, Ji Hye; Shin, Bo Yeon; Seo, Kyuhwa; Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Cho, Il Je, E-mail: skek023@dhu.ac.kr [MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbukdo 712-715 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2013-08-15

    Liver X receptor-α (LXRα), a member of the nuclear receptor superfamily of ligand-activated transcription factors, regulates de novo fatty acid synthesis that leads to stimulate hepatic steatosis. Although, resveratrol has beneficial effects on metabolic disease, it is not known whether resveratrol affects LXRα-dependent lipogenic gene expression. This study investigated the effect of resveratrol in LXRα-mediated lipogenesis and the underlying molecular mechanism. Resveratrol inhibited the ability of LXRα to activate sterol regulatory element binding protein-1c (SREBP-1c) and thereby inhibited target gene expression in hepatocytes. Moreover, resveratrol decreased LXRα–RXRα DNA binding activity and LXRE-luciferase transactivation. Resveratrol is known to activate Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK), although its precise mechanism of action remains controversial. We found that the ability of resveratrol to repress T0901317-induced SREBP-1c expression was not dependent on AMPK and Sirt1. It is well established that hepatic steatosis is associated with antioxidant and redox signaling. Our data showing that expression of Sestrin2 (Sesn2), which is a novel antioxidant gene, was significantly down-regulated in the livers of high-fat diet-fed mice. Moreover, resveratrol up-regulated Sesn2 expression, but not Sesn1 and Sesn3. Sesn2 overexpression repressed LXRα-activated SREBP-1c expression and LXRE-luciferase activity. Finally, Sesn2 knockdown using siRNA abolished the effect of resveratrol in LXRα-induced FAS luciferase gene transactivation. We conclude that resveratrol affects Sesn2 gene induction and contributes to the inhibition of LXRα-mediated hepatic lipogenesis. - Highlights: • We investigated the effect of resveratrol in LXRα-mediated lipogenesis. • Resveratrol attenuated the ability of the LXRα-mediated lipogenic gene expression. • Resveratrol’s effects on T090-induced lipogenesis is not dependent on Sirt1 or AMPK.

  8. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qiaoyuan [Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510182 (China); Xu, Enwu [Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of Chinese People' s Liberation Army, Guangzhou 510010 (China); Dai, Jiabin; Liu, Binbin; Han, Zhiyuan; Wu, Jianjun; Zhang, Shaozhu; Peng, Baoying [Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510182 (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou 510182 (China); Jiang, Yiguo, E-mail: jiangyiguo@vip.163.com [Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510182 (China)

    2015-06-01

    Lung cancer is the most common form of cancer throughout the world. The specific targeting of long noncoding RNAs (lncRNAs) by resveratrol opened a new avenue for cancer chemoprevention. In this study, we found that 21 lncRNAs were upregulated and 19 lncRNAs were downregulated in lung cancer A549 cells with 25 μmol/L resveratrol treatment determined by microarray analysis. AK001796, the lncRNA with the most clearly altered expression, was overexpressed in lung cancer tissues and cell lines, but its expression was downregulated in resveratrol-treated lung cancer cells. By monitoring cell proliferation and growth in vitro and tumor growth in vivo, we observed a significant reduction in cell viability in lung cancer cells and a slow growth in the tumorigenesis following AK001796 knockdown. We also found that AK001796 knockdown caused a cell-cycle arrest, with significant increases in the percentage of cells in G{sub 0}/G{sub 1} in lung cancer cells. By using cell cycle pathway-specific PCR arrays, we detected changes in a number of cell cycle-related genes related to lncRNA AK001796 knockdown. We further investigated whether AK001796 participated in the anticancer effect of resveratrol and the results showed that reduced lncRNA AK001796 level potentially impaired the inhibitory effect of resveratrol on cell proliferation. To our knowledge, this is the first study to report the changes in an lncRNA expression profile induced by resveratrol in lung cancer. - Highlights: • LncRNA AK001796 played an oncogenic role in lung carcinogenesis. • LncRNA AK001796 was downregulated in resveratrol-treated lung cancer cells. • LncRNA AK001796 was involved in the inhibition of cell growth by resveratrol.

  9. Resveratrol inhibits prostaglandin formation in IL-1β-stimulated SK-N-SH neuronal cells

    Directory of Open Access Journals (Sweden)

    Candelario-Jalil Eduardo

    2009-09-01

    Full Text Available Abstract Resveratrol, a polyphenol present in grapes and red wine, has been studied due to its vast pharmacological activity. It has been demonstrated that resveratrol inhibits production of inflammatory mediators in different in vitro and in vivo models. Our group recently demonstrated that resveratrol reduced the production of prostaglandin (PG E2 and 8-isoprostane in rat activated microglia. In a microglial-neuronal coculture, resveratrol reduced neuronal death induced by activated microglia. However, less is known about its direct roles in neurons. In the present study, we investigated the effects of resveratrol on interleukin (IL-1β stimulated SK-N-SH cells. Resveratrol (0.1-5 μM did not reduce the expression of cyclooxygenase (COX-2 and microsomal PGE2 synthase-1 (mPGES-1, although it drastically reduced PGE2 and PGD2 content in IL-1β-stimulated SK-N-SH cells. This effect was due, in part, to a reduction in COX enzymatic activity, mainly COX-2, at lower doses of resveratrol. The production of 8-iso-PGF2α, a marker of cellular free radical generation, was significantly reduced by resveratrol. The present work provides evidence that resveratrol reduces the formation of prostaglandins in neuroblastoma cells by reducing the enzymatic activity of inducible enzymes, such as COX-2, and not the transcription of the PG synthases, as demonstrated elsewhere.

  10. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism

    National Research Council Canada - National Science Library

    Madrigal-Perez, Luis Alberto; Ramos-Gomez, Minerva

    2016-01-01

    .... Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1...

  11. Resveratrol inhibits mucin gene expression, production and secretion from airway epithelial cells.

    Science.gov (United States)

    Lee, Su Yel; Lee, Hyun Jae; Sikder, Md Asaduzzaman; Shin, Hyun-Dae; Kim, Jang-Hyun; Chang, Gyu Tae; Seok, Jeong Ho; Lee, Choong Jae

    2012-07-01

    The study investigated whether resveratrol significantly affects mucin gene expression, production and secretion from airway epithelial cells. Confluent NCI-H292 cells were pretreated with resveratrol for 30 min and then stimulated with EGF (epidermal growth factor), PMA (phorbol 12-myristate 13-acetate) and TNF-α (tumor necrosis factor-α) for 24 h, respectively. The MUC5AC gene expression and mucin protein production were measured by RT-PCR and ELISA. The effect of resveratrol on TNF-α- or PMA-induced activation of NF-κB p65 was also examined. Confluent primary rat tracheal surface epithelial (RTSE) cells were pretreated with adenosine triphosphate (ATP) for 5 min and then treated for 30 min in the presence of resveratrol to assess the effect on mucin secretion using ELISA. The results were as follows: (1) resveratrol inhibited the expression of MUC5AC gene induced by EGF or PMA or TNF-α from NCI-H292 cells; (2) resveratrol also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells; (3) resveratrol inhibited the activation of NF-κB p65 by TNF-α or PMA in NCI-H292 cells; (4) resveratrol significantly decreased ATP-induced mucin secretion from cultured RTSE cells. This result suggests that resveratrol can regulate mucin gene expression, production and secretion, by directly acting on airway epithelial cells. Copyright © 2011 John Wiley & Sons, Ltd.

  12. On the Molecular Pharmacology of Resveratrol on Oxidative Burst Inhibition in Professional Phagocytes

    Directory of Open Access Journals (Sweden)

    Radomír Nosáľ

    2014-01-01

    Full Text Available Resveratrol—3,5,4′-trihydroxystilbene—possesses antioxidant activities in vitro. It dose-dependently inhibited the generation of peroxyl, hydroxyl, peroxides, and lipid peroxidation products in cell free systems. Oxidative burst of whole human blood stimulated with PMA, fMLP, OpZ, and A23187 was inhibited in a concentration-dependent way, indicating suppression of both receptor and nonreceptor activated chemiluminescence by resveratrol. Results from isolated human neutrophils revealed that resveratrol was active extracellularly as well as intracellularly in inhibiting the generation of reactive oxygen species. Liberation of ATP and analysis of apoptosis showed that in the concentration of 100 μM, resveratrol did not change the viability and integrity of isolated neutrophils. Western blot analysis documented that resveratrol in concentrations of 10 and 100 μM significantly decreased PMA-induced phosphorylation of PKC α/βII. Dose-dependent inhibition of nitrite production and iNOS protein expression in RAW 264.7 cells indicated possible interference of resveratrol with reactive nitrogen radical generation in professional phagocytes. The results suggest that resveratrol represents an effective naturally occurring substance with potent pharmacological effect on oxidative burst of human neutrophils and nitric oxide production by macrophages. It should be further investigated for its pharmacological activity against oxidative stress in ischaemia reperfusion, inflammation, and other pathological conditions, particularly neoplasia.

  13. Activation of Sirt1 by resveratrol inhibits TNF-α induced inflammation in fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xiaoxia Zhu

    Full Text Available Inflammation is one of main mechanisms of autoimmune disorders and a common feature of most diseases. Appropriate suppression of inflammation is a key resolution to treat the diseases. Sirtuin1 (Sirt1 has been shown to play a role in regulation of inflammation. Resveratrol, a potent Sirt1 activator, has anti-inflammation property. However, the detailed mechanism is not fully understood. In this study, we investigated the anti-inflammation role of Sirt1 in NIH/3T3 fibroblast cell line. Upregulation of matrix metalloproteinases 9 (MMP-9, interleukin-1beta (IL-1β, IL-6 and inducible nitric oxide synthase (iNOS were induced by tumor necrosis factor alpha (TNF-α in 3T3 cells and resveratrol suppressed overexpression of these pro-inflammatory molecules in a dose-dependent manner. Knockdown of Sirt1 by RNA interference caused 3T3 cells susceptible to TNF-α stimulation and diminished anti-inflammatory effect of resveratrol. We also explored potential anti-inflammatory mechanisms of resveratrol. Resveratrol reduced NF-κB subunit RelA/p65 acetylation, which is notably Sirt1 dependent. Resveratrol also attenuated phosphorylation of mammalian target of rapamycin (mTOR and S6 ribosomal protein (S6RP while ameliorating inflammation. Our data demonstrate that resveratrol inhibits TNF-α-induced inflammation via Sirt1. It suggests that Sirt1 is an efficient target for regulation of inflammation. This study provides insight on treatment of inflammation-related diseases.

  14. Resveratrol inhibits Cdk5 activity through regulation of p35 expression

    Directory of Open Access Journals (Sweden)

    Kulkarni Ashok B

    2011-07-01

    Full Text Available Abstract Background We have previously reported that cyclin-dependent kinase 5 (Cdk5 participates in the regulation of nociceptive signaling. Through activation of the ERK1/2 pathway, Tumor Necrosis Factor-α (TNF-α induces expression of Egr-1. This results in the sustained and robust expression of p35, a coactivator of Cdk5, in PC12 cells, thereby increasing Cdk5 kinase activity. The aim of our present study was to test whether resveratrol, a polyphenolic compound with known analgesic activity, can regulate Cdk5/p35 activity. Results Here we used a cell-based assay in which a p35 promoter-luciferase construct was stably transfected in PC12 cells. Our studies demonstrate that resveratrol inhibits p35 promoter activity and also blocks the TNF-α mediated increase in Cdk5 activity in PC12 cells. Resveratrol also inhibits p35 expression and blocks the TNF-α mediated increase in Cdk5 activity in DRG neurons. In the presence of resveratrol, the MEK inhibitor decreased p35 promoter activity, whereas the inhibitors of p38 MAPK, JNK and NF-κB increased p35 promoter activity, indicating that these pathways regulate p35 expression differently. The TNF-α-mediated increase in Egr-1 expression was decreased by resveratrol treatment with a concomitant reduction in p35 expression and protein levels, resulting in reduced Cdk5 kinase activity. Conclusions We demonstrate here that resveratrol regulates p35 promoter activity in PC12 cells and DRG neurons. Most importantly, resveratrol blocks the TNF-α-mediated increase in p35 promoter activity, thereby reducing p35 expression and subsequent Cdk5 kinase activity. This new molecular mechanism adds to the known analgesic effects of resveratrol and confirms the need for identifying new analgesics based on their ability to inhibit Cdk5 activity for effective treatment of pain.

  15. Inhibition of Breast Cancer Cell Proliferation and In Vitro Tumorigenesis by a New Red Apple Cultivar.

    Science.gov (United States)

    Schiavano, Giuditta Fiorella; De Santi, Mauro; Brandi, Giorgio; Fanelli, Mirco; Bucchini, Anahi; Giamperi, Laura; Giomaro, Giovanna

    2015-01-01

    The aim of this study was to evaluate the antiproliferative activity in breast cancer cells and the inhibition of tumorigenesis in pre-neoplastic cells of a new apple cultivar with reddish pulp, called the Pelingo apple. The antiproliferative activity was evaluated in MCF-7 and MDA-MB-231 human breast cancer cells. The inhibition of tumorigenesis was performed in JB6 promotion-sensitive (P+) cells. Results showed that Pelingo apple juice is characterized by a very high polyphenol content and strongly inhibited breast cancer cell proliferation. Its antiproliferative activity was found to be higher than the other five apple juices tested. Pelingo juice induced cell accumulation in the G2/M phase of the cell cycle and autophagy through overexpression of p21, inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) activity and an increase in lipidated microtubule-associated protein-1 light chain-3 beta (LC3B). Remarkably, Pelingo juice inhibited the 12-o-tetra-decanoyl-phorbol-13-acetate (TPA)-induced tumorigenesis of JB6 P+ cells, suppressing colony formation in semi-solid medium and TPA-induced ERK1/2 phosphorylation. Our data indicate that the Pelingo apple is rich in food components that can markedly inhibit in vitro tumorigenesis and growth of human breast cancer cells and could provide natural bioactive non-nutrient compounds, with potential chemopreventive activity.

  16. Resveratrol inhibits steroidogenesis in human fetal adrenocortical cells at the end of first trimester

    DEFF Research Database (Denmark)

    Savchuk, Iuliia; Morvan, Marie-Line; Søeborg, Tue

    2017-01-01

    SCOPE: Resveratrol has a diverse array of healthful effects on metabolic parameters in different experimental paradigms but has also potential to inhibit steroidogenesis in rodent adrenals. The aim of the present study was to characterize the effects of resveratrol on human fetal adrenal...... steroidogenesis at gestational weeks (GW) 9-12. METHODS AND RESULTS: Adrenals from aborted fetuses (GW10-12) were used to prepare primary cultures of human fetal adrenocortical cells (HFAC). HFAC were treated in the presence or absence of ACTH (10 ng/ml) with or without resveratrol (10 μM) for 24 hours....... The production of steroids by HFAC was analyzed by gas and liquid chromatography coupled to tandem/mass spectrometry. The expression of steroidogenic enzymes at GW 9-12 was quantified by automated Western blotting. We observed that resveratrol significantly suppressed synthesis of dehydroepiandrosterone (DHEA...

  17. Resveratrol Inhibits Alpha-Melanocyte-Stimulating Hormone Signaling, Viability, and Invasiveness in Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2013-01-01

    Full Text Available Melanoma is a malignancy with high potential to invasion and treatment resistance. The α-melanocyte-stimulating hormone (α-MSH signal transduction involving Wnt/β-catenin, c-Kit, and microphthalmia-associated transcription factor (MITF, a known pathway to produce melanin, has been demonstrated as one of cancer stem cell characteristics. This study was aimed to examine the effect of resveratrol, an abundant ingredient of grape and medicinal plants, on α-MSH signaling, viability, and invasiveness in melanoma cells. By α-MSH treatment, the melanin production in B16 melanoma cells was augmented as a validation for activation of α-MSH signaling. The upregulated expression of α-MSH signaling-related molecules β-catenin, c-Kit, and MITF was suppressed by resveratrol and/or STI571 treatment. Nuclear translocation of MITF, a hallmark of α-MSH signaling activation, was inhibited by combined treatment of resveratrol and STI571. At effective concentration, resveratrol and/or STI571 inhibited cell viability and α-MSH-activated matrix metalloproteinase- (MMP-9 expression and invasion capacity of B16 melanoma cells. In conclusion, resveratrol enhances STI571 effect on suppressing the α-MSH signaling, viability, and invasiveness in melanoma cells. It implicates that resveratrol may have potential to modulate the cancer stem cell characteristics of melanoma.

  18. Resveratrol Reduces Prostate Cancer Growth and Metastasis by Inhibiting the Akt/MicroRNA-21 Pathway

    Science.gov (United States)

    Sheth, Sandeep; Jajoo, Sarvesh; Kaur, Tejbeer; Mukherjea, Debashree; Sheehan, Kelly; Rybak, Leonard P.; Ramkumar, Vickram

    2012-01-01

    The consumption of foods containing resveratrol produces significant health benefits. Resveratrol inhibits cancer by reducing cell proliferation and metastasis and by inducing apoptosis. These actions could be explained by its ability to inhibit (ERK-1/2), Akt and suppressing the levels of estrogen and insulin growth factor -1 (IGF-1) receptor. How these processes are manifested into the antitumor actions of resveratrol is not clear. Using microarray studies, we show that resveratrol reduced the expression of various prostate-tumor associated microRNAs (miRs) including miR-21 in androgen-receptor negative and highly aggressive human prostate cancer cells, PC-3M-MM2. This effect of resveratrol was associated with reduced cell viability, migration and invasiveness. Additionally, resveratrol increased the expression of tumor suppressors, PDCD4 and maspin, which are negatively regulated by miR-21. Short interfering (si) RNA against PDCD4 attenuated resveratrol’s effect on prostate cancer cells, and similar effects were observed following over expression of miR-21 with pre-miR-21 oligonucleotides. PC-3M-MM2 cells also exhibited high levels of phospho-Akt (pAkt), which were reduced by both resveratrol and LY294002 (a PI3-kinase inhibitor). MiR-21 expression in these cells appeared to be dependent on Akt, as LY294002 reduced the levels of miR-21 along with a concurrent increase in PDCD4 expression. These in vitro findings were further corroborated in a severe combined immunodeficient (SCID) mouse xenograft model of prostate cancer. Oral administration of resveratrol not only inhibited the tumor growth but also decreased the incidence and number of metastatic lung lesions. These tumor- and metastatic-suppressive effects of resveratrol were associated with reduced miR-21 and pAkt, and elevated PDCD4 levels. Similar anti-tumor effects of resveratrol were observed in DU145 and LNCaP prostate cancer cells which were associated with suppression of Akt and PDCD4, but

  19. Resveratrol Attenuated Low Ambient Temperature-Induced Myocardial Hypertrophy via Inhibiting Cardiomyocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Kun Yin

    2015-04-01

    Full Text Available Background/Aims: Low ambient temperature is an important risk factor for cardiovascular diseases, and has been shown to lead to cardiac hypertrophy. In this study, we aim to investigate if Resveratrol may inhibit cold exposure-induced cardiac hypertrophy in mice, and if so to clarify its molecular mechanism. Methods: Adult male mice were randomly assigned to Control group (kept at room temperature, Cold group (kept at low air temperature range from 3°C to 5°C and Resveratrol treatment group (100mg/kg/day for eight weeks. HE staining, Masson staining and Transmission electron microscopy were employed to detect cardiac structure, fibrosis and myocardial ultrastructure, respectively. Echocardiogram was used to measure myocardial functions. Western blot was used to detect the expression of MAPK pathway and apoptotic proteins. TUENL assay was performed to evaluate cardiomyocyte apoptosis. qRT-PCR was employed to measure the mRNA level. Results: Cold-treated mice showed a higher heart/body weight ratio and heart weight/tibia length ratio compared with control mice, and Resveratrol treatment may suppress these changes in cold-treated mice. Myocardial cross-section area and cardiac collagen volume were larger in cold group than control group, which also can be attenuated by Resveratrol treatment. Also, Resveratrol improved the ultrastructure damage of myocardium such as myofibril disarray in cold group. Echocardiogram measurement showed that EF and FS values in cold group declined apparently as compared to control group, and Resveratrol may improve the reduction of heart functions. The expression of p-JNK, p-p38 and p-ERK relative to total JNK, p38 and ERK in cold group was not altered in cold group and Resveratrol group as compared to control group. Cold-treated mouse hearts also showed the upregulation of hypertrophy-related miRNA-miR-328 but not miR-23a, and Resveratrol treatment can inhibit the increase of miR-328. Finally, Resveratrol treatment

  20. Resveratrol Inhibits Cancer Cell Metabolism by Down Regulating Pyruvate Kinase M2 via Inhibition of Mammalian Target of Rapamycin

    Science.gov (United States)

    Iqbal, Mohd Askandar; Bamezai, Rameshwar N. K.

    2012-01-01

    Metabolism of cancer cells with pyruvate kinase M2 (PKM2) at its centre stage has assumed a prime significance in cancer research in recent times. Cancer cell metabolism, characterized by enhanced glucose uptake, production of lactate and anabolism is considered an ideal target for therapeutic interventions. Expression of PKM2 switches metabolism in favor of cancer cells, therefore, the present study was designed to investigate the hitherto unknown effect of resveratrol, a phytoalexin, on PKM2 expression and resultant implications on cancer metabolism. We observed that resveratrol down-regulated PKM2 expression by inhibiting mTOR signaling and suppressed cancer metabolism, adjudged by decreased glucose uptake, lactate production (aerobic glycolysis) and reduced anabolism (macromolecule synthesis) in various cancer cell lines. A contingent decrease in intracellular levels of ribose-5-phosphate (R5P), a critical intermediate of pentose phosphate pathway, accounted for a reduced anabolism. Consequently, the state of suppressed cancer metabolism resulted in decreased cellular proliferation. Interestingly, shRNA-mediated silencing of PKM2 inhibited glucose uptake and lactate production, providing evidence for the critical role of PKM2 and its mediation in the observed effects of resveratrol on cancer metabolism. Further, an over-expression of PKM2 abolished the observed effects of resveratrol, signifying the role of PKM2 downregulation as a critical function of resveratrol. The study reports a novel PKM2-mediated effect of resveratrol on cancer metabolism and provides a new dimension to its therapeutic potential. PMID:22574221

  1. Resveratrol Prevents EBV Transformation and Inhibits the Outgrowth of EBV-Immortalized Human B Cells

    Science.gov (United States)

    Espinoza, J. Luis; Takami, Akiyoshi; Trung, Ly Quoc; Kato, Shunichi; Nakao, Shinji

    2012-01-01

    Background Epstein Barr virus-associated lymphoproliferative disease is an increasing complication in patients with immunosuppressive conditions. Although the current therapies for this disorder are effective, they are also associated with significant toxicity. In an attempt to identify newer therapeutic agents, this study investigated the effects of Resveratrol, a naturally occurring polyphenolic compound, on the EBV transformation of human B cells. Methodology/Principal Findings This study demonstrates that resveratrol prevents EBV transformation in human B cells. These effects are mediated by specific cytotoxic activities of resveratrol against EBV-infected B cells that are associated with the downregulation of the anti-apoptotic proteins Mcl-1 and survivin. This occurs as a consequence of the inhibition of EBV-induced NFκB and STAT-3 signaling pathways and a resveratrol-induced decrease in the expression of the oncogenic viral product LMP1 in EBV-infected B cells. In addition, resveratrol decreased the expression of miR-155 and miR-34a in EBV-infected B cells, blocked the expression of the anti-apoptotic viral gene BHRF1, and thus interrupted events that are critical for EBV transformation and the survival of EBV-transformed cells. Conclusions/Significance These results suggest that resveratrol may therefore be a potentially effective therapeutic alternative for preventing EBV-associated lymphoproliferative diseases in immune compromised patients. PMID:23251493

  2. Resveratrol Treatment Inhibits Proliferation of and Induces Apoptosis in Human Colon Cancer Cells.

    Science.gov (United States)

    Feng, Miao; Zhong, Lu-Xing; Zhan, Zheng-Yu; Huang, Zhi-Hao; Xiong, Jian-Ping

    2016-04-04

    Resveratrol, a natural isolate from plant sources, has a long and important history in traditional Chinese medicine. In the present study we investigated the effect of resveratrol on human colon cancer cell lines. We used the Cell Counting kit-8 (CCK-8) for determination of colon cancer cell viability. Apoptosis induction was analyzed using the DeadEnd™ Colorimetric TUNEL System (Promega, Madison, WI, USA). The siRNA Transfection Reagent kit (Santa Cruz Biotechnology, Inc.) was used for the administration of COX-2 silencer RNA (siRNA) into the colon cancer cells. Primer Express® software for Real-Time PCR ver. 3.0 (Applied Biosystems, Foster City, CA, USA) was used to prepare the primers for RT-PCR. The results revealed that exposure of colon cancer cells to resveratrol inhibited cell viability. Resveratrol exhibited a significant inhibitory effect on cell viability at 30 μM concentration after 48 h of exposure. We observed that 30-μM doses of resveratrol for 72 h led to 18, 29, and 34% reduction in the viability of HCA-17, SW480, and HT29 cells, respectively. It also significantly induced apoptosis in both of the tested carcinoma cell lines. The population of apoptotic cells in HCA-17 and SW480 cell lines after 48 h of resveratrol treatment was 59.8±4 and 67.2±4%, respectively, compared to 2.3±1% in the control cells. The colon cancer cells exposed to resveratrol showed significantly lower cyclooxygenase-2 and prostaglandin receptor expression. Treatment of colon cancer cells with the inhibitor of cyclooxygenase-2, indomethacin, and administration of silencer RNA for cyclooxygenase-2 also produced similar results. These findings suggest that resveratrol treatment can be a promising strategy for the treatment of colon cancer.

  3. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy.

    Science.gov (United States)

    Ferraresi, Alessandra; Phadngam, Suratchanee; Morani, Federica; Galetto, Alessandra; Alabiso, Oscar; Chiorino, Giovanna; Isidoro, Ciro

    2017-03-01

    Interleukin-6 (IL-6), a pro-inflammatory cytokine released by cancer-associated fibroblasts, has been linked to the invasive and metastatic behavior of ovarian cancer cells. Resveratrol is a naturally occurring polyphenol with the potential to inhibit cancer cell migration. Here we show that Resveratrol and IL-6 affect in an opposite manner the expression of RNA messengers and of microRNAs involved in cell locomotion and extracellular matrix remodeling associated with the invasive properties of ovarian cancer cells. Among the several potential candidates responsible for the anti-invasive effect promoted by Resveratrol, here we focused our attention on ARH-I (DIRAS3), that encodes a Ras homolog GTPase of 26-kDa. This protein is known to inhibit cell motility, and it has been shown to regulate autophagy by interacting with BECLIN 1. IL-6 down-regulated the expression of ARH-I and inhibited the formation of LC3-positive autophagic vacuoles, while promoting cell migration. On opposite, Resveratrol could counteract the IL-6 induction of cell migration in ovarian cancer cells through induction of autophagy in the cells at the migration front, which was paralleled by up-regulation of ARH-I and down-regulation of STAT3 expression. Spautin 1-mediated disruption of BECLIN 1-dependent autophagy abrogated the effects of Resveratrol, while promoting cell migration. The present data indicate that Resveratrol elicits its anti-tumor effect through epigenetic mechanisms and support its inclusion in the chemotherapy regimen for highly aggressive ovarian cancers. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Resveratrol Attenuated Low Ambient Temperature-Induced Myocardial Hypertrophy via Inhibiting Cardiomyocyte Apoptosis

    OpenAIRE

    Kun Yin; Liang Zhao; Dan Feng; Wenya Ma; Yu Liu; Yang Wang; Jing Liang; Fan Yang; Chongwei Bi; Hongyang Chen; Xingda Li; Yanjie Lu; Benzhi Cai

    2015-01-01

    Background/Aims: Low ambient temperature is an important risk factor for cardiovascular diseases, and has been shown to lead to cardiac hypertrophy. In this study, we aim to investigate if Resveratrol may inhibit cold exposure-induced cardiac hypertrophy in mice, and if so to clarify its molecular mechanism. Methods: Adult male mice were randomly assigned to Control group (kept at room temperature), Cold group (kept at low air temperature range from 3°C to 5°C) and Resveratrol treatment group...

  5. Inhibition of rat mammary tumorigenesis by dietary cholesterol.

    Science.gov (United States)

    el-Sohemy, A; Bruce, W R; Archer, M C

    1996-01-01

    The effects of dietary cholesterol and oxidized cholesterol on mammary tumor development were examined in female Sprague-Dawley rats exposed to the carcinogen N-methyl-N-nitrosourea (MNU). Animals were administered 50 mg/kg MNU at 50 days of age and fed either a control (AIN-76) diet or the control diet supplemented with 0.3% cholesterol or 0.3% oxidized cholesterol for up to 26 weeks. The oxidized cholesterol was prepared by heating cholesterol at 110 degrees C for 48 h. Gas chromatographic analysis of the oxidized cholesterol revealed a 2% yield of oxidation products in addition to a large amount of unchanged cholesterol (> 96%). Tumor incidence in the cholesterol group (67%) was significantly lower than in the control group (96%, P < 0.05), but the oxidized cholesterol group (79%) was not significantly different from the control or cholesterol groups. Average number of tumors per animal was lower in the cholesterol group (1.5) than in the control (2.8) or oxidized cholesterol groups (2.3, P < 0.005). Serum low density lipoprotein (LDL) cholesterol was greater in the cholesterol (185 +/- 38 mg/dl) and the oxidized cholesterol groups (160 +/- 34 mg/dl) than in the controls (55 +/- 4 mg/dl, P < 0.05), although there was no difference between the cholesterol and the oxidized cholesterol groups. These results show that dietary cholesterol inhibits mammary tumor development in this model. Elevated serum LDL cholesterol may inhibit de novo cholesterol synthesis in preneoplastic and/or tumor cells, thereby inhibiting their proliferation.

  6. Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation

    Directory of Open Access Journals (Sweden)

    Mahesh Subramanian

    2014-01-01

    Full Text Available Resveratrol (5-[(E-2-(4-hydroxyphenylethenyl]benzene-1,3-diol, a redox active phytoalexin with a large number of beneficial activities is also known for antibacterial property. However the mechanism of action of resveratrol against bacteria remains unknown. Due to its extensive redox property it was envisaged if reactive oxygen species (ROS generation by resveratrol could be a reason behind its antibacterial activity. Employing Escherichia coli as a model organism we have evaluated the role of diffusible reactive oxygen species in the events leading to inhibition of this organism by resveratrol. Evidence for the role of ROS in E. coli treated with resveratrol was investigated by direct quantification of ROS by flow cytometry, supplementation with ROS scavengers, depletion of intracellular glutathione, employing mutants devoid of enzymatic antioxidant defences, induction of adaptive response prior to resveratrol challenge and monitoring oxidative stress response elements oxyR, soxS and soxR upon resveratrol treatment. Resveratrol treatment did not result in scavengable ROS generation in E. coli cells. However, evidence towards membrane damage was obtained by potassium leakage (atomic absorption spectrometry and propidium iodide uptake (flow cytometry and microscopy as an early event. Based on the comprehensive evidences this study concludes for the first time the antibacterial property of resveratrol against E. coli does not progress via the diffusible ROS but is mediated by site-specific oxidative damage to the cell membrane as the primary event.

  7. Resveratrol inhibits LPS-induced mice mastitis through attenuating the MAPK and NF-κB signaling pathway.

    Science.gov (United States)

    Zhang, Xu; Wang, Yanan; Xiao, Chong; Wei, Zhengkai; Wang, Jingjing; Yang, Zhengtao; Fu, Yunhe

    2017-06-01

    Resveratrol is a natural polyphenol extracted from mangy plants. It has been reported that resveratrol show multitudinous positive role in biology such as anti-oxidant, anti-nociception and anti-inflammatory effects. Therefore, the present study devotes to test the effect of resveratrol on LPS-induced mastitis in mice. Resveratrol was administered intraperitoneally 1 h before LPS treatment. And the anti-inflammatory effect of resveratrol was measured by histopathological examination, MPO assay, real-time PCR and western blotting analysis. The results showed that resveratrol significantly reduced the LPS-induced mammary histopathological changes. Meanwhile, it sharply attenuated the activity of MPO. The result also indicated that the resveratrol can decrease the expression of pro-inflammatory cytokines TNF-α and IL-1β. From the results of western blotting, resveratrol suppressed the expression of phosphorylation of p65 and IκB from NF-κB signal pathway and phosphorylation of p38 and ERK from MAPK signal pathway. These findings suggested that resveratrol may inhibit the inflammatory response in the mastitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Isolation of Resveratrol from Vitis Viniferae Caulis and Its Potent Inhibition of Human Tyrosinase

    Directory of Open Access Journals (Sweden)

    Jiaa Park

    2013-01-01

    Full Text Available Tyrosinase (TYR catalyzes rate-limiting reactions of cellular melanin synthesis, and its inhibitors are of commercial interest as potential skin whitening agents. However, the limited availability of human TYR makes the screening of TYR inhibitors difficult. To overcome this hurdle, we transformed nonmelanocytic human embryonic kidney (HEK 293 cells to express human TYR constitutively. Using these cells as a source of human TYR, the ethanolic extracts of 52 medicinal plants grown in Korea were tested for human TYR activity, and the extract of Vitis Viniferae Caulis (dried stems of the grape tree, Vitis vinifera L. was found to inhibit human TYR activity potently. An active compound was isolated from this extract by solvent fractionation followed by liquid column chromatography and identified as resveratrol by spectroscopic and chromatographic analyses. Resveratrol was determined to be a highly potent inhibitor of human TYR (IC50=0.39 μg mL−1 as compared with p-coumaric acid (IC50=0.66 μg mL−1 and arbutin (IC50>100 μg mL−1 and inhibited melanin synthesis by human epidermal melanocytes at subtoxic concentrations. This study suggests that resveratrol and resveratrol-containing extracts of Vitis Viniferae Caulis have a potential use as skin whitening agents.

  9. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases

    Science.gov (United States)

    Park, Sung-Jun; Ahmad, Faiyaz; Philp, Andrew; Baar, Keith; Williams, Tishan; Luo, Haibin; Ke, Hengming; Rehmann, Holger; Taussig, Ronald; Brown, Alexandra L.; Kim, Myung K.; Beaven, Michael A.; Burgin, Alex B.; Manganiello, Vincent; Chung, Jay H.

    2012-01-01

    SUMMARY Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca2+ levels and activates the CamKKβ-AMPK pathway via phospholipase C and the ryanodine receptor Ca2+-release channel. As a consequence, resveratrol increases NAD+ and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging. PMID:22304913

  10. Inhibition of prostate cancer growth by muscadine grape skin extract and resveratrol through distinct mechanisms.

    Science.gov (United States)

    Hudson, Tamaro S; Hartle, Diane K; Hursting, Stephen D; Nunez, Nomeli P; Wang, Thomas T Y; Young, Heather A; Arany, Praveen; Green, Jeffrey E

    2007-09-01

    The phytochemical resveratrol contained in red grapes has been shown to inhibit prostate cancer cell growth, in part, through its antioxidant activity. Muscadine grapes contain unique phytochemical constituents compared with other grapes and are potentially a source for novel compounds with antitumor activities. We compared the antitumor activities of muscadine grape skin extract (MSKE), which we show contains no resveratrol, with that of resveratrol using primary cultures of normal prostate epithelial cells (PrEC) and the prostate cancer cell lines RWPE-1, WPE1-NA22, WPE1-NB14, and WPE1-NB26, representing different stages of prostate cancer progression. MSKE significantly inhibited tumor cell growth in all transformed prostate cancer cell lines but not PrEC cells. Prostate tumor cell lines, but not PrEC cells, exhibited high rates of apoptosis in response to MSKE through targeting of the phosphatidylinositol 3-kinase-Akt and mitogen-activated protein kinase survival pathways. The reduction in Akt activity by MSKE is mediated through a reduction in Akt transcription, enhanced proteosome degradation of Akt, and altered levels of DJ-1, a known regulator of PTEN. In contrast to MSKE, resveratrol did not induce apoptosis in this model but arrested cells at the G(1)-S phase transition of the cell cycle associated with increased expression of p21 and decreased expression of cyclin D1 and cyclin-dependent kinase 4 proteins. These results show that MSKE and resveratrol target distinct pathways to inhibit prostate cancer cell growth in this system and that the unique properties of MSKE suggest that it may be an important source for further development of chemopreventive or therapeutic agents against prostate cancer.

  11. The engineered Salmonella typhimurium inhibits tumorigenesis in advanced glioma

    Directory of Open Access Journals (Sweden)

    Chen JQ

    2015-09-01

    engineered S. typhimurium accumulated in glioma tumors and disappeared in the normal reticuloendothelial tissues 3 days after intravenous injection. MRI showed that the tumor volume in the S. typhimurium with ClyA group were significantly reduced compared to the bacteria alone and no bacteria groups 7 days post-doxycycline treatment (P<0.05, while the necrotic tumor volume in the S. typhimurium with ClyA group and S. typhimurium alone group increased significantly compared to the control group (P<0.01. In addition, the survival time was significantly prolonged in the bacteria-treated group compared to the PBS-treated control group (P<0.01.Conclusion: The engineered S. typhimurium can significantly induce cancer cell apoptosis in the tumor center and inhibit cancer cell proliferation in the outer zone of advanced glioma tumor, leading to a prolonged survival time in rats. In addition, the engineered S. typhimurium that carried the antitumor and imaging genes controlled by the TetR-regulated promoter have high delivery efficiency with tolerable side effects in rats.Keywords: Salmonella typhimurium, cytolysin A, brain tumor, advanced glioma

  12. Resveratrol suppresses TPA-induced matrix metalloproteinase-9 expression through the inhibition of MAPK pathways in oral cancer cells.

    Science.gov (United States)

    Lin, Feng-Yan; Hsieh, Yi-Hsien; Yang, Shun-Fa; Chen, Chang-Tai; Tang, Chih-Hsin; Chou, Ming-Yung; Chuang, Yi-Ting; Lin, Chiao-Wen; Chen, Mu-Kuan

    2015-10-01

    Naturally occurring agents, such as resveratrol, have been determined to benefit health. Numerous studies have demonstrated that resveratrol has antioxidative, cardioprotective, and neuroprotective properties. However, the effect of resveratrol exerts on the metastasis of oral cancer cells remains unclear. In this study, we investigated the effect the anti-invasive activity of resveratrol on a human oral cancer cell line (SCC-9) in vitro and the underlying mechanisms. Cell viability was examined by MTT assay, whereas cell motility was measured by migration and wound-healing assays. Zymography, reverse-transcriptase polymerase chain reaction (PCR), and promoter assays confirmed the inhibitory effects of resveratrol on matrix metalloproteinase-9 (MMP-9) expression in oral cancer cells. We established that various concentrations (0-100 μM) of resveratrol inhibited the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced migration capacities of SCC-9 cells and caused no cytotoxic effects. Zymography and Western blot analyses suggested that resveratrol inhibited TPA-induced MMP-9 gelatinolytic activity and protein expression. In addition, the results indicated that resveratrol inhibited the phosphorylation of c-Jun N-terminal kinase (JNK)1/2 and extracellular-signal-regulated kinase (ERK)1/2 involved in downregulating protein expression and the transcription of MMP-9. In summary, resveratrol inhibited MMP-9 expression and oral cancer cell metastasis by downregulating JNK1/2 and ERK1/2 signals pathways and, thus, exerts beneficial effects in chemoprevention. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The Natural Product Resveratrol Inhibits Yeast Cell Separation by Extensively Modulating the Transcriptional Landscape and Reprogramming the Intracellular Metabolome.

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    Full Text Available An increasing number of studies have shown that the promising compound resveratrol treats multiple diseases, such as cancer and aging; however, the resveratrol mode-of-action (MoA remains largely unknown. Here, by virtue of multiple omics approaches, we adopted fission yeast as a model system with the goal of dissecting the common MoA of the anti-proliferative activity of resveratrol. We found that the anti-proliferative activity of resveratrol is mainly due to its unique role of inhibiting the separation of sister cells, similar phenotype with the C2H2 zinc finger transcription factor Ace2 knock-out strain. Microarray analysis shown that resveratrol has extensive impact on the fission yeast transcription levels. Among the changed gene's list, 40% of up-regulated genes are Core Environmental Stress Responses genes, and 57% of the down-regulated genes are periodically expressed. Moreover, resveratrol leverages the metabolome, which unbalances the intracellular pool sizes of several classes of amino acids, nucleosides, sugars and lipids, thus reflecting the remodulated metabolic networks. The complexity of the resveratrol MoA displayed in previous reports and our work demonstrates that multiple omics approaches must be applied together to obtain a complete picture of resveratrol's anti-proliferative function.

  14. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal.

    Science.gov (United States)

    Shen, Yixiao; Xu, Zhimin; Sheng, Zhanwu

    2017-02-01

    Glycation can generate advanced glycation end products (AGE) and its intermediates methylglyoxal (MGO) and glyoxal in foods, which increase the risk of developing diabetes diseases. In this study, the effect of resveratrol against AGE formation, carbohydrate-hydrolyzing enzyme activity and trapping MGO capability were evaluated. Resveratrol showed a significant inhibition capability against AGE formation in bovine serum albumin (BSA)-fructose, BSA-MGO and arginine-MGO models with inhibition percentages of 57.94, 85.95 and 99.35%, respectively. Furthermore, resveratrol acted as a competitive inhibitor for α-amylase with IC50 3.62μg/ml, while it behaved in an uncompetitive manner for α-glucosidase with an IC50 of 17.54μg/l. A prevention of BSA protein glycation was observed in the BSA-fructose model with addition of resveratrol. Three types of resveratrol-MGO adducts were identified in the model consisting of MGO and resveratrol. The results demonstrated that resveratrol has potential in reducing glycation in foods and retarding carbohydrate-hydrolyzing enzyme activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ras-Related Tumorigenesis Is Suppressed by BNIP3-Mediated Autophagy through Inhibition of Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Shan-Ying Wu

    2011-12-01

    Full Text Available Autophagy plays diverse roles in Ras-related tumorigenesis. H-rasval12 induces autophagy through multiple signaling pathways including Raf-1/ERK pathway, and various ERK downstream molecules of autophagy have been reported. In this study, Bcl-2/adenovirus E1B 19-kDa–interacting protein 3 (BNIP3 is identified as a downstream transducer of the Ras/Raf/ERK signaling pathway to induce autophagy. BNIP3 was upregulated by H-rasval12 at the transcriptional level to compete with Beclin 1 for binding with Bcl-2. H-rasval12–induced autophagy suppresses cell proliferation demonstrated both in vitro and in vivo by expression of ectopic BNIP3, Atg5, or interference RNA of BNIP3 (siBNIP3 and Atg5 (shAtg5 using mouse NIH3T3 and embryo fibroblast cells. H-rasval12 induces different autophagic responses depending on the duration of Ras overexpression. After a short time (48 hours of Ras overexpression, autophagy inhibits cell proliferation. In contrast, a longer time (2 weeks of Ras overexpression, cell proliferation was enhanced by autophagy. Furthermore, overexpression of mutant Ras, BNIP3, and LC3-II was detected in bladder cancer T24 cells and the tumor parts of 75% of bladder cancer specimens indicating a positive correlation between autophagy and tumorigenesis. Taken together, our mouse model demonstrates a balance between BNIP3-mediated autophagy and H-rasval12–induced tumor formation and reveals that H-rasval12 induces autophagy in a BNIP3-dependent manner, and the threshold of autophagy plays a decisive role in H-rasval12–induced tumorigenesis. Our findings combined with others’ reports suggest a new therapeutic strategy against Ras-related tumorigenesis by negative or positive regulation of autophagic activity, which is determined by the level of autophagy and tumor progression stages.

  16. Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway.

    Science.gov (United States)

    Zhao, Haosen; Chen, Shurui; Gao, Kai; Zhou, Zipeng; Wang, Chen; Shen, Zhaoliang; Guo, Yue; Li, Zhuo; Wan, Zhanghui; Liu, Chang; Mei, Xifan

    2017-04-21

    Spinal cord injury (SCI) is a devastating condition with few effective treatments. Resveratrol, a polyphenolic compound, has exhibited neuroprotective effects in many neurodegenerative diseases. However, the explicit effect and mechanism of resveratrol on SCI is still unclear. Adenosine 5' monophosphate-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1), the downstream protein, play key roles in metabolizing of energy, resisting of resistance, and cellular protein homeostasis. In this study, we determined the effects of resveratrol on SCI and their potential relationship with SIRT1/AMPK signaling pathway, autophagy and apoptosis. To determine the effect of resveratrol on SCI recovery, a spinal cord contusion model was employed. Rats received treatment with resveratrol or DMSO immediately following contusion. We determined that Basso, Beattie, and Bresnahan (BBB) scores were significantly higher for injured rats treated with resveratrol. Nissl and HE staining revealed that resveratrol treatment significantly reduced the loss of motor neurons and lesion size in the spinal cord of injured rats when compared to vehicle-treated animals. Spinal cord tissue was assessed by Western blot, reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemical analyses 7days after injury for changes in expression of SIRT1/AMPK signaling pathway, autophagy and apoptosis proteins. Expression of SIRT1, p-AMPK, Beclin-1, LC3-B, and Bcl-2 was elevated in resveratrol-treated animals, whereas expression of p62, Cleaved Caspase-3, Caspase-9, and Bcl-2 associated X protein (Bax) was inhibited. Immunofluorescence analysis of primary neurons treated with resveratrol alone or in combination with Compound C (AMPK inhibitor) or EX527 (SIRT1 inhibitor) revealed that treatment with the inhibitors blocks the increased LC3-B expression in cells and increases the portion of TUNEL-positive cells. Taken together, these results suggest that resveratrol exerts neuroprotective effects

  17. Resveratrol Suppresses Growth and Migration of Myelodysplastic Cells by Inhibiting the Expression of Elevated Cyclin D1 (CCND1).

    Science.gov (United States)

    Zhou, Wei; Xu, Shilin; Ying, Yi; Zhou, Ruiqing; Chen, Xiaowei

    2017-11-01

    Myelodysplastic syndromes (MDS) are a group of heterogeneous diseases characterized by poorly formed blood cells. We wanted to elucidate the underlying molecular mechanism to better determine pathogenesis, prognosis, diagnosis, and treatment for patients with MDS. We compared gene expression levels between normal and MDS tissue samples by immunohistochemical analysis. We studied the proliferation, survival, and migration of MDS cells using the EDU assay, colony formation, and transwell assays. We assessed the apoptotic rate and cell cycle status using flow cytometry and Hoechst staining. Finally, we evaluated RNA and protein expressions using polymerase chain reaction and Western blots, respectively. We found that resveratrol suppressed SKM-1 (an advanced MDS cell line) proliferation in a dose-dependent manner. Consistent with this finding, the EDU and colony formation assays also showed that resveratrol inhibited SKM-1 growth. Moreover, flow cytometry and Hoechst 33258 staining demonstrated that resveratrol induced apoptosis and a change in cell cycle status in SKM-1 cells, while the transwell assay showed that resveratrol reduced the migratory ability of SKM-1 cells. Resveratrol also decreased the expression of CCND1 (a gene that encodes the cyclin D1 protein) and increased expressions of KMT2A [lysine (K)-specific methyltransferase 2A] and caspase-3, suggesting that resveratrol exerts its effect by regulating CCND1 in SKM-1 cells. In addition, a combination of resveratrol and the PI3K/AKT inhibitor LY294002 exhibited a stronger inhibitory effect on the SKM-1 cells, compared with resveratrol alone. Our study proved that resveratrol suppresses SKM-1 growth and migration by inhibiting CCND1 expression. This finding provides novel insights into the pathogenesis of MDS and might help develop new diagnosis and treatment for patients with MDS.

  18. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism.

    Science.gov (United States)

    Madrigal-Perez, Luis Alberto; Ramos-Gomez, Minerva

    2016-03-17

    Resveratrol (3,4',5-trihydroxy-trans-stilbene, RSV) has emerged as an important molecule in the biomedical area. This is due to its antioxidant and health benefits exerted in mammals. Nonetheless, early studies have also demonstrated its toxic properties toward plant-pathogenic fungi of this phytochemical. Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1) decreases the production of energy of plant-pathogenic organisms, which prevents their proliferation; (2) increases adenosine monophosphate/adenosine diphosphate (AMP/ADP) ratio that can lead to AMP protein kinase (AMPK) activation, which is related to its health effects, and (3) increases the reactive oxygen species generation by the inhibition of electron transport. This pro-oxidant effect induces expression of antioxidant enzymes as a mechanism to counteract oxidative stress. In this review, evidence is discussed that supports the hypothesis that cellular respiration is the main target of resveratrol.

  19. Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway.

    Science.gov (United States)

    Li, Wei; Ma, Xiaoqian; Li, Na; Liu, Huasheng; Dong, Qiong; Zhang, Juan; Yang, Cejun; Liu, Yin; Liang, Qi; Zhang, Shengwang; Xu, Chang; Song, Wei; Tan, Shiming; Rong, Pengfei; Wang, Wei

    2016-12-10

    Deregulation of glycolysis was often observed in human cancer cells. In the present study, we reported resveratrol, a small polyphenol, which has been intensively studied in various tumor models, has a profound anti-tumor effect on human non-small cell lung cancer (NSCLC) via regulation of glycolysis. Resveratrol impaired hexokinase II (HK2)-mediated glycolysis, and markedly inhibited anchorage-dependent and -independent growth of NSCLC cells. Exposure to resveratrol decreased EGFR and downstream kinases Akt and ERK1/2 activation. Moreover, we revealed that resveratrol impaired glucose metabolism by mainly inhibiting expression of HK2 mediated by the Akt signaling pathway, and exogenous overexpression of constitutively activated Akt1 in NSCLC cells substantially rescued resveratrol-induced glycolysis suppression. The in vivo data indicated that resveratrol obviously suppressed tumor growth in a xenograft mouse model. Our results suggest targeting HK2 or metabolic enzymes appears to be a new approach for clinical NSCLC prevention or treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Resveratrol, purified from the stem of Vitis coignetiae Pulliat, inhibits food intake in C57BL/6J Mice.

    Science.gov (United States)

    Kim, Su-Jin; Lee, Yong Hwa; Han, Man-Deuk; Mar, Woongchon; Kim, Won-Ki; Nam, Kung-Woo

    2010-05-01

    Neuropeptide Y (NPY) and agouti-related protein (AgRP) have powerful stimulatory effects on food intake, which suggests that the downregulation of brain NPY or AgRP may help reduce obesity and diabetes by inhibiting food intake. To search for active compounds that inhibit NPY and AgRP expression, we made two luciferase reporter assay systems consisting of NPY and AgRP promoter-driven luciferase genes, together with the puromycin resistance gene, in a plasmid vector. Each plasmid was permanently transfected into N29-4 neuronal cells. Using the systems, resveratrol was purified from the stem of Vitis coignetiae Pulliat by activityguided fractionation. Resveratrol downregulated NPY and AgRP promoter-driven luciferase activity in a dose-dependent manner. The inhibitory concentrations (IC(50), 50% inhibition) of resveratrol against pNPY-luc and pAgRP-luc activities were 8.9 microM and 8.0 microM, respectively. Furthermore, one-time intraperitoneal injection of resveratrol (100 mg/kg) suppressed 20.0% and 17.2% of food intake during 24 and 48 h, respectively. These results indicated that resveratrol inhibited food intake, which may be related to the downregulation of NPY and AgRP gene expression.

  1. Resveratrol Inhibits the Invasion of Glioblastoma-Initiating Cells via Down-Regulation of the PI3K/Akt/NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuming Jiao

    2015-06-01

    Full Text Available Invasion and metastasis of glioblastoma-initiating cells (GICs are thought to be responsible for the progression and recurrence of glioblastoma multiforme (GBM. A safe drug that can be applied during the rest period of temozolomide (TMZ maintenance cycles would greatly improve the prognosis of GBM patients by inhibiting GIC invasion. Resveratrol (RES is a natural compound that exhibits anti-invasion properties in multiple tumor cell lines. The current study aimed to evaluate whether RES can inhibit GIC invasion in vitro and in vivo. GICs were identified using CD133 and Nestin immunofluorescence staining and tumorigenesis in non-obese diabetic severe combined immunodeficient (NOD/SCID mice. Invasive behaviors, including the adhesion, invasion and migration of GICs, were determined by tumor invasive assays in vitro and in vivo. The activity of matrix metalloproteinases (MMPs was measured by the gelatin zymography assay. Western blotting analysis and immunofluorescence staining were used to determine the expression of signaling effectors in GICs. We demonstrated that RES suppressed the adhesion, invasion and migration of GICs in vitro and in vivo. Moreover, we proved that RES inhibited the invasion of GICs via the inhibition of PI3K/Akt/NF-κB signal transduction and the subsequent suppression of MMP-2 expression.

  2. Inhibition of Sphingolipid Metabolism Enhances Resveratrol Chemotherapy in Human Gastric Cancer Cells

    OpenAIRE

    Shin, Kyong-Oh; Park, Nam-Young; Seo, Cho-Hee; Hong, Seon-Pyo; Oh, Ki-Wan; Hong, Jin-Tae; Han, Sang-Kil; Lee, Yong-Moon

    2012-01-01

    Resveratrol, a chemopreventive agent, is rapidly metabolized in the intestine and liver via glucuronidation. Thus, the pharmacokinetics of resveratrol limits its efficacy. To improve efficacy, the activity of resveratrol was investigated in the context of sphingolipid metabolism in human gastric cancer cells. Diverse sphingolipid metabolites, including dihydroceramides (DHCer), were tested for their ability to induce resveratrol cytotoxicity. Exposure to resveratrol (100 ?M) for 24 hr induced...

  3. Inhibition of SIRT1 Transcription inResveratrol-differentiated Medulloblastoma Cells

    Directory of Open Access Journals (Sweden)

    Jing-Xin Ma

    2013-05-01

    noncancerouscerebellum tissues(14.29%. The frequencies of SIRT1 expression in the nodular MB (22.22%with better prognosisis lower than that in anaplastic MB (79.07% and classic MB (60.29 %; P<0.05. The proliferation of UW228-3 cells was remarkablysuppressed after being transfected withSIRT1 siRNA, accompanied with extensivecell death. The results of RT-PCR and WB showed that after 48 hours100M resveratrol treatment, SIRT1 expression in UW228-3 cells wasdown-regulated atboth transcriptional and translational levels. However,resveratrol has no effect on the deacetylase activity of SIRT1.Conclusion:The above findings suggestedthat SIRT1 expression is corrected with the formation and prognosis of human MB. Resveratrol influences SIRT1 functioning in human MBcells through inhibiting SIRT1 expressionrather than modulating its acetylation activity. Keywords: resveratrol, SIRT1, RNA interference, deacetylase, medulloblastoma

  4. Leukocyte Production of Inflammatory Mediators Is Inhibited by the Antioxidants Phloretin, Silymarin, Hesperetin, and Resveratrol

    Directory of Open Access Journals (Sweden)

    Jezrom B. Fordham

    2014-01-01

    Full Text Available Antioxidants possess significant therapeutic potential for the treatment of inflammatory disorders. One such disorder is periodontitis characterised by an antimicrobial immune response, inflammation, and irreversible changes to the supporting structures of the teeth. Recognition of conserved pathogen-associated molecular patterns is a crucial component of innate immunity to Gram-negative bacteria such as Escherichia coli, as well as the periodontal pathogen Aggregatibacter actinomycetemcomitans. In this study, we investigated the antioxidants Phloretin, Silymarin, Hesperetin, and Resveratrol to ascertain whether they altered the production of inflammatory mediators by innately-activated leukocytes. Peripheral blood mononuclear cells were stimulated with lipopolysaccharide purified from Aggregatibacter actinomycetemcomitans, and the production of cytokines, chemokines, and differentiation factors was assayed by enzyme-linked immunosorbent assay, cytometric bead array, and RT-PCR. Significant inhibition of these factors was achieved upon treatment with Phloretin, Silymarin, Hesperetin, and Resveratrol. These data further characterise the potent anti-inflammatory properties of antioxidants. Their ability to inhibit the production of inflammatory cytokines, chemokines, and differentiation factors by a heterogeneous population of leukocytes has clear implications for their therapeutic potential in vivo.

  5. The red wine polyphenol resveratrol displays bilevel inhibition on aromatase in breast cancer cells

    National Research Council Canada - National Science Library

    Wang, Yun; Lee, Kai Woo; Chan, Franky L; Chen, Shiuan; Leung, Lai K

    2006-01-01

    .... Resveratrol is a polyphenolic compound that can be isolated from grape peel. Because of its structural resemblance to estrogen, resveratrol's agonistic and antagonistic properties on estrogen receptor have been examined and demonstrated...

  6. High-dose Resveratrol Inhibits Insulin Signaling Pathway in 3T3-L1 Adipocytes

    OpenAIRE

    Lee, Haemi; Kim, Jae-Woo

    2013-01-01

    Background Insulin resistance is a major factor in the development of metabolic syndrome and is associated with central obesity and glucose intolerance. Resveratrol, a polyphenol found in fruits, has been shown to improve metabolic conditions. Although it has been widely studied how resveratrol affects metabolism, little is known about how resveratrol regulates lipogenesis with insulin signaling in 3T3-L1 adipocytes. Methods: We treated differentiated 3T3-L1 adipocytes with resveratrol to obs...

  7. A new insight into resveratrol as an atheroprotective compound: inhibition of lipid peroxidation and enhancement of cholesterol efflux.

    Science.gov (United States)

    Berrougui, Hicham; Grenier, Guillaume; Loued, Soumaya; Drouin, Geneviève; Khalil, Abdelouahed

    2009-12-01

    Resveratrol, a polyphenolic constituent of red wine, is known for its anti-atherogenic properties and is thought to be beneficial in reducing the incidence of cardiovascular diseases (CVD). However, the mechanism of action by which it exerts its anti-atherogenic effect remains unclear. In this study, we investigated the relationship between the antioxidant effects of resveratrol and its ability to promote cholesterol efflux. We measured the formation of conjugated dienes and the rate of lipid peroxidation, and observed that resveratrol inhibited copper- and irradiation-induced LDL and HDL oxidation as observed by a reduction in oxidation rate and an increase in the lag phase (pDPPH screening to measure free radical scavenging activity and observed that resveratrol (0-50microM) significantly reduced the content of free radicals (p<0.001). Respect to its effect on cholesterol homeostasis, resveratrol also enhanced apoA-1-mediated cholesterol efflux (r(2)=0.907, p<0.05, linear regression) by up-regulating ABCA-1 receptors, and reduced cholesterol influx or uptake in J774 macrophages (r(2)=0.89, p<0.05, linear regression). Incubation of macrophages (J774, THP-1 and MPM) with Fe/ascorbate ion, attenuated apoA-1 and HDL(3)-mediated cholesterol efflux whereas resveratrol (0-25microM) significantly redressed this attenuation in a dose-dependent manner (p<0.001). Resveratrol thus appears to be a natural antioxidant that enhances cholesterol efflux. These properties make it a potential natural antioxidant that could be used to prevent and treat CVD.

  8. Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-mesenchymal transition, migration, and invasion of malignant cancer cells.

    Science.gov (United States)

    Kim, Cho-Won; Hwang, Kyung-A; Choi, Kyung-Chul

    2016-12-15

    Increased epithelial-mesenchymal transition (EMT) and cell migration and invasion abilities of cancer cells play important roles in the metastatic process of cancer. Resveratrol is a stilbenoid, a type of natural polyphenol found in the skin of grapes, berries, and peanuts. A number of experiments have examined resveratrol's ability to target diverse pathways associated with carcinogenesis and cancer progression. This article aims to present updated overview of the knowledge that resveratrol and its metabolites or analogs have the potential to inhibit metastasis of cancer via affecting many signaling pathways related with EMT, cancer migration, and invasion in diverse organs of the body. This article starts with a short introduction describing diverse beneficial effects of resveratrol including cancer prevention and the aim of the present study. To address the effects of resveratrol on cancer metastasis, mechanisms of EMT, migration, invasion, and their relevance with cancer metastasis, anti-metastatic effects of resveratrol through EMT-related signaling pathways and inhibitory effects of resveratrol on migration and invasion are highlighted. In addition, anti-metastatic potential of resveratrol metabolites and analogs is addressed. Resveratrol was demonstrated to turn back the EMT process induced by diverse signaling pathways in several cellular and animal cancer models. In addition, resveratrol can exert chemopreventive efficacies on migration and invasion of cancer cells by inhibiting the related pathways and target molecules. Although these findings display the anti-metastatic potential of resveratrol, more patient-oriented clinical studies demonstrating the marked efficacies of resveratrol in humans are still needed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Resveratrol suppresses prostaglandin F(2α)-induced osteoprotegerin synthesis in osteoblasts: inhibition of the MAP kinase signaling.

    Science.gov (United States)

    Kuroyanagi, Gen; Tokuda, Haruhiko; Matsushima-Nishiwaki, Rie; Kondo, Akira; Mizutani, Jun; Kozawa, Osamu; Otsuka, Takanobu

    2014-01-15

    Resveratrol, a natural polyphenol abundantly found in grape skins and red wine, possesses various beneficial properties for human health. In the present study, we investigated the mechanism underlying the effects of prostaglandin F2α (PGF2α) on osteoprotegerin (OPG) synthesis and of resveratrol on the OPG synthesis in osteoblast-like MC3T3-E1 cells. PGF2α stimulated both the release of the OPG protein and the expression of OPG mRNA. Treatment with PD98059, SB203580 and SP600125, specific inhibitors of MEK1/2, p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-jun N-terminal kinase (SAPK/JNK) all suppressed the OPG release induced by PGF2α. Resveratrol also significantly reduced the PGF2α-stimulated OPG release and the mRNA levels of OPG. Similarly, treatment with SRT1720, an activator of SIRT1, also suppressed the PGF2α-stimulated OPG release. Resveratrol and SRT1720 both attenuated the phosphorylation of p44/p42 MAP kinase, MEK1/2, Raf-1, p38 MAP kinase and SAPK/JNK induced by PGF2α. These findings strongly suggest that resveratrol suppresses PGF2α-stimulated OPG synthesis by inhibiting the MAP kinase pathways in osteoblasts, and that the effect is mediated via SIRT1 activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction.

    Science.gov (United States)

    He, Qi; Li, Zhenyu; Wang, Yueting; Hou, Yanghao; Li, Lingyu; Zhao, Jing

    2017-09-01

    Resveratrol has been reported to protect against cerebral ischemia/reperfusion (I/R) injury in rats, but the underlying mechanism is unclear. In the current study, we examined whether resveratrol ameliorates cerebral I/R injury by inhibiting NLRP3 inflammasome-derived inflammation and whether autophagy is involved in this process. In addition, we explored the role of Sirt1 in resveratrol-mediated protective effects. To answer these questions, healthy male Sprague-Dawley rats were exposed to middle cerebral artery occlusion for 1h followed by 24h reperfusion. We found that cerebral I/R increased levels of activated NLRP3 inflammasome, caspase-1, IL-1β, and IL-18 and enhanced autophagy activity (ratio of LC3B-II/LC3B-I and p62/SQSTM1). Treatment with resveratrol, a specific Sirt1 agonist, attenuated I/R-induced NLRP3 inflammasome-derived inflammation but upregulated autophagy. Furthermore, resveratrol treatment clearly reduced cerebral infarct volume, decreased brain water content, and improved neurological scores. In addition, inhibition of autophagy using 3-MA intracerebroventricular injection blocked the inhibitory effect of resveratrol on NLRP3 inflammasome activation. Finally, Sirt1 knockdown with siRNA significantly blocked resveratrol-induced enhancement of autophagy activity and suppression of NLRP3 inflammasome activation. In conclusion, our results demonstrate that resveratrol protects against cerebral I/R injury by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy activity. Copyright © 2017. Published by Elsevier B.V.

  11. Preventive Inhibition of Liver Tumorigenesis by Systemic Activation of Innate Immune Functions.

    Science.gov (United States)

    Lee, Jin; Liao, Rui; Wang, Gaowei; Yang, Bi-Huei; Luo, Xiaolin; Varki, Nissi M; Qiu, Shuang-Jian; Ren, Bing; Fu, Wenxian; Feng, Gen-Sheng

    2017-11-14

    Liver cancer has become the second most deadly malignant disease, with no efficient targeted or immune therapeutic agents available yet. While dissecting the roles of cytoplasmic signaling molecules in hepatocarcinogenesis using an inducible mouse gene targeting system, Mx1-cre, we identified a potent liver tumor-inhibitory effect of synthetic double-stranded RNA (dsRNA), polyinosinic-polycytidylic acid (pIC), an inducer of the Mx1-cre system. Injection of pIC at the pre-cancer stage robustly suppressed liver tumorigenesis either induced by chemical carcinogens or by Pten loss and associated hepatosteatosis. The immunostimulatory dsRNA inhibited liver cancer initiation, apparently by boosting multiple anti-tumor activities of innate immunity, including induction of immunoregulatory cytokines, activation of NK cells and dendritic cells, and reprogramming of macrophage polarization. This study paves the way for the development of preventive and early interfering strategies for liver cancer to reduce the rapidly increasing incidences of liver cancer in an ever-growing population with chronic liver disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Resveratrol inhibits trophoblast apoptosis through oxidative stress in preeclampsia-model rats.

    Science.gov (United States)

    Zou, Yanfen; Zuo, Qing; Huang, Shiyun; Yu, Xiang; Jiang, Ziyan; Zou, Shan; Fan, Mingsong; Sun, Lizhou

    2014-12-09

    Resveratrol has been shown to be a therapeutic agent for cardiovascular disorders by maintaining a lower redox level in vivo through its anti-oxidant properties. Resveratrol can prevent cells from p53- and reactive oxygen species-dependent apoptosis induced by interleukin-1b. We identified an inhibitory effect of resveratrol against oxidative stress and apoptosis using the TUNEL assay in NG-Nitro-l-arginine methyl ester-induced preeclampsia in rats. To investigate a possible association between resveratrol and the apoptosis caused by oxidative stress in vitro, assays for superoxide dismutase and malondialdehyde as well as flow cytometric analyses were conducted in HTR-8/SVneo cells after hypoxic treatment with or without resveratrol for 24 h. These data suggest that resveratrol significantly opposes the effects of oxidative stress in vivo and in vitro.

  13. Resveratrol Inhibits Trophoblast Apoptosis through Oxidative Stress in Preeclampsia-Model Rats

    Directory of Open Access Journals (Sweden)

    Yanfen Zou

    2014-12-01

    Full Text Available Resveratrol has been shown to be a therapeutic agent for cardiovascular disorders by maintaining a lower redox level in vivo through its anti-oxidant properties. Resveratrol can prevent cells from p53- and reactive oxygen species-dependent apoptosis induced by interleukin-1b. We identified an inhibitory effect of resveratrol against oxidative stress and apoptosis using the TUNEL assay in NG-Nitro-l-arginine methyl ester-induced preeclampsia in rats. To investigate a possible association between resveratrol and the apoptosis caused by oxidative stress in vitro, assays for superoxide dismutase and malondialdehyde as well as flow cytometric analyses were conducted in HTR-8/SVneo cells after hypoxic treatment with or without resveratrol for 24 h. These data suggest that resveratrol significantly opposes the effects of oxidative stress in vivo and in vitro.

  14. Resveratrol Inhibits Trophoblast Apoptosis through Oxidative Stress in Preeclampsia-Model Rats

    OpenAIRE

    Yanfen Zou; Qing Zuo; Shiyun Huang; Xiang Yu; Ziyan Jiang; Shan Zou; Mingsong Fan; Lizhou Sun

    2014-01-01

    Resveratrol has been shown to be a therapeutic agent for cardiovascular disorders by maintaining a lower redox level in vivo through its anti-oxidant properties. Resveratrol can prevent cells from p53- and reactive oxygen species-dependent apoptosis induced by interleukin-1b. We identified an inhibitory effect of resveratrol against oxidative stress and apoptosis using the TUNEL assay in NG-Nitro-l-arginine methyl ester-induced preeclampsia in rats. To investigate a possible association betwe...

  15. Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53.

    Directory of Open Access Journals (Sweden)

    Jasmine George

    Full Text Available Cancer chemoprevention by natural dietary agents has received considerable importance because of their cost-effectiveness and wide safety margin. However, single agent intervention has failed to bring the expected outcome in clinical trials; therefore, combinations of chemopreventive agents are gaining increasing popularity. The present study aims to evaluate the combinatorial chemopreventive effects of resveratrol and black tea polyphenol (BTP in suppressing two-stage mouse skin carcinogenesis induced by DMBA and TPA. Resveratrol/BTP alone treatment decreased tumor incidence by ∼67% and ∼75%, while combination of both at low doses synergistically decreased tumor incidence even more significantly by ∼89% (p<0.01. This combination also significantly regressed tumor volume and number (p<0.01. Mechanistic studies revealed that this combinatorial inhibition was associated with decreased expression of phosphorylated mitogen-activated protein kinase family proteins: extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, p38 and increased in total p53 and phospho p53 (Ser 15 in skin tissue/tumor. Treatment with combinations of resveratrol and BTP also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, our results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemoprevention using dietary agents will be more beneficial against cancer. This promising combination should be examined in therapeutic trials of skin and possibly other cancers.

  16. Resveratrol Inhibits Growth of Experimental Abdominal Aortic Aneurysm Associated With Upregulation of Angiotensin-Converting Enzyme 2.

    Science.gov (United States)

    Moran, Corey S; Biros, Erik; Krishna, Smriti M; Wang, Yutang; Tikellis, Chris; Morton, Susan K; Moxon, Joseph V; Cooper, Mark E; Norman, Paul E; Burrell, Louise M; Thomas, Merlin C; Golledge, Jonathan

    2017-11-01

    Recent evidence suggests an important role for angiotensin-converting enzyme 2 (ACE2) in limiting abdominal aortic aneurysm (AAA). This study examined the effect of ACE2 deficiency on AAA development and the efficacy of resveratrol to upregulate ACE2 in experimental AAA. APPROACH AND RESULTS: Ace2 deletion in apolipoprotein-deficient mice (ApoE(-/-)Ace2(-/y) ) resulted in increased aortic diameter and spontaneous aneurysm of the suprarenal aorta associated with increased expression of inflammation and proteolytic enzyme markers. In humans, serum ACE2 activity was negatively associated with AAA diagnosis. ACE2 expression was lower in infrarenal biopsies of patients with AAA than organ donors. AAA was more severe in ApoE(-/-)Ace2(-/y) mice compared with controls in 2 experimental models. Resveratrol (0.05/100-g chow) inhibited growth of pre-established AAAs in ApoE(-/-) mice fed high-fat chow and infused with angiotensin II continuously for 56 days. Reduced suprarenal aorta dilatation in mice receiving resveratrol was associated with elevated serum ACE2 and increased suprarenal aorta tissue levels of ACE2 and sirtuin 1 activity. In addition, the relative phosphorylation of Akt and ERK (extracellular signal-regulated kinase) 1/2 within suprarenal aorta tissue and gene expression for nuclear factor of kappa light polypeptide gene enhancer in B cells 1, angiotensin type-1 receptor, and metallopeptidase 2 and 9 were significantly reduced. Upregulation of ACE2 in human aortic smooth muscle cells by resveratrol in vitro was sirtuin 1-dependent. This study provides experimental evidence of an important role for ACE2 in limiting AAA development and growth. Resveratrol upregulated ACE2 and inhibited AAA growth in a mouse model. © 2017 American Heart Association, Inc.

  17. Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-γ

    Science.gov (United States)

    Lee, Hong Jin; Ju, Jihyeung; Paul, Shiby; So, Jae-Young; DeCastro, Andrew; Smolarek, Amanda; Lee, Mao-Jung; Yang, Chung S.; Newmark, Harold L.; Suh, Nanjoo

    2009-01-01

    Purpose Tocopherols are lipophilic antioxidants present in vegetable oils. Although the antioxidant and anticancer activities of α-tocopherol (vitamin E) have been studied for decades, recent intervention studies with α-tocopherol have been negative for protection from cancer in humans. The tocopherols consist of 4 isoforms, α, β, γ, and δ variants, and recent attention is being made to other isoforms. In the present study, we investigated the inhibitory effect of a tocopherol mixture rich in γ- and δ-tocopherols against mammary tumorigenesis. Experimental Design Female Sprague Dawley rats were treated with N-methyl-N-nitrosourea (NMU), and then fed diets containing 0.1%, 0.3%, or 0.5% mixed tocopherols rich in γ- and δ-tocopherols for 9 weeks. Tumor burden and multiplicity were determined, and the levels of markers of inflammation, proliferation and apoptosis were evaluated in the serum and in mammary tumors. The regulation of nuclear receptor signaling by tocopherols was studied in mammary tumors and in breast cancer cells. Results Dietary administration of 0.1%, 0.3%, or 0.5% mixed tocopherols suppressed mammary tumor growth by 38%, 50%, or 80%, respectively. Tumor multiplicity was also significantly reduced in all three mixed tocopherol groups. Mixed tocopherols increased the expression of p21, p27, caspase-3 and peroxisome proliferator activated receptor-γ (PPAR-γ), and inhibited AKT and estrogen signaling in mammary tumors. Our mechanistic study found that γ- and δ-tocopherols, but not α-tocopherol, activated PPAR-γ and antagonized estrogen action in breast cancer. Conclusion The results suggest that γ- and δ-tocopherols may be effective agents for the prevention of breast cancer. PMID:19509159

  18. Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-gamma.

    Science.gov (United States)

    Lee, Hong Jin; Ju, Jihyeung; Paul, Shiby; So, Jae-Young; DeCastro, Andrew; Smolarek, Amanda; Lee, Mao-Jung; Yang, Chung S; Newmark, Harold L; Suh, Nanjoo

    2009-06-15

    Tocopherols are lipophilic antioxidants present in vegetable oils. Although the antioxidant and anticancer activities of alpha-tocopherol (vitamin E) have been studied for decades, recent intervention studies with alpha-tocopherol have been negative for protection from cancer in humans. The tocopherols consist of four isoforms, which are the alpha, beta, gamma, and delta variants, and recent attention is being given to other isoforms. In the present study, we investigated the inhibitory effect of a tocopherol mixture rich in gamma- and delta-tocopherols against mammary tumorigenesis. Female Sprague Dawley rats were treated with N-methyl-N-nitrosourea (NMU), and then fed diets containing 0.1%, 0.3%, or 0.5% mixed tocopherols rich in gamma- and delta-tocopherols for 9 weeks. Tumor burden and multiplicity were determined, and the levels of markers of inflammation, proliferation, and apoptosis were evaluated in the serum and in mammary tumors. The regulation of nuclear receptor signaling by tocopherols was studied in mammary tumors and in breast cancer cells. Dietary administration of 0.1%, 0.3%, or 0.5% mixed tocopherols suppressed mammary tumor growth by 38%, 50%, or 80%, respectively. Tumor multiplicity was also significantly reduced in all three mixed tocopherol groups. Mixed tocopherols increased the expression of p21, p27, caspase-3, and peroxisome proliferator activated receptor-gamma, and inhibited AKT and estrogen signaling in mammary tumors. Our mechanistic study found that gamma- and delta-tocopherols, but not alpha-tocopherol, activated peroxisome proliferator activated receptor-gamma and antagonized estrogen action in breast cancer. The results suggest that gamma- and delta-tocopherols may be effective agents for the prevention of breast cancer.

  19. Resveratrol, piceatannol and analogs inhibit activation of both wild-type and T877A mutant androgen receptor.

    Science.gov (United States)

    Lundqvist, Johan; Tringali, Corrado; Oskarsson, Agneta

    2017-11-01

    Prostate cancer growth and progression are mainly dependent on androgens and many current prostate cancer treatment options target the synthesis or function of androgens. We have previously reported that resveratrol and synthetic analogs of resveratrol with a higher bioavailability inhibit the synthesis of androgens in human adrenocortical H295R cells. Now we have studied the antiandrogenic properties of resveratrol, piceatannol and analogs in two different prostate cell lines; LNCaP and RWPE. LNCaP carry a T877A mutation in the androgen receptor while RWPE has a wild-type androgen receptor. We found that resveratrol, piceatannol and all studied analogs were able to inhibit a dihydrotestosterone-induced activation of the androgen receptor, showing that they act as antiandrogens. In LNCaP cells, all studied compounds were able to statistically significantly decrease the androgenic signaling in concentrations ≥1μM and the synthetic analogs trimethylresveratrol (RSVTM) and tetramethylpiceatannol (PICTM) were the most potent compounds. RWPE cells were not as responsive to the studied compounds as the LNCaP cells. A statistically significant decrease in the androgenic signaling was observed at concentrations ≤5μM for most compounds and RSVTM was found to be the most potent compound. Further, we studied the effects of resveratrol, piceatannol and analogs on the levels of prostate-specific antigen (PSA) in LNCaP cells and found that all studied compounds decreased the level of PSA and that the synthetic analogs diacetylresveratrol (RSVDA), triacetylresveratrol (RSVTA) and RSVTM were the most potent compounds, decreasing the PSA level by approx. 50% at concentrations ≥10μM. In a cell-free receptor binding assay we were unable to show binding of resveratrol or analogs to the ligand binding domain of the androgen receptor, indicating that the observed effects are mediated via other mechanisms than direct ligand competition. We conclude that the resveratrol

  20. The Sustained Delivery of Resveratrol or a Defined Grape Powder Inhibits New Blood Vessel Formation in a Mouse Model of Choroidal Neovascularization

    Science.gov (United States)

    Kanavi, Mozhgan Rezaie; Darjatmoko, Soesiawati; Wang, Shoujian; Azari, Amir A.; Farnoodian, Mitra; Kenealey, Jason D.; van Ginkel, Paul R.; Albert, Daniel M.; Sheibani, Nader; Polans, Arthur S.

    2015-01-01

    The objective of this study was to determine whether resveratrol or a defined, reconstituted grape powder can attenuate the formation of new blood vessels in a mouse model of choroidal neovascularization (CNV). To accomplish this objective, C57BL/6J mice were randomized into control or treatment groups which received either resveratrol or grape powder by daily oral gavage, resveratrol or grape powder delivered ad libitum through the drinking water, or resveratrol by slow release via implanted osmotic pumps. A laser was used to rupture Bruch’s membrane to induce CNV which was then detected in sclerochoroidal eyecups stained with antibodies against intercellular adhesion molecule-2. CNV area was measured using fluorescence microscopy and Image J software. Ad libitum delivery of both resveratrol and grape powder was shown to significantly reduce the extent of CNV by 68% and 57%, respectively. Parallel experiments conducted in vitro demonstrated that resveratrol activates p53 and inactivates Akt/protein kinase B in choroidal endothelial cells, contributing to its anti-proliferative and anti-migratory properties. In addition resveratrol was shown to inhibit the formation of endothelial cell networks, augmenting its overall anti-angiogenic effects. The non-toxic nature of resveratrol makes it an especially attractive candidate for the prevention and/or treatment of CNV. PMID:25361423

  1. The Sustained Delivery of Resveratrol or a Defined Grape Powder Inhibits New Blood Vessel Formation in a Mouse Model of Choroidal Neovascularization

    Directory of Open Access Journals (Sweden)

    Mozhgan Rezaie Kanavi

    2014-10-01

    Full Text Available The objective of this study was to determine whether resveratrol or a defined, reconstituted grape powder can attenuate the formation of new blood vessels in a mouse model of choroidal neovascularization (CNV. To accomplish this objective, C57BL/6J mice were randomized into control or treatment groups which received either resveratrol or grape powder by daily oral gavage, resveratrol or grape powder delivered ad libitum through the drinking water, or resveratrol by slow release via implanted osmotic pumps. A laser was used to rupture Bruch’s membrane to induce CNV which was then detected in sclerochoroidal eyecups stained with antibodies against intercellular adhesion molecule-2. CNV area was measured using fluorescence microscopy and Image J software. Ad libitum delivery of both resveratrol and grape powder was shown to significantly reduce the extent of CNV by 68% and 57%, respectively. Parallel experiments conducted in vitro demonstrated that resveratrol activates p53 and inactivates Akt/protein kinase B in choroidal endothelial cells, contributing to its anti-proliferative and anti-migratory properties. In addition resveratrol was shown to inhibit the formation of endothelial cell networks, augmenting its overall anti-angiogenic effects. The non-toxic nature of resveratrol makes it an especially attractive candidate for the prevention and/or treatment of CNV.

  2. Resveratrol Inhibits the Proliferation of Neural Progenitor Cells and Hippocampal Neurogenesis*

    Science.gov (United States)

    Park, Hee Ra; Kong, Kyoung Hye; Yu, Byung Pal; Mattson, Mark P.; Lee, Jaewon

    2012-01-01

    Resveratrol is a phytoalexin and natural phenol that is present at relatively high concentrations in peanuts and red grapes and wine. Based upon studies of yeast and invertebrate models, it has been proposed that ingestion of resveratrol may also have anti-aging actions in mammals including humans. It has been suggested that resveratrol exerts its beneficial effects on health by activating the same cellular signaling pathways that are activated by dietary energy restriction (DR). Some studies have reported therapeutic actions of resveratrol in animal models of metabolic and neurodegenerative disorders. However, the effects of resveratrol on cell, tissue and organ function in healthy subjects are largely unknown. In the present study, we evaluated the potential effects of resveratrol on the proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of healthy young adult mice. Resveratrol reduced the proliferation of cultured mouse multi-potent NPCs, and activated AMP-activated protein kinase (AMPK), in a concentration-dependent manner. Administration of resveratrol to mice (1–10 mg/kg) resulted in activation of AMPK, and reduced the proliferation and survival of NPCs in the dentate gyrus of the hippocampus. Resveratrol down-regulated the levels of the phosphorylated form of cyclic AMP response element-binding protein (pCREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus. Finally, resveratrol-treated mice exhibited deficits in hippocampus-dependent spatial learning and memory. Our findings suggest that resveratrol, unlike DR, adversely affects hippocampal neurogenesis and cognitive function by a mechanism involving activation of AMPK and suppression of CREB and BDNF signaling. PMID:23105098

  3. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

    Directory of Open Access Journals (Sweden)

    Qureshi Asaf A

    2012-07-01

    Full Text Available Abstract Background Altered immune function during ageing results in increased production of nitric oxide (NO and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin in lipopolysaccharide (LPS-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice. Results The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P 40%; P 60%; P 40%; P P  Conclusions The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli

  4. Inhibition of Cancer Derived Cell Lines Proliferation by Synthesized Hydroxylated Stilbenes and New Ferrocenyl-Stilbene Analogs. Comparison with Resveratrol

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Further advances in understanding the mechanism of action of resveratrol and its application require new analogs to identify the structural determinants for the cell proliferation inhibition potency. Therefore, we synthesized new trans-resveratrol derivatives by using the Wittig and Heck methods, thus modifying the hydroxylation and methoxylation patterns of the parent molecule. Moreover, we also synthesized new ferrocenylstilbene analogs by using an original protective group in the Wittig procedure. By performing cell proliferation assays we observed that the resveratrol derivatives show inhibition on the human colorectal tumor SW480 cell line. On the other hand, cell viability/cytotoxicity assays showed a weaker effects on the human hepatoblastoma HepG2 cell line. Importantly, the lack of effect on non-tumor cells (IEC18 intestinal epithelium cells demonstrates the selectivity of these molecules for cancer cells. Here, we show that the numbers and positions of hydroxy and methoxy groups are crucial for the inhibition efficacy. In addition, the presence of at least one phenolic group is essential for the antitumoral activity. Moreover, in the series of ferrocenylstilbene analogs, the presence of a hidden phenolic function allows for a better solubilization in the cellular environment and significantly increases the antitumoral activity.

  5. Resveratrol Protects Against Ultraviolet A-Mediated Inhibition of the Phagocytic Function of Human Retinal Pigment Epithelial Cells Via Large-Conductance Calcium-Activated Potassium Channels

    Directory of Open Access Journals (Sweden)

    Shwu-Jiuan Sheu

    2009-07-01

    Full Text Available This study was undertaken to examine the protective effect of resveratrol on human retinal pigment epithelial (RPE cell phagocytosis against ultraviolet irradiation damage. Cultured RPE cells were exposed to ultraviolet A (UVA, 20 minutes irradiation, and treated with meclofenamic acid (30μM, 20 minutes, paxilline (100 μM, 20 minutes or resveratrol (10μM, 20 minutes. Meclofenamic acid and resveratrol were given after exposure to UVA. Pretreatment with meclofenamic acid, resveratrol or paxilline before UVA irradiation was also performed. Fluorescent latex beads were then fed for 4 hours and the phagocytotic function was assessed by flow cytometry. UVA irradiation inhibited the phagocytic function of human RPE cells. The large-conductance calcium-activated potassium channel activator meclofenamic acid ameliorated the damage caused by UVA irradiation. Pretreatment with resveratrol acid also provided protection against damage caused by UVA. Posttreatment with meclofenamic acid offered mild protection, whereas resveratrol did not. In conclusion, the red wine flavonoid resveratrol ameliorated UVA-mediated inhibition of human RPE phagocytosis. The underlying mechanism might involve the large-conductance calcium-activated potassium channels.

  6. Resveratrol Inhibits Propagation of Chlamydia trachomatis in McCoy Cells

    Directory of Open Access Journals (Sweden)

    Ivan M. Petyaev

    2017-01-01

    Full Text Available Resveratrol (RESV, an antifungal compound from grapes and other plants, has a distinct ability to inhibit the Chlamydia (C. trachomatis developmental cycle in McCoy cells, a classic cell line used for chlamydial research. Inoculation of C. trachomatis with increasing amounts of RESV (from 12.5 to 100 μM gave a dose-dependent reduction in the number of infected McCoy cells visualized by using monoclonal antibodies against chlamydial lipopolysaccharide. A similar trend has been observed with immunoassay for major outer membrane protein (MOMP. Furthermore, there was a step-wise reduction in the number of C. trachomatis infective progenies caused by the increasing concentrations of RESV. The ability of RESV to arrest C. trachomatis growth in McCoy cells was confirmed by a nucleic acid amplification protocol which revealed dose-dependent changes in mRNAs for different genes of chlamydial developmental cycle (euo, incA, and omcB. Although the precise nature of the antichlamydial activity of RESV is yet to be determined and evaluated in future studies, the observed effect of RESV on C. trachomatis infection was not related to its potential effect on attachment/entry of the pathogen into eukaryotic cells or RESV toxicity to McCoy cells. Similar inhibitory effect was shown for C. pneumoniae and C. muridarum.

  7. Inhibition of Cardiomyocytes Hypertrophy by Resveratrol Is Associated with Amelioration of Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2016-07-01

    Full Text Available Background/Aims: Resveratrol (Res, a polyphenol antioxidant found in red wine, has been shown to play a cardioprotective role. This study was undertaken to investigate whether Res can protect the heart suffering from hypertrophy injuries induced by isoproterenol (ISO, and whether the protective effect is mediated by endoplasmic reticulum (ER stress. Methods: Cardiomyocytes were randomly assigned to the control group, ISO group (100 nM ISO for 48 h, Res + ISO group (50 μM Res and 100 nM ISO for 48 h and Res group (50 μM Res for 48h only. Hypertrophy was estimated by measuring the cell surface area and the atrial natriuretic peptide (ANP gene expression. Apoptosis was measured using Hoechst 33258 staining and transmission electron microscopy. Protein expression of ER stress and apoptosis factors was analyzed using Western Blot analysis. Results: Res effectively suppress the cardiomyocytes hypertrophy and apoptosis induced by ISO, characterized by the reduction of the myocardial cell surface area, the ANP gene expression, the LDH and MDA leakage amount and the rate of cell apoptosis, while decrease of the protein expression of GRP78, GRP94 and CHOP, and reverse the expression of Bcl-2 and Bax. Conclusion: In summary, Res treatment effectively suppressed myocardial hypertrophy and apoptosis at least partially via inhibiting ER stress.

  8. Resveratrol inhibits transforming growth factor-β2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway.

    Science.gov (United States)

    Chen, Ching-Long; Chen, Yi-Hao; Tai, Ming-Cheng; Liang, Chang-Min; Lu, Da-Wen; Chen, Jiann-Torng

    2017-01-01

    Proliferative vitreoretinopathy (PVR) is the main cause of failure following retinal detachment surgery. Transforming growth factor (TGF)-β2-induced epithelial-to-mesenchymal transition (EMT) plays an important role in the development of PVR, and EMT inhibition decreases collagen gel contraction and fibrotic membrane formation, resulting in prevention of PVR. Resveratrol is naturally found in red wine and has inhibitory effects on EMT. Resveratrol is widely used in cardioprotection, neuroprotection, chemotherapy, and antiaging therapy. The purpose of this study was to investigate the effects of resveratrol on TGF-β2-induced EMT in ARPE-19 cells in vitro. We found that resveratrol suppressed the decrease of zona occludens-1 (ZO-1) and caused an increase of alpha-smooth muscle actin expression in TGF-β2-treated ARPE-19 cells, assessed using Western blots; moreover, it also suppressed the decrease in ZO-1 and the increase of vimentin expression, observed using immunocytochemistry. Resveratrol attenuated TGF-β2-induced wound closure and cell migration in ARPE-19 cells in a scratch wound test and modified Boyden chamber assay, respectively. We also found that resveratrol reduced collagen gel contraction - assessed by collagen matrix contraction assay - and suppressed the phosphorylation of Smad2 and Smad3 in TGF-β2-treated ARPE-19 cells. These results suggest that resveratrol mediates anti-EMT effects, which could be used in the prevention of PVR.

  9. TCF4 Is a Molecular Target of Resveratrol in the Prevention of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Jin Boo Jeong

    2015-05-01

    Full Text Available The Wnt/β-catenin pathway plays an essential role in the tumorigenesis of colorectal cancer. T-cell factor-4 (TCF4 is a member of the TCF/LEF (lymphoid enhancer factor family of transcription factors, and dysregulation of β-catenin is decisive for the initiation and progression of colorectal cancer. However, the role of TCF4 in the transcriptional regulation of its target gene remained poorly understood. Resveratrol is a dietary phytoalexin and present in many plants, including grape skin, nuts and fruits. Although resveratrol has been widely implicated in anti-tumorigenic and pro-apoptotic properties in several cancer models, the underlying cellular mechanisms are only partially understood. The current study was performed to elucidate the molecular mechanism of the anti-cancer activity of resveratrol in human colorectal cancer cells. The treatment of resveratrol and other phytochemicals decreased the expression of TCF4. Resveratrol decreases cellular accumulation of exogenously-introduced TCF4 protein, but did not change the TCF4 transcription. The inhibition of proteasomal degradation using MG132 (carbobenzoxy-Leu-Leu-leucinal and lactacystin ameliorates resveratrol-stimulated down-regulation of TCF4. The half-life of TCF4 was decreased in the cells exposed to resveratrol. Resveratrol increased phosphorylation of TCF4 at serine/threonine residues through ERK (extracellular signal-regulated kinases and p38-dependent pathways. The TCF4 knockdown decreased TCF/β-catenin-mediated transcriptional activity and sensitized resveratrol-induced apoptosis. The current study provides a new mechanistic link between resveratrol and TCF4 down-regulation and significant benefits for further preclinical and clinical practice.

  10. Inhibition of benzo[a]pyrene-induced tumorigenesis by myristicin, a volatile aroma constituent of parsley leaf oil.

    Science.gov (United States)

    Zheng, G Q; Kenney, P M; Zhang, J; Lam, L K

    1992-10-01

    Glutathione S-transferase (GST) assay-guided fractionation of parsley leaf oil from the edible plant Petroselinum sativum Hoffm. (Umbelliferae) led to the isolation of myristicin. Myristicin showed high activity as an inducer of the detoxifying enzyme GST in the liver and small intestinal mucosa of female A/J mice. Reduction of myristicin yielded dihydromyristicin that retained the GST-inducing activity. Myristicin and dihydromyristicin were tested for their capacity to inhibit benzo[a]pyrene (B[a]P)-induced tumor formation in female A/J mice. A 65% inhibition of the tumor multiplicity in the lung was observed as the result of treatment of myristicin. Dihydromyristicin produced small or insignificant reduction of lung tumor formation. In the forestomach, myristicin showed a 31% inhibition of tumor formation; while dihydromyristicin exhibited a 27% inhibition. Comparison of the structures and activities indicated that the saturation of the isolated double bond in myristicin resulted in a significant decrease in the inhibitory activity against B[a]P-induced tumorigenesis. The present results showed that myristicin, an active inducer of GST activity, is an effective inhibitor of B[a]P-induced tumorigenesis in mice. Stimulation of GST activity by myristicin could be a major mechanism for its inhibition of B[a]P or other carcinogens that may be detoxified in the same manner. As a culinary herb parsley is regularly consumed by humans. Parsley leaf oil is also used extensively for garnishing and seasoning. The results of this study indicate that as a major volatile aroma constituent of parsley myristicin may be an effective cancer chemopreventive agent.

  11. Resveratrol inhibits BK-induced COX-2 transcription by suppressing acetylation of AP-1 and NF-κB in human rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Yang, Chuen-Mao; Chen, Yu-Wen; Chi, Pei-Ling; Lin, Chih-Chung; Hsiao, Li-Der

    2017-05-15

    Bradykinin (BK) induces inflammation in rheumatoid arthritis (RA). Resveratrol is a potent activator of Sirt1 which could modulate inflammation through deacetylating histones of transcription factors. Here, we investigated the mechanisms underlying BK-induced COX-2 expression which is modulated by resveratrol/Sirt1 in human rheumatoid arthritis synovial fibroblasts (RASFs). We found that BK-induced COX-2 protein and mRNA expression associated with PGE2 synthesis, and promoter activity was mediated through B2R receptors, which were attenuated by selective B2R antagonist Hoe140 or transfection with B2R siRNA. BK-induced responses were mediated through PKCμ, MAPKs, AP-1 and NF-κB which were inhibited by their respective inhibitors or siRNAs. Up-regulation of Sirt1 by resveratrol suppressed the BK-induced COX-2/PGE2 production through inhibiting the interaction of AP-1 and NF-κB with COX-2 promoter in RASFs. BK-induced COX-2/PGE2 expression is mediated through a B2R-PKCμ-dependent MAPKs, AP-1, and NF-κB cascade. Resveratrol inhibited the phosphorylation and acetylation of p65, c-Jun, and Fos and reduced the binding to the COX-2 promoter, thereby attenuated the COX-2 expression. Therefore, resveratrol may be a promising therapeutic intervention for treatment of inflammatory arthritis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Resveratrol inhibits transforming growth factor-β2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway

    Directory of Open Access Journals (Sweden)

    Chen CL

    2017-01-01

    Full Text Available Ching-Long Chen,1,2 Yi-Hao Chen,1,2 Ming-Cheng Tai,2 Chang-Min Liang,2 Da-Wen Lu,1,2 Jiann-Torng Chen1,2 1Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan; 2Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan Abstract: Proliferative vitreoretinopathy (PVR is the main cause of failure following retinal detachment surgery. Transforming growth factor (TGF-β2-induced epithelial-to-mesenchymal transition (EMT plays an important role in the development of PVR, and EMT inhibition decreases collagen gel contraction and fibrotic membrane formation, resulting in prevention of PVR. Resveratrol is naturally found in red wine and has inhibitory effects on EMT. Resveratrol is widely used in cardioprotection, neuroprotection, chemotherapy, and antiaging therapy. The purpose of this study was to investigate the effects of resveratrol on TGF-β2-induced EMT in ARPE-19 cells in vitro. We found that resveratrol suppressed the decrease of zona occludens-1 (ZO-1 and caused an increase of alpha-smooth muscle actin expression in TGF-β2-treated ARPE-19 cells, assessed using Western blots; moreover, it also suppressed the decrease in ZO-1 and the increase of vimentin expression, observed using immunocytochemistry. Resveratrol attenuated TGF-β2-induced wound closure and cell migration in ARPE-19 cells in a scratch wound test and modified Boyden chamber assay, respectively. We also found that resveratrol reduced collagen gel contraction – assessed by collagen matrix contraction assay – and suppressed the phosphorylation of Smad2 and Smad3 in TGF-β2-treated ARPE-19 cells. These results suggest that resveratrol mediates anti-EMT effects, which could be used in the prevention of PVR. Keywords: resveratrol, epithelial-to-mesenchymal transition, proliferative vitreoretinopathy, transforming growth factor-β2, retinal pigment epithelial cells

  13. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis.

    Science.gov (United States)

    Kareta, Michael S; Gorges, Laura L; Hafeez, Sana; Benayoun, Bérénice A; Marro, Samuele; Zmoos, Anne-Flore; Cecchini, Matthew J; Spacek, Damek; Batista, Luis F Z; O'Brien, Megan; Ng, Yi-Han; Ang, Cheen Euong; Vaka, Dedeepya; Artandi, Steven E; Dick, Frederick A; Brunet, Anne; Sage, Julien; Wernig, Marius

    2015-01-08

    Mutations in the retinoblastoma tumor suppressor gene Rb are involved in many forms of human cancer. In this study, we investigated the early consequences of inactivating Rb in the context of cellular reprogramming. We found that Rb inactivation promotes the reprogramming of differentiated cells to a pluripotent state. Unexpectedly, this effect is cell cycle independent, and instead reflects direct binding of Rb to pluripotency genes, including Sox2 and Oct4, which leads to a repressed chromatin state. More broadly, this regulation of pluripotency networks and Sox2 in particular is critical for the initiation of tumors upon loss of Rb in mice. These studies therefore identify Rb as a global transcriptional repressor of pluripotency networks, providing a molecular basis for previous reports about its involvement in cell fate pliability, and implicate misregulation of pluripotency factors such as Sox2 in tumorigenesis related to loss of Rb function. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus.

    Science.gov (United States)

    Li, Wei; You, Liru; Cooper, Jonathan; Schiavon, Gaia; Pepe-Caprio, Angela; Zhou, Lu; Ishii, Ryohei; Giovannini, Marco; Hanemann, C Oliver; Long, Stephen B; Erdjument-Bromage, Hediye; Zhou, Pengbo; Tempst, Paul; Giancotti, Filippo G

    2010-02-19

    Current models imply that the FERM domain protein Merlin, encoded by the tumor suppressor NF2, inhibits mitogenic signaling at or near the plasma membrane. Here, we show that the closed, growth-inhibitory form of Merlin accumulates in the nucleus, binds to the E3 ubiquitin ligase CRL4(DCAF1), and suppresses its activity. Depletion of DCAF1 blocks the promitogenic effect of inactivation of Merlin. Conversely, enforced expression of a Merlin-insensitive mutant of DCAF1 counteracts the antimitogenic effect of Merlin. Re-expression of Merlin and silencing of DCAF1 implement a similar, tumor-suppressive program of gene expression. Tumor-derived mutations invariably disrupt Merlin's ability to interact with or inhibit CRL4(DCAF1). Finally, depletion of DCAF1 inhibits the hyperproliferation of Schwannoma cells from NF2 patients and suppresses the oncogenic potential of Merlin-deficient tumor cell lines. We propose that Merlin suppresses tumorigenesis by translocating to the nucleus to inhibit CRL4(DCAF1). 2010 Elsevier Inc. All rights reserved.

  15. Deletion of Forkhead Box M1 transcription factor from respiratory epithelial cells inhibits pulmonary tumorigenesis.

    Directory of Open Access Journals (Sweden)

    I-Ching Wang

    Full Text Available The Forkhead Box m1 (Foxm1 protein is induced in a majority of human non-small cell lung cancers and its expression is associated with poor prognosis. However, specific requirements for the Foxm1 in each cell type of the cancer lesion remain unknown. The present study provides the first genetic evidence that the Foxm1 expression in respiratory epithelial cells is essential for lung tumorigenesis. Using transgenic mice, we demonstrated that conditional deletion of Foxm1 from lung epithelial cells (epFoxm1(-/- mice prior to tumor initiation caused a striking reduction in the number and size of lung tumors, induced by either urethane or 3-methylcholanthrene (MCA/butylated hydroxytoluene (BHT. Decreased lung tumorigenesis in epFoxm1(-/- mice was associated with diminished proliferation of tumor cells and reduced expression of Topoisomerase-2alpha (TOPO-2alpha, a critical regulator of tumor cell proliferation. Depletion of Foxm1 mRNA in cultured lung adenocarcinoma cells significantly decreased TOPO-2alpha mRNA and protein levels. Moreover, Foxm1 directly bound to and induced transcription of the mouse TOPO-2alpha promoter region, indicating that TOPO-2alpha is a direct target of Foxm1 in lung tumor cells. Finally, we demonstrated that a conditional deletion of Foxm1 in pre-existing lung tumors dramatically reduced tumor growth in the lung. Expression of Foxm1 in respiratory epithelial cells is critical for lung cancer formation and TOPO-2alpha expression in vivo, suggesting that Foxm1 is a promising target for anti-tumor therapy.

  16. Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain

    Directory of Open Access Journals (Sweden)

    Tillu Dipti V

    2012-01-01

    Full Text Available Abstract Background Despite advances in our understanding of basic mechanisms driving post-surgical pain, treating incision-induced pain remains a major clinical challenge. Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery. We reasoned that activators of AMP-activated protein kinase (AMPK may represent a novel treatment avenue for the local treatment of incision-induced pain because AMPK activators inhibit ERK and mTOR signaling, two important pathways involved in the sensitization of peripheral nociceptors. Results To test this hypothesis we used a potent and efficacious activator of AMPK, resveratrol. Our results demonstrate that resveratrol profoundly inhibits ERK and mTOR signaling in sensory neurons in a time- and concentration-dependent fashion and that these effects are mediated by AMPK activation and independent of sirtuin activity. Interleukin-6 (IL-6 is thought to play an important role in incision-induced pain and resveratrol potently inhibited IL-6-mediated signaling to ERK in sensory neurons and blocked IL-6-mediated allodynia in vivo through a local mechanism of action. Using a model of incision-induced allodynia in mice, we further demonstrate that local injection of resveratrol around the surgical wound strongly attenuates incision-induced allodynia. Intraplantar IL-6 injection and plantar incision induces persistent nociceptive sensitization to PGE2 injection into the affected paw after the resolution of allodynia to the initial stimulus. We further show that resveratrol treatment at the time of IL-6 injection or plantar incision completely blocks the development of persistent nociceptive sensitization consistent with the blockade of a transition to a chronic pain state by resveratrol treatment. Conclusions These results highlight the importance of signaling

  17. Sp1 upregulates expression of TRF2 and TRF2 inhibition reduces tumorigenesis in human colorectal carcinoma cells.

    Science.gov (United States)

    Dong, Wenjie; Shen, Ruizhe; Wang, Qi; Gao, Yabo; Qi, Xiaoguang; Jiang, He; Yao, Jingjing; Lin, Xiaolin; Wu, Yunlin; Wang, Lifu

    2009-11-01

    Telomere repeat binding factor 2 (TRF2) plays a key role in the protective activity of telomere and is overexpression in several kinds of solid cancer cells. However, the role of overexpressed TRF2 in colorectal carcinoma remains unclear. The aim of this study was to determine the expression of TRF2, address the mechanism of TRF2 overexpression in human colorectal carcinoma. In present study, we examined the expression of TRF2 in colorectal cancer tissues from 39 patients, peritumoral normal tissues from 21 patients, and colon carcinoma SW480 cell line by quantitative PCR, immunohistochemistry and western blot. After siRNA silencing TRF2 expression in SW480, tumorigenesis of TRF2 was tested by cell proliferation, soft agar assay, cytofluorimetric analysis and cytogenetic analysis. To discover transcription factor that mediated TRF2 expression, Chromatin Immunoprecipitation (Chip) Assay and Electrophoretic mobility shift assays (EMSA) were employed. Overexpression of TRF2 protein was detected in SW480 cells and 19 of 39 colorectal carcinoma tissues (49%), no overexpression was observed in 21 of 21 adjacent peritumoral normal colorectal tissues. After siRNA silencing TRF2 expression, the proliferation and colony formation of SW480 cells were significantly inhibited. Defective TRF2 induced apoptosis and increased chromosomal instability in SW480 cells, in which there were more end-to-end fusions and ring chromosomes. Chip assay and EMSA showed that transcription factor Sp1 is involved in upregulation of TRF2. These results indicate that TRF2 is overexpressed in colorectal carcinoma, Sp1 upregulates TRF2 expression, TRF2 inhibition reduces tumorigenesis of colorectal cancer, which suggests that TRF2 and SP1 may become new targets for the development of anti-cancer therapy in colorectal carcinoma.

  18. Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival.

    Science.gov (United States)

    Kamarajan, Pachiyappan; Hayami, Takayuki; Matte, Bibiana; Liu, Yang; Danciu, Theodora; Ramamoorthy, Ayyalusamy; Worden, Francis; Kapila, Sunil; Kapila, Yvonne

    2015-01-01

    The use of small antimicrobial peptides or bacteriocins, like nisin, to treat cancer is a new approach that holds great promise. Nisin exemplifies this new approach because it has been used safely in humans for many years as a food preservative, and recent laboratory studies support its anti-tumor potential in head and neck cancer. Previously, we showed that nisin (2.5%, low content) has antitumor potential in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. The current studies explored a naturally occurring variant of nisin (nisin ZP; 95%, high content) for its antitumor effects in vitro and in vivo. Nisin ZP induced the greatest level of apoptosis in HNSCC cells compared to low content nisin. HNSCC cells treated with increasing concentrations of nisin ZP exhibited increasing levels of apoptosis and decreasing levels of cell proliferation, clonogenic capacity, and sphere formation. Nisin ZP induced apoptosis through a calpain-dependent pathway in HNSCC cells but not in human oral keratinocytes. Nisin ZP also induced apoptosis dose-dependently in human umbilical vein endothelial cells (HUVEC) with concomitant decreases in vascular sprout formation in vitro and reduced intratumoral microvessel density in vivo. Nisin ZP reduced tumorigenesis in vivo and long-term treatment with nisin ZP extended survival. In addition, nisin treated mice exhibited normal organ histology with no evidence of inflammation, fibrosis or necrosis. In summary, nisin ZP exhibits greater antitumor effects than low content nisin, and thus has the potential to serve as a novel therapeutic for HNSCC.

  19. Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Roemer Klaus

    2002-10-01

    Full Text Available Abstract Background The natural plant polyphenol resveratrol present in some foods including grapes, wine, and peanuts, has been implicated in the inhibition, delay, and reversion of cellular events associated with heart diseases and tumorigenesis. Recent work has suggested that the cancer chemoprotective effect of the compound is primarily linked to its ability to induce cell division cycle arrest and apoptosis, the latter possibly through the activation of pro-apoptotic proteins such as Bax. Methods The expression, subcellular localization, and importance of Bax for resveratrol-provoked apoptosis were assessed in human HCT116 colon carcinoma cells and derivatives with both bax alleles inactivated. Results Low to moderate concentrations of resveratrol induced co-localization of cellular Bax protein with mitochondria, collapse of the mitochondrial membrane potential, activation of caspases 3 and 9, and finally, apoptosis. In the absence of Bax, membrane potential collapse was delayed, and apoptosis was reduced but not absent. Resveratrol inhibited the formation of colonies by both HCT116 and HCT116 bax -/- cells. Conclusion Resveratrol at physiological doses can induce a Bax-mediated and a Bax-independent mitochondrial apoptosis. Both can limit the ability of the cells to form colonies.

  20. Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival.

    Directory of Open Access Journals (Sweden)

    Pachiyappan Kamarajan

    Full Text Available The use of small antimicrobial peptides or bacteriocins, like nisin, to treat cancer is a new approach that holds great promise. Nisin exemplifies this new approach because it has been used safely in humans for many years as a food preservative, and recent laboratory studies support its anti-tumor potential in head and neck cancer. Previously, we showed that nisin (2.5%, low content has antitumor potential in head and neck squamous cell carcinoma (HNSCC in vitro and in vivo. The current studies explored a naturally occurring variant of nisin (nisin ZP; 95%, high content for its antitumor effects in vitro and in vivo. Nisin ZP induced the greatest level of apoptosis in HNSCC cells compared to low content nisin. HNSCC cells treated with increasing concentrations of nisin ZP exhibited increasing levels of apoptosis and decreasing levels of cell proliferation, clonogenic capacity, and sphere formation. Nisin ZP induced apoptosis through a calpain-dependent pathway in HNSCC cells but not in human oral keratinocytes. Nisin ZP also induced apoptosis dose-dependently in human umbilical vein endothelial cells (HUVEC with concomitant decreases in vascular sprout formation in vitro and reduced intratumoral microvessel density in vivo. Nisin ZP reduced tumorigenesis in vivo and long-term treatment with nisin ZP extended survival. In addition, nisin treated mice exhibited normal organ histology with no evidence of inflammation, fibrosis or necrosis. In summary, nisin ZP exhibits greater antitumor effects than low content nisin, and thus has the potential to serve as a novel therapeutic for HNSCC.

  1. Resveratrol Inhibits Proliferation, Invasion, and Epithelial-Mesenchymal Transition by Increasing miR-200c Expression in HCT-116 Colorectal Cancer Cells.

    Science.gov (United States)

    Karimi Dermani, Fatemeh; Saidijam, Massoud; Amini, Razieh; Mahdavinezhad, Ali; Heydari, Korosh; Najafi, Rezvan

    2017-06-01

    colorectal cancer (CRC) is one of the most common malignancies, associated with high rates of relapse. A notable challenge in treatment is low response rate to current therapies for advanced CRC. The miR-200c plays an essential role in tumor suppression by inhibiting epithelial-mesenchymal transition (EMT). Resveratrol, a natural compound found in red wine, reveals anti-cancer properties in several types of cancers such as CRC. The aim of current study was to evaluate the effects of resveratrol on proliferation, apoptosis, and invasion of HCT-116 cells and also expression of EMT-related genes in presences or absence of miR-200c. the effect of resveratrol on viability was examined by MTT assay. LNA-anti-miR-200c transfection of HCT-116 cells was carried out in a time dependent manner. Then, the expression of miR-200c and EMT-related genes were quantified by qRT-PCR. Further, expression of EMT-related proteins, apoptosis, and invasion were analyzed by Western blot, Annexin V/PI staining and scratch test, respectively. resveratrol could significantly inhibit viability of HCT-116 cells. LNA-anti-miR-200c suppressed the endogenous miR-200c in transfected cells compared with the control. qRT-PCR and Western blot analysis of LNA-anti-miR-200c transfected cells revealed a considerable increase in vimentin and ZEB-1 expression, with a concomitant reduction in E-cadherin expression level. Migration of HCT-116 cells increased, and apoptosis significantly reduced in transfected cells. While, resveratrol could entirely reverse these changes by modulation of miR-200c expression. our findings revealed a major role of resveratrol in apoptosis, invasion, and switching of EMT to MET phenotype through upregulation of miR-200c in CRC. J. Cell. Biochem. 118: 1547-1555, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Waltonitone inhibits proliferation of hepatoma cells and tumorigenesis via FXR-miR-22-CCNA2 signaling pathway.

    Science.gov (United States)

    Yang, Fan; Gong, Junting; Wang, Guangyun; Chen, Peng; Yang, Li; Wang, Zhengtao

    2016-11-15

    Waltonitone (WA), an ursane-type pentacyclic triterpene extracted from Gentiana waltonii Burkill, was recently appeared to exert anti-tumor effect. However, the biological underpinnings underlying the role of WA in hepatocellular carcinoma (HCC) cells have not been completely elucidated. Our previous report indicated that the FXR-regulated miR-22-CCNA2 pathway contributed to the progression and development of HCC. Besides, a wide spectrum of microRNAs (miRNAs) could be up- or down-regulated upon WA treatment, including miR-22. Hence, we aimed to determine whether WA inhibited HCC cell proliferation via the FXR-miR-22-CCNA2 axis. In this study, we observed a significant downregulation of FXR and miR-22, along with upregulation of CCNA2 in 80 paired tumors relative to adjacent normal tissues of HCC subjects, which were obtained from the available GEO database in NCBI (GSE22058). Furthermore, we validated the expression patterns of these three targets in another set of HCC samples and found the highly correlation within each other. Additionally, our data demonstrated that WA induced miR-22 and repressed CCNA2 in HCC cells, which contributed to the cell proliferation arrest. In addition, evidence suggested that either miR-22 silencing or FXR knockdown reversed the diminished CCNA2 expression as well as cell proliferation inhibition caused by WA treatment and WA inhibited tumor masses in vivo in a subcutaneous xenograft mouse model of HCC. Overall, our data indicated that WA inhibited HCC cell proliferation and tumorigenesis through miR-22-regulated CCNA2 repression, which was at least partially through FXR modulation.

  3. Raloxifene and anti-estrogenic Gonadorelin inhibits intestinal tumorigenesis by modulating immune cells and decreasing stem like cells

    Science.gov (United States)

    Janakiram, Naveena B.; Mohammed, Altaf; Brewer, Misty; Bryant, Taylor; Biddick, Laura; Lightfoot, Stan; Pathuri, Gopal; Gali, Hariprasad; Rao, Chinthalapally V.

    2014-01-01

    Studies suggest that estrogen plays a contributing role in colorectal cancer (CRC). This project examined the preventive effects of raloxifene, a selective estrogen receptor modulator (SERM), and gonadorelin, an anti-estrogenic drug, in female ApcMin/+ mouse intestinal tumorigenesis. Six-week-old ApcMin/+ mice were fed diet containing 1 ppm raloxifene or control diet. Gonadorelin (150ng/mouse) was injected subcutaneously into one treatment group. Intestinal tumors were evaluated for tumor multiplicity and size. Mice treated with raloxifene and gonadorelin showed colon tumor inhibition of 80% and 75% respectively. Both drugs significantly inhibited small intestinal tumor multiplicity and size (75 – 65%, PRaloxifene and gonadorelin showed significant tumor inhibition with 98% and 94% inhibition of polyps >2 mm in size. In mice fed with raloxifene or injected with gonadorelin, tumors showed significantly reduced proliferating cell nuclear antigen expression (58-65%, PRaloxifene treatment decreased β-catenin, cyclin D1, laminin 1β, Ccl6 and stem like cells (Lgr 5, EpCAM, CD44/CD24), as well as suppressed inflammatory genes (COX-2, mPGES-1, 5-LOX,). Gonadorelin showed significant decrease in COX-2, mPGES-1, iNOS, and stem like cells or increased NK cells and chemokines required for NK cells. Both drugs were effective in suppressing tumor growth albeit with different mechanisms. These observations show that either suppression of estrogen levels or modulation of estrogen receptor dramatically suppresses small intestinal and colonic tumor formation in female ApcMin/+ mice. These results support the concept of chemoprevention by these agents in reducing endogenous levels of estrogen or modulating ER signaling. PMID:24431404

  4. U94 alters FN1 and ANGPTL4 gene expression and inhibits tumorigenesis of prostate cancer cell line PC3

    Directory of Open Access Journals (Sweden)

    Chan Wai-Yee

    2005-06-01

    Full Text Available Abstract Background Insensitivity of advanced-stage prostate cancer to androgen ablation therapy is a serious problem in clinical practice because it is associated with aggressive progression and poor prognosis. Targeted therapeutic drug discovery efforts are thwarted by lack of adequate knowledge of gene(s associated with prostate tumorigenesis. Therefore there is the need for studies to provide leads to targeted intervention measures. Here we propose that stable expression of U94, a tumor suppressor gene encoded by human herpesvirus 6A (HHV-6A, could alter gene expression and thereby inhibit the tumorigenicity of PC3 cell line. Microarray gene expression profiling on U94 recombinant PC3 cell line could reveal genes that would elucidate prostate cancer biology, and hopefully identify potential therapeutic targets. Results We have shown that stable expression of U94 gene in PC3 cell line inhibited its focus formation in culture, and tumorigenesis in nude mice. Moreover gene expression profiling revealed dramatic upregulation of FN 1 (fibronectin, 91 ± 16-fold, and profound downregulation of ANGPTL 4 (angiopoietin-like-4, 20 ± 4-fold in U94 recombinant PC3 cell line. Quantitative real-time polymerase chain reaction (QRT-PCR analysis showed that the pattern of expression of FN 1 and ANGPTL 4 mRNA were consistent with the microarray data. Based on previous reports, the findings in this study implicate upregulation of FN 1 and downregulation of ANGPTL 4 in the anti tumor activity of U94. Genes with cancer inhibitory activities that were also upregulated include SERPINE 2 (serine/cysteine protease inhibitor 2, 7 ± 1-fold increase and ADAMTS 1 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 7 ± 2-fold increase. Additionally, SPUVE 23 (serine protease 23 that is pro-tumorigenic was significantly downregulated (10 ± 1-fold. Conclusion The dramatic upregulation of FN 1 and downregulation of ANGPTL 4 genes in PC3 cell line

  5. Chronic Resveratrol Treatment Inhibits MRC5 Fibroblast SASP-Related Protumoral Effects on Melanoma Cells.

    Science.gov (United States)

    Menicacci, Beatrice; Laurenzana, Anna; Chillà, Anastasia; Margheri, Francesca; Peppicelli, Silvia; Tanganelli, Elisabetta; Fibbi, Gabriella; Giovannelli, Lisa; Del Rosso, Mario; Mocali, Alessandra

    2017-09-01

    Cellular senescence is related to organismal aging and is observed after DNA damaging cancer therapies, that induce tumor-suppressive modifications, but it is characterized by a strong increase in secreted factors, termed the "senescence-associated secretory phenotype" (SASP). Particularly, SASP from stroma senescent fibroblasts creates a cancer-favoring microenvironment, providing targets for anti-cancer interventions. In the present article, chronic treatment (5 weeks) with 5 µM resveratrol has been used to modulate senescence-related protumoral features of MRC5 fibroblasts, reducing SASP-related interleukins IL1α, IL1β, IL6, and IL8; transforming-growth-factor-β (TGFβ); matrix metallo-proteinases MMP3 and MMP2; urokinase plasminogen activator (uPA); receptor proteins uPAR, IL6R, insulin growth factor receptor-1 (IGF-1R), TGFβ-R2, and CXCR4. The cellular nuclear-factor-kB (NF-kB) protein level was also reduced, confirming its role in the induction of SASP. Resveratrol pretreated MRC5 fibroblasts were resistant to activation by TGFβ. Resveratrol treatment of senescent MRC5 induced the production of conditioned media (CM) which counteracted the protumoral effect of senescent CM on A375 and A375-M6 melanoma cell proliferation and invasiveness, and reduced the expression of epithelial-to-mesenchymal transition markers related to malignant features. This experimental approach proposes a treatment that targets the senescent stromal cell phenotype to induce an anti-tumor hosting microenvironment, which is suitable for both preventive and therapeutic purposes. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis

    Science.gov (United States)

    Wheaton, William W; Weinberg, Samuel E; Hamanaka, Robert B; Soberanes, Saul; Sullivan, Lucas B; Anso, Elena; Glasauer, Andrea; Dufour, Eric; Mutlu, Gokhan M; Budigner, GR Scott; Chandel, Navdeep S

    2014-01-01

    Recent epidemiological and laboratory-based studies suggest that the anti-diabetic drug metformin prevents cancer progression. How metformin diminishes tumor growth is not fully understood. In this study, we report that in human cancer cells, metformin inhibits mitochondrial complex I (NADH dehydrogenase) activity and cellular respiration. Metformin inhibited cellular proliferation in the presence of glucose, but induced cell death upon glucose deprivation, indicating that cancer cells rely exclusively on glycolysis for survival in the presence of metformin. Metformin also reduced hypoxic activation of hypoxia-inducible factor 1 (HIF-1). All of these effects of metformin were reversed when the metformin-resistant Saccharomyces cerevisiae NADH dehydrogenase NDI1 was overexpressed. In vivo, the administration of metformin to mice inhibited the growth of control human cancer cells but not those expressing NDI1. Thus, we have demonstrated that metformin's inhibitory effects on cancer progression are cancer cell autonomous and depend on its ability to inhibit mitochondrial complex I. DOI: http://dx.doi.org/10.7554/eLife.02242.001 PMID:24843020

  7. Resveratrol chemosensitizes HER-2-overexpressing breast cancer cells to docetaxel chemoresistance by inhibiting docetaxel-mediated activation of HER-2-Akt axis.

    Science.gov (United States)

    Vinod, B S; Nair, H H; Vijayakurup, V; Shabna, A; Shah, S; Krishna, A; Pillai, K S; Thankachan, S; Anto, R J

    2015-01-01

    As breast cancer cells often develop chemoresistance, better therapeutic options are in search to circumvent it. Here we demonstrate that human epidermal growth factor receptor-2 (HER-2)-overexpressing breast cancer cells resist docetaxel-induced cytotoxicity by upregulating HER-2 and its activity downstream, through Akt and mitogen-activated protein kinase (MAPK) pathways. We observed that introducing resveratrol as a chemosensitizer in docetaxel chemotherapy blocks upregulation and activation of HER-2 in addition to blocking downstream signaling pathways such as Akt. Resveratrol and docetaxel combination results in the synergistic induction of cell death in HER-2-overexpressing SK-BR-3 cells, whereas introduction of wild-type HER-2 in MDA-MD-231 cells increased the resistance to docetaxel. Dominant-negative HER-2 sensitizes SK-BR-3 cells to docetaxel. Our study identified a new synergistic therapeutic combination that targets HER-2-induced breast cancer resistance and might help to overcome therapeutic resistance during breast cancer therapy. The synergism of docetaxel and resveratrol was maximum in SK-BR-3, which is unique among the cell lines studied, due to its high expression status of HER-2, a receptor known to dictate the signaling environment of breast cancer cells. Docetaxel could further induce HER-2 activity in these cells, which was downregulated on resveratrol treatment. Transfection of DN-HER-2 in SK-BR-3 cells inhibits the synergism as the transfection itself sensitizes these cells to docetaxel, leaving no role for resveratrol, whereas ectopic expression of HER-2 introduces the synergism in MDA-MB-231, the triple-negative cell line, in which the synergism was minimum, attesting the crucial role of HER-2 in suppressing the sensitivity to docetaxel. Single-agent docetaxel induced HER-2-mediated resistance to cell death, which was blocked by resveratrol. Resveratrol also downregulated docetaxel-induced activation of MAPK and Akt, survival signaling

  8. microRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuan [Department of Gynaecology, Qilu Hospital, Shandong University, Jinan (China); Department of Gynaecology, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai (China); Xia, Ying, E-mail: YingXia2006@qq.com [Department of Gynecology, Huadong Hospital, Fudan University, Shanghai, 200040 (China)

    2016-06-24

    microRNAs (miRNAs) play a vital role in tumor development and progression. In this study, we aimed to determine the expression and biological roles of miR-328 in cervical cancer and identify its direct target gene. Our data showed that miR-328 was significantly downregulated in human cervical cancer tissues and cells. Re-expression of miR-328 inhibited cervical cancer cell proliferation and colony formation in vitro and suppressed the growth of xenograft tumors in vivo. Bioinformatic analysis predicted TCF7L2 (an essential effector of canonical Wnt signaling) as a target gene of miR-328, which was confirmed by luciferase reporter assays. Enforced expression of miR-328 led to a decline in the expression of endogenous TCF7L2 in cervical cancer cells. In cervical cancer tissues, TCF7L2 protein levels were negatively correlated with miR-328 expression levels (r = −0.462, P = 0.017). Small interfering RNA-mediated knockdown of TCF7L2 significantly impaired the proliferation and colony formation of cervical cancer cells. Ectopic expression of a miRNA-resistant form of TCF7L2 significantly reversed the growth suppressive effects of miR-328 on cervical cancer cells, which was accompanied by induction of cyclin D1 expression. Taken together, our results provide first evidence for the growth suppressive activity of miR-328 in cervical cancer, which is largely ascribed to downregulation of TCF7L2. Restoration of miR-328 may have therapeutic potential in cervical cancer. -- Highlights: •miR-328 inhibits cervical cancer cell growth and tumorigenesis. •TCF7L2 is a direct target gene of miR-328 in cervical cancer. •Knockdown of TCF7L2 impairs the proliferation and colony formation of cervical cancer cells.

  9. Knockdown of Importin 7 Inhibits Lung Tumorigenesis in K-rasLA1 Lung Cancer Mice.

    Science.gov (United States)

    Lee, Ah Young; Kim, Sangwha; Lee, Somin; Jiang, Hu-Lin; Kim, Sang-Bum; Hong, Seong-Ho; Cho, Myung-Haing

    2017-05-01

    Background/Aim: Lung cancer shows the highest estimated deaths in both males and females in the Unites States. Importin 7 is overexpressed in lung adenocarcinoma tissues. In this study, we aimed to demonstrate the anticancer effect of importin 7 down-regulation, especially in lung cancer. Materials and Methods: Glycerol propoxylate triacrylate spermine (GPT-SPE) is a biocompatible carrier used for aerosol gene delivery. Repeated aerosol delivery of GPT-SPE/shImportin 7 complexes was performed to 10-week-old male K-rasLA1mice (a murine lung cancer model) twice a week for 4 weeks (8 times) in a nose-only exposure chamber. Results: Aerosol delivery of GPT-SPE/shImportin 7 inhibits lung cancer in K-rasLA1mice compared to control and scramble control groups. Moreover, importin 7-down-regulated stable cell-line demonstrates suppression of proliferation through Akt inhibition and apoptosis. Conclusion: Down-regulation of importin 7 significantly suppresses lung cancer in vitro and in vivo. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination.

    Science.gov (United States)

    Kathania, Mahesh; Khare, Prashant; Zeng, Minghui; Cantarel, Brandi; Zhang, Haiying; Ueno, Hideki; Venuprasad, K

    2016-08-01

    Dysregulated expression of interleukin 17 (IL-17) in the colonic mucosa is associated with colonic inflammation and cancer. However, the cell-intrinsic molecular mechanisms by which IL-17 expression is regulated remain unclear. We found that deficiency in the ubiquitin ligase Itch led to spontaneous colitis and increased susceptibility to colon cancer. Itch deficiency in the TH17 subset of helper T cells, innate lymphoid cells and γδ T cells resulted in the production of elevated amounts of IL-17 in the colonic mucosa. Mechanistically, Itch bound to the transcription factor ROR-γt and targeted ROR-γt for ubiquitination. Inhibition or genetic inactivation of ROR-γt attenuated IL-17 expression and reduced spontaneous colonic inflammation in Itch(-/-) mice. Thus, we have identified a previously unknown role for Itch in regulating IL-17-mediated colonic inflammation and carcinogenesis.

  11. Β-carotene inhibits neuroblastoma tumorigenesis by regulating cell differentiation and cancer cell stemness.

    Science.gov (United States)

    Lim, Ji Ye; Kim, Yoo-Sun; Kim, Kyung-Mi; Min, Soo Jin; Kim, Yuri

    2014-08-08

    Neuroblastoma (NB) is the most common extracranial solid cancer in young children and malignant NB cells have been shown to possess cancer stem cell (CSC) characteristics. Thus, the successful elimination of CSCs represents a strategy for developing an effective preventive and chemotherapeutic agent. CSCs are characterized by differentiation and tumorigenicity. β-Carotene (BC) has been associated with many anticancer mechanisms, although the efficacy of BC on CSCs remains unclear. In the present study, the effects of BC on tumor cell differentiation and tumorigenicity was investigated using a xenograft model. Mice were pretreated with BC for 21 days, then received a subcutaneous injection of SK-N-BE(2)C cells. Both tumor incidence and tumor growth were significantly inhibited for mice that received BC supplementation compared to the control group. Treatment with BC has also been shown to induce tumor cell differentiation by up-regulating differentiation markers, such as vimentin, peripherin, and neurofilament. Conversely, BC treatment has been shown to significantly suppress tumor stemness by down-regulating CSC markers such as Oct 3/4 and DLK1. BC treatment also significantly down-regulated HIF1-α expression and its downstream target, vascular endothelial growth factor (VEGF). Taken together, these results suggest that BC is a potential chemotherapeutic reagent for the treatment of NB, and mediates this effect by regulating the differentiation and stemness of CSCs, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Pterostilbene carboxaldehyde thiosemicarbazone, a resveratrol derivative inhibits 17β-Estradiol induced cell migration and proliferation in HUVECs.

    Science.gov (United States)

    Nikhil, Kumar; Sharan, Shruti; Wishard, Rohan; Palla, Srinivasa Rao; Krishna Peddinti, Rama; Roy, Partha

    2016-04-01

    Angiogenesis plays important roles in tumor growth and metastasis, thus development of a novel angiogenesis inhibitor is essential for the improvement of therapeutics against cancer. Thrombospondins-1 (TSP-1) is a potent endogenous inhibitor of angiogenesis that acts through direct effects on endothelial cell migration, proliferation, survival, and activating apoptotic pathways. TSP-1 has been shown to disrupt estrogen-induced endothelial cell proliferation and migration. Here we investigated the potential of pterostilbene carboxaldehyde thiosemicarbazone (PTERC-T), a novel resveratrol (RESV) derivative, to inhibit angiogenesis induced by female sex steroids, particularly 17β-Estradiol (E2), on Human umbilical vein endothelial cells (HUVECs) and to elucidate the involvement of TSP-1 in PTERC-T action. Our results showed that PTERC-T significantly inhibited 17β-E2-stimulated proliferation of HUVECs and induced apoptosis as determined by annexin V/propidium iodide staining and cleaved caspase-3 expression. Furthermore, PTERC-T also inhibited endothelial cell migration, and invasion in chick chorioallantoic membrane (CAM) assay. In contrast, RESV failed to inhibit 17β-E2 induced HUVECs proliferation and invasion at similar dose. PTERC-T was also found to increase TSP-1 protein expression levels in a dose-dependent manner which, however, was counteracted by co-incubation with p38MAPK or JNK inhibitors, suggesting involvement of these pathways in PTERC-T action. These results suggest that the inhibitory effect of PTERC-T on 17β-E2 induced angiogenesis is associated, at least in part, with its induction of endothelial cell apoptosis and inhibition of cell migration through targeting TSP-1. Thus, PTERC-T could be considered as a potential lead compound for developing a class of new drugs targeting angiogenesis-related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Targeting of Both the c-Met and EGFR Pathways Results in Additive Inhibition of Lung Tumorigenesis in Transgenic Mice

    Energy Technology Data Exchange (ETDEWEB)

    Stabile, Laura P. [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Rothstein, Mary E. [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Keohavong, Phouthone [Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lenzner, Diana [Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Land, Stephanie R. [Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Gaither-Davis, Autumn L. [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kim, K. Jin [Galaxy Biotech, LLC, Sunnyvale, CA 94089 (United States); Kaminski, Naftali [Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Siegfried, Jill M., E-mail: siegfriedjm@upmc.edu [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2010-12-22

    EGFR and c-Met are both overexpressed in lung cancer and initiate similar downstream signaling, which may be redundant. To determine how frequently ligands that initiate signaling of both pathways are found in lung cancer, we analyzed serum for hepatocyte growth factor (HGF), transforming growth factor-alpha, and amphiregulin (AREG) in lung cancer cases and tobacco-exposed controls. HGF and AREG were both significantly elevated in cases compared to controls, suggesting that both HGF/c-Met and AREG/EGFR pathways are frequently active. When both HGF and AREG are present in vitro, downstream signaling to MAPK and Akt in non-small cell lung cancer (NSCLC) cells can only be completely inhibited by targeting both pathways. To test if dual blockade of the pathways could better suppress lung tumorigenesis in an animal model than single blockade, mice transgenic for airway expression of human HGF were treated with inhibitors of both pathways alone and in combination after exposure to a tobacco carcinogen. Mean tumor number in the group using both the HGF neutralizing antibody L2G7 and the EGFR inhibitor gefitinib was significantly lower than with single agents. A higher tumor K-ras mutation rate was observed with L2G7 alone compared to controls, suggesting that agents targeting HGF may be less effective against mutated K-ras lung tumors. This was not observed with combination treatment. A small molecule c-Met inhibitor decreased formation of both K-ras wild-type and mutant tumors and showed additive anti-tumor effects when combined with gefitinib. Dual targeting of c-Met/EGFR may have clinical benefit for lung cancer.

  14. Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue.

    Science.gov (United States)

    Gracia, Ana; Miranda, Jonatan; Fernández-Quintela, Alfredo; Eseberri, Itziar; Garcia-Lacarte, Marcos; Milagro, Fermín I; Martínez, J Alfredo; Aguirre, Leixuri; Portillo, María P

    2016-03-01

    The epigenetic mechanisms of action of resveratrol as an anti-obesity molecule have not been fully addressed so far. The aim of the present study was to assess changes produced by resveratrol in the microRNA (miRNA) profile in white adipose tissue (WAT) and to relate these changes to those induced in the expression of genes involved in triacylglycerol metabolism. Male Wistar rats were fed (6 weeks) an obesogenic diet: a control group and a group treated with resveratrol (30 mg kg(-1) d(-1)). A miRNA microarray was carried out in perirenal adipose tissue. The overexpression of miR-539-5p and miR-1224-5p was performed in 3T3-L1 cells. Protein expression was analysed by western-blot and gene expression by qRT-PCR. Associations between variables were assessed by Pearson's correlations. The microarray showed that 3 miRNAs were decreased and 13 were increased after resveratrol treatment. Among those miRNAs increased, miR-129, miR-328-5p and miR-539-5p showed predicted target genes relevant for triacylglycerol metabolism in WAT (pparγ: peroxisome proliferator-activated receptor gamma, hsl: hormone sensitive lipase and sp1: SP1 transcription factor) in the miRWalk database. Moreover, the literature shows that miR-1224, another miRNA up-regulated by resveratrol, can also regulate sp1. Among the three targets, only SP1 showed a reduction in protein expression. Correlation and overexpression studies revealed that the decrease in SP1 protein expression was only associated with the increase of miR-539-5p. In addition, significant reductions in SREBP1 protein expression and fasn gene expression were found in resveratrol-treated rats. In conclusion, the up-regulation of miR-539-5p is involved in the inhibition of de novo lipogenesis induced by resveratrol in WAT.

  15. Resveratrol inhibits neointimal formation after arterial injury through an endothelial nitric oxide synthase-dependent mechanism.

    Science.gov (United States)

    Breen, Danna M; Dolinsky, Vernon W; Zhang, Hangjun; Ghanim, Husam; Guo, June; Mroziewicz, Margaret; Tsiani, Evangelia L; Bendeck, Michelle P; Dandona, Paresh; Dyck, Jason R B; Heximer, Scott P; Giacca, Adria

    2012-06-01

    Revascularization procedures used for treatment of atherosclerosis often result in restenosis. Resveratrol (RSV), an antioxidant with cardiovascular benefits, decreases neointimal formation after arterial injury by a mechanism that is still not fully clarified. Our main objective was to address the role of nitric oxide synthases (NOSes) and more specifically the endothelial-NOS (eNOS) isoform as a mediator of this effect. RSV (4 mg/kg/day, s.c.) alone or in combination with the NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME) (2 mg/kg/day, s.c.) was given to Sprague-Dawley rats beginning at 3 days before arterial (carotid or aortic) injury. RSV reduced neointimal formation by 50% (P<0.01), decreased intimal cell proliferation by 37% (P<0.01) and reduced inflammatory markers such as PECAM and MMP-9 mRNA. These effects of RSV were all abolished by coadministration of l-NAME. Oral RSV (beginning at 5 days before arterial injury) reduced neointimal thickness after femoral wire injury in mice, however this effect was not observed in eNOS knockout mice. This is the first report of RSV decreasing neointimal cell proliferation and neointimal growth through an eNOS-dependent mechanism. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Wine polyphenol resveratrol inhibits contractions of isolated rat uterus by activation of smooth muscle inwardly rectifying potassium channels

    Directory of Open Access Journals (Sweden)

    Novaković Radmila

    2016-01-01

    Full Text Available Resveratrol is a phytoalexin produced in a number of plant species including grapes. The benefit of resveratrol to health is widely reported. Resveratrol has been found to promote relaxation of non-pregnant and pregnant uterus, but its mechanism of action is unclear. The aims of our study were to investigate the involvement of inwardly rectifying potassium channels (Kir in inhibitory effects of resveratrol on three models of contractions of non-pregnant rat uterus: the spontaneous rhythmic contractions (SRC, oxytocin-elicited phasic contractions and tonic oxytocin-elicited contractions.Uterine strips were obtained from virgin female Wistar rats in oestrus. Strips were mounted into organ bath for recording isometric tension in Krebs-Ringer solution. Experiments followed a multiple curve design. In order to test the involvement of Kirchannels in a mechanism of action of resveratrol(1-100 μM,BaCl2 (1 mM,a antagonist of inwardly rectifying pota­ssium channels was used. Resveratrol induced a concentration-dependent relaxation of all models of contractions. BaCl2 antagonized the response to resveratrolon SRC and oxytocin-elicited phasic contractions. Relaxation achieved by resveratrolon tonic oxytocin-elicited concentrations was insensitive to BaCl2.The antagonism of resveratrol effects by inwardly rectifying potassium channels antagonist suggests that Kir channels are involved in resveratrol action on phasic contractions of rat uterus. Inhibitory effect of resveratrol on tonic contractions did not include Kir channels. [Projekat Ministartsva nauke Republike Srbije, br. TR31020

  17. Inhibition of Age-Related Cytokines Production by ATGL: A Mechanism Linked to the Anti-Inflammatory Effect of Resveratrol

    Directory of Open Access Journals (Sweden)

    Daniele Lettieri Barbato

    2014-01-01

    Full Text Available Ageing is characterized by the expansion and the decreased vascularization of visceral adipose tissue (vAT, disruption of metabolic activities, and decline of the function of the immune system, leading to chronic inflammatory states. We previously demonstrated that, in vAT of mice at early state of ageing, adipocytes mount a stress resistance response consisting in the upregulation of ATGL, which is functional in restraining the production of inflammatory cytokines. Here, we found that, in the late phase of ageing, such an adaptive response is impaired. In particular, 24-months-old mice and aged 3T3-L1 adipocytes display affected expression of ATGL and its downstream PPARα-mediated lipid signalling pathway, leading to upregulation of TNFα and IL-6 production. We show that the natural polyphenol compound resveratrol (RSV efficiently suppresses the expression of TNFα and IL-6 in an ATGL/PPARα dependent manner. Actually, adipocytes downregulating ATGL do not show a restored PPARα expression and display elevated cytokines production. Overall the results obtained highlight a crucial function of ATGL in inhibiting age-related inflammation and reinforce the idea that RSV could represent a valid natural compound to limit the onset and/or the exacerbation of the age-related inflammatory states.

  18. Differential inhibition of human erythrocyte acetylcholinesterase by polyphenols epigallocatechin-3-gallate and resveratrol. Relevance of the membrane-bound form.

    Science.gov (United States)

    Salazar, Paula B; de Athayde Moncorvo Collado, Alejandro; Canal-Martínez, Verónica; Minahk, Carlos J

    2017-01-02

    The activity of acetylcholinesterase (AChE) from human erythrocytes was tested in the presence of the phenolic compounds resveratrol and epigallocatechin-3-gallate (EGCG). Even though the stilbene barely changed this enzymatic activity, EGCG did inhibit AChE. Importantly, it preferentially acted on the membrane-bound enzyme rather than on its soluble form. Actually, it was shown that this flavonoid may bind to the red blood cell membrane surface, which may improve the interaction between EGCG and AChE. Therefore, caution should be taken when screening AChE inhibitors. In fact, testing compounds with the soluble form of the enzyme may underestimate the activity of some of these potential inhibitors, hence it would be advisable not to use them as a sole model system for screening. Moreover, erythrocyte AChE is proposed as a good model for these enzymatic assays. © 2016 BioFactors, 43(1):73-81, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  19. The effect of dietary zinc - and polyphenols intake on DMBA-induced mammary tumorigenesis in rats

    Directory of Open Access Journals (Sweden)

    Bobrowska-Korczak Barbara

    2012-04-01

    Full Text Available Abstract Background The aim of the study was to investigate the effect of dietary supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein, on the effectiveness of chemically induced mammary cancer and the changes in the content of selected elements (Zn, Cu, Mg, Fe, Ca in tumors as compared with normal tissue of the mammary gland. Methods Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet and DMBA (7,12-dimethyl-1,2- benz[a]anthracene, were treated with zinc ions (Zn or zinc ions + resveratrol (Zn + resveratrol or zinc ions + genistein (Zn + genistein via gavage for a period from 40 days until 20 weeks of age. The ICP-OES (inductively coupled plasma optical emission spectrometry technique was used to analyze the following elements: magnesium, iron, zinc and calcium. Copper content in samples was estimated in an atomic absorption spectrophotometer. Results Regardless of the diet (standard; Zn; Zn + resveratrol; Zn + genistein, DMBA-induced breast carcinogenesis was not inhibited. On the contrary, in the Zn + resveratrol supplemented group, tumorigenesis developed at a considerably faster rate. On the basis of quantitative analysis of selected elements we found - irrespectively of the diet applied - great accumulation of copper and iron, which are strongly prooxidative, with a simultaneous considerable decrease of the magnesium content in DMBA-induced mammary tumors. The combination of zinc supplementation with resveratrol resulted in particularly large differences in the amount of the investigated elements in tumors as compared with their content in normal tissue. Conclusions Diet supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein had no effect on the decreased copper level in tumor tissue and inhibited mammary carcinogenesis in the rat. Irrespectively of the applied diet, the development of the neoplastic process in rats resulted in changes of

  20. MiR-183 overexpression inhibits tumorigenesis and enhances DDP-induced cytotoxicity by targeting MTA1 in nasopharyngeal carcinoma.

    Science.gov (United States)

    Wang, Guanghui; Wang, Shujing; Li, Congying

    2017-06-01

    in vivo. MiR-183 overexpression inhibited tumorigenesis and enhanced DDP-induced cytotoxicity by targeting metastasis-associated protein 1 in nasopharyngeal carcinoma, contributing to the development of novel therapeutic approaches for the treatment of clinical nasopharyngeal carcinoma patients.

  1. Dietary supplementation with methylseleninic acid inhibits mammary tumorigenesis and metastasis in male MMTV-PyMT mice

    Science.gov (United States)

    Male breast cancer, which makes up approximately 1% of all breast cancer, is an aggressive disease with poor prognosis. We investigated the effects of dietary supplementation with selenium in the form of methylseleninic acid (MSeA, 4.0 mg MSeA/kg) on mammary tumorigenesis in male MMTV-PyMT mice. ...

  2. Trimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor formation and growth in prostate cancer xenografts

    Science.gov (United States)

    Resveratrol (Res) is recognized as a promising cancer chemoprevention dietary polyphenol with antioxidative, anti-inflammatory and anticancer properties. However, the role of its analogues in prostate cancer (PCa) chemoprevention is still unknown. METHODS. We synthesized natural and synthetic anal...

  3. Suppression of Poxvirus Replication by Resveratrol

    Directory of Open Access Journals (Sweden)

    Shuai Cao

    2017-11-01

    Full Text Available Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV, the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  4. Resveratrol Attenuates Acute Inflammatory Injury in Experimental Subarachnoid Hemorrhage in Rats via Inhibition of TLR4 Pathway

    Directory of Open Access Journals (Sweden)

    Xiang-Sheng Zhang

    2016-08-01

    Full Text Available Toll-like receptor 4 (TLR4 has been proven to play a critical role in neuroinflammation and to represent an important therapeutic target following subarachnoid hemorrhage (SAH. Resveratrol (RSV, a natural occurring polyphenolic compound, has a powerful anti-inflammatory property. However, the underlying molecular mechanisms of RSV in protecting against early brain injury (EBI after SAH remain obscure. The purpose of this study was to investigate the effects of RSV on the TLR4-related inflammatory signaling pathway and EBI in rats after SAH. A prechiasmatic cistern SAH model was used in our experiment. The expressions of TLR4, high-mobility group box 1 (HMGB1, myeloid differentiation factor 88 (MyD88, and nuclear factor-κB (NF-κB were evaluated by Western blot and immunohistochemistry. The expressions of Iba-1 and pro-inflammatory cytokines in brain cortex were determined by Western blot, immunofluorescence staining, or enzyme-linked immunosorbent assay. Neural apoptosis, brain edema, and neurological function were further evaluated to investigate the development of EBI. We found that post-SAH treatment with RSV could markedly inhibit the expressions of TLR4, HMGB1, MyD88, and NF-κB. Meanwhile, RSV significantly reduced microglia activation, as well as inflammatory cytokines leading to the amelioration of neural apoptosis, brain edema, and neurological behavior impairment at 24 h after SAH. However, RSV treatment failed to alleviate brain edema and neurological deficits at 72 h after SAH. These results indicated that RSV treatment could alleviate EBI after SAH, at least in part, via inhibition of TLR4-mediated inflammatory signaling pathway.

  5. Resveratrol Inhibits the Epidermal Growth Factor-Induced Migration of Osteoblasts: the Suppression of SAPK/JNK and Akt.

    Science.gov (United States)

    Kawabata, Tetsu; Tokuda, Haruhiko; Fujita, Kazuhiko; Kainuma, Shingo; Sakai, Go; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Otsuka, Takanobu

    2017-10-02

    Resveratrol is a polyphenol enriched in the skins of grapes and berries, that shows various beneficial effects for human health. In the present study, we investigated the mechanism behind the epidermal growth factor (EGF)-induced migration of osteoblast-like MC3T3-E1 cells, and the effect of resveratrol on this cell migration. The cell migration was examined using Boyden chamber, and phosphorylation of each kinase was analyzed by Western blotting. The EGF-induced migration was suppressed by PD98059, an inhibitor of MEK1/2, as well as SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of SAPK/JNK, and deguelin, an inhibitor of Akt. In contrast, rapamycin, an inhibitor of upstream kinase of p70 S6 kinase, and fasudil, an inhibitor of Rho-kinase, hardly affected the migration. Resveratrol significantly reduced the EGF-induced migration in a dose-dependent manner. SRT1720, an SIRT1 activator, suppressed the migration by EGF. In addition, resveratrol markedly attenuated the EGF-induced phosphorylation of SAPK/JNK and Akt without affecting the phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. The phosphorylation of SAPK/JNK and Akt induced by EGF was down-regulated by SRT1720. Our results strongly suggest that resveratrol reduces the EGF-stimulated migration of osteoblasts via suppression of SAPK and Akt, and that the inhibitory effect of resveratrol is mediated in part via SIRT1. The Author(s). Published by S. Karger AG, Basel.

  6. Enhancing the bioavailability of resveratrol by combining it with piperine

    Science.gov (United States)

    Johnson, Jeremy J.; Nihal, Minakshi; Siddiqui, Imtiaz A.; Scarlett, Cameron O.; Bailey, Howard H.; Mukhtar, Hasan; Ahmad, Nihal

    2012-01-01

    Scope Resveratrol (3,5,4′-trihydroxystilbene) is a phytoalexin shown to possess a multitude of health-promoting properties in pre-clinical studies. However, the poor in vivo bioavailability of resveratrol due to its rapid metabolism is being considered as a major obstacle in translating its effects in humans. In this study, we examined the hypothesis that piperine will enhance the pharmacokinetic parameters of resveratrol via inhibiting its glucuronidation, thereby slowing its elimination. Methods and results Employing a standardized LC/MS assay, we determined the effect of piperine co-administration with resveratrol on serum levels resveratrol and resveratrol-3-O-β-d-glucuronide in C57BL mice. Mice were administered resveratrol (100 mg/kg; oral gavage) or resveratrol (100 mg/kg; oral gavage) + piperine (10 mg/kg; oral gavage), and the serum levels of resveratrol and resveratrol-3-O-β-d-glucuronide were analyzed at different times. We found that the degree of exposure (i.e. AUC) to resveratrol was enhanced to 229% and the maximum serum concentration (Cmax) was increased to 1544% with the addition of piperine. Conclusion Our study demonstrated that piperine significantly improves the in vivo bioavailability of resveratrol. However, further detailed research is needed to study the mechanism of improved bioavailability of resveratrol via its combination with piperine as well as its effect on resveratrol metabolism. PMID:21714124

  7. Src-mediated cross-talk between farnesoid X and epidermal growth factor receptors inhibits human intestinal cell proliferation and tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Zhongsheng Peng

    Full Text Available Besides its essential role in controlling bile acid and lipid metabolism, the farnesoid X receptor (FXR protects against intestinal tumorigenesis by promoting apoptosis and inhibiting cell proliferation. However, the mechanisms underlying these anti-proliferative actions of FXR remain to be elucidated. In the present study, we examined the effects of FXR activation (FXR overexpression and treatment with an FXR agonist GW4064 and inactivation (treatment with FXR siRNA and an FXR antagonist guggulsterone on colon cancer cell proliferation in vitro using human colon cancer cell lines (H508, SNU-C4 and HT-29 and in vivo using xenografts in nude mice. Blocking FXR activity with guggulsterone stimulated time- and dose-dependent EGFR (Tyr845 phosphorylation and ERK activation. In contrast, FXR overexpression and activation with GW4064 attenuated cell proliferation by down-regulating EGFR (Tyr845 phosphorylation and ERK activation. Treatment with guggulsterone and GW4064 also caused dose-dependent changes in Src (Tyr416 phosphorylation. In stably-transfected human colon cancer cells, overexpression of FXR reduced EGFR, ERK, Src phosphorylation and cell proliferation, and in nude mice attenuated the growth of human colon cancer xenografts (64% reduction in tumor volume; 47% reduction in tumor weight; both P<0.01. Moreover, guggulsterone-induced EGFR and ERK phosphorylation and cell proliferation were abolished by inhibiting activation of Src, EGFR and MEK. Collectively these data support the novel conclusion that in human colon cancer cells Src-mediated cross-talk between FXR and EGFR modulates ERK phosphorylation, thereby regulating intestinal cell proliferation and tumorigenesis.

  8. Dietary administration of δ- and γ-tocopherol inhibits tumorigenesis in the animal model of estrogen receptor-positive, but not HER-2 breast cancer.

    Science.gov (United States)

    Smolarek, Amanda K; So, Jae Young; Burgess, Brenda; Kong, Ah-Ng Tony; Reuhl, Kenneth; Lin, Yong; Shih, Weichung Joe; Li, Guangxun; Lee, Mao-Jung; Chen, Yu-Kuo; Yang, Chung S; Suh, Nanjoo

    2012-11-01

    Tocopherol, a member of the vitamin E family, consists of four forms designated as α, β, γ, and δ. Several large cancer prevention studies with α-tocopherol have reported no beneficial results, but recent laboratory studies have suggested that δ- and γ-tocopherol may be more effective. In two different animal models of breast cancer, the chemopreventive activities of individual tocopherols were assessed using diets containing 0.3% of tocopherol (α-, δ-, or γ-) or 0.3% of a γ-tocopherol rich mixture (γ-TmT). Although administration of tocopherols did not prevent human epidermal growth factor receptor 2 (HER2/neu)-driven tumorigenesis, δ- and γ-tocopherols inhibited hormone-dependent mammary tumorigenesis in N-methyl-N-nitrosourea (NMU)-treated female Sprague-Dawley rats. NMU-treated rats showed an average tumor burden of 10.6 ± 0.8 g in the control group at 11 weeks, whereas dietary administration of δ- and γ-tocopherols significantly decreased tumor burden to 7.2 ± 0.8 g (P < 0.01) and 7.1 ± 0.7 g (P < 0.01), respectively. Tumor multiplicity was also reduced in δ- and γ-tocopherol treatment groups by 42% (P < 0.001) and 32% (P < 0.01), respectively. In contrast, α-tocopherol did not decrease tumor burden or multiplicity. In mammary tumors, the protein levels of proapoptotic markers (BAX, cleaved caspase-9, cleaved caspase-3, cleaved PARP) were increased, whereas antiapoptotic markers (Bcl-2, XIAP) were inhibited by δ-tocopherol, γ-tocopherol, and γ-TmT. Furthermore, markers of cell proliferation (PCNA, PKCα), survival (PPAR-γ, PTEN, phospho-Akt), and cell cycle (p53, p21) were affected by δ- and γ-tocopherols. Both δ- and γ-tocopherols, but not α-tocopherol, seem to be promising agents for the prevention of hormone-dependent breast cancer.

  9. Multifactorial anticancer effects of digalloyl-resveratrol encompass apoptosis, cell-cycle arrest, and inhibition of lymphendothelial gap formation in vitro.

    Science.gov (United States)

    Madlener, S; Saiko, P; Vonach, C; Viola, K; Huttary, N; Stark, N; Popescu, R; Gridling, M; Vo, N T-P; Herbacek, I; Davidovits, A; Giessrigl, B; Venkateswarlu, S; Geleff, S; Jäger, W; Grusch, M; Kerjaschki, D; Mikulits, W; Golakoti, T; Fritzer-Szekeres, M; Szekeres, T; Krupitza, G

    2010-04-27

    Digalloyl-resveratrol (di-GA) is a synthetic compound aimed to combine the biological effects of the plant polyhydroxy phenols gallic acid and resveratrol, which are both radical scavengers and cyclooxygenase inhibitors exhibiting anticancer activity. Their broad spectrum of activities may probably be due to adjacent free hydroxyl groups. Protein activation and expression were analysed by western blotting, deoxyribonucleoside triphosphate levels by HPLC, ribonucleotide reductase activity by (14)C-cytidine incorporation into nascent DNA and cell-cycle distribution by FACS. Apoptosis was measured by Hoechst 33258/propidium iodide double staining of nuclear chromatin and the formation of gaps into the lymphendothelial barrier in a three-dimensional co-culture model consisting of MCF-7 tumour cell spheroids and human lymphendothelial monolayers. In HL-60 leukaemia cells, di-GA activated caspase 3 and dose-dependently induced apoptosis. It further inhibited cell-cycle progression in the G1 phase by four different mechanisms: rapid downregulation of cyclin D1, induction of Chk2 with simultaneous downregulation of Cdc25A, induction of the Cdk-inhibitor p21(Cip/Waf) and inhibition of ribonucleotide reductase activity resulting in reduced dCTP and dTTP levels. Furthermore, di-GA inhibited the generation of lymphendothelial gaps by cancer cell spheroid-secreted lipoxygenase metabolites. Lymphendothelial gaps, adjacent to tumour bulks, can be considered as gates facilitating metastatic spread. These data show that di-GA exhibits three distinct anticancer activities: induction of apoptosis, cell-cycle arrest and disruption of cancer cell-induced lymphendothelial disintegration.

  10. MicroRNA-300 targets hypoxia inducible factor-3 alpha to inhibit tumorigenesis of human non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Y; Guo, Y; Yang, C; Zhang, S; Zhu, X; Cao, L; Nie, W; Yu, H

    2017-01-01

    Non-small cell lung cancer (NSCLC) is one of the most deadly human cancers. MicroRNA-300 acts as both tumor promoter and suppressor in different types of cancer. Here, we try to identify the function of microRNA-300 in human NSCLC. We compared MicroRNA-300 levels between tumor tissues versus paired adjacent non-tumor lung tissues from NSCLC patients, and in NSCLC versus normal lung cell lines. Effects of microRNA-300 on cell proliferation, invasion and migration were examined in vitro, and on tumor growth in vivo using a xenograft mouse model. Potential mRNA targets of microRNA-300 were predicted and underlying mechanism was explored. MicroRNA-300 expression was lower in both NSCLC tissues and cell lines. Overexpression of microRNA-300 inhibited proliferation, invasion and migration of NSCLC cells in vitro, and tumor growth in vivo. MicroRNA-300 could directly bind to the 3'-UTR of hypoxia inducible factor-3 alpha (HIF3α) mRNA, and inhibit both its mRNA and protein expressions. Restoring HIF3α expression could rescue the inhibitory effects of microRNA-300 on tumorigenesis of NSCLC both in vitro and in vivo. MicroRNA-300 is a tumor suppressor microRNA in NSCLC by downregulating HIF3α expression. Both microRNA-300 and HIF3α may serve as potential therapeutic targets in NSCLC treatment.

  11. Resveratrol and curcumin synergistically induces apoptosis in cigarette smoke condensate transformed breast epithelial cells through a p21(Waf1/Cip1) mediated inhibition of Hh-Gli signaling.

    Science.gov (United States)

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Siddharth, Sumit; Das, Dipon; Nayak, Anmada; Kundu, Chanakya Nath

    2015-09-01

    Combination therapy using two or more small molecule inhibitors of aberrant signaling cascade in aggressive breast cancers is a promising therapeutic strategy over traditional monotherapeutic approaches. Here, we have studied the synergistic mechanism of resveratrol and curcumin induced apoptosis using in vitro (cigarette smoke condensate mediated transformed breast epithelial cell, MCF-10A-Tr) and in vivo (tumor xenograft mice) model system. Resveratrol exposure increased the intracellular uptake of curcumin in a dose dependent manner and caused apoptosis in MCF-10A-Tr cells. Approximately, ten fold lower IC50 value was noted in cells treated with the combination of resveratrol (3μM) and curcumin (3μM) in comparison to 30μM of resveratrol or curcumin alone. Resveratrol+curcumin combination caused apoptosis by increasing Bax/Bcl-xL ratio, Cytochrome C release, cleaved product of PARP and caspase 3 in cells. Interestingly, this combination unaltered the protein expressions of WNT-TCF and Notch signaling components, β-catenin and cleaved notch-1 val1744, respectively. Furthermore, the combination also significantly decreased the intermediates of Hedgehog-Gli cascade including SMO, SHH, Gli-1, c-MYC, Cyclin-D1, etc. and increased the level of p21(Waf/Cip1) in vitro and in vivo. A significant reduction of Gli- promoter activity was noted in combinational drug treated cells in comparison to individual drug treatment. Un-alteration of the expressions of the above proteins and Gli1 promoter activity in p21(Waf/Cip1) knockout cells suggests this combination caused apoptosis through p21(Waf/Cip1). Thus, our findings revealed resveratrol and curcumin synergistically caused apoptosis in cigarette smoke induced breast cancer cells through p2(Waf/Cip1) mediated inhibition of Hedgehog-Gli cascade. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Dietary administration of δ- and γ-tocopherol inhibits tumorigenesis in the animal model of estrogen-receptor positive, but not HER-2 breast cancer

    Science.gov (United States)

    Smolarek, Amanda K.; So, Jae Young; Burgess, Brenda; Kong, Ah-Ng Tony; Reuhl, Kenneth; Lin, Yong; Shih, Weichung Joe; Li, Guangxun; Lee, Mao-Jung; Chen, Yu-Kuo; Yang, Chung S.; Suh, Nanjoo

    2012-01-01

    Tocopherol, a member of the vitamin E family, consists of four forms designated as α, β, γ, and δ. Several large cancer prevention studies with α-tocopherol have reported no beneficial results, but recent laboratory studies have suggested that δ- and γ-tocopherol may be more effective. In two different animal models of breast cancer, the chemopreventive activities of individual tocopherols were assessed using diets containing 0.3% of tocopherol (α-, δ- or γ-) or 0.3% of a γ-tocopherol rich mixture (γ-TmT). While administration of tocopherols did not prevent human epidermal growth factor receptor 2 (HER2/neu)-driven tumorigenesis, δ- and γ-tocopherols inhibited hormone-dependent mammary tumorigenesis in N-methyl-N-nitrosourea (NMU)-treated female Sprague Dawley rats. NMU-treated rats showed an average tumor burden of 10.6 ± 0.8 g in the control group at 11 weeks, whereas dietary administration of δ- and γ-tocopherols significantly decreased tumor burden to 7.2 ± 0.8 g (p<0.01) and 7.1 ± 0.7 g (p<0.01), respectively. Tumor multiplicity was also reduced in δ- and γ-tocopherol treatment groups by 42% (p<0.001) and 32% (p<0.01), respectively. In contrast, α-tocopherol did not decrease tumor burden or multiplicity. In mammary tumors, the protein levels of pro-apoptotic markers (BAX, cleaved-caspase 9, cleaved-caspase 3, cleaved-PARP) were increased, while anti-apoptotic markers (Bcl2, XIAP) were inhibited by δ-tocopherol, γ-tocopherol and γ-TmT. Furthermore, markers of cell proliferation (PCNA, PKC α), survival (PPARγ, PTEN, phospho-Akt) and cell cycle (p53, p21) were affected by δ- and γ-tocopherols. Both δ- and γ-tocopherols, but not α-tocopherol, appear to be promising agents for the prevention of hormone-dependent breast cancer. PMID:22964476

  13. Resveratrol analogs: promising chemopreventive agents.

    Science.gov (United States)

    Ogas, Talysa; Kondratyuk, Tamara P; Pezzuto, John M

    2013-07-01

    Although resveratrol can modulate multiple stages of carcinogenesis, by most common standards it is not a good drug candidate. Resveratrol lacks potency, high efficacy, and target specificity; it is rapidly metabolized and serum concentrations are low. Using resveratrol as a scaffold, we produced over 100 derivatives, some of which have target specificity in the nanomolar range. Aromatase inhibition was enhanced over 6000-fold by using 1,3-thiazole as the central ring of resveratrol. Optimizing the substitution pattern of the two phenyl rings and the central heterocyclic linker led to selective QR1 induction with a CD value of 87 nM. Several derivatives have been selected for evaluation of synergistic effects. Preliminary results with pairs of compounds are promising and further experiments, in a constant multidrug manner, will allow us to create polygonograms for larger combinations of derivatives. The objective is to develop a highly efficacious cocktail of derivatives based on the structure of resveratrol. © 2013 New York Academy of Sciences.

  14. Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV‐3 and A-2780 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowska, Hanna; Myszkowski, Krzysztof; Ziółkowska, Alicja [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland); Kulcenty, Katarzyna [Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan (Poland); Wierzchowski, Marcin [Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan (Poland); Kaczmarek, Mariusz [Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan (Poland); Murias, Marek [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland); Kwiatkowska-Borowczyk, Eliza [Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan (Poland); Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan (Poland); Jodynis-Liebert, Jadwiga, E-mail: liebert@ump.edu.pl [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland)

    2012-08-15

    In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4′5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC{sub 50} = 0.71 μM) and SKOV-3 (IC{sub 50} = 11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 and p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212. -- Highlights: ► DMU-212 was the most cytotoxic among 12 O-methylated resveratrol analogues. ► DMU-212 arrested cell cycle at G2/M and G0/G1phase ► DMU-212 triggered mitochondria- and receptor‐mediated apoptosis. ► DMU-212 entirely inhibited CYP1B1 protein expression in A-2780 cells.

  15. Effective inhibition of melanoma tumorigenesis and growth via a new complex vaccine based on NY-ESO-1-alum-polysaccharide-HH2.

    Science.gov (United States)

    Li, Meng; Shi, Huashan; Mu, Yandong; Luo, Zichao; Zhang, Hailong; Wan, Yang; Zhang, Dongmei; Lu, Lian; Men, Ke; Tian, Yaomei; Wu, Xiaozhe; Liu, Xiaoyan; Pan, Ying; Fan, Yingzi; Yu, Chaoheng; Zhou, Bailing; Xiang, Rong; Chen, Xiancheng; Yang, Li

    2014-07-28

    A safe and effective adjuvant plays an important role in the development of a vaccine. However, adjuvants licensed for administration in humans remain limited. Here, for the first time, we developed a novel combination adjuvant alum-polysaccharide-HH2 (APH) with potent immunomodulating activities, consisting of alum, polysaccharide of Escherichia coli and the synthetic cationic innate defense regulator peptide HH2. The adjuvant effects of APH were examined using NY-ESO-1 protein-based vaccines in prophylactic and therapeutic models. We further determined the immunogenicity and anti-tumor effect of NY-ESO-1-APH (NAPH) vaccine using adoptive cellular/serum therapy in C57/B6 and nude mice. Cell-mediated and antibody-mediated immune responses were evaluated. The APH complex significantly promoted antigen uptake, maturation and cross-presentation of dendritic cells and enhanced the secretion of TNF-α, MCP-1 and IFN-γ by human peripheral blood mononuclear cells compared with individual components. Vaccination of NAPH resulted in significant tumor regression or delayed tumor progression in prophylactic and therapeutic models. In addition, passive serum/cellular therapy potently inhibited tumor growth of NY-ESO-1-B16. Mice treated with NAPH vaccine produced higher antibody titers and greater antibody-dependent/independent cellular cytotoxicity. Therefore, NAPH vaccination effectively stimulated innate immunity, and boosted both arms of the adaptive humoral and cellular immune responses to suppress tumorigenesis and growth of melanoma. Our study revealed the potential application of APH complex as a novel immunomodulatory agent for vaccines against tumor refractory and growth.

  16. Effective inhibition of melanoma tumorigenesis and growth via a new complex vaccine based on NY-ESO-1-alum-polysaccharide-HH2

    Science.gov (United States)

    2014-01-01

    Background A safe and effective adjuvant plays an important role in the development of a vaccine. However, adjuvants licensed for administration in humans remain limited. Here, for the first time, we developed a novel combination adjuvant alum-polysaccharide-HH2 (APH) with potent immunomodulating activities, consisting of alum, polysaccharide of Escherichia coli and the synthetic cationic innate defense regulator peptide HH2. Methods The adjuvant effects of APH were examined using NY-ESO-1 protein-based vaccines in prophylactic and therapeutic models. We further determined the immunogenicity and anti-tumor effect of NY-ESO-1-APH (NAPH) vaccine using adoptive cellular/serum therapy in C57/B6 and nude mice. Cell-mediated and antibody-mediated immune responses were evaluated. Results The APH complex significantly promoted antigen uptake, maturation and cross-presentation of dendritic cells and enhanced the secretion of TNF-α, MCP-1 and IFN-γ by human peripheral blood mononuclear cells compared with individual components. Vaccination of NAPH resulted in significant tumor regression or delayed tumor progression in prophylactic and therapeutic models. In addition, passive serum/cellular therapy potently inhibited tumor growth of NY-ESO-1-B16. Mice treated with NAPH vaccine produced higher antibody titers and greater antibody-dependent/independent cellular cytotoxicity. Therefore, NAPH vaccination effectively stimulated innate immunity, and boosted both arms of the adaptive humoral and cellular immune responses to suppress tumorigenesis and growth of melanoma. Conclusions Our study revealed the potential application of APH complex as a novel immunomodulatory agent for vaccines against tumor refractory and growth. PMID:25070035

  17. Elucidating the mechanism of lipid membrane-induced IAPP fibrillogenesis and its inhibition by the red wine compound resveratrol: a synchrotron X-ray reflectivity study.

    Science.gov (United States)

    Evers, Florian; Jeworrek, Christoph; Tiemeyer, Sebastian; Weise, Katrin; Sellin, Daniel; Paulus, Michael; Struth, Bernd; Tolan, Metin; Winter, Roland

    2009-07-15

    The islet amyloid polypeptide (IAPP) or amylin is a pancreatic hormone and crucially involved in the pathogenesis of type-II diabetes mellitus (T2DM). Aggregation and amyloid formation of IAPP is considered as the primary culprit for pancreatic beta-cell loss in T2DM patients. In this study, first X-ray reflectivity (XRR) measurements on IAPP at lipid interfaces have been carried out, providing a molecular level characterization of the first steps of the lipid-induced fibrillation process of IAPP, which is initiated by lipid-induced nucleation, oligomerization, followed by detachment of larger IAPP aggregate structures from the lipid membrane, and terminated by the formation of mature fibrils in the bulk solution. The adsorption process of IAPP at lipid interfaces in the absence and presence of negatively charged lipid has also been studied by complementary ATR-FTIR spectroscopic measurements. The morphological properties were followed by atomic force microscopy (AFM). Moreover, we show that the polyphenolic red wine compound resveratrol is able to inhibit IAPP aggregation also in the presence of aggregation-fostering negatively charged lipid interfaces, revealing its potential as a drug candidate for T2DM.

  18. Resveratrol: Anti-Obesity Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Leixuri Aguirre

    2014-11-01

    Full Text Available Resveratrol is a non-flavonoid polyphenol which belongs to the stilbenes group and is produced naturally in several plants in response to injury or fungal attack. Resveratrol has been recently reported as preventing obesity. The present review aims to compile the evidence concerning the potential mechanisms of action which underlie the anti-obesity effects of resveratrol, obtained either in cultured cells lines and animal models. Published studies demonstrate that resveratrol has an anti-adipogenic effect. A good consensus concerning the involvement of a down-regulation of C/EBPα and PPARγ in this effect has been reached. Also, in vitro studies have demonstrated that resveratrol can increase apoptosis in mature adipocytes. Furthermore, different metabolic pathways involved in triacylglycerol metabolism in white adipose tissue have been shown to be targets for resveratrol. Both the inhibition of de novo lipogenesis and adipose tissue fatty acid uptake mediated by lipoprotein lipase play a role in explaining the reduction in body fat which resveratrol induces. As far as lipolysis is concerned, although this compound per se seems to be unable to induce lipolysis, it increases lipid mobilization stimulated by β-adrenergic agents. The increase in brown adipose tissue thermogenesis, and consequently the associated energy dissipation, can contribute to explaining the body-fat lowering effect of resveratrol. In addition to its effects on adipose tissue, resveratrol can also acts on other organs and tissues. Thus, it increases mitochondriogenesis and consequently fatty acid oxidation in skeletal muscle and liver. This effect can also contribute to the body-fat lowering effect of this molecule.

  19. Resveratrol inhibits the intracellular calcium increase and angiotensin/endothelin system activation induced by soluble uric acid in mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Albertoni, G.; Schor, N. [Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-10-24

    Resveratrol (Resv) is natural polyphenol found in grapes. This study evaluated the protective effect of Resv against the effects of uric acid (UA) in immortalized human mesangial cells (ihMCs). ihMCs were preincubated with Resv (12.5 µM) for 1 h and treated with UA (10 mg/dL) for 6 or 12 h. The intracellular calcium concentration [Ca{sup 2+}]i was quantified by fluorescence using flow cytometry. Angiotensinogen (AGT) and pre-pro endothelin-1 (ppET-1) mRNA were assayed by quantitative real-time RT-PCR. Angiotensin II (AII) and endothelin-1 (ET-1) were assayed by ELISA. UA significantly increased [Ca{sup 2+}]i. Pre-incubation with Resv significantly reduced the change in [Ca{sup 2+}]i induced by UA. Incubation with UA for 6 or 12 h also increased AGT mRNA expression and AII protein synthesis. Resv blunted these increases in AGT mRNA expression and AII protein. Incubation with UA in the ihMCs increased ppET-1 expression and ET-1 protein synthesis at 6 and 12 h. When ihMCs were pre-incubated with Resv, UA had a significantly diminished effect on ppET-1 mRNA expression and ET-1 protein synthesis at 6 and 12 h, respectively. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. The renin-angiotensin system may contribute to the pathogenesis of renal function and chronic kidney disease. Resv can minimize the impact of UA on AII, ET-1 and the increase of [Ca{sup 2+}]i in mesangial cells, suggesting that, at least in part, Resv can prevent the effects of soluble UA in mesangial cells.

  20. Vam3, a compound derived from Vitis amurensis Rupr., attenuated colitis-related tumorigenesis by inhibiting NF-κB signaling pathway

    Directory of Open Access Journals (Sweden)

    Lingling Xuan

    2016-09-01

    Full Text Available Background: Chronic inflammation is one of the important mediators of colitis-related colon cancer (CRC. Abundant mast cells (MCs were observed in the tumor microenvironment and mediators released upon MC activation play an important role in the process of chronic inflammation. Previously, we found that activation of intestine mucosal MCs recruited and modulated the inflammatory CD11b+Gr1+ cells to promote the CRC development. In the current study we investigated the effects of Vam3, a resveratrol dimer with potent anti-inflammatory effects, on CRC development. Methods: RBL-2H3 cells, a basophilic leukemia cell line, were pretreated with 2.5 or 5 μΜ Vam3 and then stimulated with dinitrophenol-conjugated bovine serum albumin (DNP-BSA plus lipopolysaccharide (LPS. The MC degranulation was determined by measuring β-hexosaminidase release. Generation of TNF-α and IL-6 in RBL-2H3 cells or in peritoneal macrophages was determined by ELISA and real-time qPCR. NF-κB p65 and phospho-NF-κB p65 expression was determined by Western blotting. NF-κB activity in RAW264.7 cells was determined by luciferase reporter assay. CRC was induced in C57BL/6 mice by intraperitoneal injection of azoxymethane (AOM, followed by oral exposure to dextran sodium sulfate (DSS. Vam3 at 50 mg/kg, or disodium cromoglycate (DSCG, MC stabilizer at 100 mg/kg, or vehicle were administrated to the mice 4 weeks after DSS withdrawal. Levels of TNF-α, IL-6, and mouse MC protease-1 were determined by ELISA. Infiltration of CD11b+Gr1+ cells was determined by flow cytometry analysis. One-way ANOVA was used to compare difference between groups.Results: Pretreatment with Vam3 significantly inhibited RBL-2H3 cell degranulation and inflammatory cytokine production from RBL-2H3 cells and from peritoneal macrophages. After Vam3 treatment, NF-κB activity in RAW264.7 cells, and expressions of phospho-NF-κB p65 in RBL-2H3 cells and in peritoneal macrophages were significantly down

  1. Pleiotropic mechanisms facilitated by resveratrol and its metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Calamini, Barbara; Ratia, Kiira; Malkowski, Michael G.; Cuendet, Muriel; Pezzuto, John M.; Santarsiero, Bernard D.; Mesecar, Andrew D. (Geneva); (Hawaii); (SUNYB); (UIC)

    2010-07-01

    Resveratrol has demonstrated cancer chemopreventive activity in animal models and some clinical trials are underway. In addition, resveratrol was shown to promote cell survival, increase lifespan and mimic caloric restriction, thereby improving health and survival of mice on high-calorie diet. All of these effects are potentially mediated by the pleiotropic interactions of resveratrol with different enzyme targets including COX-1 (cyclo-oxygenase-1) and COX-2, NAD{sup +}-dependent histone deacetylase SIRT1 (sirtuin 1) and QR2 (quinone reductase 2). Nonetheless, the health benefits elicited by resveratrol as a direct result of these interactions with molecular targets have been questioned, since it is rapidly and extensively metabolized to sulfate and glucuronide conjugates, resulting in low plasma concentrations. To help resolve these issues, we tested the ability of resveratrol and its metabolites to modulate the function of some known targets in vitro. In the present study, we have shown that COX-1, COX-2 and QR2 are potently inhibited by resveratrol, and that COX-1 and COX-2 are also inhibited by the resveratrol 4{prime}-O-sulfate metabolite. We determined the X-ray structure of resveratrol bound to COX-1 and demonstrate that it occupies the COX active site similar to other NSAIDs (non-steroidal anti-inflammatory drugs). Finally, we have observed that resveratrol 3- and 4?-O-sulfate metabolites activate SIRT1 equipotently to resveratrol, but that activation is probably a substrate-dependent phenomenon with little in vivo relevance. Overall, the results of this study suggest that in vivo an interplay between resveratrol and its metabolites with different molecular targets may be responsible for the overall beneficial health effects previously attributed only to resveratrol itself.

  2. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Xu, C. Wilson, E-mail: wxu@nvcancer.org [Nevada Cancer Institute, Las Vegas, NV 89135 (United States)

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular

  3. Lycopene metabolite, apo-10'-lycopenoic acid, inhibits diethylnitrosamine-initiated, high fat diet-promoted hepatic inflammation and tumorigenesis in mice

    Science.gov (United States)

    Obesity is associated with increased risk in hepatocellular carcinoma (HCC) development and mortality. An important disease control strategy is the prevention of obesity-related hepatic inflammation and tumorigenesis by dietary means. Here, we report that apo-10'-lycopenoic acid (APO10LA), a cleavag...

  4. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice.

    Science.gov (United States)

    Kim, M Y; Lim, J H; Youn, H H; Hong, Y A; Yang, K S; Park, H S; Chung, S; Ko, S H; Koh, S H; Shin, S J; Choi, B S; Kim, H W; Kim, Y S; Lee, J H; Chang, Y S; Park, C W

    2013-01-01

    Many of the effects of resveratrol are consistent with the activation of AMP-activated protein kinase (AMPK), silent information regulator T1 (SIRT1) and peroxisome proliferator-activated receptor (PPAR)γ co-activator 1α (PGC-1α), which play key roles in the regulation of lipid and glucose homeostasis, and in the control of oxidative stress. We investigated whether resveratrol has protective effects on the kidney in type 2 diabetes. Four groups of male C57BLKS/J db/m and db/db mice were used in this study. Resveratrol was administered via gavage to diabetic and non-diabetic mice, starting at 8 weeks of age, for 12 weeks. The db/db mice treated with resveratrol had decreased albuminuria. Resveratrol ameliorated glomerular matrix expansion and inflammation. Resveratrol also lowered the NEFA and triacylglycerol content of the kidney, and this action was related to increases in the phosphorylation of AMPK and the activation of SIRT1-PGC-1α signalling and of the key downstream effectors, the PPARα-oestrogen-related receptor (ERR)-1α-sterol regulatory element-binding protein 1 (SREBP1). Furthermore, resveratrol decreased the activity of phosphatidylinositol-3 kinase (PI3K)-Akt phosphorylation and class O forkhead box (FOXO)3a phosphorylation, which resulted in a decrease in B cell leukaemia/lymphoma 2 (BCL-2)-associated X protein (BAX) and increases in BCL-2, superoxide dismutase (SOD)1 and SOD2 production. Consequently, resveratrol reversed the increase in renal apoptotic cells and oxidative stress, as reflected by renal 8-hydroxy-deoxyguanosine (8-OH-dG), urinary 8-OH-dG and isoprostane concentrations. Resveratrol prevented high-glucose-induced oxidative stress and apoptosis in cultured mesangial cells through the phosphorylation of AMPK and activation of SIRT1-PGC-1α signalling and the downstream effectors, PPARα-ERR-1α-SREBP1. The results suggest that resveratrol prevents diabetic nephropathy in db/db mice by the phosphorylation of AMPK and activation of

  5. Structural basis of DDB1-and-Cullin 4-associated Factor 1 (DCAF1) recognition by merlin/NF2 and its implication in tumorigenesis by CD44-mediated inhibition of merlin suppression of DCAF1 function.

    Science.gov (United States)

    Mori, Tomoyuki; Gotoh, Shuhei; Shirakawa, Maya; Hakoshima, Toshio

    2014-08-01

    Merlin, a tumor suppressor encoded by the neurofibromatosis type 2 gene, has been shown to suppress tumorigenesis by inhibiting the Cullin 4-RING E3 ubiquitin ligase CRL4(DCAF) (1) in the nucleus. This inhibition is mediated by direct binding of merlin to DDB1-and-Cullin 4-associated Factor 1 (DCAF1), yet the binding mode of merlin to DCAF1 is not well defined. Here, we report structural and biophysical studies of the merlin binding to DCAF1 and its interference with CD44 binding. The crystal structure of the merlin FERM domain bound to the DCAF1 C-terminal acidic tail reveals that the hydrophobic IILXLN motif located at the C-terminal end of DCAF1 binds subdomain C of the FERM domain by forming a β-strand. The binding site and mode resemble that of merlin binding to the CD44 cytoplasmic tail. Competition binding assay showed that CD44 and DCAF1 compete for binding to the merlin FERM domain in solution. The CD44 cytoplasmic tail is known to be cleaved for nuclear translocation by regulated intra-membrane proteolysis (RIP). Our structure implies that, in the nucleus, the CD44 cytoplasmic tail cleaved by RIP could release DCAF1 from merlin by competing for binding to the merlin FERM domain, which results in the inhibition of merlin-mediated suppression of tumorigenesis. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  6. Resveratrol: A Potential Hippocampal Plasticity Enhancer

    Directory of Open Access Journals (Sweden)

    Gisele Pereira Dias

    2016-01-01

    Full Text Available The search for molecules capable of restoring altered hippocampal plasticity in psychiatric and neurological conditions is one of the most important tasks of modern neuroscience. It is well established that neural plasticity, such as the ability of the postnatal hippocampus to continuously generate newly functional neurons throughout life, a process called adult hippocampal neurogenesis (AHN, can be modulated not only by pharmacological agents, physical exercise, and environmental enrichment, but also by “nutraceutical” agents. In this review we focus on resveratrol, a phenol and phytoalexin found in the skin of grapes and red berries, as well as in nuts. Resveratrol has been reported to have antioxidant and antitumor properties, but its effects as a neural plasticity inducer are still debated. The current review examines recent evidence implicating resveratrol in regulating hippocampal neural plasticity and in mitigating the effects of various disorders and diseases on this important brain structure. Overall, findings show that resveratrol can improve cognition and mood and enhance hippocampal plasticity and AHN; however, some studies report opposite effects, with resveratrol inhibiting aspects of AHN. Therefore, further investigation is needed to resolve these controversies before resveratrol can be established as a safe coadjuvant in preventing and treating neuropsychiatric conditions.

  7. Biological Mechanisms by Which Antiproliferative Actions of Resveratrol Are Minimized

    Directory of Open Access Journals (Sweden)

    Yih Ho

    2017-09-01

    Full Text Available Preclinical and clinical studies have offered evidence for protective effects of various polyphenol-rich foods against cardiovascular diseases, neurodegenerative diseases, and cancers. Resveratrol is among the most widely studied polyphenols. However, the preventive and treatment effectiveness of resveratrol in cancer remain controversial because of certain limitations in existing studies. For example, studies of the activity of resveratrol against cancer cell lines in vitro have often been conducted at concentrations in the low μM to mM range, whereas dietary resveratrol or resveratrol-containing wine rarely achieve nM concentrations in the clinic. While the mechanisms underlying the failure of resveratrol to inhibit cancer growth in the intact organism are not fully understood, the interference by thyroid hormones with the anticancer activity of resveratrol have been well documented in both in vitro and xenograft studies. Thus, endogenous thyroid hormones may explain the failure of anticancer actions of resveratrol in intact animals, or in the clinic. In this review, mechanisms involved in resveratrol-induced antiproliferation and effects of thyroid hormones on these mechanisms are discussed.

  8. Effects of resveratrol, an important component of red wine, on intestinal cancer development

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhang

    2009-04-01

    Full Text Available Xiaoying Zhang1, Jan Anderson1, Radhey S Kaushik2,3, Chandradhar Dwivedi11Department of Pharmaceutical Sciences; 2Department of Veterinary Sciences; 3Department of Biology/Microbiology, South Dakota State University, Brookings, SD, USAAbstract: Resveratrol, a natural product derived from grapes and an important component of red wine, has been shown to inhibit cyclooxygenase and prevent various cancers. The purpose of this study is to investigate the effects of dietary grape extract, a source of resveratrol on intestinal cancer development in rats and to determine effects of resveratrol on cell growth in human colonic adenocarcinoma (Caco-2 cells, thus elucidating possible mechanisms of action of resveratrol. Results showed that dietary grape extract (5%, about 7 μg resveratrol consumed daily significantly decreased the incidence and multiplicity of tumors in small intestine in rats and resveratrol significantly inhibited cell viability and cell proliferation in Caco-2 cells.Keywords: resveratrol, grapes, colonic adenocarcinoma, Caco-2 cells

  9. Synthesis and Biological Evaluation of Resveratrol Derivatives as Melanogenesis Inhibitors

    Directory of Open Access Journals (Sweden)

    Qing Liu

    2015-09-01

    Full Text Available Resveratrol (1, a naturally occurring stilbene compound, has been suggested as a potential whitening agent with strong inhibitory activity on melanin synthesis. However, the use of resveratrol in cosmetics has been limited due to its chemical instability and poor bioavailability. Therefore, resveratrol derivatives were prepared to improve bioavailability and anti-melanogenesis activity. Nine resveratrol derivatives including five alkyl ether derivatives with C2H5, C4H9, C5H11, C6H13, and C8H17 (2a–2e and four ester derivatives with CH3, CH=C(CH32, CH(C2H5C4H9, C7H15 (3a–3d were newly synthesized and their effect on melanin synthesis were assessed. All the synthetic derivatives efficiently reduced the melanin content in α-MSH stimulated B16F10 melanoma cells. Further investigation showed that the inhibitory effect of 2a on melanin synthesis was achieved not by the inhibition of tyrosinase activity but by the inhibition of melanogenic enzyme expressions such as tyrosinase and tyrosinase-related protein (TRP-1. Our synthetic resveratrol derivatives have more lipophilic properties than resveratrol by the addition of alkyl or acyl chains to free hydroxyl moiety of resveratrol; thus, they are expected to show better bioavailability in skin application. Therefore, we suggest that our synthetic resveratrol derivatives might be promising candidates for better practical application to skin-whitening cosmetics.

  10. Resveratrol and Health

    DEFF Research Database (Denmark)

    This volume examines the phytoalexin resveratrol and the ongoing studies about its effects on lifespan and health. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phytoalexin produced naturally by several plants when under attack by pathogens such as bacteria or fungi, significantly extends...... the lifespan of the yeast Saccharomyces cerevisiae, Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Resveratrol is currently a topic of numerous animal and human studies into its effects. The effects of resveratrol on the lifespan of many model organisms remain controversial. Anti......-cancer, anti-inflammatory, blood-sugar-lowering, and other beneficial cardiovascular effects of resveratrol have been reported in experiments with mouse and rat model systems. However, most of these results have yet to be replicated in humans. Resveratrol is found in the skin of red grapes and is a constituent...

  11. Effects of resveratrol on rat neurosteroid synthetic enzymes.

    Science.gov (United States)

    Wang, Yiluan; Sun, Jianliang; Chen, Ling; Zhou, Songyi; Lin, Han; Wang, Yiyan; Lin, Nengming; Ge, Ren-Shan

    2017-10-01

    Resveratrol, a common polyphenol, has extensive pharmacological activities. Resveratrol inhibits some steroid biosynthetic enzymes, indicating that it may block neurosteroid synthesis. The objective of the present study is to investigate the inhibition of resveratrol on neurosteroidogenic enzymes rat 5α-reductase 1 (SRD5A1), 3α-hydroxysteroid dehydrogenase (AKR1C9), and retinol dehydrogenase 2 (RDH2). The IC50 values of resveratrol on SRD5A1, AKR1C9, and RDH2 were >100μM, 0.436±0.070μM, and 4.889±0.062μM, respectively. Resveratrol competitively inhibited rat AKR1C9 and RDH2 against steroid substrates. Docking showed that resveratrol bound to the steroid binding pocket of AKR1C9. It exerted a mixed mode on these AKR1C9 and RDH2 against cofactors. In conclusion, resveratrol potently inhibited rat AKR1C9 and RDH2 to regulate local neurosteroid levels. Copyright © 2017. Published by Elsevier B.V.

  12. Resveratrol and Health

    DEFF Research Database (Denmark)

    the lifespan of the yeast Saccharomyces cerevisiae, Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Resveratrol is currently a topic of numerous animal and human studies into its effects. The effects of resveratrol on the lifespan of many model organisms remain controversial. Anti...... of red wine. Resveratrol has also been produced by chemical synthesis or by biotechnological synthesis and is sold as a nutritional supplement derived primarily from Japanese knotweed....

  13. Resveratrol and Health

    DEFF Research Database (Denmark)

    This volume examines the phytoalexin resveratrol and the ongoing studies about its effects on lifespan and health. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phytoalexin produced naturally by several plants when under attack by pathogens such as bacteria or fungi, significantly extends...... of red wine. Resveratrol has also been produced by chemical synthesis or by biotechnological synthesis and is sold as a nutritional supplement derived primarily from Japanese knotweed....

  14. Resveratrol, 4′ Acetoxy Resveratrol, R-equol, Racemic Equol or S-equol as Cosmeceuticals to Improve Dermal Health

    Science.gov (United States)

    Lephart, Edwin D.

    2017-01-01

    Phytochemicals are botanical compounds used in dermatology applications as cosmeceuticals to improve skin health. Resveratrol and equol are two of the best-known polyphenolic or phytoestrogens having similar chemical structures and some overlapping biological functions to 17β-estradiol. Human skin gene expression was reviewed for 28 different biomarkers when resveratrol, 4′ acetoxy resveratrol (4AR), R-equol, racemic equol or S-equol were tested. Sirtuin 1 activator (SIRT 1) was stimulated by resveratrol and 4AR only. Resveratrol, R-equol and racemic equol were effective on the aging biomarkers proliferating cell nuclear factor (PCNA), nerve growth factor (NGF), 5α-reductase and the calcium binding proteins S100 A8 and A9. Racemic equol and 4AR displayed among the highest levels for the collagens, elastin and tissue inhibitor of the matrix metalloproteinase 1 (TIMP 1). S-equol displayed the lowest level of effectiveness compared to the other compounds. The 4AR analog was more effective compared to resveratrol by 1.6-fold. R-equol and racemic equol were almost equal in potency displaying greater inhibition vs. resveratrol or its 4′ analog for the matrix metalloproteinases (MMPs), but among the inflammatory biomarkers, resveratrol, 4AR, R-equol and racemic equol displayed high inhibition. Thus, these cosmeceuticals display promise to improve dermal health; however, further study is warranted to understand how phytochemicals protect/enhance the skin. PMID:28587197

  15. Resveratrol, 4′ Acetoxy Resveratrol, R-equol, Racemic Equol or S-equol as Cosmeceuticals to Improve Dermal Health

    Directory of Open Access Journals (Sweden)

    Edwin D. Lephart

    2017-06-01

    Full Text Available Phytochemicals are botanical compounds used in dermatology applications as cosmeceuticals to improve skin health. Resveratrol and equol are two of the best-known polyphenolic or phytoestrogens having similar chemical structures and some overlapping biological functions to 17β-estradiol. Human skin gene expression was reviewed for 28 different biomarkers when resveratrol, 4′ acetoxy resveratrol (4AR, R-equol, racemic equol or S-equol were tested. Sirtuin 1 activator (SIRT 1 was stimulated by resveratrol and 4AR only. Resveratrol, R-equol and racemic equol were effective on the aging biomarkers proliferating cell nuclear factor (PCNA, nerve growth factor (NGF, 5α-reductase and the calcium binding proteins S100 A8 and A9. Racemic equol and 4AR displayed among the highest levels for the collagens, elastin and tissue inhibitor of the matrix metalloproteinase 1 (TIMP 1. S-equol displayed the lowest level of effectiveness compared to the other compounds. The 4AR analog was more effective compared to resveratrol by 1.6-fold. R-equol and racemic equol were almost equal in potency displaying greater inhibition vs. resveratrol or its 4′ analog for the matrix metalloproteinases (MMPs, but among the inflammatory biomarkers, resveratrol, 4AR, R-equol and racemic equol displayed high inhibition. Thus, these cosmeceuticals display promise to improve dermal health; however, further study is warranted to understand how phytochemicals protect/enhance the skin.

  16. Resveratrol Represses Pokemon Expression in Human Glioma Cells.

    Science.gov (United States)

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Overstreet, Anne-Marie; Zhan, Yiping; Shan, Dapeng; Li, Hui; Li, Hui; Wang, Yongjun; Zhang, Mengmeng; Yu, Chunjiang; Xu, Zhi-Qing David

    2016-03-01

    POK erythroid myeloid ontogenic factor (Pokemon), an important proto-oncoprotein, is a transcriptional repressor that regulates the expression of many genes and plays an important role in tumorigenesis. Resveratrol (RSV), a natural polyphenolic compound, has many beneficial biological effects on health. In this study, we investigated the role of Pokemon in RSV-induced biological effects and the effect of RSV on the expression of Pokemon in glioma cells. We found that overexpression of Pokemon decreased RSV-induced cell apoptosis, senescence, and anti-proliferative effects. Moreover, we showed that RSV could efficiently decrease the activity of the Pokemon promoter and the expression of Pokemon. Meanwhile, RSV also inhibited Sp1 DNA binding activity to the Pokemon promoter; whereas, it did not influence the expression and nuclear translocation of Sp1. In addition, we found that RSV could increase the recruitment of HDAC1, but decreased p300 to the Pokemon promoter. Taken together, all these results extended our understanding on the anti-cancer mechanism of RSV in glioma cells.

  17. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor.

    Directory of Open Access Journals (Sweden)

    Suthakar Ganapathy

    Full Text Available BACKGROUND: Resveratrol (3, 4', 5 tri-hydroxystilbene, a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining and inducing apoptosis (TUNEL staining. The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27(/KIP1, and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells and markers of metastasis (MMP-2 and MMP-9. The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity. CONCLUSIONS/SIGNIFICANCE: These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer.

  18. Dietary resveratrol does not delay engraftment, sensitize to vincristine, or inhibit growth of high-risk acute lymphoblastic leukemia cells in NOD/SCID mice

    Science.gov (United States)

    Acute lymphoblastic leukemia (ALL) with translocation t(4;11) is a high-risk leukemia found in 60-85% of infants with ALL and is often refractory to conventional chemotherapeutics after relapse. Although resveratrol is able to kill high-risk leukemia in vitro, this agent has not been evaluated agai...

  19. Resveratrol given intraperitoneally does not inhibit growth of high-risk t(4;11) acute lymphoblastic leukemia cells in NOD/SCID mouse model

    Science.gov (United States)

    The efficacy of the phytochemical resveratrol as a preventive agent against the growth of t(4;11) acute lymphoblastic leukemia (ALL) was evaluated in NOD.CB17-Prkdcscid/J mice engrafted with the human t(4;11) ALL line SEM. SEM cells were injected into the tail vein and engraftment was monitored by ...

  20. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Madrigal-Perez, Luis Alberto; Canizal-Garcia, Melina; González-Hernández, Juan Carlos; Reynoso-Camacho, Rosalia; Nava, Gerardo M; Ramos-Gomez, Minerva

    2016-06-01

    The metabolic effects induced by resveratrol have been associated mainly with the consumption of high-calorie diets; however, its effects with standard or low-calorie diets remain unclear. To better understand the interactions between resveratrol and cellular energy levels, we used Saccharomyces cerevisiae as a model. Herein it is shown that resveratrol: (a) decreased cell viability in an energy-dependent manner; (b) lessening of cell viability occurred specifically when cells were under cellular respiration; and (c) inhibition of oxygen consumption in state 4 occurred at low and standard energy levels, whereas at high energy levels oxygen consumption was promoted. These findings indicate that the effects of resveratrol are dependent on the cellular energy status and linked to metabolic respiration. Importantly, our study also revealed that S. cerevisiae is a suitable and useful model to elucidate the molecular targets of resveratrol under different nutritional statuses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Sirt1 Is Required for Resveratrol-Mediated Chemopreventive Effects in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Constanze Buhrmann

    2016-03-01

    Full Text Available Sirt1 is a NAD+-dependent protein-modifying enzyme involved in regulating gene expression, DNA damage repair, metabolism and survival, as well as acts as an important subcellular target of resveratrol. The complex mechanisms underlying Sirt1 signaling during carcinogenesis remain controversial, as it can serve both as a tumor promoter and suppressor. Whether resveratrol-mediated chemopreventive effects are mediated via Sirt1 in CRC growth and metastasis remains unclear; which was the subject of this study. We found that resveratrol suppressed proliferation and invasion of two different human CRC cells in a dose-dependent manner, and interestingly, this was accompanied with a significant decrease in Ki-67 expression. By transient transfection of CRC cells with Sirt1-ASO, we demonstrated that the anti-tumor effects of resveratrol on cells was abolished, suggesting the essential role of this enzyme in the resveratrol signaling pathway. Moreover, resveratrol downregulated nuclear localization of NF-κB, NF-κB phosphorylation and its acetylation, causing attenuation of NF-κB-regulated gene products (MMP-9, CXCR4 involved in tumor-invasion and metastasis. Finally, Sirt1 was found to interact directly with NF-κB, and resveratrol did not suppress Sirt1-ASO-induced NF-κB phosphorylation, acetylation and NF-κB-regulated gene products. Overall, our results demonstrate that resveratrol can suppress tumorigenesis, at least in part by targeting Sirt1 and suppression of NF-κB activation.

  2. Resveratrol and Health

    DEFF Research Database (Denmark)

    This volume examines the phytoalexin resveratrol and the ongoing studies about its effects on lifespan and health. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phytoalexin produced naturally by several plants when under attack by pathogens such as bacteria or fungi, significantly extends...

  3. Resveratrol and Health

    DEFF Research Database (Denmark)

    This volume examines the phytoalexin resveratrol and the ongoing studies about its effects on lifespan and health. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phytoalexin produced naturally by several plants when under attack by pathogens such as bacteria or fungi, significantly extends the...... of red wine. Resveratrol has also been produced by chemical synthesis or by biotechnological synthesis and is sold as a nutritional supplement derived primarily from Japanese knotweed.......-cancer, anti-inflammatory, blood-sugar-lowering, and other beneficial cardiovascular effects of resveratrol have been reported in experiments with mouse and rat model systems. However, most of these results have yet to be replicated in humans. Resveratrol is found in the skin of red grapes and is a constituent...

  4. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qinghe Chen

    2010-12-01

    Full Text Available Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol.Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and apoptosis, and inhibition of cyclin D1 by

  5. Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2017-08-01

    Full Text Available Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4–induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4–induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor–BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process.

  6. Dietary resveratrol prevents the development of food allergy in mice.

    Directory of Open Access Journals (Sweden)

    Yui Okada

    Full Text Available BACKGROUND: Resveratrol is a bioactive polyphenol enriched in red wine that exhibits many beneficial health effects via multiple mechanisms. However, it is unclear whether resveratrol is beneficial for the prevention of food allergy. This study investigated whether resveratrol inhibited the development of food allergy by using a mouse model of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Mice fed standard diet or standard diet plus resveratrol were sensitized by intragastric administration of ovalbumin (OVA and mucosal adjuvant cholera toxin (CT. Several manifestations of food allergy were then compared between the mice. The effects of resveratrol on T cells or dendritic cells were also examined by using splenocytes from OVA-specific T cell-receptor (TCR transgenic DO11.10 mice or mouse bone marrow-derived dendritic cells (BMDCs in vitro. We found that mice fed resveratrol showed reduced OVA-specific serum IgE production, anaphylactic reaction, and OVA-induced IL-13 and IFN-ã production from the mesenteric lymph nodes (MLNs and spleens in comparison to the control mice, following oral sensitization with OVA plus CT. In addition, resveratrol inhibited OVA plus CT-induced IL-4, IL-13, and IFN-ã production in splenocytes from DO11.10 mice associated with inhibition of GATA-3 and T-bet expression. Furthermore, resveratrol suppressed the OVA plus CT-induced CD25 expression and IL-2 production in DO11.10 mice-splenocytes in association with decreases in CD80 and CD86 expression levels. Finally, resveratrol suppressed CT-induced cAMP elevation in association with decreases in CD80 and CD86 expression levels in BMDCs. CONCLUSIONS/SIGNIFICANCE: Ingestion of resveratrol prevented the development of a food allergy model in mice. Given the in vitro findings, resveratrol might do so by inhibiting DC maturation and subsequent early T cell activation and differentiation via downregulation of CT-induced cAMP activation in mice. These results suggest that

  7. Resveratrol-3-O-glucuronide and resveratrol-4’-O-glucuronide reduce DNA strand breakage but not apoptosis in Jurkat T cells treated with camptothecin

    Science.gov (United States)

    Resveratrol has been reported to inhibit or induce DNA damage depending upon the type of cell and experimental conditions. Dietary resveratrol is present in the body mostly as metabolites and little is known about the activities of these metabolic products. We evaluated physiologically obtainable ...

  8. Resveratrol and life extension

    National Research Council Canada - National Science Library

    Agarwal, Beamon; Baur, Joseph A

    2011-01-01

    .... The polyphenol resveratrol activates SIRT1 in an in vitro assay, and produces changes that resemble CR in vivo , including improvements in insulin sensitivity, endurance, and overall survival in obese mice...

  9. Reversal of doxorubicin-induced vascular dysfunction by resveratrol in rat thoracic aorta: is there a possible role of nitric oxide synthase inhibition?/Sican torasik aortunda doksorubisinin olusturdugu fonksiyon bozuklugunun resveratrol uygulamasi ile duzelmesi: Nitrik oksit sentaz inhibisyonunun olasi rolu var mi?(Original Investigation/Ozgun Arastirma)

    National Research Council Canada - National Science Library

    Can, Cenk; Oral, Onur; Olukman, Murat; Erol, Ayse; Oktem, Gulperi; Cinar, Mehtap Gulcihan

    2009-01-01

    .... We investigated the impact of resveratrol on doxorubicin-induced vascular dysfunction in rat thoracic aorta with regard to NO synthesis in an experimental, prospective, controlled study. Methods...

  10. Resveratrol and obesity: Can resveratrol relieve metabolic disturbances?

    NARCIS (Netherlands)

    Ligt, M. de; Timmers, S.; Schrauwen, P.

    2015-01-01

    There is an increasing need for novel preventive and therapeutic strategies to combat obesity and related metabolic disorders. In this respect, the natural polyphenol resveratrol has attracted significant interest. Animal studies indicate that resveratrol mimics the effects of calorie restriction

  11. Resveratrol and Myopathy

    Directory of Open Access Journals (Sweden)

    Jean Bastin

    2016-04-01

    Full Text Available Resveratrol is a natural polyphenolic compound produced by plants under various stress conditions. Resveratrol has been reported to exhibit antioxidant, anti-inflammatory, and anti-proliferative properties in mammalian cells and animal models, and might therefore exert pleiotropic beneficial effects in different pathophysiological states. More recently, resveratrol has also been shown to potentially target many mitochondrial metabolic pathways, including fatty acid β-oxidation or oxidative phosphorylation, leading to the up-regulation of the energy metabolism via signaling pathways involving PGC-1α, SIRT1, and/or AMP-kinase, which are not yet fully delineated. Some of resveratrol beneficial effects likely arise from its cellular effects in the skeletal muscle, which, surprisingly, has been given relatively little attention, compared to other target tissues. Here, we review the potential for resveratrol to ameliorate or correct mitochondrial metabolic deficiencies responsible for myopathies, due to inherited fatty acid β-oxidation or to respiratory chain defects, for which no treatment exists to date. We also review recent data supporting therapeutic effects of resveratrol in the Duchenne Muscular Dystrophy, a fatal genetic disease affecting the production of muscle dystrophin, associated to a variety of mitochondrial dysfunctions, which likely contribute to disease pathogenesis.

  12. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  13. Lipid Signaling in Tumorigenesis

    OpenAIRE

    Liu, Renyan; Huang, Ying

    2014-01-01

    Lipids are important cellular building blocks and components of signaling cascades. Deregulation of lipid metabolism or signaling is frequently linked to a variety of human diseases such as diabetes, cardiovascular diseases, and cancer. It is widely believed that lipid molecules or their metabolic products are involved in tumorigenic inflammation and thus, lipids are implicated as significant contributors or even primary triggers of tumorigenesis. Lipids are believed to directly or indirectly...

  14. Radiomodifying effect of resveratrol in human rhabdomyosarcoma (RD) cell culture applying the comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Vanessa D.; Rogero, Sizue O.; Vieira, Daniel P.; Okazaki, Kayo; Rogero, Jose R., E-mail: van.biologa@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Cruz, Aurea S., E-mail: aurcruz@ial.sp.gov.br [Instituto Adolfo Lutz (IAL-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Cancer is considered a worldwide public health problem. Resveratrol is a defense polyphenol, synthesized naturally by a wide variety of plants according to response of ultraviolet radiation (UV) exposition or according to mechanical stress resulting of pathogens or chemical and physical agents. In vines this substance is found in elevated concentration. Thus, resveratrol is present in grape juice and wines, especially red wine. Red wines are the best dietary source of resveratrol.The protective effects performed by resveratrol during the process of cell damage, produced by oxidative effects of free radicals, are anti-inflammatory, anti-platelet and anti-carcinogenic activity, prevent or inhibit degenerative diseases, decrease incidence of cardiovascular diseases. Moreover, resveratrol is considered as a cell radioprotector. On the other hand, in some elevated concentrations resveratrol is considered as a radiosensitizing compound. The aim of this work was study in vitro the radiomodifying effect of resveratrol in human rhabdomyosarcoma (RD) cells applying the comet assay to evaluate the cellular damage and its repair capacity. In this study RD cells culture was irradiated by gamma radiation at 50 Gy and 100 Gy doses and the used resveratrol concentrations was from 15 μM to 60 μM. The protective and radioprotective effects were observed at 15 μM and 30 μM resveratrol concentrations. The resveratrol concentration of 60 μM showed cytotoxic effect to RD tumor cells and with gamma radiation presence this concentration showed no statistically significant radiosensitizing effects. (author)

  15. Implications of Resveratrol on Glucose Uptake and Metabolism

    Directory of Open Access Journals (Sweden)

    David León

    2017-03-01

    Full Text Available Resveratrol—a polyphenol of natural origin—has been the object of massive research in the past decade because of its potential use in cancer therapy. However, resveratrol has shown an extensive range of cellular targets and effects, which hinders the use of the molecule for medical applications including cancer and type 2 diabetes. Here, we review the latest advances in understanding how resveratrol modulates glucose uptake, regulates cellular metabolism, and how this may be useful to improve current therapies. We discuss challenges and findings regarding the inhibition of glucose uptake by resveratrol and other polyphenols of similar chemical structure. We review alternatives that can be exploited to improve cancer therapies, including the use of other polyphenols, or the combination of resveratrol with other molecules and their impact on glucose homeostasis in cancer and diabetes.

  16. The 4'-hydroxyl group of resveratrol is functionally important for direct activation of PPARα.

    Directory of Open Access Journals (Sweden)

    Yoshie Takizawa

    Full Text Available Long-term moderate consumption of red wine is associated with a reduced risk of developing lifestyle-related diseases such as cardiovascular disease and cancer. Therefore, resveratrol, a constituent of grapes and various other plants, has attracted substantial interest. This study focused on one molecular target of resveratrol, the peroxisome proliferator activated receptor α (PPARα. Our previous study in mice showed that resveratrol-mediated protection of the brain against stroke requires activation of PPARα; however, the molecular mechanisms involved in this process remain unknown. Here, we evaluated the chemical basis of the resveratrol-mediated activation of PPARα by performing a docking mode simulation and examining the structure-activity relationships of various polyphenols. The results of experiments using the crystal structure of the PPARα ligand-binding domain and an analysis of the activation of PPARα by a resveratrol analog 4-phenylazophenol (4-PAP in vivo indicate that the 4'-hydroxyl group of resveratrol is critical for the direct activation of PPARα. Activation of PPARα by 5 μM resveratrol was enhanced by rolipram, an inhibitor of phosphodiesterase (PDE and forskolin, an activator of adenylate cyclase. We also found that resveratrol has a higher PDE inhibitory activity (IC50 = 19 μM than resveratrol analogs trans-4-hydroxystilbene and 4-PAP (IC50 = 27-28 μM, both of which has only 4'-hydroxyl group, indicating that this 4'-hydroxyl group of resveratrol is not sufficient for the inhibition of PDE. This result is consistent with that 10 μM resveratrol has a higher agonistic activity of PPARα than these analogs, suggesting that there is a feedforward activation loop of PPARα by resveratrol, which may be involved in the long-term effects of resveratrol in vivo.

  17. Modulation of TRP channels by resveratrol and other stilbenoids

    Directory of Open Access Journals (Sweden)

    Yu Lina

    2013-02-01

    Full Text Available Abstract Background Resveratrol (3,5,4’ - trihydroxy-trans-stilbene, a widely distributed natural stilbenoid, was proposed to account for the unique effects of red wine on life span and health. It has been reported to possess various biological and pharmacological activities, such as anti-oxidant, anti-inflammatory, and anti-carcinogenic effects. Here, using whole-cell patch-clamp techniques and behavioral analyses, we investigated whether resveratrol and other stilbenoids can modulate TRP channels in sensory neurons in vitro, and have analgesic effects in vivo. Results We found that resveratrol dose-dependently suppressed the allyl isothiocyanate (AITC-induced currents (IAITC in HEK293 cells that express TRPA1, as well as in rat dorsal root ganglion (DRG neurons. Instead, pinosylvin methyl ether (PME, another derivate of stilbene which has a similar structure to resveratrol, dose-dependently blocked the capsaicin-induced currents (ICAP in HEK293 cells that express TRPV1 as well as in DRG neurons. Interestingly, resveratrol had no inhibitory effect on the ICAP, and PME had no effect on the IAITC. Otherwise, trans-stilbene showed no any effect on IAITC or ICAP. The concentration response curve of AITC showed that resveratrol inhibited the action of TRPA1 not by changing the EC50, but by suppressing the AITC-induced maximum response. By contrast, the inhibition of TRPV1 by PME did not change the capsaicin-induced maximum response but did cause a right shift of the EC50. Moreover, pre-administration of resveratrol suppressed intraplantar injections of AITC-evoked nocifensive behaviors, as well as that PME suppressed capsaicin-evoked one. Conclusions These data suggest that resveratrol and other stilbenoids may have an inhibitory effect on TRP channels. In addition, these stilbenoids modulate TRP channel activity in different ways.

  18. A Reaction-Diffusion Model of the Cadherin-Catenin System: A Possible Mechanism for Contact Inhibition and Implications for Tumorigenesis

    CERN Document Server

    Basan, Markus; Lenz, Martin; Joanny, Jean-François; Risler, Thomas

    2015-01-01

    Contact inhibition is the process by which cells switch from a motile growing state to a passive and stabilized state upon touching their neighbors. When two cells touch, an adhesion link is created between them by means of transmembrane E-cadherin proteins. Simultaneously, their actin filaments stop polymerizing in the direction perpendicular to the membrane and reorganize to create an apical belt that colocalizes with the adhesion links. Here, we propose a detailed quantitative model of the role of the cytoplasmic $\\beta$-catenin and $\\alpha$-catenin proteins in this process, treated as a reaction-diffusion system. Upon cell-cell contact, the concentration in $\\alpha$-catenin dimers increases, inhibiting actin branching and thereby reducing cellular motility and expansion pressure. This model provides a mechanism for contact inhibition that could explain previously unrelated experimental findings on the role played by E-cadherin, $\\beta$-catenin and $\\alpha$-catenin in the cellular phenotype and in tumorige...

  19. Alpha-glucosidase inhibitory effect of resveratrol and piceatannol

    Science.gov (United States)

    Dietary polyphenols have been shown to inhibit a-glucosidase, an enzyme target of some anti-diabetic drugs. Resveratrol, a polyphenol found in grapes and wine, has been reported to inhibit the activity of yeast a-glucosidase. This triggered our interest to synthesize analogs and determine their ef...

  20. What is new for resveratrol?

    DEFF Research Database (Denmark)

    Vang, Ole

    2013-01-01

    Numerous scientific papers have suggested health-promoting effects of resveratrol, including claims in the prevention of diseases such as coronary heart disease, diabetes, and cancer. Therefore, it was proposed that the scientific community needed to express recommendations on the human use...... of resveratrol. Such recommendations were formulated after the first international resveratrol conference in Denmark, Resveratrol2010. The working group stated that the evidence was "not sufficiently strong to justify recommendation for the chronic administration of resveratrol to human beings, beyond the dose...... which can be obtained from dietary sources." It was a disappointing conclusion relative to the positive claims about the therapeutic potential of resveratrol made by the media. However, since 2010, results from the first clinical trials on resveratrol have been made available. Because of these emerging...

  1. Resveratrol and acetyl-resveratrol modulate activity of VEGF and IL-8 in ovarian cancer cell aggregates via attenuation of the NF-κB protein.

    Science.gov (United States)

    Tino, Alexandria B; Chitcholtan, Kenny; Sykes, Peter H; Garrill, Ashley

    2016-12-01

    Key features of advanced ovarian cancer include metastasis via cell clusters in the abdominal cavity and increased chemoresistance. Resveratrol and derivatives of resveratrol have been shown to have antitumour properties. The purpose of this study was to investigate the effect of resveratrol and acetyl-resveratrol on 3D cell aggregates of ovarian cancer, and establish if NF-κB signalling may be a potential target. Poly-HEMA coated wells were used to produce 3D aggregates of two ovarian cancer cell lines, SKOV-3 and OVCAR-5. The aggregates were exposed to 10, 20 or 30 μM resveratrol or acetyl-resveratrol for 2, 4 or 6 days. Cell growth and metabolism were measured then ELISA, western blot and immunofluorescence were utilised to evaluate VEGF, IL-8 and NF-κB levels. Resveratrol and acetyl-resveratrol reduced cell growth and metabolism of SKOV-3 aggregates in a dose- and time-dependent manner. After 6 days all three doses of both compounds inhibited cell growth. This growth inhibition correlated with the attenuated secretion of VEGF and a decrease of NF-κB protein levels. Conversely, the secretion of IL-8 increased with treatment. The effects of the compounds were limited in OVCAR-5 cell clusters. The results suggest that resveratrol and its derivative acetyl-resveratrol may inhibit in vitro 3D cell growth of certain subtypes of ovarian cancer, and growth restriction may be associated with the secretion of VEGF under the control of the NF-κB protein.

  2. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Fangfang Lang

    Full Text Available Resveratrol (trans-3,4,5'-trihydroxystilbene is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3 was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.

  3. Resveratrol as a Pan-HDAC Inhibitor Alters the Acetylation Status of Jistone Proteins in Human-Derived Hepatoblastoma Cells

    Science.gov (United States)

    Böcker, Alexander; Busch, Christian; Weiland, Timo; Noor, Seema; Leischner, Christian; Schleicher, Sabine; Mayer, Mascha; Weiss, Thomas S.; Bischoff, Stephan C.; Lauer, Ulrich M.; Bitzer, Michael

    2013-01-01

    The polyphenolic alcohol resveratrol has demonstrated promising activities for the prevention and treatment of cancer. Different modes of action have been described for resveratrol including the activation of sirtuins, which represent the class III histone deacetylases (HDACs). However, little is known about the activity of resveratrol on the classical HDACs of class I, II and IV, although these classes are involved in cancer development or progression and inhibitors of HDACs (HDACi) are currently under investigation as promising novel anticancer drugs. We could show by in silico docking studies that resveratrol has the chemical structure to inhibit the activity of different human HDAC enzymes. In vitro analyses of overall HDAC inhibition and a detailed HDAC profiling showed that resveratrol inhibited all eleven human HDACs of class I, II and IV in a dose-dependent manner. Transferring this molecular mechanism into cancer therapy strategies, resveratrol treatment was analyzed on solid tumor cell lines. Despite the fact that hepatocellular carcinoma (HCC) is known to be particularly resistant against conventional chemotherapeutics, treatment of HCC with established HDACi already has shown promising results. Testing of resveratrol on hepatoma cell lines HepG2, Hep3B and HuH7 revealed a dose-dependent antiproliferative effect on all cell lines. Interestingly, only for HepG2 cells a specific inhibition of HDACs and in turn a histone hyperacetylation caused by resveratrol was detected. Additional testing of human blood samples demonstrated a HDACi activity by resveratrol ex vivo. Concluding toxicity studies showed that primary human hepatocytes tolerated resveratrol, whereas in vivo chicken embryotoxicity assays demonstrated severe toxicity at high concentrations. Taken together, this novel pan-HDACi activity opens up a new perspective of resveratrol for cancer therapy alone or in combination with other chemotherapeutics. Moreover, resveratrol may serve as a lead

  4. (Z)3,4,5,4‧-trans-tetramethoxystilbene, a new analogue of resveratrol, inhibits gefitinb-resistant non-small cell lung cancer via selectively elevating intracellular calcium level

    Science.gov (United States)

    Fan, Xing-Xing; Yao, Xiao-Jun; Xu, Su Wei; Wong, Vincent Kam-Wai; He, Jian-Xing; Ding, Jian; Xue, Wei-Wei; Mujtaba, Tahira; Michelangeli, Francesco; Huang, Min; Huang, Jun; Xiao, Da-Kai; Jiang, Ze-Bo; Zhou, Yan-Ling; Kin-Ting Kam, Richard; Liu, Liang; Lai-Han Leung, Elaine

    2015-11-01

    Calcium is a second messenger which is required for regulation of many cellular processes. However, excessive elevation or prolonged activation of calcium signaling would lead to cell death. As such, selectively regulating calcium signaling could be an alternative approach for anti-cancer therapy. Recently, we have identified an effective analogue of resveratrol, (Z)3,4,5,4‧-trans-tetramethoxystilbene (TMS) which selectively elevated the intracellular calcium level in gefitinib-resistant (G-R) non-small-cell lung cancer (NSCLC) cells. TMS exhibited significant inhibitory effect on G-R NSCLC cells, but not other NSCLC cells and normal lung epithelial cells. The phosphorylation and activation of EGFR were inhibited by TMS in G-R cells. TMS induced caspase-independent apoptosis and autophagy by directly binding to SERCA and causing endoplasmic reticulum (ER) stress and AMPK activation. Proteomics analysis also further confirmed that mTOR pathway, which is the downstream of AMPK, was significantly suppressed by TMS. JNK, the cross-linker of ER stress and mTOR pathway was significantly activated by TMS. In addition, the inhibition of JNK activation can partially block the effect of TMS. Taken together, TMS showed promising anti-cancer activity by mediating calcium signaling pathway and inducing apoptosis as well as autophagy in G-R NSCLC cells, providing strategy in designing multi-targeting drug for treating G-R patients.

  5. Targeting Activin Receptor-Like Kinase 1 (ALK1) Inhibits Angiogenesis and Tumorigenesis Through a Mechanism of Action Complementary to Anti-VEGF Therapies

    Science.gov (United States)

    Hu-Lowe, Dana D.; Chen, Enhong; Zhang, Lianglin; Watson, Katherine D.; Mancuso, Patrizia; Lappin, Patrick; Wickman, Grant; Chen, Jeffrey H.; Wang, Jianying; Jiang, Xin; Amundson, Karin; Simon, Ronald; Erbersdobler, Andreas; Bergqvist, Simon; Feng, Zheng; Swanson, Terri A.; Simmons, Brett H.; Lippincott, John; Casperson, Gerald F.; Levin, Wendy J.; Stampino, Corrado Gallo; Shalinsky, David R.; Ferrara, Katherine W.; Fiedler, Walter; Bertolini, Francesco

    2011-01-01

    Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common pro-angiogenic factors (PAFs; vascular endothelial growth factor [VEGF] A and basic fibroblast growth factor [bFGF]). We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (ECs). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed MatrigelTM angiogenesis stimulated by PAFs, and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density, and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Anti-angiogenesis and antitumor efficacy were associated with disrupted colocalization of ECs with desmin+ perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current anti-angiogenic modalities in the clinic. PMID:21212415

  6. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Kim

    2016-02-01

    Full Text Available Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS. The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549 against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value compared to trolox and vitamin E since the concentration of resveratrol was more than 50 μM. Nanoparticles prepared from β-lactoglobulin (β-lg were successfully developed. The β-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. Fluorescein isothiocynate-conjugated β-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1 signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds.

  7. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Gong, Yaoqin, E-mail: yxg8@sdu.edu.cn [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Shao, Changshun, E-mail: shao@biology.rutgers.edu [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  8. The antimicrobial action of resveratrol against Listeria monocytogenes in food-based models and its antibiofilm properties.

    Science.gov (United States)

    Ferreira, Susana; Domingues, Fernanda

    2016-10-01

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural phytoalexin synthesized by plants in response to stress. This compound has several beneficial documented properties, namely anti-inflammatory, antioxidant, neuroprotective and antimicrobial activities. In this study the antimicrobial activity of resveratrol against Listeria monocytogenes and Listeria innocua was investigated. Resveratrol had a minimum inhibitory concentration of 200 µg mL(-1) for the tested strains, with time-kill curves demonstrating bacteriostatic activity. Inhibition of biofilm formation was also assessed, with resveratrol strongly inhibiting biofilm formation by both species even at subinhibitory concentrations. Overall, resveratrol showed antimicrobial properties on planktonic cells and on biofilm formation ability. Considering the potential use of resveratrol as a food preservative, the antimicrobial efficacy of resveratrol in food was studied in milk, lettuce leaf model and chicken juice. Resveratrol retained greater efficacy in both lettuce leaf model and chicken juice, but milk had a negative impact on its antilisterial activity, indicating a possible reduction of resveratrol availability in milk. This study reinforces resveratrol as an antimicrobial agent, pointing out its antibiofilm activity and its potential use as preservative in some food matrices. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Inhibiting the role of Skp2 suppresses cell proliferation and tumorigenesis of human gastric cancer cells via the upregulation of p27kip1.

    Science.gov (United States)

    Wen, Yanguang; Wang, Kuansong; Yang, Kaiyan

    2016-10-01

    Gastric cancer is a malignant disease of the digestive system with high rates of incidence and mortality. S‑phase kinase‑associated protein 2 (Skp2) is a novel oncogene, which has been identified to be important in tumor progression and metastasis. In order to clarify the role of Skp2 in human gastric cancer, the present study detected the expression of Skp2 in human gastric cancer tissues, and investigated the molecular mechanism of Skp2 in the progression of gastric carcinoma. The results of the initial bioinformatics analysis showed that Skp2 was significantly upregulated in 31 specimens of primary gastric cancer from a UK patient cohort, and in 10 gastric cancer lines of a side population, compared with normal gastric tissues (Pgastric cancer and 19 normal gastric tissue specimens were obtained and analyzed using western blot analysis. The positive rate of expression of Skp2 was 87.2%, indicating that the expression of Skp2 was observed in 41 specimens of the detected gastric cancer samples, whereas the positive rate of the expression of Skp2 was 5.6% in the normal gastric samples (Pgastric cancer cell lines, the defective regulation of Skp2 or presence of an Skp2 inhibitor inhibited the proliferation of BGC‑823 and MKN‑45 cells. In addition, the Skp2 inhibitor suppressed the proliferation of gastric cancer cells in a time‑ and dose‑dependent manner. Furthermore, transfection with Skp2 short hairpin (sh)RNA or treatment with SKP inhibitor C1 for 48 and 72 h led to the accumulation of p27kip1 in Hela cells. Tumorigenicity experiments involving nude mice showed that interference of the expression of Skp2 inhibited the growth of the human gastric tumor cells in the nude mice, and the tumor weights and volumes in the Skp2 shRNA group were significantly lower, compared with those in the negative control shRNA group (Pgastric cancer, and that Skp2‑mediated p27kip1 degradation contributed to the progression of gastric cancer. Abrogating the effects

  10. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi, E-mail: smshin@chosun.ac.kr

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  11. Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Das, Dipon; Siddharth, Sumit [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India); Choudhuri, Tathagata [Institute of Life Sciences, Nalco Square, Bhubaneswar, Orissa 751023 (India); Department of Biotechnology, Visva Bharati University, Santiniketan, West Bengal (India); Kundu, Chanakya Nath, E-mail: cnkundu@gmail.com [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India)

    2014-03-15

    Cigarette smoking is a key factor for the development and progression of different cancers including mammary tumor in women. Resveratrol (Res) is a promising natural chemotherapeutic agent that regulates many cellular targets including p21, a cip/kip family of cyclin kinase inhibitors involved in DNA damage-induced cell cycle arrest and blocking of DNA replication and repair. We have recently shown that cigarette smoke condensate (CSC) prepared from commercially available Indian cigarette can cause neoplastic transformation of normal breast epithelial MCF-10A cell. Here we studied the mechanism of Res mediated apoptosis in CSC transformed (MCF-10A-Tr) cells in vitro and in vivo. Res mediated apoptosis in MCF-10A-Tr cells was a p21 dependent event. It increased the p21 protein expression in MCF-10A-Tr cells and MCF-10A-Tr cells-mediated tumors in xenograft mice. Res treatment reduced the tumor size(s) and expression of anti-apoptotic proteins (e.g. PI3K, AKT, NFκB) in solid tumor. The expressions of cell cycle regulatory (Cyclins, CDC-2, CDC-6, etc.), BER associated (Pol-β, Pol-δ, Pol-ε, Pol-η, RPA, Fen-1, DNA-Ligase-I, etc.) proteins and LP-BER activity decreased in MCF-10A-Tr cells but remain significantly unaltered in isogenic p21 null MCF-10A-Tr cells after Res treatment. Interestingly, no significant changes were noted in SP-BER activity in both the cell lines after Res exposure. Finally, it was observed that increased p21 blocks the LP-BER in MCF-10A-Tr cells by increasing its interaction with PCNA via competing with Fen-1 after Res treatment. Thus, Res caused apoptosis in CSC-induced cancer cells by reduction of LP-BER activity and this phenomenon largely depends on p21. - Highlights: • Resveratrol (Res) caused reduction of MCF-10A-Tr cell growth by inducing apoptosis. • Res caused cell cycle arrest and DNA damage in p21 dependent manner. • Res mediated LP-BER reduction in MCF-10A-Tr cells was a p21 dependent phenomenon. • Res inhibits BER and PI

  12. Effects of resveratrol, a grape polyphenol, on uterine contraction and Ca²+ mobilization in rats in vivo and in vitro.

    Science.gov (United States)

    Hsia, Shih-Min; Wang, Kai-Lee; Wang, Paulus S

    2011-05-01

    Dysmenorrhea is directly related to elevate prostaglandin F (PGF)(₂α) levels. In Western medicine, this condition is treated using nonsteroidal antiinflammatory drugs. Because nonsteroidal antiinflammatory drugs produce many side effects, Chinese medicinal therapy is considered as a feasible alternative for treating dysmenorrhea. Many special physiological components used in Chinese medicine, such as resveratrol, have been isolated and identified. Resveratrol has many physiological functions, such as antioxidation and anticarcinogenic effects. However, the relationship between uterine smooth muscle contraction and resveratrol remains unknown. Here, we studied the in vitro and in vivo effects of resveratrol on uterine smooth muscle contraction. The uterus was separated from a female Sprague Dawley rat, and uterine smooth muscle contraction activity was measured and recorded. The results demonstrated that 1) resveratrol treatment inhibited PGF(₂α)-, oxytocin-, acetylcholine-, and carbachol-induced uterine contractions in rats; 2) resveratrol inhibited uterine contractions stimulated by the Ca²(+) channel activator (Bay K 8644) and depolarization in response to high K(+) (KCl); 3) resveratrol inhibited PGF(₂α)-induced increases in the [Ca²(+)]i in human uterine smooth muscle cells; 4) resveratrol could mimic Ca²(+) channel blockers to block Ca²(+) influx through voltage-operated Ca²(+) channels in the plasma membrane; and 5) resveratrol inhibited PGF(₂α)-induced uterine contractions in rats in vivo. Resveratrol inhibited uterine contractions induced by PGF(₂α) and high K(+) in a concentration-dependent manner in vitro; furthermore, it inhibited Ca²(+)-dependent uterine contractions. Thus, resveratrol consistently suppressed the increases in intracellular Ca²(+) concentrations ([Ca²(+)]i) induced by PGF(₂α) and high K(+) concentrations. It can be assumed that resveratrol probably inhibited uterine contraction by blocking external Ca

  13. Resveratrol and Ophthalmic Diseases

    Directory of Open Access Journals (Sweden)

    Khaled K. Abu-Amero

    2016-04-01

    Full Text Available Resveratrol, a naturally occurring plant polyphenol found in grapes, is the principal biologically active component in red wine. Clinical studies have shown that resveratrol due to its potent anti-oxidant and anti-inflammatory properties are cardio-protective, chemotherapeutic, neuroprotective, and display anti-aging effects. Oxidative stress and inflammation play a critical role in the initiation and progression of age-related ocular diseases (glaucoma, cataract, diabetic retinopathy and macular degeneration that lead to progressive loss of vision and blindness. In vitro and in vivo (animal model experimental studies performed so far have provided evidence for the biological effects of resveratrol on numerous pathways including oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, pro-survival or angiogenesis that are implicated in the pathogenesis of these age-related ocular disorders. In this review, we provide a brief overview of current scientific literature on resveratrol, its plausible mechanism(s of action, its potential use and current limitations as a nutritional therapeutic intervention in the eye and its related disorders.

  14. Resveratrol and Ophthalmic Diseases

    Science.gov (United States)

    Abu-Amero, Khaled K.; Kondkar, Altaf A.; Chalam, Kakarla V.

    2016-01-01

    Resveratrol, a naturally occurring plant polyphenol found in grapes, is the principal biologically active component in red wine. Clinical studies have shown that resveratrol due to its potent anti-oxidant and anti-inflammatory properties are cardio-protective, chemotherapeutic, neuroprotective, and display anti-aging effects. Oxidative stress and inflammation play a critical role in the initiation and progression of age-related ocular diseases (glaucoma, cataract, diabetic retinopathy and macular degeneration) that lead to progressive loss of vision and blindness. In vitro and in vivo (animal model) experimental studies performed so far have provided evidence for the biological effects of resveratrol on numerous pathways including oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, pro-survival or angiogenesis that are implicated in the pathogenesis of these age-related ocular disorders. In this review, we provide a brief overview of current scientific literature on resveratrol, its plausible mechanism(s) of action, its potential use and current limitations as a nutritional therapeutic intervention in the eye and its related disorders. PMID:27058553

  15. Cellular Targets of Dietary Polyphenol Resveratrol

    National Research Council Canada - National Science Library

    Wu, Joseph M

    2006-01-01

    To test the hypothesis that resveratrol, a grape derived polyphenol, exerts its chemopreventive properties against prostate cancer by interacting with specific cellular targets, denoted resveratrol targeting proteins (RTPs...

  16. Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells.

    Science.gov (United States)

    Deus, Cláudia M; Serafim, Teresa L; Magalhães-Novais, Silvia; Vilaça, Andreia; Moreira, Ana C; Sardão, Vilma A; Cardoso, Susana M; Oliveira, Paulo J

    2017-03-01

    Sirtuins regulate several processes associated with tumor development. Resveratrol was shown to stimulate sirtuin 1 and 3 (SIRT1/3) activities and to result in cytotoxicity for some tumor types. The relationship between modulation of sirtuin activities, cellular metabolic remodeling and resveratrol cytotoxicity mechanism on breast cancer cells is still an open question. Here, we evaluated whether sirtuin 1 and 3 are involved in resveratrol toxicity and whether resveratrol leads to a metabolic remodeling and cell differentiation. Results using the Extracellular Flux Analyzer indicated that resveratrol inhibits mitochondrial respiration in breast cancer cells. We also demonstrated here for the first time that resveratrol cytotoxic effects on breast cancer cells were modulated by SIRT1 and also involved mitochondrial complex I inhibition. Importantly, we also demonstrated that resveratrol reduced the pool of breast cancer cells with stemness markers through a SIRT1-dependent mechanism. Our data highlights the role of SIRT1 in regulating resveratrol induced differentiation and/or toxicity in breast cancer cells.

  17. Inhibitory Effects of Resveratrol Analogs on Mushroom Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Nádia Rezende Barbosa Raposo

    2012-10-01

    Full Text Available Skin pigmentation disorders typically involve an overproduction or uneven distribution of melanin, which results in skin spots. Resveratrol can inhibit tyrosinase, the active enzyme in the synthesis of melanin, but it does not inhibit the synthesis of melanin to an extent that enables its use alone as a skin whitening agent in pharmaceutical formulations, so its use as a coadjuvant in treatment of hyperpigmentation is suggested. Six resveratrol analogs were tested for tyrosinase inhibitory activity in vitro. Among the analogs tested, compound D was the most powerful tyrosinase inhibitor (IC50 = 28.66 µg/mL, two times more active than resveratrol (IC50 = 57.05 µg/mL, followed by the analogs A, E, B, F and C, respectively. This demonstrated that the hydroxylation at C4' on the phenolic ring was the molecular modification with most importance for the observed activity.

  18. Antiviral Activity of Resveratrol against Human and Animal Viruses

    Directory of Open Access Journals (Sweden)

    Yusuf Abba

    2015-01-01

    Full Text Available Resveratrol is a potent polyphenolic compound that is being extensively studied in the amelioration of viral infections both in vitro and in vivo. Its antioxidant effect is mainly elicited through inhibition of important gene pathways like the NF-κβ pathway, while its antiviral effects are associated with inhibitions of viral replication, protein synthesis, gene expression, and nucleic acid synthesis. Although the beneficial roles of resveratrol in several viral diseases have been well documented, a few adverse effects have been reported as well. This review highlights the antiviral mechanisms of resveratrol in human and animal viral infections and how some of these effects are associated with the antioxidant properties of the compound.

  19. Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-kappaB pathways and inhibits skin tumorigenesis in CD-1 mice.

    Science.gov (United States)

    Afaq, Farrukh; Saleem, Mohammad; Krueger, Christian G; Reed, Jess D; Mukhtar, Hasan

    2005-01-20

    Chemoprevention has come of age as an effective cancer control modality; however, the search for novel agent(s) for the armamentarium of cancer chemoprevention continues. We argue that agents capable of intervening at more than one critical pathway in the carcinogenesis process will have greater advantage over other single-target agents. Pomegranate fruit extract (PFE) derived from the tree Punica granatum possesses strong antioxidant and antiinflammatory properties. Pomegranate fruit was extracted with acetone and analyzed based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and found to contain anthocyanins, ellagitannins and hydrolyzable tannins. We evaluated whether PFE possesses antitumor-promoting effects. We first determined the effect of topical application of PFE to CD-1 mice against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced conventional markers and other novel markers of skin tumor promotion. We found that topical application of PFE (2 mg/mouse) 30 min prior to TPA (3.2 nmole/mouse) application on mouse skin afforded significant inhibition, in a time-dependent manner, against TPA-mediated increase in skin edema and hyperplasia, epidermal ornithine decarboxylase (ODC) activity and protein expression of ODC and cyclooxygenase-2. We also found that topical application of PFE resulted in inhibition of TPA-induced phosphorylation of ERK1/2, p38 and JNK1/2, as well as activation of NF-kappaB and IKKalpha and phosphorylation and degradation of IkappaBalpha. We next assessed the effect of skin application of PFE on TPA-induced skin tumor promotion in 7,12-dimethylbenz(a)anthracene-initiated CD-1 mouse. The animals pretreated with PFE showed substantially reduced tumor incidence and lower tumor body burden when assessed as total number of tumors per group, percent of mice with tumors and number of tumors per animal as compared to animals that did not receive PFE. In TPA-treated group, 100% of the mice developed tumors at

  20. Active Component of Danshen (Salvia miltiorrhiza Bunge, Tanshinone I, Attenuates Lung Tumorigenesis via Inhibitions of VEGF, Cyclin A, and Cyclin B Expressions

    Directory of Open Access Journals (Sweden)

    Yu-Tang Tung

    2013-01-01

    Full Text Available Tanshinone I (T1 and tanshinone II (T2 are the major diterpenes isolated from Danshen (Salvia miltiorrhiza Bunge. Three human lung adenocarcinoma cell lines, A549, CL1-0, and CL1-5, were treated with T1 and T2 for the in vitro antitumor test. Results showed that T1 was more effective than T2 in inhibiting the growth of lung cancer cells via suppressing the expression of VEGF, Cyclin A, and Cyclin B proteins in a dose-dependent manner. Moreover, a transgenic mice model of the human vascular endothelial growth factor-A165 (hVEGF-A165 gene-induced pulmonary tumor was further treated with T1 for the in vivo lung cancer therapy test. T1 significantly attenuated hVEGF-A165 overexpression to normal levels of the transgenic mice (Tg that were pretreated with human monocytic leukemia THP-1 cell-derived conditioned medium (CM. It also suppressed the formation of lung adenocarcinoma tumors (16.7% compared with two placebo groups (50% for Tg/Placebo and 83.3% for Tg/CM/Placebo; P<0.01. This antitumor effect is likely to slow the progression of cells through the S and G2/M phases of the cell cycle. Blocking of the tumor-activated cell cycle pathway may be a critical mechanism for the observed antitumorigenic effects of T1 treatment on vasculogenesis and angiogenesis.

  1. Resveratrol interferes with AKT activity and triggers apoptosis in human uterine cancer cells

    Directory of Open Access Journals (Sweden)

    Asselin Eric

    2006-10-01

    Full Text Available Abstract Background Endometrial cancer is the fourth most prominent cancer among all feminine cancers in the Western world. Resveratrol, a natural anti-oxidant found in red wine emerging as a novel anticancer agent, exerts antiproliferative and pro-apoptotic activity in various cancer cell types, but its effect on uterine cancer cells is poorly understood. At the molecular level, resveratrol has been reported to inhibit cyclooxygenase (COX expression and/or activity; in endometrial cancer cells, COX-2 is overexpressed and confers cellular resistance to apoptosis. The aim of the present study was to determine if resveratrol could exert anti-proliferative and pro-apoptotic activity over uterine cancer cells upon inhibition of COX-2 expression and/or activity. Six different human uterine cancer cell lines were used as a model (HeLa, Hec-1A, KLE, RL95-2, Ishikawa and EN-1078D. Results and discussion High-dose of resveratrol triggered apoptosis in five out of six uterine cancer cell lines, as judged from Hoechst nuclear staining and effector caspase cleavage. In accordance, uterine cancer cell proliferation was decreased. Resveratrol also reduced cellular levels of the phosphorylated/active form of anti-apoptotic kinase AKT. Endogenous COX-2 protein levels were decreased, concomitant with a decrease in production of COX metabolites PGE2 and PGF2α, in each uterine cancer cell line expressing detectable levels of COX-1 and/or COX-2 in presence of resveratrol. Although COX expression was identified as a target of resveratrol in uterine cancer cells, inhibition of COX activity or exogenously added PGE2 did not modulate the effect of resveratrol on cellular proliferation. Conclusion High-dose of resveratrol exerts tumoricidal activity over uterine cancer cells and regulates COX expression. In these cells, resveratrol would not directly target COX activity, but possibly other enzymes involved in prostaglandin synthesis that act downstream of the COXs.

  2. Inhibitory Effects of Resveratrol on the Epstein-Barr Virus Lytic Cycle

    Directory of Open Access Journals (Sweden)

    Tsuey-Pin Lin

    2010-10-01

    Full Text Available Reactivation of Epstein-Barr virus (EBV from latency to the lytic cycle is required for the production of viral particles. Here, we examine the capacity of resveratrol to inhibit the EBV lytic cycle. Our results show that resveratrol inhibits the transcription of EBV immediate early genes, the expression of EBV lytic proteins, including Rta, Zta, and EA-D and reduces viron production, suggesting that this compound may be useful for preventing the proliferation of the virus.

  3. NF-kappaB in Lung Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhenjian [Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Tchou-Wong, Kam-Meng; Rom, William N., E-mail: william.rom@nyumc.org [Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2011-12-14

    The development of lung cancer in humans can be divided into three steps initiation, promotion and progression. This process is driven by alterations in related signal transduction pathways. These pathways signal the aberrant activation of NF-kappaB, a transcription factor that regulates the expression of genes important for lung tumorigenesis. Our current knowledge about the role of the NF-kappaB signaling pathway in the development of lung cancer has been bolstered by animal models demonstrating the connection between K-ras and tobacco induced lung transformation with NF-kappaB. Activation of downstream genes leads to cell proliferation, inhibition of apoptosis, angiogenesis, inflammation, invasion, and metastasis.

  4. Resveratrol differentially regulates NAMPT and SIRT1 in Hepatocarcinoma cells and primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Susanne Schuster

    Full Text Available Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382. Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells.

  5. Resveratrol Differentially Regulates NAMPT and SIRT1 in Hepatocarcinoma Cells and Primary Human Hepatocytes

    Science.gov (United States)

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Petzold-Quinque, Stefanie; Damm, Georg; Gebhardt, Rolf; Kiess, Wieland; Garten, Antje

    2014-01-01

    Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells) and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382). Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells. PMID:24603648

  6. Novel Resveratrol-Based Aspirin Prodrugs: Synthesis, Metabolism, and Anticancer Activity.

    Science.gov (United States)

    Zhu, Yingdong; Fu, Junsheng; Shurlknight, Kelly L; Soroka, Dominique N; Hu, Yuhui; Chen, Xiaoxin; Sang, Shengmin

    2015-08-27

    Regular aspirin use has been convincingly shown to reduce the risk of colorectal cancer. However, long-term use of aspirin leads to gastrotoxicity. Herein, we designed and synthesized a novel class of resveratrol-based aspirin prodrugs to simultaneously release aspirin and resveratrol to attenuate the side effects caused by aspirin. Prodrug RAH exerted enhanced anticancer activities which are better than a physical mixture of aspirin and resveratrol as well as each individually. Metabolism of RAH in mice showed that the majority of RAH is decomposed to release resveratrol and aspirin or salicylic acid either in the intestine or after absorption. Mechanistic studies demonstrate RAH inhibits cell cycle arrest through downregulation of cyclins and induces apoptosis by activation of caspase-3 in cancer cells. These findings highlighted the improved anticancer properties of resveratrol-based aspirin prodrugs. RAH may represent novel and safe alternatives of aspirin for the purpose of daily use in the future.

  7. Resveratrol food supplements

    DEFF Research Database (Denmark)

    Aschemann-Witzel, Jessica; Grunert, Klaus G

    2015-01-01

    Background: Consumers increasingly choose food supplements in addition to their diet. Research on supplement users finds they are likely to be female, older and well-educated; Furthermore, supplement users are often characterised as being especially health-oriented, an observation which is termed...... the ‘inverse supplement hypothesis’. However, results are dependent on the substance in question. Little is known so far about botanicals in general, and more specifically, little is known about resveratrol. The psychographic variables of food supplement users are yet relatively underexplored. By comparing US...... and Danish respondents, we aimed to identify whether sociodemographic variables, health status, health beliefs and behaviour and interest in food aspects specifically relevant to resveratrol (e.g., naturalness, indulgence, and Mediterranean food) explain favourable attitudes and adoption intentions toward...

  8. Dual Mechanism of Action of Resveratrol in Notch Signaling ...

    African Journals Online (AJOL)

    HeyL, Notch signaling target genes. Conclusion: Resveratrol plays an important role in the activation of Notch signaling pathway and may be of therapeutic benefit in the treatment of osteosarcoma. Keywords: Osteosarcoma, Dual action mechanism, Notch signaling pathway, Toxicity, Cell growth inhibition. Tropical Journal ...

  9. Combination of Resveratrol and Zinc for Prostate Cancer Management

    Science.gov (United States)

    2013-05-01

    flavonoid at present. Recently, researchers be- gan to focus on using resveratrol in conjunction with other agents and drugs for improved response...natural compound present in wine, and its inhibition by natural flavonoids . Xenobiotica 30: 857–866. 39. Kwon, K.J. et al. 2011. Melatonin synergistically

  10. Partitioning of resveratrol between pentane and DMSO

    DEFF Research Database (Denmark)

    Shen, Chen; Stein, Paul C.; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    Partitioning of trans-3,5,4′-trihydroxy-stilbene (resveratrol) between n-pentane and DMSO was investigated as a contribution to understand the interaction between resveratrol and biomembranes. In order to determine the partition coefficient P* of resveratrol between pentane and DMSO, resveratrol...

  11. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation.

    Science.gov (United States)

    Jiang, Lei; Zhang, Lei; Kang, Kai; Fei, Dongsheng; Gong, Rui; Cao, Yanhui; Pan, Shangha; Zhao, Mingran; Zhao, Mingyan

    2016-12-01

    NLRP3 inflammasome plays a pivotal role in the development of acute lung injury (ALI), accelerating IL-1β and IL-18 release and inducing lung inflammation. Resveratrol, a natural phytoalexin, has anti-inflammatory properties via inhibition of oxidation, leukocyte priming, and production of inflammatory mediators. In this study, we aimed to investigate the effect of resveratrol on NLRP3 inflammasome in lipopolysaccharide-induced ALI. Mice were intratracheally instilled with 3mg/kg lipopolysaccharide (LPS) to induce ALI. Resveratrol treatment alleviated the LPS-induced lung pathological damage, lung edema and neutrophil infiltration. In addition, resveratrol reversed the LPS-mediated elevation of IL-1β and IL-18 level in the BAL fluids. In lung tissue, resveratrol also inhibited the LPS-induced NLRP3, ASC, caspase-1 mRNA and protein expression, and NLRP3 inflammasome activation. Moreover, resveratrol administration not only suppressed the NF-κB p65 nuclear translocation, NF-κB activity and ROS production in the LPS-treated mice, but also inhibited the LPS-induced thioredoxin-interacting protein (TXNIP) protein expression and interaction of TXNIP-NLRP3 in lung tissue. Meanwhile, resveratrol obviously induced SIRT1 mRNA and protein expression in the LPS-challenged mice. Taken together, our study suggests that resveratrol protects against LPS-induced lung injury by NLRP3 inflammasome inhibition. These findings further suggest that resveratrol may be of great value in the treatment of ALI and a potential and an effective pharmacological agent for inflammasome-relevant diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Mechanisms of action of nonpeptide hormones on resveratrol-induced antiproliferation of cancer cells.

    Science.gov (United States)

    Lin, Hung-Yun; Hsieh, Meng-Ti; Cheng, Guei-Yun; Lai, Hsuan-Yu; Chin, Yu-Tang; Shih, Ya-Jung; Nana, André Wendindondé; Lin, Shin-Ying; Yang, Yu-Chen S H; Tang, Heng-Yuan; Chiang, I-Jen; Wang, Kuan

    2017-09-01

    Nonpeptide hormones, such as thyroid hormone, dihydrotestosterone, and estrogen, have been shown to stimulate cancer proliferation via different mechanisms. Aside from their cytosolic or membrane-bound receptors, there are receptors on integrin α v β 3 for nonpeptide hormones. Interaction between hormones and integrin α v β 3 can induce signal transduction and eventually stimulate cancer cell proliferation. Resveratrol induces inducible COX-2-dependent antiproliferation via integrin α v β 3 . Resveratrol and hormone-induced signals are both transduced by activated extracellular-regulated kinases 1 and 2 (ERK1/2); however, hormones promote cell proliferation, while resveratrol induces antiproliferation in cancer cells. Hormones inhibit resveratrol-stimulated phosphorylation of p53 on Ser15, resveratrol-induced nuclear COX-2 accumulation, and formation of p53-COX-2 nuclear complexes. Subsequently, hormones impair resveratrol-induced COX-2-/p53-dependent gene expression. The inhibitory effects of hormones on resveratrol action can be blocked by different antagonists of specific nonpeptide hormone receptors but not integrin α v β 3 blockers. Results suggest that nonpeptide hormones inhibit resveratrol-induced antiproliferation in cancer cells downstream of the interaction between ligand and receptor and ERK1/2 activation to interfere with nuclear COX-2 accumulation. Thus, the surface receptor sites for resveratrol and nonpeptide hormones are distinct and can induce discrete ERK1/2-dependent downstream antiproliferation biological activities. It also indicates the complex pathways by which antiproliferation is induced by resveratrol in various physiological hormonal environments. . © 2017 New York Academy of Sciences.

  13. The anti-inflammatory activity of the polyphenol resveratrol may be partially related to inhibition of tumour necrosis factor-alpha (TNF-alpha) pre-mRNA splicing.

    Science.gov (United States)

    Leiro, José M; Varela, Monica; Piazzon, M Carla; Arranz, Juan A; Noya, Manuel; Lamas, Jesus

    2010-02-01

    The present study shows for the first time that the polyphenol resveratrol (RESV) blocks processing of tumour necrosis factor-alpha (TNF-alpha) pre-mRNA in mature mRNA. This study was carried out in turbot (Psetta maxima (L.)), a fish species that we are using to evaluate the effects of RESV on the inflammatory response in vertebrates. Treatment of turbot head kidney leucocytes with polysaccharides from the seaweed Ulva rigida (ulvan) resulted in an increase in TNF-alpha expression. RESV did not inhibit transcription but almost completely inhibited the production of mRNA in ulvan-induced cells and caused a notable increase in the level of unspliced TNF-alpha pre-mRNA. RESV also induced accumulation of IL-1beta pre-mRNA at the expense of mature mRNA, although the effects on IL-1beta were less evident than those on TNF-alpha. However, the housekeeping gene was not affected by RESV. We also evaluated the effects of RESV in vivo under an inflammatory stimulus and found an inhibitory effect on TNF-alpha and IL-1beta pre-mRNA splicing in turbot head kidney at 24 and 48h post-injection. In addition, RESV also reduced migration of cells to the peritoneal cavity under the same inflammatory stimulus. The results show that this fish species may be a useful model for analysing the effects of RESV on TNF-alpha and IL-1beta expression, and suggest that RESV could be used to decrease the levels of pro-inflammatory cytokines in vivo and to reduce inflammatory reactions in certain inflammatory diseases. (c) 2009 Elsevier Ltd. All rights reserved.

  14. Resveratrol induces vascular smooth muscle cell differentiation through stimulation of SirT1 and AMPK.

    Directory of Open Access Journals (Sweden)

    Anne Marie Thompson

    Full Text Available Phenotypic plasticity in vascular smooth muscle cells (VSMC is necessary for vessel maintenance, repair and adaptation to vascular changes associated with aging. De-differentiated VSMC contribute to pathologies including atherosclerosis and intimal hyperplasia. As resveratrol has been reported to have cardio- protective effects, we investigated its role in VSMC phenotypic modulation. We demonstrated the novel finding that resveratrol promoted VSMC differentiation as measured by contractile protein expression, contractile morphology and contraction in collagen gels. Resveratrol induced VSMC differentiation through stimulation of SirT1 and AMPK. We made the novel finding that low or high dose resveratrol had an initially different mechanism on induction of differentiation. We found that low dose resveratrol stimulated differentiation through SirT1-mediated activation of AKT, whereas high dose resveratrol stimulated differentiation through AMPK-mediated inhibition of the mTORC1 pathway, allowing activation of AKT. The health effects of resveratrol in cardiovascular diseases, cancer and longevity are an area of active research. We have demonstrated a supplemental avenue where-by resveratrol may promote health by maintaining and enhancing plasticity of the vasculature.

  15. Optimizing Thiadiazole Analogues of Resveratrol vs. Three Chemopreventive Targets

    Science.gov (United States)

    Mayhoub, Abdelrahman S.; Marler, Laura; Kondratyuk, Tamara; Park, Eun-Jung; Pezzuto, John M.; Cushman, Mark

    2011-01-01

    Chemoprevention is an approach to decrease cancer morbidity and mortality through inhibition of carcinogenesis and prevention of disease progression. Although the trans stilbene derivative resveratrol has chemopreventive properties, its action is compromised by weak non-specific effects on many biological targets. Replacement of the stilbene ethylenic bridge of resveratrol with a 1,2,4-thiadiazole heterocycle and modification of the substituents on the two aromatic rings afforded potential chemopreventive agents with enhanced potencies and selectivities when evaluated as inhibitors of aromatase and NF-κB and inducers of quinone reductase 1 (QR1). PMID:22115839

  16. Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets.

    Science.gov (United States)

    Mayhoub, Abdelrahman S; Marler, Laura; Kondratyuk, Tamara P; Park, Eun-Jung; Pezzuto, John M; Cushman, Mark

    2012-01-01

    Chemoprevention is an approach to decrease cancer morbidity and mortality through inhibition of carcinogenesis and prevention of disease progression. Although the trans stilbene derivative resveratrol has chemopreventive properties, its action is compromised by weak non-specific effects on many biological targets. Replacement of the stilbene ethylenic bridge of resveratrol with a 1,2,4-thiadiazole heterocycle and modification of the substituents on the two aromatic rings afforded potential chemopreventive agents with enhanced potencies and selectivities when evaluated as inhibitors of aromatase and NF-κB and inducers of quinone reductase 1 (QR1). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Anticancer molecular mechanisms of resveratrol

    Directory of Open Access Journals (Sweden)

    Elena Maria Varoni

    2016-04-01

    Full Text Available Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Despite it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to: extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin and developmental pathways; signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; immune-surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multi-drug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment.

  18. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  19. Resveratrol Engages AMPK to Attenuate ERK and mTOR Signaling in Sensory Neurons and Inhibits Incision-Induced Acute and Chronic Pain

    National Research Council Canada - National Science Library

    Tillu, Dipti V; Melemedjian, Ohannes K; Asiedu, Marina N; Qu, Ning; De Felice, Milena; Dussor, Gregory; Price, Theodore J

    2012-01-01

    .... Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery...

  20. ODAM Expression Inhibits Human Breast Cancer Tumorigenesis

    OpenAIRE

    Kestler, Daniel P; Foster, James S.; Bruker, Charles T.; Prenshaw, John W.; Kennel, Stephen J.; Wall, Jonathan S.; Weiss, Deborah T.; Alan Solomon

    2011-01-01

    We have posited that Odontogenic Ameloblast Associated Protein (ODAM) serves as a novel prognostic biomarker in breast cancer and now have investigated its potential role in regulating tumor growth and metastasis. Human breast cancer MDA-MB-231 cells were transfected with a recombinant ODAM plasmid construct (or, as a control, the plasmid vector alone). ODAM expression increased adhesion and apoptosis of the transfected MDA-MB-231 cells and suppressed their growth rate, migratory activity, an...

  1. Determinação de resveratrol em sucos de uva no Brasil Determination of resveratrol in grape juice produced in Brazil

    Directory of Open Access Journals (Sweden)

    Cláudia K. Sautter

    2005-09-01

    Full Text Available A detecção de resveratrol em vinhos vem sendo estudada mais intensamente nos últimos anos. O isômero trans-resveratrol tem reconhecidas atividades biológicas, e algumas delas são de uso terapêutico, tais como ação antiinflamatória, inibição da enzima lipoxigenase e ação anticarcinogênica in vitro. A presença do composto resveratrol (4,3',5'-trihidroxiestilbeno, em seus isômeros (trans e cis, foi determinada nos diferentes tipos de sucos de uva produzidos no Brasil. Além destes, também foram quantificados os polifenóis totais, acidez, açúcares redutores, sólidos solúveis e densidade, em conformidade com a legislação vigente. O resveratrol foi quantificado por cromatografia líquida de alta eficiência segundo SOUTO et al. [23], com adaptação da temperatura para 50° C. Foi detectada a presença de trans-resveratrol em todos os sucos analisados na concentração de 0,19mg.L-1 a 0,90mg.L-1 e o isômero cis-resveratrol foi de 0,07 a 1,59mg.L-1 .The resveratrol detection in wines has been studied more intensely in the last years. The isomeric trans-resveratrol has recognized biological activities, and some of them are therapeutic, such as anti-inflammatory action, enzyme lipoxigenase inhibition and anti-carcinogenic action in vitro. The presence of resveratrol (4,3',5'-trihydroxystilbene, trans and cis isomers, was investigated in industrial grape juices produced in Brazil. Additionally, total phenols, acidity, reducing sugars, soluble solids and specific gravity of samples were determined in accordance with law. Resveratrol was determined by high performance liquid chromatography by SOUTO et al. [23], adapted to the temperature of 50°C. Trans and cis-resveratrol were found in all the juices analyzed, tran-resveratrol in the concentration range of 0.19 to 0.90mg.L-1 and cis-resveratrol in the concentration range of 0.07 to 1.59mg.L-1.

  2. Resveratrol Improves Cognitive Impairment by Regulating Apoptosis and Synaptic Plasticity in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Zhiyan Tian

    2016-12-01

    Full Text Available Aims: To investigate the effects of resveratrol on cognitive impairment in streptozotocin (STZ-induced diabetic rats and to explore the mechanisms of that phenomenon. Methods: Sixty healthy male Sprague Dawley rats were randomly divided into four groups: normal control group (Con group, n = 15, Res group (normal Sprague Dawley rats treated with resveratrol, n = 15, diabetes mellitus group (DM group, n = 15 and DM + Res group (diabetic rats treat with resveratrol, n = 15. Streptozotocin (STZ was injected intraperitoneally to establish the diabetic model. One week after diabetic model induction, the animals in the Res group and the DM + Res group received resveratrol intraperitoneally once a day for consecutive 4 weeks. The Morris water maze test was applied to assess the effect of resveratrol on learning and memory. To explore the mechanisms of resveratrol on cognition, we detected the protein expression levels of Caspase-3, Bcl-2, Bax, NMDAR1 (N-Methyl-d-Aspartate receptor and BDNF (Brain Derived Neurotrophic Factor via western blotting analysis. Results: Resveratrol has no obvious effect on normal SD rats. Compared to Con group, cognitive ability was significantly impaired with increased expression of Caspase-3, Bax and down-regulation of Bcl-2, NMDAR1 and BDNF in diabetic rats. By contrast, resveratrol treatment improved the cognitive decline. Evidently, resveratrol treatment reversed diabetes-induced changes of protein expression. Conclusions: Resveratrol significantly ameliorates cognitive decline in STZ-induced diabetic model rats. The potential mechanism underlying the protective effect could be attributed to the inhibition of hippocampal apoptosis through the Bcl-2, Bax and Caspase-3 signaling pathways and improvement of synaptic dysfunction. BDNF may also play an indispensable role in this mechanism.

  3. Oral Administration of Resveratrol Alleviates Osteoarthritis Pathology in C57BL/6J Mice Model Induced by a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Mengqi Jiang

    2017-01-01

    Full Text Available Obesity has been associated with osteoarthritis (OA due to increased mass and metabolic factors which are independent of the biomechanical contribution to joint load. Resveratrol, a natural polyphenolic compound, exerts protective effects on OA through its anti-inflammatory property. However, the mechanism of resveratrol on obesity-related OA is unclear. To investigate the effect and possible mechanism of oral resveratrol on obesity-related OA, we fed C57BL/6J mice with a high-fat diet (HFD for 16 weeks to establish obesity-related OA model; then two doses (22.5 mg/kg and 45 mg/kg of resveratrol were given by gavage for additional 12 weeks. Mice with HFD significantly increased body weights compared to the control mice, while resveratrol treatment did not cause obvious weight loss. Histological assessments showed that resveratrol at 45 mg/kg significantly improved OA symptoms. Levels of serum IL-1β and leptin were decreased by resveratrol treatment and positively correlated with Mankin scores. Moreover, resveratrol significantly inhibited the expression of TLR4 and TRAF6 in cartilage. These results suggest that HFD induced obesity can lead to the occurrence of OA, and resveratrol may alleviate OA pathology by decreasing the levels of systematic inflammation and/or inhibiting TLR4 signaling pathway in cartilage. Thus, resveratrol might be a promising therapeutic treatment for obesity-related OA.

  4. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  5. Resveratrol Exerts Dosage and Duration Dependent Effect on Human Mesenchymal Stem Cell Development

    Science.gov (United States)

    Peltz, Lindsay; Gomez, Jessica; Marquez, Maribel; Alencastro, Frances; Atashpanjeh, Negar; Quang, Tara; Bach, Thuy; Zhao, Yuanxiang

    2012-01-01

    Studies in the past have illuminated the potential benefit of resveratrol as an anticancer (pro-apoptosis) and life-extending (pro-survival) compound. However, these two different effects were observed at different concentration ranges. Studies of resveratrol in a wide range of concentrations on the same cell type are lacking, which is necessary to comprehend its diverse and sometimes contradictory cellular effects. In this study, we examined the effects of resveratrol on cell self-renewal and differentiation of human mesenchymal stem cells (hMSCs), a type of adult stem cells that reside in a number of tissues, at concentrations ranging from 0.1 to 10 µM after both short- and long-term exposure. Our results reveal that at 0.1 µM, resveratrol promotes cell self-renewal by inhibiting cellular senescence, whereas at 5 µM or above, resveratrol inhibits cell self-renewal by increasing senescence rate, cell doubling time and S-phase cell cycle arrest. At 1 µM, its effect on cell self-renewal is minimal but after long-term exposure it exerts an inhibitory effect, accompanied with increased senescence rate. At all concentrations, resveratrol promotes osteogenic differentiation in a dosage dependent manner, which is offset by its inhibitory effect on cell self-renewal at high concentrations. On the contrary, resveratrol suppresses adipogenic differentiation during short-term exposure but promotes this process after long-term exposure. Our study implicates that resveratrol is the most beneficial to stem cell development at 0.1 µM and caution should be taken in applying resveratrol as an anticancer therapeutic agent or nutraceutical supplement due to its dosage dependent effect on hMSCs. PMID:22615926

  6. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  7. Resveratrol pretreatment attenuates traumatic brain injury in rats by suppressing NLRP3 inflammasome activation via SIRT1.

    Science.gov (United States)

    Zou, Peng; Liu, Xiaoxiao; Li, Gang; Wang, Yangang

    2018-02-01

    The inflammatory response in the cerebral cortex serves an important role in the progression of secondary injury following traumatic brain injury (TBI). The NLR family pyrin domain containing 3 (NLRP3) inflammasome is necessary for initiating inflammation and is involved in various central nervous system disorders. The aim of the present study was to investigate the neuroprotective effect of resveratrol and elucidate the underlying mechanisms of resveratrol associated regulation of the NLRP3 inflammasome in TBI. The results demonstrated that the activation of NLRP3, caspase‑1 and sirtuin 1 (SIRT1), enhanced the production of inflammatory cytokines and reactive oxygen species (ROS) following TBI. Administration of resveratrol alleviated the degree of TBI, as evidenced by the reduced neuron‑specific enolase (NSE) and brain water content (WBC). Resveratrol pretreatment also inhibited the activation of NLRP3 and caspase‑1, and reduced the production of inflammatory cytokines and ROS. In addition, resveratrol further promoted SIRT1 activation. Furthermore, the suppressing effect of resveratrol on the NLRP3 inflammasome and ROS was blocked by the SIRT1 inhibitor, sirtinol. The results revealed that the activation of the NLRP3 inflammasome and the subsequent inflammatory responses in the cerebral cortex were involved in the process of TBI. Resveratrol may attenuate the inflammatory response and relieve TBI by reducing ROS production and inhibiting NLRP3 activation. The effect of resveratrol on NLRP3 inflammasome and ROS may also be SIRT1 dependent.

  8. 3,5,4′-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/β-catenin signaling cascades and reversal of epithelial–mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Jie-Heng [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan, ROC (China); Hsu, Li-Sung [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan, ROC (China); Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan, ROC (China); Lin, Chih-Li [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan, ROC (China); Hong, Hui-Mei [Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan, ROC (China); Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan, ROC (China); Pan, Min-Hsiung [Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 811, Taiwan, ROC (China); Way, Tzong-Der [Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 40402, Taiwan, ROC (China); Chen, Wei-Jen, E-mail: cwj519@csmu.edu.tw [Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan, ROC (China); Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan, ROC (China)

    2013-11-01

    The molecular basis of epithelial–mesenchymal transition (EMT) functions as a potential therapeutic target for breast cancer because EMT may endow breast tumor-initiating cells with stem-like characteristics and enable the dissemination of breast cancer cells. We have recently verified the antitumor activity of 3,5,4′-trimethoxystilbene (MR-3), a naturally methoxylated derivative of resveratrol, in colorectal cancer xenografts via an induction of apoptosis. The effect of MR-3 on EMT and the invasiveness of human MCF-7 breast adenocarcinoma cell line were also explored. We found that MR-3 significantly increased epithelial marker E-cadherin expression and triggered a cobblestone-like morphology of MCF-7 cells, while reciprocally decreasing the expression of mesenchymal markers, such as snail, slug, and vimentin. In parallel with EMT reversal, MR-3 downregulated the invasion and migration of MCF-7 cells. Exploring the action mechanism of MR-3 on the suppression of EMT and invasion indicates that MR-3 markedly reduced the expression and nuclear translocation of β-catenin, accompanied with the downregulation of β-catenin target genes and the increment of membrane-bound β-catenin. These results suggest the involvement of Wnt/β-catenin signaling in the MR-3-induced EMT reversion of MCF-7 cells. Notably, MR-3 restored glycogen synthase kinase-3β activity by inhibiting the phosphorylation of Akt, the event required for β-catenin destruction via a proteasome-mediated system. Overall, these findings indicate that the anti-invasive activity of MR-3 on MCF-7 cells may result from the suppression of EMT via down-regulating phosphatidylinositol 3-kinase (PI3K)/AKT signaling, and consequently, β-catenin nuclear translocation. These occurrences ultimately lead to the blockage of EMT and the invasion of breast cancer cells. - Highlights: • MR-3 blocked MCF-7 cell invasion by inducing a reversal of EMT. • Wnt/β-catenin signaling is involved in MR-3-induced EMT

  9. Molecular mechanisms of resveratrol-induced apoptosis in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Napaporn Kaewdoungdee

    2014-10-01

    Full Text Available Resveratrol is a polyphenolic phytoalexin found at high concentrations in grapes, nuts, fruits and red wine with reported anti -carcinogenic effects. In this study, the molecular mechanism of resveratrol -induced apoptosis in human pancreatic cancer (Panc 2.03 cells is investigated. Resveratrol treatment of Panc 2.03 cells results in dose-dependent inhibition of cell growth and cells accumulated at the S phase transition of the cell cycle. The anti -proliferative effect of resveratrol is due to apoptosis as seen by the appearance of chrom atin condensation, nuclear fragmentation, DNA ladder formation and increased annexin V-stained cells. The apoptotic process is induced by decreased Bcl-2 expression concomitant with increased Bax expression, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspase-9 and caspase-3. In addition, resveratrol treatment also decreases the survivin level and increases the apoptosis-inducing factor level in a dose-dependent manner. These results suggest that resveratrol induces apoptosis of Panc 2.03 cells, at least in part through a mitochondrial -associated intrinsic pathway in both caspasedependent and independent manners. The present findings suggest that resveratrol has potential as a chemopreventive agent, and possibly as a therapeutic one against pancreatic cancer.

  10. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium.

    Science.gov (United States)

    Lee, Wonjong; Lee, Dong Gun

    2017-07-22

    Resveratrol is a flavonoid found in various plants including grapes, which has been reported to be active against various pathogenic bacteria. However, antibacterial effects and mechanisms via pro-oxidant property of resveratrol remain unknown and speculative. This research investigated antibacterial mechanism of resveratrol against a food-borne human pathogen Salmonella typhimurium, and confirmed the cell death associated oxidative damage. Resveratrol increased outer membrane permeability and membrane depolarization. It also was observed DNA injury responses such as DNA fragmentation, increasing DNA contents and cell division inhibition. Intracellular ROS accumulation, GSH depletion and significant increased malondialdehyde levels were confirmed, which indicated pro-oxidant activity of resveratrol and oxidative stress. Furthermore, the observed lethal damages were reduced by antioxidant N-acetylcysteine treatment supported the view that resveratrol-induced oxidative stress stimulated S. typhimurium cell death. In conclusion, this study expands understanding on role of pro-oxidant property and insight into previously unrecognized oxygen-dependent anti-Salmonella mechanism on resveratrol. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis.

    Science.gov (United States)

    Bhattarai, Govinda; Poudel, Sher Bahadur; Kook, Sung-Ho; Lee, Jeong-Chae

    2016-01-01

    Resveratrol is an antioxidant and anti-inflammatory polyphenol. Periodontitis is induced by oral pathogens, where a systemic inflammatory response accompanied by oxidative stress is the major event initiating disease. We investigated how resveratrol modulates cellular responses and the mechanisms related to this modulation in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (hGFs). We also explored whether resveratrol protects rats against alveolar bone loss in an experimental periodontitis model. Periodontitis was induced around the first upper molar of the rats by applying ligature infused with LPS. Stimulating hGFs with 5μg/ml LPS augmented the expression of cyclooxygenase-2, matrix metalloproteinase (MMP)-2, MMP-9, and Toll-like receptor-4. LPS treatment also stimulated the production of reactive oxygen species (ROS) and the phosphorylation of several protein kinases in the cells. However, the expression of heme oxygenase-1 (HO-1) and nuclear factor-E2 related factor 2 (Nrf2) was inhibited by the addition of LPS. Resveratrol treatment almost completely inhibited all of these changes in LPS-stimulated cells. Specifically, resveratrol alone augmented HO-1 induction via Nrf2-mediated signaling. Histological and micro-CT analyses revealed that administration of resveratrol (5mg/kg body weight) improved ligature/LPS-mediated alveolar bone loss in rats. Resveratrol also attenuated the production of inflammation-related proteins, the formation of osteoclasts, and the production of circulating ROS in periodontitis rats. Furthermore, resveratrol suppressed LPS-mediated decreases in HO-1 and Nrf2 levels in the inflamed periodontal tissues. Collectively, our findings suggest that resveratrol protects rats from periodontitic tissue damage by inhibiting inflammatory responses and by stimulating antioxidant defense systems. The aims of this study were to investigate how resveratrol modulates cellular responses and the mechanisms related to this modulation in

  12. The role of menin in parathyroid tumorigenesis.

    LENUS (Irish Health Repository)

    Davenport, Colin

    2009-01-01

    Primary hyperparathyroidism is a common disorder that involves the pathological enlargement of one or more parathyroid glands resulting in excessive production of parathyroid hormone (PTH). The exact pathogenesis of this disease remains to be fully understood. In recent years interest has focussed on the interaction between menin protein and the transforming growth factor (TGF)-beta\\/Smad signalling pathway. In vitro experimentation has demonstrated that the presence of menin is required for TGF-beta to effectively inhibit parathyroid cell proliferation and PTH production. This observation correlates with the almost universal occurrence of parathyroid tumors accompanying the inactivation of menin in multiple endocrine neoplasia Type 1 (MEN1) syndrome and the high rate of somatic menin gene mutations seen in sporadic parathyroid adenomas. This chapter aims to review the role of menin in primary hyperparathyroidism and parathyroid hormone-regulation, including the influences of MEN1 gene mutations on parathyroid cell proliferation, differentiation and tumorigenesis.

  13. Resveratrol and Estradiol Exert Disparate Effects on Cell Migration, Cell Surface Actin Structures, and Focal Adhesion Assembly in MDA-MB-231 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nicolas G. Azios

    2005-02-01

    Full Text Available Resveratrol, a grape polyphenol, is thought to be a cancer preventive, yet its effects on metastatic breast cancer are relatively unknown. Since cancer cell invasion is dependent on cell migration, the chemotactic response of MDA-MB-231 metastatic human breast cancer cells to resveratrol, estradiol (E2, or epidermal growth factor (EGF was investigated. Resveratrol decreased while E2 and EGF increased directed cell migration. Resveratrol may inhibit cell migration by altering the cytoskeleton. Resveratrol induced a rapid global array of filopodia and decreased focal adhesions and focal adhesion kinase (FAK activity. E2 or EGF treatment did not affect filopodia extension but increased lamellipodia and associated focal adhesions that are integral for cell migration. Combined resveratrol and E2 treatment resulted in a filopodia and focal adhesion response similar to resveratrol alone. Combined resveratrol and EGF resulted in a lamellipodia and focal adhesion response similar to EGF alone. E2 and to a lesser extent resveratrol increased EGFR activity. The cytoskeletal changes and EGFR activity in response to E2 were blocked by EGFR1 inhibitor indicating that E2 may increase cell migration via crosstalk with EGFR signaling. These data suggest a promotional role for E2 in breast cancer cell migration but an antiestrogenic, preventative role for resveratrol.

  14. Histone deacetylase 8 in neuroblastoma tumorigenesis.

    Science.gov (United States)

    Oehme, Ina; Deubzer, Hedwig E; Wegener, Dennis; Pickert, Diana; Linke, Jan-Peter; Hero, Barbara; Kopp-Schneider, Annette; Westermann, Frank; Ulrich, Scott M; von Deimling, Andreas; Fischer, Matthias; Witt, Olaf

    2009-01-01

    The effects of pan-histone deacetylase (HDAC) inhibitors on cancer cells have shown that HDACs are involved in fundamental tumor biological processes such as cell cycle control, differentiation, and apoptosis. However, because of the unselective nature of these compounds, little is known about the contribution of individual HDAC family members to tumorigenesis and progression. The purpose of this study was to evaluate the role of individual HDACs in neuroblastoma tumorigenesis. We have investigated the mRNA expression of all HDAC1-11 family members in a large cohort of primary neuroblastoma samples covering the full spectrum of the disease. HDACs associated with disease stage and survival were subsequently functionally evaluated in cell culture models. Only HDAC8 expression was significantly correlated with advanced disease and metastasis and down-regulated in stage 4S neuroblastoma associated with spontaneous regression. High HDAC8 expression was associated with poor prognostic markers and poor overall and event-free survival. The knockdown of HDAC8 resulted in the inhibition of proliferation, reduced clonogenic growth, cell cycle arrest, and differentiation in cultured neuroblastoma cells. The treatment of neuroblastoma cell lines as well as short-term-culture neuroblastoma cells with an HDAC8-selective small-molecule inhibitor inhibited cell proliferation and clone formation, induced differentiation, and thus reproduced the HDAC8 knockdown phenotype. Global histone 4 acetylation was not affected by HDAC8 knockdown or by selective inhibitor treatment. Our data point toward an important role of HDAC8 in neuroblastoma pathogenesis and identify this HDAC family member as a specific drug target for the differentiation therapy of neuroblastoma.

  15. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux.

    Science.gov (United States)

    Voloshyna, Iryna; Teboul, Isaac; Littlefield, Michael J; Siegart, Nicolle M; Turi, George K; Fazzari, Melissa J; Carsons, Steven E; DeLeon, Joshua; Reiss, Allison B

    2016-08-01

    Resveratrol is a bioactive molecule used in dietary supplements and herbal medicines and consumed worldwide. Numerous investigations by our group and others have indicated cardioprotective and anti-inflammatory properties of resveratrol. The present study explored potential atheroprotective actions of resveratrol on cholesterol efflux in cultured human macrophages exposed to plasma from systemic lupus erythematosus (SLE) patients. These results were confirmed in ApoE(-/-)Fas(-/-) double knockout mice, displaying a lupus profile with accelerated atherosclerosis. Resveratrol treatment attenuated atherosclerosis in these mice. THP-1 human macrophages were exposed to 10% pooled or individual plasma from patients who met diagnostic criteria for SLE. Expression of multiple proteins involved in reverse cholesterol transport (ABCA1, ABCG1, SR-B1, and cytochrome P450 27-hydroxylase) was assessed using QRT-PCR and Western blotting techniques. Ten-week-old ApoE(-/-)Fas(-/-) double knockout mice (n = 30) were randomly divided into two equal groups of 15, one of which received 0.01% resveratrol for 10 consecutive weeks. Atherosclerosis progression was evaluated in murine aortas. Bone marrow-derived macrophages (BMDM) were cultured and expression of cholesterol efflux proteins was analyzed in each group of mice. Our data indicate that inhibition of cholesterol efflux by lupus plasma in THP-1 human macrophages is rescued by resveratrol. Similarly, administration of resveratrol in a lupus-like murine model reduces plaque formation in vivo and augments cholesterol efflux in BMDM. This study presents evidence for a beneficial role of resveratrol in atherosclerosis in the specific setting of SLE. Therefore, resveratrol may merit investigation as an additional resource available to reduce lipid deposition and atherosclerosis in humans, especially in such vulnerable populations as lupus patients. © 2016 by the Society for Experimental Biology and Medicine.

  16. Reduced HMGB 1-Mediated Pathway and Oxidative Stress in Resveratrol-Treated Diabetic Mice: A Possible Mechanism of Cardioprotection of Resveratrol in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Han Wu

    2016-01-01

    Full Text Available Myocardial fibrosis and inflammation are intricately linked in diabetic cardiomyopathy (DCM, and resveratrol has been shown to attenuate oxidative stress, inflammation, and fibrosis in several cell types or animal models. High mobility group box 1 (HMGB 1, a proinflammatory cytokine, has been reported to regulate fibrosis and inflammation in various organs. Then the present study aimed to reveal the expression of HMGB 1-mediated signaling pathway and oxidative stress in resveratrol-treated diabetic mice. The significant increase in serum HMGB 1 concentration in diabetic mice was attenuated by treatment with resveratrol. Similarly, western blot analysis revealed a significant increase of HMGB 1 protein in monocytes and heart tissues of diabetic mice, and resveratrol partly normalized the changes. In addition, resveratrol abrogated the increased expression of HMGB 1-mediated signaling pathway, oxidative stress, fibrosis, and inflammation in diabetic hearts. In conclusion, inhibition of HMGB 1-mediated signaling pathway and oxidative stress may contribute to resveratrol-induced anti-inflammatory and antifibrotic effects in DCM.

  17. Reduced HMGB 1-Mediated Pathway and Oxidative Stress in Resveratrol-Treated Diabetic Mice: A Possible Mechanism of Cardioprotection of Resveratrol in Diabetes Mellitus.

    Science.gov (United States)

    Wu, Han; Sheng, Zhen-Qiang; Xie, Jun; Li, Ran; Chen, Liang; Li, Guan-Nan; Wang, Lian; Xu, Biao

    2016-01-01

    Myocardial fibrosis and inflammation are intricately linked in diabetic cardiomyopathy (DCM), and resveratrol has been shown to attenuate oxidative stress, inflammation, and fibrosis in several cell types or animal models. High mobility group box 1 (HMGB 1), a proinflammatory cytokine, has been reported to regulate fibrosis and inflammation in various organs. Then the present study aimed to reveal the expression of HMGB 1-mediated signaling pathway and oxidative stress in resveratrol-treated diabetic mice. The significant increase in serum HMGB 1 concentration in diabetic mice was attenuated by treatment with resveratrol. Similarly, western blot analysis revealed a significant increase of HMGB 1 protein in monocytes and heart tissues of diabetic mice, and resveratrol partly normalized the changes. In addition, resveratrol abrogated the increased expression of HMGB 1-mediated signaling pathway, oxidative stress, fibrosis, and inflammation in diabetic hearts. In conclusion, inhibition of HMGB 1-mediated signaling pathway and oxidative stress may contribute to resveratrol-induced anti-inflammatory and antifibrotic effects in DCM.

  18. Mechanisms of ceramide-induced COX-2-dependent apoptosis in human ovarian cancer OVCAR-3 cells partially overlapped with resveratrol

    DEFF Research Database (Denmark)

    Lin, Hung-Yun; Delmas, Dominique; Vang, Ole

    2013-01-01

    -2 appears at the apex of the p38 kinase-mediated signaling cascade induced by ceramide. Induction of apoptosis by ceramide or resveratrol was inhibited by the endocytosis inhibitor, cytochalasin D (CytD); however, cells exposed to resveratrol showed greater sensitivity than ceramide-treated cells....... Ceramide-treated cells underwent a dose-dependent reduction in trans-membrane potential. Although both ceramide and resveratrol induced the expressions of caspase-3 and -7, the effect of inducible COX-2 was different in caspase-7 expression induced by ceramide compared to resveratrol. In summary......, resveratrol and ceramide converge on an endocytosis-requiring, ERK1/2-dependent signal transduction pathway and induction of COX-expression as an essential molecular antecedent for subsequent p53-dependent apoptosis. In addition, expressions of caspase-3 and -7 are observed. However, a p38 kinase...

  19. Resveratrol alleviate hypoxic pulmonary hypertension via anti-inflammation and anti-oxidant pathways in rats.

    Science.gov (United States)

    Xu, Dunquan; Li, Yan; Zhang, Bo; Wang, Yanxia; Liu, Yi; Luo, Ying; Niu, Wen; Dong, Mingqing; Liu, Manling; Dong, Haiying; Zhao, Pengtao; Li, Zhichao

    2016-01-01

    Resveratrol, a plant-derived polyphenolic compound and a phytoestrogen, was shown to possess multiple protective effects including anti-inflammatory response and anti-oxidative stress. Hypoxic pulmonary hypertension (HPH) is a progressive disease characterized by sustained vascular resistance and marked pulmonary vascular remodeling. The exact mechanisms of HPH are still unclear, but inflammatory response and oxidative stress was demonstrated to participate in the progression of HPH. The present study was designed to investigate the effects of resveratrol on HPH development. Sprague-Dawley rats were challenged by hypoxia exposure for 28 days to mimic hypoxic pulmonary hypertension along with treating resveratrol (40 mg/kg/day). Hemodynamic and pulmonary pathomorphology data were then obtained, and the anti-proliferation effect of resveratrol was determined by in vitro assays. The anti-inflammation and anti-oxidative effects of resveratrol were investigated in vivo and in vitro . The present study showed that resveratrol treatment alleviated right ventricular systolic pressure and pulmonary arterial remodeling induced by hypoxia. In vitro experiments showed that resveratrol notably inhibited proliferation of pulmonary arterial smooth muscle cells in an ER-independent manner. Data showed that resveratrol administration inhibited HIF-1 α expression in vivo and in vitro , suppressed inflammatory cells infiltration around the pulmonary arteries, and decreased ROS production induced by hypoxia in PAMSCs. The inflammatory cytokines' mRNA levels of tumor necrosis factor α, interleukin 6, and interleukin 1β were all suppressed by resveratrol treatment. The in vitro assays showed that resveratrol inhibited the expression of HIF-1 α via suppressing the MAPK/ERK1 and PI3K/AKT pathways. The antioxidant axis of Nuclear factor erythroid-2 related factor 2/ Thioredoxin 1 (Nrf-2/Trx-1) was up-regulated both in lung tissues and in cultured PASMCs. In general, the current study

  20. Resveratrol and liver: A systematic review

    OpenAIRE

    Forouzan Faghihzadeh; Azita Hekmatdoost; Payman Adibi

    2015-01-01

    Background: Recent studies demonstrated that resveratrol has many therapeutic effects on liver disorders. Resveratrol significantly increased survival after liver transplantation, decreased fat deposition, necrosis, and apoptosis which induced by ischemia in Wistar rats. It provided liver protection against chemical, cholestatic, and alcohol injury. Resveratrol can improve glucose metabolism and lipid profile and decrease liver fibrosis and steatosis. Furthermore, it was able to alter hepatic...

  1. Red wine extract, resveratrol, on maintenance of organ function following trauma-hemorrhage

    Directory of Open Access Journals (Sweden)

    Fu-Chao Liu

    2012-10-01

    Full Text Available ABSTRACT:Resveratrol, is a polyphenol that can be extracted from grapes and red wine, possess potential anti-inflammatory effects, which would result in the reduction of cytokine production, the alteration of the expression of adhesion molecule molecules, and the inhibition of neutrophil function. Resveratrol might also act as an antioxidant, anti-aging, and control of cell cycle and apoptosis. Resveratrol has been shown to have protective effects for patients inshock-like states. Such protective phenomenon is reported to be implicated in a variety of intracellular signaling pathways including the regulation of the mitogen-activated protein kinases (MAPK/ hemeoxygenase-1 (HO-1 pathway, activates estrogen receptor (ER, and the mediation of pro-inflammatory cytokines, reactive oxygen species (ROS formation and reactive. Moreover, through anti-inflammatory effects and antioxidant properties, the resveratrol is believed to maintain organ function following trauma-hemorrhage.

  2. Resveratrol protects mouse oocytes from methylglyoxal-induced oxidative damage.

    Directory of Open Access Journals (Sweden)

    Yu Liu

    Full Text Available Methylglyoxal, a reactive dicarbonyl compound, is mainly formed from glycolysis. Methylglyoxal can lead to the dysfunction of mitochondria, the depletion of cellular anti-oxidation enzymes and the formation of advanced glycation ends. Previous studies showed that the accumulation of methylglyoxal and advanced glycation ends can impair the oocyte maturation and reduce the oocyte quality in aged and diabetic females. In this study, we showed that resveratrol, a kind of phytoalexin found in the skin of grapes, red wine and other botanical extracts, can alleviate the adverse effects caused by methylglyoxal, such as inhibition of oocyte maturation and disruption of spindle assembly. Besides, methylglyoxal-treated oocytes displayed more DNA double strands breaks and this can also be decreased by treatment of resveratrol. Further investigation of these processes revealed that methylglyoxal may affect the oocyte quality by resulting in excessive reactive oxygen species production, aberrant mitochondrial distribution and high level lipid peroxidation, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can protect the oocytes from methylglyoxal-induced cytotoxicity and this was mainly through the correction of the abnormity of cellular reactive oxygen species metabolism.

  3. Suppression of Ultraviolet B Exposure-Mediated Activation of NF-κB in Normal Human Keratinocytes by Resveratrol

    Directory of Open Access Journals (Sweden)

    Vaqar Mustafa Adhami

    2003-01-01

    Full Text Available Chemoprevention by naturally occurring agents is a newer dimension in the management of neoplasia, including skin cancer. Solar ultraviolet (UV radiation is the major cause of skin cancer. We recently demonstrated that resveratrol (3,5,4'-trihydroxystilbene, a polyphenolic antioxidant found in grapes and red wine, imparts protection from UVB-mediated cutaneous damages in SKH-1 hairless mice. The mechanism of action of resveratrol is not clearly understood. Here, we investigated the involvement of nuclear factor kappa B (NF-κB, which is known to play a critical role in skin biology and the development of skin cancer, as the mechanism of chemoprevention of UV damage by resveratrol. In the normal human epidermal keratinocytes, resveratrol blocked UVB-mediated (40 mJ/cm2 activation of NF-κB in a dose-dependent (5, 10, and 25μM resveratrol for 24 hours as well as time-dependent (5μ/M resveratrol for 12, 24, and 48 hours fashion. Resveratrol treatment of keratinocytes also inhibited UVB-mediated 1 phosphorylation and degradation of IκBα, and 2 activation of IKKα. We suggest that NF-κB pathway plays a critical role in the chemopreventive effects of resveratrol against the adverse effects of UV radiation including photocarcinogenesis.

  4. Renal Protective Effects of Resveratrol

    Directory of Open Access Journals (Sweden)

    Munehiro Kitada

    2013-01-01

    Full Text Available Resveratrol (3,5,4′-trihydroxystilbene, a natural polyphenolic compound found in grapes and red wine, is reported to have beneficial effects on cardiovascular diseases, including renal diseases. These beneficial effects are thought to be due to this compound’s antioxidative properties: resveratrol is known to be a robust scavenger of reactive oxygen species (ROS. In addition to scavenging ROS, resveratrol may have numerous protective effects against age-related disorders, including renal diseases, through the activation of SIRT1. SIRT1, an NAD+-dependent deacetylase, was identified as one of the molecules through which calorie restriction extends the lifespan or delays age-related diseases, and this protein may regulate multiple cellular functions, including apoptosis, mitochondrial biogenesis, inflammation, glucose/lipid metabolism, autophagy, and adaptations to cellular stress, through the deacetylation of target proteins. Previous reports have shown that resveratrol can ameliorate several types of renal injury, such as diabetic nephropathy, drug-induced injury, aldosterone-induced injury, ischemia-reperfusion injury, sepsis-related injury, and unilateral ureteral obstruction, in animal models through its antioxidant effect or SIRT1 activation. Therefore, resveratrol may be a useful supplemental treatment for preventing renal injury.

  5. Metformin prevents tobacco carcinogen-induced lung tumorigenesis

    Science.gov (United States)

    Memmott, Regan M.; Mercado, Jose R.; Maier, Colleen R.; Kawabata, Shigeru; Fox, Stephen D.; Dennis, Phillip A.

    2011-01-01

    Activation of the mTOR pathway is an important and early event in tobacco carcinogen-induced lung tumorigenesis, and therapies that target mTOR could be effective in the prevention or treatment of lung cancer. The biguanide metformin, which is widely prescribed for the treatment of type II diabetes, might be a good candidate for lung cancer chemoprevention because it activates AMPK, which can inhibit the mTOR pathway. To test this, A/J mice were treated with oral metformin after exposure to the tobacco carcinogen NNK. Metformin reduced lung tumor burden by up to 53% at steady-state plasma concentrations that are achievable in humans. mTOR was inhibited in lung tumors but only modestly. To test whether intraperitoneal administration of metformin might improve mTOR inhibition, we injected mice and assessed biomarkers in liver and lung tissues. Plasma levels of metformin were significantly higher after injection than oral administration. In liver tissue, metformin activated AMPK and inhibited mTOR. In lung tissue, metformin did not activate AMPK but inhibited phosphorylation of IGF-IR/IR, Akt, ERK, and mTOR. This suggested that metformin indirectly inhibited mTOR in lung tissue by decreasing activation of IGF-1R/IR and Akt upstream of mTOR. Based on these data, we repeated the NNK-induced lung tumorigenesis study using intraperitoneal administration of metformin. Metformin decreased tumor burden by 72%, which correlated with decreased cellular proliferation and marked inhibition of mTOR in tumors. These studies show that metformin prevents tobacco carcinogen-induced lung tumorigenesis, and support clinical testing of metformin as a chemopreventive agent. PMID:20810672

  6. Structural modification of resveratrol leads to increased anti-tumor activity, but causes profound changes in the mode of action

    Energy Technology Data Exchange (ETDEWEB)

    Scherzberg, Maria-Christina; Kiehl, Andreas; Zivkovic, Aleksandra; Stark, Holger [Institute of Pharmaceutical Chemistry, Biozentrum, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany); Stein, Jürgen [Institute of Pharmaceutical Chemistry, Biozentrum, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany); Department of Internal Medicine, Sachsenhausen Hospital, Frankfurt am Main (Germany); Fürst, Robert [Institute of Pharmaceutical Biology, Biozentrum, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany); Steinhilber, Dieter [Institute of Pharmaceutical Chemistry, Biozentrum, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany); Ulrich-Rückert, Sandra, E-mail: sandra.ulrich@em.uni-frankfurt.de [Institute of Pharmaceutical Chemistry, Biozentrum, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany)

    2015-08-15

    (Z)-3,5,4′-Trimethoxystilbene (Z-TMS) is a resveratrol analog with increased antiproliferative activity towards a number of cancer cell lines compared to resveratrol, which has been shown to inhibit tubulin polymerization in vitro. The purpose of this study was to investigate if Z-TMS still shows potential for the prevention of metabolic diseases as known for resveratrol. Cell growth inhibition was determined with IC{sub 50} values for Z-TMS between 0.115 μM and 0.473 μM (resveratrol: 110.7 μM to 190.2 μM). Flow cytometric analysis revealed a G{sub 2}/M arrest after Z-TMS treatment, whereas resveratrol caused S phase arrest. Furthermore, Z-TMS was shown to impair microtubule polymerization. Beneficial effects on lipid accumulation were observed for resveratrol, but not for Z-TMS in an in vitro steatosis model. (E)-Resveratrol was confirmed to elevate cAMP levels, and knockdown of AMPK attenuated the antiproliferative activity, while Z-TMS did not show significant effects in these experiments. SIRT1 and AMPK activities were further measured indirectly via induction of the target gene small heterodimer partner (SHP). Thereby, (E)-resveratrol, but not Z-TMS, showed potent induction of SHP mRNA levels in an AMPK- and SIRT1-dependent manner, as confirmed by knockdown experiments. We provide evidence that Z-TMS does not show beneficial metabolic effects, probably due to loss of activity towards resveratrol target genes. Moreover, our data support previous findings that Z-TMS acts as an inhibitor of tubulin polymerization. These findings confirm that the methylation of resveratrol leads to profound changes in the mode of action, which should be taken into consideration when conducting lead structure optimization approaches. - Highlights: • Methylation of resveratrol leads to profound changes in biologic activity. • Z-TMS does not prevent hepatic steatosis, but inhibits tubulin polymerization. • Resveratrol analog Z-TMS does not influence known targets like

  7. 1H NMR-Based Global Metabolic Studies of Pseudomonas aeruginosa upon Exposure of the Quorum Sensing Inhibitor Resveratrol.

    Science.gov (United States)

    Chen, Tongtong; Sheng, Jiyang; Fu, Yonghong; Li, Minghui; Wang, Junsong; Jia, Ai-Qun

    2017-02-03

    Quorum sensing (QS) is a process of bacterial communication that has been a novel target for drug discovery. Pyocyanin quantification assay confirmed that resveratrol was an effective quorum sensing inhibitor (QSI) against Pseudomonas aeruginosa PAO1. In this study, the global metabolite changes of P. aeruginosa PAO1 exposed to QSI resveratrol were investigated by 1H NMR spectroscopy. A total of 40 metabolites containing amino acids, organic acid, organic amine, and energy storage compounds were identified. The changed metabolic profile indicated that resveratrol influenced pathways including oxidative stress, protein synthesis, and energy metabolism. Oxidative stress could upregulate the expression of genes related to QS in P. aeruginosa. It suggested that resveratrol could inhibit the QS systems in P. aeruginosa PAO1 by relieving oxidative stress due to its antioxidant activity. On the other hand, resveratrol could attenuate the pathogenicity of P. aeruginosa PAO1 by disturbing the TCA cycle so that anaerobic respiration could suppress the virulence because anaerobiosis could induce the loss of cytotoxicity regulated by QS in P. aeruginosa. These findings deepened our comprehending of the metabolic responses of P. aeruginosa PAO1 to resveratrol and pinpointed the possible underlying mechanism of resveratrol's inhibition effect on QS in P. aeruginosa PAO1.

  8. The Combination of Resveratrol and High-Fluence Light Emitting Diode-Red Light Produces Synergistic Photobotanical Inhibition of Fibroblast Proliferation and Collagen Synthesis: A Novel Treatment for Skin Fibrosis.

    Science.gov (United States)

    Mamalis, Andrew; Jagdeo, Jared

    2017-01-01

    Skin fibrosis is a debilitating condition that significantly impacts patient quality of life. Ultraviolet phototherapy is currently used to treat several diseases featuring skin fibrosis. High-fluence light-emitting diode-generated red light (HF-LED-RL) does not cause DNA damage associated with skin cancer, and it is generally regarded as safe, portable, and cost-effective. Early clinical observations suggest that LED-generated light may possess antifibrotic effects, although these findings are largely unexplored. Previously published research demonstrated that HF-LED-RL decreases fibroblast proliferation and collagen in vitro. The goal of this study was to compare the combination effects of HF-LED-RL alone with HF-LED-RL in combination with resveratrol. It is hypothesized that resveratrol, an active ingredient in red wine, a potent antioxidant scavenger of reactive oxygen species, and an inhibitor of collagen production, may synergistically decrease fibroblast proliferation and collagen production when combined with HF-LED-RL. In this study, evidence is provided that resveratrol combined with HF-LED-RL acts synergistically to decrease fibroblast proliferation and procollagen 1A1 production, and this represents a new potential therapeutic modality that is termed the "photobotanical" effect due to the combined light and botanical properties observed. The study, discovery, and use of photobotanical combinations may usher in new therapeutics or phototherapy adjuvants for the treatment of dermatologic diseases.

  9. Resveratrol and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Dominique Bonnefont-Rousselot

    2016-05-01

    Full Text Available The increased incidence of cardiovascular diseases (CVDs has stimulated research for substances that could improve cardiovascular health. Among them, resveratrol (RES, a polyphenolic compound notably present in grapes and red wine, has been involved in the “French paradox”. RES is known for its antioxidant and anti-inflammatory properties and for its ability to upregulate endothelial NO synthase (eNOS. RES was able to scavenge •OH/O2•− and peroxyl radicals, which can limit the lipid peroxidation processes. Moreover, in bovine aortic endothelial cells (BAEC under glucose-induced oxidative stress, RES restored the activity of dimethylargininedimethylaminohydrolase (DDAH, an enzyme that degrades an endogenous inhibitor of eNOS named asymmetric dimethylarginine (ADMA. Thus, RES could improve •NO availability and decrease the endothelial dysfunction observed in diabetes. Preclinical studies have made it possible to identify molecular targets (SIRT-1, AMPK, Nrf2, NFκB…; however, there are limited human clinical trials, and difficulties in the interpretation of results arise from the use of high-dose RES supplements in research studies, whereas low RES concentrations are present in red wine. The discussions on potential beneficial effects of RES in CVDs (atherosclerosis, hypertension, stroke, myocardial infarction, heart failure should compare the results of preclinical studies with those of clinical trials.

  10. Resveratrol-induced autophagy is dependent on IP3Rs and on cytosolic Ca2.

    Science.gov (United States)

    Luyten, Tomas; Welkenhuyzen, Kirsten; Roest, Gemma; Kania, Elzbieta; Wang, Liwei; Bittremieux, Mart; Yule, David I; Parys, Jan B; Bultynck, Geert

    2017-06-01

    Previous work revealed that intracellular Ca2+ signals and the inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) are essential to increase autophagic flux in response to mTOR inhibition, induced by either nutrient starvation or rapamycin treatment. Here, we investigated whether autophagy induced by resveratrol, a polyphenolic phytochemical reported to trigger autophagy in a non-canonical way, also requires IP3Rs and Ca2+ signaling. Resveratrol augmented autophagic flux in a time-dependent manner in HeLa cells. Importantly, autophagy induced by resveratrol (80μM, 2h) was completely abolished in the presence of 10μM BAPTA-AM, an intracellular Ca2+-chelating agent. To elucidate the IP3R's role in this process, we employed the recently established HEK 3KO cells lacking all three IP3R isoforms. In contrast to the HEK293 wt cells and to HEK 3KO cells re-expressing IP3R1, autophagic responses in HEK 3KO cells exposed to resveratrol were severely impaired. These altered autophagic responses could not be attributed to alterations in the mTOR/p70S6K pathway, since resveratrol-induced inhibition of S6 phosphorylation was not abrogated by chelating cytosolic Ca2+ or by knocking out IP3Rs. Finally, we investigated whether resveratrol by itself induced Ca2+ release. In permeabilized HeLa cells, resveratrol neither affected the sarco- and endoplasmic reticulum Ca2+ ATPase (SERCA) activity nor the IP3-induced Ca2+ release nor the basal Ca2+ leak from the ER. Also, prolonged (4 h) treatment with 100μM resveratrol did not affect subsequent IP3-induced Ca2+ release. However, in intact HeLa cells, although resveratrol did not elicit cytosolic Ca2+ signals by itself, it acutely decreased the ER Ca2+-store content irrespective of the presence or absence of IP3Rs, leading to a dampened agonist-induced Ca2+ signaling. In conclusion, these results reveal that IP3Rs and cytosolic Ca2+ signaling are fundamentally important for driving autophagic flux, not only in response to m

  11. The Effect of Resveratrol on Surgery-Induced Epidural Fibrosis in Laminectomy Rats

    Directory of Open Access Journals (Sweden)

    Peifeng Sun

    2014-01-01

    Full Text Available Epidural fibrosis (EF is a common complication for the patients who underwent laminectomy. Recently, EF is thought to cause recurrent postoperative pain after laminectomy. Resveratrol has been shown to exert its anti-inflammatory, antifibrotic, and antiproliferative multifaceted properties. The object of this study was to investigate the effects of resveratrol on the prevention of postlaminectomy EF formation in laminectomy rats. A controlled double-blinded study was performed on 60 healthy adult Sprague-Dawley rats that underwent lumbar laminectomy at the L1-L2 levels. They were divided randomly into 3 groups (1, 2, and 3 of 20 rats each—group 1: resveratrol treatment group; group 2: resveratrol dilution saline treatment group; group 3: sham group (rats underwent laminectomy without treatment. All rats were killed 4 weeks after operation. The Rydell score, hydroxyproline content, vimentin cells density, fibroblasts density, and inflammatory factors expressional levels all suggested better results in resveratrol group than the other two groups. Resveratrol is able to inhibit fibroblasts proliferation, and TGF-β1 and IL-6 expressions and prevent epidural fibrosis in postlaminectomy rat.

  12. Anti-Oxidant, Anti-Inflammatory and Anti-Angiogenic Properties of Resveratrol in Ocular Diseases

    Directory of Open Access Journals (Sweden)

    Allan Lançon

    2016-03-01

    Full Text Available Resveratrol (3,4′,5 trihydroxy-trans-stilbene is one of the best known phytophenols with pleiotropic properties. It is a phytoalexin produced by vine and it leads to the stimulation of natural plant defenses but also exhibits many beneficial effects in animals and humans by acting on a wide range of organs and tissues. These include the prevention of cardiovascular diseases, anti-cancer potential, neuroprotective effects, homeostasia maintenance, aging delay and a decrease in inflammation. Age-related macular degeneration (AMD is one of the main causes of deterioration of vision in adults in developed countries This review deals with resveratrol and ophthalmology by focusing on the antioxidant, anti-inflammatory, and anti-angiogenic effects of this molecule. The literature reports that resveratrol is able to act on various cell types of the eye by increasing the level of natural antioxidant enzymatic and molecular defenses. Resveratrol anti-inflammatory effects are due to its capacity to limit the expression of pro-inflammatory factors, such as interleukins and prostaglandins, and also to decrease the chemo-attraction and recruitment of immune cells to the inflammatory site. In addition to this, resveratrol was shown to possess anti-VEGF effects and to inhibit the proliferation and migration of vascular endothelial cells. Resveratrol has the potential to be used in a range of human ocular diseases and conditions, based on animal models and in vitro experiments.

  13. Anti-Inflammatory and Organ-Protective Effects of Resveratrol in Trauma-Hemorrhagic Injury

    Directory of Open Access Journals (Sweden)

    Fu-Chao Liu

    2015-01-01

    Full Text Available Resveratrol, a natural polyphenolic compound of grape and red wine, owns potential anti-inflammatory effects, which results in the reduction of cytokines overproduction, the inhibition of neutrophil activity, and the alteration of adhesion molecules expression. Resveratrol also possesses antioxidant, anti-coagulation and anti-aging properties, and it may control of cell cycle and apoptosis. Resveratrol has been shown to reduce organ damage following traumatic and shock-like states. Such protective phenomenon is reported to be implicated in a variety of intracellular signaling pathways including the activation of estrogen receptor, the regulation of the sirtuin 1/nuclear factor-kappa B and mitogen-activated protein kinases/hemeoxygenase-1 pathway, and the mediation of proinflammatory cytokines and reactive oxygen species formation and reaction. In the recent studies, resveratrol attenuates hepatocyte injury and improves cardiac contractility due to reduction of proinflammatory mediator expression and ameliorates hypoxia-induced liver and kidney mitochondrial dysfunction following trauma and hemorrhagic injuries. Moreover, through anti-inflammatory effects and antioxidant properties, the resveratrol is believed to protect organ function in trauma-hemorrhagic injury. In this review, the organ-protective and anti-inflammatory effects of resveratrol in trauma-hemorrhagic injury will be discussed.

  14. Resveratrol fuels HER2 and ERα-positive breast cancer behaving as proteasome inhibitor.

    Science.gov (United States)

    Andreani, Cristina; Bartolacci, Caterina; Wijnant, Kathleen; Crinelli, Rita; Bianchi, Marzia; Magnani, Mauro; Hysi, Albana; Iezzi, Manuela; Amici, Augusto; Marchini, Cristina

    2017-02-26

    The phytoestrogen resveratrol has been reported to possess cancer chemo-preventive activity on the basis of its effects on tumor cell lines and xenograft or carcinogen-inducible in vivo models. Here we investigated the effects of resveratrol on spontaneous mammary carcinogenesis using Δ16HER2 mice as HER2+/ERα+ breast cancer model. Instead of inhibiting tumor growth, resveratrol treatment (0.0001% in drinking water; daily intake of 4μg/mouse) shortened tumor latency and enhanced tumor multiplicity in Δ16HER2 mice. This in vivo tumor-promoting effect of resveratrol was associated with up-regulation of Δ16HER2 and down-regulation of ERα protein levels and was recapitulated in vitro by murine (CAM6) and human (BT474) tumor cell lines. Our results demonstrate that resveratrol, acting as a proteasome inhibitor, leads to Δ16HER2 accumulation which favors the formation of Δ16HER2/HER3 heterodimers. The consequential activation of downstream mTORC1/p70S6K/4EBP1 pathway triggers cancer growth and proliferation. This study provides evidence that resveratrol mechanism of action (and hence its effects) depends on the intrinsic molecular properties of the cancer model under investigation, exerting a tumor-promoting effect in luminal B breast cancer subtype models.

  15. PRACTICAL PREPARATION OF RESVERATROL 3-O-β-D-GLUCURONIDE

    OpenAIRE

    Jungong, Christian S.; Novikov, Alexei V.

    2012-01-01

    A practical synthesis of resveratrol 3-O-β-D-glucuronide, suitable for preparation of large quantities, was developed using selective deacetylation of resveratrol triacetate with ammonium acetate. A simplified procedure for large scale preparation of resveratrol is also reported.

  16. Resveratrol Modulates Interleukin-1β-induced Phosphatidylinositol 3-Kinase and Nuclear Factor κB Signaling Pathways in Human Tenocytes

    Science.gov (United States)

    Busch, Franziska; Mobasheri, Ali; Shayan, Parviz; Lueders, Cora; Stahlmann, Ralf; Shakibaei, Mehdi

    2012-01-01

    Resveratrol, an activator of histone deacetylase Sirt-1, has been proposed to have beneficial health effects due to its antioxidant and anti-inflammatory properties. However, the mechanisms underlying the anti-inflammatory effects of resveratrol and the intracellular signaling pathways involved are poorly understood. An in vitro model of human tenocytes was used to examine the mechanism of resveratrol action on IL-1β-mediated inflammatory signaling. Resveratrol suppressed IL-1β-induced activation of NF-κB and PI3K in a dose- and time-dependent manner. Treatment with resveratrol enhanced the production of matrix components collagen types I and III, tenomodulin, and tenogenic transcription factor scleraxis, whereas it inhibited gene products involved in inflammation and apoptosis. IL-1β-induced NF-κB and PI3K activation was inhibited by resveratrol or the inhibitors of PI3K (wortmannin), c-Src (PP1), and Akt (SH-5) through inhibition of IκB kinase, IκBα phosphorylation, and inhibition of nuclear translocation of NF-κB, suggesting that PI3K signaling pathway may be one of the signaling pathways inhibited by resveratrol to abrogate NF-κB activation. Inhibition of PI3K by wortmannin attenuated IL-1β-induced Akt and p65 acetylation, suggesting that p65 is a downstream component of PI3K/Akt in these responses. The modulatory effects of resveratrol on IL-1β-induced activation of NF-κB and PI3K were found to be mediated at least in part by the association between Sirt-1 and scleraxis and deacetylation of NF-κB and PI3K. Overall, these results demonstrate that activated Sirt-1 plays an essential role in the anti-inflammatory effects of resveratrol and this may be mediated at least in part through inhibition/deacetylation of PI3K and NF-κB. PMID:22936809

  17. Synthesis, antiplatelet and antithrombotic activities of resveratrol derivatives with NO-donor properties.

    Science.gov (United States)

    Dutra, Luiz Antonio; Guanaes, Jéssica Frade O; Johmann, Nadine; Lopes Pires, Maria Elisa; Chin, Chung Man; Marcondes, Sisi; Dos Santos, Jean Leandro

    2017-06-01

    Resveratrol (RVT) is a stilbene with a protective effect on the cardiovascular system; however, drawbacks including low bioavailability and fast metabolism limit its efficacy. In this work we described new resveratrol derivatives with nitric oxide (NO) release properties, ability to inhibit platelet aggregation and in vivo antithrombotic effect. Compounds (4a-f) were able to release NO in vitro, at levels ranging from 24.1% to 27.4%. All compounds (2a-f and 4a-f) have exhibited platelet aggregation inhibition using as agonists ADP, collagen and arachidonic acid. The most active compound (4f) showed reduced bleeding time compared to acetylsalicylic acid (ASA) and protected up to 80% against in vivo thromboembolic events. These findings suggest that hybrid resveratrol-furoxan (4f) is a novel lead compound able to prevent platelet aggregation and thromboembolic events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Resveratrol reduces matrix metalloproteinases and alleviates intrahepatic cholestasis of pregnancy in rats.

    Science.gov (United States)

    Chen, Zhong; Hu, Lingqing; Lu, Mudan; Shen, Zongji

    2016-04-01

    Intrahepatic cholestasis of pregnancy (ICP) is a severe liver disorder occurring specifically in pregnancy, and matrix metalloproteinase (MMP)-2 and MMP-9 were found to be elevated in ICP patients. Using ethinylestradiol-induced ICP rats as the model, we examined the effect of resveratrol on ICP symptoms such as bile flow rate, serum enzymatic activities, and TBA concentration, as well as MMP levels, and compared with the known ICP drug ursodeoxycholic acid. Both MMP-2 and MMP-9 were upregulated in ICP rats, and resveratrol treatment could inhibit the elevation of both MMPs, whereas ursodeoxycholic acid did not exhibit any effect. Although ursodeoxycholic acid alleviated ICP symptoms, resveratrol treatment in general exhibited better outcome in restoring bile flow rate, serum enzymatic activities, and TBA concentration. Our results for the first instance strongly supported the potential of RE as a new therapeutic agent in treating ICP, possibly through inhibiting MMP-2 and MMP-9.

  19. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid.

    Science.gov (United States)

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Choi, Yun-Hyeok; Hong, Seong Su; Suh, Hwa-Jin; Park, Woncheol; Boo, Yong Chool

    2016-07-01

    Resveratrol is known to inhibit cellular melanin synthesis by multiple mechanisms. Glycolic acid (GA) is used in skin care products for its excellent skin penetration. The purpose of this study was to examine the anti-melanogenic effects of resveratryl triglycolate (RTG), a novel hybrid compound of resveratrol and GA, in comparison with resveratrol, GA, resveratryl triacetate (RTA) and arbutin. Resveratrol, RTG, and RTA inhibited the catalytic activity human tyrosinase (TYR) more potently than arbutin or GA did. Their cytotoxic and anti-melanogenic effects were examined using murine melanoma B16/F10 cells and human epidermal melanocytes (HEMs). The cytotoxicity of RTG was similar to that of resveratrol and RTA. RTG at 3-10 μM decreased melanin levels and cellular TYR activities in α-melanocyte-stimulating hormone-stimulated B16/F10 cells, and L-tyrosine-stimulated HEMs. RTG also suppressed mRNA and protein expression of TYR, tyrosinase-related protein 1, L-3,4-dihydroxyphenylalanine chrome tautomerase, and microphthalmia-associated transcription factor (MITF) in HEMs stimulated with L-tyrosine. This study suggests that, like resveratrol and RTA, RTG can attenuate cellular melanin synthesis effectively through the suppression of MITF-dependent expression of melanogenic enzymes and the inhibition of catalytic activity of TYR enzyme. RTG therefore has potential for use as a cosmeceutical ingredient for skin whitening.

  20. The dietary constituent resveratrol suppresses nociceptive neurotransmission via the NMDA receptor.

    Science.gov (United States)

    Takehana, Shiori; Kubota, Yoshiko; Uotsu, Nobuo; Yui, Kei; Iwata, Koichi; Shimazu, Yoshihito; Takeda, Mamoru

    2017-01-01

    Background Although we have previously reported that intravenous resveratrol administration inhibits the nociceptive neuronal activity of spinal trigeminal nucleus caudalis neurons, the site of the central effect remains unclear. The aim of the present study was to examine whether acute intravenous resveratrol administration in the rat attenuates central glutamatergic transmission of spinal trigeminal nucleus caudalis neurons responding to nociceptive mechanical stimulation in vivo, using extracellular single-unit recordings and microiontophoretic techniques. Results Extracellular single-unit recordings using multibarrel electrodes were made from the spinal trigeminal nucleus caudalis wide dynamic range neurons responding to orofacial mechanical stimulation in pentobarbital anesthetized rats. These neurons also responded to iontophoretic application of glutamate, and the evoked neuronal discharge frequency was significantly increased in a current-dependent and reversible manner. The mean firing frequency evoked by the iontophoretic application of glutamate (30, 50, and 70 nA) was mimicked by the application of 10 g, 60 g, and noxious pinch mechanical stimulation, respectively. The mean firing frequency of spinal trigeminal nucleus caudalis wide dynamic range neurons responding to iontophoretic application of glutamate and N-methyl-D-aspartate were also significantly inhibited by intravenous administration of resveratrol (2 mg/kg) and the maximal inhibition of discharge frequency was observed within 10 min. These inhibitory effects lasted approximately 20 min. The relative magnitude of inhibition by resveratrol of the glutamate-evoked spinal trigeminal nucleus caudalis wide dynamic range neuronal discharge frequency was similar to that for N-methyl-D-aspartate iontophoretic application. Conclusion These results suggest that resveratrol suppresses glutamatergic neurotransmission of the spinal trigeminal nucleus caudalis neurons responding to nociceptive

  1. Resveratrol: A Multifunctional Compound Improving Endothelial Function

    OpenAIRE

    Li, Huige; F?rstermann, Ulrich

    2009-01-01

    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression a...

  2. Neuroprotective effect of resveratrol against scopolamine-induced cognitive impairment and oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Pushpalatha Bunadri

    2013-01-01

    Full Text Available The objective of this study was to examine the neuroprotective effect of resveratrol on cognitive impairment induced by scopolamine, a muscarinic antagonist, in rats. Memory impairment was induced by administration of scopolamine (1 mg/kg intraperitoneally. Cognitive functions were assessed using radial arm maze, an active avoidance paradigm. Oxidative stress parameters like malondialdehyde, catalase and superoxide dismutase were assessed and acetylcholinesterase activity was estimated. More working and reference memory errors in the radial arm maze test and fewer avoidances in the active avoidance test were observed with scopolamine in the 1 mg/kg i.p.-treated animals. This phenomenon is a clear indication of memory impairment. Oral administration of resveratrol (20 mg/kg inhibited the occurrence of higher working, reference memory errors and prevented the incidence of less avoidances. Resveratrol appeared to have exerted memory-enhancing effects by inhibiting acetylcholinesterase activity and prevented the rise in malondialdehyde levels and loss of antioxidant enzymes catalase and superoxide dismutase, showing antioxidant potential. Based on the above results of behavioral and biochemical studies, it can be concluded that resveratrol protected against scopolamine-induced loss of cognition. The results also indicate that resveratrol is an antioxidant and an acetylcholinesterase inhibitor, and it is likely that resveratrol’s protective effect is related to its antioxidant and cholinesterase inhibitory effects.

  3. Resveratrol and liver: A systematic review.

    Science.gov (United States)

    Faghihzadeh, Forouzan; Hekmatdoost, Azita; Adibi, Payman

    2015-08-01

    Recent studies demonstrated that resveratrol has many therapeutic effects on liver disorders. Resveratrol significantly increased survival after liver transplantation, decreased fat deposition, necrosis, and apoptosis which induced by ischemia in Wistar rats. It provided liver protection against chemical, cholestatic, and alcohol injury. Resveratrol can improve glucose metabolism and lipid profile and decrease liver fibrosis and steatosis. Furthermore, it was able to alter hepatic cell fatty acid composition. According to extension of liver disease around the world and necessity of finding new threat, this review critically examines the current preclinical in vitro and in vivo studies on the preventive and therapeutic effects of resveratrol in liver disorders. A search in PubMed, Google Scholar, and Scopus was undertaken to identify relevant literature using search terms, including "liver," "hepatic," and "Resveratrol." Both in vivo and in vitro studies were included. No time limiting considered for this search. A total of 76 articles were eligible for this review. In these articles, resveratrol shows antioxidative properties in different models of hepatitis resulting in reducing of hepatic fibrosis. Resveratrol could reduce hepatic steatosis through modulating the insulin resistance and lipid profile in animals. These high quality preclinical studies propose the potential therapeutic implication of resveratrol in liver disorders especially those with hepatic steatosis. Resveratrol can play a pivotal role in prevention and treatment of liver disorders by reducing hepatic fibrosis.

  4. Resveratrol and liver: A systematic review

    Directory of Open Access Journals (Sweden)

    Forouzan Faghihzadeh

    2015-01-01

    Full Text Available Background: Recent studies demonstrated that resveratrol has many therapeutic effects on liver disorders. Resveratrol significantly increased survival after liver transplantation, decreased fat deposition, necrosis, and apoptosis which induced by ischemia in Wistar rats. It provided liver protection against chemical, cholestatic, and alcohol injury. Resveratrol can improve glucose metabolism and lipid profile and decrease liver fibrosis and steatosis. Furthermore, it was able to alter hepatic cell fatty acid composition. According to extension of liver disease around the world and necessity of finding new threat, this review critically examines the current preclinical in vitro and in vivo studies on the preventive and therapeutic effects of resveratrol in liver disorders. Materials and Methods: A search in PubMed, Google Scholar, and Scopus was undertaken to identify relevant literature using search terms, including "liver," "hepatic," and "Resveratrol." Both in vivo and in vitro studies were included. No time limiting considered for this search. Results: A total of 76 articles were eligible for this review. In these articles, resveratrol shows antioxidative properties in different models of hepatitis resulting in reducing of hepatic fibrosis. Conclusion: Resveratrol could reduce hepatic steatosis through modulating the insulin resistance and lipid profile in animals. These high quality preclinical studies propose the potential therapeutic implication of resveratrol in liver disorders especially those with hepatic steatosis. Resveratrol can play a pivotal role in prevention and treatment of liver disorders by reducing hepatic fibrosis.

  5. The impact of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    Shen, Chen; Ghellinck, Alexis de; Fragneto, Giovanna

    The natural antioxidant resveratrol, contained in the skin of grape and accordingly in red wine, has significant health effects such as cardiovascular protection and anti-oxidation. Clinical trials of resveratrol as prophylactic or even therapeutic drug are ongoing. Most probably, the working...... mechanism is unspecific. However, there are only few biophysical studies regarding the impact of resveratrol on lipid membranes. Here, results from a neutron reflectometry investigation on solid supported di-palmitoyl-phosphatidyl-choline (DPPC) bilayers with incorporated resveratrol are presented. The data...

  6. The impact of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    Shen, Chen; Ghellinck, Alexis de; Fragneto, Giovanna

    The natural antioxidant resveratrol, contained in the skin of red grape and accordingly in their wines, is hold liable for health impacts such as cardiovascular protection and anti-oxidative effect. Clinical trials of resveratrol as prophylactic or even therapeutic drug are ongoing. However, basic...... knowledge on its probable working mechanism is rare. In this biophysical study, neutron reflectometry was used to investigate the direct impact of resveratrol on lipid membranes with solid supported bilayers. When interacting with di- palmitoyl-phosphatidyl-choline (DPPC) bilayers, resveratrol accumulates...

  7. Tumorigenesis: cell defense against hypoxia?

    Directory of Open Access Journals (Sweden)

    Nafiseh Pakravan

    2013-04-01

    Full Text Available Microenvironmental elements can directly contribute to the induction and the maintenance of tumor. Oxygen is the main element in the cell microenvironment and hypoxia can affect the process of tumorigenesis. In response to hypoxia, cells change their pattern and characteristics. These changes suggest that it is not just adaptation, but some sort of cell defense against hypoxia. If hypoxia is corrected, then cell defense mechanisms are interrupted. An examination of the process of tumorigenesis helps to design better therapeutic strategies.A systematic review of the English literature was conducted by searching PubMed, Google Scholar, and ISI Web databases for studies on changes that defend and help cells to live in a hypoxic microenvironment. Cells respond to hypoxia by de-differentiation and an increase in heat shock proteins. Angiogenesis and deviation of inflammatory response in favor of hypoxic cell survival also defend and save the oxygen-starved cells from death. Finally, anti-angiogenic therapies and more hypoxia enhance metastasis, as tumors with low oxygen concentration are more malignant than tumors with high oxygen concentration. All these enable cells to migrate away from low oxygen areas and seek a more conducive microenvironment. Therapies that make the microenvironment more hypoxic need to be revised. This has been done for antiangiogenic therapies, previously considered to be anti-tumor approaches. Effective therapies may be correcting therapies which direct the tumor microenvironment towards natural physical/chemical condition. Correcting therapies either bring back tumor cells to a normal form (correct tumor cells or help the immune system to eradicate tumor cells which can not be corrected.

  8. LIF promotes tumorigenesis and metastasis of breast cancer through the AKT-mTOR pathway

    Science.gov (United States)

    Yu, Haiyang; Wu, Lihua; Zhao, Yuhan; Zhang, Cen; Yue, Xuetian; Liu, Zhen; Wu, Hao; Haffty, Bruce G.; Feng, Zhaohui; Hu, Wenwei

    2014-01-01

    Leukemia inhibitory factor (LIF) is a multi-functional cytokine protein. The role of LIF in tumorigenesis is not well-understood. Here, we found that LIF promotes tumorigenesis and metastasis of breast cancer. LIF promotes cell proliferation and anchorage-independent growth of breast cancer cells in vitro, and the growth of xenograft breast tumors in vivo. LIF also promotes invasion and migration of breast cancer cells in vitro and metastasis of breast cancer in vivo. We found that LIF activates the AKT-mTOR signaling pathway to promote tumorigenesis and metastasis of breast cancer. Inhibiting the AKT activity can largely block the activation of the mTOR pathway by LIF, suggesting that LIF activates the mTOR pathway through AKT. Inhibiting the AKT activity as well as inhibiting the mTOR activity largely block the promoting effect of LIF on tumorigenesis and metastasis. Furthermore, overexpression of LIF is significantly associated with a poorer relapse free survival in breast cancer patients. Taken together, our data strongly suggest that LIF plays an important role in the tumorigenesis and metastasis of breast cancer, and could be an important prognostic marker for breast cancer. PMID:24553191

  9. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity.

    Science.gov (United States)

    Qiao, Yi; Sun, Jin; Xia, Shufang; Tang, Xue; Shi, Yonghui; Le, Guowei

    2014-06-01

    Recent studies have investigated the anti-obesity effect of resveratrol, but the pathways through which resveratrol resists obesity are not clear. In the present study, we hypothesize that resveratrol exerts anti-obesity effects that are likely mediated by mechanisms of regulating gut microbes, and in turn, improving fat storage and metabolism. Gut microbes, glucose and lipid metabolism in high-fat diet (HF) mice in vivo are investigated after resveratrol treatment. Several biochemical markers are measured. Fluorescence in situ hybridization and flow cytometry are used to monitor and quantify the changes in gut microbiota. The key genes related to fat storage and metabolism in the liver and visceral adipose tissues are measured by real-time PCR. The results show that resveratrol (200 mg per kg per day) significantly lowers both body and visceral adipose weights, and reduces blood glucose and lipid levels in HF mice. Resveratrol improves the gut microbiota dysbiosis induced by the HF diet, including increasing the Bacteroidetes-to-Firmicutes ratios, significantly inhibiting the growth of Enterococcus faecalis, and increasing the growth of Lactobacillus and Bifidobacterium. Furthermore, resveratrol significantly increases the fasting-induced adipose factor (Fiaf, a key gene negatively regulated by intestinal microbes) expression in the intestine. Resveratrol significantly decreases mRNA expression of Lpl, Scd1, Ppar-γ, Acc1, and Fas related to fatty acids synthesis, adipogenesis and lipogenesis, which may be driven by increased Fiaf expression. The Pearson's correlation coefficient shows that there is a negative correlation between the body weight and the ratios of Bacteroidetes-to-Firmicutes. Therefore, resveratrol mediates the composition of gut microbes, and in turn, through the Fiaf signaling pathway, accelerates the development of obesity.

  10. Effect of Resveratrol on the Prevention of Intra-Abdominal Adhesion Formation in a Rat Model

    Directory of Open Access Journals (Sweden)

    Guangbing Wei

    2016-06-01

    Full Text Available Background: Intra-abdominal adhesions are a very common complication following abdominal surgery. Our previous studies have demonstrated that the inhibition of inflammation at the sites of peritoneal injury can prevent the formation of intra-abdominal adhesions. Resveratrol is a natural extract with a broad range of anti-inflammatory effects. Therefore, we propose that resveratrol can reduce the formation of intra-abdominal adhesions after surgery. The aim of this study was to investigate the effect of resveratrol on intra-abdominal adhesion prevention in a rat model with surgery-induced peritoneal adhesions. Materials and Methods: The cecum wall and its opposite parietal peritoneum were abraded following laparotomy to induce intra-abdominal adhesion formation. Varying doses of resveratrol were administered to the animals. On the eighth day after surgery, the adhesion score was assessed using a visual scoring system. Picrosirius red staining and a hydroxyproline assay were used to assess the amount of collagen deposition in the adhesion tissues. The levels of serum interleukin-6 (IL-6, tumor necrosis factor (TNF-α, and transforming growth factor beta-1 (TGF-β1 were determined by an enzyme-linked immunosorbent assay (ELISA. Western blotting was performed to determine the protein expression of TGF-β1, fibrinogen, and α-smooth muscle actin (α-SMA in rat peritoneal adhesion tissue. Real-time RT-PCR was performed to quantify the mRNA expression of TGF-β1, fibrinogen, and α-SMA. Results: Resveratrol significantly reduced intra-abdominal adhesion formation and fibrin deposition in the rat model. Furthermore, resveratrol significantly reduced the serum levels of IL-6, TNF-α, and TGF-β1. The protein and mRNA expression of TGF-β1, fibrinogen, and α-SMA in the rat peritoneum and adhesion tissues were also down-regulated due to resveratrol intervention. Conclusion: Resveratrol can effectively prevent the formation of postoperative intra

  11. Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines.

    Directory of Open Access Journals (Sweden)

    Azhar R Hussain

    Full Text Available BACKGROUND: We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL. In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4', 5-trihydroxystilbene, a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL cells in causing inhibition of cell viability and inducing apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS. Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect. CONCLUSION/SIGNIFICANCE: Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.

  12. Resveratrol efficiently improves pulmonary function via stabilizing mast cells in a rat intestinal injury model.

    Science.gov (United States)

    Huang, Xiaolei; Zhao, Weicheng; Hu, Dan; Han, Xue; Wang, Hanbin; Yang, Jianyu; Xu, Yang; Li, Yuantao; Yao, Weifeng; Chen, Chaojin

    2017-09-15

    Intestinal ischemia/reperfusion (IIR) leads to acute lung injury (ALI) distally by aggravating pulmonary oxidative stress. Resveratrol is effective in attenuating ALI through its antioxidant capacity. This study aimed to determine the effects of resveratrol on IIR-induced ALI and to explore the role of mast cells (MCs) activation in a rat model of IIR. Adult Sprague-Dawley rats were subjected to IIR by occluding the superior mesenteric artery for 60min followed by 4-hour reperfusion. Resveratrol was intraperitoneally injected at a dose of 15mg/kg for 5days before IIR. MCs stabilizer/inhibitor cromolyn sodium and degranulator compound 48/80 were used to explore the interaction between resveratrol and MCs. Lung tissues were collected for pathological detection and MCs staining. Pulmonary protein expression of surfactant protein-C (SP-C), tryptase, p47phox and gp91phox (two NADPH oxidase subunits), ICAM-1(intercellular adhesion molecule-1) and P-selectin were detected. The levels of oxidative stress markers (SOD, MDA, H2O2 and MPO) and β-hexosaminidase were also measured. At the end of IIR, lung injury was significantly increased and was associated with decreased expression of SP-C and increased lung oxidative stress. Increased inflammation as well as activation of MCs was also observed in the lungs after IIR. All these changes were prevented or reversed by resveratrol pretreatment or MCs inhibition with cromolyn sodium. However, these protective effects of resveratrol or cromolyn sodium were reduced by MCs degranulator compound 48/80. These findings reveal that resveratrol attenuates IIR-induced ALI by reducing NADPH oxidase protein expression and inflammation through stabilizing MCs. Copyright © 2017. Published by Elsevier Inc.

  13. Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells.

    Science.gov (United States)

    Kumar, Sanjay; Stokes, James; Singh, Udai P; Scissum-Gunn, Karyn; Singh, Rajesh; Manne, Upender; Mishra, Manoj K

    2017-10-01

    Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.

  14. Antimicrobial Activity of Resveratrol Analogues

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew. Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold. The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups and antimicrobial activity.

  15. Resveratrol-mediated apoptosis in renal cell carcinoma via the p53/AMP‑activated protein kinase/mammalian target of rapamycin autophagy signaling pathway.

    Science.gov (United States)

    Liu, Qingjun; Fang, Qiang; Ji, Shiqi; Han, Zhixing; Cheng, Wenlong; Zhang, Haijian

    2018-01-01

    Resveratrol, known as phytoalexin, is a natural compound. Clinical studies have revealed that resveratrol has a variety of effects including anti‑inflammatory, antivirus and tumor suppressor activities. It has been reported that it may serve an important role in renal cell carcinoma (RCC) however, the molecular mechanism underlying resveratrol‑induced apoptosis in RCC is still unclear. The aim of the present study was to determine whether resveratrol could suppress RCC progression. Analysis of apoptosis demonstrated that resveratrol may act as a RCC suppressor in a dose‑ and time‑dependent manner. In addition, the results of the MTT and cell migration experiments revealed that resveratrol significantly decreased cell viability and migration. In addition, the expression of the anti‑apoptosis gene B‑cell lymphoma 2 (Bcl‑2) was downregulated by resveratrol, and the expression of pro‑apoptosis gene Bcl‑2‑associated X was upregulated at the mRNA and protein levels. Resveratrol also promoted the expression of p53 and activated phospho‑AMP‑activated protein kinase (AMPK). The phosphorylation of mammalian target of rapamycin (mTOR) was inhibited and the autophagy‑associated genes, light chain 3, autophagy related (ATG)5 and ATG7, were upregulated at the mRNA and protein levels. In conclusion, resveratrol suppressed RCC viability and migration, and promoted RCC apoptosis via the p53/AMPK/mTOR‑induced autophagy signaling pathway.

  16. The impact of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    Shen, Chen; Ghellinck, Alexis de; Fragneto, Giovanna

    The natural antioxidant resveratrol, contained in the skin of red grape and accordingly in their wines, is hold liable for health impacts such as cardiovascular protection and anti-oxidative effect. Clinical trials of resveratrol as prophylactic or even therapeutic drug are ongoing. However, basic...

  17. The impact of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    Shen, Chen; Ghellinck, Alexis de; Fragneto, Giovanna

    The natural antioxidant resveratrol, contained in the skin of grape and accordingly in red wine, has significant health effects such as cardiovascular protection and anti-oxidation. Clinical trials of resveratrol as prophylactic or even therapeutic drug are ongoing. Most probably, the working...

  18. Anaplastic thyroid cancer, tumorigenesis and therapy.

    LENUS (Irish Health Repository)

    O'Neill, J P

    2010-03-01

    Anaplastic thyroid cancer (ATC) is a fatal endocrine malignancy. Current therapy fails to significantly improve survival. Recent insights into thyroid tumorigenesis, post-malignant dedifferentiation and mode of metastatic activity offer new therapeutic strategies.

  19. Resveratrol and health from a consumer perspective

    DEFF Research Database (Denmark)

    Aschemann-Witzel, Jessica; Grunert, Klaus G

    2015-01-01

    attitudes inDanish consumers; scientifically phrased communication, though,made U.S. consumers more likely to retain favorable attitudes in the presence of contradictory evidence.We discuss future research directions in different cultural backgrounds and market contexts and for different foods.......Resveratrol is an ingredient widely researched, with growing evidence of health-promoting effects. However, the reactions of supplement or food consumers to resveratrol has not been researched, and the ingredient is yet unknown to most consumers. We used respective literature and our own...... resveratrol consumer studies with Danish and U.S. consumers to look at current findings and future research directions for three questions. (1)Which factors determine consumer interest in a yet unknown functional ingredient such as resveratrol? (2)Howshould resveratrol bemarketed as a new functional...

  20. The protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Xue - Fang Chen

    2013-06-01

    Full Text Available AIM: To investigate the protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis. METHODS:Subcultured human lens epithelial cell line, ultraviolet induced cell apoptosis, 20μmol/L resveratrol pretreated cell, the indicators change was observed: rate of apoptosis was detected by flow cytometry and apoptosis-related factors of caspses-3 and caspase-9 were detected by colorimetric detection, ultrastructure changes were observed under transmission electron microscope. RESULTS: Flow cytometry instrument testing found that resveratrol can suppress the apoptosis induced by ultraviolet irradiation, caspses-3 and caspase-9 content in positive control group were significantly higher than that of the negative control group at the same time period, the difference was statistically significant(P<0.05; caspses-3 and caspase-9 content in experimental group were lower than that in the positive control group at the same time, the difference was statistically significant(P<0.05. In addition, the damage of human lens epithelial cells was alleviated with the incubation time of resveratrol elongated. CONCLUSION:Resveratrol may inhibit ultraviolet-induced apoptosis of human lens epithelial cells, it has preventive function against radioactive cataract, and it can provide reliable evidence for pursuing effective medicine to prevent and treat cataract.

  1. Resveratrol: Why Is It a Promising Therapy for Chronic Kidney Disease Patients?

    Directory of Open Access Journals (Sweden)

    Juliana F. Saldanha

    2013-01-01

    Full Text Available Resveratrol, a phenolic compound found in various plants, including grapes, berries, and peanuts, shows promise for the treatment of cancer, aging, type 2 diabetes, and cardiovascular diseases. Resveratrol can promote transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2 activation, increase the expression level of SIRT-1, which is a sirtuin family protein, and reduce mTOR pathway signaling. This compound has anti-inflammatory properties in that it inhibits or antagonizes the nuclear factor-κB (NF-κB activity, which is a redox-sensitive transcription factor that coordinates the inflammatory response. Inflammation and oxidative stress, which are common features in patients with chronic kidney disease (CKD, are interrelated and associated with cardiovascular disease and the progression of CKD itself. Because of the modulation of the mechanisms involved in the inflammatory-oxidative stress cycle, resveratrol could play an important role in controlling CKD-related metabolic derangements. Although resveratrol supplementation in theory is a promising therapy in this patient group, there are no studies evaluating its effects. Thus, the present review aims to describe the role of resveratrol in inflammation and oxidative stress modulation and its possible benefits to patients with CKD.

  2. Resveratrol Downregulates Interleukin-6-Stimulated Sonic Hedgehog Signaling in Human Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Su

    2013-01-01

    Full Text Available IL-6 and sonic hedgehog (Shh signaling molecules are considered to maintain the growth of cancer stem cells (CSCs. Resveratrol, an important integrant in traditional Chinese medicine, possesses certain antitumor effects. However, the mechanisms on regulating acute myeloid leukemia (AML are unclear. This study first used human subjects to demonstrate that the plasma levels of IL-6 and IL-1β in AML patients were higher and lower, respectively, than healthy donors. The expression of Shh preproproteins, and C- and N-terminal Shh peptides increased in bone marrow and peripheral blood mononuclear cells isolated from AML patients, and the plasma N-Shh secretion was greater. To further clarify the effect of IL-6 and resveratrol in Shh signaling, human AML HL-60 cells were tested. IL-6 upregulated Shh and Gli-1 expression and was accompanied by an increase of cell viability. Resveratrol significantly decreased CSC-related Shh expression, Gli-1 nuclear translocation, and cell viability in IL-6-treated HL-60 cells and had synergistic effect with Shh inhibitor cyclopamine on inhibiting cell growth. Conclusions. IL-6 stimulated the growth of AML cells through Shh signaling, and this effect might be blocked by resveratrol. Further investigations of Shh as a prognostic marker and resveratrol as a therapeutic drug target to CSCs in AML are surely warranted.

  3. Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives

    OpenAIRE

    Pandey, Ramesh Prasad; Parajuli, Prakash; Shin, Ju Yong; Lee, Jisun; Lee, Seul; Hong, Young-Soo; Park, Yong Il; Kim, Joong Su; Sohng, Jae Kyung

    2014-01-01

    A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratr...

  4. Selective synthesis and biological evaluation of sulfate-conjugated resveratrol metabolites.

    Science.gov (United States)

    Hoshino, Juma; Park, Eun-Jung; Kondratyuk, Tamara P; Marler, Laura; Pezzuto, John M; van Breemen, Richard B; Mo, Shunyan; Li, Yongchao; Cushman, Mark

    2010-07-08

    Five resveratrol sulfate metabolites were synthesized and assessed for activities known to be mediated by resveratrol: inhibition of tumor necrosis factor (TNF) alpha induced NFkappaB activity, cylcooxygenases (COX-1 and COX-2), aromatase, nitric oxide production in endotoxin-stimulated macrophages, proliferation of KB or MCF7 cells, induction of quinone reductase 1 (QR1), accumulation in the sub-G(1) phase of the cell cycle, and quenching of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical. Two metabolites showed activity in these assays; the 3-sulfate exhibited QR1 induction, DPPH free radical scavenging, and COX-1 and COX-2 inhibitory activities and the 4'-sulfate inhibited NFkappaB induction, as well as COX-1 and COX-2 activities. Resveratrol and its 3'-sulfate and 4-sulfate inhibit NO production by NO scavenging and down-regulation of iNOS expression in RAW 264.7 cells. Resveratrol sulfates displayed low antiproliferative activity and negligible uptake in MCF7 cells.

  5. Resveratrol-sulfates provide an intracellular reservoir for generation of parent resveratrol, which induces autophagy in cancer cells

    OpenAIRE

    Andreadi, Catherine; Britton, Robert G; Patel, Ketan R.; Brown, Karen

    2014-01-01

    Resveratrol has many proposed health benefits, including the prevention of cancers, but its low bioavailability is considered a limiting factor in translating these effects to humans. Based on in vivo and clinical studies we have shown that resveratrol is indeed rapidly metabolized by phase II enzymes, and that resveratrol sulfates are deconjugated by steroid sulfatases to afford free resveratrol in vitro and in vivo and hence act as an intracellular reservoir for resveratrol. Further, we hav...

  6. Resveratrol Ameliorates Tau Hyperphosphorylation at Ser396 Site and Oxidative Damage in Rat Hippocampal Slices Exposed to Vanadate: Implication of ERK1/2 and GSK-3β Signaling Cascades.

    Science.gov (United States)

    Jhang, Kyoung A; Park, Jin-Sun; Kim, Hee-Sun; Chong, Young Hae

    2017-11-08

    The objective of this study was to investigate the effect of resveratrol (a natural polyphenolic phytostilbene) on tau hyperphosphorylation and oxidative damage induced by sodium orthovanadate (Na3VO4), the prevalent species of vanadium (vanadate), in rat hippocampal slices. Our results showed that resveratrol significantly inhibited Na3VO4-induced hyperphosphorylation of tau at the Ser396 (p-S396-tau) site, which is upregulated in the hippocampus of Alzheimer's disease (AD) brains and principally linked to AD-associated cognitive dysfunction. Subsequent mechanistic studies revealed that reduction of ERK1/2 activation was involved in the inhibitory effect of resveratrol by inhibiting the ERK1/2 pathway with SL327 mimicking the aforementioned effect of resveratrol. Moreover, resveratrol potently induced GSK-3β Ser9 phosphorylation and reduced Na3VO4-induced p-S396-tau levels, which were markedly replicated by pharmacologic inhibition of GSK-3β with LiCl. These results indicate that resveratrol could suppress Na3VO4-induced p-S396-tau levels via downregulating ERK1/2 and GSK-3β signaling cascades in rat hippocampal slices. In addition, resveratrol diminished the increased extracellular reactive oxygen species generation and hippocampal toxicity upon long-term exposure to Na3VO4 or FeCl2. Our findings strongly support the notion that resveratrol may serve as a potential nutraceutical agent for AD.

  7. Effects of combined phytochemicals on skin tumorigenesis in SENCAR mice

    Science.gov (United States)

    KOWALCZYK, MAGDALENA C.; JUNCO, JACOB J.; KOWALCZYK, PIOTR; TOLSTYKH, OLGA; HANAUSEK, MARGARET; SLAGA, THOMAS J.; WALASZEK, ZBIGNIEW

    2013-01-01

    The purpose of our study was to determine the effect of the combined action of phytochemicals on the early stages of skin tumorigenesis, i.e. initiation and promotion. We tested calcium D-glucarate (CG) given in the diet, while resveratrol (RES) and ursolic acid (UA) were applied topically. The 7,12-dimethylbenz[a]anthracene (DMBA)-initiated, 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted multistage skin carcinogenesis model in SENCAR mice was used. Mice received one topical dose of DMBA, then after one month, two weekly doses of TPA for 14 weeks until sacrifice. RES or UA were applied 20 min prior to DMBA or TPA treatment and 2% dietary CG was given from 2 weeks prior to 2 weeks after the DMBA dose or continually beginning 2 weeks prior to the first dose of TPA. UA applied alone and in combination with CG during the promotion stage was the only inhibitor of tumor multiplicity and tumor incidence. A number of combinations reduced epidermal proliferation, but only UA and the combination UA+CG applied during promotion significantly reduced epidermal hyperplasia. DMBA/TPA application resulted in significant increases in c-jun and p50, which were reversed by a number of different treatments. DMBA/TPA treatment also strongly increased mRNA levels of inflammation markers COX-2 and IL-6. All anti-promotion treatments caused a marked decrease in COX-2 and IL-6 expression compared to the DMBA/TPA control. These results show that UA is a potent inhibitor of skin tumor promotion and inflammatory signaling and it may be useful in the prevention of skin cancer and other epithelial cancers in humans. PMID:23835587

  8. DNA Methylation in Thyroid Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, Josena K., E-mail: jstephe2@hfhs.org [Department of Otolaryngology/Head and Neck Surgery, Henry Ford Hospital, Detroit, MI 48202 (United States); Chitale, Dhananjay [Department of Pathology, Henry Ford Hospital, Detroit, MI 48202 (United States); Narra, Vinod [Essex Surgical Associates, PC, Beverly, MA 01915 (United States); Chen, Kang Mei; Sawhney, Raja; Worsham, Maria J. [Department of Otolaryngology/Head and Neck Surgery, Henry Ford Hospital, Detroit, MI 48202 (United States)

    2011-03-29

    Thyroid cancer is the most common endocrine cancer with 1,690 deaths each year. There are four main types of which the papillary and follicular types together account for >90% followed by medullary cancers with 3% to 5% and anaplastic carcinomas making up <3%. Epigenetic events of DNA hypermethylation are emerging as promising molecular targets for cancer detection. Our immediate and long term goal is to identify DNA methylation markers for early detection of thyroid cancer. This pilot study comprised of 21 patients to include 11 papillary thyroid cancers (PTC), 2 follicular thyroid cancers (FTC), 5 normal thyroid cases, and 3 hyperthyroid cases. Aberrant promoter methylation was examined in 24 tumor suppressor genes using the methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) assay and in the NIS gene using methylation-specific PCR (MSP). The frequently methylated genes were CASP8 (17/21), RASSF1 (16/21) and NIS (9/21). In the normal samples, CASP8, RASSF1 and NIS were methylated in 5/5, 4/5 and 1/5 respectively. In the hyperthyroid samples, CASP8, RASSF1 and NIS were methylated in 3/3, 2/3 and 1/3 respectively. In the thyroid cancers, CASP8, RASSF1, and NIS were methylated in 9/13, 10/13, and 7/13 respectively. CASP8, RASSF1 and NIS were also methylated in concurrently present normal thyroid tissue in 3/11, 4/11 and 3/11 matched thyroid cancer cases (matched for presence of both normal thyroid tissue and thyroid cancer), respectively. Our data suggests that aberrant methylation of CASP8, RASSF1, and NIS maybe an early change in thyroid tumorigenesis regardless of cell type.

  9. Effects of resveratrol and other wine polyphenols on the proliferation, apoptosis and androgen receptor expression in LNCaP cells.

    Science.gov (United States)

    Ferruelo, A; Romero, I; Cabrera, P M; Arance, I; Andrés, G; Angulo, J C

    2014-01-01

    To address the effect of resveratrol and other red wine polyphenols on cell proliferation, apoptosis and androgen receptor (AR) expression in human prostate cancer LNCaP cells. LNCaP cells (5 × 102) were cultured in microtiter plate modules and treated with gallic acid, tannic acid and quercetin (1, 5 and 10 μM), rutin and morin (25, 50 and 75 μM) and resveratrol (5, 10 and 25 μM). To address the extent of proliferation at 24, 48, 72 and 96 hours, a colorimetric immunoassay method was used. An activity caspase 3/7 detection assay was used to disclose apoptosis at 24, 48 and 72 hours. AR mARN levels were determined by real time RT-PCR. All polyphenols studied significantly inhibited (P<.05) cell proliferation compared to control. However, there were moderate differences between them. Resveratrol was the strongest inhibitor at different times and doses. Also, caspase-3 and caspase-7 activity was significantly higher (P<.05) than control in the presence of all the compounds, but the earlier response was achieved by resveratrol. Resveratrol, quercetin and morin were the only nutrients that significantly inhibited AR mRNA expression. Again resveratrol produced the highest inhibition (90-250 times less than control), followed by morin (67-100 times) and quercetin (55-91 times). All polyphenols studied showed important antiproliferative effects and induced apoptosis when added to LNCaP cells culture. We confirm that resveratrol, morin and quercetin may achieve such effect through reduced expression of AR. The synergistic effects of these compounds and their potential to prevent progression of hormone-dependent prostate cancer merit further study. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.

  10. Lysyl oxidase activity regulates oncogenic stress response and tumorigenesis.

    Science.gov (United States)

    Wiel, C; Augert, A; Vincent, D F; Gitenay, D; Vindrieux, D; Le Calvé, B; Arfi, V; Lallet-Daher, H; Reynaud, C; Treilleux, I; Bartholin, L; Lelievre, E; Bernard, D

    2013-10-10

    Cellular senescence, a stable proliferation arrest, is induced in response to various stresses. Oncogenic stress-induced senescence (OIS) results in blocked proliferation and constitutes a fail-safe program counteracting tumorigenesis. The events that enable a tumor in a benign senescent state to escape from OIS and become malignant are largely unknown. We show that lysyl oxidase activity contributes to the decision to maintain senescence. Indeed, in human epithelial cell the constitutive expression of the LOX or LOXL2 protein favored OIS escape, whereas inhibition of lysyl oxidase activity was found to stabilize OIS. The relevance of these in vitro observations is supported by in vivo findings: in a transgenic mouse model of aggressive pancreatic ductal adenocarcinoma (PDAC), increasing lysyl oxidase activity accelerates senescence escape, whereas inhibition of lysyl oxidase activity was found to stabilize senescence, delay tumorigenesis, and increase survival. Mechanistically, we show that lysyl oxidase activity favors the escape of senescence by regulating the focal-adhesion kinase. Altogether, our results demonstrate that lysyl oxidase activity participates in primary tumor growth by directly impacting the senescence stability.

  11. Wine Resveratrol: From the Ground Up

    Directory of Open Access Journals (Sweden)

    Luigi Bavaresco

    2016-04-01

    Full Text Available The ability of the grapevine to activate defense mechanisms against some pathogens has been shown to be linked to the synthesis of resveratrol and other stilbenes by the plant (inducible viniferins. Metabolized viniferins may also be produced or modified by extracellular enzymes released by the pathogen in an attempt to eliminate undesirable toxic compounds. Because of the important properties of resveratrol, there is increasing interest in producing wines with higher contents of this compound and a higher nutritional value. Many biotic and abiotic elicitors can trigger the resveratrol synthesis in the berries, and some examples are reported. Under the same elicitation pressure, viticultural and enological factors can substantially affect the resveratrol concentration in the wine. The production of high resveratrol-containing grapes and wines relies on quality-oriented viticulture (suitable terroirs and sustainable cultural practices and winemaking technologies that avoid degradation of the compound. In general, the oenological practices commonly used to stabilize wine after fermentation do not affect resveratrol concentration, which shows considerable stability. Finally the paper reports on two sirtuin genes (SIRT expressed in grapevine leaves and berries and the role of resveratrol on the deacetylation activity of the encoded enzymes.

  12. Resveratrol protects RPE cells from sodium iodate by modulating PPARα and PPARδ.

    Science.gov (United States)

    Qin, Suofu; Lu, Yimin; Rodrigues, Gerard A

    2014-01-01

    Selective killing of RPE cells in vivo by sodium iodate develops cardinal phenotypes of atrophic age-related macular degeneration. However, the molecular mechanisms are elusive. We tried to search for small cyto-protective molecules against sodium iodate and explore their mechanisms of action. Sodium iodate-mediated RPE cell death was associated with increased levels of reactive oxygen species (ROS) and IL-8. Resveratrol, a natural occurring polyphenol compound, was found to strongly protect RPE cells from sodium iodate with inhibition of production of ROS and IL-8. Resveratrol activated all isoforms of PPARs. Treatment with PPARα and PPARδ agonists inhibited sodium iodate-induced ROS production and protected RPE cells from sodium iodate. A PPARα antagonist significantly reduced resveratrol's protection of RPE cells from sodium iodate. Paradoxically, knocking down PPARδ also rendered RPE cells resistant to sodium iodate. Moreover, PPAR agonists reversed sodium iodate-induced production of IL-8. However, neutralizing extracellular IL-8 failed to protect RPE cells from sodium iodate. Taken together, these observations show that resveratrol protects RPE cells from sodium iodate injury through the activation of PPARα and alteration of PPARδ conformation. PPARα and δ modulators might ameliorate stress-induced RPE degeneration in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The effect of resveratrol in combination with irradiation and chemotherapy. Study using Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Heiduschka, G. [Medical University of Vienna, Department of Otorhinolaryngology, Head and Neck Surgery, Vienna (Austria); Medical University of Vienna, Clinical Pharmacology, Vienna (Austria); Lill, C.; Brunner, M.; Thurnher, D. [Medical University of Vienna, Department of Otorhinolaryngology, Head and Neck Surgery, Vienna (Austria); Seemann, R. [Medical University of Vienna, Maxillo-Facial Surgery, Vienna (Austria); Schmid, R. [Medical University of Vienna, Radiotherapy and -biology, Vienna (Austria); Houben, R. [University Hospital Wuerzburg, Department of Dermatology, Wuerzburg (Germany); Bigenzahn, J. [CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (Austria)

    2014-01-15

    Merkel cell carcinoma (MCC) is a rare, but highly malignant tumor of the skin. In case of systemic disease, possible therapeutic options include irradiation or chemotherapy. The aim of this study was to evaluate whether the flavonoid resveratrol enhances the effect of radiotherapy or chemotherapy in MCC cell lines. The two MCC cell lines MCC13 and MCC26 were treated with increasing doses of resveratrol. Combination experiments were conducted with cisplatin and etoposide. Colony forming assays were performed after sequential irradiation with 1, 2, 3, 4, 6, and 8 Gy and apoptosis was assessed with flow cytometry. Expression of cancer drug targets was analyzed by real-time PCR array. Resveratrol is cytotoxic in MCC cell lines. Cell growth is inhibited by induction of apoptosis. The combination with cisplatin and etoposide resulted in a partially synergistic inhibition of cell proliferation. Resveratrol and irradiation led to a synergistic reduction in colony formation compared to irradiation alone. Evaluation of gene expression did not show significant difference between the cell lines. Due to its radiosensitizing effect, resveratrol seems to be a promising agent in combination with radiation therapy. The amount of chemosensitizing depends on the cell lines tested. (orig.) [German] Das Merkelzellkarzinom (MCC) ist ein seltener, jedoch hochmaligner Tumor der Haut. Sowohl Strahlentherapie oder Chemotherapie sind moegliche therapeutische Optionen. In dieser Studie wurde untersucht, ob das Flavonoid Resveratrol die Wirkung der Strahlen- oder Chemotherapie in MCC-Zelllinien verbessert. Die beiden MCC-Zelllinien MCC13 und MCC26 wurden mit ansteigenden Dosen von Resveratrol behandelt. Kombinationsexperimente wurden mit Cisplatin und Etoposid durchgefuehrt und die Koloniebildung in ''Colony-Forming''-Assays nach erfolgter sequentieller Bestrahlung mit 1, 2, 3, 4, 6 und 8 Gy gemessen. Desweiteren wurde die Apoptose mittels Durchflusszytometrie bestimmt. Die

  14. Resveratrol Promotes Remyelination in Cuprizone Model of Multiple Sclerosis: Biochemical and Histological Study.

    Science.gov (United States)

    Ghaiad, Heba R; Nooh, Mohammed M; El-Sawalhi, Maha M; Shaheen, Amira A

    2017-07-01

    Multiple sclerosis (MS) is a demyelinating neurodegenerative disease, representing a major cause of neurological disability in young adults. Resveratrol is a stilbenoid polyphenol, known to pass blood brain barrier and exhibit antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. Cuprizone model of MS is particularly beneficial in studying demyelination/remyelination. Our study examined the potential neuroprotective and pro-remyelination effects of resveratrol in cuprizone-intoxicated C57Bl/6 mice. Mice were fed with chow containing 0.7 % cuprizone for 7 days, followed by 3 weeks on 0.2 % cuprizone diet. Resveratrol (250 mg/kg/day, p.o.) was given for 3 weeks starting from the second week. At the end of the experiment, animals were tested on rotarod to evaluate changes in balance and motor coordination. Mice were then sacrificed to measure the brain content of glutathione, lipid peroxidation products, adenosine triphosphate, and phospho-inhibitory subunit of nuclear factor κB-α. The activities of cytochrome oxidase and superoxide dismutase were also assessed. The gene expression of myelin basic protein, 2',3'-cyclic nucleotide 3' phosphodiesterase, oligodendrocyte transcription factor-1 (Olig1), NF-κB p65 subunit, and tumor necrosis factor-α was also estimated. Luxol fast blue/periodic acid-Schiff stained brain sections were blindly scored to assess the myelin status. Resveratrol effectively enhanced motor coordination and balance, reversed cuprizone-induced demyelination, improved mitochondrial function, alleviated oxidative stress, and inhibited NF-κB signaling. Interestingly, resveratrol increased Olig1 expression that is positively correlated to active remyelination. The present study may be the first to indicate a pro-remyelinative effect for resveratrol which might represent a potential additive benefit in treating MS.

  15. Advantages of the association of resveratrol with oral contraceptives for management of endometriosis-related pain

    Directory of Open Access Journals (Sweden)

    Maia Jr H

    2012-10-01

    Full Text Available Hugo Maia Jr,1,2 Clarice Haddad,2 Nathanael Pinheiro,3,4 Julio Casoy21Itaigara Memorial Day Hospital, 2Centro de Pesquisas e Assistência em Reprodução Humana, 3ImagePat, Pathology Laboratory, 4Department of Pathology and Forensic Medicine, Federal University of Bahia, Salvador, Bahia, BrazilBackground: The effect of resveratrol on the management of endometriosis-related pain was investigated in 12 patients who failed to obtain pain relief during use of an oral contraceptive containing drospirenone + ethinylestradiol.Methods and results: The addition of 30 mg of resveratrol to the contraceptive regimen resulted in a significant reduction in pain scores, with 82% of patients reporting complete resolution of dysmenorrhea and pelvic pain after 2 months of use. In a separate experiment, aromatase and cyclo-oxygenase-2 expression were investigated in the endometrial tissue of 42 patients submitted to laparoscopy and hysteroscopy for the management of endometriosis. Sixteen of these patients were using oral contraceptives alone prior to hospital admission, while the remaining 26 were using them in combination with resveratrol. Inhibition of both aromatase and cyclo-oxygenase-2 expression was significantly greater in the eutopic endometrium of patients using combined drospirenone + resveratrol therapy compared with the endometrium of patients using oral contraceptives alone.Conclusion: These results suggest that resveratrol potentiates the effect of oral contraceptives in the management of endometriosis-associated dysmenorrhea by further decreasing aromatase and cyclo-oxygenase-2 expression in the endometrium.Keywords: resveratrol, drospirenone, endometriosis, dysmenorrhea, cyclo-oxygenase-2

  16. Resveratrol attenuates HMGB1 signaling and inflammation in house dust mite-induced atopic dermatitis in mice.

    Science.gov (United States)

    Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Thandavarayan, Rajarajan A; Pitchaimani, Vigneshwaran; Sreedhar, Remya; Afrin, Rejina; Harima, Meilei; Suzuki, Hiroshi; Nomoto, Mayumi; Miyashita, Shizuka; Suzuki, Kenji; Watanabe, Kenichi

    2014-12-01

    Resveratrol is a polyphenol abundantly found in red grape skin and is effective against antiaging and anti-inflammation associated with immune responses. In this study, we have investigated the effect of resveratrol on skin lesion, high mobility group box (HMGB)1 and inflammation pathway in an atopic dermatitis (AD) mouse model. AD-like lesion was induced by the application of house dust mite extract to the dorsal skin of NC/Nga mouse. After AD induction, resveratrol (20 mg/kg, p.o.) was administered daily for 2 weeks. We evaluated dermatitis severity, histopathological changes, serum levels of T helper (Th) cytokines (interferon (IFN)γ, interleukin (IL)-4) and changes in protein expression by Western blotting for HMGB1, receptor for advanced glycation end products (RAGE), toll like receptor (TLR)4, nuclear factor (NF)κB, phosphatidylinositide 3-kinase (PI3K), extracellular signal-regulated kinase (ERK)1/2, cyclooxygenase (COX)2, tumor necrosis factor (TNF)α, IL-1β, IL-2Rα and other inflammatory markers in the skin of AD mice. Treatment of resveratrol inhibited the development of the AD-like skin lesions. Histological analysis showed that resveratrol inhibited hypertrophy, intracellular edema, mast cells and infiltration of inflammatory cells. Furthermore, resveratrol treatment down-regulated HMGB1, RAGE, p-NFκB, p-PI3K, p-ERK1/2, COX2, TNFα, IL-1β, IL-2Rα, IFNγ and IL-4. Considering all these findings together, the HMGB1 pathway might be a potential therapeutic target in skin inflammation, and resveratrol treatment could have beneficial effects on AD by modulating the HMGB1 protein expression.

  17. Resveratrol immobilization and release in polymeric hydrogels; Incorporacao e liberacao de resveratrol em hidrogeis polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Momesso, Roberta Grazzielli Ramos Alves Passarelli

    2010-07-01

    Resveratrol (3, 4', 5-trihydroxystilbene) is a polyphenolic produced by a wide variety of plants in response to injury and found predominantly in grape skins. This active ingredient has been shown to possess benefits for the health, such as the antioxidant capacity which is related to the prevention of several types of cancer and skin aging. However, the oral bioavailability of resveratrol is poor and makes its topical application interesting. The purpose of this study was to immobilize resveratrol in polymeric hydrogels to obtain a release device for topical use. The polymeric matrices composed of poli(N-vinyl-2-pyrrolidone) (PVP), poly(ethyleneglycol) (PEG) and agar or PVP and glycerol irradiated at 20 kGy dose were physical-chemically characterized by gel fraction and swelling tests and its preliminary biocompatibility by in vitro test of cytotoxicity using the technique of neutral red uptake. Due to low solubility of resveratrol in water, the addition of 2% ethanol to the matrices was verified. All matrices showed a high crosslinking degree, capacity of swelling and the preliminary cytotoxicity test showed nontoxicity effect. The devices were obtained by resveratrol immobilization in polymeric matrices, carried out in a one-or-two-steps process, that is, before or after irradiation, respectively. The one step resveratrol devices were characterized by gel fraction, swelling tests and preliminary biocompatibility, and their properties were maintained even after the resveratrol incorporation. The devices containing 0,05% of resveratrol obtained by one-step process and 0,1% of resveratrol obtained by two-steps process were submitted to the release test during 24 h. Resveratrol quantification was done by high performance liquid chromatography (HPLC). The results obtained in the kinetics of release showed that only the devices obtained by two-step process release the resveratrol, which demonstrate antioxidant capacity after the release. (author)

  18. Red Wine, Resveratrol and Atrial Fibrillation

    National Research Council Canada - National Science Library

    Laura Siga Stephan; Eduardo Dytz Almeida; Melissa Medeiros Markoski; Juliano Garavaglia; Aline Marcadenti

    2017-01-01

    .... Resveratrol, a bioactive polyphenol found in grapes and red wine, has been linked to antiarrhythmic properties and may act as an inhibitor of both intracellular calcium release and pathological...

  19. Resveratrol and cancer: Challenges for clinical translation

    Science.gov (United States)

    Singh, Chandra K.; Ndiaye, Mary A.; Ahmad, Nihal

    2014-01-01

    Significant work has been done towards identifying the health-beneficial effects of the grape antioxidant resveratrol in a variety of bioassay- and disease- models, with much research being focused on its possible application to cancer management. Despite the large number of preclinical studies dealing with different aspects of the biological effects of resveratrol, it’s translation to clinics is far from reality due to a variety of challenges. In this review, we discuss the issues and questions associated with resveratrol becoming an effective in vivo anticancer drug, from basic metabolic issues to the problems faced by incomplete understanding of the mechanism(s) of action in the body. We also explore efforts taken by researchers, both public and private, to contend with some of these issues. By examining the published data and previous clinical trials, we have attempted to identify the problems and issues that hinder the clinical translation of resveratrol for cancer management. PMID:25446990

  20. Silk fibroin nanoparticles constitute a vector for controlled release of resveratrol in an experimental model of inflammatory bowel disease in rats

    Science.gov (United States)

    Lozano-Pérez, Antonio Abel; Rodriguez-Nogales, Alba; Ortiz-Cullera, Víctor; Algieri, Francesca; Garrido-Mesa, José; Zorrilla, Pedro; Rodriguez-Cabezas, M Elena; Garrido-Mesa, Natividad; Utrilla, M Pilar; De Matteis, Laura; de la Fuente, Jesús Martínez; Cenis, José Luis; Gálvez, Julio

    2014-01-01

    Purpose We aimed to evaluate the intestinal anti-inflammatory properties of silk fibroin nanoparticles, around 100 nm in size, when loaded with the stilbene compound resveratrol, in an experimental model of rat colitis. Methods Nanoparticles were loaded with resveratrol by adsorption. The biological effects of the resveratrol-loaded nanoparticles were tested both in vitro, in a cell culture of RAW 264.7 cells (mouse macrophages), and in vivo, in the trinitrobenzenesulfonic acid model of rat colitis, when administered intracolonically. Results The resveratrol liberation in 1× phosphate-buffered saline (PBS; pH 7.4) was characterized by fast liberation, reaching the solubility limit in 3 hours, which was maintained over a period of 80 hours. The in vitro assays revealed immunomodulatory properties exerted by these resveratrol-loaded nanoparticles since they promoted macrophage activity in basal conditions and inhibited this activity when stimulated with lipopolysaccharide. The in vivo experiments showed that after evaluation of the macroscopic symptoms, inflammatory markers, and intestinal barrier function, the fibroin nanoparticles loaded with resveratrol had a better effect than the single treatments, being similar to that produced by the glucocorticoid dexamethasone. Conclusion Silk fibroin nanoparticles constitute an attractive strategy for the controlled release of resveratrol, showing immunomodulatory properties and intestinal anti-inflammatory effects. PMID:25285004

  1. Time- and concentration-dependent effects of resveratrol in HL-60 and HepG2 cells

    DEFF Research Database (Denmark)

    Stervbo, Ulrik; Vang, Ole; Bonnesen, Christine

    2006-01-01

    Resveratrol, a phytochemical present in grapes, has been demonstrated to inhibit tumourigenesis in animal models. However, the specific mechanism by which resveratrol exerts its anticarcinogenic effect has yet to be elucidated. In the present study, the inhibitory effects of resveratrol on cell...... proliferation and apoptosis were evaluated in the human leukaemia cell line HL-60 and the human hepatoma derived cell line HepG2. We found that after a 2 h incubation period, resveratrol inhibited DNA synthesis in a concentration-dependent manner. The IC50 value was 15 μM in both HL-60 and HepG2 cells. When...... the time of treatment was extended, an increase in IC50 value was observed; for example, at 24 h the IC50 value was 30 μM for HL-60 cells and 60 μM for HepG2 cells. Flow cytometry revealed that cells accumulated in different phases of the cell cycle depending on the resveratrol concentration. Furthermore...

  2. BAG-1 haplo-insufficiency impairs lung tumorigenesis

    National Research Council Canada - National Science Library

    Götz, Rudolf; Kramer, Boris W; Camarero, Guadalupe; Rapp, Ulf R

    2004-01-01

    ... contributes to poor prognosis in tumorigenesis remains controversial. We have evaluated the effect of BAG-1 heterozygosity in mice in a model of non-small-cell lung tumorigenesis with histological and molecular methods...

  3. Study of radioprotective effect of the resveratrol;Estudo do efeito radioprotetor do resveratrol

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Carolina dos Santos

    2009-07-01

    Resveratrol (3,4,5 trihydroxystilbene), a phenolic phytoalexin occurring naturally in a wide variety of plants, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is present at high levels and is considered one of the highest antioxidant constituents. This high capacity to scavenge the free radicals generated by several biologic processes by resveratrol can provide a prevention of human cardiovascular diseases and several types of cancer. The main objective of this study was to determine the in vitro radioprotective effect of resveratrol in cell culture with the aid of the tests of cytotoxicity of resveratrol (IC50%) and lethal dose 50% of gamma radiation (LD50). Studies of the level of resveratrol toxicity, found by cytotoxicity test performed by neutral red uptake assay, and lethal dose 50% (LD50) of gamma radiation from source of Cobalt-60 (Co-60) was performed in cell culture NCTC Clone 929 from ATCC. The IC50% of resveratrol was about 50 M/L. The DL50 of gamma radiation showed a value of about 354 Gy. On the basis of these biological results, it was performed studies of radioprotective effect of resveratrol on the same experimental conditions, verifying that the resveratrol in concentrations between 12.5 M/L and 25 M/L showed a more pronounced radioprotective effect. (author)

  4. Piperine potentiates the antidepressant-like effect of trans-resveratrol: involvement of monoaminergic system.

    Science.gov (United States)

    Huang, Wu; Chen, Zhuoyou; Wang, Qiandong; Lin, Mengmeng; Wu, Shujuan; Yan, Qizhi; Wu, Fan; Yu, Xuefeng; Xie, Xupei; Li, Gaowen; Xu, Ying; Pan, Jianchun

    2013-12-01

    Major depression is characterized by dysfunction of neuroendocrine and immune networks. Trans-resveratrol, a phenolic compound presented in polygonum cuspidatum, was demonstrated previously to exert antidepressant-like effects through regulating monoaminergic system, oxidative/antioxidant defense and inflammatory response. The present study investigated the synergistic antidepressant-like effect of trans-resveratrol and piperine, a bioavailability enhancer, in mice and explored the possible mechanism. Trans-resveratrol was shown to reduce the immobility time both in the tail suspension and forced swimming tests (TST and FST). But the maximal inhibition was nearly 60% even if the doses were increased by 160 mg/kg; while piperine produced weak antidepressant-like effects in these two models. The interaction between trans-resveratrol and piperine was shown a clear-cut synergistic effect as evidenced by an isobolographic analysis. The further study suggested that the anti-immobility response from the subthreshold dose of piperine (2.5 mg/kg) and low doses of trans-resveratrol (10 and 20 mg/kg) was abolished by pretreatment with para-chlorophenylalanine (PCPA, 300 mg/kg, i.p.) in TST and FST, indicating the involvement of serotonergic system. Moreover, treatment with the subthreshold dose of piperine and low doses of trans-resveratrol attenuated reserpine-induced hypothermia and ptosis arguing for the relevance of noradrenaline. Additional evidence from neurochemical (monoamines in the frontal cortex, hippocampus, and hypothalamus) and biochemical (monoamine oxidase, MAO activity) assays corroborated the synergistically elevated monoaminergic system after co-treatment with trans-resveratrol and piperine. The present results indicate the effect of trans-resveratrol combined with piperine on depressive-like behaviors may be partly due to the potentiated activation of monoaminergic system in the brain. Further studies are necessary to elucidate the involvement of the

  5. Resveratrol Oligomers for the Prevention and Treatment of Cancers

    Directory of Open Access Journals (Sweden)

    You-Qiu Xue

    2014-01-01

    Full Text Available Resveratrol (3,4′,5-trihydroxystilbene is a naturally derived phytoalexin stilbene isolated from grapes and other plants, playing an important role in human health and is well known for its extensive bioactivities, such as antioxidation, anti-inflammatory, anticancer. In addition to resveratrol, scientists also pay attention to resveratrol oligomers, derivatives of resveratrol, which are characterized by the polymerization of two to eight, or even more resveratrol units, and are the largest group of oligomeric stilbenes. Resveratrol oligomers have multiple beneficial properties, of which some are superior in activity, stability, and selectivity compared with resveratrol. The complicated structures and diverse biological activities are of significant interest for drug research and development and may provide promising prospects as cancer preventive and therapeutical agents. This review presents an overview on preventive or anticancer properties of resveratrol oligomers.

  6. The Mechanism by which Neurofibromin Suppresses Tumorigenesis

    Science.gov (United States)

    2013-02-01

    NF1) syndrome . MPNSTs are highly aggressive,therapeutically resistant, and typically fatal. Using comparative transcriptome analysis, we identified...transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 13, 129-140. Kijima, T., Maulik, G., Ma, P.C., Tibaldi, E.V

  7. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5' AMP-activated protein kinase activation.

    Science.gov (United States)

    Shabani Nashtaei, M; Amidi, F; Sedighi Gilani, M A; Aleyasin, A; Bakhshalizadeh, Sh; Naji, M; Nekoonam, S

    2017-03-01

    Biochemical and physical modifications during the freeze-thaw process adversely influence the restoration of energy-dependent sperm functions required for fertilization. Resveratrol, a phytoalexin, has been introduced to activate 5' AMP-activated protein kinase which is a cell energy sensor and a cell metabolism regulator. The cryoprotection of resveratrol on sperm cryoinjury via activation of AMP-activated protein kinase also remains to be elucidated. Our aim, thus, was to investigate: (i) the presence and intracellular localization of AMP-activated protein kinase protein; (ii) whether resveratrol may exert a protective effect on certain functional properties of fresh and post-thaw human spermatozoa through modulation of AMP-activated protein kinase. Spermatozoa from normozoospermic men were incubated with or without different concentrations of Compound C as an AMP-activated protein kinase inhibitor or resveratrol as an AMP-activated protein kinase activator for different lengths of time and were then cryopreserved. AMP-activated protein kinase is expressed essentially in the entire flagellum and the post-equatorial region. Viability of fresh spermatozoa was not significantly affected by the presence of Compound C or resveratrol. However, although Compound C caused a potent inhibition of spermatozoa motility parameters, resveratrol did not induce negative effect, except a significant reduction in motility at 25 μm for 1 h. Furthermore, resveratrol significantly increased AMP-activated protein kinase phosphorylation and mitochondrial membrane potential and decreased reactive oxygen species and apoptosis-like changes in frozen-thawed spermatozoa. Nevertheless, it was not able to compensate decreased sperm viability and motility parameters following cryopreservation. In contrast, Compound C showed opposite effects to resveratrol on AMP-activated protein kinase phosphorylation, reactive oxygen species, apoptosis-like changes, mitochondrial membrane potential, and

  8. Danske rødvine indeholder kun lidt resveratrol

    DEFF Research Database (Denmark)

    Andersen, Heidi D.; Cohen, Malene; Tønning, Joan

    2008-01-01

    Resveratrol er et af de biologisk aktive stoffer i rødvin. Tidligere bestemmelser viser, at vin lavet på druen Pinot Noir har det højeste indhold af resveratrol. I Danmark dyrkes andre sorter til vinfremstilling. Her beskrives for første gang indholdet af resveratrol i vine lavet på druer dyrket i...

  9. Fortifying the Link between SIRT1, Resveratrol, and Mitochondrial Function

    OpenAIRE

    Denu, John M.

    2012-01-01

    The molecular mechanisms behind the health benefits of resveratrol remain enigmatic and controversial. Here, Price et al. establish a clear chemical-genetic connection between SIRT1 and resveratrol, providing strong evidence that SIRT1 is critical for resveratrol to stimulate mitochondrial biogenesis and a switch toward oxidative muscle fibers (Price et al., 2012).

  10. Resveratrol prevents suppression of regulatory T-cell production, oxidative stress, and inflammation of mice prone or resistant to high-fat diet-induced obesity.

    Science.gov (United States)

    Wang, Bin; Sun, Jin; Li, Xianghui; Zhou, Qingqing; Bai, Jing; Shi, Yonghui; Le, Guowei

    2013-11-01

    Consumption of a high-fat diet (HFD) is correlated with increased oxidative stress and chronic inflammation in many organs. Regulatory T cells (Tregs) are essential negative regulators of inflammation. We hypothesized that resveratrol (trans-3,5,4'-trihydroxystilbene) could protect against HFD-induced oxidative stress and inflammation. Therefore, we examined the effect of resveratrol on oxidative stress and the relevant peripheral immune-regulating mechanisms in HFD-induced obese (DIO) and diet-resistant mice. C57BL/6 mice were fed a normal diet and an HFD for 13 weeks. Then the experimental group was subdivided into DIO and diet-resistant groups according to their body weights, which were further supplemented with 0.03% resveratrol and 0.06% resveratrol, respectively, for an additional 13 weeks. Resveratrol prevented the accumulation of chronic oxidative stress and suppression of Tregs production in HFD mice, modulated changes of cytokines in the plasma and spleen, and decreased expressions of inflammatory mediators compared with those of the DIO group. Our results indicate that resveratrol, as a feasible effective supplement for HFD, can relieve oxidative stress, inhibit inflammatory genes expression, and increase Tregs number via aryl hydrocarbon receptor activation inhibited by HFD, especially in DIO mice. © 2013.

  11. Interactions of gallic acid, resveratrol, quercetin and aspirin at the platelet cyclooxygenase-1 level. Functional and modelling studies.

    Science.gov (United States)

    Crescente, Marilena; Jessen, Gisela; Momi, Stefania; Höltje, Hans-Dieter; Gresele, Paolo; Cerletti, Chiara; de Gaetano, Giovanni

    2009-08-01

    While resveratrol and quercetin possess antiplatelet activity, little is known on the effect of gallic acid on platelets. We studied the interactions of these three different polyphenols among themselves and with aspirin, at the level of platelet cyclooxygenase-1 (COX-1). Both functional (in vitro and in vivo) and molecular modelling approaches were used. All three polyphenols showed comparable antioxidant activity (arachidonic acid [AA]-induced intraplatelet ROS production); however, resveratrol and quercetin, but not gallic acid, inhibited AA-induced platelet aggregation. Gallic acid, similarly to salicylic acid, the major aspirin metabolite, prevented inhibition of AA-induced platelet function by aspirin but, at variance with salicylic acid, also prevented inhibition by the other two polyphenols. Molecular modelling studies, performed by in silico docking the polyphenols into the crystal structure of COX-1, suggested that all compounds form stable complexes into the COX-1 channel, with slightly different but functionally relevant interaction geometries. Experiments in mice showed that gallic acid administered before aspirin, resveratrol or quercetin fully prevented their inhibitory effect on serum TxB(2). Finally, a mixture of resveratrol, quercetin and gallic acid, at relative concentrations similar to those contained in most red wines, did not inhibit platelet aggregation, but potentiated sub-inhibitory concentrations of aspirin. Gallic acid interactions with other polyphenols or aspirin at the level of platelet COX-1 might partly explain the complex, and possibly contrasting, effects of wine and other components of the Mediterranean diet on platelets and on the pharmacologic effect of low-dose aspirin.

  12. Organ-Protective Effects of Red Wine Extract, Resveratrol, in Oxidative Stress-Mediated Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Fu-Chao Liu

    2015-01-01

    Full Text Available Resveratrol, a polyphenol extracted from red wine, possesses potential antioxidative and anti-inflammatory effects, including the reduction of free radicals and proinflammatory mediators overproduction, the alteration of the expression of adhesion molecules, and the inhibition of neutrophil function. A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury. Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways. Reperfusion injury is a complex pathophysiological process that involves multiple factors and pathways. The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property. In this review, the organ-protective effects of resveratrol in oxidative stress-related reperfusion injury will be discussed.

  13. Multiple anti-inflammatory pathways triggered by resveratrol lead to amelioration of staphylococcal enterotoxin B-induced lung injury.

    Science.gov (United States)

    Rieder, Sadiye Amcaoglu; Nagarkatti, Prakash; Nagarkatti, Mitzi

    2012-11-01

    Inhalation of the superantigen,staphylococcal enterotoxin B (SEB), leads to the activation of the host T and invariant natural killer (iNK) T cells, thereby resulting in acute lung inflammation and respiratory failure but the underlying mechanism(s) of disease remain elusive, with limited treatment options. In this study, we investigated the therapeutic effectiveness of resveratrol, a plant polyphenol, during SEB-induced lung inflammation. C57BL/6 mice were exposed to SEB (50 µg·per mouse), administered intranasally, and were treated with resveratrol (100 mg·kg(-1)) before or after SEB exposure. Lung injury was studied by measuring vascular permeability, histopathological examination, nature of infiltrating cells, inflammatory cytokine induction in the bronchoalveolar fluid (BALF), apoptosis in SEB-activated T cells and regulation of SIRT1 and NF-κB signalling pathways. Pretreatment and post-treatment with resveratrol significantly reduced SEB-induced pulmonary vascular permeability, and inflammation. Resveratrol significantly reduced lung infiltrating cells and attenuated the cytokine storm in SEB-exposed mice, which correlated with increased caspase-8-dependent apoptosis in SEB-activated T cells. Resveratrol treatment also markedly up-regulated Cd11b+ and Gr1+ myeloid-derived suppressor cells (MDSCs) that inhibited SEB-mediated T cell activation in vitro. In addition, resveratrol treatment was accompanied by up-regulation of SIRT1 and down-regulation of NF-κB in the inflammatory cells of the lungs. The current study demonstrates that resveratrol may constitute a novel therapeutic modality to prevent and treat SEB-induced lung inflammation inasmuch because it acts through several pathways to reduce pulmonary inflammation. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  14. Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Alexandra M. Pinzaru

    2016-06-01

    Full Text Available Genome sequencing studies have revealed a number of cancer-associated mutations in the telomere-binding factor POT1. Here, we show that when combined with p53 deficiency, depletion of murine POT1a in common lymphoid progenitor cells fosters genetic instability, accelerates the onset, and increases the severity of T cell lymphomas. In parallel, we examined human and mouse cells carrying POT1 mutations found in cutaneous T cell lymphoma (CTCL patients. Inhibition of POT1 activates ATR-dependent DNA damage signaling and induces telomere fragility, replication fork stalling, and telomere elongation. Our data suggest that these phenotypes are linked to impaired CST (CTC1-STN1-TEN1 function at telomeres. Lastly, we show that proliferation of cancer cells lacking POT1 is enabled by the attenuation of the ATR kinase pathway. These results uncover a role for defective telomere replication during tumorigenesis.

  15. Resveratrol

    Science.gov (United States)

    ... the heart pumps blood in people with a history of heart attack and evidence of damaged heart ... antifungals (ketoconazole, itraconazole), glucocorticoids, alfentanil (Alfenta), cisapride (Propulsid), fentanyl (Sublimaze), lidocaine (Xylocaine), losartan (Cozaar), fexofenadine (Allegra), midazolam ( ...

  16. Resveratrol as promising natural radioprotector. A review.

    Science.gov (United States)

    Dobrzyńska, Małgorzata M

    2013-01-01

    Public feelings concerning radiation are still controversy. The main sources of trouble seems to be the failure nuclear power plant and danger of terroristic attack, which may cause temporally enhanced level of radiation leading to harmful health effects. Since radiation induced cellular damage is attributed primarily to harmful effect of free radicals, molecules with direct free radical scavenging properties are particularly promising as radiation modifiers/protectors, i.e. agents which present prior to or shortly after radiation exposure alter to response of tissues to radiation. Unfortunately, some of known radioprotectors are toxic at doses required for radioprotection. Resveratrol (RSV), an natural polyphenol is produced in several plants in response to injury, stress, bacteria or fungi infection, UV-irradiation and exposure to ozone. It is present in human diet i.e. in fruits and in wine. RSV is known for its antioxidant, anti-inflammatory, analgesic, antiviral, cardioprotective, neuroprotective and antiageing action and it has been shown to have chemopreventive effects with respect to several human disease such as cardiovascular disease, osteoporosis and gastric ulcers. Depending on the dose, RSV may act as antioxidant or as pro-oxidant. RSV improves sperm count and motility in rodents and prevent DNA damage caused by cryptopreservation of human sperm. Moreover, RSV acting with other agents, inhibits the toxic action of them. There are evidences that RSV is able to modulate the behavior of cells in response to radiation induced damage. Minimalization of radiation induced damage to somatic and germ cells by RSV might be useful in cancer therapy to prevent the damage to normal cells as well as in case of radiological accidents.

  17. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration.

    Science.gov (United States)

    Fišar, Z; Hroudová, J; Singh, N; Kopřivová, A; Macečková, D

    2016-01-01

    Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).

  18. Resveratrol prevents ammonia toxicity in astroglial cells.

    Directory of Open Access Journals (Sweden)

    Larissa Daniele Bobermin

    Full Text Available Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS. Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS, GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA and extracellular signal-regulated kinase (ERK pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.

  19. Biomimetic Synthesis of Resveratrol Trimers Catalyzed by Horseradish Peroxidase.

    Science.gov (United States)

    Zhang, Jian-Qiao; Li, Gan-Peng; Kang, Yu-Long; Teng, Bin-Hao; Yao, Chun-Suo

    2017-05-17

    Biotransformation of trans-resveratrol and synthetic (±)-ε-viniferin in aqueous acetone using horseradish peroxidase and hydrogen peroxide as oxidants resulted in the isolation of two new resveratrol trimers (3 and 4), one new resveratrol derivative (5) with a dihydrobenzofuran skeleton, together with two known stilbene trimers (6 and 7), and six known stilbene dimers (8-13). Their structures and relative configurations were identified through spectral analysis and possible formation mechanisms were also discussed. Among these oligomers, trimers 6 and 7 were obtained for the first time through direct transformation from resveratrol. Results indicated that this reaction is suitable for the preparation of resveratrol oligomers with a complex structure.

  20. Determination of gamma radiation lethal dose (LD{sub 50}) and resveratrol cytotoxicity level in tumor cells line

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Vanessa D.; Rogero, Sizue O.; Rogero, Jose R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Cruz, Aurea S. [Instituto Adolfo Lutz (IAL-SP) Secao de Culturas Celulares, SP (Brazil)

    2011-07-01

    Cancer is a disease with high incidence and it is considered a worldwide public health problem. Resveratrol is a polyphenol occurring naturally in a wide variety of plants according to response of ultraviolet radiation (UV) exposition or according to mechanical stress resulting of pathogens or chemical and physical agents. This polyphenol possesses a pharmacological activity of carcinogenesis inhibition in multiple levels. It also protects cells by scavenging the free radicals which are considered toxic products. These free radicals are formed of natural process of cell aging and also by incidence of ionizing radiation in the organism. Thus, resveratrol is considered as a cell radioprotector. On the other hand, in some elevated concentrations resveratrol may be considered as a radiosensitizing. The aim of this work was the determination of radiation lethal dose (LD{sub 50}) and also verifies the cytotoxicity level of resveratrol in tumor cells line: muco epidermoid pulmonary carcinoma cells (NCI-H292) and rhabdomyosarcoma cells (RD). The cytotoxicity test was performed by neutral red uptake assay. The results of resveratrol IC{sub 50%} in NCI-H292 cells was 192{mu}M and in RD cells was 128{mu}M; and RD cells gamma radiation LD{sub 50} was 435Gy. (author)

  1. Studies on Trans-Resveratrol/Carboxymethylated (1,3/1,6)-β-d-Glucan Association for Aerosol Pharmaceutical Applications.

    Science.gov (United States)

    Francioso, Antonio; Cossi, Riccardo; Fanelli, Sergio; Mastromarino, Paola; Mosca, Luciana

    2017-05-03

    A resveratrol/carboxymethylated glucan (CM-glucan) combination is known to inhibit rhinovirus replication and expression of inflammatory mediators in nasal epithelia. The aim of this study was to develop an aerosol formulation containing an association of the two molecules which could reach the lower respiratory tract. Mass median aerodynamic diameter (MMAD) of a resveratrol/CM-glucan combination was lower than that shown by resveratrol or CM-glucan alone (2.83 versus 3.28 and 2.96 µm, respectively). The resveratrol/CM-glucan association results in the finest and most monodispersed particles in comparison to the two single components. The association also evidenced lower values for all particle size distribution parameters, suggesting that the pharmacological synergy observed in previous studies may be accompanied by a pharmaceutical one. Moreover, we showed that the CM-glucan matrix did not exert an inhibitory effect on resveratrol nebulization, demonstrating the good suitability of these two molecules in association for simultaneous aerosol volatilization.

  2. Studies on Trans-Resveratrol/Carboxymethylated (1,3/1,6-β-d-Glucan Association for Aerosol Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Antonio Francioso

    2017-05-01

    Full Text Available A resveratrol/carboxymethylated glucan (CM-glucan combination is known to inhibit rhinovirus replication and expression of inflammatory mediators in nasal epithelia. The aim of this study was to develop an aerosol formulation containing an association of the two molecules which could reach the lower respiratory tract. Mass median aerodynamic diameter (MMAD of a resveratrol/CM-glucan combination was lower than that shown by resveratrol or CM-glucan alone (2.83 versus 3.28 and 2.96 µm, respectively. The resveratrol/CM-glucan association results in the finest and most monodispersed particles in comparison to the two single components. The association also evidenced lower values for all particle size distribution parameters, suggesting that the pharmacological synergy observed in previous studies may be accompanied by a pharmaceutical one. Moreover, we showed that the CM-glucan matrix did not exert an inhibitory effect on resveratrol nebulization, demonstrating the good suitability of these two molecules in association for simultaneous aerosol volatilization.

  3. A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine

    DEFF Research Database (Denmark)

    Stervbo, Ulrik; Vang, Ole; Bonnesen, Christine

    2007-01-01

    the highest level of trans-resveratrol. No region can be said to produce wines with significantly higher level of trans-resveratrol than all other regions. Levels of cis-resveratrol follow the same trend as trans-resveratrol. The average level of trans-resveratrol-glucoside (trans-piceid) in a red wine may...

  4. Resveratrol and cancer: focus on in vivo evidence

    Science.gov (United States)

    Carter, Lindsay G; D'Orazio, John A; Pearson, Kevin J

    2014-01-01

    Resveratrol is a naturally occurring polyphenol that provides a number of anti-aging health benefits including improved metabolism, cardioprotection, and cancer prevention. Much of the work on resveratrol and cancer comes from in vitro studies looking at resveratrol actions on cancer cells and pathways. There are, however, comparatively fewer studies that have investigated resveratrol treatment and cancer outcomes in vivo, perhaps limited by its poor bioavailability when taken orally. Although research in cell culture has shown promising and positive effects of resveratrol, evidence from rodents and humans is inconsistent. This review highlights the in vivo effects of resveratrol treatment on breast, colorectal, liver, pancreatic, and prostate cancers. Resveratrol supplementation in animal models of cancer has shown positive, neutral as well as negative outcomes depending on resveratrol route of administration, dose, tumor model, species, and other factors. Within a specific cancer type, there is variability between studies with respect to strain, age, and sex of animal used, timing and method of resveratrol supplementation, and dose of resveratrol used to study cancer endpoints. Together, the data suggest that many factors need to be considered before resveratrol can be used for human cancer prevention or therapy. PMID:24500760

  5. Resveratrol preserves cerebrovascular density and cognitive function in aging mice

    Directory of Open Access Journals (Sweden)

    Charlotte A Oomen

    2009-12-01

    Full Text Available Resveratrol, a natural polyphenol abundant in grapes and red wine, has been reported to exert numerous beneficial health effects. Among others, acute neuroprotective effects of resveratrol have been reported in several models of neurodegeneration, both in vitro and in vivo. In the present study we examined the neuroprotective effects of long term dietary supplementation with resveratrol in mice on behavioral, neurochemical and cerebrovascular level. We report a preserved cognitive function in resveratrol treated aging mice, as shown by an enhanced acquisition of a spatial Y-maze task. This was paralleled by a higher microvascular density and a lower number of microvascular abnormalities in comparison to aging non-treated control animals. We found no effects of resveratrol supplementation on cholinergic cell number or fiber density. The present findings support the hypothesis that resveratrol exerts beneficial effects on the brain by maintaining cerebrovascular health. Via this mechanism resveratrol can contribute to the preservation of cognitive function during aging.

  6. NOD2 Suppresses Colorectal Tumorigenesis via Downregulation of the TLR Pathways

    Directory of Open Access Journals (Sweden)

    S.M. Nashir Udden

    2017-06-01

    Full Text Available Although NOD2 is the major inflammatory bowel disease susceptibility gene, its role in colorectal tumorigenesis is poorly defined. Here, we show that Nod2-deficient mice are highly susceptible to experimental colorectal tumorigenesis independent of gut microbial dysbiosis. Interestingly, the expression of inflammatory genes and the activation of inflammatory pathways, including NF-κB, ERK, and STAT3 are significantly higher in Nod2−/− mouse colons during colitis and colorectal tumorigenesis, but not at homeostasis. Consistent with higher inflammation, there is greater proliferation of epithelial cells in hyperplastic regions of Nod2−/− colons. In vitro studies demonstrate that, while NOD2 activates the NF-κB and MAPK pathways in response to MDP, it inhibits TLR-mediated activation of NF-κB and MAPK. Notably, NOD2-mediated downregulation of NF-κB and MAPK is associated with the induction of IRF4. Taken together, NOD2 plays a critical role in the suppression of inflammation and tumorigenesis in the colon via downregulation of the TLR signaling pathways.

  7. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis

    OpenAIRE

    Bhalla, Kavita; Hwang, Bor Jang; Dewi, Ruby E; Twaddel, William; Goloubeva, Olga G.; Wong, Kwok-Kin; Saxena, Neeraj K.; Biswal, Shyam; Girnun, Geoffrey D.

    2012-01-01

    A number of factors have been identified that increase the risk of HCC. Recently it has become appreciated that type II diabetes increases the risk of developing HCC. This represents a patient population that can be identified and targeted for cancer prevention. The biguanide metformin is a first line therapy for the treatment of type II diabetes where it exerts its effects primarily on the liver. A role of metformin in HCC is suggested by studies linking metformin intake for control of diabe...

  8. Spontaneous Intestinal Tumorigenesis in Apc/Min+ Mice Requires Altered T Cell Development with IL-17A

    Directory of Open Access Journals (Sweden)

    Wook-Jin Chae

    2015-01-01

    Full Text Available The control of inflammatory diseases requires functional regulatory T cells (Tregs with significant Gata-3 expression. Here we address the inhibitory role of Tregs on intestinal tumorigenesis in the Apc/Min+ mouse model that resembles human familial adenomatous polyposis (FAP. Apc/Min+ mice had a markedly increased frequency of Foxp3+ Tregs and yet decreased Gata-3 expression in the lamina propria. To address the role of heterozygous Apc gene mutation in Tregs, we generated Foxp3-Cre, Apcflox/+ mice. Tregs from these mice effectively inhibited tumorigenesis comparable to wild type Tregs after adoptive transfer into Apc/Min+ mice, demonstrating that the heterozygous Apc gene mutation in Tregs does not induce the loss of control over tumor microenvironment. Adoptive transfer of in vitro generated Apc/Min+ iTregs (inducible Tregs failed to inhibit intestinal tumorigenesis, suggesting that naïve CD4 T cells generated from Apc/Min+ mice thymus were impaired. We also showed that adoptively transferred IL-17A-deficient Apc/Min+ Tregs inhibited tumor growth, suggesting that IL-17A was critical to impair the tumor regression function of Apc/Min+ Tregs. Taken together, our results suggest that both T cell development in a functional thymus and IL-17A control the ability of Treg to inhibit intestinal tumorigenesis in Apc/Min+ mice.

  9. Resveratrol Induced Premature Senescence Is Associated with DNA Damage Mediated SIRT1 and SIRT2 Down-Regulation.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    Full Text Available The natural polyphenolic compound resveratrol (3,4,5-trihydroxy-trans-stilbene has broad spectrum health beneficial activities including antioxidant, anti-inflammatory, anti-aging, anti-cancer, cardioprotective, and neuroprotective effects. Remarkably, resveratrol also induces apoptosis and cellular senescence in primary and cancer cells. Resveratrol's anti-aging effects both in vitro and in vivo attributed to activation of a (NAD-dependent histone deacetylase family member sirtuin-1 (SIRT1 protein. In mammals seven members (SIRT1-7 of sirtuin family have been identified. Among those, SIRT1 is the most extensively studied with perceptive effects on mammalian physiology and suppression of the diseases of aging. Yet no data has specified the role of sirtuins, under conditions where resveratrol treatment induces senescence. Current study was undertaken to investigate the effects of resveratrol in human primary dermal fibroblasts (BJ and to clarify the role of sirtuin family members in particular SIRT1 and SIRT2 that are known to be involved in cellular stress responses and cell cycle, respectively. Here, we show that resveratrol decreases proliferation of BJ cells in a time and dose dependent manner. In addition the increase in senescence associated β-galactosidase (SA-β-gal activity and methylated H3K9-me indicate the induction of premature senescence. A significant increase in phosphorylation of γ-H2AX, a surrogate of DNA double strand breaks, as well as in levels of p53, p21CIP1 and p16INK4A is also detected. Interestingly, at concentrations where resveratrol induced premature senescence we show a significant decrease in SIRT1 and SIRT2 levels by Western Blot and quantitative RT-PCR analysis. Conversely inhibition of SIRT1 and SIRT2 via siRNA or sirtinol treatment also induced senescence in BJ fibroblasts associated with increased SA-β-gal activity, γ-H2AX phosphorylation and p53, p21CIP1 and p16INK4A levels. Interestingly DNA damaging

  10. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use

    Directory of Open Access Journals (Sweden)

    Galati Gaspare

    2009-07-01

    Full Text Available Abstract Background Resveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera. This compound has a strong bioactivity and its cytoprotective action has been demonstrated, however at high concentrations the drug exhibits also an effective anti-proliferative action. We recently showed its ability to abolish the effects of oxidative stress in cultured cells. In this work we assayed the bioactivity of resveratrol as antiproliferative and antiviral drug in cultured fibroblasts. Studies by other Authors showed that this natural compound inhibits the proliferation of different viruses such as herpes simplex, varicella-zoster and influenza A. The results presented here show an evident toxic activity of the drug at high concentrations, on the other hand at sub-cytotoxic concentrations, resveratrol can effectively inhibit the synthesis of polyomavirus DNA. A possible interpretation is that, due to the damage caused by resveratrol to the plasma membrane, the transfer of the virus from the endoplasmic reticulum to the nucleus, may be hindered thus inhibiting the production of viral DNA. Methods The mouse fibroblast line 3T6 and the human tumor line HL60 were used throughout the work. Cell viability and vital cell count were assessed respectively, by the MTT assay and Trypan Blue staining. Cytotoxic properties and evaluation of viral DNA production by agarose gel electrophoresis were performed according to standard protocols. Results Our results show a clear dose dependent both cytotoxic and antiviral effect of resveratrol respectively at high and low concentrations. The cytotoxic action is exerted towards a stabilized cell-line (3T6 as well as a tumor-line (HL60. Furthermore the antiviral action is evident after the phase of virion entry, therefore data suggest that the drug acts during the synthesis of the viral progeny DNA. Conclusion Resveratrol is

  11. Repressive effects of resveratrol on androgen receptor transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Wen-feng Shi

    Full Text Available BACKGROUND: The chemopreventive effects of resveratrol (RSV on prostate cancer have been well established; the androgen receptor (AR plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity. METHODOLOGY: The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+ cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(- cells serving as controls. AR(+ cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE. RESULTS: AR in the AR (+ stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment. CONCLUSION: We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.

  12. The Effect of Sulfated (1→3-α-l-Fucan from the Brown Alga Saccharina cichorioides Miyabe on Resveratrol-Induced Apoptosis in Colon Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Olesia S. Vishchuk

    2013-01-01

    Full Text Available Accumulating data clearly indicate that the induction of apoptosis by nontoxic natural compounds is a potent defense against the development and progression of many malignancies, including colon cancer. Resveratrol and the fucoidans have been shown to possess potent anti-tumor activity in vitro and in vivo. The aim of the present study was to examine whether the combination of a fucoidan from the brown alga Saccharina cichorioides Miyabe and resveratrol would be an effective preventive and/or therapeutic strategy against colon cancer. Based on NMR spectroscopy and MALDI-TOF analysis, the fucoidan isolated and purified from Saccharina cichorioides Miyabe was (1→3-α-l-fucan with sulfate groups at C2 and C4 of the α-l-fucopyranose residues. The fucoidan enhanced the antiproliferative activity of resveratrol at nontoxic doses and facilitated resveratrol-induced apoptosis in the HCT 116 human colon cancer cell line. Apoptosis was realized by the activation of initiator caspase-9 and effector caspase-7 and -3, followed by the cleavage of PARP. Furthermore, significant inhibition of HCT 116 colony formation was associated with the sensitization of cells to resveratrol by the fucoidan. Taken together, these results demonstrate that the combination of the algal fucoidan with resveratrol may provide a potential therapy against human colon cancer.

  13. Commentary on resveratrol and hormesis: resveratrol--a hormetic marvel in waiting?

    Science.gov (United States)

    Marques, Francine Z; Morris, Brian J

    2010-12-01

    Hormesis is a phenomenon in which adaptive responses to low doses of otherwise-harmful factors (also called mild stressors) make cells and organisms more robust. In their review, Calabrese et al. provide evidence for resveratrol acting hormetically in different types of human cell lines. The effects of resveratrol represent a 'two-edged sword' in that it has contrasting effects at low and high doses in healthy and cancerogenous cells. What demarcates a low and a high dose needs to be clarified. Concentrations tested in cell cultures, moreover, may not be relevant to whole organisms. And data from animal models need not apply to humans. Co-morbidities should also be considered. More research is needed to understand the action of resveratrol on all cell types and conditions, and the optimum therapeutic concentration that applies to each of these. Future research needs to determine the dynamics of the effects of resveratrol in different subcellular compartments and the interactions of these. In addition, the interactions between resveratrol, environmental factors, other compounds and medications, diseases and the genetic background of the individual will need to be appreciated in order to gain a complete understanding of the hormetic response of resveratrol.

  14. Inhibitory Effects of Resveratrol on PDGF-BB-Induced Retinal Pigment Epithelial Cell Migration via PDGFRβ, PI3K/Akt and MAPK pathways

    Science.gov (United States)

    Chan, Chi-Ming; Chang, Hsun-Hsien; Wang, Vin-Chi; Huang, Chuen-Lin; Hung, Chi-Feng

    2013-01-01

    Purpose In diseases such as proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy, and age-related macular degeneration, retinal pigment epithelial (RPE) cells proliferate and migrate. Moreover, platelet-derived growth factor (PDGF) has been shown to enhance proliferation and migration of RPE cells in PVR. Even resveratrol can suppress the migration and adhesion of many cell types, its effects on RPE cell migration and adhesion remain unknown. In this study, we investigated the inhibitory effects of resveratrol on RPE cell migration induced by PDGF-BB, an isoform of PDGF, and adhesion to fibronectin, a major ECM component of PVR tissue. Methods The migration of RPE cells was assessed by an electric cell-substrate impedance sensing migration assay and a Transwell migration assay. A cell viability assay was used to determine the viability of resveratrol treated-cells. The cell adhesion to fibronectin was examined by an adhesion assay. The interactions of resveratrol with PDGF-BB were analyzed by a dot binding assay. The PDGF-BB-induced signaling pathways were determined by western blotting and scratch wound healing assay. Results Resveratrol inhibited PDGF-BB-induced RPE cell migration in a dose-dependent manner, but showed no effects on ARPE19 cell adhesion to fibronectin. The cell viability assay showed no cytotoxicity of resveratrol on RPE cells and the dot binding assay revealed no direct interactions of resveratrol with PDGF-BB. Inhibitory effects of resveratrol on PDGF-BB-induced platelet-derived growth factor receptor β (PDGFRβ) and tyrosine phosphorylation and the underlying pathways of PI3K/Akt, ERK and p38 activation were found; however, resveratrol and PDGF-BB showed no effects on PDGFRα and JNK activation. Scratch wound healing assay demonstrated resveratrol and the specific inhibitors of PDGFR, PI3K, MEK or p38 suppressed PDGF-BB-induced cell migration. Conclusions These results indicate that resveratrol is an effective inhibitor

  15. Structure-efficiency relationship in derivatives of stilbene. Comparison of resveratrol, pinosylvin and pterostilbene.

    Science.gov (United States)

    Perecko, Tomas; Jancinova, Viera; Drabikova, Katarina; Nosal, Radomir; Harmatha, Juraj

    2008-10-01

    Oxidative stress is related to a number of autoimmune diseases, e.g. rheumatoid arthritis, cancer, etc. The main source of pathologically working reactive oxygen species (ROS) are activated polymorphonuclear leukocytes (PMNL). There are some papers comparing structure - pharmacological efficiency relationship of vegetal substances from the stilbenoid group. We compared the effect of trans-resveratrol, which is well-known by its antioxidative activity, with the effect of pinosylvin and pterostilbene. Luminol-enhanced chemiluminescence (CL) was used to study the antioxidative action. The effect was observed in whole blood and in isolated PMNL. The concentrations of substances tested were 0.01-100 microM. Due to the different abilities of luminol and isoluminol to pass through the cell membrane, we studied the effect of the substances tested on intracellular and extracellular ROS. To stimulate the production of ROS we used phorbol-myristate-acetate (PMA), which activates PMNL via protein kinase C. Resveratrol, pinosylvin and pterostilbene inhibited significantly the CL of whole blood and extra- and intracellular CL of isolated PMNL in a dosedependent manner. Depending on different functional groups of the stilbene molecule, resveratrol inhibited CL of whole blood and isolated PMNL, whereas pinosylvin influenced mainly intracellular CL and pterostilbene extracellular CL. The presence of different functional groups in the molecules of stilbenoids influence their antioxidative effect. Modification of these functional groups may result in derivatives with required antioxidative properties, targeting mainly extracellular ROS which are responsible for tissue damage during chronic inflammation.

  16. mTOR: more targets of resveratrol

    DEFF Research Database (Denmark)

    Widlund, Anne Lykkegaard; Vang, Ole; Baur, Joseph

    2013-01-01

    Resveratrol (RSV) is a natural polyphenol produced by plants and is proposed to have multiple beneficial effects on health. In recent years, the interest in this molecule has increased nearly exponentially following the major findings that RSV (I) is chemo-preventive in some cancer models, (II...

  17. Red Wine, Resveratrol and Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Laura Siga Stephan

    2017-10-01

    Full Text Available Atrial fibrillation (AF is a common cardiac arrhythmia that is associated with increased risk for cardiovascular disease and overall mortality. Excessive alcohol intake is a well-known risk factor for AF, but this correlation is less clear with light and moderate drinking. Besides, low doses of red wine may acutely prolong repolarization and slow cardiac conduction. Resveratrol, a bioactive polyphenol found in grapes and red wine, has been linked to antiarrhythmic properties and may act as an inhibitor of both intracellular calcium release and pathological signaling cascades in AF, eliminating calcium overload and preserving the cardiomyocyte contractile function. However, there are still no clinical trials at all that prove that resveratrol supplementation leads to improved outcomes. Besides, no observational study supports a beneficial effect of light or moderate alcohol intake and a lower risk of AF. The purpose of this review is to briefly describe possible beneficial effects of red wine and resveratrol in AF, and also present studies conducted in humans regarding chronic red wine consumption, resveratrol, and AF.

  18. Resveratrol protects rabbits against cholesterol diet- induced ...

    African Journals Online (AJOL)

    The excessive consumption of high cholesterol diet has been associated with an increased incidence of lipidaemia. Lipidaemia is enhanced by formation of oxidative stress, lipid peroxidation and hyperglycaemia. The aim of these experiments was to investigate the protective effect of resveratrol co-administered with ...

  19. Role of mitochondrial dysfunction in hyperglycaemia-induced coronary microvascular dysfunction: Protective role of resveratrol.

    Science.gov (United States)

    Joshi, Mandar S; Williams, David; Horlock, Duncan; Samarasinghe, Thilini; Andrews, Karen L; Jefferis, Ann-Maree; Berger, Philip J; Chin-Dusting, Jaye P; Kaye, David M

    2015-05-01

    Microvascular complications are now recognized to play a major role in diabetic complications, and understanding the mechanisms is critical. Endothelial dysfunction occurs early in the course of the development of complications; the precise mechanisms remain poorly understood. Mitochondrial dysfunction may occur in a diabetic rat heart and may act as a source of the oxidative stress. However, the role of endothelial cell-specific mitochondrial dysfunction in diabetic vascular complications is poorly studied. Here, we studied the role of diabetes-induced abnormal endothelial mitochondrial function and the resultant endothelial dysfunction. Understanding the role of endothelial mitochondrial dysfunction in diabetic vasculature is critical in order to develop new therapies. We demonstrate that hyperglycaemia leads to mitochondrial dysfunction in microvascular endothelial cells, and that mitochondrial inhibition induces endothelial dysfunction. Additionally, we show that resveratrol acts as a protective agent; resveratrol-mediated mitochondrial protection may be used to prevent long-term diabetic cardiovascular complications. © The Author(s) 2015.

  20. [Epigenetics in tumorigenesis: advances and clinical implications].

    Science.gov (United States)

    Wang, Xian huo; Zhao, Xiu juan; Qiu, Li hua; Wang, Hua qing; Wang, Xi

    2012-10-18

    Cancer is a leading cause of death worldwide and the total number of cases globally keeps increasing. For many years, cancer has been thought to be caused by a series of DNA sequence alterations and thus is thought to be a "genetic" disease. However, studies in the last decade, including the large-scale cancer genomics projects, have highlighted the rising importance of epigenetic regulation in cancer. Here, we review recent advances in understanding how chromatin-based epigenetic regulation participates in tumorigenesis and discuss the growing implications of these advances for developing novel strategies to prevent, diagnose, as well as treat cancer.

  1. Control of glioblastoma tumorigenesis by feed-forward cytokine signaling.

    Science.gov (United States)

    Jahani-Asl, Arezu; Yin, Hang; Soleimani, Vahab D; Haque, Takrima; Luchman, H Artee; Chang, Natasha C; Sincennes, Marie-Claude; Puram, Sidharth V; Scott, Andrew M; Lorimer, Ian A J; Perkins, Theodore J; Ligon, Keith L; Weiss, Samuel; Rudnicki, Michael A; Bonni, Azad

    2016-06-01

    EGFRvIII-STAT3 signaling is important in glioblastoma pathogenesis. Here, we identified the cytokine receptor OSMR as a direct target gene of the transcription factor STAT3 in mouse astrocytes and human brain tumor stem cells (BTSCs). We found that OSMR functioned as an essential co-receptor for EGFRvIII. OSMR formed a physical complex with EGFRvIII, and depletion of OSMR impaired EGFRvIII-STAT3 signaling. Conversely, pharmacological inhibition of EGFRvIII phosphorylation inhibited the EGFRvIII-OSMR interaction and activation of STAT3. EGFRvIII-OSMR signaling in tumors operated constitutively, whereas EGFR-OSMR signaling in nontumor cells was synergistically activated by the ligands EGF and OSM. Finally, knockdown of OSMR strongly suppressed cell proliferation and tumor growth of mouse glioblastoma cells and human BTSC xenografts in mice, and prolonged the lifespan of these mice. Our findings identify OSMR as a critical regulator of glioblastoma tumor growth that orchestrates a feed-forward signaling mechanism with EGFRvIII and STAT3 to drive tumorigenesis.

  2. Probing the position of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    de Ghellinck, Alexis; Shen, Chen; Fragneto, Giovanna

    2015-01-01

    The effect of the natural antioxidant resveratrol on the structure of solid supported di-palmitoyl-phosphatidyl-choline (DPPC) bilayers in their fluid state was investigated by neutron reflectometry. Results reveal an accumulation of resveratrol (up to 25%, mol/mol) inside the headgroups...... and they exclude its presence in the hydrophobic core. The presence of resveratrol induces an increase of the average thickness and of the interfacial roughness of the headgroup layer. This may be due to a change of the tilt angle of the phosphocholine headgroups residing next to the resveratrol to a more upright...... orientation and leading to a reduction of the projected area per headgroup. This effect is propagated into the hydrophobic core, where the chain packing is modified despite the absence of resveratrol. When interacting with a DPPC/cholesterol membrane, resveratrol has a similar effect on the neighboring PC...

  3. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis

    DEFF Research Database (Denmark)

    Tran, Phuoc T; Shroff, Emelyn H; Burns, Timothy F

    2012-01-01

    overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy....... mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor...... progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D) to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting...

  4. The role of the Akt/mTOR pathway in tobacco-carcinogen induced lung tumorigenesis

    Science.gov (United States)

    Memmott, Regan M.; Dennis, Phillip A.

    2009-01-01

    Lung cancer is the leading cause of cancer-related death in the United States, and 85–90% of lung cancer cases are associated with tobacco use. Tobacco components promote lung tumorigenesis through genotoxic effects, as well as through biochemical modulation of signaling pathways such as the Akt/mTOR pathway that regulate cell proliferation and survival. This review will describe cell surface receptors and other upstream components required for tobacco-carcinogen induced activation of Akt and mTOR. Preclinical studies demonstrate that inhibitors of the Akt/mTOR pathway inhibit tumor formation in mouse models of carcinogen-induced lung tumorigenesis. Some of these inhibitors will be highlighted, and their clinical potential for the treatment and prevention of lung cancer will be discussed. PMID:20028747

  5. Reaction kinetics of resveratrol with tert-butoxyl radicals

    Science.gov (United States)

    Džeba, Iva; Pedzinski, Tomasz; Mihaljević, Branka

    2012-09-01

    The rate constant for the reaction of t-butoxyl radicals with resveratrol was studied under pseudo-first order conditions. The rate constant was determined by measuring the phenoxyl radical formation rate at 390 nm as function of resveratrol concentration in acetonitrile. The rate constant was determined to be 6.5×108 M-1s-1. This high value indicates the high reactivity consistent with the strong antioxidant activity of resveratrol.

  6. Resveratrol in raw and baked blueberries and bilberries.

    Science.gov (United States)

    Lyons, Mary M; Yu, Chongwoo; Toma, R B; Cho, Sool Yeon; Reiboldt, Wendy; Lee, Jacqueline; van Breemen, Richard B

    2003-09-24

    Resveratrol in the fruits of bilberry (Vaccinium myrtillus L.), the lowbush "wild" blueberry (Vaccinium angustifolium Aiton), the rabbiteye blueberry (Vaccinium ashei Reade), and the highbush blueberry (Vaccinium corymbosum L.) were measured using a new assay based on high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS assay provided lower limits of detection than previous methods for resveratrol measurement, 90 fmol of trans-resveratrol injected on-column, and a linear standard curve spanning >3 orders of magnitude. The recoveries of resveratrol from blueberries spiked with 1.8, 3.6, or 36 ng/g were 91.5 +/- 4.5, 95.6 +/- 6.5, and 88.0 +/- 3.6%, respectively. trans-Resveratrol but not cis-resveratrol was detected in both blueberry and bilberry samples. The highest levels of trans-resvertatrol in these specimens were 140.0 +/- 29.9 pmol/g in highbush blueberries from Michigan and 71.0 +/- 15.0 pmol/g in bilberries from Poland. However, considerable regional variation was observed; highbush blueberries from British Columbia contained no detectable resveratrol. Because blueberries and bilberries are often consumed after cooking, the effect of baking on resveratrol content was investigated. After 18 min of heating at 190 degrees C, between 17 and 46% of the resveratrol had degraded in the various Vaccinium species. Therefore, the resveratrol content of baked or heat-processed blueberries or bilberries should be expected to be lower than in the raw fruit. Although blueberries and bilberries were found to contain resveratrol, the level of this chemoprotective compound in these fruits was <10% that reported for grapes. Furthermore, cooking or heat processing of these berries will contribute to the degradation of resveratrol.

  7. Involvement of Resveratrol and ω-3 Polyunsaturated Fatty Acids on Sirtuin 1 Gene Expression in THP1 Cells.

    Science.gov (United States)

    Tsuchiya, Takafumi; Endo, Ayano; Tsujikado, Kyoko; Inukai, Toshihiko

    2017-10-01

    Resveratrol, a kind of polyphenol, has the potential to activate the longevity gene in several cells, in the same manner as calorie restriction. We investigated the effect of resveratrol and ω-3-line polyunsaturated fatty acid on surtuin 1 (SIRT1) gene expression in human monocytes (THP1) cells. We examined the gene expression of THP1 cells using real-time polymerase chain reaction and Western blotting analysis. Resveratol, eicosapentaenoic acid (EPA) and docosahexaeanoic acid (DHA) as n-3 polyunsaturated fatty acid were added on THP1 cells. We observed the changes in the SIRT1 gene expression in those cells, under various doses of agents and in time courses. Then, we examined the interaction of glucose and mannitol on those agents׳ effect of the gene expression. The concentration range of glucose and mannitol was from 5-20mM, respectively. The SIRT1 gene expression could be defined in 24 and 48 hours both in real-time polymerase chain reaction analysis and in Western blotting. Resveratrol showed SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. Although EPA at 10μM showed marked increase in SIRT1 gene expression compared to control condition in Western blotting, this phenomenon was not in dose-dependent manner. DHA did not exhibit any augmentation of SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. We refined the dose-dependent inhibition of the SIRT1 gene expression within 20mM glucose medium. Although 20mM did not exhibit any inhibition, 10μM resveratrol induced the gene expression compared to control medium. Both 5 and 15mM mannitol medium did not significantly alter basic gene expression and 10μM resveratrol-induced gene expression. The present results suggest that resveratrol and EPA, but not DHA, markedly activated the SIRT1 gene expression in THP1 cells, and that high glucose medium could inhibit the basic gene expression, but not powerful resveratrol-induced gene

  8. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol

    National Research Council Canada - National Science Library

    Takeda, Mamoru; Takehana, Shiori; Sekiguchi, Kenta; Kubota, Yoshiko; Shimazu, Yoshihito

    2016-01-01

    ...) candidate, specifically a therapeutic agent. The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on nociceptive neuronal activity associated with pain relief...

  9. Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Zoe eFonseca-Kelly

    2012-05-01

    Full Text Available Resveratrol is a naturally-occurring polyphenol that activates SIRT1, an NAD-dependent deacetylase. SRT501, a pharmaceutical formulation of resveratrol with enhanced systemic absorption, prevents neuronal loss without suppressing inflammation in mice with relapsing experimental autoimmune encephalomyelitis (EAE, a model of multiple sclerosis. In contrast, resveratrol has been reported to suppress inflammation in chronic EAE, although neuroprotective effects were not evaluated. The current studies examine potential neuroprotective and immunomodulatory effects of resveratrol in chronic EAE induced by immunization with myelin oligodendroglial glycoprotein peptide in C57/Bl6 mice. Effects of two distinct formulations of resveratrol administered daily orally were compared. Resveratrol delayed the onset of EAE compared to vehicle-treated EAE mice, but did not prevent or alter the phenotype of inflammation in spinal cords or optic nerves. Significant neuroprotective effects were observed, with higher numbers of retinal ganglion cells found in eyes of resveratrol-treated EAE mice with optic nerve inflammation. Results demonstrate that resveratrol prevents neuronal loss in this chronic demyelinating disease model, similar to its effects in relapsing EAE. Differences in immunosuppression compared with prior studies suggest that immunomodulatory effects may be limited and may depend on specific immunization parameters or timing of treatment. Importantly, neuroprotective effects can occur without immunosuppression, suggesting a potential additive benefit of resveratrol in combination with anti-inflammatory therapies for multiple sclerosis.

  10. Resveratrol, 4? Acetoxy Resveratrol, R-equol, Racemic Equol or S-equol as Cosmeceuticals to Improve Dermal Health

    OpenAIRE

    Lephart, Edwin D.

    2017-01-01

    Phytochemicals are botanical compounds used in dermatology applications as cosmeceuticals to improve skin health. Resveratrol and equol are two of the best-known polyphenolic or phytoestrogens having similar chemical structures and some overlapping biological functions to 17β-estradiol. Human skin gene expression was reviewed for 28 different biomarkers when resveratrol, 4′ acetoxy resveratrol (4AR), R-equol, racemic equol or S-equol were tested. Sirtuin 1 activator (SIRT 1) was stimulated by...

  11. An Overview of Stress-Induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-Enriched Grape Products

    Directory of Open Access Journals (Sweden)

    Mohidul Hasan

    2017-02-01

    Full Text Available Resveratrol is the most important stilbene phytoalexin synthesized naturally or induced in plants, as a part of their defense mechanism. Grapes and their derivative products, including juice and wine, are the most important natural sources of resveratrol, consisting of notably higher amounts than other natural sources like peanuts. Consumption of red wine with its presence of resveratrol explained the “French Paradox”. Hence, the demand of resveratrol from grapes is increasing. Moreover, as a natural source of resveratrol, grapes became very important in the nutraceutical industry for their benefits to human health. The accumulation of resveratrol in grape skin, juice, and wine has been found to be induced by the external stimuli: microbial infection, ultrasonication (US treatment, light-emitting diode (LED, ultra violet (UV irradiation, elicitors or signaling compounds, macronutrients, and fungicides. Phenylalanine ammonia lyase, cinnamate-4-hydroxylase, coumaroyl-CoA ligase, and stilbene synthase play a key role in the synthesis of resveratrol. The up-regulation of those genes have the positive relationship with the elicited accumulation of resveratrol. In this review, we encapsulate the effect of different external stimuli (biotic and abiotic stresses or signaling compounds in order to obtain the maximum accumulation of resveratrol in grape skin, leaves, juice, wine, and cell cultures.

  12. An Overview of Stress-Induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-Enriched Grape Products.

    Science.gov (United States)

    Hasan, Mohidul; Bae, Hanhong

    2017-02-14

    Resveratrol is the most important stilbene phytoalexin synthesized naturally or induced in plants, as a part of their defense mechanism. Grapes and their derivative products, including juice and wine, are the most important natural sources of resveratrol, consisting of notably higher amounts than other natural sources like peanuts. Consumption of red wine with its presence of resveratrol explained the "French Paradox". Hence, the demand of resveratrol from grapes is increasing. Moreover, as a natural source of resveratrol, grapes became very important in the nutraceutical industry for their benefits to human health. The accumulation of resveratrol in grape skin, juice, and wine has been found to be induced by the external stimuli: microbial infection, ultrasonication (US) treatment, light-emitting diode (LED), ultra violet (UV) irradiation, elicitors or signaling compounds, macronutrients, and fungicides. Phenylalanine ammonia lyase, cinnamate-4-hydroxylase, coumaroyl-CoA ligase, and stilbene synthase play a key role in the synthesis of resveratrol. The up-regulation of those genes have the positive relationship with the elicited accumulation of resveratrol. In this review, we encapsulate the effect of different external stimuli (biotic and abiotic stresses or signaling compounds) in order to obtain the maximum accumulation of resveratrol in grape skin, leaves, juice, wine, and cell cultures.

  13. Ovatodiolide suppresses colon tumorigenesis and prevents polarization of M2 tumor-associated macrophages through YAP oncogenic pathways

    Directory of Open Access Journals (Sweden)

    Yan-Jiun Huang

    2017-02-01

    Full Text Available Abstract Background An increased expression of Yes-associated protein (YAP1 has been shown to promote tumorigenesis in many cancer types including colon. However, the role of YAP1 in promoting colon tumorigenesis remains unclear. Here, we demonstrate that YAP1 expression is associated with M2 tumor-associated macrophage polarization and the generation of colon cancer stem-like cells. YAP1 downregulation by gene silencing or a phytochemical, ovatodiolide, not only suppresses colon cancer tumorigenesis but also prevents M2 TAM polarization. Methods Human monocytic cells, THP-1, and colon cancer cell lines, HCT116 and DLD-1, were co-cultured to mimic the interactions between tumor and its microenvironment. M2 polarization of the THP-1 cells were examined using both flow cytometry and q-PCR technique. The inhibition of YAP1 signaling was achieved by gene-silencing technique or ovatodiolide. The molecular consequences of YAP1 inhibition was demonstrated via colony formation, migration, and colon-sphere formation assays. 5-FU and ovatodiolide were used in drug combination studies. Xenograft and syngeneic mouse models were used to investigate the role of YAP1 in colon tumorigenesis and TAM generation. Results An increased YAP1 expression was found to be associated with a poor prognosis in patients with colon cancer using bioinformatics approach. We showed an increased YAP1 expression in the colon spheres, and colon cancer cells co-cultured with M2 TAMs. YAP1-silencing led to the concomitant decreased expression of major oncogenic pathways including Kras, mTOR, β-catenin, and M2-promoting IL-4 and tumor-promoting IL-6 cytokines. TAM co-cultured colon spheres showed a significantly higher tumor-initiating ability in vivo. Ovatodiolide treatment alone and in combination with 5-FU significantly suppressed in vivo tumorigenesis and less TAM infiltration in CT26 syngeneic mouse model. Conclusions We have identified the dual function of YAP1 where its

  14. Resveratrol and Coumarin: Novel Agricultural Antibacterial Agent against Ralstonia solanacearum In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Juanni Chen

    2016-11-01

    Full Text Available Bacterial wilt is a destructive disease caused by the phytopathogen Ralstonia solanacearum (R. solanacearum, which is widely found in various tobacco-growing areas all over the world. Botanical bactericidal substances have gradually emerged as a hot topic in modern pesticide research. In this study, the antibacterial activities of two phytochemicals (resveratrol and coumarin against R. solanacearum and their in vivo and in vitro efficacy for controlling tobacco bacterial wilt were evaluated. We rule out significant biological effects of both phytochemicals using transmission electron microscope (TEM and fluorescence microscope, which suppressed the growth of R. solanacearum. Furthermore, we demonstrated that the toxicity mechanisms mainly involved damaging bacterial cell membrane and preventing swarming motility and biofilm formation. A further pot experiment demonstrated that coumarin and resveratrol significantly inhibited early adhesion and colonization of R. solanacearum in tobacco plants and the corresponding control efficacies were 68% and 85% after incubation for 13 days, respectively. The findings of this study suggest that both resveratrol and coumarin have potential as non-toxic antimicrobial strategies for controlling tobacco bacterial wilt disease.

  15. Mechanism of resveratrol-induced relaxation in the human gallbladder.

    Science.gov (United States)

    Tsai, Ching-Chung; Lee, Ming-Che; Tey, Shu-Leei; Liu, Ching-Wen; Huang, Shih-Che

    2017-05-08

    Resveratrol is a polyphenolic compound extracted from plants and is also a constituent of red wine. Resveratrol produces relaxation of vascular smooth muscle and may prevent cardiovascular diseases. Although resveratrol has been reported to cause relaxation of the guinea pig gallbladder, limited data are available about the effect of resveratrol on the gallbladder smooth muscle in humans. The purpose of this study was to investigate the relaxation effects of resveratrol in human gallbladder muscle strips. We studied the relaxant effects of resveratrol in human gallbladder. In addition, we also investigated mechanism of resveratrol-induced relaxation in human gallbladder by tetraethylammonium (a non-selective potassium channels blocker), iberiotoxin (an inhibitor of large conductance calcium-activated potassium channel), glibenclamide (an ATP-sensitive potassium channel blocker), charybdotoxin (an inhibitor of large conductance calcium-activated potassium channels and slowly inactivating voltage-gated potassium channels), apamine (a selective inhibitor of the small conductance calcium-activated potassium channel), KT 5720 (a cAMP-dependent protein kinase A inhibitor), KT 5823 (a cGMP-dependent protein kinase G inhibitor), NG-Nitro-L-arginine (a competitive inhibitor of nitric oxide synthase), tetrodotoxin (a selective neuronal Na+ channel blocker), and ω-conotoxin GVIA (a selective neuronal Ca2+ channel blocker). The present study showed that resveratrol has relaxant effects in human gallbladder muscle strips. In addition, we found that resveratrol-induced relaxation in human gallbladder is associated with nitric oxide, ATP-sensitive potassium channel, and large conductance calcium-activated potassium channel pathways. This study provides the first evidence concerning the relaxant effects of resveratrol in human gallbladder muscle strips. Furthermore, these results demonstrate that resveratrol is a potential new drug or health supplement in the treatment of biliary

  16. Comparative effects of histone deacetylases inhibitors and resveratrol on Trypanosoma cruzi replication, differentiation, infectivity and gene expression

    Directory of Open Access Journals (Sweden)

    Vanina A. Campo

    2017-04-01

    Full Text Available Histone post-translational modification, mediated by histone acetyltransferases and deacetylases, is one of the most studied factors affecting gene expression. Recent data showing differential histone acetylation states during the Trypanosoma cruzi cell cycle suggest a role for epigenetics in the control of this process. As a starting point to study the role of histone deacetylases in the control of gene expression and the consequences of their inhibition and activation in the biology of T. cruzi, two inhibitors for different histone deacetylases: trichostatin A for class I/II and sirtinol for class III and the activator resveratrol for class III, were tested on proliferative and infective forms of this parasite. The two inhibitors tested caused histone hyperacetylation whereas resveratrol showed the opposite effect on both parasite forms, indicating that a biologically active in vivo level of these compounds was achieved. Histone deacetylase inhibitors caused life stage-specific effects, increasing trypomastigotes infectivity and blocking metacyclogenesis. Moreover, these inhibitors affected specific transcript levels, with sirtinol causing the most pronounced change. On the other hand, resveratrol showed strong anti-parasitic effects. This compound diminished epimastigotes growth, promoted metacyclogenesis, reduced in vitro infection and blocked differentiation and/or replication of intracellular amastigotes. In conclusion, the data presented here supports the notion that these compounds can modulate T. cruzi gene expression, differentiation, infection and histones deacetylase activity. Furthermore, among the compounds tested in this study, the results point to Resveratrol as promising trypanocidal drug candidate.

  17. ARD1 Stabilization of TSC2 Suppresses Tumorigenesis Through the mTOR Signaling Pathway

    Science.gov (United States)

    Kuo, Hsu-Ping; Lee, Dung-Fang; Chen, Chun-Te; Liu, Mo; Chou, Chao-Kai; Lee, Hong-Jen; Du, Yi; Xie, Xiaoming; Wei, Yongkun; Xia, Weiya; Weihua, Zhang; Yang, Jer-Yen; Yen, Chia-Jui; Huang, Tzu-Hsuan; Tan, Minjia; Xing, Gang; Zhao, Yingming; Lin, Chien-Hsing; Tsai, Shih-Feng; Fidler, Isaiah J.; Hung, Mien-Chie

    2010-01-01

    Mammalian target of rapamycin (mTOR) regulates various cellular functions, including tumorigenesis, and is inhibited by the tuberous sclerosis 1 (TSC1)–TSC2 complex. Here, we demonstrate that arrest-defective protein 1 (ARD1) physically interacts with, acetylates, and stabilizes TSC2, thereby repressing mTOR activity. The inhibition of mTOR by ARD1 inhibits cell proliferation and increases autophagy, thereby inhibiting tumorigenicity. Correlation between ARD1 and TSC2 abundance was apparent in multiple tumor types. Moreover, evaluation of loss of heterozygosity at Xq28 revealed allelic loss in 31% of tested breast cancer cell lines and tumor samples. Together, our findings suggest that ARD1 functions as an inhibitor of the mTOR pathway and that dysregulation of the ARD1-TSC2-mTOR axis may contribute to cancer development. PMID:20145209

  18. SHP2, SOCS3 and PIAS3 Expression Patterns in Medulloblastomas: Relevance to STAT3 Activation and Resveratrol-Suppressed STAT3 Signaling.

    Science.gov (United States)

    Li, Cong; Li, Hong; Zhang, Peng; Yu, Li-Jun; Huang, Tian-Miao; Song, Xue; Kong, Qing-You; Dong, Jian-Li; Li, Pei-Nan; Liu, Jia

    2016-12-27

    Activated STAT3 signaling is critical for human medulloblastoma cells. SHP2, SOCS3 and PIAS3 are known as the negative regulators of STAT3 signaling, while their relevance to frequent STAT3 activation in medulloblastomas remains unknown. Tissue microarrays were constructed with 17 tumor-surrounding noncancerous brain tissues and 61 cases of the classic medulloblastomas, 44 the large-cell medulloblastomas, and 15 nodular medulloblastomas, which were used for immunohistochemical profiling of STAT3, SHP2, SOCS3 and PIAS3 expression patterns and the frequencies of STAT3 nuclear translocation. Three human medulloblastoma cell lines (Daoy, UW228-2 and UW228-3) were cultured with and without 100 μM resveratrol supplementation. The influences of resveratrol in SHP2, SOCS3 and PIAS3 expression and SOCS3 knockdown in STAT3 activation were analyzed using multiple experimental approaches. SHP2, SOCS3 and PIAS3 levels are reduced in medulloblastomas in vivo and in vitro, of which PIAS3 downregulation is more reversely correlated with STAT3 activation. In resveratrol-suppressed medulloblastoma cells with STAT3 downregulation and decreased incidence of STAT3 nuclear translocation, PIAS3 is upregulated, the SHP2 level remains unchanged and SOCS3 is downregulated. SOCS3 proteins are accumulated in the distal ends of axon-like processes of resveratrol-differentiated medulloblastoma cells. Knockdown of SOCS3 expression by siRNA neither influences cell proliferation nor STAT3 activation or resveratrol sensitivity but inhibits resveratrol-induced axon-like process formation. Our results suggest that (1) the overall reduction of SHP2, SOCS3 and PIAS3 in medulloblastoma tissues and cell lines; (2) the more inverse relevance of PIAS3 expression with STAT3 activation; (3) the favorable prognostic values of PIAS3 for medulloblastomas and (4) the involvement of SOCS3 in resveratrol-promoted axon regeneration of medulloblastoma cells.

  19. Resveratrol Ameliorates Palmitate-Induced Inflammation in Skeletal Muscle Cells by Attenuating Oxidative Stress and JNK/NF-κB Pathway in a SIRT1-Independent Mechanism.

    Science.gov (United States)

    Sadeghi, Asie; Seyyed Ebrahimi, Shadi Sadat; Golestani, Abolfazl; Meshkani, Reza

    2017-09-01

    Resveratrol has been shown to exert anti-inflammatory and anti-oxidant effects in a variety of cell types, however, its role in prevention of inflammatory responses mediated by palmitate in skeletal muscle cells remains unexplored. In the present study, we investigated the effects of resveratrol on palmitate-induced inflammation and elucidated the underlying mechanisms in skeletal muscle cells. The results showed that palmitate significantly enhanced TNF-α and IL-6 mRNA expression and protein secretion from C2C12 cells at 12, 24, and 36 h treatments. Increased expression of cytokines was accompanied by an enhanced phosphorylation of JNK, P38, ERK1/2, and IKKα/IKKβ. In addition, JNK and P38 inhibitors could significantly attenuate palmitate-induced mRNA expression of TNF-α and IL-6, respectively, whereas NF-κB inhibitor reduced the expression of both cytokines in palmitate-treated cells. Resveratrol pretreatment significantly prevented palmitate-induced TNF-α and IL-6 mRNA expression and protein secretion in C2C12 cells. Importantly, pre-treatment of the cells with resveratrol completely abrogated the phosphorylation of ERK1/2, JNK, and IKKα/IKKβ in palmitate treated cells. The protection from palmitate-induced inflammation by resveratrol was accompanied by a decrease in the generation of reactive oxygen species (ROS). N-acetyl cysteine (NAC), a known scavenger of ROS, could protect palmitate-induced expression of TNF-α and IL-6. Furthermore, inhibition of SIRT1 by shRNA or sirtinol demonstrated that the anti-inflammatory effect of resveratrol in muscle cells is mediated through a SIRT1-independent mechanism. Taken together, these findings suggest that resveratrol may represent a promising therapy for prevention of inflammation in skeletal muscle cells. J. Cell. Biochem. 118: 2654-2663, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Resveratrol reduces prostaglandin E1-stimulated osteoprotegerin synthesis in osteoblasts: suppression of stress-activated protein kinase/c-Jun N-terminal kinase.

    Science.gov (United States)

    Yamamoto, Naohiro; Otsuka, Takanobu; Kuroyanagi, Gen; Kondo, Akira; Kainuma, Shingo; Nakakami, Akira; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Tokuda, Haruhiko

    2015-01-01

    Resveratrol, a natural polyphenol mainly existing in red grapes and berries, possesses beneficial effects on human being. We have previously reported that prostaglandin E1 (PGE1) stimulates vascular endothelial growth factor synthesis via activation of p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) but not p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the PGE1-effect on osteoprotegerin (OPG) synthesis and the effect of resveratrol on the synthesis in MC3T3-E1 cells. PGE1 induced the expression levels of OPG mRNA and stimulated the OPG release. Resveratrol significantly reduced the PGE1-induced OPG release and the mRNA expression. SRT1720, an activator of SIRT1, suppressed the release of OPG. The protein levels of SIRT1 were not up-regulated by resveratrol with or without PGE1. Both SB203580 and SP600125, a specific p38 MAP kinase inhibitor and a specific SAPK/JNK inhibitor, respectively, but not PD98059, a specific MEK inhibitor, reduced the PGE1-stimulated OPG release. Resveratrol or SRT1720 failed to affect the phosphorylation of p38 MAP kinase. On the contrary, PGE1-induced phosphorylation of SAPK/JNK was significantly attenuated by both resveratrol and SRT1720. Our results strongly suggest that resveratrol inhibits PGE1-stimulated OPG synthesis via suppressing SAPK/JNK but not p38 MAP kinase in osteoblasts. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Dihydro-resveratrol-A potent dietary polyphenol

    Energy Technology Data Exchange (ETDEWEB)

    Gakh, Andrei A [ORNL; Anisimova, Natalia Yu [N.N. Blokhin Russian Cancer Research Center; Kiselevsky, Mikhail V [N.N. Blokhin Russian Cancer Research Center; Sadovnikov, Sergey V [Hefei National Laboratory for the Physical Sciences at Microscale; Stankov, Ivan N [Chemical Diversity Research Institute; Yudin, Mikhail V [Chemical Diversity Research Institute; Rufanov, Konstantin A [Chemical Diversity Research Institute; Krasavin, Mikhail Yu [Chemical Diversity Research Institute; Sosnov, Andrey V [Chemical Diversity Research Institute

    2010-01-01

    Dihydro-resveratrol (dihydro-R), a prominent polyphenol component of red wine, has a profound proliferative effect on hormone-sensitive tumor cell lines such as breast cancer cell line MCF7. We found a significant increase in MCF7 tumor cells growth rates in the presence of picomolar concentrations of this compound. The proliferative effect of dihydro-R was not observed in cell lines that do not express hormone receptors (MDA-MB-231, BT-474, and -562).

  2. Human skin gene expression: Natural (trans) resveratrol versus five resveratrol analogs for dermal applications.

    Science.gov (United States)

    Lephart, Edwin D; Andrus, Merritt B

    2017-09-01

    Resveratrol (RV) is a polyphenolic compound naturally produced by plants. Polyphenolic compounds incorporated into medicinal products are beneficial but, RV is rapidly metabolized with an associated decline in biological activity. This study tested RV as the standard and compared five structurally modified RV analogs: butyrate, isobutyrate, palmitoate, acetate, and diacetate (to improve functionality) at 1% concentration(s) for 24 h in epiderm full thickness cultures by gene array/qPCR mRNA analysis. When silent mating type information regulation 2 homolog 1, extracellular elements (collagen1A1, 3A1, 4A1; elastin, tissue inhibitor of matrix metalloproteinase 1, fibrillin 1 laminin beta1 and matrix metalloproteinase 9), anti-aging and aging genes, inflammatory biomarkers (interleukin-1A [IL1A], IL1R2, IL-6 and IL-8), nerve growth factor, and the antioxidants (proliferating cell nuclear antigen, catalase, superoxide dismutase and metallothionein 1H/2H) were evaluated, ranking each from highest-to-lowest for gene expression: butyrate > isobutyrate > diacetate > acetate > palmitoate. This study showed that the butyrate and isobutyrate analogs are more biologically active compared to resveratrol and have potential use in topical applications to improve dermal and other health applications. Impact statement Resveratrol has been reported to have a wide variety of health benefits but its rapid metabolism especially after oral ingestion results in very low bioavailability. Notably, the first human skin gene expression study of resveratrol was not published until 2014. The purpose of this study was to determine if increased stability and biological activity could be obtained by modifying the chemical structure of natural (trans) resveratrol and quantifying human gene expression by qPCR of skin biomarkers that enhance dermal health. Five resveratrol analogs were synthesized that increased their lipophilic index to enhance tissue penetration and augment

  3. Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary

    Directory of Open Access Journals (Sweden)

    Morita Yoshihiro

    2012-02-01

    Full Text Available Abstract Background Resveratrol is a natural polyphenolic compound known for its beneficial effects on energy homeostasis, and it also has multiple properties, including anti-oxidant, anti-inflammatory, and anti-tumor activities. Recently, silent information regulator genes (Sirtuins have been identified as targets of resveratrol. Sirtuin 1 (SIRT1, originally found as an NAD+-dependent histone deacetylase, is a principal modulator of pathways downstream of calorie restriction, and the activation of SIRT1 ameliorates glucose homeostasis and insulin sensitivity. To date, the presence and physiological role of SIRT1 in the ovary are not known. Here we found that SIRT1 was localized in granulosa cells of the human ovary. Methods The physiological roles of resveratrol and SIRT1 in the ovary were analyzed. Immunohistochemistry was performed to localize the SIRT1 expression. SIRT1 protein expression of cultured cells and luteinized human granulosa cells was investigated by Western blot. Rat granulosa cells were obtained from diethylstilbestrol treated rats. The cells were treated with increasing doses of resveratrol, and subsequently harvested to determine mRNA levels and protein levels. Cell viability was tested by MTS assay. Cellular apoptosis was analyzed by caspase 3/7 activity test and Hoechst 33342 staining. Results SIRT1 protein was expressed in the human ovarian tissues and human luteinized granulosa cells. We demonstrated that resveratrol exhibited a potent concentration-dependent inhibition of rat granulosa cells viability. However, resveratrol-induced inhibition of rat granulosa cells viability is independent of apoptosis signal. Resveratrol increased mRNA levels of SIRT1, LH receptor, StAR, and P450 aromatase, while mRNA levels of FSH receptor remained unchanged. Western blot analysis was consistent with the results of quantitative real-time RT-PCR assay. In addition, progesterone secretion was induced by the treatment of resveratrol

  4. MicroRNA-429 Modulates Hepatocellular Carcinoma Prognosis and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Xiao-Ying Huang

    2013-01-01

    Full Text Available MicroRNA-429 (miR-429 may modify the development and progression of cancers; however, the role of this microRNA in the hepatocellular carcinoma (HCC has not been well elaborated. Here, we tested miR-429 expression in 138 pathology-diagnosed HCC cases and SMMC-7721 cells. We found that miR-429 was upregulated in HCC tumor tissues and that the high expression of miR-429 was significantly correlated with larger tumor size (odd ratio (OR, 2.70; 95% confidence interval (CI, 1.28–5.56 and higher aflatoxin B1-DNA adducts (OR = 3.13, 95% CI = 1.47–6.67. Furthermore, this microRNA overexpression modified the recurrence-free survival and overall survival of HCC patients. Functionally, miR-429 overexpression progressed tumor cells proliferation and inhibited cell apoptosis. These results indicate for the first time that miR-429 may modify HCC prognosis and tumorigenesis and may be a potential tumor therapeutic target.

  5. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India); Patra, Samir Kumar, E-mail: samirp@nitrkl.ac.in [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2012-10-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  6. Vaticaffinol, a resveratrol tetramer, exerts more preferable immunosuppressive activity than its precursor in vitro and in vivo through multiple aspects against activated T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Li-Li; Wu, Xue-Feng; Liu, Hai-Liang; Guo, Wen-Jie; Luo, Qiong; Tao, Fei-Fei; Ge, Hui-Ming; Shen, Yan; Tan, Ren-Xiang; Xu, Qiang, E-mail: molpharm@163.com; Sun, Yang, E-mail: yangsun@nju.edu.cn

    2013-03-01

    In the present study, we aimed to investigate the immunosuppressive activity of vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, on T lymphocytes both in vitro and in vivo, and further explored its potential molecular mechanism. Resveratrol had a wide spectrum of healthy beneficial effects with multiple targets. Interestingly, its tetramer, vaticaffinol, exerted more intensive immunosuppressive activity than resveratrol. Vaticaffinol significantly inhibited T cells proliferation activated by concanavalin A (Con A) or anti-CD3 plus anti-CD28 in a dose- and time-dependent manner. It also induced Con A-activated T cells undergoing apoptosis through mitochondrial pathway. Moreover, this compound prevented cells from entering S phase and G2/M phase during T cells activation. In addition, vaticaffinol inhibited ERK and AKT signaling pathways in Con A-activated T cells. Furthermore, vaticaffinol significantly ameliorated ear swelling in a mouse model of picryl chloride-induced ear contact dermatitis in vivo. In most of the aforementioned experiments, however, resveratrol had only slight effects on the inhibition of T lymphocytes compared with vaticaffinol. Taken together, our findings suggest that vaticaffinol exerts more preferable immunosuppressive activity than its precursor resveratrol both in vitro and in vivo by affecting multiple targets against activated T cells. - Graphical abstract: Vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, exerts more intensive immunosuppressive activity than its precursor resveratrol does in vitro and in vivo. Its mechanism may involve multiple effects against activated T cells: regulation of signalings involved in cell proliferation, G0/G1 arrest of T cells, as well as an apoptosis induction in activated effector T cells. Highlights: ► Vaticaffinol, a resveratrol tetramer, exerts more potent activity than its precursor. ► It inhibited T cells proliferation and prevented them from entering

  7. Gene methylation of human ovarian carcinoma stromal progenitor cells promotes tumorigenesis.

    Science.gov (United States)

    Ho, Chih-Ming; Shih, Daniel Tzu-Bi; Hsiao, Chih-Chiang; Huang, Shih-Hung; Chang, Shwu-Fen; Cheng, Wen-Fang

    2015-11-23

    This study aimed to investigate whether the DNA methylation of human ovarian carcinoma stromal progenitor cells (OCSPCs) could promote the tumorigenesis of ovarian carcinoma. OCSPCs were first isolated from fresh tumor tissues and ascites of ovarian cancer patients. In vivo and in vitro experiments on the effect of the OCSPCs on tumorigenesis and the effects of DNA demethylation on the OCSPCs were then performed. The OCSPCs possessed self-renewal and multipotent differentiation capacity with elevated expressions of OCT4, NANOG, BMP2, BMP4, Rex-1, AC133 and TGF-β. The OCSPCs, when combined with tumor cells in vivo could promote tumor growth. The methylation profiles of tumor suppressor genes (TSGs) were significantly higher in the OCSPCs than in ovarian cancer cells (p cells. The expression levels of TSGs were re-expressed by 5-aza-2-dC to inhibit the self-renewal and growth of OCSPCs. OCSPCs with decreased TSG expressions in the ovarian tumor microenvironment were able to promote tumorigenesis which could be reversed by DNA demethylation. DNA demethylation reversing the expression of TSGs in OCSPCs may represent a potential therapeutic target for ovarian cancer.

  8. Resveratrol preserves cerebrovascular density and cognitive function in aging mice

    NARCIS (Netherlands)

    Oomen, Charlotte A.; Farkas, Eszter; Roman, Viktor; van der Beek, Eline M.; Luiten, Paul G. M.; Meerlo, Peter

    2009-01-01

    Resveratrol, a natural polyphenol abundant in grapes and red wine, has been reported to exert numerous beneficial health effects. Among others, acute neuroprotective effects of resveratrol have been described in several models of neurodegeneration, both in vitro and in vivo. In the present study we

  9. Resveratrol relieves Angiostrongylus cantonensis - Induced meningoencephalitis by activating sirtuin-1.

    Science.gov (United States)

    Chen, An-Chih; Shyu, Ling-Yuh; Hsin, Yue-Loong; Chen, Ke-Min; Lai, Shih-Chan

    2017-09-01

    Resveratrol, a natural herbal compound found in high levels in grapes and red wine, is frequently used as activator of sirtuin-1. This study investigated the potential function of sirtuin-1 in regulating angiostrongyliasis meningoencephalitis in resveratrol-treated mice. Mice were subjected to meningoencephalitis to study the protective effect of resveratrol against meningoencephalitis and investigate the effects of sirtuin-1 activation on brain. Results demonstrated that sirtuin-1 level decreased in mice with meningoencephalitis and significantly increased in resveratrol-treated mice. Moreover, resveratrol treatment significantly reduced eosinophil counts, p65, Interferon-γ, interleukin (IL)-5, IL-33, and tumor necrosis factor-α levels, matrix metalloproteinase-9 activity, claudin-5 degradation, and blood-brain barrier permeability. By contrast, the anti-inflammatory factor IL-10 was significantly increased in resveratrol-treated mice. Resveratrol treatment was partially beneficial in controlling the pathological processes of angiostrongyliasis meningoencephalitis. The results demonstrate the neuroprotective and anti-inflammatory effects of resveratrol against Angiostrongylus cantonensis-induced eosinophilic meningoencephalitis in mice. Treatment with sirtuin-1 agonist was given within a therapeutic window after A. cantonensis infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Resveratrol, a natural phytoalexin: A therapeutic promise for ...

    African Journals Online (AJOL)

    into 5 groups: control, control+resveratrol, diabetic, diabetic+resveratrol and diabetic+ glyclazide. The antidiabetic effect of oral administration of. RSV (5mg kg/b.wt) for 45days was evidenced from the improvement in the levels of blood glucose, glycosylated hemoglobin and the calculated homeostasis model assessment of ...

  11. Pre-formulation characterization and pharmacokinetic evaluation of resveratrol

    Science.gov (United States)

    Robinson-Barnes, Keila Delores

    Resveratrol, a natural compound found in grapes has potential chemotherapy effects but very low oral bioavailability in humans. The objectives of this study are to quantitatively characterized and understand the physiochemical properties and the pharmacokinetic evaluation of resveratrol. Solubility of resveratrol was measured in 10 common solvents at 25°C using HPLC. The solution state pH stability of resveratrol was assessed in various USP buffers ranging from pH 2-10 for 24 hours at 37 °C. Human plasma protein binding was determined using ultracentrifugation technique. Stability of resveratrol in human and rat plasma was also assessed at 37°C. Aliquots of blank plasma were spiked with a standard drug concentration to yield final plasma concentration of 50 mug/mL. Samples were analyzed for resveratrol concentration up to 96 hours. A group (n=8) of jugular vein-cannulated adult male Sprague-Dawley rats were evaluated and received intravenous dose of 20 mg/kg resveratrol. Serial blood samples were collected up to 8 hours after the dose. Plasma concentrations of resveratrol were measured by an established LC-MS/MS method. Pharmacokinetic parameters were assessed using noncompartmental methods. Resveratrol is more soluble in alcohol and PEG-400, and stable in acidic pH. It binds highly to plasma proteins, and degrades slower in human then rat plasma. Resveratrol exhibits bioexponential disposition after intravenous administration and has a short elimination half-life. Resveratrol displays bioexponential disposition following intravenous administration. The estimated mean maximum concentration was 1045.5 ng/mL and rapidly dropped below 100 ng/mL within 30 minutes. The area under the concentration time curve (AUC) for resveratrol was 13888.7 min*ng/mL The mean terminal elimination half-life was 50.9 minutes. The mean total body clearance (Cl) and volume of distribution of trans-resveratrol were 1711.9mL/min/kg and 91087.8 mL/kg, respectively. Pre

  12. Resveratrol modulates innate and inflammatory responses in fish leucocytes.

    Science.gov (United States)

    Castro, R; Lamas, J; Morais, P; Sanmartín, M L; Orallo, F; Leiro, J

    2008-11-15

    Resveratrol (RESV; trans-3,5,4'-trihydroxystilbene), a phytoalexin that is produced by some plants, among other effects has well-known antioxidant, anti-inflammatory and immunomodulatory activities in mammals. In the present study, the effects of RESV on several functions of turbot, Psetta maxima (L.), kidney leucocytes (KLs) related to the innate and inflammatory responses were investigated. RESV exerted a dose-dependent inhibitory effect on the migratory response and on the production of reactive oxygen species in KL, after stimulation of the respiratory burst activity with phorbol myristate acetate (PMA). RESV also significantly inhibited the generation of the pro-inflammatory mediator prostaglandin E(2) (PGE(2)) in the supernatant of KL cultures stimulated with acidic sulphated polysaccharides (ASPs) from the seaweed Ulva rigida. The effects of the polyphenol on enzymatic activity and on myeloperoxidase (MPO) gene expression in neutrophils were also tested. It was found that RESV strongly inhibited intracellular and extracellular MPO activity, behaving as a noncompetitive and reversible inhibitor, and also induced a decrease in MPO mRNA levels in turbot neutrophils. These findings indicate that RESV exerts important modulatory effects on inflammatory responses in fish, and considering the importance of innate immunity in these vertebrates and the similarities with mammals, it may be possible to use fish for analysis of the effects of different substances on inflammatory responses.

  13. Resveratrol Sensitizes Selectively Thyroid Cancer Cell to 131-Iodine Toxicity

    Directory of Open Access Journals (Sweden)

    Seyed Jalal Hosseinimehr

    2014-01-01

    Full Text Available Background. In this study, the radiosensitizing effect of resveratrol as a natural product was investigated on cell toxicity induced by 131I in thyroid cancer cell. Methods. Human thyroid cancer cell and human nonmalignant fibroblast cell (HFFF2 were treated with 131I and/or resveratrol at different concentrations for 48 h. The cell proliferation was measured by determination of the percent of the survival cells using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Findings of this study show that resveratrol enhanced the cell death induced by 131I on thyroid cancer cell. Also, resveratrol exhibited a protective effect on normal cells against 131I toxicity. Conclusion. This result indicates a promising effect of resveratrol on improvement of cellular toxicity during iodine therapy.

  14. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    Science.gov (United States)

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  15. Sonic Hedgehog Signaling Mediates Resveratrol to Increase Proliferation of Neural Stem Cells After Oxygen-Glucose Deprivation/Reoxygenation Injury in Vitro

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2015-03-01

    Full Text Available Background/Aims: There is interest in drugs and rehabilitation methods to enhance neurogenesis and improve neurological function after brain injury or degeneration. Resveratrol may enhance hippocampal neurogenesis and improve hippocampal atrophy in chronic fatigue mice and prenatally stressed rats. However, its effect and mechanism of neurogenesis after stroke is less well understood. Sonic hedgehog (Shh signaling is crucial for neurogenesis in the embryonic and adult brain, but relatively little is known about the role of Shh signaling in resveratrol-enhanced neurogenesis after stroke. Methods: Neural stem cells (NSCs before oxygen-glucose deprivation/reoxygenation (OGD/R in vitro were pretreated with resveratrol with or without cyclopamine. Survival and proliferation of NSCs was assessed by the CCK8 assay and BrdU immunocytochemical staining. The expressions and activity of signaling proteins and mRNAs were detected by immunocytochemistry, Western blotting, and RT-PCR analysis. Results: Resveratrol significantly increased NSCs survival and proliferation in a concentration-dependent manner after OGD/R injury in vitro. At the same time, the expression of Patched-1, Smoothened (Smo, and Gli-1 proteins and mRNAs was upregulated, and Gli-1 entered the nucleus, which was inhibited by cyclopamine, a Smo inhibitor. Conclusion: Shh signaling mediates resveratrol to increase NSCs proliferation after OGD/R injury in vitro.

  16. Development of a Topical Resveratrol Formulation for Commercial Applications Using Dendrimer Nanotechnology

    OpenAIRE

    Tyler Pentek; Eric Newenhouse; Brennin O’Brien; Abhay Singh Chauhan

    2017-01-01

    Resveratrol (RSV) is well known for its anti-oxidant and anti-aging properties. However, resveratrol is insoluble in water and has stability issues. Recently, efforts were placed to prepare a resveratrol-based advanced anti-aging topical product but it contains harsh organic solvents and oils that could be harmful to the human body and the environment. Hence, we propose the use of a multifunctional dendrimer to solve the solubility and stability issues of resveratrol. A dendrimer-resveratrol ...

  17. Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Bigagli, Elisabetta; Cinci, Lorenzo; Paccosi, Sara; Parenti, Astrid; D'Ambrosio, Mario; Luceri, Cristina

    2017-02-01

    The health benefits of bio-active phenolic compounds have been largely investigated in vitro at concentrations which exceed those reachable in vivo. We investigated and compared the anti-inflammatory effects of resveratrol, hydroxytyrosol and oleuropein at physiologically relevant concentrations by using in vitro models of inflammation. Human granulocytes and monocytes were stimulated with phorbol myristate acetate (PMA) and the ability of resveratrol, hydroxytyrosol and oleuropein to inhibit the oxidative burst and CD11b expression was measured. Nitric oxide (NO), prostaglandin E2 (PGE2) levels, COX-2, iNOS, TNFα, IL-1β and miR-146a expression and activation of the transcription factor Nrf2 were evaluated in macrophages RAW 264.7 stimulated with LPS (1μg/ml) for 18h, exposed to resveratrol, hydroxytyrosol and oleuropein (5 and 10μM). Synergistic effects were explored as well, together with the levels of PGE2, COX-2 and IL-1β expression in macrophages after 6h of LPS stimulation. PGE2 and COX-2 expression were also assessed on human monocytes. All the tested compounds inhibited granulocytes oxidative burst in a concentration dependent manner and CD11b expression was also significantly counteracted by resveratrol and hydroxytyrosol. The measurement of oxidative burst in human monocytes produced similar effects being resveratrol more active. Hydroxytyrosol and resveratrol inhibited the production of NO and PGE2 but did not reduce iNOS, TNFα or IL-1β gene expression in LPS-stimulated RAW 264.7 for 18h. Resveratrol slightly decreased COX-2 expression after 18h but not after 6h, but reduced PGE2 levels after 6h. Resveratrol and hydroxytyrosol 10μM induced NRf2 nuclear translocation and reduced miR-146a expression in LPS treated RAW 264.7. Overall, we reported an anti-inflammatory effect of resveratrol and hydroxytyrosol at low, nutritionally relevant concentrations, involving the inhibition of granulocytes and monocytes activation, the modulation of miR-146a

  18. Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production

    Science.gov (United States)

    Due to its potential in preventing or slowing the occurrence of many diseases, resveratrol (3,5,4-trihydroxystilbene) has attracted great research interest. The objective of this study was to identify the microorganisms that possess resveratrol producing capability from selected plants and optimize ...

  19. Elevated NIBP/TRAPPC9 mediates tumorigenesis of cancer cells through NFκB signaling.

    Science.gov (United States)

    Zhang, Yonggang; Liu, Shu; Wang, Hong; Yang, Wensheng; Li, Fang; Yang, Fan; Yu, Daohai; Ramsey, Frederick V; Tuszyski, George P; Hu, Wenhui

    2015-03-20

    Regulatory mechanisms underlying constitutive and inducible NFκB activation in cancer remain largely unknown. Here we investigated whether a novel NIK- and IKK2-binding protein (NIBP) is required for maintaining malignancy of cancer cells in an NFκB-dependent manner. Real-time polymerase chain reaction analysis of a human cancer survey tissue-scan cDNA array, immunostaining of a human frozen tumor tissue array and immunoblotting of a high-density reverse-phase cancer protein lysate array showed that NIBP is extensively expressed in most tumor tissues, particularly in breast and colon cancer. Lentivirus-mediated NIBP shRNA knockdown significantly inhibited the growth/proliferation, invasion/migration, colony formation and xenograft tumorigenesis of breast (MDA-MB-231) or colon (HCT116) cancer cells. NIBP overexpression in HCT116 cells promoted cell proliferation, migration and colony formation. Mechanistically, NIBP knockdown in cancer cells inhibited cytokine-induced activation of NFκB luciferase reporter, thus sensitizing the cells to TNFα-induced apoptosis. Endogenous NIBP bound specifically to the phosphorylated IKK2 in a TNFα-dependent manner. NIBP knockdown transiently attenuated TNFα-stimulated phosphorylation of IKK2/p65 and degradation of IκBα. In contrast, NIBP overexpression enhanced TNFα-induced NFκB activation, thus inhibiting constitutive and TNFα-induced apoptosis. Collectively, our data identified important roles of NIBP in promoting tumorigenesis via NFκΒ signaling, spotlighting NIBP as a promising target in cancer therapeutic intervention.

  20. Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production.

    Science.gov (United States)

    Shi, Junling; Zeng, Qin; Liu, Yanlin; Pan, Zhongli

    2012-07-01

    Due to its potential in preventing or slowing the occurrence of many diseases, resveratrol (3,5,4'-trihydroxystilbene) has attracted great research interest. The objective of this study was to identify microorganisms from selected plants that produce resveratrol and to optimize the conditions for resveratrol production. Endophytes from Merlot wine grapes (Vitis vinifera L. cv. Merlot), wild Vitis (Vitis quinquangularis Rehd.), and Japanese knotweed (Polygonum cuspidatum Siebold & Zucc.) were isolated, and their abilities to produce resveratrol were evaluated. A total of 65 isolates were obtained and 21 produced resveratrol (6-123 μg/L) in liquid culture. The resveratrol-producing isolates belonged to seven genera, Botryosphaeria, Penicillium, Cephalosporium, Aspergillus, Geotrichum, Mucor, and Alternaria. The resveratrol-producing capability decreased or was completely lost in most isolates after three rounds of subculture. It was found that only the strain Alternaria sp. MG1 (isolated from cob of Merlot using GA1 medium) had stable and high resveratrol-producing capability in all subcultures. During liquid cultivation of Alternaria sp. MG1 in potato dextrose medium, the synthesis of resveratrol began on the first day, increased to peak levels on day 7, and then decreased sharply thereafter. Cell growth increased during cultivation and reached a stable and high level of biomass after 5 days. The best fermentation conditions for resveratrol production in liquid cultures of Alternaria sp. MG1 were an inoculum size of 6 %, a medium volume of 125 mL in a 250-mL flask, a rotation speed of 101 rpm, and a temperature of 27 °C.

  1. Resveratrol protects against age-associated infertility in mice.

    Science.gov (United States)

    Liu, Mengyuan; Yin, Yu; Ye, Xiaoying; Zeng, Ming; Zhao, Qiang; Keefe, David L; Liu, Lin

    2013-03-01

    Does resveratrol counteract age-associated infertility in a mouse model of reproductive aging? Long-term-oral administration of resveratrol protects against the reduction of fertility with reproductive aging in mice. Loss of oocytes and follicles and reduced oocyte quality contribute to age-associated ovarian aging and infertility. Accumulation of free radicals with age leads to DNA mutations, protein damage, telomere shortening, apoptosis and accelerated ovarian aging. Increasing evidence shows that resveratrol, enriched in certain foods, for example red grapes and wine, has anti-tumor and anti-aging effects on somatic tissues by influencing various signaling pathways, including anti-oxidation, as well as activating Sirt1 and telomerase. We investigated the potential of resveratrol to stave off ovarian aging in the inbred C57/BL6 mouse model. Young C57/BL6 females (aged 2-3 months) were fed with resveratrol added to drinking water at 30 mg/l (providing ∼7.0 mg/kg/day) for 6 or 12 months, and the fertility and ovarian functions were compared among mice treated with or without resveratrol, and young mice served as reproductive controls. Experiments were repeated three times, with an average of 25 females randomly allocated to each treatment group for each repeat. Reproductive performance of female mice was determined by litter size, ovarian follicles and oocyte quantity and quality, and compared with age-matched controls. The impact of resveratrol on telomeres and telomerase activity, and expression of genes associated with cell senescence also was evaluated. Young mice fed with resveratrol for 12 months retained the capacity to reproduce, while age-matched controls produced no pups. Consistently, mice fed with resveratrol for 12 months exhibited a larger follicle pool than controls (P telomere length and age-related gene expression in ovaries of mice fed with resveratrol resembled those of young mice, but differed (P effectiveness and toxicity of resveratrol

  2. Complement Inhibitory Proteins and Their Role in Tumorigenesis

    National Research Council Canada - National Science Library

    Tomlinson, Stephen

    2001-01-01

    Complement is a major effector mechanism of the immune system. Membrane complement inhibitors on the surface of breast tumor cells, may play a crucial role in determining tumorigenesis and the outcome of antibody-mediated immunotherapy...

  3. Sox2 Suppresses Gastric Tumorigenesis in Mice

    Directory of Open Access Journals (Sweden)

    Abby Sarkar

    2016-08-01

    Full Text Available Sox2 expression marks gastric stem and progenitor cells, raising important questions regarding the genes regulated by Sox2 and the role of Sox2 itself during stomach homeostasis and disease. By using ChIP-seq analysis, we have found that the majority of Sox2 targets in gastric epithelial cells are tissue specific and related to functions such as endoderm development, Wnt signaling, and gastric cancer. Unexpectedly, we found that Sox2 itself is dispensable for gastric stem cell and epithelial self-renewal, yet Sox2+ cells are highly susceptible to tumorigenesis in an Apc/Wnt-driven mouse model. Moreover, Sox2 loss enhances, rather than impairs, tumor formation in Apc-deficient gastric cells in vivo and in vitro by inducing Tcf/Lef-dependent transcription and upregulating intestinal metaplasia-associated genes, providing a mechanistic basis for the observed phenotype. Together, these data identify Sox2 as a context-dependent tumor suppressor protein that is dispensable for normal tissue regeneration but restrains stomach adenoma formation through modulation of Wnt-responsive and intestinal genes.

  4. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Naoki [Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya (Japan); College of Life and Health Sciences, Chubu University, Kasugai (Japan); Omori, Yukari [Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya (Japan); Kawamoto, Yoshiyuki; Sobue, Sayaka; Ichihara, Masatoshi [College of Life and Health Sciences, Chubu University, Kasugai (Japan); Suzuki, Motoshi [Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya (Japan); Kyogashima, Mamoru [Department of Microbiology and Molecular Biology, Nihon Pharmaceutical University, Saitama (Japan); Nakamura, Mitsuhiro [Department of Drug Information, Gifu Pharmaceutical University, Gifu (Japan); Tamiya-Koizumi, Keiko [College of Life and Health Sciences, Chubu University, Kasugai (Japan); Nozawa, Yoshinori [Tokai Gakuin University, Kakamigahara (Japan); Murate, Takashi, E-mail: murate@isc.chubu.ac.jp [College of Life and Health Sciences, Chubu University, Kasugai (Japan)

    2016-02-19

    Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5′-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. - Highlights: • Resveratrol inhibited cell proliferation of K562 and HCT116 cells. • Resveratrol increased cellular ceramide and decreased sphingomyelin and S1P. • ASMase mRNA and activity were increased with resveratrol. • ASMase inhibition suppressed RSV-induced ceramide accumulation. • Increased ASMase transcription was at least partially due to EGR family proteins.

  5. Resveratrol as MDR reversion molecule in breast cancer: An overview.

    Science.gov (United States)

    Alamolhodaei, Nafiseh Sadat; Tsatsakis, Aristidis M; Ramezani, Mohammad; Hayes, A Wallace; Karimi, Gholamreza

    2017-05-01

    Breast cancer is the most common cause of cancer mortality among women worldwide; therefore, a strategy to defeat breast cancer is an extremely important medical issue. One of the major challenges in this regard is multidrug resistance (MDR). Resveratrol, a well-known phytoestrogen, may be helpful as part of an overall strategy to defeat breast cancer. The mixed agonist and antagonist role of resveratrol for the estrogen receptor makes it a controversial but interesting molecule in cancer therapy, especially in hormone dependent cancers. Several in vitro investigations have suggested that resveratrol can reverse multidrug resistance. However, poor bioavailability of resveratrol is a potential limitation for resveratrol treatment and cancer outcome in vivo. Fortunately, combination therapy with other selected compounds improves resveratrol's bioavailability and/or a delay in its metabolism. This review summaries the available published literature dealing with the effects of resveratrol on multidrug resistance in cancer and more specifically, breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Specific Conditions for Resveratrol Neuroprotection against Ethanol-Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Brigitte Gonthier

    2012-01-01

    Full Text Available Aims. 3,5,4′-Trihydroxy-trans-stilbene, a natural polyphenolic compound present in wine and grapes and better known as resveratrol, has free radical scavenging properties and is a potent protector against oxidative stress induced by alcohol metabolism. Today, the mechanism by which ethanol exerts its toxicity is still not well understood, but it is generally considered that free radical generation plays an important role in the appearance of structural and functional alterations in cells. The aim of this study was to evaluate the protective action of resveratrol against ethanol-induced brain cell injury. Methods. Primary cultures of rat astrocytes were exposed to ethanol, with or without a pretreatment with resveratrol. We examined the dose-dependent effects of this resveratrol pretreatment on cytotoxicity and genotoxicity induced by ethanol. Cytotoxicity was assessed using the MTT reduction test. Genotoxicity was evidenced using single cell gel electrophoresis. In addition, DNA staining with fluorescent dyes allowed visualization of nuclear damage using confocal microscopy. Results. Cell pretreatment with low concentrations of trans-resveratrol (0.1–10 μM slowed down cell death and DNA damage induced by ethanol exposure, while higher concentrations (50–100 μM enhanced these same effects. No protection by cis-resveratrol was observed. Conclusion. Protection offered by trans-resveratrol against ethanol-induced neurotoxicity was only effective for low concentrations of this polyphenol.

  7. Metformin suppresses diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-+Leprdb/+Leprdb mice.

    Directory of Open Access Journals (Sweden)

    Tomohiko Ohno

    Full Text Available Obesity and related metabolic disorders, such as diabetes mellitus, raise the risk of liver carcinogenesis. Metformin, which is widely used in the treatment of diabetes, ameliorates insulin sensitivity. Metformin is also thought to have antineoplastic activities and to reduce cancer risk. The present study examined the preventive effect of metformin on the development of diethylnitrosamine (DEN-induced liver tumorigenesis in C57BL/KsJ-+Leprdb/+Leprdb (db/db obese and diabetic mice. The mice were given a single injection of DEN at 2 weeks of age and subsequently received drinking water containing metformin for 20 weeks. Metformin administration significantly reduced the multiplicity of hepatic premalignant lesions and inhibited liver cell neoplasms. Metformin also markedly decreased serum levels of insulin and reduced insulin resistance, and inhibited phosphorylation of Akt, mammalian target of rapamycin (mTOR, and p70S6 in the liver. Furthermore, serum levels of leptin were decreased, while those of adiponectin were increased by metformin. These findings suggest that metformin prevents liver tumorigenesis by ameliorating insulin sensitivity, inhibiting the activation of Akt/mTOR/p70S6 signaling, and improving adipokine imbalance. Therefore, metformin may be a potent candidate for chemoprevention of liver tumorigenesis in patients with obesity or diabetes.

  8. Butylated Hydroxyanisole Blocks the Occurrence of Tumor Associated Macrophages in Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Choksi, Swati; Liu, Zheng-Gang, E-mail: zgliu@helix.nih.gov [Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-12-04

    Tumor-associated macrophages (TAMs) promote tumorigenesis because of their proangiogenic and immune-suppressive functions. Here, we report that butylated hydroxyanisole (BHA) blocks occurrence of tumor associated macrophages (TAMs) in tobacco smoke carcinogen-induced lung tumorigenesis. Continuous administration of butylated hydroxyanisole (BHA), a ROS inhibitor, before or after NNK treatment significantly blocked tumor development, although less effectively when BHA is administered after NNK treatment. Strikingly, BHA abolished the occurrence of F4/80{sup +} macrophages with similar efficiency no matter whether it was administered before or after NNK treatment. Detection of cells from bronchioalveolar lavage fluid (BALF) confirmed that BHA markedly inhibited the accumulation of macrophages while slightly reducing the number of lymphocytes that were induced by NNK. Immunohistological staining showed that BHA specifically abolished the occurrence of CD206{sup +} TAMs when it was administered before or after NNK treatment. Western blot analysis of TAMs markers, arginase I and Ym-1, showed that BHA blocked NNK-induced TAMs accumulation. Our study clearly demonstrated that inhibiting the occurrence of TAMs by BHA contributes to the inhibition of tobacco smoke carcinogen-induced tumorigenesis, suggesting ROS inhibitors may serve as a therapeutic target for treating smoke-induced lung cancer.

  9. Butylated Hydroxyanisole Blocks the Occurrence of Tumor Associated Macrophages in Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-12-01

    Full Text Available Tumor-associated macrophages (TAMs promote tumorigenesis because of their proangiogenic and immune-suppressive functions. Here, we report that butylated hydroxyanisole (BHA blocks occurrence of tumor associated macrophages (TAMs in tobacco smoke carcinogen-induced lung tumorigenesis. Continuous administration of butylated hydroxyanisole (BHA, a ROS inhibitor, before or after NNK treatment significantly blocked tumor development, although less effectively when BHA is administered after NNK treatment. Strikingly, BHA abolished the occurrence of F4/80+ macrophages with similar efficiency no matter whether it was administered before or after NNK treatment. Detection of cells from bronchioalveolar lavage fluid (BALF confirmed that BHA markedly inhibited the accumulation of macrophages while slightly reducing the number of lymphocytes that were induced by NNK. Immunohistological staining showed that BHA specifically abolished the occurrence of CD206+ TAMs when it was administered before or after NNK treatment. Western blot analysis of TAMs markers, arginase I and Ym-1, showed that BHA blocked NNK-induced TAMs accumulation. Our study clearly demonstrated that inhibiting the occurrence of TAMs by BHA contributes to the inhibition of tobacco smoke carcinogen-induced tumorigenesis, suggesting ROS inhibitors may serve as a therapeutic target for treating smoke-induced lung cancer.

  10. Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants.

    Directory of Open Access Journals (Sweden)

    Yuanli Liu

    Full Text Available Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS characteristic of treatment with quinolone (oxolinic acid. These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability.

  11. Activation energy of light induced isomerization of resveratrol.

    Science.gov (United States)

    Figueiras, Teresa Sofia; Neves-Petersen, Maria Teresa; Petersen, Steffen B

    2011-09-01

    Isomerization of trans-stilbenes is known to be induced by light. The two isomers have distinct absorption, fluorescence excitation and emission spectra. Resveratrol, 3,4',5-trihydroxystilbene, is a member of the stilbene family. The interest of the scientific community in resveratrol has increased over the last years due to its biomedical properties. Whereas there is a growing confidence that trans-resveratrol is non-toxic, very little is known about the pharmacology of cis-resveratrol. Of this very reason there is considerable interest in knowing the energetics of the trans-cis conversion. Cis-resveratrol is characterized by a large fluorescence quantum yield when compared to trans-resveratrol. In the present paper we report a detailed analysis of the spectral changes induced in trans-resveratrol upon 260 nm excitation for different time periods. Spectral changes have been monitored with UV-visible absorption and steady-state fluorescence spectroscopy at pH 4 at 20, 25, 30, 35, 40, 45 and 50 °C. Continuous 260 nm excitation induces a blue shift in the absorption and fluorescence excitation spectra of resveratrol and a 14 nm blue shift in its fluorescence emission. The photoisomerization yield is reported as a function of 260 nm excitation time. 330 min continuous excitation led to ~60% isomerization yield. The kinetics of trans-cis isomerization has been monitored following the increase in fluorescence quantum yield upon continuous 260 nm excitation of trans-resveratrol. The study was carried out at the above mentioned temperatures in order to obtain the Arrhenius activation energy of photoisomerization. Activation energy and pre-exponential factor were 3.7 ± 0.3 kcal.mol(-1) and 10.6 ± 1.6 s(-1), respectively. The activation energy is comparable with previously reported values for the photoisomerization of other stilbenes.

  12. Multiplicity of effects and health benefits of resveratrol

    Directory of Open Access Journals (Sweden)

    Lolita Kuršvietienė

    2016-01-01

    Full Text Available Resveratrol is mainly found in grapes and red wine, also in some plants and fruits, such as peanuts, cranberries, pistachios, blueberries and bilberries. Moreover, nowadays this compound is available as purified preparation and dietary supplement. Resveratrol provides a wide range of benefits, including cardiovascular protective, antiplatelet, antioxidant, anti-inflammatory, blood glucose-lowering and anticancer activities, hence it exhibits a complex mode of action. During the recent years, these properties have been widely studied in animal and human models, both in vitro and in vivo. This paper is intended to present information published during the recent years on the biological activities and multiple effects of resveratrol.

  13. Cardioprotective Effect of Resveratrol in a Postinfarction Heart Failure Model

    Directory of Open Access Journals (Sweden)

    Adam Riba

    2017-01-01

    Full Text Available Despite great advances in therapies observed during the last decades, heart failure (HF remained a major health problem in western countries. In order to further improve symptoms and survival in patients with heart failure, novel therapeutic strategies are needed. In some animal models of HF resveratrol (RES, it was able to prevent cardiac hypertrophy, contractile dysfunction, and remodeling. Several molecular mechanisms are thought to be involved in its protective effects, such as inhibition of prohypertrophic signaling molecules, improvement of myocardial Ca2+ handling, regulation of autophagy, and the reduction of oxidative stress and inflammation. In our present study, we wished to further examine the effects of RES on prosurvival (Akt-1, GSK-3β and stress signaling (p38-MAPK, ERK 1/2, and MKP-1 pathways, on oxidative stress (iNOS, COX-2 activity, and ROS formation, and ultimately on left ventricular function, hypertrophy and fibrosis in a murine, and isoproterenol- (ISO- induced postinfarction heart failure model. RES treatment improved left ventricle function, decreased interstitial fibrosis, cardiac hypertrophy, and the level of plasma BNP induced by ISO treatment. ISO also increased the activation of P38-MAPK, ERK1/2Thr183-Tyr185, COX-2, iNOS, and ROS formation and decreased the phosphorylation of Akt-1, GSK-3β, and MKP-1, which were favorably influenced by RES. According to our results, regulation of these pathways may also contribute to the beneficial effects of RES in HF.

  14. Autophagy regulates UBC9 levels during viral-mediated tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Domenico Mattoscio

    2017-03-01

    Full Text Available UBC9, the sole E2-conjugating enzyme required for SUMOylation, is a key regulator of essential cellular functions and, as such, is frequently altered in cancers. Along these lines, we recently reported that its expression gradually increases during early stages of human papillomavirus (HPV-mediated cervical lesions transformation. However, a better understanding of how UBC9 is exploited by transforming viral oncoproteins is still needed. In the present study, we show that in human samples HPV drives UBC9 up-regulation also in very early steps of head and neck tumorigenesis, pointing to the important role for UBC9 in the HPV-mediated carcinogenic program. Moreover, using HPV-infected pre-cancerous tissues and primary human keratinocytes as the natural host of the virus, we investigate the pathological meaning and the cellular mechanisms responsible for UBC9 de-regulation in an oncoviral context. Our results show that UBC9 overexpression is promoted by transforming viral proteins to increase host cells' resistance to apoptosis. In addition, ultrastuctural, pharmacological and genetic approaches crucially unveil that UBC9 is physiologically targeted by autophagy in human cells. However, the presence of HPV E6/E7 oncoproteins negatively impacts the autophagic process through selective inhibition of autophagosome-lysosome fusion, finally leading to p53 dependent UBC9 accumulation during viral-induced cellular transformation. Therefore, our study elucidates how UBC9 is manipulated by HPV oncoproteins, details the physiological mechanism by which UBC9 is degraded in cells, and identifies how HPV E6/E7 impact on autophagy. These findings point to UBC9 and autophagy as novel hallmarks of HPV oncogenesis, and open innovative avenues towards the treatment of HPV-related malignancies.

  15. Autophagy regulates UBC9 levels during viral-mediated tumorigenesis.

    Science.gov (United States)

    Mattoscio, Domenico; Casadio, Chiara; Miccolo, Claudia; Maffini, Fausto; Raimondi, Andrea; Tacchetti, Carlo; Gheit, Tarik; Tagliabue, Marta; Galimberti, Viviana E; De Lorenzi, Francesca; Pawlita, Michael; Chiesa, Fausto; Ansarin, Mohssen; Tommasino, Massimo; Chiocca, Susanna

    2017-03-01

    UBC9, the sole E2-conjugating enzyme required for SUMOylation, is a key regulator of essential cellular functions and, as such, is frequently altered in cancers. Along these lines, we recently reported that its expression gradually increases during early stages of human papillomavirus (HPV)-mediated cervical lesions transformation. However, a better understanding of how UBC9 is exploited by transforming viral oncoproteins is still needed. In the present study, we show that in human samples HPV drives UBC9 up-regulation also in very early steps of head and neck tumorigenesis, pointing to the important role for UBC9 in the HPV-mediated carcinogenic program. Moreover, using HPV-infected pre-cancerous tissues and primary human keratinocytes as the natural host of the virus, we investigate the pathological meaning and the cellular mechanisms responsible for UBC9 de-regulation in an oncoviral context. Our results show that UBC9 overexpression is promoted by transforming viral proteins to increase host cells' resistance to apoptosis. In addition, ultrastuctural, pharmacological and genetic approaches crucially unveil that UBC9 is physiologically targeted by autophagy in human cells. However, the presence of HPV E6/E7 oncoproteins negatively impacts the autophagic process through selective inhibition of autophagosome-lysosome fusion, finally leading to p53 dependent UBC9 accumulation during viral-induced cellular transformation. Therefore, our study elucidates how UBC9 is manipulated by HPV oncoproteins, details the physiological mechanism by which UBC9 is degraded in cells, and identifies how HPV E6/E7 impact on autophagy. These findings point to UBC9 and autophagy as novel hallmarks of HPV oncogenesis, and open innovative avenues towards the treatment of HPV-related malignancies.

  16. Interaction of tomato lycopene and ketosamine against rat prostate tumorigenesis.

    Science.gov (United States)

    Mossine, Valeri V; Chopra, Pankaj; Mawhinney, Thomas P

    2008-06-01

    Prior investigations on the beneficial effect of dietary processed tomato products and lycopene on prostate cancer risk suggested that lycopene may require the presence of other constituents to exert its chemopreventive potential. We investigated whether ketosamines, a group of carbohydrate derivatives present in dehydrated tomato products, may interact with lycopene against prostate tumorigenesis. One ketosamine, FruHis, strongly synergized with lycopene against proliferation of the highly metastatic rat prostate adenocarcinoma MAT-LyLu cell line in vitro. The FruHis/lycopene combination significantly inhibited in vivo tumor formation by MAT-LyLu cells in syngeneic Copenhagen rats. Energy-balanced diets, supplemented with tomato paste, tomato powder, or tomato paste plus FruHis, were fed to Wistar-Unilever rats (n = 20 per group) treated with N-nitroso-N-methylurea and testosterone to induce prostate carcinogenesis. Survival from carcinogenesis was lowest in the control group (median survival time, 40 weeks) and highest in the group fed the tomato paste/FruHis diet (51 weeks; P = 0.004, versus control). The proportions of dying rats with macroscopic prostate tumors in the control, tomato paste, tomato powder, and tomato paste/FruHis groups were 63% (12 of 19), 39% (5 of 13), 43% (6 of 14), and 18% (2 of 11), respectively. FruHis completely blocked DNA oxidative degradation at >250 micromol/L in vitro, whereas neither ascorbate nor phenolic antioxidants from tomato were effective protectors in this assay. FruHis, therefore, may exert tumor-preventive effect through its antioxidant activity and interaction with lycopene.

  17. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Phuoc T Tran

    Full Text Available KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.

  18. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion.

    Directory of Open Access Journals (Sweden)

    Dahu Chen

    2014-02-01

    Full Text Available Whether epithelial-mesenchymal transition (EMT is always linked to increased tumorigenicity is controversial. Through microRNA (miRNA expression profiling of mammary epithelial cells overexpressing Twist, Snail or ZEB1, we identified miR-100 as a novel EMT inducer. Surprisingly, miR-100 inhibits the tumorigenicity, motility and invasiveness of mammary tumor cells, and is commonly downregulated in human breast cancer due to hypermethylation of its host gene MIR100HG. The EMT-inducing and tumor-suppressing effects of miR-100 are mediated by distinct targets. While miR-100 downregulates E-cadherin by targeting SMARCA5, a regulator of CDH1 promoter methylation, this miRNA suppresses tumorigenesis, cell movement and invasion in vitro and in vivo through direct targeting of HOXA1, a gene that is both oncogenic and pro-invasive, leading to repression of multiple HOXA1 downstream targets involved in oncogenesis and invasiveness. These findings provide a proof-of-principle that EMT and tumorigenicity are not always associated and that certain EMT inducers can inhibit tumorigenesis, migration and invasion.

  19. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells

    Directory of Open Access Journals (Sweden)

    Qi Cui

    2017-03-01

    Full Text Available RNA modifications play critical roles in important biological processes. However, the functions of N6-methyladenosine (m6A mRNA modification in cancer biology and cancer stem cells remain largely unknown. Here, we show that m6A mRNA modification is critical for glioblastoma stem cell (GSC self-renewal and tumorigenesis. Knockdown of METTL3 or METTL14, key components of the RNA methyltransferase complex, dramatically promotes human GSC growth, self-renewal, and tumorigenesis. In contrast, overexpression of METTL3 or inhibition of the RNA demethylase FTO suppresses GSC growth and self-renewal. Moreover, inhibition of FTO suppresses tumor progression and prolongs lifespan of GSC-grafted mice substantially. m6A sequencing reveals that knockdown of METTL3 or METTL14 induced changes in mRNA m6A enrichment and altered mRNA expression of genes (e.g., ADAM19 with critical biological functions in GSCs. In summary, this study identifies the m6A mRNA methylation machinery as promising therapeutic targets for glioblastoma.

  20. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells.

    Science.gov (United States)

    Cui, Qi; Shi, Hailing; Ye, Peng; Li, Li; Qu, Qiuhao; Sun, Guoqiang; Sun, Guihua; Lu, Zhike; Huang, Yue; Yang, Cai-Guang; Riggs, Arthur D; He, Chuan; Shi, Yanhong

    2017-03-14

    RNA modifications play critical roles in important biological processes. However, the functions of N6-methyladenosine (m6A) mRNA modification in cancer biology and cancer stem cells remain largely unknown. Here, we show that m6A mRNA modification is critical for glioblastoma stem cell (GSC) self-renewal and tumorigenesis. Knockdown of METTL3 or METTL14, key components of the RNA methyltransferase complex, dramatically promotes human GSC growth, self-renewal, and tumorigenesis. In contrast, overexpression of METTL3 or inhibition of the RNA demethylase FTO suppresses GSC growth and self-renewal. Moreover, inhibition of FTO suppresses tumor progression and prolongs lifespan of GSC-grafted mice substantially. m6A sequencing reveals that knockdown of METTL3 or METTL14 induced changes in mRNA m6A enrichment and altered mRNA expression of genes (e.g., ADAM19) with critical biological functions in GSCs. In summary, this study identifies the m6A mRNA methylation machinery as promising therapeutic targets for glioblastoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Resveratrol, pterostilbene, and piceatannol in vaccinium berries.

    Science.gov (United States)

    Rimando, Agnes M; Kalt, Wilhelmina; Magee, James B; Dewey, Jim; Ballington, James R

    2004-07-28

    A study was conducted to determine the presence of resveratrol, pterostilbene, and piceatannol in Vaccinium berries. Samples representing selections and cultivars of 10 species from Mississippi, North Carolina, Oregon, and Canada were analyzed by gas chromatography/mass spectrometry. Resveratrol was found in Vaccinium angustifolium (lowbush blueberry), Vaccinium arboretum (sparkleberry), Vaccinium ashei (rabbiteye blueberry), Vaccinium corymbosum (highbush blueberry), Vaccinium elliottii (Elliott's blueberry), Vaccinium macrocarpon (cranberry), Vaccinium myrtillus (bilberry), Vaccinium stamineum (deerberry), Vaccinium vitis-ideae var. vitis-ideae (lingonberry), and Vaccinium vitis-ideae var. minor (partridgeberry) at levels between 7 and 5884 ng/g dry sample. Lingonberry was found to have the highest content, 5884 ng/g dry sample, comparable to that found in grapes, 6471 ng/g dry sample. Pterostilbene was found in two cultivars of V. ashei and in V. stamineum at levels of 99-520 ng/g dry sample. Piceatannol was found in V. corymbosum and V. stamineum at levels of 138-422 ng/g dry sample. These naturally occurring stilbenes, known to be strong antioxidants and to have cancer chemopreventive activities, will add to the purported health benefits derived from the consumption of these small fruits. Copyright 2004 American Chemical Society

  2. DJ-1 preserving mitochondrial complex I activity plays a critical role in resveratrol-mediated cardioprotection against hypoxia/reoxygenation-induced oxidative stress.

    Science.gov (United States)

    Zhang, Yi; Li, Xiao-Ran; Zhao, Le; Duan, Guang-Ling; Xiao, Lin; Chen, He-Ping

    2018-02-01

    Resveratrol has been demonstrated to have cardioprotective effects by attenuating ischemia/reperfusion (I/R)-induced oxidative stress injury, but its in-depth molecular mechanisms against I/R-induced oxidative stress is not fully elaborated. DJ-1 plays a role in maintenance of mitochondrial complex I activity and is closely associated with oxidative stress. Therefore, this study sought to determine the contribution of DJ-1-mediated maintenance of mitochondrial complex I activity to the anti-oxidative stress effect of Resveratrol in the H9c2 cardiomyocytes subjected to hypoxia/reoxygenation (H/R). The results showed that Resveratrol significantly attenuated the H/R-induced viability loss and lactate dehydrogenase leakage, accompanied by decreases in intracellular reactive oxygen species (ROS) and malondialdehyde contents and increases in the reduced glutathione/oxidized glutathione ratio. Furthermore, Resveratrol increased the expression and mitochondrial translocation of DJ-1 and promoted the direct binding of DJ-1 with complex I subunits ND1 and NDUFS4, which in turn improved mitochondrial complex I activity and inhibited mitochondria-derived ROS production after H/R. Intriguingly, the anti-oxidative stress effect of Resveratrol could be partially blocked by DJ-1 siRNA and Complex I inhibitor Rotenone, respectively. Conclusively, these results indicated that DJ-1 is necessary for Resveratrol-mediated cardioprotective effects against H/R-induced oxidative stress damage, at least in part, through preserving mitochondrial complex I activity, and subsequently decreasing mitochondrial ROS generation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Anti-Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump

    DEFF Research Database (Denmark)

    Klančnik, A.; Šikić Pogačar, M.; Trošt, K.

    2017-01-01

    Aims: To define anti-Campylobacter jejuni activity of an extract from waste skins and seeds of Pinot noir grapes (GSS), resveratrol and possible resistance mechanisms, and the influence of these on Camp. jejuni morphology. Methods and Results: Using gene-specific knock-out Camp. jejuni mutants...... and an efflux pump inhibitor, we showed CmeABC as the most active efflux pump for extrusion across the outer membrane of GSS extract and resveratrol. Using polystyrene surface and pig small intestine epithelial (PSI) and human foetal small intestine (H4) cell lines, GSS extract shows an efficient inhibition......: An understanding of the activities of GSS extract and resveratrol as bacterial growth inhibitors and the specific mechanisms of cell accumulation is crucial for our understanding of Camp. jejuni resistance. GSS extract inhibition of Camp. jejuni adhesion to abiotic and biotic surfaces provides a further step...

  4. In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells.

    Science.gov (United States)

    Albuquerque, Rosyana V; Malcher, Nívea S; Amado, Lílian L; Coleman, Michael D; Dos Santos, Danielle C; Borges, Rosivaldo Sa; Valente, Sebastião Aldo S; Valente, Vera C; Monteiro, Marta Chagas

    2015-01-01

    Dapsone (DDS) hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV) on DDS hydroxylamine (DDS-NHOH) mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET), but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT) activity and reactive oxygen species (ROS) generation, but did not alter superoxide dismutase (SOD) activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.

  5. In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells.

    Directory of Open Access Journals (Sweden)

    Rosyana V Albuquerque

    Full Text Available Dapsone (DDS hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV on DDS hydroxylamine (DDS-NHOH mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET, but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT activity and reactive oxygen species (ROS generation, but did not alter superoxide dismutase (SOD activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.

  6. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol

    Directory of Open Access Journals (Sweden)

    Mamoru Takeda

    2016-10-01

    Full Text Available Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol, a plant polyphenol found in red wine and various food products, is known to have several beneficial biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability, including nociceptive sensory transmission. As such, it is possible that this dietary constituent could be a complementary alternative medicine (CAM candidate, specifically a therapeutic agent. The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on nociceptive neuronal activity associated with pain relief. In addition, we discuss the contribution of resveratrol to the relief of nociceptive and/or pathological pain and its potential role as a functional food and a CAM.

  7. Resveratrols in grape berry skins and leaves in vitis germplasm

    National Research Council Canada - National Science Library

    Wang, Lijun; Xu, Man; Liu, Chunyan; Wang, Junfang; Xi, Huifen; Wu, Benhong; Loescher, Wayne; Duan, Wei; Fan, Peige; Li, Shaohua

    2013-01-01

    .... The composition and content of resveratrols were investigated by HPLC for assessing genotypic variation in berry skins and leaves of 75 grape cultivars, belonging to 3 species and 7 interspecific hybrids...

  8. Metabolic engineering of resveratrol and other longevity boosting compounds.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Chen, H; Yu, O

    2010-09-16

    Resveratrol, a compound commonly found in red wine, has attracted many attentions recently. It is a diphenolic natural product accumulated in grapes and a few other species under stress conditions. It possesses a special ability to increase the life span of eukaryotic organisms, ranging from yeast, to fruit fly, to obese mouse. The demand for resveratrol as a food and nutrition supplement has increased significantly in recent years. Extensive work has been carried out to increase the production of resveratrol in plants and microbes. In this review, we will discuss the biosynthetic pathway of resveratrol and engineering methods to heterologously express the pathway in various organisms. We will outline the shortcuts and limitations of common engineering efforts. We will also discuss briefly the features and engineering challenges of other longevity boosting compounds.

  9. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol.

    Science.gov (United States)

    Takeda, Mamoru; Takehana, Shiori; Sekiguchi, Kenta; Kubota, Yoshiko; Shimazu, Yoshihito

    2016-10-11

    Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol, a plant polyphenol found in red wine and various food products, is known to have several beneficial biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability, including nociceptive sensory transmission. As such, it is possible that this dietary constituent could be a complementary alternative medicine (CAM) candidate, specifically a therapeutic agent. The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on nociceptive neuronal activity associated with pain relief. In addition, we discuss the contribution of resveratrol to the relief of nociceptive and/or pathological pain and its potential role as a functional food and a CAM.

  10. Resveratrol as a Therapeutic Agent for Alzheimer's Disease

    Science.gov (United States)

    Ma, Teng; Tan, Meng-Shan; Yu, Jin-Tai; Tan, Lan

    2014-01-01

    Alzheimer's disease (AD) is the most common cause of dementia, but there is no effective therapy till now. The pathogenic mechanisms of AD are considerably complex, including Aβ accumulation, tau protein phosphorylation, oxidative stress, and inflammation. Exactly, resveratrol, a polyphenol in red wine and many plants, is indicated to show the neuroprotective effect on mechanisms mostly above. Recent years, there are numerous researches about resveratrol acting on AD in many models, both in vitro and in vivo. However, the effects of resveratrol are limited by its pool bioavailability; therefore researchers have been trying a variety of methods to improve the efficiency. This review summarizes the recent studies in cell cultures and animal models, mainly discusses the molecular mechanisms of the neuroprotective effects of resveratrol, and thus investigates the therapeutic potential in AD. PMID:25525597

  11. Resveratrol – pills to replace a healthy diet?

    National Research Council Canada - National Science Library

    Chachay, Veronique S; Kirkpatrick, Carl M. J; Hickman, Ingrid J; Ferguson, Maree; Prins, Johannes B; Martin, Jennifer H

    2011-01-01

    ...‐related chronic disease. Resveratrol, a polyphenol found in the skin of grapes, and other edible plants and related food products, has received extensive attention through the link with the French paradox, and later...

  12. Resveratrol as a Therapeutic Agent for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Teng Ma

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is the most common cause of dementia, but there is no effective therapy till now. The pathogenic mechanisms of AD are considerably complex, including Aβ accumulation, tau protein phosphorylation, oxidative stress, and inflammation. Exactly, resveratrol, a polyphenol in red wine and many plants, is indicated to show the neuroprotective effect on mechanisms mostly above. Recent years, there are numerous researches about resveratrol acting on AD in many models, both in vitro and in vivo. However, the effects of resveratrol are limited by its pool bioavailability; therefore researchers have been trying a variety of methods to improve the efficiency. This review summarizes the recent studies in cell cultures and animal models, mainly discusses the molecular mechanisms of the neuroprotective effects of resveratrol, and thus investigates the therapeutic potential in AD.

  13. The glucose transporter GLUT1 is required for ErbB2-induced mammary tumorigenesis.

    Science.gov (United States)

    Wellberg, Elizabeth A; Johnson, Stevi; Finlay-Schultz, Jessica; Lewis, Andrew S; Terrell, Kristina L; Sartorius, Carol A; Abel, E Dale; Muller, William J; Anderson, Steven M

    2016-12-20

    Altered tumor cell metabolism is an emerging hallmark of cancer; however, the precise role for glucose in tumor initiation is not known. GLUT1 (SLC2A1) is expressed in breast cancer cells and is likely responsible for avid glucose uptake observed in established tumors. We have shown that GLUT1 was necessary for xenograft tumor formation from primary mammary cells transformed with the polyomavirus middle-T antigen but that it was not necessary for growth after tumors had formed in vivo, suggesting a differential requirement for glucose depending on the stage of tumorigenesis. To determine whether GLUT1 is required early during mammary tumorigenesis, we crossed MMTV-NIC mice, which express activated HER2/NEU/ERBB2 and Cre recombinase, to Slc2a1 (Flox/Flox) (GLUT1(Flox/Flox)) mice to generate NIC-GLUT1(+/+), NIC-GLUT1(Flox/+), and NIC-GLUT1(Flox/Flox) mice. In addition, we evaluated effects of glucose restriction or GLUT1 inhibition on transformation in MCF10A-ERBB2 breast epithelial cells in three-dimensional culture. Finally, we utilized global gene expression profiling data of primary human breast tumors to determine the relationship between SLC2A1 and stage of tumorigenesis. All of the NIC-GLUT1(+/+) mice developed tumors in less than 200 days. In contrast, only 1 NIC-GLUT1(Flox/Flox) mouse and 1 NIC-GLUT1(Flox/+) mouse developed mammary tumors, even after 18 months. Mammary gland development was not disrupted in NIC mice lacking GLUT1; however, epithelial content of mature glands was reduced compared to NIC-GLUT1(Flox/+) mice. In MCF10A-ERBB2 cells, glucose restriction or GLUT1 inhibition blocked transformation induced by activated ERBB2 through reduced cell proliferation. In human breast cancers, SLC2A1 was higher in ductal carcinoma in situ compared to the normal breast, but lower in invasive versus in situ lesions, suggesting the requirement for GLUT1 decreases as tumors progress. This study demonstrates a strict requirement for GLUT1 in the early stages of

  14. Resveratrol content and antioxidant properties of underutilized fruits

    OpenAIRE

    Shrikanta, Akshatha; Kumar, Anbarasu; Govindaswamy, Vijayalakshmi

    2013-01-01

    In the present study, resveratrol content and antioxidant properties of underutilized fruits such as Jamun (Syzygium cumini L.), Jackfruit (Artocarpus heterophyllus) and Mulberry (Morus rubra) were investigated keeping Grape (Vitis vinifera) as a reference. Ethanol/water (80:20 v/v) extracts of different parts of fruit samples including skin, pulp and seeds were analyzed by HPLC and MS for the quantification of resveratrol. Total polyphenols, flavonoids, DPPH scavenging activity and total ant...

  15. Resveratrol induces chain interdigitation in DPPC cell membrane model systems.

    Science.gov (United States)

    Longo, Elena; Ciuchi, Federica; Guzzi, Rita; Rizzuti, Bruno; Bartucci, Rosa

    2016-12-01

    Resveratrol is a natural polyphenol found in various plants with potential therapeutic activity as anti-oxidant, anti-inflammatory, cardioprotective and anti-tumoral. Lipid membranes are among cellular components that are targets of its action. In this work ESR of chain labeled lipids, calorimetry, X-ray diffraction and molecular docking are used to study the interaction of resveratrol with membrane model systems of dipalmitoylphosphatidylcholine (DPPC) as a function of resveratrol concentration (0-30 mol% of the lipid) and temperature (10-50°C). Resveratrol incorporated in DPPC bilayers induces considerable motional restriction at the lipid tail termini, removing the gradient of increasing mobility along the chain found in DPPC bilayers in the gel phase. In contrast, it leaves unperturbed the DPPC chain flexibility profile in the liquid-crystalline phase. At low concentration, resveratrol progressively reduces the pre-transition temperature and eliminates the pre-transition for content ≥5mol%. A reduced cooperativity and a downshift of the main transition temperature are observed, especially at high content. The typical diffraction pattern of DPPC multibilayers in the Lβ' phase is converted to a lamellar pattern with reduced d-spacing of untilted lipid chain in a hexagonal packing at 30 mol% of resveratrol. Molecular docking indicates that the energetically favoured anchoring site is the polar headgroup region, where resveratrol acts as a spacer. The overall results are consistent with the formation in DPPC of an interdigitated Lβi gel phase induced by 30 mol% resveratrol. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol

    OpenAIRE

    Mamoru Takeda; Shiori Takehana; Kenta Sekiguchi; Yoshiko Kubota; Yoshihito Shimazu

    2016-01-01

    Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol, a plant polyphenol found in red wine and various food products, is known to have several beneficial biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability, including nociceptive sensory transmission. As such, it is possible that this dietary constituent could be a com...

  17. Resveratrol Prevents Monocrotaline-induced Pulmonary Hypertension in Rats

    OpenAIRE

    Csiszar, Anna; Labinskyy, Nazar; Olson, Susan; Pinto, John T.; Gupte, Sachin; Wu, Joseph M.; Hu, Furong; Ballabh, Praveen; Podlutsky, Andrej; Losonczy, Gyorgy; de Cabo, Rafael; Mathew, Rajamma; Wolin, Michael S.; Ungvari, Zoltan

    2009-01-01

    Proliferation of pulmonary arterial smooth muscle cells, endothelial-dysfunction, oxidative stress and inflammation promote the development of pulmonary hypertension. Resveratrol is a polyphenolic compound that exerts anti-oxidant and anti-inflammatory protective effects in the systemic circulation, but its effects on pulmonary arteries remain poorly defined. The present study was undertaken to investigate the efficacy of resveratrol to prevent pulmonary hypertension. Rats injected with monoc...

  18. The Gut Microbiota, Tumorigenesis, and Liver Diseases

    Directory of Open Access Journals (Sweden)

    Guishuai Lv

    2017-02-01

    Full Text Available In recent decades, diseases concerning the gut microbiota have presented some of the most serious public health problems worldwide. The human host’s physiological status is influenced by the intestinal microbiome, thus integrating external factors, such as diet, with genetic and immune signals. The notion that chronic inflammation drives carcinogenesis has been widely established for various tissues. It is surprising that the role of the microbiota in tumorigenesis has only recently been recognized, given that the presence of bacteria at tumor sites was first described more than a century ago. Extensive epidemiological studies have revealed that there is a strong link between the gut microbiota and some common cancers. However, the exact molecular mechanisms linking the gut microbiota and cancer are not yet fully understood. Changes to the gut microbiota are instrumental in determining the occurrence and progression of hepatocarcinoma, chronic liver diseases related to alcohol, nonalcoholic fatty liver disease (NAFLD, and cirrhosis. To be specific, the gut milieu may play an important role in systemic inflammation, endotoxemia, and vasodilation, which leads to complications such as spontaneous bacterial peritonitis and hepatic encephalopathy. Relevant animal studies involving gut microbiota manipulations, combined with observational studies on patients with NAFLD, have provided ample evidence pointing to the contribution of dysbiosis to the pathogenesis of NAFLD. Given the poor prognosis of these clinical events, their prevention and early management are essential. Studies of the composition and function of the gut microbiota could shed some light on understanding the prognosis because the microbiota serves as an essential component of the gut milieu that can impact the aforementioned clinical events. As far as disease management is concerned, probiotics may provide a novel direction for therapeutics for hepatocellular carcinoma (HCC and NAFLD

  19. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Rezaei, Nousin; Liontos, Michalis

    2006-01-01

    Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest......, whereas a second barrier is mediated by oncogene-induced senescence. The relationship between these two barriers, if any, has not been elucidated. Here we show that oncogene-induced senescence is associated with signs of DNA replication stress, including prematurely terminated DNA replication forks...... and DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage...

  20. Resveratrol Attenuates Copper-Induced Senescence by Improving Cellular Proteostasis

    Directory of Open Access Journals (Sweden)

    Liliana Matos

    2017-01-01

    Full Text Available Copper sulfate-induced premature senescence (CuSO4-SIPS consistently mimetized molecular mechanisms of replicative senescence, particularly at the endoplasmic reticulum proteostasis level. In fact, disruption of protein homeostasis has been associated to age-related cell/tissue dysfunction and human disorders susceptibility. Resveratrol is a polyphenolic compound with proved antiaging properties under particular conditions. In this setting, we aimed to evaluate resveratrol ability to attenuate cellular senescence induction and to unravel related molecular mechanisms. Using CuSO4-SIPS WI-38 fibroblasts, resveratrol is shown to attenuate typical senescence alterations on cell morphology, senescence-associated beta-galactosidase activity, and cell proliferation. The mechanisms implicated in this antisenescence effect seem to be independent of senescence-associated genes and proteins regulation but are reliant on cellular proteostasis improvement. In fact, resveratrol supplementation restores copper-induced increased protein content, attenuates BiP level, and reduces carbonylated and polyubiquitinated proteins by autophagy induction. Our data provide compelling evidence for the beneficial effects of resveratrol by mitigating CuSO4-SIPS stressful consequences by the modulation of protein quality control systems. These findings highlight the importance of a balanced cellular proteostasis and add further knowledge on molecular mechanisms mediating resveratrol antisenescence effects. Moreover, they contribute to identifying specific molecular targets whose modulation will prevent age-associated cell dysfunction and improve human healthspan.

  1. Bioconversion of piceid to resveratrol by selected probiotic cell extracts.

    Science.gov (United States)

    Basholli-Salihu, Mimoza; Schuster, Roswitha; Mulla, Dafina; Praznik, Werner; Viernstein, Helmut; Mueller, Monika

    2016-12-01

    Resveratrol exerts several pharmacological activities, including anti-cancer, anti-inflammatory, cardioprotective, or antioxidant effects. However, due to its occurrence in plants more in glycosidic form as piceid, the bioavailability and bioactivity are limited. The enzymatic potential of probiotics for the transformation of piceid to resveratrol was elucidated. Cell extract from Bifidobacteria (B.) infantis, B. bifidum, Lactobacillus (L.) casei, L. plantarum, and L. acidophilus was evaluated for their effect in this bioconversion using high-performance liquid chromatography (HPLC) as analytical tool. Cell extract of B. infantis showed the highest effect on the deglycosylation of piceid to resveratrol, already after 30 min. Cell extracts of all other tested strains showed a significant biotransformation with no further metabolization of resveratrol. The conversion of piceid to resveratrol is of importance to increase bioavailability and bioactivity as shown for anti-inflammation in this study. Cell extracts from probiotics, especially from B. infantis, may be added to piceid containing products, for achieving higher biological effects caused by the bioactivity of resveratrol or by health promoting of the probiotics. These findings open a new perspective of novel combination of cell extracts from probiotics and piceid, in health-promoting pharmaceutical and food products.

  2. Challenges in Analyzing the Biological Effects of Resveratrol

    DEFF Research Database (Denmark)

    Erdogan, Cihan Süleyman; Vang, Ole

    2016-01-01

    The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biolog......The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety...... research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard...... experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds...

  3. Antiobesity effects of resveratrol: which tissues are involved?

    Science.gov (United States)

    Fernández-Quintela, Alfredo; Milton-Laskibar, Iñaki; González, Marcela; Portillo, Maria P

    2017-09-01

    The prevalence of obesity has been increasing in recent decades and is reaching epidemic proportions. The current options for overweight and obesity management are energy restriction and physical activity. However, compliance with these treatments is frequently poor and less successful than expected. Therefore, the scientific community is interested in active biomolecules, which may be useful in body weight management. Among them, resveratrol (3,5,4'-trihydroxy-trans-stilbene) has generated great interest as an antiobesity agent. The focus of this report is the mechanisms of action of resveratrol on several tissues (i.e., white and brown adipose tissues, liver, and skeletal muscle). Resveratrol blunts fat accumulation through decreasing adipogenesis and/or de novo lipogenesis in white adipose tissue. The effects on lipolysis are controversial. Regarding brown adipose tissue, resveratrol increases the capacity for adaptive thermogenesis. As far as liver and skeletal muscle is concerned, resveratrol increases lipid oxidation in both tissues. Therefore, in rodents, there is a general consensus concerning the effect of resveratrol on reducing body fat accumulation. By contrast, in humans, the studies are scarce, and no clear antiobesity action has been revealed so far. © 2017 New York Academy of Sciences.

  4. Cardiovascular Protective Effects and Clinical Applications of Resveratrol.

    Science.gov (United States)

    Cho, Sanghyun; Namkoong, Kyung; Shin, Minji; Park, Jueun; Yang, Eunyeong; Ihm, Jinsoo; Thu, Vu Thi; Kim, Hyoung Kyu; Han, Jin

    2017-04-01

    Resveratrol is a naturally occurring phenol that is generated by plant species following injury or attack by bacterial and fungal pathogens. This compound was first described as the French Paradox in 1992. Later in 2003, resveratrol was reported to activate sirtuins in yeast cells. Recent experimental studies have found that resveratrol offers a variety of benefits that include both anticarcinogenic and anti-inflammatory effects in addition to the ability to reverse obesity, attenuate hyperglycemia and hyperinsulinemia, protect heart and endothelial function, and increase the life span. Multiple molecular targets are associated with the cardioprotective capabilities of resveratrol, and therefore, resveratrol has potential for a wide range of new therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, cardiac failure, and inflammatory alterations during aging. Expectations for application in human patients, however, suffer from a lack of sufficient clinical evidence in support of these beneficial effects. This article reviews recently reported basic research results that describe the beneficial effects of resveratrol in an attempt to condense the evidence observed in clinical trials and provide support for the future development of novel clinical therapeutics in patients with cardiovascular diseases.

  5. Evaluation of urinary resveratrol as a biomarker of dietary resveratrol intake in the European Prospective Investigation into Cancer and Nutrition (EPIC) study.

    Science.gov (United States)

    Zamora-Ros, Raul; Rothwell, Joseph A; Achaintre, David; Ferrari, Pietro; Boutron-Ruault, Marie-Christine; Mancini, Francesca R; Affret, Aurelie; Kühn, Tilman; Katzke, Verena; Boeing, Heiner; Küppel, Sven; Trichopoulou, Antonia; Lagiou, Pagona; La Vecchia, Carlo; Palli, Domenico; Contiero, Paolo; Panico, Salvatore; Tumino, Rosario; Ricceri, Fulvio; Noh, Hwayoung; Freisling, Heinz; Romieu, Isabelle; Scalbert, Augustin

    2017-06-01

    In vitro studies have shown several beneficial properties of resveratrol. Epidemiological evidence is still scarce, probably because of the difficulty in estimating resveratrol exposure accurately. The current study aimed to assess the relationships between acute and habitual dietary resveratrol and wine intake and urinary resveratrol excretion in a European population. A stratified random subsample of 475 men and women from four countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) cross-sectional study, who had provided 24-h urine samples and completed a 24-h dietary recall (24-HDR) on the same day, were included. Acute and habitual dietary data were collected using standardised 24-HDR software and a validated country-specific dietary questionnaire, respectively. Phenol-Explorer was used to estimate the intake of resveratrol and other stilbenes. Urinary resveratrol was analysed using tandem MS. Spearman's correlation coefficients between estimated dietary intakes of resveratrol and other stilbenes and consumption of wine, their main food source, were very high (r>0·9) when measured using dietary questionnaires and were slightly lower with 24-HDR (r>0·8). Partial Spearman's correlations between urinary resveratrol excretion and intake of resveratrol, total stilbenes or wine were found to be higher when using the 24-HDR (R 2 partial approximately 0·6) than when using the dietary questionnaires (R 2 partial approximately 0·5). Moderate to high correlations between dietary resveratrol, total stilbenes and wine, and urinary resveratrol concentrations were observed. These support the earlier findings that 24-h urinary resveratrol is an effective biomarker of both resveratrol and wine intakes. These correlations also support the validity of the estimation of resveratrol intake using the dietary questionnaire and Phenol-Explorer.

  6. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  7. Epigenetic potential of resveratrol and analogs in preclinical models of prostate cancer

    Science.gov (United States)

    Prostate cancer is affected by lifestyle, particularly diet. Dietary polyphenols such as resveratrol possess anticancer properties and, therefore, chemopreventive and therapeutic potentials. Resveratrol has pleiotropic effect exerting its biological activity through multiple pathways and targets ass...

  8. Testing of resveratrol microemulsion photostability and protective effect against UV induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Juškaitė Vaida

    2017-06-01

    Full Text Available Resveratrol is well known for its antioxidant activity and susceptibility to ultraviolet radiation. Development of formulations providing improved stability and relevant drug delivery of resveratrol is still a challenging task. The aim of this study was to determine protective characteristics of formulated microemulsions by evaluating photoisomerization of resveratrol and to investigate the effects of resveratrol on human keratinocyte cells under oxidative stress caused by ultraviolet radiation. Incorporation of resveratrol into microemulsions resulted in increased photostability of active compounds and the results demonstrated that photodegradation of resveratrol was significantly delayed. Results of biopharmaceutical evaluation in vitro demonstrated that up to 60 % of resveratrol was released from microemulsions within 6 hours under a constant release rate profile. In vivo biological testing confirmed the ability of resveratrol to protect cells from oxidative stress and to increase cell viability. It was concluded that microemulsions might be considered in the development of UV light sensitive compounds.

  9. Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase

    NARCIS (Netherlands)

    Schouten, A.; Wagemakers, L.; Stefanato, F.L.; Kaaij, van der R.M.; Kan, van J.A.L.

    2002-01-01

    The grapevine (Vitis) secondary metabolite resveratrol is considered a phytoalexin, which protects the plant from Botrytis cinerea infection. Laccase activity displayed by the fungus is assumed to detoxify resveratrol and to facilitate colonization of grape. We initiated a functional molecular

  10. Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infarcted myocardium

    National Research Council Canada - National Science Library

    Gurusamy, Narasimman; Ray, Diptarka; Lekli, Istvan; Das, Dipak K

    2010-01-01

    To study the efficiency of maintaining the reduced tissue environment via pre-treatment with natural antioxidant resveratrol in stem cell therapy, we pre-treated male Sprague-Dawley rats with resveratrol...

  11. Testing of resveratrol microemulsion photostability and protective effect against UV induced oxidative stress.

    Science.gov (United States)

    Juškaitė, Vaida; Ramanauskienė, Kristina; Briedis, Vitalis

    2017-06-27

    Resveratrol is well known for its antioxidant activity and susceptibility to ultraviolet radiation. Development of formulations providing improved stability and relevant drug delivery of resveratrol is still a challenging task. The aim of this study was to determine protective characteristics of formulated microemulsions by evaluating photoisomerization of resveratrol and to investigate the effects of resveratrol on human keratinocyte cells under oxidative stress caused by ultraviolet radiation. Incorporation of resveratrol into microemulsions resulted in increased photostability of active compounds and the results demonstrated that photodegradation of resveratrol was significantly delayed. Results of biopharmaceutical evaluation in vitro demonstrated that up to 60 % of resveratrol was released from microemulsions within 6 hours under a constant release rate profile. In vivo biological testing confirmed the ability of resveratrol to protect cells from oxidative stress and to increase cell viability. It was concluded that microemulsions might be considered in the development of UV light sensitive compounds.

  12. An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening

    Directory of Open Access Journals (Sweden)

    Anh Tuan Nguyen

    2012-01-01

    Because Ras signaling is frequently activated by major hepatocellular carcinoma etiological factors, a transgenic zebrafish constitutively expressing the krasV12 oncogene in the liver was previously generated by our laboratory. Although this model depicted and uncovered the conservation between zebrafish and human liver tumorigenesis, the low tumor incidence and early mortality limit its use for further studies of tumor progression and inhibition. Here, we employed a mifepristone-inducible transgenic system to achieve inducible krasV12 expression in the liver. The system consisted of two transgenic lines: the liver-driver line had a liver-specific fabp10 promoter to produce the LexPR chimeric transactivator, and the Ras-effector line contained a LexA-binding site to control EGFP-krasV12 expression. In double-transgenic zebrafish (driver-effector embryos and adults, we demonstrated mifepristone-inducible EGFP-krasV12 expression in the liver. Robust and homogeneous liver tumors developed in 100% of double-transgenic fish after 1 month of induction and the tumors progressed from hyperplasia by 1 week post-treatment (wpt to carcinoma by 4 wpt. Strikingly, liver tumorigenesis was found to be ‘addicted’ to Ras signaling for tumor maintenance, because mifepristone withdrawal led to tumor regression via cell death in transgenic fish. We further demonstrated the potential use of the transparent EGFP-krasV12 larvae in inhibitor treatments to suppress Ras-driven liver tumorigenesis by targeting its downstream effectors, including the Raf-MEK-ERK and PI3K-AKT-mTOR pathways. Collectively, this mifepristone-inducible and reversible krasV12 transgenic system offers a novel model for understanding hepatocarcinogenesis and a high-throughput screening platform for anti-cancer drugs.

  13. Bax is not involved in the resveratrol-induced apoptosis in human lung adenocarcinoma cells

    Science.gov (United States)

    Zhang, Wei-wei; Wang, Zhi-ping; Chen, Tong-sheng

    2010-02-01

    Resveratrol (RV) is a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts. Previous studies indicate that RV has an ability to inhibit various stages of carcinogenesis and eliminate preneoplastic cells in vitro and in vivo. However, little is known about the molecular mechanism of RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cell. In this report, we analyzed whether Bax translocation from cytoplasm to mitochondria during RV-induced apoptosis in single living cell using onfocal microscopey. Cells were transfected with GFP-Bax plasmid. Cell counting kit (CCK-8) assay was used to assess the inhibition of RV on the cells viability. Apoptotic activity of RV was detected by Hoechst 33258 and propidium iodide (PI) staining. Our results showed that RV induced a dose-dependent apoptosis in which Bax did not translocate to mitochondrias.

  14. Resveratrol products resulting by free radical attack

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Yvonne; Quint, R.M. [Section Radiation Biology, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, UZAII, Althanstrasse 14, A-1090 Vienna (Austria); Getoff, Nikola [Section Radiation Biology, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, UZAII, Althanstrasse 14, A-1090 Vienna (Austria)], E-mail: nikola.getoff@univie.ac.at

    2008-06-15

    Trans-resveratrol (trans-3,4',5-trihydroxystilbene; RES), which is contained in red wine and many plants, is one of the most relevant and extensively investigated stilbenes with a broad spectrum of biological activities. Among other duties, RES has been reported to have anti-carcinogenetic activities, which could be attributed to its antioxidant properties. The degradation of RES was studied under various conditions. The products (aldehydes, carboxylic acids, etc.) generated from RES by the attack of free radicals were registered as a function of the radical concentration (absorbed radiation dose). Based on the obtained data it appears that the OH radicals are initiating the rather complicated process, which involves of the numerous consecutive reactions. A possible starting reaction mechanism is presented.

  15. Resveratrol and Amyloid-Beta: Mechanistic Insights

    Directory of Open Access Journals (Sweden)

    Yongming Jia

    2017-10-01

    Full Text Available The amyloid-beta (Aβ hypothesis that dyshomeostasis between Aβ production and clearance is a very early, key molecular factor in the etiology of Alzheimer’s disease (AD has been proposed and examined in the AD research field. Scientists have focused on seeking natural products or drugs to influence the dynamic equilibrium of Aβ, targeting production and clearance of Aβ. There is emerging evidence that resveratrol (Res, a naturally occurring polyphenol mainly found in grapes and red wine, acts on AD in numerous in vivo and in vitro models. Res decreases the amyloidogenic cleavage of the amyloid precursor protein (APP, enhances clearance of amyloid beta-peptides, and reduces Aβ aggregation. Moreover, Res also protects neuronal functions through its antioxidant properties. This review discusses the action of Res on Aβ production, clearance and aggregation and multiple potential mechanisms, providing evidence of the useful of Res for AD treatment.

  16. Resveratrol products resulting by free radical attack

    Science.gov (United States)

    Bader, Yvonne; Quint, R. M.; Getoff, Nikola

    2008-06-01

    Trans-resveratrol ( trans-3,4',5-trihydroxystilbene; RES), which is contained in red wine and many plants, is one of the most relevant and extensively investigated stilbenes with a broad spectrum of biological activities. Among other duties, RES has been reported to have anti-carcinogenetic activities, which could be attributed to its antioxidant properties. The degradation of RES was studied under various conditions. The products (aldehydes, carboxylic acids, etc.) generated from RES by the attack of free radicals were registered as a function of the radical concentration (absorbed radiation dose). Based on the obtained data it appears that the OH radicals are initiating the rather complicated process, which involves of the numerous consecutive reactions. A possible starting reaction mechanism is presented.

  17. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sohyun [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); Cha, Song-Hyun [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Inyoung [School of Civil, Environmental and Architecture Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Park, Soomin [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Yohan [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); Cho, Seonho [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Youmie, E-mail: youmiep@inje.ac.kr [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2016-01-01

    This study focused on the preparation of resveratrol nanocarrier systems and the evaluation of their in vitro antibacterial activities. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) for resveratrol nanocarrier systems were synthesized using green synthetic routes. During the synthesis steps, resveratrol was utilized as a reducing agent to chemically reduce gold and silver ions to AuNPs and AgNPs. This system provides green and eco-friendly synthesis routes that do not involve additional chemical reducing agents. Resveratrol nanocarriers with AuNPs (Res-AuNPs) and AgNPs (Res-AgNPs) were observed to be spherical and to exhibit characteristic surface plasmon resonance at 547 nm and at 412–417 nm, respectively. The mean size of the nanoparticles ranged from 8.32 to 21.84 nm, as determined by high-resolution transmission electron microscopy. The face-centered cubic structure of the Res-AuNPs was confirmed by high-resolution X-ray diffraction. Fourier-transform infrared spectra indicated that the hydroxyl groups and C=C in the aromatic ring of resveratrol were involved in the reduction reaction. Res-AuNPs retained excellent colloidal stability during ultracentrifugation and re-dispersion, suggesting that resveratrol also played a role as a capping agent. Zeta potentials of Res-AuNPs and Res-AgNPs were in the range of − 20.58 to − 48.54 mV. Generally, against Gram-positive and Gram-negative bacteria, the Res-AuNPs and Res-AgNPs exhibited greater antibacterial activity compared to that of resveratrol alone. Among the tested strains, the highest antibacterial activity of the Res-AuNPs was observed against Streptococcus pneumoniae. The addition of sodium dodecyl sulfate during the synthesis of Res-AgNPs slightly increased their antibacterial activity. These results suggest that the newly developed resveratrol nanocarrier systems with metallic nanoparticles show potential for application as nano-antibacterial agents with enhanced activities. - Highlights

  18. Resveratrol modifies tephritid fruit fly response to nutritional and radiation stress

    Science.gov (United States)

    Resveratrol is a recently discovered compound. Three concentrations (50, 100, 200 µM) of resveratrol were evaluated against Bactrocera dorsalis and B. cucurbitae by incorporating resveratrol into fruit fly liquid larval diet under the following conditions: 1) with or without wheat germ oil (WGO) in ...

  19. A study on the effect of resveratrol on lipid metabolism in ...

    African Journals Online (AJOL)

    A study on the effect of resveratrol on lipid metabolism in hyperlipidemic mice. HC Xie, HP Han, Z Chen, JP He. Abstract. Background: The content of resveratrol is relatively high in Polygonum cuspidatum Sieb. et Zucc., and the resveratrol has the effect of blood vessel dilating, microcirculation improving, platelet aggregation ...

  20. Physicochemical Changes and Glycation Reaction in Intermediate-Moisture Protein-Sugar Foods with and without Addition of Resveratrol during Storage.

    Science.gov (United States)

    Sheng, Zhanwu; Gu, Mantun; Hao, Wangjun; Shen, Yixiao; Zhang, Weimin; Zheng, Lili; Ai, Binling; Zheng, Xiaoyan; Xu, Zhimin

    2016-06-22

    An intermediate-moisture food (IMF) model consisting of whey protein isolate and glucose and an IMF model fortified with resveratrol were used to study the effect of resveratrol on physicochemical changes and glycation of protein-sugar-rich foods during storage. The water activity (aw) of the storage was controlled at 0.75 or 0.56. The browning rate or hardness of fortified IMFs was significantly lower than that of IMFs after 45-day storage. The rate of Maillard reaction in the samples stored at aw 0.56 was higher than that of samples stored at aw 0.75. The fortified IMFs had lower levels of AGEs (advanced glycation end products), CML (N(ε)-(carboxymethyl)-l-lysine), and insoluble protein during storage. The inhibition capability of resveratrol against glycation was also confirmed by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), liquid chromatography mass spectrometry (LC-MS), and Fourier transform infrared spectroscopy (FTIR) analysis to monitor glycated proteins and protein aggregation in the samples. The results of this study suggested that resveratrol could be used as an inhibitor to reduce the formation of undesirable AGEs and other Maillard reaction products in foods during storage.

  1. Protective effects of resveratrol in experimental retinal detachment.

    Directory of Open Access Journals (Sweden)

    Wei Huang

    Full Text Available BACKGROUND: Oxidative stress is one of the major factors that trigger photoreceptor apoptosis. To investigate whether resveratrol, a potent antioxidant and small molecule activator of the FoxO pathway, would be neuroprotective against photoreceptor cell death in a rodent model of retinal detachment. METHODS: Retinal detachment was created in adult Brown Norway rats by subretinal injection of sodium hyaluronate. The animals were treated daily with vehicle or resveratrol (20 mg/kg intraperitoneal injection. Photoreceptor death was assessed by counting the number of apoptotic cells with TdT-dUTP terminal nick-end labeling (TUNEL and measurement of the outer nuclear layer (ONL thickness 3 days after RD. Changes in expression of FoxO1a, FoxO3a, and FoxO4 were analyzed by western blot. The activity of caspase 3, caspase 8, caspase 9, spectrin and their cleavage forms were studied. RESULTS: Three days after retinal detachment, caspase 3, caspase 8 and caspase 9 were significantly activated in the detached retina. Spectrin cleavage products at 120 and 145 kDa were also detected. Both caspase and calpain activation are involved in apoptotic photoreceptor cell death in detached retinas. Treatment with resveratrol increases FoxO1a, FoxO3a, and FoxO4 protein expression in detached retinas only. Resveratrol treatment decreases activation of intrinsic and extrinsic caspase apoptotic pathways triggered by RD. The number of TUNEL-positive cells decreases from 1301±51 cells/mm(2 in control groups to 430±35 cells/mm(2 in treatment groups (p<0.05. Resveratrol treatment also demonstrates 59% less ONL thickness loss compared to controls. CONCLUSIONS: Resveratrol treatment up-regulates the FoxO family and blocks Caspase3, 8, and 9 activation. Resveratrol has the potential to be used as a novel therapeutic agent for preventing vision loss in diseases characterized by photoreceptor detachment.

  2. Comparative effects of histone deacetylases inhibitors and resveratrol on Trypanosoma cruzi replication, differentiation, infectivity and gene expression.

    Science.gov (United States)

    Campo, Vanina A

    2017-04-01

    Histone post-translational modification, mediated by histone acetyltransferases and deacetylases, is one of the most studied factors affecting gene expression. Recent data showing differential histone acetylation states during the Trypanosoma cruzi cell cycle suggest a role for epigenetics in the control of this process. As a starting point to study the role of histone deacetylases in the control of gene expression and the consequences of their inhibition and activation in the biology of T. cruzi, two inhibitors for different histone deacetylases: trichostatin A for class I/II and sirtinol for class III and the activator resveratrol for class III, were tested on proliferative and infective forms of this parasite. The two inhibitors tested caused histone hyperacetylation whereas resveratrol showed the opposite effect on both parasite forms, indicating that a biologically active in vivo level of these compounds was achieved. Histone deacetylase inhibitors caused life stage-specific effects, increasing trypomastigotes infectivity and blocking metacyclogenesis. Moreover, these inhibitors affected specific transcript levels, with sirtinol causing the most pronounced change. On the other hand, resveratrol showed strong anti-parasitic effects. This compound diminished epimastigotes growth, promoted metacyclogenesis, reduced in vitro infection and blocked differentiation and/or replication of intracellular amastigotes. In conclusion, the data presented here supports the notion that these compounds can modulate T. cruzi gene expression, differentiation, infection and histones deacetylase activity. Furthermore, among the compounds tested in this study, the results point to Resveratrol as promising trypanocidal drug candidate. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  3. How moderate changes in Akt T-loop phosphorylation impact on tumorigenesis and insulin resistance

    Directory of Open Access Journals (Sweden)

    Stephan Wullschleger

    2011-01-01

    The Akt signalling pathway plays vital roles in controlling cellular responses to insulin as well as in proliferation and survival. Inhibition of Akt signalling leads to insulin resistance and type 2 diabetes, whereas hyperactivation of Akt promotes tumorigenesis. In this study, we investigate how modest changes in the activity of the Akt signalling pathway, to an extent that might be achieved by drug treatment, would impact on insulin resistance and tumorigenesis. Using insulin-resistant PDK1K465E/K465E PH domain knock-in mice, we found that introducing the PTEN+/− mutation to slightly stimulate Akt restored normal insulin sensitivity. Introducing the PDK1K465E/K465E PH domain knock-in mutation into cancer-prone PTEN+/− mice, lowered Akt activity only by about 50%, but led to a delay in tumour onset of ∼4 months in a broad range of tumours. This was also accompanied by slower growth of B cell follicular lymphomas, as monitored by magnetic resonance imaging. Our findings imply that signal transduction inhibitors that lead to a modest reduction in Akt activity would not only delay onset of tumours possessing elevated phosphoinositide 3-kinase pathway activity but would also reduce the growth rate of developed tumours.

  4. The Rab2A GTPase Promotes Breast Cancer Stem Cells and Tumorigenesis via Erk Signaling Activation

    Directory of Open Access Journals (Sweden)

    Man-Li Luo

    2015-04-01

    Full Text Available Proline-directed phosphorylation is regulated by the prolyl isomerase Pin1, which plays a fundamental role in driving breast cancer stem-like cells (BCSCs. Rab2A is a small GTPase critical for vesicle trafficking. Here, we show that Pin1 increases Rab2A transcription to promote BCSC expansion and tumorigenesis in vitro and in vivo. Mechanistically, Rab2A directly interacts with and prevents dephosphorylation/inactivation of Erk1/2 by the MKP3 phosphatase, resulting in Zeb1 upregulation and β-catenin nuclear translocation. In cancer cells, Rab2A is activated via gene amplification, mutation or Pin1 overexpression. Rab2A overexpression or mutation endows BCSC traits to primary normal human breast epithelial cells, whereas silencing Rab2A potently inhibits the expansion and tumorigenesis of freshly isolated BCSCs. Finally, Rab2A overexpression correlates with poor clinical outcome in breast cancer patients. Thus, Pin1/Rab2A/Erk drives BCSC expansion and tumorigenicity, suggesting potential drug targets.

  5. miR-92a family and their target genes in tumorigenesis and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Molin, E-mail: molin_li@hotmail.com [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Guan, Xingfang; Sun, Yuqiang [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Mi, Jun [Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Shu, Xiaohong [College of Pharmacy, Dalian Medical University Cancer Center, Dalian 116044 (China); Liu, Fang [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China); Li, Chuangang, E-mail: li_chuangang@sina.com [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China)

    2014-04-15

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis.

  6. Evaluating The Role Of Nitric Oxide Synthase In Oncogenic Ras-Driven Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Chris Counter

    2015-08-01

    Full Text Available We previously reported that oncogenic KRAS activation of the PI3K/AKT pathway stimulates the remaining wild-type HRAS and NRAS proteins in a manner dependent upon both eNOS expression and C118 in HRAS and NRAS, which promoted tumor growth. Interestingly however, we recently found that loss of wild-type HRAS, NRAS, and even more potently, loss of both of these genes actually enhanced oncogenic KRAS-driven early tumorigenesis. Taken together, these results indicate that wild-type RAS proteins are tumor suppressing early in tumorigenesis, but tumor promoting in more malignant settings. Knock-in of a C118S mutation into an endogenous wild-type RAS gene did not, however, hamper oncogenic KRAS-driven tumor initiation. As such, redox-dependent reactions with C118 of wild-type RAS proteins are unlikely to be responsible for the tumor suppressive role of wild-type RAS proteins. This suggests that the redox-dependent reactions with C118 of wild-type RAS proteins are more important in more malignant settings. Given this, it stands to reason that inhibiting redox-dependent reactions like S-nitrosylation of wild-type RAS proteins may be more effective in established cancer settings. Indeed, we find that in three different models of KRAS-driven cancers-skin, pancreatic and lung- the general NOS inhibitor l-NAME reduced tumor burden and/or extended the lifespan of mice. Since oncogenic RAS has so far proven refractory to pharmacologic inhibition, targeting NOS activity may be an actionable approach to inhibiting RAS signaling for the treatment of a broad spectrum of cancers.

  7. A resveratrol analog, phoyunbene B, induces G2/M cell cycle arrest and apoptosis in HepG2 liver cancer cells.

    Science.gov (United States)

    Wang, Guanghui; Guo, Xiaoyu; Chen, Haifeng; Lin, Ting; Xu, Yang; Chen, Quancheng; Liu, Jie; Zeng, Jinzhang; Zhang, Xiao-Kun; Yao, Xinsheng

    2012-03-01

    Among the seven natural resveratrol analogs separated and identified from Pholidota yunnanensis R(OLFE), we found phoyunbene B (PYB, trans-3,4'-dihydroxy-2',3',5-trimethoxystilbene) was more effective in inhibiting the growth of HepG2 hepatocellular carcinoma cells than resveratrol. The inhibitory effect of PYB in HepG2 cells was due to its induction of G2/M cell cycle arrest and apoptosis. Induction of G2/M phase cell cycle arrest by PYB was associated with its up-regulation of Cyclin B1, while its induction of apoptosis was accompanied with its down-regulation of Bcl-2 and up-regulation of Bax. Our in vitro invasion/migration assays also showed that PYB could inhibit the invasion of hepatocellular carcinoma cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer

    Directory of Open Access Journals (Sweden)

    Anthony V Nguyen

    2009-04-01

    Full Text Available Anthony V Nguyen1, Micaela Martinez1, Michael J Stamos2, Mary P Moyer3, Kestutis Planutis1, Christopher Hope1 Randall F Holcombe11Division of Hematology/Oncology and Chao Family Comprehensive Cancer Center, 2Department of Surgery, University of California, Irvine CA, USA; 3Incell Corporation, San Antonio, TX USAContext: Resveratrol exhibits colon cancer prevention activity in animal models; it is purported to have this activity in humans and inhibit a key signaling pathway involved in colon cancer initiation, the Wnt pathway, in vitro.Design: A phase I pilot study in patients with colon cancer was performed to evaluate the effects of a low dose of plant-derived resveratrol formulation and resveratrol-containing freeze-dried grape powder (GP on Wnt signaling in the colon. Eight patients were enrolled and normal colonic mucosa and colon cancer tissue were evaluated by Wnt pathway-specific microarray and quantitative real-time polymerase chain reaction (qRT-PCR pre- and post-exposure to resveratrol/GP.Results: Based on the expression of a panel of Wnt target genes, resveratrol/GP did not inhibit the Wnt pathway in colon cancer but had significant (p < 0.03 activity in inhibiting Wnt target gene expression in normal colonic mucosa. The greatest effect on Wnt target gene expression was seen following ingestion of 80 g of GP per day (p < 0.001. These results were confirmed with qRT-PCR of cyclinD1 and axinII. The inhibitory effect of GP on Wnt signal throughput was confirmed in vitro with a normal colonic mucosa-derived cell line.Conclusions: These data suggest that GP, which contains low dosages of resveratrol in combination with other bioactive components, can inhibit the Wnt pathway in vivo and that this effect is confined to the normal colonic mucosa. Further study of dietary supplementation with resveratrol-containing foods such as whole grapes or GP as a potential colon cancer preventive strategy is warranted.Trial registration: NCT00256334

  9. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE{sub 2} and IL-6

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haixia [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhang, Xinhua [Department of Liver, Biliary And Pancreatic Tumors, Hubei Cancer Hospital, Wuhan 430079 (China); Chen, Xuewei; Li, Ying; Ke, Zunqiong [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Guo, Austin M. [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Department of Pharmacology, New York Medical College, Valhalla, NY 10595 (United States); Chen, Honglei, E-mail: hl-chen@whu.edu.cn [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-09-15

    M2 macrophage polarization is implicated in colorectal cancer development. Isoliquiritigenin (ISL), a flavonoid from licorice, has been reported to prevent azoxymethane (AOM) induced colon carcinogenesis in animal models. Here, in a mouse model of colitis-associated tumorigenesis induced by AOM/dextran sodium sulfate (DSS), we investigated the chemopreventive effects of ISL and its mechanisms of action. Mice were treated with AOM/DSS and randomized to receive either vehicle or ISL (3, 15 and 75 mg/kg). Tumor load, histology, immunohistochemistry, and gene and protein expressions were determined. Intragastric administration of ISL for 12 weeks significantly decreased colon cancer incidence, multiplicity and tumor size by 60%, 55.4% and 42.6%, respectively. Moreover, ISL inhibited M2 macrophage polarization. Such changes were accompanied by downregulation of PGE{sub 2} and IL-6 signaling. Importantly, depletion of macrophages by clodronate (Clod) or zoledronic acid (ZA) reversed the effects of ISL. In parallel, in vitro studies also demonstrated that ISL limited the M2 polarization of RAW264.7 cells and mouse peritoneal macrophages with concomitant inactivation of PGE{sub 2}/PPARδ and IL-6/STAT3 signaling. Conversely, exogenous addition of PGE{sub 2} or IL-6, or overexpression of constitutively active STAT3 reversed ISL-mediated inhibition of M2 macrophage polarization. In summary, dietary flavonoid ISL effectively inhibits colitis-associated tumorigenesis through hampering M2 macrophage polarization mediated by the interplay between PGE{sub 2} and IL-6. Thus, inhibition of M2 macrophage polarization is likely to represent a promising strategy for chemoprevention of colorectal cancer. - Highlights: • Isoliquiritigenin (ISL) prevents colitis-associated tumorigenesis. • ISL inhibits M2 macrophage polarization in vivo and in vitro. • ISL inhibits PGE{sub 2} and IL-6 signaling in colitis-associated tumorigenesis. • ISL may be an attractive candidate agent for

  10. The Role of Myoepithelium in Mammary Development and Tumorigenesis

    Science.gov (United States)

    2001-09-01

    mediators of the susceptibility of the gland to tumorigenesis and potential targets of therapeutic or protective strategies. Figura 1 Fuchs-Young, Robin g B I...Prostate Cancer, Jordan, V.C. and Furr, B., eds., Humana Press Inc., Totowa, NJ. (In press). Presentations/Abstracts: Young, R.F., Harrison, R.W., and

  11. Comparision of Piceid and Resveratrol in Antioxidation and Antiproliferation Activities In Vitro

    Science.gov (United States)

    Liu, Daozhou; Cui, Han; Zhang, Bangle; Zhou, Siyuan; Yang, Tiehong; Mei, Qibing

    2013-01-01

    Background The clinic therapeutic effect of resveratrol is limited due to its low oral bioavailability. Piceid, a precursor of resveratrol, is the most abundant form of resveratrol in nature. A number of studies have hypothesized that piceid may have the same bioactivities like those of resveratrol. The aim of this work is to compare piceid with resveratrol in antioxidation and antiproliferation activities in vitro. Methods The antioxidative effects of resveratrol and piceid were evaluated by phenanthroline-Fe2+ method and H2O2-induced oxidative injury cell model. The antiproliferation effects were determined by MTT method in human liver tumor HepG2 cells, human breast cancer MDA-MB-231 cells and MCF-7 cells. The effects of resveratrol and piceid on the cell cycle and the apoptosis were evaluated by flow cytometry. Additionally, the uptake profiles of resveratrol and piceid in cancer cells were observed using fluorescence microscopy and clarified by LC-MS/MS. Conclusion Piceid exhibited higher scavenging activity against hydroxyl radicals than resveratrol in vitro. Resveratrol showed a significant protective effect against H2O2-induced cell damage. What is more, resveratrol had biphasic effects on tumor cells. Resveratrol and piceid only showed significant cytotoxicity on tumor cells at high concentration (≥50 µmol/L), while low concentration of resveratrol (resveratrol and piceid on the viability of tumor cells was caused by the cell cycle arrest, while the effect on apoptosis was relatively minor. The reason that piceid showed lower biological activity than resveratrol at the same concentration was probably because piceid was more difficult in being uptaken by cells. PMID:23342161

  12. Trans-, cis-, and dihydro-resveratrol: a comparative study

    Directory of Open Access Journals (Sweden)

    Anisimova Natalia YU

    2011-12-01

    Full Text Available Abstract Background Recent studies showed that moderate consumption of red or white wines increased the chances of breast cancer, while similar consumption of red wines, rich in trans-resveratrol (trans-R, decreased the rate of prostate cancer. This prompted us to explore the role of various forms of R in cancer proliferation. Results Trans-R was found to be the most potent antiproliferative agent. Cis-R demonstrated somewhat less potency compared to trans-R. Unlike cis-R and trans-R, dihydro-R exhibits moderate proliferative effect on androgen-independent prostate cancer cell lines PC-3 and DU-145 at picomolar concentrations. At higher concentrations, dihydro-R caused proliferation inhibition, similar to cis-R and trans-R. The proliferative effect of dihydro-R at low concentrations can be reversed by trans-R which acts as a partial antagonist in the presence of dihydro-R. Mixtures of dihydro-R and trans-R demonstrated complex non-monotonic cross-modulation activity patterns. Conclusions Dihydro-R exhibits proliferative effects in androgen-independent prostate cancer cells at picomolar and nanomolar concentrations. While the exact mechanism of these effects requires further evaluation, our preliminary results point to hormone receptor modulation activity. We also observed strong cross modulation between trans-R and dihydro-R at sub-picomolar concentrations. The role of dihydro-R in cancer proliferation related to moderate consumption of red wine remains an open question because dihydro-R has a very complex activity pattern in the presence of trans-R.

  13. Resveratrol radiomodifier effect on Danio rerio embriolarval assay

    Energy Technology Data Exchange (ETDEWEB)

    Damasceno, Kelme C.; Mamede, Fernanda C.S.; Cavalcante, Adriana K.; Rogero, Sizue O.; Rogero, José R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ferreira, Monica L., E-mail: kelmecardoso@gmail.com, E-mail: monica.lopesferreira@butantan.gov.br [Instituto Butantan, São Paulo, SP (Brazil)

    2017-07-01

    The ionizing radiation can cause fatal damages to cells by the direct interaction with DNA and RNA or a series of toxic reactions occasioning chemical and biological changes. There are compounds with radioprotective potential, like resveratrol. For use these compounds it is necessary to know their toxicity and interaction with the organism. Resveratrol is a substance found in peanuts, grapes and wine and its production occurs in plants as a response to physical, chemical and biological stress. Some studies have indicated that it has many health benefits. Danio rerio (zebrafish) is a vertebrate animal and has become the model of several studies related to human diseases, due to its genomes similarity of 70 %, rapid embryonic development and the transparency of the eggs, which make it possible to observe the effects during the test period. The aim of the present study was to verify the resveratrol radiomodifier effect on zebrafish during the embryolarval development by modified Fish Embryo Acute Toxicity (FET) based on OECD236 and the obtained lethal concentration of resveratrol (LC50) was 66.9 mg.L{sup -1}. Before, to understand the effects of radiation, was carried out the gamma radiation lethal dose (LD50) assay and the LD50 was 25 Gy. With these results the project will continue later to finish the study of the radiomodifier effect of resveratrol in the presence of gamma radiation. (author)

  14. Resveratrol in human cancer chemoprevention--choosing the 'right' dose.

    Science.gov (United States)

    Scott, Edwina; Steward, William P; Gescher, Andreas J; Brown, Karen

    2012-01-01

    There is now robust preclinical evidence to suggest that resveratrol possesses cancer chemopreventive properties. A series of clinical pilot studies has provided insights into its pharmacokinetics, and data on its human antineoplastic pharmacodynamics start to emerge. It is likely that resveratrol will be developed further in the clinic as a putative cancer chemopreventive agent. The question that remains unresolved is: What is the most suitable dose of resveratrol for effective cancer preventive intervention? Mechanistic studies in cells in vitro have almost invariably used concentrations of resveratrol in the 10(-5) to 10(-4)  M range, which is much higher than those which can be achieved in the human biophase after consumption of doses up to 1 g. Many of the preclinical efficacy studies in rodent models of carcinogenesis have employed doses which are dramatically above those which can be ingested with the diet. New experimental paradigms need to be used to obtain information on pharmacological changes elicited by resveratrol when present at very low concentrations or when administered at dietary-relevant doses. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Lipophilization of Resveratrol and Effects on Antioxidant Activities.

    Science.gov (United States)

    Oh, Won Young; Shahidi, Fereidoon

    2017-10-04

    Resveratrol (R), a polyphenol, was structurally modified via esterification with selected fatty acids to expand its potential application in lipophilic foods, drugs, and cosmetics. The esterification was carried out using 12 different fatty acids with varying chain lengths and degrees of unsaturation (C3:0-C22:6). Two monoesters, two diesters, and one triester were identified by high-performance liquid chromatography-mass spectrometry, and the monoesters (R-3-O-monodocosahexaenoate and R-4'-O-monodocosahexaenoate) were structurally confirmed by nuclear magnetic resonance. The lipophilicity of resveratrol and its alkyl esters was calculated using ALOGPS 2.1. Resveratrol exhibited greater antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation scavenging assays. Resveratrol esters with long-chain fatty acids (C18:0 and C18:1) showed higher antioxidant activity in the DPPH radical scavenging assay, whereas short-chain fatty acid (C3:0, C4:0, and C6:0) showed higher antioxidant activity in the ABTS radical cation scavenging assay. The results may imply that resveratrol derivatives could be used in lipophilic media as health beneficial antioxidants.

  16. Assessment in vitro of radioprotective efficacy of curcumin and resveratrol

    Energy Technology Data Exchange (ETDEWEB)

    Sebastia, Natividad, E-mail: natividad.sebastia@uv.es [Area de Nutricion y Bromatologia, Facultat de Farmacia, Universitat de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot (Spain); Montoro, Alegria [Servicio de Proteccion Radiologica, Hospital Universitario La Fe, 46009, Valencia (Spain); Montoro, Amparo [Area de Nutricion y Bromatologia, Facultat de Farmacia, Universitat de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot (Spain); Almonacid, Miguel; Villaescusa, Juan Ignacio [Servicio de Proteccion Radiologica, Hospital Universitario La Fe, 46009, Valencia (Spain); Cervera, Jose; Such, Esperanza; Silla, Ma Angeles [Servicio de Hematologia, Hospital Universitario La Fe, 46009, Valencia (Spain); Soriano, Jose Miguel [Area de Nutricion y Bromatologia, Facultat de Farmacia, Universitat de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot (Spain)

    2011-09-15

    Many natural substances have been studied in recent past to be used as radioprotectors to mitigate ionizing radiation-induced damage in mammalian systems due to its effectiveness given both pre- and post-irradiation and for long time with out drug-related toxicity. Curcumin and trans-resveratrol are both natural occurring polyphenols, obtained from the root of Curcuma longa and from grapes and other berries, respectively. These compounds have shown antioxidant, anti-inflammatory, immunostimulant and anti-carcinogenic properties. Our aim was to evaluate the radioprotective efficacy, in vitro, of curcumin and trans-resveratrol separately against radiation-induced chromosomal aberrations. The study was carried out by the pre-treatment of human blood lymphocytes at concentrations from 0 to 500 {mu}g mL{sup -1} and from 0 to 50 {mu}g mL{sup -1} for curcumin and trans-resveratrol, respectively. The results showed that all concentrations tested reduced radiation-induced chromosomal damage. Maximum damage protection was observed at the concentration of 5 {mu}g mL{sup -1} for curcumin and 0.5 {mu}g mL{sup -1} for trans-resveratrol. Thus, our results show that curcumin and trans-resveratrol pre-treatment significantly protect normal lymphocytes against {gamma}-radiation-induced cellular damage.

  17. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Directory of Open Access Journals (Sweden)

    Andrew Mamalis

    Full Text Available Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.The goal of our study was to investigate the how reactive oxygen species (ROS free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR. For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2 on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched

  18. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Science.gov (United States)

    Mamalis, Andrew; Koo, Eugene; Isseroff, R Rivkah; Murphy, William; Jagdeo, Jared

    2015-01-01

    Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease. The goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed. High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2. High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched controls

  19. The paradoxical pro- and antiangiogenic actions of resveratrol: therapeutic applications in cancer and diabetes.

    Science.gov (United States)

    Kamaleddin, Mohammad Amin

    2016-12-01

    Resveratrol, a polyphenol found in grapes, peanuts, and red wine, plays different roles in diseases such as cancer and diabetes. Existing information indicates that resveratrol provides cardioprotection, as evidenced by superior postischemic ventricular recovery, reduced myocardial infarct size, and decreased number of apoptotic cardiomyocytes associated with resveratrol treatment in animal models. Cardiovascular benefits are experienced in humans with routine but not acute consumption of red wine. In this concise review, the paradoxical pro- and antiangiogenic effects of resveratrol are described, and different roles for resveratrol in the formation of new blood vessels are explained through different mechanisms. It is hypothesized that the effects of resveratrol on different cell types are not only dependent on its concentration but also on the physical and chemical conditions surrounding cells. The findings discussed herein shed light on potential therapeutic proapoptotic and antiangiogenic applications of low-dose resveratrol treatment in the prevention and treatment of different diseases. © 2016 New York Academy of Sciences.

  20. Neurobehavioural evaluation of resveratrol in murine models of anxiety and schizophrenia.

    Science.gov (United States)

    Magaji, Mohammed Garba; Iniaghe, Loretta Oghenekome; Abolarin, Mutiat; Abdullahi, Opeyemi Isa; Magaji, Rabiu Abdusalam

    2017-04-01

    Resveratrol, a caloric restriction mimetic, is a naturally occurring polyphenolic compound with antioxidant and anti-inflammatory properties. Oxidative stress has been implicated in the etiology of a number of neuropsychiatric disorders including generalized anxiety and schizophrenia. This study investigated the anxiolytic and antipsychotic potentials of resveratrol in murine models of anxiety and schizophrenia. Mice were pretreated with resveratrol (200 and 400 mg/kg) in 1% carboxymethyl cellulose for 14 days and subjected to behavioural tests on the 15th day. Anxiolytic activity of resveratrol was determined using the hole board and staircase tests while its anti-psychotic property was evaluated via apormorphine induced stereotypy and swim-induced grooming tests. Although resveratrol did not significantly reduce the mean number of head dips at doses used in the hole board test, it significantly (p Resveratrol significantly (p resveratrol at doses used in this study produced anxiolysis and anti-psychotic effects in mice.

  1. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Cai Shao-xi

    2011-03-01

    Full Text Available Abstract Background Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Methods Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. Results In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis, and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. Conclusion These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis.

  2. The p130 Isoform of Angiomotin Is Required for Yap-Mediated Hepatic Epithelial Cell Proliferation and Tumorigenesis

    Science.gov (United States)

    Yi, Chunling; Shen, Zhewei; Stemmer-Rachamimov, Anat; Dawany, Noor; Troutman, Scott; Showe, Louise C.; Liu, Qin; Shimono, Akihiko; Sudol, Marius; Holmgren, Lars; Stanger, Ben Z.; Kissil, Joseph L.

    2014-01-01

    The Hippo-Yap signaling pathway regulates a number of developmental and adult cellular processes, including cell fate determination, tissue growth, and tumorigenesis. Members of the scaffold protein angiomotin (Amot) family interact with several Hippo pathway components, including Yap (Yes-associated protein), and either stimulate or inhibit Yap activity. We used a combination of genetic, biochemical, and transcriptional approaches to assess the functional consequences of the Amot-Yap interaction in mice and in human cells. Mice with a liver-specific Amot knockout exhibited reduced hepatic “oval cell” proliferation and tumorigenesis in response to toxin-induced injury or when crossed with mice lacking the tumor suppressor Nf2. Biochemical examination of the Amot-Yap interaction revealed that the p130 splicing isoform of Amot (Amot-p130) and Yap interacted in both the cytoplasm and nucleus, which involved binding of PPxY and LPxY motifs in Amot-p130 to WW domains of Yap. In the cytoplasm, Amot-p130 prevented the phosphorylation of Yap by blocking access of the WW domains to the kinase Lats1. Within the nucleus, Amot-p130 was associated with the transcriptional complex containing Yap and Teads (TEA domain family members) and contributed to the regulation of a subset of Yap target genes, many of which are associated with tumorigenesis. These findings indicated that Amot acts as a Yap cofactor, preventing Yap phosphorylation and augmenting its activity toward a specific set of genes that facilitate tumorigenesis. PMID:24003254

  3. Electrochemical Evaluation of trans-Resveratrol Levels in Red Wine Based on the Interaction between Resveratrol and Graphene

    Directory of Open Access Journals (Sweden)

    Lantao Liu

    2017-01-01

    Full Text Available trans-Resveratrol is often considered as one of the quality standards of red wine, and the development of a sensitive and reliable method for monitoring the trans-resveratrol levels in red wine is an urgent requirement for the quality control. Here, a novel voltammetric approach was described for probing trans-resveratrol using a graphene-modified glassy carbon (GC electrode. The proposed electrode was prepared by one-step electrodeposition of reduced graphene oxide (ERGO at a GC electrode. Compared with the bare GC electrode, the introduced graphene film on the electrode surface dramatically improved the sensitivity of the sensor response due to the π-π interaction between the graphene and trans-resveratrol. The developed sensor exhibited low detection limit of 0.2 μM with wide linear range of 0.8–32 μM and high stability. For the analysis of trans-resveratrol in red wine, the high anti-interference ability and the good recoveries indicated the great potential for practical applications.

  4. Resveratrol, Acetyl-Resveratrol, and Polydatin Exhibit Antigrowth Activity against 3D Cell Aggregates of the SKOV-3 and OVCAR-8 Ovarian Cancer Cell Lines

    OpenAIRE

    Simon J. Hogg; Kenny Chitcholtan; Wafaa Hassan; Sykes, Peter H.; Ashley Garrill

    2015-01-01

    Resveratrol has aroused significant scientific interest as it has been claimed that it exhibits a spectrum of health benefits. These include effects as an anti-inflammatory and an antitumour compound. The purpose of this study was to investigate and compare any potential antigrowth effects of resveratrol and two of its derivatives, acetyl-resveratrol and polydatin, on 3D cell aggregates of the EGFR/Her-2 positive and negative ovarian cancer cell lines SKOV-3 and OVCAR-8, respectively. Results...

  5. Therapeutic applications of resveratrol and its derivatives on periodontitis.

    Science.gov (United States)

    Chin, Yu-Tang; Cheng, Guei-Yun; Shih, Ya-Jung; Lin, Chi-Yu; Lin, Shan-Jen; Lai, Hsuan-Yu; Whang-Peng, Jacqueline; Chiu, Hsien-Chung; Lee, Sheng-Yang; Fu, Earl; Tang, Heng-Yuan; Lin, Hung-Yun; Liu, Leroy F

    2017-09-01

    Periodontitis is an inflammatory disease of the supporting tissues of the teeth induced by periodontopathic bacteria that results in the progressive destruction of periodontal tissues. Treatment of periodontitis is painful and time-consuming. Recently, herbal medicines have been considered for use in treating inflammation-related diseases, including periodontitis. Resveratrol and its derivative 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucoside (THSG), a polyphenol extracted from Polygonum multiflorum, have anti-inflammatory properties and other medical benefits. Here, we highlight the importance of resveratrol and its glycosylated derivative as possible complementary treatments for periodontitis and their potential for development as innovative therapeutic strategies. In addition, we present evidence and discuss the mechanisms of action of resveratrol and THSG on periodontitis, focusing on Porphyromonas gingivalis-induced inflammatory responses in human gingival fibroblasts and animal modeling of ligature-induced periodontitis. We also illuminate the signal transduction pathways and the cytokines involved. © 2017 New York Academy of Sciences.

  6. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats.

    Science.gov (United States)

    Etxeberria, U; Arias, N; Boqué, N; Macarulla, M T; Portillo, M P; Martínez, J A; Milagro, F I

    2015-06-01

    Diet-induced obesity is associated to an imbalance in the normal gut microbiota composition. Resveratrol and quercetin, widely known for their health beneficial properties, have low bioavailability, and when they reach the colon, they are targets of the gut microbial ecosystem. Hence, the use of these molecules in obesity might be considered as a potential strategy to modulate intestinal bacterial composition. The purpose of this study was to determine whether trans-resveratrol and quercetin administration could counteract gut microbiota dysbiosis produced by high-fat sucrose diet (HFS) and, in turn, improve gut health. Wistar rats were randomised into four groups fed an HFS diet supplemented or not with trans-resveratrol [15 mg/kg body weight (BW)/day], quercetin (30 mg/kg BW/day) or a combination of both polyphenols at those doses. Administration of both polyphenols together prevented body weight gain and reduced serum insulin levels. Moreover, individual supplementation of trans-resveratrol and quercetin effectively reduced serum insulin levels and insulin resistance. Quercetin supplementation generated a great impact on gut microbiota composition at different taxonomic levels, attenuating Firmicutes/Bacteroidetes ratio and inhibiting the growth of bacterial species previously associated to diet-induced obesity (Erysipelotrichaceae, Bacillus, Eubacterium cylindroides). Overall, the administration of quercetin was found to be effective in lessening HFS-diet-induced gut microbiota dysbiosis. In contrast, trans-resveratrol supplementation alone or in combination with quercetin scarcely modified the profile of gut bacteria but acted at the intestinal level, altering the mRNA expression of tight-junction proteins and inflammation-associated genes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. MicroRNA-27b suppresses Helicobacter pylori-induced gastric tumorigenesis through negatively regulating Frizzled7.

    Science.gov (United States)

    Geng, Yan; Lu, Xiaolan; Wu, Xiaokang; Xue, Li; Wang, Xiangling; Xu, Jiru

    2016-04-01

    MicroRNAs (miRNAs) are novel tools for cancer therapy. Frizzled7 (FZD7) is an important co-receptor in the WNT signaling pathway. The WNT signaling pathway is aberrantly activated in Helicobacter pylori (H. pylori)‑infected gastric cancer cells. However, the role of FZD7 in H. pylori‑induced gastric tumorigenesis remains unknown. In this study, we investigated the potential role of FZD7 in H. pylori-induced gastric tumorigenesis and validated the possibility that targeting of FZD7 by specific miRNA inhibits H. pylori-induced gastric tumorigenesis. First, we found that FZD7 was significantly induced by H. pylori infection in a dose- and time-dependent manner. Knockdown of FZD7 by FZD7 small interfering RNA effectively inhibited H. pylori infection-induced cell proliferation of gastric cancer cells. We found that microRNA-27b (miR-27b) was the predicted miRNA for FZD7 and that miR-27b negatively regulated FZD7 expression by targeting the 3'-untranslated region of FZD7. Furthermore, miR-27b overexpression significantly inhibited H. pylori infection-induced cell proliferation and WNT signaling pathway activation in gastric cancer cells. Restoration of FZD7 expression significantly attenuated the inhibitory effect of miR-27b overexpression on cell proliferation and WNT signaling pathway activation. Collectively, our study suggests that FZD7 triggered by H. pylori infection contributes to the H. pylori infection-induced cell proliferation that links the WNT. Thus, miR-27b may be a promising molecular target for the treatment of the disease.

  8. Ultrasound processed nanoemulsion: A comparative approach between resveratrol and resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability.

    Science.gov (United States)

    Kumar, Raj; Kaur, Khushwinder; Uppal, Shivani; Mehta, S K

    2017-07-01

    Resveratrol is a naturally occurring therapeutic molecule used for treatment of diseases caused by oxidative stress. This investigation elucidates the advantages of fabrication of size controlled resveratrol inclusion complex. This has been done by encapsulating resveratrol-cyclodextrin inclusion complex in a phospholipid stabilized nanoemulsion formulated by ultrasonication emulsification method. The prepared nanoemulsion has been compared with resveratrol encapsulated nanoemulsion system. The morphology of the resveratrol nanoemulsion and inclusion complex nanoemulsion have been observed using transmission electron microscopy with average size 20.41±3.41 and 24.48±5.70nm respectively. The nanoemulsion showed good loading and release efficiency. The radical diminishing potential of resveratrol and its inclusion complex has been compared in nanoemulsion. The effect of UV irradiation (365nm) on resveratrol in different solvent systems (ethanol, water and nanoemulsion) indicated that nanoemulsion prevents degradation of resveratrol. Efforts have also been made to explore the interactions between bovine serum albumin and resveratrol in nanoemulsion. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    2013-05-01

    Full Text Available ABSTRACTBackground: Resveratrol, a plant polyphenol existing in grapes and many other natural foods, possesses a wide range of biological activities including cancer prevention. It has been recognized that resveratrol is intracellularly biotransformed to different metabolites, but no direct evidence has been available to ascertain its bioactive form because of the difficulty to maintain resveratrol unmetabolized in vivo or in vitro. It would be therefore worthwhile to elucidate the potential therapeutic implications of resveratrol metabolism using a reliable